Science.gov

Sample records for broadleaf deciduous forest

  1. Leaf domatia and foliar mite abundance in broadleaf deciduous forest of north Asia.

    PubMed

    O'Dowd, D; Pemberton, R

    1998-01-01

    Plant morphology may be shaped, in part, by the third trophic level. Leaf domatia, minute enclosures usually in vein axils on the leaf underside, may provide the basis for protective mutualism between plants and mites. Domatia are particularly frequent among species of trees, shrubs, and vines in the temperate broadleaf deciduous forests in north Asia where they may be important in determining the distribution and abundance of mites in the forest canopy. In lowland and montane broadleaf deciduous forests at Kwangn;akung and Chumbongsan in Korea, we found that approximately half of all woody species in all forest strata, including many dominant trees, have leaf domatia. Pooling across 24 plant species at the two sites, mites occupied a mode of 60% (range 20-100%) of domatia and used them for shelter, egg-laying, and development. On average, 70% of all active mites and 85% of mite eggs on leaves were found in domatia; over three-quarters of these were potentially beneficial to their hosts. Further, mite abundance and reproduction (expressed as the proportion of mites at the egg stage) were significantly greater on leaves of species with domatia than those without domatia in both forests. Effects of domatia on mite abundance were significant only for predaceous and fungivorous mite taxa; herbivore numbers did not differ significantly between leaves of species with and without domatia. Comparable patterns in broadleaf deciduous forest in North America and other biogeographic regions suggest that the effect of leaf domatia on foliar mite abundance is general. These results are consistent with several predictions of mutualism between plants and mites, and indicate that protective mutualisms may be frequent in the temperate zone.

  2. Leaf-on canopy closure in broadleaf deciduous forests predicted during winter

    USGS Publications Warehouse

    Twedt, Daniel J.; Ayala, Andrea J.; Shickel, Madeline R.

    2015-01-01

    Forest canopy influences light transmittance, which in turn affects tree regeneration and survival, thereby having an impact on forest composition and habitat conditions for wildlife. Because leaf area is the primary impediment to light penetration, quantitative estimates of canopy closure are normally made during summer. Studies of forest structure and wildlife habitat that occur during winter, when deciduous trees have shed their leaves, may inaccurately estimate canopy closure. We estimated percent canopy closure during both summer (leaf-on) and winter (leaf-off) in broadleaf deciduous forests in Mississippi and Louisiana using gap light analysis of hemispherical photographs that were obtained during repeat visits to the same locations within bottomland and mesic upland hardwood forests and hardwood plantation forests. We used mixed-model linear regression to predict leaf-on canopy closure from measurements of leaf-off canopy closure, basal area, stem density, and tree height. Competing predictive models all included leaf-off canopy closure (relative importance = 0.93), whereas basal area and stem density, more traditional predictors of canopy closure, had relative model importance of ≤ 0.51.

  3. Multidisciplinary Research on Canopy Photosynthetic Productivity in a Cool-Temperate Deciduous Broadleaf Forest in Japan

    NASA Astrophysics Data System (ADS)

    Muraoka, H.; Noda, H. M.; Saitoh, T. M.; Nagai, S.

    2014-12-01

    Forest canopy has crucial roles in regulating energy and material exchange between the atmosphere and terrestrial ecosystems and in ecological processes with respect to carbon cycle and growth in the ecosystems. Challenges to the canopy of tall forests for such research involve the access to the leaves for ecophysiological observations, responses of leaves to the changing environments from seconds to years, and up-scaling the leaf-level phenomena to canopy and landscape-levels. A long-term, multidisciplinary approach has been conducted in a cool-temperate deciduous broadleaf forest in Takayama site (ca. 1400m a.s.l.) in central Japan. This forest canopy is dominated by Quercus crispula and Betula ermanii. We have been focusing on the phenology of photosynthetic productivity from a single leaf to canopy, and to landscape level, by combining leaf ecophysiological research, optical observations by spectroradiometers and time-laps cameras with the aid of "Phenological Eyes Network (PEN)", and process-based modellings. The canopy-level photosynthesis is then compared with the micrometeorolgical observation of CO2 flux at the site. So far we have been clarifying that (1) inter-annual variations in seasonal growth rate and senescence rate of leaf photosynthetic capacity and canopy leaf area are largely responsible for the inter-annual change in forest photosynthesis, and (2) spectral vegetation indices such as enhanced vegetation index (EVI) and chlorophyll index (CCI) can be the indicator to observe the phenology of forest canopy photosynthesis. In addition to these efforts since 2003, we established an open-field warming experiment on the branches of the canopy trees, to investigate the possible influence of temperature increase on leaf photosynthetic and optical properties and then to examine whether the optical satellite remote sensing can detect the changes in photosynthetic capacity and phenology by ongoing global warming.

  4. Leaf display and photosynthesis of tree seedlings in a cool-temperate deciduous broadleaf forest understorey.

    PubMed

    Muraoka, Hiroyuki; Koizumi, Hiroshi; Pearcy, Robert W

    2003-05-01

    To examine a possible convergence in leaf photosynthetic characteristics and leaf display responses to light environment in seedlings of three canopy and two shrub tree species in understorey of cool-temperate deciduous broadleaf forest, relationships between light environment, leaf orientation and leaf light-photosynthetic response were measured. Light capture of the seedlings (17-24 individuals with 2-12 leaves for each species) was assessed with a three dimensional geometric modeling program Y-plant. Leaf photosynthetic characteristics of the five species were found to have acclimated to the understorey light environment, i.e., low light compensation point and high apparent quantum yield. In addition, light-saturated photosynthetic rates were higher in seedlings inhabiting microsites with higher light availability. Efficiencies of light capture and carbon gain of the leaf display were evaluated by simulating the directionalities of light capture and daily photosynthesis for each seedling using hemispherical canopy photography. The results showed that most of the seedlings orientated their leaves in a way to increase the daily photosynthesis during the direct light periods (sunflecks) rather than maximize daily photosynthesis by diffuse light. Simulations also showed that daily photosynthesis would increase only 10% of that on actual leaf display when the leaves orientated to maximize the diffuse light interception. Simulations in which leaf orientations were varied showed that when the leaf display fully maximized direct light interception, the time that leaves were exposed to excessive photon flux density of >800 mumol photons m(-2) s(-1) were doubled. The understorey seedlings studied responded to the given light environments in a way to maximize the efficiency of acquisition and use of light during their short (approximately 3 month) seasonal growth period.

  5. Estimating soil respiration using spatial data products: A case study in a deciduous broadleaf forest in the Midwest USA

    NASA Astrophysics Data System (ADS)

    Huang, Ni; Gu, Lianhong; Niu, Zheng

    2014-06-01

    This study aimed to investigate the potential of spatially distributed data products in estimating soil respiration (Rs), including land surface temperature (LST) and spectral vegetation index from the Moderate Resolution Imaging Spectroradiometer (MODIS) and root zone soil moisture derived from the assimilation of the NASA Advanced Microwave Scanning Radiometer-EOS and a land surface model, at a deciduous broadleaf forest site in the Midwest USA. Several statistical models were used to examine the dependencies of Rs on these spatial data products, and accuracy of these models was compared to the models based on in situ measurements. The models based on mean LST (i.e., averaging nighttime and daytime LST from MODIS) and root zone soil moisture explained 82% and 72% of seasonal variations in Rs for spring and winter dormant periods, respectively. In the growing season, the models depending on mean LST, root zone soil moisture, and photosynthesis-related enhanced vegetation index showed comparable accuracy with the models entirely based on in situ measured data, except for the midgrowing period. Drought stress led to a relatively low explanation capacity for the Rs model based on spatial data products during the midgrowing period. However, this model still explained 76% of temporal dynamics of Rs over the midgrowing period. Our results suggested that simple models based entirely on spatial data products have the potential to estimate Rs at the temperate deciduous forest site. The conclusions drawn from the present study provided valuable information for large-scale estimates of Rs in temperate deciduous forest ecosystems.

  6. Tree species composition influences dependence of climate forcing on spring phenology across temperate deciduous broadleaf forests in Eastern United States

    NASA Astrophysics Data System (ADS)

    Melaas, E. K.; Friedl, M. A.; Richardson, A. D.

    2014-12-01

    Phenological events in temperate deciduous forests, such as bud burst and senescence, exert strong control over seasonal fluxes of water, energy and carbon. The timing of these transitions is influenced primarily by air temperature, which makes them robust indicators of biological responses to climate change. However, the exact nature and magnitude of these controls is currently poorly understood. In this paper, we used a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations, including camera-based time series of canopy greenness from PhenoCams and citizen science data from the USA-National Phenology Network, to develop and test models that predict the timing of spring leaf emergence across several different deciduous broadleaf forest types in the eastern contiguous United States (68°W-95°W, 30°N-50°N). As part of this analysis, we analyzed two existing land surface model phenology subroutines and specifically examined predictions for two years with anomalously warm temperatures during dormancy to investigate the role of chilling. The results indicate significant differences in cumulative heating requirements and photoperiod cues among forest types. Moreover, we found that regional patterns of species composition explain spatial variation in prediction errors from existing models. In addition, we identified a marginal, but statistically significant decrease in model bias when chilling requirements were included during an anomalously warm winter with average spring temperatures, but no significant improvement when both winter and springtime temperatures were more representative of future climate.

  7. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest.

    PubMed

    Richardson, Andrew D; Jenkins, Julian P; Braswell, Bobby H; Hollinger, David Y; Ollinger, Scott V; Smith, Marie-Louise

    2007-05-01

    Understanding relationships between canopy structure and the seasonal dynamics of photosynthetic uptake of CO(2) by forest canopies requires improved knowledge of canopy phenology at eddy covariance flux tower sites. We investigated whether digital webcam images could be used to monitor the trajectory of spring green-up in a deciduous northern hardwood forest. A standard, commercially available webcam was mounted at the top of the eddy covariance tower at the Bartlett AmeriFlux site. Images were collected each day around midday. Red, green, and blue color channel brightness data for a 640 x 100-pixel region-of-interest were extracted from each image. We evaluated the green-up signal extracted from webcam images against changes in the fraction of incident photosynthetically active radiation that is absorbed by the canopy (f (APAR)), a broadband normalized difference vegetation index (NDVI), and the light-saturated rate of canopy photosynthesis (A(max)), inferred from eddy flux measurements. The relative brightness of the green channel (green %) was relatively stable through the winter months. A steady rising trend in green % began around day 120 and continued through day 160, at which point a stable plateau was reached. The relative brightness of the blue channel (blue %) also responded to spring green-up, although there was more day-to-day variation in the signal because blue % was more sensitive to changes in the quality (spectral distribution) of incident radiation. Seasonal changes in blue % were most similar to those in f (APAR) and broadband NDVI, whereas changes in green % proceeded more slowly, and were drawn out over a longer period of time. Changes in A(max) lagged green-up by at least a week. We conclude that webcams offer an inexpensive means by which phenological changes in the canopy state can be quantified. A network of cameras could offer a novel opportunity to implement a regional or national phenology monitoring program.

  8. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment.

    PubMed

    Williams, Christopher A; Vanderhoof, Melanie K; Khomik, Myroslava; Ghimire, Bardan

    2014-03-01

    Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous

  9. Effects of a windthrow disturbance on the carbon balance of a broadleaf deciduous forest in Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Yamanoi, K.; Mizoguchi, Y.; Utsugi, H.

    2015-07-01

    Forests play an important role in the terrestrial carbon budget, with most being in a carbon sequestration stage. The net carbon releases that occur result from forest disturbance, and windthrow is a typical disturbance event affecting the forest carbon balance in eastern Asia. The carbon budget has been measured using the eddy covariance method in a deciduous broadleaf forest (Japanese white birch, Japanese oak, and castor aralia) in Hokkaido, where accidental damage by the strong typhoon, Songda, in 2004 occurred. We also used the biometrical method to demonstrate the carbon flow within the forest in detail. Damaged trees amounted to 40 % of all trees, and they remained on site where they were not extracted by forest management. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production were 1350, 975, and 375 g C m-2 yr-1 before the disturbance and 1262, 1359, and -97 g C m-2 yr-1 2 years after the disturbance, respectively. Before the disturbance, the forest was an evident carbon sink, and it subsequently transformed to net a carbon source. Because of light enrichment at the forest floor, the leaf area index and biomass of the undergrowth (Sasa kurilensis and S. senanensis) increased by factors of 2.4 and 1.7, respectively, in 3 years subsequent to the disturbance. The photosynthesis of Sasa increased rapidly and contributed to the total GPP after the disturbance. The annual GPP only decreased by 6 % just after the disturbance. On the other hand, the annual Re increased by 39 % mainly because of the decomposition of residual coarse-wood debris. The carbon balance after the disturbance was controlled by the new growth and the decomposition of residues. The forest management, which resulted in the dead stands remaining at the study site, strongly affected the carbon budget over the years. When comparing the carbon uptake efficiency at the study site with that at others, including those with various kinds of disturbances, we

  10. Effects of a windthrow disturbance on the carbon balance of a broadleaf deciduous forest in Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Yamanoi, K.; Mizoguchi, Y.; Utsugi, H.

    2015-12-01

    Forests play an important role in the terrestrial carbon balance, with most being in a carbon sequestration stage. The net carbon releases that occur result from forest disturbance, and windthrow is a typical disturbance event affecting the forest carbon balance in eastern Asia. The CO2 flux has been measured using the eddy covariance method in a deciduous broadleaf forest (Japanese white birch, Japanese oak, and castor aralia) in Hokkaido, where incidental damage by the strong Typhoon Songda in 2004 occurred. We also used the biometrical method to demonstrate the CO2 flux within the forest in detail. Damaged trees amounted to 40 % of all trees, and they remained on site where they were not extracted by forest management. Gross primary production (GPP), ecosystem respiration (Re), and net ecosystem production were 1350, 975, and 375 g C m-2 yr-1 before the disturbance and 1262, 1359, and -97 g C m-2 yr-1 2 years after the disturbance, respectively. Before the disturbance, the forest was an evident carbon sink, and it subsequently transformed into a net carbon source. Because of increased light intensity at the forest floor, the leaf area index and biomass of the undergrowth (Sasa kurilensis and S. senanensis) increased by factors of 2.4 and 1.7, respectively, in 3 years subsequent to the disturbance. The photosynthesis of Sasa increased rapidly and contributed to the total GPP after the disturbance. The annual GPP only decreased by 6 % just after the disturbance. On the other hand, the annual Re increased by 39 % mainly because of the decomposition of residual coarse-wood debris. The carbon balance after the disturbance was controlled by the new growth and the decomposition of residues. The forest management, which resulted in the dead trees remaining at the study site, strongly affected the carbon balance over the years. When comparing the carbon uptake efficiency at the study site with that at others, including those with various kinds of disturbances, we

  11. Effects of drought on leaf gas exchange in an eastern broadleaf deciduous forest

    NASA Astrophysics Data System (ADS)

    Roman, D. T.; Brzostek, E. R.; Dragoni, D.; Rahman, A. F.; Novick, K. A.; Phillips, R.

    2013-12-01

    Understanding plant physiological adaptations to drought is critical for predicting changes in ecosystem productivity that result from climate variability and future climate change. From 2011-2013, southern Indiana experienced a late growing season drought in 2011, a severe early season drought in 2012, and a wet growing season in 2013 characterized by an absence of water stress with frequent precipitation and milder temperatures. The 2012 drought was unique due to the severity and early onset drought conditions (compared to the more frequent late season drought) and was characterized by a Palmer Drought severity index below -4 and precipitation totals from May - July that were 70% less than the long-term (2000 - 2010) mean. During the 2012 drought, an 11% decline in net ecosystem productivity relative to the long-term mean was observed at the AmeriFlux tower in Morgan Monroe State Forest despite a growing season that started ~25 days earlier. Thus, the objective of this study is to evaluate species-specific contributions to the canopy-scale response to inter-annual variability in water stress. We investigated differences between tree species in their response to climate variability using weekly leaf gas exchange and leaf water potential measurements during the growing seasons of 2011-2013. We used this unique dataset, collected at the top of the canopy with a 25 m boom lift, to evaluate changes in leaf water status and maximum assimilation capacity in the drought versus non-drought years. The leaf-level physiology of oak (Quercus) species appears to be less sensitive to drought than other species (tulip poplar [Liriodendron tulipifera], sassafras [Sassafras albidum] and sugar maple [Acer saccharum]). Preliminary data shows mean canopy leaf water potential for oaks was 30.5% more negative in May-July 2012 versus the same time period in 2013. During these same periods the rate of C assimilation in oaks was reduced by only 3%, whereas other species were reduced by

  12. Species and stand traits of broadleaf deciduous and evergreen trees and its role on hydrologic processes in a semiarid forest

    NASA Astrophysics Data System (ADS)

    Arredondo, T.; Perez Suarez, M.; Rodriguez Robles, U.

    2013-05-01

    Empirical and modelling studies have pointed out to the importance of morphologic, physiologic and chemical traits of plant species on the control of functional aspects of ecosystems. Land use change exerts a pervasive effect on ecosystems through its effects on plant cover, species composition and the arrangement of vegetation. Species footprint influence on ecosystem processes occurs through their functional plant traits, understanding their role might be possible to predict alterations in ecosystem functioning. Using the concept of functional matrix we examined how traits of two dominant forest species, one broadleaf (Quercus potosina) and one evergreen (Pinus cembroides) observed as mixed and monospecific stands, exerted an influence on ecohydrological processes. Thus, differences in plant height, canopy structure, litter production and quality, root system distribution, etc. determined differences in vertical and horizontal rain fluxes. Oak monospecif stands showed 20% higher throughfall compared to mixex and pure pine stands as a consequence of exhibiting a monolayered canopy. On the other hand, runoff was 67 and 33 % in pine compared to oak and mixed stands a result that arosing from observed differences in litter decomposition stage as well as its proportion. Differences between root systems accounted for less negative plant water potentials in oak in contrast to pine. These differences together with leaf phenology allowed oak trees to reduce the plant water potential during the drought period. Similar pattern observed for pine is attributed to foraging capabilities of an extensive root system.

  13. Seasonal cycles of water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yuzo; Fu, PingQing; Ono, Kaori; Tachibana, Eri; Kawamura, Kimitaka

    2014-02-01

    The seasonal variations in aerosol water-soluble organic nitrogen (WSON) concentrations measured in a deciduous forest canopy over an approximately 30 month period were investigated for possible sources in the forest. The WSON concentrations (average 157 ± 127 ng N m-3) and WSON/water-soluble total nitrogen mass fractions (average 20 ± 11%) in the total suspended particulate matter exhibited a clear seasonal cycle with maxima in early summer. The WSON mass was found to reside mostly in the fine-mode size range (Dp < 1.9 µm) during the summer months. WSON was positively correlated with oxidation products of α-pinene and isoprene with similar size distributions, suggesting that secondary formation from biogenic hydrocarbon precursors is a plausible source for WSON in summer. In contrast, the majority of WSON in autumn was associated with coarse fraction (Dp > 1.9 µm), which was similar to the size distributions of sugar compounds, indicating that the major WSON sources in autumn are associated with primary biological emissions. The vertical differences in WSON concentrations suggest that the water-soluble organic aerosol is enriched with nitrogen below the canopy level relative to the forest floor. The WSON concentration increased with enhanced hydrogen ion concentrations in aerosol in the early summer, indicating that aerosol acidity associated with anthropogenic sources outside the forest likely plays an important role in the formation of WSON in that season. The study suggests that multiple sources of WSON within the forest canopy may dominate over others in specific seasons, providing insights into WSON formation processes in forest environments.

  14. Endocarp thickness affects seed removal speed by small rodents in a warm-temperate broad-leafed deciduous forest, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongmao; Zhang, Zhibin

    2008-11-01

    Seed traits are important factors affecting seed predation by rodents and thereby the success of recruitment. Seeds of many tree species have hard hulls. These are thought to confer mechanical protection, but the effect of endocarp thickness on seed predation by rodents has not been well investigated. Wild apricot ( Prunus armeniaca), wild peach ( Amygdalus davidiana), cultivated walnut ( Juglans regia), wild walnut ( Juglans mandshurica Maxim) and Liaodong oak ( Quercus liaotungensis) are very common tree species in northwestern Beijing city, China. Their seeds vary greatly in size, endocarp thickness, caloric value and tannin content. This paper aims to study the effects of seed traits on seed removal speed of these five tree species by small rodents in a temperate deciduous forest, with emphasis on the effect of endocarp thickness. The results indicated that speed of removal of seeds released at stations in the field decreased significantly with increasing endocarp thickness. We found no significant correlations between seed removal speed and other seed traits such as seed size, caloric value and tannin content. In seed selection experiments in small cages, Père David's rock squirrel ( Sciurotamias davidianus), a large-bodied, strong-jawed rodent, selected all of the five seed species, and the selection order among the five seed species was determined by endocarp thickness and the ratio of endocarp mass/seed mass. In contrast, the Korean field mouse ( Apodemus peninsulae) and Chinese white-bellied rat ( Niviventer confucianus), with relatively small bodies and weak jaws, preferred to select small seeds like acorns of Q. liaotungensis and seeds of P. armeniaca, indicating that rodent body size is also an important factor affecting food selection based on seed size. These results suggest endocarp thickness significantly reduces seed removal speed by rodents and then negatively affects dispersal fitness of seeds before seed removal of tree species in the study

  15. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman-Monteith approach combined with a photosynthesis-dependent stomatal model.

    PubMed

    Kitao, Mitsutoshi; Komatsu, Masabumi; Hoshika, Yasutomo; Yazaki, Kenichi; Yoshimura, Kenichi; Fujii, Saori; Miyama, Takafumi; Kominami, Yuji

    2014-01-01

    Canopy-level stomatal conductance over a warm-temperate mixed deciduous and evergreen broadleaf forest in Japan was estimated by the Penman-Monteith approach, as compensated by a semi-empirical photosynthesis-dependent stomatal model, where photosynthesis, relative humidity, and CO2 concentration were assumed to regulate stomatal conductance. This approach, using eddy covariance data and routine meteorological observations at a flux tower site, permits the continuous estimation of canopy-level O3 uptake, even when the Penman-Monteith approach is unavailable (i.e. in case of direct evaporation from soil or wet leaves). Distortion was observed between the AOT40 exposure index and O3 uptake through stomata, as AOT40 peaked in April, but with O3 uptake occurring in July. Thus, leaf pre-maturation in the predominant deciduous broadleaf tree species (Quercus serrata) might suppress O3 uptake in springtime, even when the highest O3 concentrations were observed.

  16. Effects of seasonal and interannual variations in leaf photosynthesis and canopy leaf area index on gross primary production of a cool-temperate deciduous broadleaf forest in Takayama, Japan.

    PubMed

    Muraoka, Hiroyuki; Saigusa, Nobuko; Nasahara, Kenlo N; Noda, Hibiki; Yoshino, Jun; Saitoh, Taku M; Nagai, Shin; Murayama, Shohei; Koizumi, Hiroshi

    2010-07-01

    Revealing the seasonal and interannual variations in forest canopy photosynthesis is a critical issue in understanding the ecological mechanisms underlying the dynamics of carbon dioxide exchange between the atmosphere and deciduous forests. This study examined the effects of temporal variations of canopy leaf area index (LAI) and leaf photosynthetic capacity [the maximum velocity of carboxylation (V (cmax))] on gross primary production (GPP) of a cool-temperate deciduous broadleaf forest for 5 years in Takayama AsiaFlux site, central Japan. We made two estimations to examine the effects of canopy properties on GPP; one is to incorporate the in situ observation of V (cmax) and LAI throughout the growing season, and another considers seasonality of LAI but constantly high V (cmax). The simulations indicated that variation in V (cmax) and LAI, especially in the leaf expansion period, had remarkable effects on GPP, and if V (cmax) was assumed constant GPP will be overestimated by 15%. Monthly examination of air temperature, radiation, LAI and GPP suggested that spring temperature could affect canopy phenology, and also that GPP in summer was determined mainly by incoming radiation. However, the consequences among these factors responsible for interannual changes of GPP are not straightforward since leaf expansion and senescence patterns and summer meteorological conditions influence GPP independently. This simulation based on in situ ecophysiological research suggests the importance of intensive consideration and understanding of the phenology of leaf photosynthetic capacity and LAI to analyze and predict carbon fixation in forest ecosystems.

  17. Inversely estimating the vertical profile of the soil CO2 production rate in a deciduous broadleaf forest using a particle filtering method.

    PubMed

    Sakurai, Gen; Yonemura, Seiichiro; Kishimoto-Mo, Ayaka W; Murayama, Shohei; Ohtsuka, Toshiyuki; Yokozawa, Masayuki

    2015-01-01

    Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.

  18. Mercury in leaf litter in typical suburban and urban broadleaf forests in China.

    PubMed

    Niu, Zhenchuan; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia

    2011-01-01

    To study the role of leaf litter in the mercury (Hg) cycle in suburban broadleaf forests and the distribution of Hg in urban forests, we collected leaf litter and soil from suburban evergreen and deciduous broadleaf forests and from urban forests in Beijing. The Hg concentrations in leaf litter from the suburban forests varied from 8.3 to 205.0 ng/g, with an average (avg) of (49.7 +/- 36.9) ng/g. The average Hg concentration in evergreen broadleaf forest leaf litter (50.8 + 39.4) ng/g was higher than that in deciduous broadleaf forest leaf litter (25.8 +/- 10.1) ng/g. The estimated Hg fluxes of leaf litter in suburban evergreen and deciduous broadleaf forests were 179.0 and 83.7 mg/(ha x yr), respectively. The Hg concentration in organic horizons (O horizons) ((263.1 +/- 237.2) ng/g) was higher than that in eluvial horizons (A horizons) ((83.9 +/- 52.0) ng/g). These results indicated that leaf litterfall plays an important role in transporting atmospheric mercury to soil in suburban forests. For urban forests in Beijing, the Hg concentrations in leaf litter ranged from 8.8-119.0 (avg 28.1 +/- 16.6) ng/g, with higher concentrations at urban sites than at suburban sites for each tree. The Hg concentrations in surface soil in Beijing were 32.0-25300.0 ng/g and increased from suburban sites to urban sites, with the highest value from Jingshan (JS) Park at the centre of Beijing. Therefore, the distribution of Hg in Beijing urban forests appeared to be strongly influenced by anthropogenic activities.

  19. Midday stomatal conductance is more related to stem rather than leaf water status in subtropical deciduous and evergreen broadleaf trees.

    PubMed

    Zhang, Yong-Jiang; Meinzer, Frederick C; Qi, Jin-Hua; Goldstein, Guillermo; Cao, Kun-Fang

    2013-01-01

    Midday depressions in stomatal conductance (g(s) ) and photosynthesis are common in plants. The aim of this study was to understand the hydraulic determinants of midday g(s) , the coordination between leaf and stem hydraulics and whether regulation of midday g(s) differed between deciduous and evergreen broadleaf tree species in a subtropical cloud forest of Southwest (SW) China. We investigated leaf and stem hydraulics, midday leaf and stem water potentials, as well as midday g(s) of co-occurring deciduous and evergreen tree species. Midday g(s) was correlated positively with midday stem water potential across both groups of species, but not with midday leaf water potential. Species with higher stem hydraulic conductivity and greater daily reliance on stem hydraulic capacitance were able to maintain higher stem water potential and higher g(s) at midday. Deciduous species exhibited significantly higher stem hydraulic conductivity, greater reliance on stem capacitance, higher stem water potential and g(s) at midday than evergreen species. Our results suggest that midday g(s) is more associated with midday stem than with leaf water status, and that the functional significance of stomatal regulation in these broadleaf tree species is probably for preventing stem xylem dysfunction.

  20. High sensitivity of northeastern broadleaf forest trees to water availability

    NASA Astrophysics Data System (ADS)

    Levesque, M.; Pederson, N.; Andreu-Hayles, L.

    2015-12-01

    Temperate deciduous forests of eastern US provide goods and services to millions of people and play a vital role in the terrestrial carbon and hydrological cycles. However, ongoing climate change and increased in CO2 concentration in the atmosphere (ca) are expected to alter growth and gas exchange of trees, and ultimately forest productivity. Still, the magnitude of these effects is unclear. A better comprehension of the species-specific responses to environmental changes will better inform models and managers on the vulnerability and resiliency of these forests. Tree-ring analysis was combined with δ¹³C and δ18O measurements to investigate growth and physiological responses of red oak (Quercus rubra L.) and tulip poplar (Liriodendron tulipifera L.) in northeastern US to changes in water availability and ca for the period 1950-2014. We found very strong correlations between summer climatic water balance (June-August) and isotopic tree-ring series for δ¹³C (r = -0.65 and -0.73), and δ18O (r = -0.59 and -0.70), for red oak and tulip poplar, respectively. In contrast, tree-ring width was less sensitive to summer water availability (r = 0.33-0.39). Prior to the mid 1980s, low water availability resulted in low stomatal conductance, photosynthesis, and growth. Since that period, pluvial conditions occurring in northeastern US have increased stomatal conductance, carbon uptake, and growth of both species. These findings demonstrate that broadleaf trees in this region could be more sensitive to drought than expected. This appears especially true since much of the calibration period looks wet in a multi-centennial perspective. Further, stronger spatial correlations were found between climate data with tree-ring isotopes than with tree-ring width and the geographical area of the observed δ18O-precipitation response (i.e. the area over which correlations are > 0.5) covers most of the northeastern US. Given the good fit between the isotopic time series and water

  1. Seasonal and vertical changes in leaf angle distribution for selected deciduous broadleaf tree species common to Europe

    NASA Astrophysics Data System (ADS)

    Raabe, Kairi; Pisek, Jan; Sonnentag, Oliver; Annuk, Kalju

    2014-05-01

    Leaf inclination angle distribution is a key parameter in determining the transmission and reflection of radiation by vegetation canopies. It has been previously observed that leaf inclination angle might change gradually from more vertical in the upper canopy and in high light habitats to more horizontal in the lower canopy and in low light habitats [1]. Despite its importance, relatively few measurements on actual leaf angle distributions have been reported for different tree species. Even smaller number of studies have dealt with the possible seasonal changes in leaf angle distribution [2]. In this study the variation of leaf inclination angle distributions was examined both temporally throughout the growing season and vertically at different heights of trees. We report on leaf inclination angle distributions for five deciduous broadleaf species found commonly in several parts of Europe: grey alder (Alnus incana), Silver birch (Betula pendula Roth), chestnut (Castanea), Norway maple (Acer platanoides), and aspen (Populus tremula). The angles were measured using the leveled camera method [3], with the data collected at several separate heights and four times during the period of May-September 2013. The results generally indicate the greatest change in leaf inclination angles for spring, with the changes usually being the most pronounced at the top of the canopy. It should also be noted, however, that whereas the temporal variation proved to be rather consistent for different species, the vertical variation differed more between species. The leveled camera method was additionally tested in terms of sensitivity to different users. Ten people were asked to measure the leaf angles for four different species. The results indicate the method is quite robust in providing coinciding distributions irrespective of the user and level of previous experience with the method. However, certain caution must be exercised when measuring long narrow leaves. References [1] G.G. Mc

  2. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    PubMed

    Melaas, Eli K; Friedl, Mark A; Richardson, Andrew D

    2016-02-01

    Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture local- to regional-scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations to estimate models that better represent how community-level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing-based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species-specific models in combination with species composition information to 'upscale' model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed

  3. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.

    PubMed

    Melaas, Eli K; Friedl, Mark A; Richardson, Andrew D

    2016-02-01

    Phenological events, such as bud burst, are strongly linked to ecosystem processes in temperate deciduous forests. However, the exact nature and magnitude of how seasonal and interannual variation in air temperatures influence phenology is poorly understood, and model-based phenology representations fail to capture local- to regional-scale variability arising from differences in species composition. In this paper, we use a combination of surface meteorological data, species composition maps, remote sensing, and ground-based observations to estimate models that better represent how community-level species composition affects the phenological response of deciduous broadleaf forests to climate forcing at spatial scales that are typically used in ecosystem models. Using time series of canopy greenness from repeat digital photography, citizen science data from the USA National Phenology Network, and satellite remote sensing-based observations of phenology, we estimated and tested models that predict the timing of spring leaf emergence across five different deciduous broadleaf forest types in the eastern United States. Specifically, we evaluated two different approaches: (i) using species-specific models in combination with species composition information to 'upscale' model predictions and (ii) using repeat digital photography of forest canopies that observe and integrate the phenological behavior of multiple representative species at each camera site to calibrate a single model for all deciduous broadleaf forests. Our results demonstrate variability in cumulative forcing requirements and photoperiod cues across species and forest types, and show how community composition influences phenological dynamics over large areas. At the same time, the response of different species to spatial and interannual variation in weather is, under the current climate regime, sufficiently similar that the generic deciduous forest model based on repeat digital photography performed

  4. Thresholds in forest bird occurrence as a function of the amount of early-seral broadleaf forest at landscape scales

    USGS Publications Warehouse

    Betts, M.G.; Hagar, J.C.; Rivers, J.W.; Alexander, J.D.; McGarigal, K.; McComb, B.C.

    2010-01-01

    Recent declines in broadleaf-dominated, early-seral forest globally as a function of intensive forest management and/or fire suppression have raised concern about the viability of populations dependent on such forest types. However, quantitative information about the strength and direction of species associations with broadleaf cover at landscape scales are rare. Uncovering such habitat relationships is essential for understanding the demography of species and in developing sound conservation strategies. It is particularly important to detect points in habitat reduction where rates of population decline may accelerate or the likelihood of species occurrence drops rapidly (i.e., thresholds). Here, we use a large avian point-count data set (N = 4375) from southwestern and northwestern Oregon along with segmented logistic regression to test for thresholds in forest bird occurrence as a function of broadleaf forest and early-seral broadleaf forest at local (150-m radius) and landscape (500–2000-m radius) scales. All 12 bird species examined showed positive responses to either broadleaf forest in general, and/or early-seral broadleaf forest. However, regional variation in species response to these conditions was high. We found considerable evidence for landscape thresholds in bird species occurrence as a function of broadleaf cover; threshold models received substantially greater support than linear models for eight of 12 species. Landscape thresholds in broadleaf forest ranged broadly from 1.35% to 24.55% mean canopy cover. Early-seral broadleaf thresholds tended to be much lower (0.22–1.87%). We found a strong negative relationship between the strength of species association with early-seral broadleaf forest and 42-year bird population trends; species most associated with this forest type have declined at the greatest rates. Taken together, these results provide the first support for the hypothesis that reductions in broadleaf-dominated early-seral forest due to

  5. Responses of leaf structure and photosynthetic properties to intra-canopy light gradients: a common garden test with four broadleaf deciduous angiosperm and seven evergreen conifer tree species.

    PubMed

    Wyka, Tomasz P; Oleksyn, J; Zytkowiak, R; Karolewski, P; Jagodziński, A M; Reich, P B

    2012-09-01

    Spectra of leaf traits in northern temperate forest canopies reflect major differences in leaf longevity between evergreen conifers and deciduous broadleaf angiosperms, as well as plastic modifications caused by within-crown shading. We investigated (1) whether long-lived conifer leaves exhibit similar intra-canopy plasticity as short-lived broadleaves, and (2) whether global interspecific relationships between photosynthesis, nitrogen, and leaf structure identified for sun leaves adequately describe leaves differentiated in response to light gradients. We studied structural and photosynthetic properties of intra-tree sun and shade foliage in adult trees of seven conifer and four broadleaf angiosperm species in a common garden in Poland. Shade leaves exhibited lower leaf mass-per-area (LMA) than sun leaves; however, the relative difference was smaller in conifers than in broadleaves. In broadleaves, LMA was correlated with lamina thickness and tissue density, while in conifers, it was correlated with thickness but not density. In broadleaves, but not in conifers, reduction of lamina thickness was correlated with a thinner palisade layer. The more conservative adjustment of conifer leaves could result from a combination of phylogenetic constraints, contrasting leaf anatomies and shoot geometries, but also from functional requirements of long-lived foliage. Mass-based nitrogen concentration (N(mass)) was similar between sun and shade leaves, and was lower in conifers than in deciduous broadleaved species. Given this, the smaller LMA in shade corresponded with a lower area-based N concentration (N(area)). In evergreen conifers, LMA and N(area) were less powerful predictors of area-based photosynthetic rate (A (max(area))) in comparison with deciduous broadleaved angiosperms. Multiple regression for sun and shade leaves showed that, in each group, A (max(mass)) was related to N(mass) but not to LMA, whereas LMA became a significant codeterminant of A (max(mass)) in

  6. Satellite-based phenology detection in broadleaf forests in South-Western Germany

    NASA Astrophysics Data System (ADS)

    Misra, Gourav; Buras, Allan; Menzel, Annette

    2016-04-01

    results and suggest that different satellite SOS extraction techniques work well for specific phases of ground phenology information. More than half of the broadleaf pixels show an earliness in SOS which matches with the trend in ground phenology. References 1. F.-W. Badeck, A. Bondeau, K. Bottcher, D. Doktor, W. Lucht, J. Schaber, and S. Sitch, 2004, "Responses of spring phenology to climate change," New Phytologist, vol. 162, no. 2, pp. 295-309. 2. E. Hamunyela, J. Verbesselt, G. Roerink, and M. Herold, 2013, "Trends in Spring Phenology of Western European Deciduous Forests," Remote Sensing, vol. 5, no. 12, pp. 6159-6179. 3. V. F. Rodriguez-Galiano, J. Dash, and P. M. Atkinson, 2015, "Intercomparison of satellite sensor land surface phenology and ground phenology in Europe: Inter-annual comparison and modelling," Geophysical Research Letters, vol. 42, no. 7, pp. 2253-2260. 4. J. Fisher, J. Mustard, and M. Vadeboncoeur, 2006, "Green leaf phenology at Landsat resolution: Scaling from the field to the satellite," Remote Sensing of Environment, vol. 100, no. 2, pp. 265-279. 5. K. White, J. Pontius, and P. Schaberg, 2014, "Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty," Remote Sensing of Environment, vol. 148, pp. 97-107.

  7. Winning and Losing Tree Species of Reassembly in Minnesota’s Mixed and Broadleaf Forests

    PubMed Central

    Hanberry, Brice B.; Palik, Brian J.; He, Hong S.

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota’s mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity. PMID:23613911

  8. Permian polar forests: deciduousness and environmental variation.

    PubMed

    Gulbranson, E L; Isbell, J L; Taylor, E L; Ryberg, P E; Taylor, T N; Flaig, P P

    2012-11-01

    Forests are expected to expand into northern polar latitudes in the next century. However, the impact of forests at high latitudes on climate and terrestrial biogeochemical cycling is poorly understood because such forests cannot be studied in the modern. This study presents forestry and geochemical analyses of three in situ fossil forests from Late Permian strata of Antarctica, which grew at polar latitudes. Stem size measurements and stump spacing measurements indicate significant differences in forest density and canopy structure that are related to the local depositional setting. For forests closest to fluvial systems, tree density appears to decrease as the forests mature, which is the opposite trend of self-thinning observed in modern forests. We speculate that a combination of tree mortality and high disturbance created low-density mature forests without understory vegetation near Late Permian river systems. Stable carbon isotopes measured from permineralized wood in these forests demonstrate two important points: (i) recently developed techniques of high-resolution carbon isotope studies of wood and mummified wood can be applied to permineralized wood, for which much of the original organic matter has been lost and (ii) that the fossil trees maintained a deciduous habit at polar latitudes during the Late Permian. The combination of paleobotanical, sedimentologic, and paleoforestry techniques provides an unrivaled examination of the function of polar forests in deep time; and the carbon isotope geochemistry supplements this work with subannual records of carbon fixation that allows for the quantitative analysis of deciduous versus evergreen habits and environmental parameters, for example, relative humidity.

  9. Lidar Altimeter Measurements of Canopy Structure: Methods and Validation for Closed Canopy, Broadleaf Forests

    NASA Technical Reports Server (NTRS)

    Harding, D. J.; Lefsky, M. A.; Parker, G. G.; Blair, J. B.

    1999-01-01

    Lidar altimeter observations of vegetated landscapes provide a time-resolved measure of laser pulse backscatter energy from canopy surfaces and the underlying ground. Airborne lidar altimeter data was acquired using the Scanning Lidar Imager of Canopies by Echo Recovery (SLICER) for a successional sequence of four, closed-canopy, deciduous forest stands in eastern Maryland. The four stands were selected so as to include a range of canopy structures of importance to forest ecosystem function, including variation in the height and roughness of the outer-most canopy surface and the vertical organization of canopy stories and gaps. The character of the SLICER backscatter signal is described and a method is developed that accounts for occlusion of the laser energy by canopy surfaces, transforming the backscatter signal to a canopy height profile (CHP) that quantitatively represents the relative vertical distribution of canopy surface area. The transformation applies an increased weighting to the backscatter amplitude as a function of closure through the canopy and assumes a horizontally random distribution of the canopy components. SLICER CHPs, averaged over areas of overlap where lidar ground tracks intersect, are shown to be highly reproducible. CHP transects across the four stands reveal spatial variations in vegetation, at the scale of the individual 10 m diameter laser footprints, within and between stands. Averaged SLICER CHPs are compared to analogous height profile results derived from ground-based sightings to plant intercepts measured on plots within the four stands. Tbe plots were located on the segments of the lidar ground tracks from which averaged SLICER CHPs were derived, and the ground observations were acquired within two weeks of the SLICER data acquisition to minimize temporal change. The differences in canopy structure between the four stands is similarly described by the SLICER and ground-based CHP results, however a Chi-square test of similarity

  10. [Effects of Phyllostachys edulis invasion of native broadleaf forest on soil fungal community].

    PubMed

    Li, Yong-chun; Liang, Xue; Li, Yong-fu; Wang, Qi; Chen, Jun-hui; Xu, Qiu-fang

    2016-02-01

    To investigate variation of soil fungal community in response to invasion of Phyllostachys edulis into native broadleaf forest, we characterized the community structure and the abundance of fungi in soil under bamboo (BB), mixture forest of bamboo and broadleaf (MF) and broadleaf forest (BL) using terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR. The results showed that the most obvious difference in the soil fungal community structure was observed between the BB and BF stands, followed by that between the MF and BL. Shannon index and evenness index of soil fungi were higher in the MF than in the BB and BL. pH and NH4+-N content were the most important environmental gradients on the distribution of fungal community under BB, while NO3(-)-N content significantly affected the distribution of the fungal community under BL. The abundance of fungi in BL was significantly higher than that in BB and MF, and the fungi abundance showed a negative correlation with soil pH but a positive correlation with NO3(-)-N content. These results implied that heterotrophic nitrification driven by fungi could occur in soil of BL, and this process might be changed by the bamboo invasion. PMID:27396134

  11. [Effects of Phyllostachys edulis invasion of native broadleaf forest on soil fungal community].

    PubMed

    Li, Yong-chun; Liang, Xue; Li, Yong-fu; Wang, Qi; Chen, Jun-hui; Xu, Qiu-fang

    2016-02-01

    To investigate variation of soil fungal community in response to invasion of Phyllostachys edulis into native broadleaf forest, we characterized the community structure and the abundance of fungi in soil under bamboo (BB), mixture forest of bamboo and broadleaf (MF) and broadleaf forest (BL) using terminal restriction fragment length polymorphism (T-RFLP) and real-time quantitative PCR. The results showed that the most obvious difference in the soil fungal community structure was observed between the BB and BF stands, followed by that between the MF and BL. Shannon index and evenness index of soil fungi were higher in the MF than in the BB and BL. pH and NH4+-N content were the most important environmental gradients on the distribution of fungal community under BB, while NO3(-)-N content significantly affected the distribution of the fungal community under BL. The abundance of fungi in BL was significantly higher than that in BB and MF, and the fungi abundance showed a negative correlation with soil pH but a positive correlation with NO3(-)-N content. These results implied that heterotrophic nitrification driven by fungi could occur in soil of BL, and this process might be changed by the bamboo invasion.

  12. Growing up with stress - carbon sequestration and allocation dynamics of a broadleaf evergreen forest

    NASA Astrophysics Data System (ADS)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2016-04-01

    Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were

  13. Spatial pattern of 137Cs in soils in a mixed deciduous forest in Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Takada, M.; Yamada, T.; Takahara, T.; Okuda, T.

    2015-12-01

    Spatial heterogeneity of 137Cs contamination was studied in a forest floor of Fukushima region, c.a. 40 km NW of Fukushima Daiichi Nuclear Power Plant (FDNPP) focusing on downwards flow from forest canopy via stemflow and throughfall which play major role in determining spatial contamination of 137Cs after the FNDP accident. Setting a study plot (400 m2) in a secondary mixed deciduous forest, dominated by Quercus crispula and Abies firma in canopy layer in August and November 2014, we sampled the souk from surface to 5 cm in depth of soils and measured 137Cs in every 2 m grids and at tree stem bases. The total estimated activity of 137Cs in soil within the study plot was approximately 210 kBq/m2, but showed large spatial heterogeneity showing 30 times of difference between the lowest and highest activities. The activity decreased with increasing distances from tree stem bases. High activity around tree stem bases was presumably due to the stemflow containing 137Cs seeped into soil only around tree stem bases that raised radioactivity in soil locally in the areas. Relatively low activity away from trees (outside canopies) may be due to small effects of stemflow and throughfall. Activity of 137Cs around bases of deciduous broadleaf trees increased with increasing the tree size. Because larger trees have higher potentials to capture larger amount of 137Cs on the tree surface, cumulative activity of 137Cs included in stemflow may increase with increasing the tree size. However evergreen coniferous tree species (Abies firma) did not show such a pattern relating to the tree size. The difference is assumed to be affected by phenological characteristics as the accident happened in winter and deciduous broadleaf trees did not have leaves and 137Cs deposited on tree bodies, while evergreen coniferous tree had leaves and 137Cs was intercepted by the canopies.

  14. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    PubMed

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming. PMID:24421179

  15. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests.

    PubMed

    Brzostek, Edward R; Dragoni, Danilo; Schmid, Hans Peter; Rahman, Abdullah F; Sims, Daniel; Wayson, Craig A; Johnson, Daniel J; Phillips, Richard P

    2014-08-01

    Predicted decreases in water availability across the temperate forest biome have the potential to offset gains in carbon (C) uptake from phenology trends, rising atmospheric CO2 , and nitrogen deposition. While it is well established that severe droughts reduce the C sink of forests by inducing tree mortality, the impacts of mild but chronic water stress on forest phenology and physiology are largely unknown. We quantified the C consequences of chronic water stress using a 13-year record of tree growth (n = 200 trees), soil moisture, and ecosystem C balance at the Morgan-Monroe State Forest (MMSF) in Indiana, and a regional 11-year record of tree growth (n > 300 000 trees) and water availability for the 20 most dominant deciduous broadleaf tree species across the eastern and midwestern USA. We show that despite ~26 more days of C assimilation by trees at the MMSF, increasing water stress decreased the number of days of wood production by ~42 days over the same period, reducing the annual accrual of C in woody biomass by 41%. Across the deciduous forest region, water stress induced similar declines in tree growth, particularly for water-demanding 'mesophytic' tree species. Given the current replacement of water-stress adapted 'xerophytic' tree species by mesophytic tree species, we estimate that chronic water stress has the potential to decrease the C sink of deciduous forests by up to 17% (0.04 Pg C yr(-1) ) in the coming decades. This reduction in the C sink due to mesophication and chronic water stress is equivalent to an additional 1-3 days of global C emissions from fossil fuel burning each year. Collectively, our results indicate that regional declines in water availability may offset the growth-enhancing effects of other global changes and reduce the extent to which forests ameliorate climate warming.

  16. Microscale Pressure Fluctuations Within a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Sigmon, John Thomas

    Attempts to evaluate sources of errors in estimates of fluxes from forested surfaces have been thwarted by the lack of an accurate description of the nature of air flow within forest canopies. An important property of any boundary layer flow is the occurrence of pressure fluctuations at the boundary and within the flow. This study was designed to provide an understanding of the microscale pressure fluctuations within a forest canopy and the relationship between these fluctuations and the air flow within and above the forest canopy. Pressure fluctuations were measured using a method similar to that developed by J. A. Elliott in 1972. Measurements were taken at the ground and above a deciduous forest canopy. Time series, spectra, and cross-correlations were calculated under different canopy conditions, and relationships between surface pressure fluctuations and mean windspeeds were determined. Turbulent pressure fluctuations at the forest floor did not contain the higher frequencies found over smooth terrain and were continuously occurring at frequencies greater than 0.5 Hz. Somewhat higher frequencies and larger amplitudes occurred in the pressure fluctuations above the canopy after leaf emergence than at the surface. Horizontal length scales many times larger than the average spacing of the overstory trees were predominant. While both leaf emergence of flow-through from an adjacent field had an effect on the mean windspeed profiles, only the flow-through conditions had an effect on the relationship of mean windspeed above the canopy to pressure fluctuation variance at the surface. Pressure fluctuations at the surface appeared coupled at all times to those above the canopy and were directly related to windspeed above the canopy. Pressure eddies were advected downwind at speeds approximating the mean windspeed 6-8 meters above the canopy. Shapes of the pressure spectra were affected slightly by changes in windspeed, and comparisons of spectra above and below the

  17. [Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest].

    PubMed

    Song, Qing-Ni; Yang, Qing-Pei; Liu, Jun; Yu, Ding-Kun; Fang, Kai; Xu, Pei; He, Yu-juan

    2013-02-01

    By the methods of space-time substitution and PVC tube closed-top in situ incubation, this paper studied the soil mineralized-N content, N mineralization rate, and N uptake rate in Phyllostachys edulis-broadleaf mixed forest (PBMF) formed by P. edulis expansion and its adjacent evergreen broadleaf forest (EBF) in Dagangshan Mountain of Jiangxi Province, China. There existed the same spatiotemporal variation trend of soil total mineralized-N (TMN) content between the two forests. The annual average N mineralization rate was slightly lower in PBMF than in EBF. In PBMF, soil N mineralization was dominated by ammonification; while in EBF, soil ammonification and nitrification were well-matched in rate, and soil nitrification was dominated in growth season (from April to October). The N uptake by the plants in PBMF and EBF in a year was mainly in the form of NH4+-N, but that in EBF in growth season was mainly in the form of NO3- -N. These findings indicated that the expansion of P. edulis into EBF could promote the ammonification of soil N, weakened soil nitrification and total N mineralization, and also, increased the NH4+-N uptake but decreased the NO3- -N and TMN uptake by the plants. PMID:23705376

  18. Turbulent transfer in a deciduous forest.

    PubMed

    Baldocchi, D D

    1989-09-01

    Carbon dioxide, water vapor and other passive scalars are physically transferred between a plant canopy and the atmosphere by turbulence. Intense and intermittent sweep and ejection events transfer most of the mass. Although the capacity for turbulence to transfer material is high, mass transfer is coupled to the diffusive source or sink strength of the foliage and soil and is ultimately limited to a minimum level set by the supply of material, or the demand for it. The diffusive source/sink strength of material leaving or entering leaves and the soil is a function of many physical, biological and chemical attributes and processes. These attributes and processes include the amount and distribution of foliage, the leaf boundary layer and surface resistances, the turbulence and radiative regimes in the canopy, biochemical and photochemical reactions and the scalar concentration field within and above the canopy and inside leaves and the soil. Here we discuss how these factors contribute to turbulent transfer in a deciduous forest.

  19. The Legacy of Episodic Climatic Events in Shaping Temperate, Broadleaf Forests

    NASA Technical Reports Server (NTRS)

    Pederson, Neil; Dyer, James M.; McEwan, Ryan W.; Hessl, Amy E.; Mock, Cary J.; Orwig, David A.; Rieder, Harald E.; Cook, Benjamin I.

    2015-01-01

    In humid, broadleaf-dominated forests where gap dynamics and partial canopy mortality appears to dominate the disturbance regime at local scales, paleoecological evidence shows alteration at regional-scales associated with climatic change. Yet, little evidence of these broad-scale events exists in extant forests. To evaluate the potential for the occurrence of large-scale disturbance, we used 76 tree-ring collections spanning approx. 840 000 sq km and 5327 tree recruitment dates spanning approx. 1.4 million sq km across the humid eastern United States. Rotated principal component analysis indicated a common growth pattern of a simultaneous reduction in competition in 22 populations across 61 000 km2. Growth-release analysis of these populations reveals an intense and coherent canopy disturbance from 1775 to 1780, peaking in 1776. The resulting time series of canopy disturbance is so poorly described by a Gaussian distribution that it can be described as ''heavy tailed,'' with most of the years from 1775 to 1780 comprising the heavy-tail portion of the distribution. Historical documents provide no evidence that hurricanes or ice storms triggered the 1775-1780 event. Instead, we identify a significant relationship between prior drought and years with elevated rates of disturbance with an intense drought occurring from 1772 to 1775. We further find that years with high rates of canopy disturbance have a propensity to create larger canopy gaps indicating repeated opportunities for rapid change in species composition beyond the landscape scale. Evidence of elevated, regional-scale disturbance reveals how rare events can potentially alter system trajectory: a substantial portion of old-growth forests examined here originated or were substantially altered more than two centuries ago following events lasting just a few years. Our recruitment data, comprised of at least 21 species and several shade-intolerant species, document a pulse of tree recruitment at the

  20. [Landscape quality evaluation and vertical structure optimization of natural broadleaf forest].

    PubMed

    Ouyang, Xun-zhi; Liao, Wei-ming; Peng, Shi-kui

    2007-06-01

    Taking the natural broadleaf forest in Wuyuan County of Jiangxi Province as study object, a total of 30 representative photos of near-view landscapes and related information were collected. The scenic beauty values were acquired by public judgment method, and the relationship models of scenic beauty values and landscape elements were established by using multiple mathematical model. The results showed that the main elements affecting the near-view landscape quality of natural broadleaf forest were the trunk form, stand density, undergrowth coverage and height, natural pruning, and color richness, with the partial correlation coefficients being 0.4482-0.7724, which were significant or very significant by t-test. The multiple correlation coefficient of the model reached 0.9508, showing very significant by F test (F = 36.11). Straight trunk, better natural pruning and rich color did well, while the super-high or low stand density and undergrowth coverage and height did harm to the scenic beauty. Several management measures for the vertical structure optimization of these landscape elements were put forward.

  1. [Dynamic Characteristics of Base Cations During Wet Deposition in Evergreen Broad-leaf Forest Ecosystem].

    PubMed

    An, Si-wei; Sun, Tao; Ma, Ming; Wang, Ding-yong

    2015-12-01

    Based on field tests and laboratory experiments, effects of precipitation, throughfall, litterfall, and groundwater runoff of the ever-green broad-leaf forest on the dynamic characteristics of base cations in Simian Mountain were investigated from September 2012 to August 2013. The results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.90 and maximum pH of 5.14. The soil and canopies could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy only had the function of interception on Na⁺. And precipitation could leach out Ca2⁺, Mg2⁺ and K⁺ of the canopies. Moreover, the degradation of litter was probably the main reason for the increase of base cations concentrations in the surface litter water. The litter water leached Ca2⁺, Mg2⁺ and Na⁺ of the forest soil through downward infiltration. The total retention rates of Ca²⁺, Mg²⁺, Na⁺ and K⁺ were 33.82%, -7.06%, 74.36% and 42.87%, respectively. Ca²⁺, Na⁺, K⁺ were found to be reserved in the forest ecosystem, and the highest interception rate was found for Na⁺. PMID:27011975

  2. [Dynamic Characteristics of Base Cations During Wet Deposition in Evergreen Broad-leaf Forest Ecosystem].

    PubMed

    An, Si-wei; Sun, Tao; Ma, Ming; Wang, Ding-yong

    2015-12-01

    Based on field tests and laboratory experiments, effects of precipitation, throughfall, litterfall, and groundwater runoff of the ever-green broad-leaf forest on the dynamic characteristics of base cations in Simian Mountain were investigated from September 2012 to August 2013. The results showed that the rainfall of Simian Mountain was apparently acidic, with average pH of 4.90 and maximum pH of 5.14. The soil and canopies could increase pH of precipitation, with soils having the maximum increment, followed by the forest canopy. Forest canopy only had the function of interception on Na⁺. And precipitation could leach out Ca2⁺, Mg2⁺ and K⁺ of the canopies. Moreover, the degradation of litter was probably the main reason for the increase of base cations concentrations in the surface litter water. The litter water leached Ca2⁺, Mg2⁺ and Na⁺ of the forest soil through downward infiltration. The total retention rates of Ca²⁺, Mg²⁺, Na⁺ and K⁺ were 33.82%, -7.06%, 74.36% and 42.87%, respectively. Ca²⁺, Na⁺, K⁺ were found to be reserved in the forest ecosystem, and the highest interception rate was found for Na⁺.

  3. Simulation of rainfall interception using multilayer model in evergreen broadleaf forest, Cambodia

    NASA Astrophysics Data System (ADS)

    Nobuhiro, T.; Shimizu, A.; Tanaka, K.; Kabeya, N.; Tamai, K.; Chann, S.; Keth, N.

    2006-12-01

    The proportion of forest area is relatively high in Cambodia compared with neighboring countries. Therefore forest is one of the important factors on the water cycle in this country. The rainfall interception by a tree canopy and evaporation after the rainfall event are one of the important factors for considering such a water cycle. To clarify those processes, a rainfall interception measurement plot (25 x 25 m) was constructed in the evergreen broadleaf forest area in Kampong Thom province, central part of Cambodia. We measured rainfall, through fall and stem flow in the interception plot, and then we analyzed the relationship between those components. Moreover, the simulation of rainfall interception was carried out using multilayer model. Model parameters such as canopy structure and leaf characteristics were estimated using observed interception components and meteorological elements during large rainfall event. Annual rainfall interception was reproduced using multilayer model with obtained parameters and observed meteorological elements. The simulation results were in agreement with the observed value. The rainfall interception rate in the interception plot was considered to be about 15 % against annual rainfall.

  4. Evaluating spatial-temporal dynamics of net primary productivity of different forest types in northeastern China based on improved FORCCHN.

    PubMed

    Zhao, Junfang; Yan, Xiaodong; Guo, Jianping; Jia, Gensuo

    2012-01-01

    An improved individual-based forest ecosystem carbon budget model for China (FORCCHN) was applied to investigate the spatial-temporal dynamics of net primary productivity of different forest types in northeastern China. In this study, the forests of northeastern China were categorized into four ecological types according to their habitats and generic characteristics (evergreen broadleaf forest, deciduous broadleaf forest, evergreen needleleaf forest and deciduous needleleaf forest). The results showed that distribution and change of forest NPP in northeastern China were related to the different forest types. From 1981 to 2002, among the forest types in northeastern China, per unit area NPP and total NPP of deciduous broadleaf forest were the highest, with the values of 729.4 gC/(m(2)•yr) and 106.0 TgC/yr, respectively, followed by mixed broadleaf- needleleaf forest, deciduous needleleaf forest and evergreen needleleaf forest. From 1981 to 2002, per unit area NPP and total NPP of different forest types in northeastern China exhibited significant trends of interannual increase, and rapid increase was found between the 1980s and 1990s. The contribution of the different forest type's NPP to total NPP in northeastern China was clearly different. The greatest was deciduous broadleaf forest, followed by mixed broadleaf- needleleaf forest and deciduous needleleaf forest. The smallest was evergreen needleleaf forest. Spatial difference in NPP between different forest types was remarkable. High NPP values of deciduous needleleaf forest, mixed broadleaf- needleleaf forest and deciduous broadleaf forest were found in the Daxing'anling region, the southeastern of Xiaoxing'anling and Jilin province, and the Changbai Mountain, respectively. However, no regional differences were found for evergreen needleleaf NPP. This study provided not only an estimation NPP of different forest types in northeastern China but also a useful methodology for estimating forest carbon storage at

  5. Evaluating Spatial-Temporal Dynamics of Net Primary Productivity of Different Forest Types in Northeastern China Based on Improved FORCCHN

    PubMed Central

    Zhao, Junfang; Yan, Xiaodong; Guo, Jianping; Jia, Gensuo

    2012-01-01

    An improved individual-based forest ecosystem carbon budget model for China (FORCCHN) was applied to investigate the spatial-temporal dynamics of net primary productivity of different forest types in northeastern China. In this study, the forests of northeastern China were categorized into four ecological types according to their habitats and generic characteristics (evergreen broadleaf forest, deciduous broadleaf forest, evergreen needleleaf forest and deciduous needleleaf forest). The results showed that distribution and change of forest NPP in northeastern China were related to the different forest types. From 1981 to 2002, among the forest types in northeastern China, per unit area NPP and total NPP of deciduous broadleaf forest were the highest, with the values of 729.4 gC/(m2•yr) and 106.0 TgC/yr, respectively, followed by mixed broadleaf- needleleaf forest, deciduous needleleaf forest and evergreen needleleaf forest. From 1981 to 2002, per unit area NPP and total NPP of different forest types in northeastern China exhibited significant trends of interannual increase, and rapid increase was found between the 1980s and 1990s. The contribution of the different forest type’s NPP to total NPP in northeastern China was clearly different. The greatest was deciduous broadleaf forest, followed by mixed broadleaf- needleleaf forest and deciduous needleleaf forest. The smallest was evergreen needleleaf forest. Spatial difference in NPP between different forest types was remarkable. High NPP values of deciduous needleleaf forest, mixed broadleaf- needleleaf forest and deciduous broadleaf forest were found in the Daxing’anling region, the southeastern of Xiaoxing’anling and Jilin province, and the Changbai Mountain, respectively. However, no regional differences were found for evergreen needleleaf NPP. This study provided not only an estimation NPP of different forest types in northeastern China but also a useful methodology for estimating forest carbon storage

  6. [Spatial heterogeneity of soil organic carbon and total nitrogen in a monsoon evergreen broadleaf forest in Dinghushan, Guangdong, China].

    PubMed

    Zhang, Ya-Ru; Ouyang, Xu; Chu, Guo-Wei; Zhang, Qian-Mei; Liu, Shi-Zhong; Zhang, De-Qiang; Li, Yue-Lin

    2014-01-01

    Geostatistical techniques were used to quantify the spatial heterogeneity of soil organic carbon and total nitrogen of one monsoon evergreen broadleaf forest area in Dinghushan, Guangdong, China. The results demonstrated that a significant spatial autocorrelation existed between soil organic carbon and total nitrogen contents in the Dinghushan monsoon evergreen broadleaf forest, such that 93.6% and 53.7% of their total spatial heterogeneity originated from their spatial autocorrelation. This observation agreed with a traditional statistics analysis showing a significant linear correlation between soil organic carbon and total nitrogen, and also their spatial autocorrelation existed at a landscape level. The best fit from an exponential model showed that soil organic carbon had high degree of spatial heterogeneity at a scale of 17.4 m.

  7. Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient

    PubMed Central

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Deng, Ye; Liu, Xiao; Zhou, Jizhong; Li, Diqiang

    2016-01-01

    Microorganisms play key roles in ecosystem processes and biogeochemical cycling, however, the relationship between soil microbial taxa diversity and their function in natural ecosystems is largely unknown. To determine how soil bacteria community and function are linked from the local to regional scale, we studied soil bacteria community composition, potential function and environmental conditions in natural and mature broadleaf forests along a latitudinal gradient in China, using the Illumina 16S rRNA sequencing and GeoChip technologies. The results showed strong biogeographic endemism pattern in soil bacteria were existed, and the spatial distance and climatic variables were the key controlling factors for this pattern. Therefore, dispersal limitation and environmental selection may represent two key processes in generating and maintaining the soil bacterial biogeographic pattern. By contrast, the soil bacterial potential function is highly convergent along the latitudinal gradient and there were highly differing bacterial community compositions, and the soil chemistry may include the main factors active in shaping the soil bacterial potential function. Therefore, the soil bacterial potential function may be affected by local gradients in resource availability, and predicting soil bacterial potential function requires knowledge of abiotic and biotic environmental factors. PMID:27357005

  8. Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient.

    PubMed

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Deng, Ye; Liu, Xiao; Zhou, Jizhong; Li, Diqiang

    2016-01-01

    Microorganisms play key roles in ecosystem processes and biogeochemical cycling, however, the relationship between soil microbial taxa diversity and their function in natural ecosystems is largely unknown. To determine how soil bacteria community and function are linked from the local to regional scale, we studied soil bacteria community composition, potential function and environmental conditions in natural and mature broadleaf forests along a latitudinal gradient in China, using the Illumina 16S rRNA sequencing and GeoChip technologies. The results showed strong biogeographic endemism pattern in soil bacteria were existed, and the spatial distance and climatic variables were the key controlling factors for this pattern. Therefore, dispersal limitation and environmental selection may represent two key processes in generating and maintaining the soil bacterial biogeographic pattern. By contrast, the soil bacterial potential function is highly convergent along the latitudinal gradient and there were highly differing bacterial community compositions, and the soil chemistry may include the main factors active in shaping the soil bacterial potential function. Therefore, the soil bacterial potential function may be affected by local gradients in resource availability, and predicting soil bacterial potential function requires knowledge of abiotic and biotic environmental factors. PMID:27357005

  9. Soil bacterial endemism and potential functional redundancy in natural broadleaf forest along a latitudinal gradient

    NASA Astrophysics Data System (ADS)

    Zhang, Yuguang; Cong, Jing; Lu, Hui; Deng, Ye; Liu, Xiao; Zhou, Jizhong; Li, Diqiang

    2016-06-01

    Microorganisms play key roles in ecosystem processes and biogeochemical cycling, however, the relationship between soil microbial taxa diversity and their function in natural ecosystems is largely unknown. To determine how soil bacteria community and function are linked from the local to regional scale, we studied soil bacteria community composition, potential function and environmental conditions in natural and mature broadleaf forests along a latitudinal gradient in China, using the Illumina 16S rRNA sequencing and GeoChip technologies. The results showed strong biogeographic endemism pattern in soil bacteria were existed, and the spatial distance and climatic variables were the key controlling factors for this pattern. Therefore, dispersal limitation and environmental selection may represent two key processes in generating and maintaining the soil bacterial biogeographic pattern. By contrast, the soil bacterial potential function is highly convergent along the latitudinal gradient and there were highly differing bacterial community compositions, and the soil chemistry may include the main factors active in shaping the soil bacterial potential function. Therefore, the soil bacterial potential function may be affected by local gradients in resource availability, and predicting soil bacterial potential function requires knowledge of abiotic and biotic environmental factors.

  10. A Black Swan and Sub-continental Scale Dynamics in Humid, Late-Holocene Broadleaf Forests

    NASA Astrophysics Data System (ADS)

    Pederson, N.; Dyer, J.; McEwan, R.; Hessl, A. E.; Mock, C. J.; Orwig, D.; Rieder, H. E.; Cook, B. I.

    2012-12-01

    In humid regions with dense broadleaf-dominated forests where gap-dynamics is the prevailing disturbance regime, paleoecological evidence shows regional-scale changes in forest composition associated with climatic change. To investigate the potential for regional events in late-Holocene forests, we use tree-ring data from 76 populations covering 840,000 km2 and 5.3k tree recruitment dates spanning 1.4 million km2 in the eastern US to investigate the occurrence of simultaneous forest dynamics across a humid region. We compare regional forest dynamics with an independent set of annually-resolved tree ring record of hydroclimate to examine whether climate dynamics might drive forest dynamics in this humid region. In forests where light availability is an important limitation for tree recruitment, we document a pulse of tree recruitment during the mid- to late-1600s across the eastern US. This pulse, which can be inferred as large-scale canopy opening, occurred during an era that multiple proxies indicate as extended drought between two intense pluvial. Principal component analysis of the 76 populations indicates a step-change increase in average ring width during the late-1770s resembling a potential canopy accession event over 42,800 km2 of the southeastern US. Growth-release analysis of populations loading strongly on this eigenvector indicates severe canopy disturbance from 1775-1779 that peaked in 1776. The 1776 event follows a period with extended droughts and severe large-scale frost event. We hypothesize these climatic events lead to elevated tree mortality in the late-1770s and canopy accession for understory trees. Superposed epoch analysis reveals that spikes of elevated canopy disturbance from 1685-1850 CE are significantly associated with drought. Extreme value theory statistics indicates the 1776 event lies beyond the 99.9 quantile and nearly 7 sigmas above the 1685-1850 mean rate of disturbance. The time-series of canopy disturbance from 1685-1850 is so

  11. Species coexistence in temperate, mixed deciduous forests.

    PubMed

    Nakashizuka, T

    2001-04-01

    The response of tree life-history traits to community profiles (horizontal and vertical heterogeneity, disturbances and biotic interactions) determines community assembly rules, which are currently a hot issue in community ecology. Important mechanisms of coexistence differ throughout the developing stages of tree life history. Many processes of niche partitioning and tradeoffs that potentially enable tree coexistence have been reported to be present in temperate forests, although some of these life-history traits are either correlated with each other or are not independent. Not all of the proposed mechanisms explain coexistence equally well; some could predominate in determining the community organization of forest communities. Population studies need to concentrate more on the component species of a target community to detect the ecological assembly rule. These approaches can also address how chance factors contribute to the composition of temperate tree communities, which might be less dependent on chance than are tropical ones.

  12. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2.

    PubMed

    Kitao, M; Hida, T; Eguchi, N; Tobita, H; Utsugi, H; Uemura, A; Kitaoka, S; Koike, T

    2016-01-01

    We measured leaf photosynthetic traits in shade-grown seedlings of four tree species native to northern Japan, raised under an elevated CO2 condition, to investigate the effects of elevated CO2 on shade tolerance of deciduous broadleaf tree species with different successional traits. We considered Betula platyphylla var. japonica and Betula maximowicziana as pioneer species, Quercus mongolica var. crispula as a mid-successional species, and Acer mono as a climax species. The plants were grown under shade conditions (10% of full sunlight) in a CO2 -regulated phytotron. Light compensation points (LCPs) decreased in all tree species when grown under elevated CO2 (720 μmol·mol(-1) ), which were accompanied by higher apparent quantum yields but no photosynthetic down-regulation. LCPs in Q. mongolica and A. mono grown under elevated CO2 were lower than those in the two pioneer birch species. The LCP in Q. mongolica seedlings was not different from that of A. mono in each CO2 treatment. However, lower dark respiration rates were observed in A. mono than in Q. mongolica, suggesting higher shade tolerance in A. mono as a climax species in relation to carbon loss at night. Thus, elevated CO2 may have enhanced shade tolerance by lowering LCPs in all species, but the ranking of shade tolerance related to successional traits did not change among species under elevated CO2 , i.e. the highest shade tolerance was observed in the climax species (A. mono), followed by a gap-dependent species (Q. mongolica), while lower shade tolerance was observed in the pioneer species (B. platyphylla and B. maximowicziana). PMID:26404633

  13. Light compensation points in shade-grown seedlings of deciduous broadleaf tree species with different successional traits raised under elevated CO2.

    PubMed

    Kitao, M; Hida, T; Eguchi, N; Tobita, H; Utsugi, H; Uemura, A; Kitaoka, S; Koike, T

    2016-01-01

    We measured leaf photosynthetic traits in shade-grown seedlings of four tree species native to northern Japan, raised under an elevated CO2 condition, to investigate the effects of elevated CO2 on shade tolerance of deciduous broadleaf tree species with different successional traits. We considered Betula platyphylla var. japonica and Betula maximowicziana as pioneer species, Quercus mongolica var. crispula as a mid-successional species, and Acer mono as a climax species. The plants were grown under shade conditions (10% of full sunlight) in a CO2 -regulated phytotron. Light compensation points (LCPs) decreased in all tree species when grown under elevated CO2 (720 μmol·mol(-1) ), which were accompanied by higher apparent quantum yields but no photosynthetic down-regulation. LCPs in Q. mongolica and A. mono grown under elevated CO2 were lower than those in the two pioneer birch species. The LCP in Q. mongolica seedlings was not different from that of A. mono in each CO2 treatment. However, lower dark respiration rates were observed in A. mono than in Q. mongolica, suggesting higher shade tolerance in A. mono as a climax species in relation to carbon loss at night. Thus, elevated CO2 may have enhanced shade tolerance by lowering LCPs in all species, but the ranking of shade tolerance related to successional traits did not change among species under elevated CO2 , i.e. the highest shade tolerance was observed in the climax species (A. mono), followed by a gap-dependent species (Q. mongolica), while lower shade tolerance was observed in the pioneer species (B. platyphylla and B. maximowicziana).

  14. Ammonia emissions from deciduous forest after leaf fall

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Sørensen, L. L.; Hertel, O.; Geels, C.; Skjøth, C. A.; Jensen, B.; Boegh, E.

    2013-07-01

    The understanding of biochemical feedback mechanisms in the climate system is lacking knowledge in relation to bi-directional ammonia (NH3) exchange between natural ecosystems and the atmosphere. We therefore study the atmospheric NH3 fluxes during a 25-day period during autumn 2010 (21 October to 15 November) for the Danish beech forest Lille Bøgeskov to address the hypothesis that NH3 emissions occur from deciduous forests in relation to leaf fall. This is accomplished by using observations of vegetation status, NH3 fluxes and model calculations. Vegetation status was observed using plant area index (PAI) and leaf area index (LAI). NH3 fluxes were measured using the relaxed eddy accumulation (REA) method. The REA-based NH3 concentrations were compared to NH3 denuder measurements. Model calculations of the atmospheric NH3 concentration were obtained with the Danish Ammonia MOdelling System (DAMOS). The relative contribution from the forest components to the atmospheric NH3 flux was assessed using a simple two-layer bi-directional canopy compensation point model. A total of 57.7% of the fluxes measured showed emission and 19.5% showed deposition. A clear tendency of the flux going from deposition of -0.25 ± 0.30 μg NH3-N m-2 s-1 to emission of up to 0.67 ± 0.28 μg NH3-N m-2 s-1 throughout the measurement period was found. In the leaf fall period (23 October to 8 November), an increase in the atmospheric NH3 concentrations was related to the increasing forest NH3 flux. Following leaf fall, the magnitude and temporal structure of the measured NH3 emission fluxes could be adequately reproduced with the bi-directional resistance model; it suggested the forest ground layer (soil and litter) to be the main contributing component to the NH3 emissions. The modelled concentration from DAMOS fits well the measured concentrations before leaf fall, but during and after leaf fall, the modelled concentrations are too low. The results indicate that the missing contribution

  15. Biogenic isoprene emission: Model evaluation in a southeastern United States bottomland deciduous forest

    NASA Astrophysics Data System (ADS)

    Geron, Christopher D.; Nie, Dalin; Arnts, Robert R.; Sharkey, Thomas D.; Singsaas, Eric L.; Vanderveer, Peter J.; Guenther, Alex; Sickles, Joe E.; Kleindienst, Tad E.

    1997-08-01

    Isoprene is usually the dominant natural volatile organic compound emission from forest ecosystems, especially those with a major broadleaf deciduous component. Here we report isoprene emission model performance versus leaf and canopy level isoprene emission measurements made at the Duke University Research Forest near Chapel Hill, North Carolina. Emission factors, light and temperature response, canopy environment models, foliar mass, leaf area, and canopy level isoprene emission were evaluated in the field and compared with model estimates. Model components performed reasonably well and generally yielded estimates within 20% of values measured at the site. However, measured emission factors were much higher in early summer following an unusually dry spring. These decreased later in the summer but remained higher than values currently used in emission models. There was also a pronounced decline in basal emission rates in lower portions of the canopy which could not be entirely explained by decreasing specific leaf weight. Foliar biomass estimates by genera using basal area ratios adjusted for crown form were in excellent agreement with values measured by litterfall. Overall, the stand level isoprene emissions determined by relaxed eddy accumulation techniques agreed reasonably well with those predicted by the model, although there is some evidence for underprediction at ambient temperatures approaching 30°C, and overprediction during October as the canopy foliage senesced. A "Big Leaf" model considers the canopy as a single multispecies layer and expresses isoprene emission as a function of leaf area rather than mass. This simple model performs nearly as well as the other biomass-based models. We speculate that seasonal water balance may impact isoprene emission. Possible improvements to the canopy environment model and other components are discussed.

  16. Expanding leaves of mature deciduous forest trees rapidly become autotrophic.

    PubMed

    Keel, Sonja G; Schädel, Christina

    2010-10-01

    Emerging leaves in evergreen tree species are supplied with carbon (C) from the previous year's foliage. In deciduous trees, no older leaves are present, and the early phase of leaf development must rely on C reserves from other tissues. How soon developing leaves become autotrophic and switch from being C sinks to sources has rarely been studied in mature forest trees, and simultaneous comparisons of species are scarce. Using a canopy crane and a simple (13)CO(2)-pulse-labelling technique, we demonstrate that young leaves of mature trees in three European deciduous species (Fagus sylvatica L., Quercus petraea (Matt.) Liebl., Tilia platyphyllos Scop.) start assimilating CO(2) at a very early stage of development (10-50% expanded). One month after labelling, all leaves were still strongly (13)C enriched, suggesting that recent photosynthates had been incorporated into slow turnover pools such as cellulose or lignin and thus had contributed to leaf growth. In line with previous studies performed at the same site, we found stronger incorporation of recent photosynthates into growing tissues of T. platyphyllos compared with F. sylvatica and Q. petraea. Non-structural carbohydrate (NSC) concentrations analysed for one of the three study species (F. sylvatica) showed that sugar and starch pools rapidly increased during leaf development, suggesting that newly developed leaves soon produce more NSC than can be used for growth. In conclusion, our findings indicate that expanding leaves of mature deciduous trees become C autonomous at an early stage of development despite the presence of vast amounts of mobile carbohydrate reserves.

  17. Forest carbon uptake in North America's aging temperate deciduous forests: A data-theory-model mismatch?

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Curtis, P.; Bond-Lamberty, B. P.; Hardiman, B. S.; Scheuermann, C. M.; Nave, L. E.; Nadelhoffer, K. J.

    2015-12-01

    Century-old temperate deciduous forests in the US upper Midwest and Northeast power much of North America's terrestrial carbon sink, but these forests' carbon uptake capacity is expected to soon decline. But will this really happen? We marshal empirical data and ecological theory to show that declines in carbon uptake are not imminent in regrown temperate deciduous forests during coming decades, despite long-held assumptions and modeling results that predict declining carbon uptake during middle stages of ecosystem development. Age and production data for temperate deciduous forests, synthesized from published literature, do not provide evidence for declining net primary and ecosystem production (NPP and NEP, respectively) within the age-range most regional forests will occupy over the next half-century. Ecological theory suggests a mechanism for sustained carbon uptake in the region's aging forests in which high-frequency, low-severity disturbances maintain NPP and NEP by increasing ecosystem complexity. This theoretical model is supported by observations from the Forest Accelerated Succession Experiment in Michigan, USA, but such mechanisms sustaining production in old forests are not broadly represented in ecosystem models. Ecosystems experiencing low-frequency, high-severity disturbances that simplify ecosystem complexity do exhibit declining production during middle stages of succession, but we suggest that such scenarios have exerted a disproportionate influence on prevailing modeling and ecological assumptions regarding age-related declines in forest production. We conclude that there is wide ecological space for forests to sustain high rates of carbon uptake during middle stages of ecosystem development, and that advancing mechanistic understanding of long-term forest carbon cycle dynamics is essential to modeling the continent's future carbon sink strength.

  18. Diurnal and Seasonal Trends in Canopy Transpiration and Conductance of Pristine Forest Types in Belize, Central America

    NASA Technical Reports Server (NTRS)

    Zimmermann, R.; Oren, R.; Billings, S.; Muller-Ezards, C.; Schaaff, C.; Strohmeier, P.; Obermaier, E.

    1994-01-01

    Five semi-deciduous broadleaf forest types growing over tropical karst in Belize, Central America, were monitored for three years to study diurnal and seasonal changes of transpiration and micro-meteorologic conditions.

  19. Movements, cover-type selection, and survival of fledgling Ovenbirds in managed deciduous and mixed coniferous-deciduous forests

    USGS Publications Warehouse

    Streby, Henry M.; Andersen, David E.

    2013-01-01

    We used radio telemetry to monitor movements, cover-type selection, and survival for fledglings of the mature-forest nesting Ovenbird (Seiurus aurocapilla) at two managed forest sites in north-central Minnesota. Both sites contained forested wetlands, regenerating clearcut stands of various ages, and logging roads, but differed in mature forest composition; one deciduous with open understory, and the other mixed coniferous-deciduous with dense understory. We used compositional analysis, modified to incorporate age-specific limitations in fledgling movements, to assess cover-type selection by fledglings throughout the dependent (on adult care) post-fledging period. Compared to those that were depredated, fledglings from nests in deciduous forest that survived the early post-fledging period had more older (sapling-dominated) clearcut available, directed movements toward older clearcuts and forested wetlands, and used older clearcuts more than other cover types relative to availability. Fledglings that were depredated had more young (shrub-dominated) clearcut and unpaved logging road available, and used mature forest and roads more than expected based on availability. For birds from nests in mixed mature forest with dense understory, movements and cover-type selection were similar between fledglings that survived and those that were depredated. However, fledglings that were depredated at that site also had more young clearcut available than fledglings that survived. We conclude that Ovenbird fledgling survival is influenced by distance of their nest to various non-nesting cover types, and by the subsequent selection among those cover types, but that the influence of non-nesting cover types varies depending on the availability of dense understory vegetation in mature forest.

  20. Landscape Risk Factors for Lyme Disease in the Eastern Broadleaf Forest Province of the Hudson River Valley and the Effect of Explanatory Data Classification Resolution

    EPA Science Inventory

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity)...

  1. Estimates of the distributions of forest ecosystem model inputs for deciduous forests of eastern North America.

    PubMed

    Radtke, P J; Burk, T E; Bolstad, P V

    2001-05-01

    Techniques for evaluating uncertainties in process-based, computer simulation models are evolving in response to the proliferation of such models and the demand for their use in the management of forest ecosystems. Many evaluation techniques require precise statements of the uncertainties associated with each model input. Statements of uncertainty are typically formulated as probability density functions (pdfs). Here, pdfs are developed for 29 inputs of the process-based, forest ecosystem, computer simulation model PnET-II, many of which are inputs to other well-known forest ecosystem models. The inputs considered describe vegetation characteristics of forests typical of the Eastern Deciduous Forest biome of North America. Data were compiled largely from published literature to estimate pdfs. The compiled distributions can be used to conduct various model evaluations including uncertainty assessment, calibration, and sensitivity analysis.

  2. Fluxes of Ultrafine Particles Over and In a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Hornsby, K. E.

    2013-12-01

    Given the importance of forests to land surface cover and particle removal (due to the very high deposition velocities and well-developed turbulence) there is a specific need to understand removal to, and in, forests. Fluxes of size-resolved and total particle number fluxes over (at 46 m) and in (at 7 m) a deciduous forest over a 14 month period are presented based on data from two Gill 3-D WindMaster Pro sonic anemometers, an Ultrafine Condensation Particle Counter (UCPC) operated at 10 Hz and a Fast Mobility Particle Sizer (FMPS) operated at 1 Hz. Size-resolved particle profiles during the same period are measured using a separate FMPS scanning at three measurement heights across the canopy (top, middle and bottom). Three methods are being applied to derive the total number and size-resolved fluxes from the UCPC and FMPS respectively; eddy covariance, inertial dissipation and the co-spectral approach. The results are integrated with fluxes of sensible heat, momentum and carbon dioxide derived using a Licor LI-7200. Results for the total number flux concentrations and the size-resolved concentrations derived using the three different approaches applied to the above canopy sampling level show a high degree of accord, but that the eddy-covariance fluxes are generally of smaller magnitude than those derived using the spectral methods. In keeping with prior research our results show a considerable number of fluxes are characterized by upward fluxes. Further our results show distinctly different flux diurnal profiles for the nucleation versus Aitken mode particles indicating some differential control on fluxes of particles of different sizes (including a role for aerosol dynamics). This presentation will provide details regarding the experimental approach, flux and gradient estimation methodologies, diagnose the size dependence of the fluxes, and compare and contrast the canopy and ground partitioning of the particle fluxes during leaf-on and leaf-off periods.

  3. Within-canopy sampling of global irradiance to describe downwelling light distribution and infer canopy stratification in a broadleaf forest.

    PubMed

    Giuliani, Rita; Brown, Kim J

    2008-09-01

    A broadleaf mixed forest diversified through partial tree thinning was studied to identify expedient sampling and data analysis procedures to capture the heterogeneous within-canopy downward distribution of instantaneous global photosynthetic photon flux (PPF); to extract foliage structural properties from the acquired light values; and to compute statistics descriptive of the within-canopy light and leaf layer distributions. We sampled PPF at 1-m intervals along vertical gradients using a helium-filled balloon as a platform for a light sensor. A random method was used to identify the forest floor locations for the within-canopy balloon ascents. About 400 PPF measurements were recorded per vertical transect. For each PPF value, we computed, by inversion of the Monsi-Saeki model, the number of leaf strata cumulated along the sunbeam direction from the position where the light was measured. Variability in PPF and leaf layer at different vegetation scales was computed by non-parametric statistics. The methods were evaluated as appropriate for intra-canopy PPF sampling, particularly in an undisturbed canopy. The minimum number of vertical PPF profiles required to capture the within-canopy PPF variability was 9-10 (equivalent to about 4000 measurements). The reliability and sensitivity of the inversion of the Monsi-Saeki method were sufficient to capture the canopy structural differences between undisturbed and partially thinned forests. The proposed PPF canopy sampling and data analysis procedures provide a fast, reliable and inexpensive way to characterize tree crown structure, and to predict plant growth and forest dynamics and could be applied whenever vegetation absorbed radiation is a main driving force for forest canopy processes. The experimental light attenuation data and the extracted canopy leaf layer numbers could serve to corroborate canopy mechanistic models of radiative transfer and net primary production.

  4. Distribution of deciduous stands in villages located in coniferous forest landscapes in Sweden.

    PubMed

    Mikusiński, Grzegorz; Angelstam, Per; Sporrong, Ulf

    2003-12-01

    Termination of fire along with active removal of deciduous trees in favor of conifers together with anthropogenic transformation of productive forest into agricultural land, have transformed northern European coniferous forests and reduced their deciduous component. Locally, however, in the villages, deciduous trees and stands were maintained, and have more recently regenerated on abandoned agricultural land. We hypothesize that the present distribution of the deciduous component is related to the village in-field/out-field zonation in different regions, which emerges from physical conditions and recent economic development expressed as land-use change. We analyzed the spatial distribution of deciduous stands in in-field and out-field zones of villages in 6 boreal/hemiboreal Swedish regions (Norrbotten, Angermanland, Jämtland, Dalarna, Bergslagen, Småland). In each region 6 individual quadrates 5 x 5 km centered on village areas were selected. We found significant regional differences in the deciduous component (DEC) in different village zones. At the scale of villages Angermanland had the highest mean proportion of DEC (17%) and Jämtland the lowest (2%). However, the amounts of the DEC varied systematically in in-field and out-field zones. DEC was highest in the in-field in the south (Småland), but generally low further north. By contrast, the amount of DEC in the out-field was highest in the north. The relative amount of DEC in the forest edge peaked in landscapes with the strongest decline in active agriculture (Angermanland, Dalarna, Bergslagen). Because former and present local villages are vital for biodiversity linked to the deciduous component, our results indicate a need for integrated management of deciduous forest within entire landscapes. This study shows that simplified satellite data are useful for estimating the spatial distribution of deciduous trees and stands at the landscape scale. However, for detailed studies better thematic resolution is

  5. Coleoptera Associated with Decaying Wood in a Tropical Deciduous Forest.

    PubMed

    Muñoz-López, N Z; Andrés-Hernández, A R; Carrillo-Ruiz, H; Rivas-Arancibia, S P

    2016-08-01

    Coleoptera is the largest and diverse group of organisms, but few studies are dedicated to determine the diversity and feeding guilds of saproxylic Coleoptera. We demonstrate the diversity, abundance, feeding guilds, and succession process of Coleoptera associated with decaying wood in a tropical deciduous forest in the Mixteca Poblana, Mexico. Decaying wood was sampled and classified into four stages of decay, and the associated Coleoptera. The wood was identified according to their anatomy. Diversity was estimated using the Simpson index, while abundance was estimated using a Kruskal-Wallis test; the association of Coleoptera with wood species and decay was assessed using canonical correspondence analysis. Decay wood stage I is the most abundant (51%), followed by stage III (21%). We collected 93 Coleoptera belonging to 14 families, 41 genera, and 44 species. The family Cerambycidae was the most abundant, with 29% of individuals, followed by Tenebrionidae with 27% and Carabidae with 13%. We recognized six feeding guilds. The greatest diversity of Coleoptera was recorded in decaying Acacia farnesiana and Bursera linanoe. Kruskal-Wallis analysis indicated that the abundance of Coleoptera varied according to the species and stage of decay of the wood. The canonical analysis showed that the species and stage of decay of wood determined the composition and community structure of Coleoptera.

  6. Tradeoffs, competition, and coexistence in eastern deciduous forest ant communities.

    PubMed

    Stuble, Katharine L; Rodriguez-Cabal, Mariano A; McCormick, Gail L; Jurić, Ivan; Dunn, Robert R; Sanders, Nathan J

    2013-04-01

    Ecologists have long sought to explain the coexistence of multiple potentially competing species in local assemblages. This is especially challenging in species-rich assemblages in which interspecific competition is intense, as it often is in ant assemblages. As a result, a suite of mechanisms has been proposed to explain coexistence among potentially competing ant species: the dominance-discovery tradeoff, the dominance-thermal tolerance tradeoff, spatial segregation, temperature-based niche partitioning, and temporal niche partitioning. Through a series of observations and experiments, we examined a deciduous forest ant assemblage in eastern North America for the signature of each of these coexistence mechanisms. We failed to detect evidence for any of the commonly suggested mechanisms of coexistence, with one notable exception: ant species appear to temporally partition foraging times such that behaviourally dominant species foraged more intensely at night, while foraging by subdominant species peaked during the day. Our work, though focused on a single assemblage, indicates that many of the commonly cited mechanisms of coexistence may not be general to all ant assemblages. However, temporal segregation may play a role in promoting coexistence among ant species in at least some ecosystems, as it does in many other organisms.

  7. Coleoptera Associated with Decaying Wood in a Tropical Deciduous Forest.

    PubMed

    Muñoz-López, N Z; Andrés-Hernández, A R; Carrillo-Ruiz, H; Rivas-Arancibia, S P

    2016-08-01

    Coleoptera is the largest and diverse group of organisms, but few studies are dedicated to determine the diversity and feeding guilds of saproxylic Coleoptera. We demonstrate the diversity, abundance, feeding guilds, and succession process of Coleoptera associated with decaying wood in a tropical deciduous forest in the Mixteca Poblana, Mexico. Decaying wood was sampled and classified into four stages of decay, and the associated Coleoptera. The wood was identified according to their anatomy. Diversity was estimated using the Simpson index, while abundance was estimated using a Kruskal-Wallis test; the association of Coleoptera with wood species and decay was assessed using canonical correspondence analysis. Decay wood stage I is the most abundant (51%), followed by stage III (21%). We collected 93 Coleoptera belonging to 14 families, 41 genera, and 44 species. The family Cerambycidae was the most abundant, with 29% of individuals, followed by Tenebrionidae with 27% and Carabidae with 13%. We recognized six feeding guilds. The greatest diversity of Coleoptera was recorded in decaying Acacia farnesiana and Bursera linanoe. Kruskal-Wallis analysis indicated that the abundance of Coleoptera varied according to the species and stage of decay of the wood. The canonical analysis showed that the species and stage of decay of wood determined the composition and community structure of Coleoptera. PMID:26911160

  8. How phenology influences physiology in deciduous forest spring ephemerals.

    PubMed

    Lapointe, Line

    2001-10-01

    Spring ephemerals of deciduous forest are adapted to take advantage of the high-light period available in early spring. They appear shortly after snow melt and complete their aboveground growth, including fruit production, within 2 months. After they produce new buds, they senesce and enter dormancy. Dormancy is not very deep in spring ephemerals and during summer differentiation occurs in the bud of the apparently resting organ. Low soil temperatures release dormancy, and the shoots and roots then grow slowly over autumn and winter. The goal of this paper is to show how this characteristic phenology influences many aspects of spring ephemerals' physiology, and the influences these different physiological parameters have on each other. Spring ephemerals have high photosynthetic rates that allow them to rapidly accumulate carbohydrates and complete their aboveground growth in a few weeks. To sustain high photosynthetic rates in early spring, the plants must be able to absorb water efficiently at low soil temperatures and to allocate large amounts of nutrients to the shoot to compensate for lower enzymatic activity at low temperatures. Nutrients are mainly absorbed in spring, although the root system is established in autumn. This means that a large amount of both carbohydrates and nutrients is translocated from the perennial organ to the developing shoot starting in autumn through early spring. Spring ephemerals have low nutrient absorption rates, but high resorption efficiency during leaf senescence. Nevertheless, their high nutrient needs restrict them to rich forest soils. The annual growth rate of spring ephemerals is very slow and this is more likely related to the inherent slow growth rate of the perennial organ than to their short leaf life. As soon as carbohydrate reserves are replenished in spring, sink limitation apparently builds up and induces leaf senescence. A better understanding of the factors controlling the growth rate of spring ephemerals is

  9. Ecophysiological Remote Sensing of Leaf-Canopy Photosynthetic Characteristics in a Cool-Temperate Deciduous Forest in Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Muraoka, H.

    2014-12-01

    Satellite remote sensing of structure and function of canopy is crucial to detect temporal and spatial distributions of forest ecosystems dynamics in changing environments. The spectral reflectance of the canopy is determined by optical properties (spectral reflectance and transmittance) of single leaves and their spatial arrangements in the canopy. The optical properties of leaves reflect their pigments contents and anatomical structures. Thus detailed information and understandings of the consequence between ecophysiological traits and optical properties from single leaf to canopy level are essential for remote sensing of canopy ecophysiology. To develop the ecophysiological remote sensing of forest canopy, we have been promoting multiple and cross-scale measurements in "Takayama site" belonging to AsiaFlux and JaLTER networks, located in a cool-temperate deciduous broadleaf forest on a mountainous landscape in Japan. In this forest, in situ measurement of canopy spectral reflectance has been conducted continuously by a spectroradiometer as part of the "Phenological Eyes Network (PEN)" since 2004. To analyze the canopy spectral reflectance from leaf ecophysiological viewpoints, leaf mass per area, nitrogen content, chlorophyll contents, photosynthetic capacities and the optical properties have been measured for dominant canopy tree species Quercus crispla and Betula ermanii throughout the seasons for multiple years.Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season in both Q. crispla and B. ermanii. In these leaves, the reflectance at "red edge" (710 nm) changed by corresponding to the changes of chlorophyll contents throughout the seasons. Our canopy-level examination showed that vegetation indices obtained by red edge reflectance have linear relationship with leaf chlorophyll contents and photosynthetic capacity. Finally we apply this knowledge to the Rapid Eye satellite imagery around Takayama site to scale

  10. Patterns of small mammal microhabitat utilization in cedar glade and deciduous forest habitats

    SciTech Connect

    Seagle, S.W.

    1985-01-01

    Differential microhabitat use by the small mammals inhabiting a cedar glade and a deciduous forest was investigated using discriminant function analysis of 30 structural parameters measured around the capture site of each animal. Ochrotomys nuttalli and Peromyscus leucopus utilize different microhabitats in the cedar glade, as do Blarina brevicauda and P. leucopus in the deciduous forest. P. leucopus was found to be a microhabitat generalist in the deciduous forest and a specialist in the cedar glade, whereas O. nuttalli and B. bravicauda were a microhabitat generalist and specialist, respectively. The sexes of P. leucopus were found to occupy different microhabitats in the deciduous forest but not in the cedar glade. Female P. leucopus occupied microhabitat with better protective cover in the deciduous forest. Comparisons of microhabitats used by the two species captured in each habitat with a random microhabitat sample and trap sites at which no animals were captured indicate that each habitat is a complex matrix of microhabitats, some of which are used by small mammals and some of which are not. 24 references, 5 figures, 5 tables.

  11. Rainfall Reduction Increases Soil Methane Uptake in Broadleaf Evergreen Eucalypt Forest - a Negative Feedback to Climate Change

    NASA Astrophysics Data System (ADS)

    Fest, B. J.; Hinko-Najera, N.; Livesley, S. J.; Arndt, S. K.

    2013-12-01

    Well-drained aerated soils are important sinks for atmospheric methane (CH4), a process driven by CH4 oxidation through methanotrophic bacteria. Soils in temperate forest ecosystems represent the greatest terrestrial CH4 sink and soil moisture is one of the key regulators of soil CH4 flux in these systems. Most climate change models predict a decrease in average rainfall, an increase in extreme rainfall events and an increase in temperatures for mid-latitude and sub-arid regions. However, most studies of soil CH4 flux under altered rainfall scenarios have been conducted in mid-latitude forest and grassland systems of the northern hemisphere or in tropical forest systems and have often investigated extended drought rather than an reduction in long-term average rainfall. We measured soil CH4 flux for 18 months (October 2010 - April 2012) after installing a passive rainfall reduction system to intercept approximately 40% of canopy throughfall (as compared to control plots) in a temperate broadleaf evergreen eucalypt forest in south-eastern Australia. Throughfall reduction caused an average reduction of 15.1 × 6.4 (SE) % in soil volumetric water content, a reduction of 19.8 × 6.9 (SE) % in soil water filled pore space (WFPS) and a 20.1 × 6.8 (SE) % increase in soil air filled porosity (AFP). In response to these changes, soil CH4 uptake increased by 54.7 × 19.8 (SE) %. Relative changes in CH4 uptake related better to relative changes in AFP than to relative changes in WFPS, indicating a close relationship between AFP and soil gas diffusivity. Our data indicated that soil moisture was the dominant regulating factor of seasonality in soil CH4 uptake explaining up to 80% of the seasonal variability and accounting for the observed throughfall reduction treatment effect. This was confirmed by additional soil diffusivity measurements and passive soil warming treatments. We investigated non-linear functions to describe the relationship between soil moisture and soil CH4

  12. Temporal Persistence of Point Throughfall in a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Carlyle-Moses, D. E.

    2011-12-01

    For 28 rainfall events with a cumulative depth of 259.3mm, throughfall (TF) was measured using 85 stationary cylindrical gauges (catch area = 0.067 m^2 each) in a deciduous forest comprised of red oak (Quercus rubra L.), sugar maple (Acer saccharum Marsh.) and American beech (Fagus gradifolia Ehrh.) under growing season conditions. For rainfalls in which all gauges received TF the ratio between the maximum and minimum point TF was 11.2 for rainfalls < 2.0 mm, and 8.6, 2.7, and 1.9 for events in the range of 2.0 - 4.9, 5.0 - 9.9, and ≥ 10.0 mm, respectively. Cumulative point TF ranged from 148.4 to 239.4 mm (57.2 - 92.2 % of rainfall), representing a season-long maximum to minimum point TF ratio of 1.61. Point TF depth at each gauge for each event was converted to a normalized value. Because TF at the rainfall event scale often did not follow a normal distribution (Shapiro and Wilk test, p < 0.05) normalized TF was derived as: TFn = (TFi - TFMedian) x (MAD)^-1, where TFn represents the normalized TF value, TFi and TFMedian are the point TF at gauge i (mm) and median point TF (mm) for all gauges, respectively, and MAD is the mean absolute difference of all gauge catches from TFMedian (mm). Analyses of the temporal stability of TFn and backwards step-wise multiple regression of TFn versus rainfall depth (mm) and mean rainfall intensity (mm h^-1) were conducted revealing a complex TF spatio-temporal pattern below the canopy. Forty-one of the 85 gauges (48 %) had temporally persistent catches that were significantly (p ≤ 0.05) smaller (21 %) or larger (27 %) than the median. Many gauges that had a significant temporal persistence of TFn also exhibited significant (p ≤ 0.10) weak (r^2 < 0.10) to moderate (0.30 < r^2 < 0.50) relationships between TFn and rainfall depth and or intensity. The divergence of the TFn values from TFMedian either increased or decreased with rainfall characteristics. Other gauges showed a significant relationship with rainfall

  13. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part I; Site Description

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, William; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    A study over a deciduous forest located in middle Massachusetts (USA) has been performed to examine the role of leaves in the forest-atmosphere interaction. Due to the seasonal presence of leaves, a deciduous forest is a 'good laboratory' to study this interaction. In this first part, a description of a 30 m micrometeorological tower as well a qualitative description of some meteorological parameters are presented. The presence of leaves affects the forest in several ways. There is a decrease of upward PAR (Photosynthetically Active Radiation) due to absorption of visible light in the canopy. Water vapor concentration increases, and the CO2 concentration decreases in the surface layer as the canopy starts to be foliated. The physical presence of the leaves is felt in other quantities such as the global albedo and the subcanopy environment.

  14. Mercury in coniferous and deciduous upland forests in northern New England, USA: implications of climate change

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.

    2015-11-01

    Climatic changes in the northeastern US are expected to cause coniferous stands to transition to deciduous stands over the next hundred years. Mercury (Hg) sequestration in forest soils may change as a result. In order to understand potential effects of such a transition, we studied aboveground vegetation and soils at paired coniferous and deciduous stands on eight mountains in Vermont and New Hampshire, USA. Organic horizons at coniferous stands accumulated more total Hg (THg; 42 ± 6 g ha-1) than deciduous stands (30 ± 4 g ha-1). Total Hg pools in the mineral horizons were similar for coniferous (46 ± 8 g ha-1) and deciduous stands (45 ± 7 g ha-1). Soil properties (C, % clay, and pH) explained 56 % of the variation in mineral soil Hg concentration when multiply regressed. Foliar and bole wood Hg concentrations were generally greater for coniferous species than deciduous species. Using allometric equations, we estimated that aboveground accumulation of Hg in foliage and woody biomass was similar between vegetation types but that coniferous stands have significantly smaller annual litterfall fluxes (0.03 g ha-1 yr-1) than deciduous stands (0.24 g ha-1 yr-1). We conclude that organic horizon Hg accumulation is influenced by vegetation type but mineral horizon Hg accumulation is primarily controlled by soil properties. Further investigations into the effect of vegetation type on volatilization, atmospheric deposition, and leaching rates are needed to constrain regional Hg cycling rates.

  15. Late wisconsin climate of northern Florida and the origin of species-rich deciduous forest.

    PubMed

    Watts, W A; Stuiver, M

    1980-10-17

    Species-rich mesic forest covered northern Florida as early as 14,000 radiocarbon years before present. It probably originated in deciduous tree populations already present locally in conifer forest between 24,000 and 18,600 years before present. The cold, dry Late Wisconsin climate ended before 14,600 years before present. A transitional warm, dry phase preceded a precipitation increase at 14,000 years before present.

  16. Mercury in coniferous and deciduous upland forests in Northern New England, USA: implications from climate change

    NASA Astrophysics Data System (ADS)

    Richardson, J. B.; Friedland, A. J.

    2015-07-01

    Climatic changes in the northeastern US are expected to cause coniferous stands to transition to deciduous stands over the next hundred years. Mercury (Hg) sequestration in forest soils may change as a result. In order to understand potential effects of this transition, we studied aboveground vegetation and soils at paired coniferous and deciduous stands on eight mountains in Vermont and New Hampshire, US. Organic horizons at coniferous stands accumulated more Total Hg (THg) (42 ± 6 g ha-1) than deciduous stands (30 ± 4 g ha-1). Total Hg pools in the mineral horizons were similar for coniferous (46 ± 8 g ha-1) and deciduous stands (45 ± 7 g ha-1). Soil properties (C, % clay, and pH) explained 56 % of the variation in mineral soil Hg concentration when multiple regressed. Foliar and bole wood Hg concentrations were generally greater for coniferous species than deciduous species. We estimated Hg mean residence time (MRT) in the organic and mineral horizons at coniferous and deciduous stands using a simple two-box model. Organic horizon MRT were longer at coniferous stands (183 ± 44 yr) than deciduous stands (65 ± 15 yr). Mineral soil horizon MRT values were also longer for coniferous stands (386 ± 57 yr) than for deciduous stands (188 ± 27 yr). We concluded that organic horizon Hg accumulation is influenced by vegetation type but mineral horizons are primarily affected by soil properties. Further investigations into the effect of vegetation type on volatilization, atmospheric deposition, and leaching rates are needed to constrain regional Hg cycling rates.

  17. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.

    PubMed

    Xie, Yingying; Wang, Xiaojing; Silander, John A

    2015-11-01

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models. PMID:26483475

  18. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.

    PubMed

    Xie, Yingying; Wang, Xiaojing; Silander, John A

    2015-11-01

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041-2050 and 2090-2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models.

  19. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts

    PubMed Central

    Xie, Yingying; Wang, Xiaojing; Silander, John A.

    2015-01-01

    Changes in spring and autumn phenology of temperate plants in recent decades have become iconic bio-indicators of rapid climate change. These changes have substantial ecological and economic impacts. However, autumn phenology remains surprisingly little studied. Although the effects of unfavorable environmental conditions (e.g., frost, heat, wetness, and drought) on autumn phenology have been observed for over 60 y, how these factors interact to influence autumn phenological events remain poorly understood. Using remotely sensed phenology data from 2001 to 2012, this study identified and quantified significant effects of a suite of environmental factors on the timing of fall dormancy of deciduous forest communities in New England, United States. Cold, frost, and wet conditions, and high heat-stress tended to induce earlier dormancy of deciduous forests, whereas moderate heat- and drought-stress delayed dormancy. Deciduous forests in two eco-regions showed contrasting, nonlinear responses to variation in these explanatory factors. Based on future climate projection over two periods (2041–2050 and 2090–2099), later dormancy dates were predicted in northern areas. However, in coastal areas earlier dormancy dates were predicted. Our models suggest that besides warming in climate change, changes in frost and moisture conditions as well as extreme weather events (e.g., drought- and heat-stress, and flooding), should also be considered in future predictions of autumn phenology in temperate deciduous forests. This study improves our understanding of how multiple environmental variables interact to affect autumn phenology in temperate deciduous forest ecosystems, and points the way to building more mechanistic and predictive models. PMID:26483475

  20. Landscape risk factors for Lyme disease in the eastern broadleaf forest province of the Hudson River valley and the effect of explanatory data classification resolution.

    PubMed

    Messier, Kyle P; Jackson, Laura E; White, Jennifer L; Hilborn, Elizabeth D

    2015-01-01

    This study assessed how landcover classification affects associations between landscape characteristics and Lyme disease rate. Landscape variables were derived from the National Land Cover Database (NLCD), including native classes (e.g., deciduous forest, developed low intensity) and aggregate classes (e.g., forest, developed). Percent of each landcover type, median income, and centroid coordinates were calculated by census tract. Regression results from individual and aggregate variable models were compared with the dispersion parameter-based R(2) (Rα(2)) and AIC. The maximum Rα(2) was 0.82 and 0.83 for the best aggregate and individual model, respectively. The AICs for the best models differed by less than 0.5%. The aggregate model variables included forest, developed, agriculture, agriculture-squared, y-coordinate, y-coordinate-squared, income and income-squared. The individual model variables included deciduous forest, deciduous forest-squared, developed low intensity, pasture, y-coordinate, y-coordinate-squared, income, and income-squared. Results indicate that regional landscape models for Lyme disease rate are robust to NLCD landcover classification resolution.

  1. The Pleistocene biogeography of eastern North America: A nonmigration scenario for deciduous forest

    SciTech Connect

    Loehle, C.; Iltis, H.

    1998-12-31

    The current reconstruction of the vegetation of eastern North America at the last glacial maximum postulates a very wide zone of tundra and boreal forest south of the ice. This reconstruction requires that the deciduous forest retreated far to the south. The authors believe that this reconstruction is seriously in error. Geologic evidence for glacial activity or tundra is absent from the southern Appalachians. Positive evidence for boreal forest is based on pollen identifications for Picea, Betula, and Pinus, when in reality southern members of these genera have pollen that cannot be distinguished from that of northern members. Further, pollen of typical southern species such as oaks and hickories occurs throughout profiles that past authors had labeled boreal. Pollen evidence for a far southern deciduous forest refuge is lacking. Data on endemics are particularly challenging for the scenario in which deciduous forest migrated to the south and back. The southern Appalachian region is rife with endemics that are often extreme-habitat specialists unable to migrate. The previously glaciated zone is almost completely lacking in endemics. Outlier populations, range boundaries, and absence of certain hybrids all argue against a large boreal zone. The new reconstruction postulates a cold zone no more than 75--100 miles wide south of the ice in the East.

  2. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    DOE PAGESBeta

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-23

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  3. Interannual Variations in Ecosystem Oxidative Ratio in Croplands, Deciduous Forest, Coniferous Forest, and Early Successional Forest Ecosystems

    NASA Astrophysics Data System (ADS)

    Masiello, C. A.; Hockaday, W. C.; Gallagher, M. E.; Calligan, L.

    2009-12-01

    Ecosystem net primary productivity (NPP) can vary significantly with annual variations in precipitation and temperature. These climate variations can also drive changes in plant carbon allocation patterns. Shifting allocation patterns can lead to variation in net ecosystem biochemical stocks (e.g. kg cellulose, lignin, protein, and lipid/ha), which can in turn lead to shifts in ecosystem oxidative ratio (OR). OR is the molar ratio of O2 released : CO2 fixed during biosynthesis. Major plant biochemicals vary substantially in oxidative ratio, ranging from average organic acid OR values of 0.75 to average lipid OR values of 1.37 (Masiello et al., 2008). OR is a basic property of ecosystem biochemistry, and is also an essential variable needed to constrain the size of the terrestrial biospheric carbon sink (Keeling et al., 1996). OR is commonly assumed to be 1.10 (e.g. Prentice et al., 2001), but small variations in net ecosystem OR can drive large errors in estimates of the size of the terrestrial carbon sink (Randerson et al., 2006). We hypothesized that interannual changes in climate may drive interannual variation in ecosystem OR values. Working at Kellogg Biological Station NSF LTER, we measured the annual average OR of coniferous and deciduous forests, an early successional forest, and croplands under both corn and soy. There are clear distinctions between individual ecosystems (e.g., the soy crops have a higher OR than the corn crops, and the coniferous forests have a higher OR than the deciduous forests), but the ecosystems themselves retained remarkably constant annual OR values between 1998 and 2008.

  4. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    PubMed Central

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  5. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    DOE PAGESBeta

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristobal, Jordi; Thoman, Richard

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukonmore » River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. Furthermore, this study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.« less

  6. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest.

    PubMed

    Young-Robertson, Jessica M; Bolton, W Robert; Bhatt, Uma S; Cristóbal, Jordi; Thoman, Richard

    2016-07-12

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21-25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8-20.9 billion m(3) of snowmelt water, which is equivalent to 8.7-10.2% of the Yukon River's annual discharge. Deciduous trees transpired 2-12% (0.4-2.2 billion m(3)) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10-30% (2.0-5.2 billion m(3)) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1-15%, potentially resulting in an additional 0.3-3 billion m(3) of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  7. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest

    NASA Astrophysics Data System (ADS)

    Young-Robertson, Jessica M.; Bolton, W. Robert; Bhatt, Uma S.; Cristóbal, Jordi; Thoman, Richard

    2016-07-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21–25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8–20.9 billion m3 of snowmelt water, which is equivalent to 8.7–10.2% of the Yukon River’s annual discharge. Deciduous trees transpired 2–12% (0.4–2.2 billion m3) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10–30% (2.0–5.2 billion m3) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1–15%, potentially resulting in an additional 0.3–3 billion m3 of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.

  8. Deciduous trees are a large and overlooked sink for snowmelt water in the boreal forest.

    PubMed

    Young-Robertson, Jessica M; Bolton, W Robert; Bhatt, Uma S; Cristóbal, Jordi; Thoman, Richard

    2016-01-01

    The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21-25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8-20.9 billion m(3) of snowmelt water, which is equivalent to 8.7-10.2% of the Yukon River's annual discharge. Deciduous trees transpired 2-12% (0.4-2.2 billion m(3)) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10-30% (2.0-5.2 billion m(3)) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1-15%, potentially resulting in an additional 0.3-3 billion m(3) of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds. PMID:27404274

  9. Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest.

    PubMed

    Su, Yushan; Wania, Frank; Harner, Tom; Lei, Ying D

    2007-01-15

    The atmospheric deposition of several groups of semi-volatile organic compounds to a deciduous forest in Canada was determined using an indirect technique based on ratios of measured canopy interception and air concentrations. Air (gas and particle phase) and bulk deposition were sampled for 14 months from October 2001 to December 2002 at both a forest and a nearby clearing, and extracts were quantified for polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs). Long-term average dry deposition velocities for vapors and particle-bound species were then derived for the canopy growing period. The mean dry gaseous deposition velocity for PBDEs and PCBs to the Canadian deciduous forest was 2.7 +/- 0.52 cm x s(-1), which is similar to the only other measured value for a deciduous canopy. Particle-bound deposition velocities to the canopy due to diffusion and impaction were 0.8 cm x s(-1) for the PBDEs and 0.11 cm x s(-1) for the PAHs. Differences in the particle-bound deposition velocities between PBDEs and PAHs and between deciduous canopies in Canada and Germany are explainable by differences in particle size distribution. The interception/concentration ratios for several PAHs were too low to be interpretable as dry gaseous deposition velocities. This is likely because the measured deposition flux under the canopy was less than the deposition flux to the canopy, possibly as a result of photodegradation in the canopy. From the ratio of canopy interception and average gas-phase concentration of less chlorinated PCBs, a predictive relationship between the canopy/air partition coefficient KPA and the octanol/air partition coefficient KOA was derived (KPA = 110 KOA0.67). Despite differences in local climate and canopy composition and structure, the deposition velocities and the canopy uptake capacity measured in Canada were remarkably similar to those reported in Germany, lending credibility to the suggestion

  10. High rates of carbon storage in old deciduous forests: Emerging mechanisms from the Forest Accelerated Succession ExperimenT (FASET)

    NASA Astrophysics Data System (ADS)

    Gough, C. M.; Nave, L. E.; Hardiman, B. S.; Bohrer, G.; Halperin, A.; Maurer, K.; Le Moine, J.; Nadelhoffer, K.; Vogel, C. S.; Curtis, P.; University Of Michigan Biological Station Forest Ecosystem Study (Umbs-Fest) Team

    2010-12-01

    Deciduous forests of the eastern US are broadly approaching an ecological threshold in which early successional dominant trees are senescing and giving way to later successional species, with unknown consequences for regional carbon (C) cycling. Though recent research demonstrates that forests may accumulate C for centuries, the mechanisms behind sustained rates of C storage in old, particularly deciduous, forests have not been identified. In a regionally representative forest at the University of Michigan Biological Station, we are combining observational and experimental C cycling studies to forecast how forest C storage responds to climate variation, disturbance, and succession. The Forest Accelerated Succession ExperimenT (FASET), in which >6,700 aspen and birch trees (~35 % LAI) were stem girdled within a 39 ha area, is testing the hypothesis that forest production will increase rather than decline with age, due to increases in nitrogen (N) availability, N allocation to the canopy, and the concurrent development of a more biologically and structurally complex canopy. Results thus far support our hypothesis that aging forests in the region may sustain high rates of C storage through shifts in N cycling and increased canopy complexity. Girdling-induced mortality of early successional species reduced soil respiration, accelerated fine root turnover, and prompted the redistribution of N from the foliage of early to later successional species. Nitrogen redistribution increased leaf area index (LAI) production by later successional species, offsetting declines in LAI from senescing early successional species. High rates of net primary production (NPP) were sustained in stands comprising a diverse assemblage of early and later successional species because later successional species, when already present in the canopy, rapidly compensated for declining growth of early successional species. Canopy structural complexity, which increased with forest age, was positively

  11. Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.

    PubMed

    Shiklomanov, Alexey N; Levia, Delphis F

    2014-10-01

    Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species.

  12. Stemflow acid neutralization capacity in a broadleaved deciduous forest: the role of edge effects.

    PubMed

    Shiklomanov, Alexey N; Levia, Delphis F

    2014-10-01

    Atmospheric deposition is an important pathway for moisture, nutrient, and pollutant exchange among the atmosphere, forest, and soils. Previous work has shown the importance of proximity to the forest edge to chemical fluxes in throughfall, but far less research has considered stemflow. This study examined the difference in acid neutralization capacity (ANC) of stemflow of nineteen Liriodendron tulipifera L. (yellow poplar) trees between the forest edge and interior in a rural area of northeastern Maryland. We measured ANC directly via potentiometric titration. Stemflow from trees at the forest edge was found to have significantly higher and more variable pH and ANC than in the forest interior (p < 0.01). No mathematical trend between ANC and distance to the forest edge was observed, indicating the importance of individual tree characteristics in stemflow production and chemistry. These results reaffirm the importance of stemflow for acid neutralization by deciduous tree species. PMID:25005886

  13. Herbivory among habitats on the Neotropical tree Cnidoscolus quercifolius Pohl. in a seasonally deciduous forest.

    PubMed

    Coelho, M S; Belmiro, M S; Santos, J C; Fernandes, G W

    2012-08-01

    Our goal was to identify herbivory patterns from two insect guilds associated with Cnidoscolus quercifolius in a tropical deciduous forest in northeastern Brazil. We sampled four different habitats: (1) forest edge, (2) mesic (near to the perennial water source), (3) forest interior and (4) rupestrian fields. Habitat edge had lower leaf damage than rupestrian, mesic and forest interior habitats. Nevertheless, abundance of galls at the edge habitat was higher than at mesic, forest interior and/or rupestrian habitats. There was no difference in gall mortality by natural enemies among the four habitats sampled, demonstrating the absence of any influence of top-down controls related to abundance of galls. Trophic relationships were not related to the patterns of distribution among habitats of two insect herbivorous guilds associated with C. quercifolius. Our results demonstrated that environmental heterogeneity of dry forests can significantly alter important ecological interactions and experimental studies are needed to better understand the mechanisms responsible for differences in herbivory among habitats.

  14. Enhancement of understory productivity by asynchronous phenology with overstory competitors in a temperate deciduous forest.

    PubMed

    Jolly, William M; Nemani, Ramakrishna; Running, Steven W

    2004-09-01

    Some saplings and shrubs growing in the understory of temperate deciduous forests extend their periods of leaf display beyond that of the overstory, resulting in periods when understory radiation, and hence productivity, are not limited by the overstory canopy. To assess the importance of the duration of leaf display on the productivity of understory and overstory trees of deciduous forests in the north eastern United States, we applied the simulation model, BIOME-BGC with climate data for Hubbard Brook Experimental Forest, New Hampshire, USA and mean ecophysiological data for species of deciduous, temperate forests. Extension of the overstory leaf display period increased overstory leaf area index (LAI) by only 3 to 4% and productivity by only 2 to 4%. In contrast, extending the growing season of the understory relative to the overstory by one week in both spring and fall, increased understory LAI by 35% and productivity by 32%. A 2-week extension of the growing period in both spring and fall increased understory LAI by 53% and productivity by 55%.

  15. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  16. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence.

    PubMed

    Hasselquist, Niles J; Allen, Michael F; Santiago, Louis S

    2010-12-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (Ψ(L)) relative to late-seral trees (-1.01 ± 0.14 and -0.54 ± 0.07 MPa, respectively). Although Ψ(L) did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ(18)O values relative to drought-deciduous trees (-2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar (18)O (∆(18)O(l)) and (13)C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season.

  17. Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    PubMed Central

    Allen, Michael F.; Santiago, Louis S.

    2010-01-01

    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. PMID:20658152

  18. Variation in throughfall deposition across a deciduous beech (Fagus sylvatica L.) forest edge in Flanders.

    PubMed

    Devlaeminck, Rebecca; De Schrijver, An; Hermy, Martin

    2005-01-20

    Throughfall deposition and canopy exchange of acidifying and eutrophying compounds and major base cations were studied by means of throughfall analysis in a deciduous beech (Fagus sylvatica L.) forest edge in Belgium over a period of 1 year. Throughfall fluxes of Cl(-), NH(4)(+) and Na(+) were significantly elevated at the forest edge compared to the forest interior. As no edge effect on throughfall water volume could be detected, the observed edge enhancement effects were mainly due to dry deposition and canopy exchange patterns. Indeed, there was an elevated dry deposition of Cl(-), Na(+), K(+), Ca(2+) and Mg(2+) up to 50 m from the field/forest border. Within the forest, throughfall and dry deposition of SO(4)(2-) were highly variable and no significant differences were observed between the forest edge and the forest interior. Leaching of K(+) and Ca(2+) was reduced in the forest edge up to a distance of 30 m from the border. The measured nitrogen and acidic depositions far exceeded the current Flemish critical loads with respect to the protection of biodiversity in forests, especially at the forest edge. This points to an urgent need for controlling emissions as well as the need to consider the elevated deposition load in forest edges when calculating the critical loads in forests.

  19. Ecohydrologic implications of differences in throughfall between hemlock and deciduous forest plots, West Whately, MA

    NASA Astrophysics Data System (ADS)

    Guswa, A. J.; Rhodes, A. L.; McNicholas, J.; Mehter, S.; Spence, C.

    2009-12-01

    Invasive pests, especially in conjunction with climate change, have the potential to transform the species composition of many forests. In the northeastern United States, the hemlock woolly adelgid poses a significant threat to eastern hemlock (Tsuga Canadensis), a tree known for its ecological role more than its timber value. To begin to assess the effect on the water cycle of converting hemlock to deciduous forest, we carried out a throughfall investigation in West Whately, MA during the summer of 2009. From 3 June to 25 July, we measured the volume and chemistry of throughfall in two forest plots: one dominated by hemlock (LAI = 5.6) and one comprising a variety of deciduous species (LAI = 4.7), including many saplings and sub-canopy trees. Over the period of the study, rainfall totaled 311 mm and throughfall amounted to 276 mm (89%) in the deciduous plot and 242 mm (78%) in the hemlock stand. When compared to open precipitation, throughfall from both plots showed significantly higher levels of acid neutralizing capacity, pH, and concentrations of K+, Ca2+, and Mg2+. On an event-by-event basis, the fraction of precipitation that shows up as throughfall increases with amount, and representing interception as a constant depth, Δ, provides a reasonable fit (Δdeciduous = 2.5 mm, R2 = 0.99; Δhemlock = 5 mm, R2 = 0.96). Analysis of variance and time-stability plots indicate a strong persistent effect of collector position on throughfall depth, leading to potential efficiencies in measurement strategies. In both stands, the spatial variability of throughfall depths is higher for lower intensity events, and the coefficient of variation has a value around 30% for larger events. The skewness of throughfall depths among collectors within the hemlock plot is generally small. Throughfall depths are positively skewed in the deciduous plot, and one collector consistently received throughfall equal to twice the incident rainfall. Should hemlock stands be eliminated and

  20. Species differences in timing of leaf fall and foliage chemistry modify nutrient resorption efficiency in deciduous temperate forest stands.

    PubMed

    Niinemets, Ulo; Tamm, Ulo

    2005-08-01

    Extensive variation in fractional resorption of mineral elements from plant leaves is still not fully understood. In multi-species forest stands, species leaf fall phenology and leaf constitution may significantly modify the timing of nutrient return to the soil and overall plant nutrient loss. We studied leaf fall and nutrient loss kinetics, and leaf composition in three natural, temperate, deciduous broadleaf forest stands to determine the role of timing of leaf abscission and nutrient immobilization in cell walls on nutrient resorption efficiency of senescing leaves. Nitrogen (N), phosphorus and potassium contents decreased continuously in attached leaves after peak physiological activity during mid-season. Changes in nutrient contents of attached leaves were paralleled by decreases in nutrient contents in freshly fallen leaf litter. In different species and for different nutrients, resorption of nutrients from senescing leaves proceeded with different kinetics. The maximum nutrient resorption efficiency (the fraction of specific nutrient resorbed from the leaves at the end of leaf fall) did not depend on the mid-seasonal nutrient concentration. Species with earlier leaf fall resorbed leaf nutrients at a faster rate, partly compensating for the earlier leaf fall. Nevertheless, the litter-mass weighted mean nutrient contents in leaf litter were still larger in species with earlier leaf fall, demonstrating an inherent trade-off between early leaf fall and efficient nutrient resorption. This trade-off was most important for N. Losses of the non-mobile nutrients calcium and magnesium were unaffected by the timing of leaf fall. There was large variation in the maximum N resorption efficiency among species. Correlations among leaf chemical variables suggested that the maximum N resorption efficiency decreased with the increasing fraction of cell walls in the leaves, possibly due to a greater fraction of N occluded in cell wall matrix. We conclude that species leaf

  1. The impact of boreal deciduous and evergreen forests on atmospheric CO2 seasonality

    NASA Astrophysics Data System (ADS)

    Welp, L.; Graven, H. D.; Keeling, R. F.; Bi, J.

    2015-12-01

    The seasonal cycle of atmospheric CO2 is largely controlled by the terrestrial biosphere. It is well known that the seasonal amplitude of net ecosystem productivity (NEP) is the largest in the far north, where forest productivity is compressed into a short growing season. Since 1960, the seasonal amplitude of atmospheric CO2 north of 45N has increased by 35-55%. The increase in the seasonal amplitude is a difficult benchmark for coupled climate-carbon models to replicate. In fact, the models vary widely in their mean seasonal cycle representation. The boreal region has a strong influence on CO2 seasonality at Barrow. Deciduous and evergreen plant functional types (PFTs) have different patterns of NEP. We identified four pairs of nearby deciduous and evergreen forest PFTs with eddy covariance measurements. Evergreen forests show an early peak in NEP in May-June, while deciduous forests have a larger peak in NEP later in June-July. The influence of each PFT on the seasonal cycle at Barrow was computed from atmospheric transport results. We normalized the amplitude influence by the growing season NEP of the tower-based PFT flux and found that deciduous forests have 1.4 to 1.8 times more influence (per unit of growing season NEP) at Barrow than evergreen PFT. This diagnosis depends on the timing of the sharp seasonal draw-down at Barrow, which occurs too late to be explained by evergreen forests. The cycle at Barrow therefore appears to be strongly influenced by deciduous PFT, despite the dominance of evergreen PFTs in boreal forests. This paradoxical conclusion is also reached when examining the seasonality of land surface fluxes calculated using atmospheric inverse methods. We examine how these different PFTs, and possible trends in relative abundance, affect the seasonality of atmosphere CO2 using FluxNet data and atmospheric transport modelling. Our results highlight the importance of parameterizing multiple PFTs or individual species within grid cells in models in

  2. The microwave emission and transmission characters of deciduous forest at L-band

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongjun; Yuan, Yu; Zheng, Xingming; Zhu, Xiaoming; Fu, Xiuli

    2014-11-01

    Forest covers about 30% of earth surface, which plays an important role in global forecast and carbon cycle. Monitoring forest biomass, and retrieving soil moisture at forest area, are the main goals of most passive microwave sensors on satellite missions. L-band is the most sensitive frequency among all the frequencies due to its good penetration ability. Because of its variety of the size of scattering components, the complicated structures and species of forest, it is difficult to describe the scattering and attenuation characters of forest in modeling microwave emission at forest area. In this paper, we studied the emissivity and transmissivity of deciduous forest at L(1.4GHz) by model simulation and field experiment. The microwave emission model was based on Matrix-Doubling algorithm. The comparison between simulated emissivity and measured data collected during an experiment at Maryland, USA in 2007 was good. Since theoretical model like Matrix-Doubling is too complicated to be used in retrial application, we mapped the results of Matrix-Doubling to a simple 0th-order model, also called ω-τ model, by setting the simulated emissivity to be the emissivity of 0th-order model at the same environment, which 2 unknown variables---opacity τ and effective single scattering albedo ω need to be determined. To valited τ (transmissivity of forest) simulated by Matrix-Doubling, we took an deciduous forest experiment by an L band microwave radiometer under trees at JingYueTan area, Changchun, Jilin Province in April to June in 2014. Thus the ω of forest can be determined. The matching results are presented in this paper. The relationship between LAI and forest microwave characters are discussed.

  3. Study on identifying deciduous forest by the method of feature space transformation

    NASA Astrophysics Data System (ADS)

    Zhang, Xuexia; Wu, Pengfei

    2009-10-01

    The thematic remotely sensed information extraction is always one of puzzling nuts which the remote sensing science faces, so many remote sensing scientists devotes diligently to this domain research. The methods of thematic information extraction include two kinds of the visual interpretation and the computer interpretation, the developing direction of which is intellectualization and comprehensive modularization. The paper tries to develop the intelligent extraction method of feature space transformation for the deciduous forest thematic information extraction in Changping district of Beijing city. The whole Chinese-Brazil resources satellite images received in 2005 are used to extract the deciduous forest coverage area by feature space transformation method and linear spectral decomposing method, and the result from remote sensing is similar to woodland resource census data by Chinese forestry bureau in 2004.

  4. Nitrate leakage from deciduous forest soils into streams on Kureha Hill, Japan.

    PubMed

    Honoki, H; Kawakami, T; Yasuda, H; Maehara, I

    2001-11-21

    Nitrate leakage from deciduous forest soils into streams was investigated for two adjacent hills. Many of the streams on Kureha Hill, located in Toyama City, Japan, have extremely high nitrate concentrations. The nitrate concentration of Hyakumakidani, one of the streams on Kureha Hill, averaged 158 microeq l(-1) and reached 470 microeq l(-1) during an episodic event. In contrast, the streams on Imizu Hill, adjacent to Kureha Hill, had low concentrations, below 15 microeq l(-1). Even during an episode, the nitrate concentrations increased to no more than 75 microeq l(-1). Both areas have similar blown forest soils, C/N ratios in O horizons, and vegetation consisting primarily of deciduous trees. However, soil incubation experiments, which lasted for 4 weeks, revealed that the nitrification rates in the surface soils of Kureha Hill were much higher than in the soils of Imizu Hill.

  5. Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis.

    PubMed

    Gu, Lianhong; Baldocchi, Dennis D; Wofsy, Steve C; Munger, J William; Michalsky, Joseph J; Urbanski, Shawn P; Boden, Thomas A

    2003-03-28

    Volcanic aerosols from the 1991 Mount Pinatubo eruption greatly increased diffuse radiation worldwide for the following 2 years. We estimated that this increase in diffuse radiation alone enhanced noontime photosynthesis of a deciduous forest by 23% in 1992 and 8% in 1993 under cloudless conditions. This finding indicates that the aerosol-induced increase in diffuse radiation by the volcano enhanced the terrestrial carbon sink and contributed to the temporary decline in the growth rate of atmospheric carbon dioxide after the eruption.

  6. An Individual Tree Detection Algorithm for Dense Deciduous Forests with Spreading Branches

    NASA Astrophysics Data System (ADS)

    Shao, G.

    2015-12-01

    Individual tree information derived from LiDAR may have the potential to assist forest inventory and improve the assessment of forest structure and composition for sustainable forest management. The algorithms developed for individual tree detection are commonly focusing on finding tree tops to allocation the tree positions. However, the spreading branches (cylinder crowns) in deciduous forests cause such kind of algorithms work less effectively on dense canopy. This research applies a machine learning algorithm, mean shift, to position individual trees based on the density of LiDAR point could instead of detecting tree tops. The study site locates in a dense oak forest in Indiana, US. The selection of mean shift kernels is discussed. The constant and dynamic bandwidths of mean shit algorithms are applied and compared.

  7. SEASONAL COURSE OF ISOPRENE EMISSIONS FROM A MIDLATITUDE DECIDUOUS FOREST

    EPA Science Inventory

    Continuous measurements of whole canopy isoprene emissions over an entire growing season are reported from Harvard Forest (42E32'N, 72E11'W). Emissions were calculated from the ratio of observed CO2 flux and gradient multiplied by the observed hydrocarbon gradients. In summer 199...

  8. On estimating canopy photosynthesis and stomatal conductance in a deciduous forest with clumped foliage.

    PubMed

    Baldocchi, Dennis D.; Hutchison, Boyd A.

    1986-12-01

    The foliage in a fully-leafed deciduous forest canopy is clumped. Consequently, theory indicates that the probability of beam penetration will be estimated more accurately with a model based on the negative binomial distribution than with a model based on the Poisson distribution, incorporating an assumption of a spherical leaf inclination angle distribution. Flux densities of photosynthetically active radiation (PAR) were measured in and above a deciduous forest canopy and were computed with the canopy radiative transfer models based on the negative binomial and Poisson distributions. These radiation values were used to compute canopy photosynthesis and stomatal conductance. Canopy photosynthesis and stomatal conductance, based on the negative binomial model, overestimated values computed from measured PAR profiles by 8 and 9%. respectively. The canopy photosynthesis and stomatal conductance values computed with the spherical Poisson model under-estimated measured values by 17 and 10%, respectively. Thus, the negative binomial radiative transfer model improves estimates of canopy photosynthesis and, to a lesser extent, stomatal conductance, inside a deciduous forest.

  9. Seasonal variation of temperature response of respiration in invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern US deciduous forest.

    PubMed

    Xu, Cheng-Yuan; Schuster, W S F; Griffin, Kevin L

    2007-10-01

    In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C "subsidy" when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R(0)) and the temperature response coefficient (E(0)), were different among the three shrubs and species-specific negative correlations were observed between R(0) and E(0). All three shrubs showed significant correlation between respiration rate on an area basis (20 degrees C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.

  10. Vegetation recovery on closed paths in temperate deciduous forests.

    PubMed

    Roovers, Pieter; Bossuyt, Beatrijs; Gulinck, Hubert; Hermy, Martin

    2005-02-01

    The objective of this study was to evaluate vegetation recovery on footpaths in woodland that have been closed for access for 6 years. A vegetation survey was conducted in four mesophile forests, in transects perpendicular to the trail. Analyses concentrated on the direction and rate of the recovery process. Vegetation on trail sides in these ecosystems recovered substantially. Non-metric multidimensional scaling based upon species composition separated the four sample locations and each cluster contained representatives of the three major trail zones: path centre, transition and undisturbed zones. Analysis of distribution of life forms, plant strategies and seedbank longevity indices showed no differences between trail zones. This indicates that vegetation on the path centre is likely to recover towards the plant composition of the undisturbed zone. Ellenberg values indicate that environmental variation is not related to former path structures, as significant variability was only observed between the forest sites. Furthermore, the analysis concentrated on characteristics of species relevant to the recovery process.

  11. Nitrogen deposition to and cycling in a deciduous forest.

    PubMed

    Pryor, S C; Barthelmie, R J; Carreiro, M; Davis, M L; Hartley, A; Jensen, B; Oliphant, A; Randolph, J C; Schoof, J T

    2001-12-01

    The project described here seeks to answer questions regarding the role increased nitrogen (N) deposition is playing in enhanced carbon (C) sequestration in temperate mid-latitude forests, using detailed measurements from an AmeriFlux tower in southern Indiana (Morgan-Monroe State Forest, or MMSF). The measurements indicate an average atmosphere-surface N flux of approximately 6 mg-N m(-2) day(-1) during the 2000 growing season, with approximately 40% coming from dry deposition of ammonia (NH3), nitric acid (HNO3), and particle-bound N. Wet deposition and throughfall measurements indicate significant canopy uptake of N (particularly NH4+) at the site, leading to a net canopy exchange (NCE) of -6 kg-N ha(-1) for the growing season. These data are used in combination with data on the aboveground C:N ratio, litterfall flux, and soil net N mineralization rates to indicate the level of potential perturbation of C sequestration at this site.

  12. Boron stemflow chemistry in relation to species and season in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Frost, E. E.; Levia, D. F.

    2013-12-01

    Boron is an essential micronutrient that contributes to cell wall development and other critical plant functions. Boron deficiency is not uncommon in many forest types and plantations but may be difficult to differentiate from other impacts. The magnitude and timing of B transfer to the forest floor via stemflow is poorly understood and little is known about its variation as a function of species and season in temperate deciduous forests. We characterized this transfer in a mid-Atlantic broadleaved deciduous forest where we collected and analyzed stemflow from dominant canopy species of Fagus grandifolia (Ehrh.) [American beech] and Liriodendron tulipifera (L.) [yellow poplar]. Boron concentrations in stemflow were found to be greater from L. tulipifera compared with F. grandifolia over both seasons. Increased stemflow volume from F. grandifolia resulted in greater overall B contributions from these stems as well as greater enrichment ratios in both leaf and leafless conditions. When expressed on the basis of basal area, contributions of B to the forest floor were many times greater than gross precipitation and varied with season and meteorologic conditions.

  13. Quantification of Carbon Fluxes in Tropical Deciduous Forests Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Prasad, V. Krishna; Rajagopal, T.; Kant, Yogesh; Badarinath, K. V. S.

    Biomass burning in tropics is causing drastic changes in physical, chemical and biological properties of earth's atmosphere. Biomass burning associated with slash and burn agriculture is one of the major cause of Green House Gas emissions. In the present study, study area covering tropical deciduous forests having slash and burn agriculture practice, has been considered for studying carbon dynamics. Satellite data pertaining to IRS-1C LISS III satellite data has been used for stratification of vegetation into different communities. Second order texture measures Semivariograms, Angular Second Moment (ASM) and Inverse Difference Moment (IDM) and NDVI textural algorithm have been used to capture spatial information from forest stands. Biomass estimations have been done through regression equations by using girth measurements obtained through field studies. Satellite data has been used to quantify the amount of biomass burnt in respective vegetation types. Results of the study through textural measures suggest high heterogeneity in canopy diversity for mixed dry deciduous forests. ASM and IDM are found to be high for pure stands of dry deciduous forests. NDVI textural algorithm detected a low spatial variability with respect to mixed dry deciduous forests suggesting homogeneity in plant biomass spatial variability. The average mean carbon storage has been found to be 64.34 t ha-1 C for dry deciduous forests, 129.0 t ha-1 C for mixed dry deciduous forests and 0.02 t ha-1 C for mixed scrub forests. Potential Net primary productivity for the forests ranged from 26.07 to 11.73 t ha-1 yr-1, when compared to actual productivity of 0.1 t ha-1 yr-1 to 4.6 t ha-1 yr-1. Mean carbon storage for plantations, above ground, below ground and total carbon has been found to be 16.84, 3.36 and 20.2 t ha-1 C respectively. Dry matter burnt in gms (M) obtained from satellite derived areal estimates has been found to be 1.344 × 1012 gms. Area weighted carbon release for the total study

  14. Remote Sensing Based Biophysical Characterization of Tropical Deciduous Forest in Central India

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Goroshi, S.; Sharma, N. K.; Bairagi, G. D.; Sharma, R.; Jalil, P.; Jain, A.; Sonakia, A.; Parihar, J. S.

    2011-09-01

    The paper reports the measurements of biophysical parameters using field and satellite data over a tropical deciduous forest Kanha National Park (KNP), central India. Field measurement (GBH, LAI, litter, soil moisture) was carried out over ten quadrates of 0.1ha in KNP for characterization of biophysical parameters with specified measurement protocol and sampling. Satellite based remote sensing analysis (LAI, Phenology, and NPP) was carried out using multi date observations of IRS-LISS-III, IMS-1MX, SPOT-VEGETATION and EOS-MODIS instruments. Rank correlation analysis using field data collected in the selected quadrates at KNP showed Sal (Shorea robusta) is dominant forest species followed by Lendia, Jamun (Syzygium cumini), Saja, Harra and Dhawda etc. Field measurement of Sal showed GBH range from 20 cm to 170 cm. Different forest classes such as Sal; Sal mixed with Jamun, Bamboo (Dendrocalamus strictus) etc, including grasslands/scrubland were classified with overall accuracy of 85.56 percent using March, May and October multi spectral data. Sal has distinct growth characteristics (low vegetation growth/ leaf fall in March instead of May) as compared to other vegetation species. As per the Leaf Area Index (LAI) measurement using hemispherical photographs, Sal showed the highest LAI (6.95 m2/m2) during September and lowest LAI (2.63 m2/m2) during March. Overall good agreement (r= 0.79) was found between the LAI generated from LISS-III and MODIS data product. It was observed from SPOT-VEGETATION analysis that NPP varied from 8.4 tC/ha/year (dry deciduous forest) to 14.25 tC/ha/year (Moist deciduous forest) in KNP.

  15. Changes of ndvi across vertical canopy layers in temperate deciduous forest during a litterfall period

    NASA Astrophysics Data System (ADS)

    Kim, J. M.; Ryu, Y.

    2015-12-01

    Normalized Difference Vegetation Index (NDVI) is a key variable indicating changes in vegetation dynamics and carbon flux. Previous studies have paid little attention to the changes in NDVI during litterfall period. In this study, we report the changes of NDVI across vertical canopy layers in a temperate deciduous forest during a litterfall period. To monitor changes in canopy structure, functions, and spectral properties during the litterfall period, we combined automatic observations of NDVI derived from LED-spectral sensors and LAI derived from digital cover photography installed at multiple canopy layer depths. Furthermore, we collected hyperspectral optical properties of leaves across multiple canopy layers and hyperspectral reflectance of forest background using ASD-FieldSpec. We found that NDVI in forest floor became greater than the NDVI measured from the top of canopy during the litterfall period. We discuss what satellite-derived NDVI exactly sees during the litterfall period, which will be useful to better understand forest autumn phenology at large scales.

  16. The impact of NTFP sales on rural households' cash income in India's dry deciduous forest.

    PubMed

    Mahapatra, Ajay Kumar; Albers, Heidi J; Robinson, Elizabeth J Z

    2005-03-01

    In recent years, researchers and policy makers have recognized that nontimber forest products (NTFPs) extracted from forests by rural people can make a significant contribution to their well-being and to the local economy. This study presents and discusses data that describe the contribution of NTFPs to cash income in the dry deciduous forests of Orissa and Jharkhand, India. In its focus on cash income, this study sheds light on how the sale of NTFPs and products that use NTFPs as inputs contribute to the rural economy. From analysis of a unique data set that was collected over the course of a year, the study finds that the contribution of NTFPs to cash income varies across ecological settings, seasons, income level, and caste. Such variation should inform where and when to apply NTFP forest access and management policies.

  17. Nitrogen Deposition to and Cycling in a Deciduous Forest

    DOE PAGESBeta

    Pryor, Sara C.; Barthelmie, Rebecca J.; Carreiro, Margaret; Davis, Melissa L.; Hartley, Anne; Jensen, Bjame; Oliphant, Andrew; Randolph, Melissa J. C.; Schoof, Justin T.

    2001-01-01

    The project described here seeks to answer questions regarding the role increased nitrogen (N) deposition is playing in enhanced carbon (C) sequestration in temperate mid-latitude forests, using detailed measurements from an AmeriFlux tower in southern Indiana (Morgan-Monroe State Forest, or MMSF). The measurements indicate an average atmosphere-surface N flux of approximately 6 mg-N m -2 day -1 during the 2000 growing season, with approximately 40% coming from dry deposition of ammonia (NH 3 ), nitric acid (HNO 3 ), and particle-bound N. Wet deposition and throughfall measurements indicate significant canopy uptake of N (particularly NH 4 +) at themore » site, leading to a net canopy exchange (NCE) of –6 kg-N ha -1 for the growing season. These data are used in combination with data on the aboveground C:N ratio, litterfall flux, and soil net N mineralization rates to indicate the level of potential perturbation of C sequestration at this site.« less

  18. Overcoming the Challenges of Estimating Water Use in Temperate, Mixed Deciduous Forest of S. Korea

    NASA Astrophysics Data System (ADS)

    Jung, E.; Otieno Dennis, O.; Tenhunen, J. D.

    2009-12-01

    About 80% of forests in Korea occur in mountainous regions and are composed of a rich diversity of mixed deciduous tree species. Mountains in this region receive more rainfall and act as fountains that supply fresh water to the lowland and quantifying the hydrologic components of the forested mountain catchments is critical for sustainable water resource management. Forest trees play a significant role in ecosystem water budget and understanding of forest water use is crucial for water budgeting. High diversity in tree species, however, complicates the upscaling of forest water use by mixed forests, since trees are likely to function differently. A simplified approach is to identify common functionality gradients that define tree water use irrespective of phylogeny. A research initiative established under the International Training Group: Complex Terrain and Ecological Heterogeneity (TERRECO) sought to identify common structure and functionality among tree species that could allow for a convergent definition of water use in mixed deciduous forests in S. Korea. Using a wide range of thermal techniques to quantify water use in 7 different species located in 3 mountains with unidentical climates, we have related forest and tree structural properties to species water use. To understand spatial differences in tree water use, two species (Quercus dentata and Q. mongolica) were chosen as comparative species common to the three locations. Water use was significantly correlated with diameter at breast height (DBH) for all overstory species. The maximum transpiration was about 3 mm d-1 in all three different locations and daily transpiration was well described by microclimate and DBH irrespective of the location as long as soil moisture was not limiting. These initial findings are aiding our upscaling procedures.

  19. Monitoring Spring Recovery of Photosynthesis and Spectral Reflectance in Temperate Evergreen and Mixed Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Wong, C. Y.; Arain, M. A.; Ensminger, I.

    2015-12-01

    Evergreen conifers in boreal and temperate regions undergo strong seasonal changes in photoperiod and temperatures, which characterizes their photosynthetic activity with high activity in the growing season and downregulation during the winter season. Monitoring the timing of the transitions in evergreens is difficult since it's a largely invisible process, unlike deciduous trees that have a visible budding and senescence sequence. Spectral reflectance and the photochemical reflectance index (PRI), often used as a proxy for photosynthetic light-use efficiency, provides a promising tool to track the transition of evergreens between inactive and active photosynthetic states. To better understand the relationship between PRI and photosynthetic activity and to contrast this relationship between plant functional types, the spring recovery of an evergreen forest and mixed deciduous forest was monitored using spectral reflectance, chlorophyll fluorescence and gas exchange. All metrics indicate photosynthetic recovery during the spring season. These findings indicate that PRI can be used to observe the spring recovery of photosynthesis in evergreen conifers but may not be best suited for deciduous trees. These findings have implications for remote sensing, which provides a promising long-term monitoring system of whole ecosystems, which is important since their roles in the carbon cycle may shift in response to climate change.

  20. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests

    NASA Astrophysics Data System (ADS)

    Migliavacca, Mirco

    2014-05-01

    In this contribution we present a study on the role of physiological phenology (defined as seasonal changes in physiological properties) as an additional driver of the ecosystem respiration (RECO) in deciduous forests. With a model-data integration approach we analyzed the RECO data from 19 deciduous sites belonging to the FLUXNET La Thuile database. We analyzed the performance of two semi-empirical models, one with (TPdGPP) and the other without (TPLinGPP) the explicit dependency of RECO on the rate at which gross primary productivity (GPP) changes in spring, the latter used as proxy of physiological phenology. We identified a clear effect of physiological phenology on RECO that needs to be included as a driver of RECO in addition to the GPP, temperature and precipitation. The semi-empirical model developed led to a decrease in root mean square error (RMSE) of about 8% and an increase in the modeling efficiency (EF) of about 6% of modeled RECO. The reduction of the model-observation bias occurred mainly in spring and in summer, while less reduction was observed at the annual time-scale. For few sites the use of the explicit description of physiological phenology did not reduce the bias in modeled RECO consistently. This might be partly related to the spatial heterogeneity of the canopy at these sites. The results obtained point toward the need of improving the current approach used for modeling the RECO in deciduous forests by including the phenological cycle of the canopy.

  1. Mollusc grazing limits growth and early development of the old forest lichen Lobaria pulmonaria in broadleaved deciduous forests.

    PubMed

    Asplund, Johan; Gauslaa, Yngvar

    2008-02-01

    THIS STUDY AIMS: (1) to quantify mollusc grazing on juvenile and mature thalli of the foliose epiphytic lichen Lobaria pulmonaria, and (2) to test the hypothesis inferring a herbivore defensive role of lichen depsidones in forests with indigenous populations of lichen-feeding molluscs. Lichens were transplanted in shaded and less shaded positions in each of two calcareous broadleaved deciduous forests, one poor in lichens, one with a rich Lobarion community. Preventing the access of molluscs significantly reduced the loss of juvenile L. pulmonaria, particularly in the naturally lichen-poor forest. Molluscs also severely grazed mature thalli in the lichen-poor forest, especially thalli placed under the more shading canopies. Furthermore, reducing the natural concentration of depsidones by pre-rinsing with acetone increased subsequent grazing significantly, showing that lichen depsidones function as herbivore defence in natural habitats. Our results suggest that mollusc grazing may play important roles in shaping the epiphytic vegetation in calcareous deciduous forests, and that recently established juvenile L. pulmonaria thalli seem to be particularly vulnerable.

  2. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-01-01

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected. PMID:25943276

  3. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests

    NASA Astrophysics Data System (ADS)

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-01

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19th century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  4. Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.

    PubMed

    Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena

    2015-05-06

    Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.

  5. Vertical gradients of ozone and carbon dioxide within a deciduous forest in Central Pennsylvania.

    PubMed

    Skelly, J M; Fredericksen, T S; Savage, J E; Snyder, K R

    1996-01-01

    Ambient concentrations of ozone (O(3)) and carbon dioxide (CO(2)) were measured at locations from the forest floor to the top of the canopy in a deciduous forest at the Moshannon State Forest in northcentral Pennsylvania. O(3) concentrations were measured from May-September for three years (1993-1995) while CO(2) concentrations were measured only during July and August of 1994. O(3) concentrations increased steadily during the day at all locations, peaking during the middle to late afternoon hours. O(3) concentrations then steadily declined to their lowest point, just before dawn. Vertical O(3) concentration gradients varied seasonally and among years. However, O(3) concentrations were highest within the forest canopy and lowest at the forest floor, with an average difference of approximately 13%. Differences in O(3) concentrations between the canopy and forest floor were greatest at night. O(3) concentrations were slightly higher at locations within the canopy than above the canopy. CO(2) concentrations were consistenly higher near the forest floor and were higher above the canopy than within the canopy. CO(2) concentrations were higher at night than during the day at all locations, especially near the forest floor.

  6. Extended leaf phenology and the autumn niche in deciduous forest invasions.

    PubMed

    Fridley, Jason D

    2012-05-17

    The phenology of growth in temperate deciduous forests, including the timing of leaf emergence and senescence, has strong control over ecosystem properties such as productivity and nutrient cycling, and has an important role in the carbon economy of understory plants. Extended leaf phenology, whereby understory species assimilate carbon in early spring before canopy closure or in late autumn after canopy fall, has been identified as a key feature of many forest species invasions, but it remains unclear whether there are systematic differences in the growth phenology of native and invasive forest species or whether invaders are more responsive to warming trends that have lengthened the duration of spring or autumn growth. Here, in a 3-year monitoring study of 43 native and 30 non-native shrub and liana species common to deciduous forests in the eastern United States, I show that extended autumn leaf phenology is a common attribute of eastern US forest invasions, where non-native species are extending the autumn growing season by an average of 4 weeks compared with natives. In contrast, there was no consistent evidence that non-natives as a group show earlier spring growth phenology, and non-natives were not better able to track interannual variation in spring temperatures. Seasonal leaf production and photosynthetic data suggest that most non-native species capture a significant proportion of their annual carbon assimilate after canopy leaf fall, a behaviour that was virtually absent in natives and consistent across five phylogenetic groups. Pronounced differences in how native and non-native understory species use pre- and post-canopy environments suggest eastern US invaders are driving a seasonal redistribution of forest productivity that may rival climate change in its impact on forest processes. PMID:22535249

  7. Extended leaf phenology and the autumn niche in deciduous forest invasions.

    PubMed

    Fridley, Jason D

    2012-05-17

    The phenology of growth in temperate deciduous forests, including the timing of leaf emergence and senescence, has strong control over ecosystem properties such as productivity and nutrient cycling, and has an important role in the carbon economy of understory plants. Extended leaf phenology, whereby understory species assimilate carbon in early spring before canopy closure or in late autumn after canopy fall, has been identified as a key feature of many forest species invasions, but it remains unclear whether there are systematic differences in the growth phenology of native and invasive forest species or whether invaders are more responsive to warming trends that have lengthened the duration of spring or autumn growth. Here, in a 3-year monitoring study of 43 native and 30 non-native shrub and liana species common to deciduous forests in the eastern United States, I show that extended autumn leaf phenology is a common attribute of eastern US forest invasions, where non-native species are extending the autumn growing season by an average of 4 weeks compared with natives. In contrast, there was no consistent evidence that non-natives as a group show earlier spring growth phenology, and non-natives were not better able to track interannual variation in spring temperatures. Seasonal leaf production and photosynthetic data suggest that most non-native species capture a significant proportion of their annual carbon assimilate after canopy leaf fall, a behaviour that was virtually absent in natives and consistent across five phylogenetic groups. Pronounced differences in how native and non-native understory species use pre- and post-canopy environments suggest eastern US invaders are driving a seasonal redistribution of forest productivity that may rival climate change in its impact on forest processes.

  8. The effect of increased air humidity on northern deciduous forest ecosystem - a FAHM study.

    NASA Astrophysics Data System (ADS)

    Ostonen, Ivika; Rosenvald, Katrin; Tullus, Arvo; Parts, Kaarin; Sellin, Arne; Kupper, Priit; Sõber, Jaak; Sõber, Anu; Uri, Veiko; Aosaar, Jürgen; Varik, Mats; Lõhmus, Krista

    2013-04-01

    At northern latitudes a rise in atmospheric humidity and precipitation is predicted as a consequence of global climate change. In 2006 an unique experimental facility for free air humidity manipulation (FAHM) was established in Estonia to study the functioning of deciduous forest ecosystem under altered humidity conditions. The experimental site contains humidified and control plots, each includes four types of forest ecosystem: two overstorey species (planted hybrid aspen (Populus tremula L. × P. tremuloides Michx. and silver birch (Betula pendula Roth.)) both split into two types according to understorey vegetation (diverse "forest" understory and early successional grasses). We investigated the productivity, biomass allocation and functioning of silver birch forest ecosystem in response to elevated atmospheric humidity (on average 7% over the ambient level) during four growing seasons (2008-2011). We hypothesized that elevated air humidity facilitates both above- and below-ground growth and accumulation of plant biomass. During the first three experimental seasons height, stem diameter, and stem volume (D2H) increments of trees, biomass of understory in aboveground and fine root biomass in belowground were similar or significantly reduced in humidified plots. Only the fine root and rhizome biomass of the understory was twice higher in humidified plots. However, fine root turnover speeded up for both tree and understory roots. The trends in above-ground growth changed in 2011, when current annual increments of trees height, diameter, stem volume and fine root biomass were higher in humidified plots. Functionally, trees hydraulic conductance was significantly higher and stem sap flux lower for humidified trees coinciding with significantly higher biomass of primary (in majority ectomycorrhizal) roots, morphologically thinner and longer root tips and higher specific root length. Humidification caused a shift in the root tips colonizing fungal community towards the

  9. Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest.

    PubMed

    Heberling, J Mason; Fridley, Jason D

    2016-04-01

    Non-native, invasive plants are commonly typified by trait strategies associated with high resource demands and plant invasions are often thought to be dependent upon site resource availability or disturbance. However, the invasion of shade-tolerant woody species into deciduous forests of the Eastern United States seems to contradict such generalization, as growth in this ecosystem is strongly constrained by light and, secondarily, nutrient stress. In a factorial manipulation of light and soil nitrogen availability, we established an experimental resource gradient in a secondary deciduous forest to test whether three common, woody, invasive species displayed increased metabolic performance and biomass production compared to six co-occurring woody native species, and whether these predicted differences depend upon resource supply. Using hierarchical Bayesian models of photosynthesis that included leaf trait effects, we found that invasive species exhibited functional strategies associated with higher rates of carbon gain. Further, invader metabolic and growth-related attributes were more responsive to increasing light availability than those of natives, but did not fall below average native responses even in low light. Surprisingly, neither group showed direct trait or growth responses to soil N additions. However, invasive species showed increased photosynthetic nitrogen use efficiencies with decreasing N availability, while that of natives remained constant. Although invader advantage over natives was amplified in higher resource conditions in this forest, our results indicate that some invasive species can maintain physiological advantages over co-occurring natives regardless of resource conditions. PMID:27220204

  10. [Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broad-leaved forest].

    PubMed

    Hu, Zheng-hua; Li, Han-mao; Yang, Yan-ping; Chen, Shu-tao; Li, Cen-zi; Shen, Shuang-he

    2010-08-01

    To investigate the effects of elevated nitrogen deposition on forest soil respiration, a simulated nitrogen deposition field experiment was conducted in northern subtropical deciduous broad-leave forest from April 2008 to April 2009. Nitrogen treatments included the control (no N addition, CK), low-N [50 kg x (hm2 x a)(-1), T(L)], medium-N [100 kg x (hm2 x a)(-1), T(M)], and high-N [150 kg x (hm2 x a)(-1), T(H)]. The respiration rates were measured by a static chamber-gas chromatograph method. Results showed that nitrogen deposition did not change the seasonal and daily variation patterns of soil respiration. Compared to the control, T(L), T(M) and T(H) treatments reduced soil annual average respiration rates by 8.51%, 9.74% and 11.24%, respectively. Meanwhile, T(L), T(M) and T(H) treatments decreased daily average soil respiration rates by 4.42%, 11.09% and 12.17%, respectively. Significant relationship was found between soil respiration rate and soil temperature. The Q10 (temperature sensitivity coefficients) for soil respiration of CK, T(L), T(M), and T(H) treatments were 2.53, 3.22, 2.64 and 2.92, respectively. Our findings suggested that nitrogen deposition reduced soil respiration, and increased soil respiration temperature sensitivity in northern subtropical deciduous broad-leave forest.

  11. Invaders do not require high resource levels to maintain physiological advantages in a temperate deciduous forest.

    PubMed

    Heberling, J Mason; Fridley, Jason D

    2016-04-01

    Non-native, invasive plants are commonly typified by trait strategies associated with high resource demands and plant invasions are often thought to be dependent upon site resource availability or disturbance. However, the invasion of shade-tolerant woody species into deciduous forests of the Eastern United States seems to contradict such generalization, as growth in this ecosystem is strongly constrained by light and, secondarily, nutrient stress. In a factorial manipulation of light and soil nitrogen availability, we established an experimental resource gradient in a secondary deciduous forest to test whether three common, woody, invasive species displayed increased metabolic performance and biomass production compared to six co-occurring woody native species, and whether these predicted differences depend upon resource supply. Using hierarchical Bayesian models of photosynthesis that included leaf trait effects, we found that invasive species exhibited functional strategies associated with higher rates of carbon gain. Further, invader metabolic and growth-related attributes were more responsive to increasing light availability than those of natives, but did not fall below average native responses even in low light. Surprisingly, neither group showed direct trait or growth responses to soil N additions. However, invasive species showed increased photosynthetic nitrogen use efficiencies with decreasing N availability, while that of natives remained constant. Although invader advantage over natives was amplified in higher resource conditions in this forest, our results indicate that some invasive species can maintain physiological advantages over co-occurring natives regardless of resource conditions.

  12. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    PubMed

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy. PMID:24990223

  13. Early spring leaf out enhances growth and survival of saplings in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K

    2008-05-01

    Saplings of many canopy tree species in winter deciduous forests receive the major portion of their light budget for their growing season prior to canopy closure in the spring. This period of high light may be critical for achieving a positive carbon (C) gain, thus contributing strongly to their growth and survival. This study of saplings of Aesculus glabra and Acer saccharum in Trelease Woods, Illinois, USA, tested this hypothesis experimentally by placing tents of shade cloth over saplings during their spring period of high light prior to canopy closure in three consecutive years. Leaf senescence began 16 days (year 0) and 60 days (year 1) earlier for shaded A. glabra saplings than control saplings. No change in senescence occurred for A. saccharum. The annual absolute growth in stem diameter of both species was negligible or negative for shaded saplings, but positive for control saplings. Only 7% of the shaded A. glabra saplings were alive after 2 years, while all control saplings survived for 3 years; only 20% of the shaded A. saccharum saplings survived for 3 years, while 73% of control saplings were alive after the same period. Early spring leaf out is a critical mechanism that allows the long-term persistence of saplings of these species in this winter deciduous forest. Studies and models of C gain, growth, and survival of saplings in deciduous forests may need to take into account their spring phenology because saplings of many species are actually "sun" individuals in the spring prior to their longer period in the summer shade.

  14. Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants.

    PubMed

    Kudo, Gaku; Ida, Takashi Y; Tani, Tomokazu

    2008-02-01

    Light availability in the understory of deciduous forests changes drastically within the growing season due to the foliage dynamics of canopy trees. Because flowering phenology, photosynthetic characteristics, and fruiting success respond to such strong seasonality in light availability, we hypothesized that understory plants in such ecosystems should describe distinct phenological groups or syndromes where "syndrome" is defined only as a set of characteristics that co-occur. To identify these phenological syndromes, we studied the flowering phenology, fruit or seed set, and photosynthetic characteristics for 18 perennial understory herbaceous species that differed in reproductive strategy over eight years in a deciduous forest in northern Japan. Three phenological groups emerged from this study: (1) spring bloomers, flowering and fruiting before the completion of canopy closure; (2) early-summer bloomers, flowering during the progress of canopy closure and fruiting after canopy closure; and (3) late-summer bloomers, flowering and fruiting after canopy closure. The spring bloomers had high photosynthetic rates and high fruiting abilities, but the flowering time varied considerably among years due to yearly fluctuations of snowmelt date. Bumble bee-pollinated species of spring bloomers showed variable seed-set success, while fly-pollinated species showed relatively stable seed sets over the years. The early-summer bloomers showed low fruiting abilities irrespective of pollination success, reflecting severe resource limitation with decelerating light availability during fruit development. Although the late-summer bloomers showed low photosynthetic rates under low-light conditions, high fruit-set success was attained if pollination was sufficient. These results support our hypothesis that phenological syndromes may be found in deciduous forest understory plants. Given that reproductive success of bee-pollinated spring bloomers is highly susceptible to seasonal

  15. Influence of physiological phenology on the seasonal pattern of ecosystem respiration in deciduous forests.

    PubMed

    Migliavacca, Mirco; Reichstein, Markus; Richardson, Andrew D; Mahecha, Miguel D; Cremonese, Edoardo; Delpierre, Nicolas; Galvagno, Marta; Law, Beverly E; Wohlfahrt, Georg; Black, T Andrew; Carvalhais, Nuno; Ceccherini, Guido; Chen, Jiquan; Gobron, Nadine; Koffi, Ernest; Munger, J William; Perez-Priego, Oscar; Robustelli, Monica; Tomelleri, Enrico; Cescatti, Alessandro

    2015-01-01

    Understanding the environmental and biotic drivers of respiration at the ecosystem level is a prerequisite to further improve scenarios of the global carbon cycle. In this study we investigated the relevance of physiological phenology, defined as seasonal changes in plant physiological properties, for explaining the temporal dynamics of ecosystem respiration (RECO) in deciduous forests. Previous studies showed that empirical RECO models can be substantially improved by considering the biotic dependency of RECO on the short-term productivity (e.g., daily gross primary production, GPP) in addition to the well-known environmental controls of temperature and water availability. Here, we use a model-data integration approach to investigate the added value of physiological phenology, represented by the first temporal derivative of GPP, or alternatively of the fraction of absorbed photosynthetically active radiation, for modeling RECO at 19 deciduous broadleaved forests in the FLUXNET La Thuile database. The new data-oriented semiempirical model leads to an 8% decrease in root mean square error (RMSE) and a 6% increase in the modeling efficiency (EF) of modeled RECO when compared to a version of the model that does not consider the physiological phenology. The reduction of the model-observation bias occurred mainly at the monthly time scale, and in spring and summer, while a smaller reduction was observed at the annual time scale. The proposed approach did not improve the model performance at several sites, and we identified as potential causes the plant canopy heterogeneity and the use of air temperature as a driver of ecosystem respiration instead of soil temperature. However, in the majority of sites the model-error remained unchanged regardless of the driving temperature. Overall, our results point toward the potential for improving current approaches for modeling RECO in deciduous forests by including the phenological cycle of the canopy.

  16. [Modeling organic matter dynamics in conifer-broadleaf forests win different site types upon fires: a computational experiment].

    PubMed

    Komarov, A S; Kubasova, T S

    2007-01-01

    The effect of forest fires differing in intensity on organic matter dynamics in forest soils has been assessed in different types of forest sites using the EFIMOD 2 system of models. Differences between the patterns of organic matter dynamics according to scenarios of forest ecosystem development under normal conditions and upon forest fires have been analyzed. Recovery rates of soil organic matter pools after fires depend on their intensity and frequency. The most profound changes take place upon high-intensity crown fires, which may even result in ecosystem destruction. PMID:17966910

  17. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand.

    PubMed

    Ishida, Atsushi; Diloksumpun, Sapit; Ladpala, Phanumard; Staporn, Duriya; Panuthai, Samreong; Gamo, Minoru; Yazaki, Kenichi; Ishizuka, Moriyoshi; Puangchit, Ladawan

    2006-05-01

    We compared differences in leaf properties, leaf gas exchange and photochemical properties between drought-deciduous and evergreen trees in tropical dry forests, where soil nutrients differed but rainfall was similar. Three canopy trees (Shorea siamensis Miq., Xylia xylocarpa (Roxb.) W. Theob. and Vitex peduncularis Wall. ex Schauer) in a drought-deciduous forest and a canopy tree (Hopea ferrea Lanessan) in an evergreen forest were selected. Soil nutrient availability is lower in the evergreen forest than in the deciduous forest. Compared with the evergreen tree, the deciduous trees had shorter leaf life spans, lower leaf masses per area, higher leaf mass-based nitrogen (N) contents, higher leaf mass-based photosynthetic rates (mass-based P(n)), higher leaf N-based P(n), higher daily maximum stomatal conductance (g(s)) and wider conduits in wood xylem. Mass-based P(n) decreased from the wet to the dry season for all species. Following onset of the dry season, daily maximum g(s) and sensitivity of g(s) to leaf-to-air vapor pressure deficit remained relatively unchanged in the deciduous trees, whereas both properties decreased in the evergreen tree during the dry season. Photochemical capacity and non-photochemical quenching (NPQ) of photosystem II (PSII) also remained relatively unchanged in the deciduous trees even after the onset of the dry season. In contrast, photochemical capacity decreased and NPQ increased in the evergreen tree during the dry season, indicating that the leaves coped with prolonged drought by down-regulating PSII. Thus, the drought-avoidant deciduous species were characterized by high N allocation for leaf carbon assimilation, high water use and photoinhibition avoidance, whereas the drought-tolerant evergreen was characterized by low N allocation for leaf carbon assimilation, conservative water use and photoinhibition tolerance.

  18. Intercomparison of techniques to model water stress effects on CO2 and energy exchange in temperate and boreal deciduous forests

    SciTech Connect

    Grant, Robert F.; Zhang, Y.; Yuan, F.; Wang, S.; Hanson, Paul J; Gaumont-Guay, D.; Chen, j.; Black, T. A.; Barr, A.; Baldocchi, D. D.; Arain, A.

    2006-01-01

    Soil water deficits are a key controller of net ecosystem productivity (NEP) in deciduous broadleaf forests. Mathematical models of forest NEP need to represent the processes by which this control is exerted if they are to be used to predict the impacts of changing hydrology on forest C stocks. The key processes controlling NEP during soil water deficits are hydraulic limitations to water transfer in soil, roots, stems and leaves that impose constraints on gross primary productivity (GPP). We compare five ecosystem models with different techniques to simulate these processes for their ability to model reduced latent versus sensible heat fluxes, earlier diurnal declines in CO2 influxes and reduced soil CO2 effluxes during soil drying. Model accuracy was assessed using energy and CO2 fluxes measured by eddy covariance and surface chambers in a warm temperate and a cool boreal deciduous forest during a drying period. Diurnal declines in CO2 influxes during soil drying were consistently simulated by models in which soil drying lowered root and canopy water potentials ( c) and raised soil and root hydraulic resistances. Leaf stomatal conductance (gl), derived in these models from non-linear functions of c, then became more sensitive to diurnal changes in vapor pressure deficits (D). Diurnal declines in CO2 influxes could be simulated with comparable accuracy under most conditions by a model in which gl was empirically related to soil water potential and D, although these declines were sometimes not fully simulated. CO2 influxes declined too rapidly with diurnal rises in D in another model in which gl was calculated from CO2 fixation which was empirically related to soil water content. Divergences in modeled versus measured half-hourly or hourly CO2 exchange were also apparent in modeled versus measured annual GPP, net primary productivity (NPP) and NEP. The ability to distinguish among alternative algorithms for their accuracy in calculating CO2 and energy fluxes was

  19. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    PubMed

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  20. Measurement of soil moisture with cosmic-ray neutrons in deciduous forests

    NASA Astrophysics Data System (ADS)

    Heidbüchel, Ingo; Blume, Theresa; Güntner, Andreas

    2014-05-01

    In deciduous forests the calibration of cosmic-ray soil moisture sensors is difficult since the amount of water stored inside and on vegetation (leaves, branches, stems) varies seasonally. A one-time calibration conducted during summer can therefore introduce errors to the method that are especially pronounced in the winter season. We performed calibration in a deciduous forest at the TERENO observatory in north-eastern Germany at different times throughout the year to capture the changing influence of water in the vegetation on the calibration results. Additionally, we calibrated the cosmic-ray neutron sensor with soil samples from different soil depths (0-10 cm, 0-20 cm, 0-30 cm). We compared the resulting soil moisture time series with time series of FDR-based soil moisture point measurements at different depths. This allows us to estimate the error introduced by the influence of organic layers at the soil surface (litter, decomposed organic material) which can vary temporally. The same sensor setup was also used to look at time-lags between the cosmic-ray soil moisture signal and measurements of precipitation, intercepted water and soil moisture point measurements at different depths. Recorded time lags between point measurements and cosmic-ray soil moisture results can potentially help in tracking precipitation on its way through the canopy, the organic layer and into the soils.

  1. Foliage shedding in deciduous forests lifts up long-distance seed dispersal by wind.

    PubMed

    Nathan, Ran; Katul, Gabriel G

    2005-06-01

    Seed terminal velocity and release height are recognized as key biotic determinants of long-distance dispersal (LDD) of seeds by wind. Yet, potential determinants at the ecosystem level, such as seasonal dynamics in foliage density characterizing many deciduous forests, have received much less attention. We integrated detailed field observations and experiments with a mechanistic wind dispersal model to assess how seasonal variation in foliage density, estimated by leaf-area index (LAI), affects LDD in deciduous forests. We found that the model, previously shown to accurately predict seed dispersal by wind, also reliably describes the effects of LAI variation on wind statistics for a wide range of canopy types. Sparser canopies are characterized by more organized vertical eddy motion that promotes LDD by uplifting seeds to higher elevations where winds are stronger. Yet, sparser canopies are also characterized by reduced mean windspeed aloft. We showed that former effect more than compensates for the latter, i.e., conditions of low LAI are favorable for LDD. This may account for the tendency of many temperate tree species to restrict seed release to either early spring or late fall, when LAI is relatively low. Sensitivity analysis reveals that the typical seasonal variation in LAI can be more important to LDD of seeds by wind than the natural variation in seed terminal velocity. Because our model accurately describes the effects of LAI variation for distinctly different sites, species, and life forms, we suggest that its results reflect a general association between LDD and foliage density dynamics.

  2. Impacts of experimentally applied mountain biking and hiking on vegetation and soil of a deciduous forest.

    PubMed

    Thurston, E; Reader, R J

    2001-03-01

    Many recent trail degradation problems have been attributed to mountain biking because of its alleged capacity to do more damage than other activities, particularly hiking. This study compared the effects of experimentally applied mountain biking and hiking on the understory vegetation and soil of a deciduous forest. Five different intensities of biking and hiking (i.e., 0, 25, 75, 200 and 500 passes) were applied to 4-m-long x 1-m-wide lanes in Boyne Valley Provincial Park, Ontario, Canada. Measurements of plant stem density, species richness, and soil exposure were made before treatment, two weeks after treatment, and again one year after treatment. Biking and hiking generally had similar effects on vegetation and soil. Two weeks after treatment, stem density and species richness were reduced by up to 100% of pretreatment values. In addition, the amount of soil exposed increased by up to 54%. One year later, these treatment effects were no longer detectable. These results indicate that at a similar intensity of activity, the short-term impacts of mountain biking and hiking may not differ greatly in the undisturbed area of a deciduous forest habitat. The immediate impacts of both activities can be severe but rapid recovery should be expected when the activities are not allowed to continue. Implications of these results for trail recreation are discussed.

  3. Application of PTR-MS for measurements of biogenic VOC in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Spirig, C.; Neftel, A.; Steinbacher, M.; Komenda, M.; Schaub, A.

    2004-12-01

    The vegetation-atmosphere-exchange is an important process controlling the atmospheric concentration of various volatile organic compounds (VOCs) that play a major role in atmospheric chemistry. However, the quantification of VOC exchange on the ecosystem scale is still an analytical challenge. In the present study we tested and applied a proton-transfer-reaction mass spectrometry system (PTR-MS) for the measurement of biogenic VOCs in a mixed deciduous forest. VOC concentrations were calculated from the raw instrument signals based on physical principles. This method allows a consistent quantification also of compounds for which regular calibration with a gas standard is not available. It requires a regular and careful investigation of the mass-dependent ion detection characteristics of the PTR-MS, which otherwise could become a considerable error source. The PTR-MS method was tested in the laboratory for a range of oxygenated and non-oxygenated VOCs using a permeation source. The agreement was within 16% or better, which is well within the expected uncertainty. During the field measurement campaign in a deciduous forest stand, an on-line intercomparison with a state-of-the-art gas-chromatography system showed a generally good agreement. However, the relatively low ambient VOC concentrations revealed some systematic difference for acetone and isoprene, that may indicate an error in the determination of the PTR-MS offset or an interference of an unidentified isobaric compound on the detected ion mass. With the presentation of selected field results, we demonstrate the ability of the PTR-MS system to measure continuous vertical concentration profiles of biogenic VOCs throughout a forest canopy at a time resolution of 20 min. The resulting datasets provide valuable information for the study of the interactions between emission, photochemical transformation and transport processes within and above the forest canopy.

  4. Effects of Warming on Tree Species’ Recruitment in Deciduous Forests of the Eastern United States

    SciTech Connect

    Melillo, Jerry M.; Clark, James S.; Mohan, Jacqueline

    2015-03-25

    Climate change is restructuring forests of the United States, although the details of this restructuring are currently uncertain. Rising temperatures of 2 to 8oC and associated changes in soil moisture will shift the competitive balance between species that compete for light and water, and so change their abilities to produce seed, germinate, grow, and survive. We have used large-scale experiments to determine the effects of warming on the most sensitive stage of species distributions, i.e., recruitment, in mixed deciduous forests in southern New England and in the Piedmont region of North Carolina. Two questions organized our research: (1) Might temperate tree species near the “warm” end of their range in the eastern United States decline in abundance during the coming century due to projected warming? and (2) Might trees near the “cool” end of their range in the eastern United States increase in abundance, or extend their range, during the coming 100 years because of projected warming? To explore these questions, we exposed seedlings to air and soil warming experiments in two eastern deciduous forest sites; one at the Harvard Forest (HF) in central Massachusetts, and the other at the Duke Forest (DF) in the Piedmont region of North Carolina. We focused on tree species common to both Harvard and Duke Forests (such as red, black, and white oaks), those near northern range limits (black oak, flowing dogwood, tulip poplar), and those near southern range limits (yellow birch, sugar maple, Virginia pine). At each site, we planted seeds and seedlings in common gardens established in temperature-controlled, open-top chambers. The experimental design was replicated and fully factorial and involved three temperature regimes (ambient, +3oC and +5oC) and two light regimes (closed forest canopy (low light) and gap conditions (high light)). Measured variables included Winter/Spring responses to temperature and mid-Summer responses to low soil moisture. This research

  5. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China.

    PubMed

    Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2016-02-01

    Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P < 0.05). The negative effects were correlated with the decrease in soil microbial biomass and fine root biomass due to soil acidification under the SAR. The temperature coefficients (Q10) of RT and its two components generally decreased with increasing levels of the SAR, but only the decrease of RT and RL was significant (P < 0.05). In addition, the contribution of RL to RT decreased significantly under the SAR, indicating that RL was more sensitive to the SAR than RS. In the context of elevated acid rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer. PMID:26755128

  6. Effects of simulated acid rain on soil respiration and its components in a subtropical mixed conifer and broadleaf forest in southern China.

    PubMed

    Liang, Guohua; Hui, Dafeng; Wu, Xiaoying; Wu, Jianping; Liu, Juxiu; Zhou, Guoyi; Zhang, Deqiang

    2016-02-01

    Soil respiration is a major pathway in the global carbon cycle and its response to environmental changes is an increasing concern. Here we explored how total soil respiration (RT) and its components respond to elevated acid rain in a mixed conifer and broadleaf forest, one of the major forest types in southern China. RT was measured twice a month in the first year under four treatment levels of simulated acid rain (SAR: CK, the local lake water, pH 4.7; T1, water pH 4.0; T2, water pH 3.25; and T3, water pH 2.5), and in the second year, RT, litter-free soil respiration (RS), and litter respiration (RL) were measured simultaneously. The results indicated that the mean rate of RT was 2.84 ± 0.20 μmol CO2 m(-2) s(-1) in the CK plots, and RS and RL contributed 60.7% and 39.3% to RT, respectively. SAR marginally reduced (P = 0.08) RT in the first year, but significantly reduced RT and its two components in the second year (P < 0.05). The negative effects were correlated with the decrease in soil microbial biomass and fine root biomass due to soil acidification under the SAR. The temperature coefficients (Q10) of RT and its two components generally decreased with increasing levels of the SAR, but only the decrease of RT and RL was significant (P < 0.05). In addition, the contribution of RL to RT decreased significantly under the SAR, indicating that RL was more sensitive to the SAR than RS. In the context of elevated acid rain, the decline trend of RT in the forests in southern China appears to be attributable to the decline of soil respiration in the litter layer.

  7. Foliar d13C within a temperate deciduous forest: spatial, temporal, and species sources of variation

    SciTech Connect

    Garten Jr, Charles T; TaylorJr, G. E.

    1992-04-01

    Foliar {sup 13}C-abundance ({delta}{sup 13}C) was analyzed in the dominant trees of a temperate deciduous forest in east Tennessee (Walker Branch Watershed) to investigate the variation in foliar {delta}{sup 13}C as a function of time (within-year and between years), space (canopy height, watershed topography and habitat) and species (deciduous and coniferous taxa). Various hypotheses were tested by analyzing (i) samples collected from the field during the growing season and (ii) foliar tissues maintained in an archived collection. The {delta}{sup 13}C-value for leaves from the tops of trees was 2 to 3%. more positive than for leaves sampled at lower heights in the canopy. Quercus prinus leaves sampled just prior to autumn leaf fall had significantly more negative {delta}{sup 13}C-values than those sampled during midsummer. On the more xeric ridges, needles of Pinus spp. had more positive {delta}{sup 13}C-values than leaves from deciduous species. Foliar {delta}{sup 13}C-values differed significantly as a function of topography. Deciduous leaves from xeric sites (ridges and slopes) had more positive {delta}{sup 13}C-values than those from mesic (riparian and cove) environments. On the more xeric sites, foliar {delta}{sup 13}C was significantly more positive in 1988 (a dry year) relative to that in 1989 (a year with above-normal precipitation). In contrast, leaf {delta}{sup 13}C in trees from mesic valley bottoms did not differ significantly among years with disparate precipitation. Patterns in foliar {delta}{sup 13}C indicated a higher ratio of net CO{sub 2} assimilation to transpiration (A/E) for trees in more xeric versus mesic habitats, and for trees in xeric habitats during years of drought versus years of normal precipitation. However, A/E (units of mmol CO{sub 2} fixed/mol H{sub 2}O transpired) calculated on the basis of {delta}{sup 13}C-values for leaves from the more xeric sites was higher in a wet year (6.6 {+-} 1.2) versus a dry year (3.4 {+-} 0.4). This

  8. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest

    PubMed

    White; Running; Thornton

    1999-02-01

    Recent research suggests that increases in growing-season length (GSL) in mid-northern latitudes may be partially responsible for increased forest growth and carbon sequestration. We used the BIOME-BGC ecosystem model to investigate the impacts of including a dynamically regulated GSL on simulated carbon and water balance over a historical 88-year record (1900-1987) for 12 sites in the eastern USA deciduous broadleaf forest. For individual sites, the predicted GSL regularly varied by more than 15 days. When grouped into three climatic zones, GSL variability was still large and rapid. There is a recent trend in colder, northern sites toward a longer GSL, but not in moderate and warm climates. The results show that, for all sites, prediction of a long GSL versus using the mean GSL increased net ecosystem production (NEP), gross primary production (GPP), and evapotranspiration (ET); conversely a short GSL is predicted to decrease these parameters. On an absolute basis, differences in GPP between the dynamic and mean GSL simulations were larger than the differences in NEP. As a percentage difference, though, NEP was much more sensitive to changes in GSL than were either GPP or ET. On average, a 1-day change in GSL changed NEP by 1.6%, GPP by 0.5%, and ET by 0.2%. Predictions of NEP and GPP in cold climates were more sensitive to changes in GSL than were predictions in warm climates. ET was not similarly sensitive. First, our results strongly agree with field measurements showing a high correlation between NEP and dates of spring growth, and second they suggest that persistent increases in GSL may lead to long-term increases in carbon storage.

  9. Comparing Temporal Variations in LUE and GPP across Evergreen and Deciduous Forest Types

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hilker, T.; Ju, W.; Coops, N. C.; Black, T. A.; Chen, J.

    2015-12-01

    Estimating gross primary production (GPP) is an important goal of global change research. However, the relationship between GPP and its environmental drivers is highly complex and as a result, accurate modeling of GPP is difficult. One possible technique to help constrain the uncertainties is by using remote sensing data to try and determine the factors driving GPP directly from satellite imagery. In this study, we used GPP from flux data (GPP_EC) and meteorological observations of a deciduous (SOA) and a coniferous evergreen forest (DF-49) to optimize light use efficiency of sunlit (LUEsun) and shaded (LUEshaded) canopies. We based our analysis on the two-leave light use efficiency model (TL-LUE) at daily, 8 day, and 16 day scales by using the Markov chain Monte Carlo (MCMC). The photochemical reflectance index (PRI) of sunlit (PRIsun) and shaded (PRIshaded) leaves was calculated from spectral observations and related to tower based GPP at the three temporal scales. We found that the coefficient of determination (R2) between PRIsun and LUEsun, as well as PRIshaded and LUEshaded at the evergreen forest was lower than that at the deciduous forest. The modeled GPP was closely to the GPP_EC at the three temporal scales. The R2 between the GPP_EC and modeled daily GPP was the highest when using daily measures of LUE, and lowest when uisng16-day LUEsun and LUEshaded. The results indicated that LUE is an important parameter when modeling instantaneous GPP and the short term variations of it. The results help to obtain a better understanding of how many satellite observations are needed to reliably constrain existing GPP models from remote sensing data.

  10. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    SciTech Connect

    Zellmer, S.D. ); Rastorfer, J.R. . Dept. of Biological Sciences ANL Van Dyke, G.D. . Dept. of Biology)

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.

  11. Vertical Profiles of NOx, O3, and Volatile Organic Compounds in a Deciduous Forest Canopy

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Wallace, H. W.; Erickson, M. H.; Pressley, S. N.; Rausch, J. L.; O'Donnell, K.

    2010-12-01

    Vertical profiles of traces gases were made through a deciduous forest canopy as part of the Community Atmosphere-Biosphere Interactions Experiments (CABINEX) conducted in July-August, 2009 at the University of Michigan Biological Station. Measurements of O3, NO, NO2 and VOCs were made from three heights: 6 m, the top of the forest canopy at 20 m, and at a height of 34 m. O3 was continuously monitored from each of these heights. NOx and VOC measurements switched between these sampling heights every 10 minutes. VOCs were measured using a Proton Transfer Reaction Mass Spectrometer (PTR-MS). Measured VOCs include formaldehyde and methylhydroperoxide as well as isoprene and monoterpenes. NO and NO2 were continuously measured using a two channel chemiluminescent instrument. NOx mixing ratios were often significantly greater at the 6 m sampling height compared to the top of the canopy, suggesting NOx emissions from the forest floor. A difference of 50 pptv or greater was measured 44% of the time and frequently observed at night and during the morning. Approximately 40% of the time the differences were less than 10 pptv, implying a well mixed environment. The NOX and VOC profiles and their diel behavior will be presented to illustrate the importance of surface sources and sinks on trace gas mixing ratios within a forest canopy.

  12. Dalby Söderskog revisited: long-term vegetation changes in a south Swedish deciduous forest

    NASA Astrophysics Data System (ADS)

    von Oheimb, Goddert; Brunet, Jörg

    2007-03-01

    In this study, we report on 67 years of secondary succession in the temperate deciduous forest Dalby Söderskog, southern Sweden. In 2002 vegetation analyses were conducted in 74 systematically distributed plots and the results compared with similar investigations during the years 1935, 1969 and 1976. Additionally, a floristic survey of the forest was made and compared with inventories of the years 1925, 1935 and 1970. From 1970 to 2002, overall species richness of the forest continued to decline, but at a lower rate than before. In 2002, for the first time, shade-tolerant forest species constituted the largest group. In the upper tree layer Fraxinus excelsior became the most important species, at the expense of Quercus robur and Ulmus glabra. In the herb layer, no changes in total or mean species richness were exhibited at plot scale between 1976 and 2002. In contrast to the lack of quantitative changes in species richness, we observed major changes in species composition at the plot level. In particular, the former dominant species Mercurialis perennis had declined markedly. After release from a historical regime of livestock grazing and irregular cuttings, the predicted steady-state community dominated by Ulmus and Mercurialis only prevailed for a few decades before unexpected external events, in this particular case Dutch elm disease and invasion by the slug Arion lusitanicus, initiated a successional change. We conclude that unexpected diseases or pests or rare climatic extremes can play a decisive role in forest dynamics and strongly interact with more gradual autogenic changes of forest structure and composition.

  13. Relationships between large-scale circulation patterns and carbon dioxide exchange by a deciduous forest

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyong; Wu, Lingyun; Huang, Gang; Notaro, Michael

    2011-02-01

    In this study, we focus on a deciduous forest in central Massachusetts and investigate the relationships between global climate indices and CO2 exchange using eddy-covariance flux measurements from 1992 to 2007. Results suggest that large-scale circulation patterns influence the annual CO2 exchange in the forest through their effects on the local surface climate. Annual gross ecosystem exchange (GEE) in the forest is closely associated with spring El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), previous fall Atlantic Multidecadal Oscillation (AMO), and previous winter East Pacific-North Pacific (EP-NP) pattern. Annual net ecosystem exchange (NEE) responds to previous fall AMO and PDO, while annual respiration (R) is impacted by previous fall ENSO and Pacific/North American Oscillation (PNA). Regressions based on these relationships are developed to simulate the annual GEE, NEE, and R. To avoid problems of multicollinearity, we compute a "Composite Index for GEE (CIGEE)" based on a linear combination of spring ENSO and PDO, fall AMO, and winter EP-NP and a "Composite Index for R (CIR)" based on a linear combination of fall ENSO and PNA. CIGEE, CIR, and fall AMO and PDO can explain 41, 27, and 40% of the variance of the annual GEE, R, and NEE, respectively. We further apply the methodology to two other northern midlatitude forests and find that interannual variabilities in NEE of the two forests are largely controlled by large-scale circulation patterns. This study suggests that global climate indices provide the potential for predicting CO2 exchange variability in the northern midlatitude forests.

  14. Population maintenance of the short-lived shrub Sambucus in a deciduous forest.

    PubMed

    Abe, Shin; Motai, Hideyo; Tanaka, Hiroshi; Shibata, Mitsue; Kominami, Yohsuke; Nakashizuka, Tohru

    2008-04-01

    This study quantitatively clarifies the life history of a shrub, Sambucus racemosa ssp. sieboldiana, in an old-growth forest, the Ogawa Forest Reserve, Japan, by a demographic approach using a projection matrix model that incorporates interactions between demographic parameters and canopy height dynamics. S. racemosa is a common deciduous shrub in central Japan and is known to grow predominantly at forest edges or roadsides. This indicates that it is a highly light-demanding species, and occurrence in gaps in old-growth stands suggests its "fugitive," gap-dependent life history in old-growth forests. We found that one distinctive feature of this species was that its seedlings can survive well in shaded conditions by alternating stems every year like perennial herb species. Matrix model analyses demonstrated that S. racemosa can continuously regenerate under the present disturbance regime of this forest and is highly adaptable to the structural dynamics of the old-growth forest. The maturity of S. racemosa shrubs depends on their size, and nearly all (>90%) of the mature (reproducing) individuals were found in gaps or near gaps. But wide seed dispersal by birds and the ability to form both seed banks and seedling banks, the latter of which has been regarded as a common characteristic of shade-tolerant climax species, probably increase the species' chances to encounter canopy gaps. Dynamic-canopied matrix models showed that the greatest elasticity is with shaded seedling survival. The frequent stem alternation of shaded seedlings often makes the growth rate negative, but the survival rate of seedlings in low light awaiting new gap creation is remarkably high (0.93 yr(-1)). The lower survival rate of the larger individuals and smaller minimum size to start reproduction than other canopy or subcanopy shade-tolerant species indicate that S. racemosa has the potential to reproduce before the closure of the encountered gaps and to complete its life history rapidly.

  15. Winter photosynthesis by saplings of evergreen broad-leaved trees in a deciduous temperate forest.

    PubMed

    Miyazawa, Yoshiyuki; Kikuzawa, Kihachiro

    2005-03-01

    * Here we investigated photosynthetic traits of evergreen species under a deciduous canopy in a temperate forest and revealed the importance of CO2 assimilation during winter for annual CO2 assimilation. * Saplings were shaded by the canopy trees from spring through to autumn, but were less shaded during the winter months. Photosynthetic rates at light saturation (Aarea) were lower during winter than during the growing season. Aarea was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus during the winter, but differed little during summer and autumn. * Estimated daily CO2 assimilation (Aday) was higher during the winter than during the growing season in Camellia, Ilex and Photinia but was higher than that during the growing season only at the beginning and end of winter in Castanopsis, Cleyera and Quercus. Aday was higher in Camellia, Ilex and Photinia than in Castanopsis, Cleyera and Quercus but differed little among them during the growing season. * These results reveal the importance of winter CO2 assimilation for the growth of Camellia, Ilex and Photinia. Furthermore, differences in annual CO2 assimilation among species are strongly modified by species-specific photosynthetic traits during the winter under deciduous canopy trees.

  16. [Light environment characteristics of forest gap in deciduous broad-leaved forest and its effects on growth features of Gynostemma pentaphyllum in Jianghuai watershed].

    PubMed

    Wei, Chaoling; Sun, Qixiang; Peng, Zhenhua; Yan, Dawei

    2003-05-01

    The daily total light intensity, various wave band light intensities, spectrum composition, and the growth characteristics and total saponia content of Gynostemma pentaphyllum in forest gap and under forest were studied in deciduous forest (Liquidambar formosana) in Jianghuai watershed. The results showed that the intensities of full wavelength daily total light, blue light(400-510 nm), yellow-green light(510-610 nm), red-orange light (610-720 nm) and near-infrared light(720-1100 nm) in forest gap were higher than those under forest. The intensities and spectra compositions of blue light and red-orange light in forest gaps were significantly higher than those under forest. Additionally, the differences between those in forest gap and under forest varied seasonally. The relative intensity of blue light in April, July and October in forest gap was 8.32%-28.83%, 30.00%-579.17% and 6.70%-88.74% more than those under forest, respectively, and that of red-orange light in April, July and October in forest gap was 8.72%-28.83%, 30.19%-502.69%, 6.76%-91.57% more than those under forest, respectively. The spectrum composition of blue light in forest gap in these 3 months was 5.76%, 33.14% and 17.29% higher than those under forest, respectively, and that of red-orange light in forest gap in these 3 months was 5.04%, 53.34% and 10.23% higher than those under forest, respectively. The net photosynthetic rate, total dry-matter weight, and total saponia content of Gynostemma pentaphyllum growing in forest gap were higher than those under forest. Gynostemma pentaphyllum growing in forest gap had more dry-matter distributed in stem. The results could be available to utilize the light environment of deciduous broad-leaved forest and further building comprehensive management model of Gynostemma pentaphyllum in Jianghuai watershed zone.

  17. Quantification of soil respiration in forest ecosystems across China

    NASA Astrophysics Data System (ADS)

    Song, Xinzhang; Peng, Changhui; Zhao, Zhengyong; Zhang, Zhiting; Guo, Baohua; Wang, Weifeng; Jiang, Hong; Zhu, Qiuan

    2014-09-01

    We collected 139 estimates of the annual forest soil CO2 flux and 173 estimates of the Q10 value (the temperature sensitivity) assembled from 90 published studies across Chinese forest ecosystems. We analyzed the annual soil respiration (Rs) rates and the temperature sensitivities of seven forest ecosystems, including evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), broadleaf and needleleaf mixed forests (BNMF), evergreen needleleaf forests (ENF), deciduous needleleaf forests (DNF), bamboo forests (BF) and shrubs (SF). The results showed that the mean annual Rs rate was 33.65 t CO2 ha-1 year-1 across Chinese forest ecosystems. Rs rates were significantly different (P < 0.001) among the seven forest types, and were significantly and positively influenced by mean annual temperature (MAT), mean annual precipitation (MAP), and actual evapotranspiration (AET); but negatively affected by latitude and elevation. The mean Q10 value of 1.28 was lower than the world average (1.4-2.0). The Q10 values derived from the soil temperature at a depth of 5 cm varied among forest ecosystems by an average of 2.46 and significantly decreased with the MAT but increased with elevation and latitude. Moreover, our results suggested that an artificial neural network (ANN) model can effectively predict Rs across Chinese forest ecosystems. This study contributes to better understanding of Rs across Chinese forest ecosystems and their possible responses to global warming.

  18. Modelled and field measurements of biogenic hydrocarbon emissions from a Canadian deciduous forest

    NASA Astrophysics Data System (ADS)

    Fuentes, J. D.; Wang, D.; Den Hartog, G.; Neumann, H. H.; Dann, T. F.; Puckett, K. J.

    The Biogenic Emission Inventory System (BEIS) used by the United States Environmental Protection Agency (Lamb et al., 1993, Atmospheric Environment21, 1695-1705; Pierce and Waldruff, 1991, J. Air Waste Man. Ass.41, 937-941) was tested for its ability to provide realistic microclimate descriptions within a deciduous forest in Canada. The microclimate description within plant canopies is required because isoprene emission rates from plants are strongly influenced by foliage temperature and photosynthetically active radiation impinging on leaves while monoterpene emissions depend primarily on leaf temperature. Model microclimate results combined with plant emission rates and local biomass distribution were used to derive isoprene and α-pinene emissions from the deciduous forest canopy. In addition, modelled isoprene emission estimates were compared to measured emission rates at the leaf level. The current model formulation provides realistic microclimatic conditions for the forest crown where modelled and measured air and foliage temperature are within 3°C. However, the model provides inadequate microclimate characterizations in the lower canopy where estimated and measured foliage temperatures differ by as much as 10°C. This poor agreement may be partly due to improper model characterization of relative humidity and ambient temperature within the canopy. These uncertainties in estimated foliage temperature can lead to underestimates of hydrocarbon emission estimates of two-fold. Moreover, the model overestimates hydrocarbon emissions during the early part of the growing season and underestimates emissions during the middle and latter part of the growing season. These emission uncertainties arise because of the assumed constant biomass distribution of the forest and constant hydrocarbon emission rates throughout the season. The BEIS model, which is presently used in Canada to estimate inventories of hydrocarbon emissions from vegetation, underestimates emission

  19. Seasonal effects on the estimation of height of boreal and deciduous forests from interferometric TanDEM-X coherence data

    NASA Astrophysics Data System (ADS)

    Olesk, Aire; Voormansik, Kaupo; Tamm, Tanel; Noorma, Mart; Praks, Jaan

    2015-10-01

    The aim of this study is to assess the performance of single-pass X-band bistatic SAR interferometric forest height estimation of boreal and temperate deciduous forests under variable seasonal conditions. For this, twelve acquisitions of single- and dual-polarized TanDEM-X coherence images over 118 forest stands were analyzed and compared against LiDAR forest height maps. Strong correlations were found between interferometric coherence magnitude and LiDAR derived forest stand height for pine forests (r2=0.94) and spruce forest (r2=0.87) as well as for deciduous trees (r2=0.94) during leaf-off conditions with temperatures below 0°C. It was found that coherence magnitude based forest height estimation is influenced by leaf-on and leaf-off conditions as well as daily temperature fluctuations, height of ambiguity and effective baseline. These factors alter the correlation and should be taken into account for accurate coherence-based height retrieval. Despite the influence of the mentioned factors, generally a strong relationship in regression analysis between X-band SAR coherence and LiDAR derived forest stand height can be found. Moreover, a simple semi empirical model, derived from Random Volume over Ground model, is presented. The model takes into account all imaging geometry dependent parameters and allows to derive tree height estimate without a priori knowledge. Our results show that X-band SAR interferometry can be used to estimate forest canopy height for boreal and deciduous forests in both summer and winter, but the conditions should be stable.

  20. Nighttime Chemistry and Morning Isoprene Drive Urban Ozone Downwind of a Major Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Millet, D. B.; Baasandorj, M.; Hu, L.; Mitroo, D.; Turner, J. R.; Williams, B. J.

    2015-12-01

    Isoprene is the predominant volatile organic compound emitted by vegetation. Isoprene emissions occur during daytime, when photo-oxidation is rapid and in the presence of nitrogen oxides (NOx) produces ozone and degrades air quality in polluted regions. Here we show in a city downwind of a deciduous forest that isoprene actually peaks at night, with nocturnal chemistry controlling the fate of that isoprene and the likelihood of a high-ozone episode the following day. When nitrate (NO3­) radicals are suppressed, high isoprene persists through the night, providing photochemical fuel upon daybreak and a dramatic morning ozone peak. On nights with significant NO3, isoprene is removed before dawn; days with low morning isoprene then have lower ozone with a typical afternoon peak. This biogenic-anthropogenic coupling expands the daily high-ozone window and likely has opposite ozone-NOx response to what would otherwise be expected, with implications for exposure and air quality management in such areas.

  1. Phenology of two Ficus species in seasonal semi-deciduous forest in Southern Brazil.

    PubMed

    Bianchini, E; Emmerick, J M; Messetti, A V L; Pimenta, J A

    2015-11-01

    We analyzed the phenology of Ficus adhatodifolia Schott ex Spreng. (23 fig tree) and F. eximia Schott (12 fig tree) for 74 months in a remnant of seasonal semi-deciduous forest (23° 27'S and 51° 15'W), Southern Brazil and discussed their importance to frugivorous. Leaf drop, leaf flush, syconia production and dispersal were recorded. These phenophases occurred year-round, but seasonal peaks were recorded in both leaf phenophases for F. eximia and leaf flushing for F. adhatodifolia. Climatic variables analyzed were positively correlated with reproductive phenophases of F. adhatodifolia and negatively correlated with the vegetative phenophases of F. eximia. In despite of environmental seasonality, little seasonality in the phenology of two species was observed, especially in the reproductive phenology. Both species were important to frugivorous, but F. adhatodifolia can play a relevant role in the remnant. PMID:26602353

  2. Phenology of two Ficus species in seasonal semi-deciduous forest in Southern Brazil.

    PubMed

    Bianchini, E; Emmerick, J M; Messetti, A V L; Pimenta, J A

    2015-11-01

    We analyzed the phenology of Ficus adhatodifolia Schott ex Spreng. (23 fig tree) and F. eximia Schott (12 fig tree) for 74 months in a remnant of seasonal semi-deciduous forest (23° 27'S and 51° 15'W), Southern Brazil and discussed their importance to frugivorous. Leaf drop, leaf flush, syconia production and dispersal were recorded. These phenophases occurred year-round, but seasonal peaks were recorded in both leaf phenophases for F. eximia and leaf flushing for F. adhatodifolia. Climatic variables analyzed were positively correlated with reproductive phenophases of F. adhatodifolia and negatively correlated with the vegetative phenophases of F. eximia. In despite of environmental seasonality, little seasonality in the phenology of two species was observed, especially in the reproductive phenology. Both species were important to frugivorous, but F. adhatodifolia can play a relevant role in the remnant.

  3. Parametric analysis of synthetic aperture radar data for characterization of deciduous forest stands

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Tseng

    1987-01-01

    The SAR sensor parameters that affect the estimation of deciduous forest stand characteristics were examined using data sets for the Gulf Coastal Plain region, acquired by the NASA/JPL multipolarization airborne SAR. In the regression analysis, the mean digital-number values of the three polarization data are used as the independent variables to estimate the average tree height (HT), basal area (BA), and total-tree biomass (TBM). The following results were obtained: (1) in the case of simple regression and using 28 plots, vertical-vertical (VV) polarization yielded the largest correlation coefficients (r) in estimating HT, BA, and TBM; (2) in the case of multiple regression, the horizontal-horizontal (HH) and VV polarization combination yielded the largest r value in estimating HT, while the VH and HH polarization combination yielded the largest r values in estimating BA and TBM. With the addition of a third polarization, the increase in r values is insignificant.

  4. Plant functional traits with particular reference to tropical deciduous forests: a review.

    PubMed

    Chaturvedi, R K; Raghubanshi, A S; Singh, J S

    2011-12-01

    Functional traits (FTs) integrate the ecological and evolutionary history of a species, and can potentially be used to predict its response as well as its influence on ecosystem functioning. Study of inter-specific variation in the FTs of plants aids in classifying species into plant functional types (PFTs) and provides insights into fundamental patterns and trade-offs in plant form and functioning and the effect of changing species composition on ecosystem functions. Specifically, this paper focuses on those FTs that make a species successful in the dry tropical environment. Following a brief overview, we discuss plant FTs that may be particularly relevant to tropical deciduous forests (TDFs). We consider the traits under the following categories: leaf traits, stem and root traits, reproductive traits, and traits particularly relevant to water availability. We compile quantitative information on functional traits of dry tropical forest species. We also discuss trait-based grouping of plants into PFTs. We recognize that there is incomplete knowledge about many FTs and their effects on TDFs and point out the need for further research on PFTs of TDF species, which can enable prediction of the dynamics of these forests in the face of disturbance and global climate change. Correlations between structural and ecophysiological traits and ecosystem functioning should also be established which could make it possible to generate predictions of changes in ecosystem services from changes in functional composition. PMID:22116295

  5. Plant functional traits with particular reference to tropical deciduous forests: a review.

    PubMed

    Chaturvedi, R K; Raghubanshi, A S; Singh, J S

    2011-12-01

    Functional traits (FTs) integrate the ecological and evolutionary history of a species, and can potentially be used to predict its response as well as its influence on ecosystem functioning. Study of inter-specific variation in the FTs of plants aids in classifying species into plant functional types (PFTs) and provides insights into fundamental patterns and trade-offs in plant form and functioning and the effect of changing species composition on ecosystem functions. Specifically, this paper focuses on those FTs that make a species successful in the dry tropical environment. Following a brief overview, we discuss plant FTs that may be particularly relevant to tropical deciduous forests (TDFs). We consider the traits under the following categories: leaf traits, stem and root traits, reproductive traits, and traits particularly relevant to water availability. We compile quantitative information on functional traits of dry tropical forest species. We also discuss trait-based grouping of plants into PFTs. We recognize that there is incomplete knowledge about many FTs and their effects on TDFs and point out the need for further research on PFTs of TDF species, which can enable prediction of the dynamics of these forests in the face of disturbance and global climate change. Correlations between structural and ecophysiological traits and ecosystem functioning should also be established which could make it possible to generate predictions of changes in ecosystem services from changes in functional composition.

  6. Directional effects on scene complexity in oblique thermal imagery and photographs of a deciduous forest.

    PubMed

    Balick, L K; Doak, E L

    1988-10-01

    This paper presents an examination of thermal IR images and photographs of a mixed-specie deciduous forest in eastern Tennessee. Changes of scene complexity with changes of depression angle and azimuth relative to the sun are examined. Ground-based temperature measurements and canopy structure information are used to support the interpretation of view and solar geometry effects on thermal imagery. The green band of digitized oblique photographs from three azimuths are compared to thermal IR images obtained at similar view directions. Thermal IR scenes of the forest are most complex at small phase angles (angle between vectors to the sensor and to the sun) where photographic images were least complex. At these angles, sunlit subcanopy (nonfoliage) components are visible and much warmer than the leaves. At other directions, visible subcanopy materials are more shaded, and their temperatures are similar to leaf temperature. As view azimuth becomes more aligned with the sun, the transition to the more complex and warmer images is rapid. For visible light in this forest, scene complexity is primarily the result of crown illumination and shadowing. Viewing of shadows is minimized at small phase angles so the uniformly illuminated canopy appears simple.

  7. Unmanned Aerial Survey of Fallen Trees in a Deciduous Broadleaved Forest in Eastern Japan

    PubMed Central

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5–1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost. PMID:25279817

  8. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan.

    PubMed

    Inoue, Tomoharu; Nagai, Shin; Yamashita, Satoshi; Fadaei, Hadi; Ishii, Reiichiro; Okabe, Kimiko; Taki, Hisatomo; Honda, Yoshiaki; Kajiwara, Koji; Suzuki, Rikie

    2014-01-01

    Since fallen trees are a key factor in biodiversity and biogeochemical cycling, information about their spatial distribution is of use in determining species distribution and nutrient and carbon cycling in forest ecosystems. Ground-based surveys are both time consuming and labour intensive. Remote-sensing technology can reduce these costs. Here, we used high-spatial-resolution aerial photographs (0.5-1.0 cm per pixel) taken from an unmanned aerial vehicle (UAV) to survey fallen trees in a deciduous broadleaved forest in eastern Japan. In nine sub-plots we found a total of 44 fallen trees by ground survey. From the aerial photographs, we identified 80% to 90% of fallen trees that were >30 cm in diameter or >10 m in length, but missed many that were narrower or shorter. This failure may be due to the similarity of fallen trees to trunks and branches of standing trees or masking by standing trees. Views of the same point from different angles may improve the detection rate because they would provide more opportunity to detect fallen trees hidden by standing trees. Our results suggest that UAV surveys will make it possible to monitor the spatial and temporal variations in forest structure and function at lower cost.

  9. Inter- and intra-specific variation in stemflow for evergreen species and deciduous tree species in a subtropical forest

    NASA Astrophysics Data System (ADS)

    Su, Lei; Xu, Wenting; Zhao, Changming; Xie, Zongqiang; Ju, Hua

    2016-06-01

    Quantification of stemflow is necessary for the assessment of forest ecosystem hydrological effects. Nevertheless, variation of stemflow among plant functional groups is currently not well understood. Stemflow production of co-occurring evergreen broadleaved trees (Cyclobalanopsis multinervis and Cyclobalanopsis oxyodon) and deciduous broadleaved trees (Fagus engleriana and Quercus serrata var. brevipetiolata) was quantified through field observations in a mixed evergreen and deciduous broadleaved forest. The research results revealed that stemflow increased linearly with increasing rainfall magnitude, with precipitation depths of 6.9, 7.2, 10.0 and 14.8 mm required for the initiation of stemflow for C. multinervis, C. oxyodon, F. engleriana and Q. serrata, respectively. Stemflow percentage and funneling ratio (FR) increased with increasing rainfall in a logarithmic fashion. Stemflow percentage and FR tended to grow rapidly with increasing rainfall magnitude up to a rainfall threshold of 50 mm, above which, further rainfall increases brought about only small increases. For C. multinervis, C. oxyodon, F. engleriana and Q. serrata, FR averaged 19.8, 14.8, 8.9 and 2.8, respectively. The stemflow generating rainfall thresholds for evergreen species were smaller than for deciduous species. Furthermore, stemflow percentage and FR of the former was greater than the latter. For both evergreen species and deciduous species, overall funneling ratio (FRs) decreased with increasing basal area. We concluded that: (1) although stemflow partitioning represented a fairly low percentage of gross rainfall in mixed evergreen and deciduous broadleaved forests, it was capable of providing substantial amount of rainwater to tree boles; (2) the evergreen species were more likely to generate stemflow than deciduous species, and directed more intercepted rainwater to the root zone; (3) small trees were more productive in funneling stemflow than larger trees, which may provide a favorable

  10. Greenhouse Gas Fluxes from Deciduous and Boreal Forest Soils in Eastern Canada

    NASA Astrophysics Data System (ADS)

    Ullah, S.; Moore, T.

    2012-04-01

    The exchange of the important trace gases, methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2), between forested soils and the atmosphere can show great temporal and spatial variability. We investigated the fluxes of CH4, N2O, and CO2 from deciduous and boreal forest soils in eastern Canada from 2006 to 2008 in 20 sites representative of different soil drainage classes, management schemes and natural disturbance. Well-drained soils consumed atmospheric CH4, while poorly-drained 'cryptic' wetland soils embedded in depressions were a source. CH4 fluxes could be predicted primarily by temperature and moisture, and tree cover exerted an influence mainly through the creation of large soil porosity, leading to increased consumption rates. In contrast, there were very poor relationships between N2O fluxes and environmental variables, reflecting the complex microbial, edpahic and N cycling processes, such as nitrification in well-drained soils and denitrification in poorly-drained soils, which lead to N2O production (or consumption) in soils. At the broad temporal and spatial scale, however, soil C:N ratio was a good predictor of N2O emission rates, through its influence upon N cycling processes. Soil CO2 emission rates showed less spatial and temporal variability, and were controlled by temperature and moisture. Poorly-drained soils in these forests play a critical role in the net global warming potential of forested landscapes. Therefore, soil drainage class integrates many of the biogeochemical processes controlling the flux of these gases and provides a framework for extrapolating results spatially and currently we are developing an estimate of the flux of these gases for the forest regions of Canada.

  11. Spectral anisotropy of subtropical deciduous forest using MISR and MODIS data acquired under large seasonal variation in solar zenith angle

    NASA Astrophysics Data System (ADS)

    Breunig, Fábio Marcelo; Galvão, Lênio Soares; dos Santos, João Roberto; Gitelson, Anatoly A.; de Moura, Yhasmin Mendes; Teles, Thiago Sousa; Gaida, William

    2015-03-01

    Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than

  12. Estimation of leaf area index and foliage clumping in deciduous forests using digital photography

    NASA Astrophysics Data System (ADS)

    Chianucci, Francesco; Cutini, Andrea

    2013-04-01

    Rapid, reliable and meaningful estimates of leaf area index (LAI) are essential to the characterization of forest ecosystems. In this contribution the accuracy of both fisheye and non-fisheye digital photography for the estimation of forest leaf area in deciduous stands was evaluated. We compared digital hemispherical photography (DHP), the most widely used technique that measures the gap fraction at multiple zenith angles, with methods that measure the gap fraction at a single zenith angle, namely 57.5 degree photography and cover photography (DCP). Comparison with other different gap fraction methods used to calculate LAI such as canopy transmittance measurements from AccuPAR ceptometer and LAI- 2000 Plant Canopy Analyzer (PCA) were also performed. LAI estimated from all these indirect methods were compared with direct measurements obtained by litter traps (LAILT). We applied these methods in 10 deciduous stands of Quercus cerris, Castanea sativa and Fagus sylvatica, the most common deciduous species in Italy, where LAILT ranged from 3.9 to 7.3. DHP and DCP provided good indirect estimates of LAILT, and outperformed the other indirect methods. The DCP method provided estimates of crown porosity, crown cover, foliage cover and the clumping index at the zenith, but required assumptions about the light extinction coefficient at the zenith (k), to accurately estimate LAI. Cover photography provided good indirect estimates of LAI assuming a spherical leaf angle distribution, even though k appeared to decrease as LAI increased, thus affecting the accuracy of LAI estimates in DCP. In contrast, the accuracy of LAI estimates in DHP appeared insensitive to LAILT values, but the method was sensitive to photographic exposure, gamma-correction and was more time-consuming than DCP. Foliage clumping was estimated from all the photographic methods by analyzing either gap size distribution (DCP) or gap fraction distribution (DHP). Foliage clumping was also calculated from PCA and

  13. [Effects of exotic Larix kaempferi on forest soil quality and bacterial diversity].

    PubMed

    Yang, Xin; Cao, Jing; Dong, Mao-Xing; Ma, Xiao-Jun

    2008-10-01

    The study on the soil quality and bacterial diversity under 8-30 years old exotic Larix kaempferi, native Pinus tabulaeformis, and secondary deciduous broadleaf forest stands in Xiaolong-shan Mountains of Gansu, Northwest China showed that the soil pH under different forest stands had no distinct variation, but soil moisture content was increased with increasing age of forest stands. Soil organic matter and nitrogen contents were the highest under secondary deciduous forest, followed by under L. kaermpferi, and P. tabulaeformis. However, the soils under different ages of forest stands had no obvious variations in their organic matter and nitrogen contents, suggesting that tree species was the main factor affecting soil quality. Compared with P. tabulaeformis, exotic L. kaempferi could significantly increase soil organic matter and nitrogen contents. PCR-DGGE banding patterns suggested that the soil under secondary deciduous broadleaf forest had the highest bacterial diversity, followed by under L. kaempferi, and P. tabulaeformis. The sequenced DGGE bands were classified into three bacterial groups, i. e., Proteobacteria, Cytophaga - Flavobacterium - Bacteroides, and high G + C content gram-positive type, among which, Proteobacteria occurred most frequently. Further detailed analyses suggested that the soil bacterial compositions under exotic Larix stands were more similar to each other than those under pine and secondary deciduous broadleaf forests. It was concluded that exotic L. kaempferi induced the changes of microbial diversity in the forest soils of this region.

  14. [Dynamics of soil inorganic nitrogen in middle mountain moist evergreen broadleaf forest under different disturbance intensities in Ailao Mountain].

    PubMed

    Li, Guicai; Han, Xingguo; Huang, Jianhui; Wamg, Changyao

    2003-08-01

    The effects of three different intensities of disturbance on soil NH4(+)-N and NO3(-).N contents were studied in three community types (primary Lithocarpus xylocarpus forest, secondary oak forest, and tea plantation, which represent three different intensities of disturbance). The results showed that the contents of inorganic nitrogen in soil (0-15 cm) of three community types had marked differences. Soil organic matter and total nitrogen decreased, while C/N ratio increased, with the increasing intensity of the disturbance. Simultaneously, the potential lose of NO3(-)-N increased. It suggested that the disturbance was not in favor of the retainment of soil fertility and the positive development of community succession. The soil organic matter, total nitrogen and C/N ratio were basically same at different spatial sites in same community, while the NO3(-)-N contents were obvious difference. This implied that soil NO3(-)-N content was less stable than NH4(+)-N. In addition, NH4(+)-N was the major component of the soil inorganic nitrogen, accounted for 95.5%-99.3% of the total content of soil inorganic nitrogen.

  15. [Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan, Guangdong Province of South China].

    PubMed

    Huang, De-Wei; Zhang, De-Qiang; Zhou, Guo-Yi; Liu, Shi-Zhong; Otieno, Dennis; Li, Yue-Lin

    2012-05-01

    By the method of Granier' s thermal dissipation probe, the stem sap flow density of four dominant tree species (Pinus massoniana, Castanopsis chinensis, Schima superba, and Machilus kwangtungensis) in a mixed conifer-broadleaf forest in Dinghushan Reserve of South China was continuously measured in the dry season (November) and wet season (July) in 2010, and the environmental factors including air temperature, relative humidity, and photosynthetically active radiation (PAR) were measured synchronically, aimed to study the characteristics of the stem sap flow of the tree species in response to environmental factors. During the dry and wet seasons, the diurnal changes of the stem sap flow velocity of the tree species all presented a typical single-peak curve, with high values in the daytime and low values in the nighttime. The average and maximum sap flow velocities and the daily sap flow flux of broad-leaved trees (C. chinensis, S. superba, and M. kwangtungensis) were significantly higher than those of coniferous tree (P. massoniana), and the maximum sap flow velocity of P. massoniana, C. valueschinensis, S. superba, and M. kwangtungensis was 29.48, 38.54, 51.67 and 58.32 g H2O x m(-2) x s(-1), respectively. A time lag was observed between the sap flow velocity and the diurnal variations of PAR, vapor pressure deficiency, and air temperature, and there existed significant positive correlations between the sap flow velocity and the three environmental factors. The PAR in wet season and the air temperature in dry season were the leading factors affecting the stem sap flow velocity of the dominant tree species.

  16. [Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan, Guangdong Province of South China].

    PubMed

    Huang, De-Wei; Zhang, De-Qiang; Zhou, Guo-Yi; Liu, Shi-Zhong; Otieno, Dennis; Li, Yue-Lin

    2012-05-01

    By the method of Granier' s thermal dissipation probe, the stem sap flow density of four dominant tree species (Pinus massoniana, Castanopsis chinensis, Schima superba, and Machilus kwangtungensis) in a mixed conifer-broadleaf forest in Dinghushan Reserve of South China was continuously measured in the dry season (November) and wet season (July) in 2010, and the environmental factors including air temperature, relative humidity, and photosynthetically active radiation (PAR) were measured synchronically, aimed to study the characteristics of the stem sap flow of the tree species in response to environmental factors. During the dry and wet seasons, the diurnal changes of the stem sap flow velocity of the tree species all presented a typical single-peak curve, with high values in the daytime and low values in the nighttime. The average and maximum sap flow velocities and the daily sap flow flux of broad-leaved trees (C. chinensis, S. superba, and M. kwangtungensis) were significantly higher than those of coniferous tree (P. massoniana), and the maximum sap flow velocity of P. massoniana, C. valueschinensis, S. superba, and M. kwangtungensis was 29.48, 38.54, 51.67 and 58.32 g H2O x m(-2) x s(-1), respectively. A time lag was observed between the sap flow velocity and the diurnal variations of PAR, vapor pressure deficiency, and air temperature, and there existed significant positive correlations between the sap flow velocity and the three environmental factors. The PAR in wet season and the air temperature in dry season were the leading factors affecting the stem sap flow velocity of the dominant tree species. PMID:22919822

  17. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition.

    PubMed

    Manna, M C; Jha, S; Ghosh, P K; Acharya, C L

    2003-07-01

    An experiment was conducted during 1998-1999, in a deciduous forest located in the semi-arid tropics of central India, to evaluate the suitability of different forest litters as food material for the tropical epigeic earthworms i.e. Eisenia fetida (Savigny), Perionyx excavatus (Perrier) and Dicogaster bolaui (michaelsen). The aim was to examine the influence of these earthworms on the decomposition processes of three types of forest litters i.e. Tectona grandis (teak), Madhuca indica (mahua) and Butea monosperma (palas), on the maintenance of quality in a vermicomposting system, and to assess the effect of applications of in situ prepared vermicomposts on the growth of forest trees. The results indicated that T. grandis litter was the most suitable food material for the earthworms possibly because it contained high reserves of mineral nutrients. Comparisons of the survival and reproduction rates of the three epigeic earthworm species indicated that a higher reproduction rate was maintained for E. fetida compared to P. excavatus and D. bolaui in the decomposition of these forest litters. The rates of growth and population increases of E. fetida approximately doubled after 12 weeks of litter decomposition. The litter decomposition process was associated strongly with the quality of the materials and their chemical composition. Irrespective of earthworm inoculations, the levels of available nutrient such as NH(4)-N, NO(3)-N, available P and K increased significantly (pM. indica litter compost>B. monosperma litter compost. The mature decomposed litter had lower C/N ratios (11.3-24.8:1), water-soluble carbon (0.30-0.58%), water-soluble carbohydrates (0.35-0.71%) and larger cation exchange capacity/total organic carbon ratios than the values in the parent forest litter. The lignin content increased with maturation with a concomitant decrease in cellulose resulting in higher lignin/cellulose ratios. Application of all three

  18. Isoprene Emission from Quercus Serrata in the deciduous broad-leaved forest

    NASA Astrophysics Data System (ADS)

    Okumura, M.; Tani, A.; Kominami, Y.; Takanashi, S.; Kosugi, Y.; Tohno, S.

    2006-12-01

    1. INTRODUCTION Isoprene is a biogenic volatile organic compound (BVOC) emitted by many plant species. Isoprene emission contributes to the reactive carbon budget entering the troposphere. In Japan efforts to measure and understand the mechanism controlling BVOC emissions and to establish their emission inventories for the country have not been extensive, despite the fact that Japan has a large area of forests composed of coniferous and/or deciduous tree species (about 70% of total land area) and that forestry statistics across Japan are available (Tani et al. 2002). 2. METHODS The measurements were taken in the deciduous broad-leaved forest, Yamashiro, Kyoto. The isoprene emission, net assimilation rate, stomatal conductance, photosynthetically active radiation (PAR), air and leaf temperature, relative humidity was measured on June, July, August 2006 using a LI-6400 portable photosynthesis system (Li-Cor Inc., Lincoln, NE, USA). Isoprene samples from the LI-6400 cuvette was trapped by adsorbents (Tenax 200mg and Carbotrap 100mg) packed into stainless steel tubes (Perkin Elmer). Samples were analyzed using GC-MS system (Shimadzu QP5050A). Samples underwent two stage thermal desorption (Perkin-Elmer ATD). 3. RESULTS The obvious effect of PAR on isoprene emissions and photosynthesis rates were investigated. Temporal variations of isoprene emissions and photosynthesis rates for sun leaves and a shade leaves were investigated. Isoprene sampling term is 7:00-9:00, 9:00-11:00, 11:00-13:00, 13:00-15:00, 15:00-17:00, and 17:00-18:30. Number of samples is 4-6 leaves. Both sun leaves and shade leaves, isoprene emissions reached their peak around noon, while for sun leaves the largest photosynthesis rates during morning and the subsequent decrease were observed as shown. Carbon ratio (carbon of isoprene emission /carbon of photosynthesis by mass unit) were about 1-3%. REFERENCES Tani, A., Nozoe, S., Aoki, M., Hewiit, C. N., 2002. Monoterpene fluxes measured above a Japanese

  19. Accumulated phytotoxic ozone dose estimation for deciduous forest in Kanto, Japan in summer

    NASA Astrophysics Data System (ADS)

    Watanabe, Takanori; Izumi, Takeki; Matsuyama, Hiroshi

    2016-03-01

    With ozone concentrations simulated using a regional chemical transport model (ADMER-PRO) and high-spatial resolution meteorological data, we investigated the influence of ozone concentration on deciduous forests in the Kanto region of Japan in summer during 2003, 2004, and 2009: three years for which weather characteristics differed greatly. Ozone risk for plants was assessed by the accumulated phytotoxic ozone dose (POD), a flux-based index. The effects were analyzed by particularly addressing the relation between the stomatal ozone flux and meteorological elements. Results revealed high absorption areas not only where injury to forests had been visually detected in previous studies, but also where injury had not been observed to date. Regarding the relation between the stomatal ozone flux and meteorological elements, air temperature and vapor pressure deficit strongly affected POD in 2004, when high temperature and little rainfall were observed. Additionally, the ozone concentration and irradiance strongly affected POD in 2003 when low temperatures and heavy rainfall were observed. The meteorological elements affecting POD differed from year to year. Results demonstrate the importance of multi-year simulations and analyses in the field of ozone risk assessment.

  20. Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests.

    PubMed

    Fernández-Marín, Beatriz; Esteban, Raquel; Míguez, Fátima; Artetxe, Unai; Castañeda, Verónica; Pintó-Marijuan, Marta; Becerril, José María; García-Plazaola, José Ignacio

    2015-01-01

    Accumulation of abaxial anthocyanins is an intriguing leaf trait particularly common among deeply shaded understorey plants of tropical and temperate forests whose ecological significance is still not properly understood. To shed light on it, possible ecophysiological roles of abaxial anthocyanins were tested in the perennial understorey herb of temperate deciduous forests Saxifraga hirsuta, chosen as a model species due to the coexistence of green and anthocyanic leaves and the presence of an easily removable lower anthocyanic epidermis. Anthocyanins accumulated during autumn, which temporally matched the overstorey leaf fall. Patterns of development of abaxial anthocyanins and direct measurements of photochemical efficiency under monochromatic light were not consistent with a photoprotective hypothesis. Enhancement of light capture also seemed unlikely since the back-scattering of red light towards the lower mesophyll was negligible. Seed germination was similar under acyanic and anthocyanic leaves. A relevant consequence of abaxial anthocyanins was the dramatic reduction of light transmission through the leaf. The dark environment generated underneath the Saxifraga canopy was enhanced by the horizontal repositioning of leaves, which occurs in parallel with reddening. This might play a role in biotic interactions by inhibiting vital processes of competitors, which may be of especial importance in spring before the overstorey leaves sprout. PMID:25922298

  1. Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests.

    PubMed

    Fernández-Marín, Beatriz; Esteban, Raquel; Míguez, Fátima; Artetxe, Unai; Castañeda, Verónica; Pintó-Marijuan, Marta; Becerril, José María; García-Plazaola, José Ignacio

    2015-01-01

    Accumulation of abaxial anthocyanins is an intriguing leaf trait particularly common among deeply shaded understorey plants of tropical and temperate forests whose ecological significance is still not properly understood. To shed light on it, possible ecophysiological roles of abaxial anthocyanins were tested in the perennial understorey herb of temperate deciduous forests Saxifraga hirsuta, chosen as a model species due to the coexistence of green and anthocyanic leaves and the presence of an easily removable lower anthocyanic epidermis. Anthocyanins accumulated during autumn, which temporally matched the overstorey leaf fall. Patterns of development of abaxial anthocyanins and direct measurements of photochemical efficiency under monochromatic light were not consistent with a photoprotective hypothesis. Enhancement of light capture also seemed unlikely since the back-scattering of red light towards the lower mesophyll was negligible. Seed germination was similar under acyanic and anthocyanic leaves. A relevant consequence of abaxial anthocyanins was the dramatic reduction of light transmission through the leaf. The dark environment generated underneath the Saxifraga canopy was enhanced by the horizontal repositioning of leaves, which occurs in parallel with reddening. This might play a role in biotic interactions by inhibiting vital processes of competitors, which may be of especial importance in spring before the overstorey leaves sprout.

  2. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India.

    PubMed

    Tripathi, N; Singh, R S; Singh, J S

    2009-04-01

    The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density, water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.

  3. The use of proton transfer mass spectrometry to characterize VOC concentrations within a deciduous forest

    NASA Astrophysics Data System (ADS)

    Ammann, C.; Spirig, C.; Neftel, A.; Schaub, A.; Komenda, M.

    2003-04-01

    Proton Transfer Mass Spectrometry (PTR-MS) has become an important technique for fast measurements of biogenic volatile organic compounds (VOC). As part of the German ECHO project (Emission and chemical transformation of biogenic volatile organic compounds), a PTR-MS instrument was calibrated and applied for a range of VOC including isoprene, sum of monoterpenes, methanol, acetaldehyde, acetone and others. During the first ECHO field campaign in June and July 2002 continuous four-level concentration profiles were measured within and above a mixed deciduous forest stand on an hourly basis. VOC concentrations obtained by PTR-MS agreed reasonably well with parallel gas chromatography measurements. The spatial and temporal distribution of the biogenic VOC such as monoterpenes and isoprene generally reflect the local source with maximum concentrations during daytime within the canopy. Gradients of monoterpenes at the canopy top were more consistent than those of isoprene, which is attributed to the inhomogeneous emission pattern, i.e. the direct surrounding of the measurement tower was dominated by monoterpene-emitting trees (beeches) whereas the dominant isoprene emitters (oaks) were mainly located further upwind. Acetone and the aromatic compounds frequently showed high nighttime concentration peaks reflecting advection of anthropogenic emissions from outside the forest.

  4. Soil Macroinvertebrate Communities Across a Productivity Gradient in Deciduous Forests of Eastern North America

    DOE PAGESBeta

    Wenk, Evelyn S.; Callaham, Mac A.; O'Brien, Joseph J.; Hanson, Paul J.

    2016-03-01

    We describe how, within the temperate, deciduous forests of the eastern US, diverse soil-fauna communities are structured by a combination of environmental gradients and interactions with other biota. The introduction of non-native soil taxa has altered communities and soil processes, and adds another degree of variability to these systems. We sampled soil macroinvertebrate abundance from forested sites in Missouri (MO), Michigan (MI), Massachusetts (MA), and New Hampshire (NH), with the objective of comparing community assemblages and evaluating the role of invasive earthworms along the temperature—productivity gradient represented by the sites. The primary detritivores encountered were earthworms and millipedes. Earthworms weremore » collected only in MO and MI, and at much greater density in MO. Millipedes were found at every site except in MO, and at their highest mean density in NH. Warmer temperatures, higher litter productivity, and low Oa horizon depth (as found in MO) were correlated with high earthworm activity. Oa horizon depth was the greatest in NH, where the macroinvertebrate community was dominated (in terms of abundance) by predators and herbivores, not detritivores. Our results are suggestive of, and congruent with, the concept of earthworms as ecosystem engineers, as we found that the presence of non-native earthworm species was associated with significant differences in soil characteristics such as apparent rapid decomposition rates and reduced carbon storage in the Oa horizon.« less

  5. Impact of post-mining subsidence on nitrogen transformation in southern tropical dry deciduous forest, India

    SciTech Connect

    Tripathi, N.; Singh, R.S.; Singh, J.S.

    2009-04-15

    The goal of our research was to assess the impact of post-mining land subsidence, caused due to underground coal mining operations, on fine root biomass and root tips count; plant available nutrient status, microbial biomass N (MBN) and N-mineralization rates of a Southern tropical dry deciduous forest of Singareni Coalfields of India. The changes were quantified in all the three (rainy, winter and summer) seasons, in slope and depression microsites of the subsided land and an adjacent undamaged forest microsite. Physico-chemical characteristics were found to be altered after subsidence, showing a positive impact of subsidence on soil moisture, bulk density, water holding capacity, organic carbon content, total N and total P. The increase in all the parameters was found in depression microsites, while in slope microsites, the values were lower. Fine root biomass and root tips count increased in the subsided depression microsites, as demonstrated by increases of 62% and 45%, respectively. Soil nitrate-N and phosphate-P concentrations were also found to be higher in depression microsite, showing an increase of 35.68% and 24.74%, respectively. Depression microsite has also shown the higher MBN value with an increase over control. Net nitrification, net N-mineralization and MBN were increased in depression microsite by 29.77%, 25.72% and 34%, respectively. There was a positive relation of microbial N with organic C, fine root biomass and root tips.

  6. Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests

    PubMed Central

    Fernández-Marín, Beatriz; Esteban, Raquel; Míguez, Fátima; Artetxe, Unai; Castañeda, Verónica; Pintó-Marijuan, Marta; Becerril, José María; García-Plazaola, José Ignacio

    2015-01-01

    Accumulation of abaxial anthocyanins is an intriguing leaf trait particularly common among deeply shaded understorey plants of tropical and temperate forests whose ecological significance is still not properly understood. To shed light on it, possible ecophysiological roles of abaxial anthocyanins were tested in the perennial understorey herb of temperate deciduous forests Saxifraga hirsuta, chosen as a model species due to the coexistence of green and anthocyanic leaves and the presence of an easily removable lower anthocyanic epidermis. Anthocyanins accumulated during autumn, which temporally matched the overstorey leaf fall. Patterns of development of abaxial anthocyanins and direct measurements of photochemical efficiency under monochromatic light were not consistent with a photoprotective hypothesis. Enhancement of light capture also seemed unlikely since the back-scattering of red light towards the lower mesophyll was negligible. Seed germination was similar under acyanic and anthocyanic leaves. A relevant consequence of abaxial anthocyanins was the dramatic reduction of light transmission through the leaf. The dark environment generated underneath the Saxifraga canopy was enhanced by the horizontal repositioning of leaves, which occurs in parallel with reddening. This might play a role in biotic interactions by inhibiting vital processes of competitors, which may be of especial importance in spring before the overstorey leaves sprout. PMID:25922298

  7. Evergreen broadleaf forest transition zone changes in Japan from 1961 to 2008 detected by aerial ortho-photos

    NASA Astrophysics Data System (ADS)

    Nakazono, Etsuko; Tanaka, Nobuyuki; Yasuda, Masatsugu; Daimaru, Hiromu; Takeuchi, Wataru

    2016-06-01

    In order to detect the distribution change of evergreen broad-leaved trees (EBTs) in a old-growth forest on the transitional zone of cool-temperate and warm-temperate zones, we used the ortho-photo data conversed from the aerial photos. Comparing the crown map of EBTs in the 1-ha verification plot with the ground truth data of individual tree inventory, 14 out of 17 (82%) upper layer trees were found to be visually read on the aerial photo We chose two indices for detecting the distribution change of EBTs, crown number and total crown area. We made crown maps of the 20-ha plot based on ortho-photos in 1961, 1975, 1985, 2003, 2005 and 2008, and calculated crown number and total crown area for each photos. The crown number increased at a rate 0.18/year/ha from 1961 to 2000’s, and total crown area also increased at a rate 0.21% for the 20-ha plot. The total crow area increase was highly probable because errors of area in orthophotos were smaller than secular changes of the area.

  8. Responses of deciduous forest trees to severe drought in Central Europe.

    PubMed

    Leuzinger, Sebastian; Zotz, Gerhard; Asshoff, Roman; Körner, Christian

    2005-06-01

    In 2003, Central Europe experienced the warmest summer on record combined with unusually low precipitation. We studied plant water relations and phenology in a 100-year- old mixed deciduous forest on a slope (no ground water table) near Basel using the Swiss Canopy Crane (SCC). The drought lasted from early June to mid September. We studied five deciduous tree species; half of the individuals were exposed to elevated CO(2) concentration ([CO(2)]) (530 ppm) using a free-air, atmospheric CO(2)-enrichment system. In late July, after the first eight weeks of drought, mean predawn leaf water potential about 30 m above ground was -0.9 MPa across all trees, dropping to a mean of -1.5 MPa in mid-August when the top 1 m of the soil profile had no plant accessible moisture. Mean stomatal conductance and rates of maximum net photosynthesis decreased considerably in mid-August across all species. However, daily peak values of sap flow remained surprisingly constant over the whole period in Quercus petraea (Matt.) Liebl., and decreased to only about half of the early summer maxima in Fagus sylvatica L. and Carpinus betulus L. (stomatal down- regulation of flux). Although we detected no differences in most parameters between CO(2)-treated and control trees, predawn leaf water potential tended to be less negative in trees exposed to elevated [CO(2)]. Leaf longevity was greater in 2003 compared with the previous years, but the seasonal increase in stem basal area reached only about 75% of that in previous years. Our data suggest that the investigated tree species, particularly Q. petraea, did not experience severe water stress. However, an increased frequency of such exceptionally dry summers may have a more serious impact than a single event and would give Q. petraea a competitive advantage in the long run.

  9. [Biodiversity of tree species, their populations' spatial distribution pattern and interspecific association in mixed deciduous broadleaved forest in Changbai Mountains].

    PubMed

    Guo, Zhongling; Ma, Yuandan; Zheng, Jiping; Liu, Wande; Jin, Zefeng

    2004-11-01

    Based on the data collected from the sampling plot with an area of 1 hm2 at the Experimental and Management Bureau of Jiaohe in Jilin Province, this paper analyzed and researched the community structure, biological diversity, spatial distribution pattern and interspecific association between tree species populations in a mixed deciduous broadleaved forest. The results indicated that there was no obvious dominant order among tree species populations, and the indices of tree species diversity such as Shannon-Wiener index (H'), Pielou evenness index (E) and Simpson ecological dominant index (D) were all low. Shrub and herb species diversity indices were also not high. The spatial distribution pattern of five dominant tree species all presented aggregative. Based on 2 x 2 contigency table, the interspecific associations of 15 tree species in the community were examined by means of chi2-test, together with the association coefficient (AC). The results showed that there were 14 species pairs in 15 species showing significantly negative association. The proportion of species pairs showing negative association was much more than that of showing positive association. It could be deduced that the community was instable and at the stage of autogenic succession from soft deciduous broadleaved forest to hard deciduous broadleaved forest, and then, the Korean pine broadleaved forest.

  10. Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Isebrands, J. G.; Guenther, A. B.; Harley, P.; Helmig, D.; Klinger, L.; Vierling, L.; Zimmerman, P.; Geron, C.

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regions of the world to understand regional and global impacts and to implement possible mitigation strategies. The mixed deciduous and coniferous forests of northern Wisconsin, USA, were predicted to have significant VOC emission rates because they are comprised of many genera (i.e. Picea, Populus, Quercus, Salix) known to be high VOC emitters. In July 1993, a study was conducted on the Chequamegon National Forest near Rhinelander, WI, to identify and quantify VOC emitted from major trees, shrubs, and understory herbs in the mixed northern forests of this region. Emission rates were measured at various scales - at the leaf level with cuvettes, the branch level with branch enclosures, the canopy level with a tower based system, and the landscape level with a tethered balloon air sampling system. Area-average emission rates were estimated by scaling, using biomass densities and species composition along transects representative of the study site. Isoprene (C 5H 8) was the primary VOC emitted, although significant quantities of monoterpenes (C 10H 16) were also emitted. The highest emission rates of isoprene (at 30°C and photosynthetically active radiation of 1000 μmol m -2 s -1) were from northern red oak ( Quercus rubra, >110 μg(C) g -1 h -1); aspen ( Populus tremuloides, >77); willow ( Salix spp., >54); and black spruce ( Picea mariana, >10). Emission rates of hybrid poplar clones ranged from 40 to 90 μg(C) g -1 h -1 at 25°C; those of Picea provenances were generally <10, and emission rates of a hybrid between North American and European spruces were intermediate to parental rates. More than 30 species of plants were surveyed from the sites, including several from previously unstudied

  11. The Influence of Anthropogenic Sources on Fluxes of Secondary Organic Aerosol Precursors From a Deciduous Forest in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Saylor, R. D.; Stein, A. F.

    2012-12-01

    broadleaf deciduous consisting of chestnut oak (Quercus prinus), tulip poplar (Liriodendron tulipifera), white oak (Quercus alba), red oak (Quercus rubra), red maple (Acer rubrum), and various hickory species (Carya sp.) in order of decreasing biomass density. At the time of isoprene flux measurements made at the tower in 1999, the stand was approximately 50 years old, the overstory canopy height was 24 m, and the whole canopy leaf area index was 4.9 m2 leaf/m2 ground area. In this presentation, the model formulation is described and results from the application of ACCESS to the WBW forest are presented and compared to measurements made at the site to investigate the influence of background anthropogenic sources on above canopy fluxes of SOA precursors in an isoprene emission dominated landscape in the unique atmospheric chemical environment of the southeastern United States. In particular, levels of background NOx concentrations are found to significantly influence both the magnitude and chemical composition of fluxes of SOA precursors from the canopy.

  12. Charcoal Reflectance Reveals Early Holocene Boreal Deciduous Forests Burned at High Intensities

    PubMed Central

    Hudspith, Victoria A.; Belcher, Claire M.; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ∼10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  13. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.

    PubMed

    Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks. PMID:25853712

  14. An Assessment of Worldview-2 Imagery for the Classification Of a Mixed Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Carter, Nahid

    Remote sensing provides a variety of methods for classifying forest communities and can be a valuable tool for the impact assessment of invasive species. The emerald ash borer (Agrilus planipennis) infestation of ash trees (Fraxinus) in the United States has resulted in the mortality of large stands of ash throughout the Northeast. This study assessed the suitability of multi-temporal Worldview-2 multispectral satellite imagery for classifying a mixed deciduous forest in Upstate New York. Training sites were collected using a Global Positioning System (GPS) receiver, with each training site consisting of a single tree of a corresponding class. Six classes were collected; Ash, Maple, Oak, Beech, Evergreen, and Other. Three different classifications were investigated on four data sets. A six class classification (6C), a two class classification consisting of ash and all other classes combined (2C), and a merging of the ash and maple classes for a five class classification (5C). The four data sets included Worldview-2 multispectral data collection from June 2010 (J-WV2) and September 2010 (S-WV2), a layer stacked data set using J-WV2 and S-WV2 (LS-WV2), and a reduced data set (RD-WV2). RD-WV2 was created using a statistical analysis of the processed and unprocessed imagery. Statistical analysis was used to reduce the dimensionality of the data and identify key bands to create a fourth data set (RD-WV2). Overall accuracy varied considerably depending upon the classification type, but results indicated that ash was confused with maple in a majority of the classifications. Ash was most accurately identified using the 2C classification and RD-WV2 data set (81.48%). A combination of the ash and maple classes yielded an accuracy of 89.41%. Future work should focus on separating the ash and maple classifiers by using data sources such as hyperspectral imagery, LiDAR, or extensive forest surveys.

  15. Charcoal reflectance reveals early holocene boreal deciduous forests burned at high intensities.

    PubMed

    Hudspith, Victoria A; Belcher, Claire M; Kelly, Ryan; Hu, Feng Sheng

    2015-01-01

    Wildfire size, frequency, and severity are increasing in the Alaskan boreal forest in response to climate warming. One of the potential impacts of this changing fire regime is the alteration of successional trajectories, from black spruce to mixed stands dominated by aspen, a vegetation composition not experienced since the early Holocene. Such changes in vegetation composition may consequently alter the intensity of fires, influencing fire feedbacks to the ecosystem. Paleorecords document past wildfire-vegetation dynamics and as such, are imperative for our understanding of how these ecosystems will respond to future climate warming. For the first time, we have used reflectance measurements of macroscopic charcoal particles (>180μm) from an Alaskan lake-sediment record to estimate ancient charring temperatures (termed pyrolysis intensity). We demonstrate that pyrolysis intensity increased markedly from an interval of birch tundra 11 ky ago (mean 1.52%Ro; 485°C), to the expansion of trees on the landscape ~10.5 ky ago, remaining high to the present (mean 3.54%Ro; 640°C) irrespective of stand composition. Despite differing flammabilities and adaptations to fire, the highest pyrolysis intensities derive from two intervals with distinct vegetation compositions. 1) the expansion of mixed aspen and spruce woodland at 10 cal. kyr BP, and 2) the establishment of black spruce, and the modern boreal forest at 4 cal. kyr BP. Based on our analysis, we infer that predicted expansion of deciduous trees into the boreal forest in the future could lead to high intensity, but low severity fires, potentially moderating future climate-fire feedbacks.

  16. The effect of wind velocity on transpiration in a mixed broadleaved deciduous forest

    NASA Astrophysics Data System (ADS)

    Kim, D.; Oren, R.; Oishi, A. C.; Hsieh, C.; Phillips, N. G.; Novick, K. A.; Stoy, P. C.

    2013-12-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to water vapor flux out of leaves (RC, dominated by stomatal resistance, Rstom), and the rate at which RA decreases with increasing U. We investigated the effect of U on transpiration at the canopy scale using filtered meteorological data and sap flux measurements gathered from six diverse species of a mature broadleaved deciduous forest. Only under high light conditions, stand transpiration (EC) increased slightly (6.5%) with increasing U ranging from ~0.7 to ~4.7 m s-1. Under other conditions, sap flux density (Js) and EC responded weakly or did not change with U. RA, estimated from Monin-Obukhov similarity theory, decreased with increasing U, but this decline was offset by increasing RC, estimated from a rearranged Penman-Monteith equation, due to a concurrent increase in vapor pressure deficit (D). The increase of RC with D over the observed range of U was consistent with increased Rstom by ~40% based on hydraulic theory. Except for very rare half-hourly values, the proportion of RA to total resistance (RT) remained < 15% over the observed range of conditions. These results suggest that in similar forests and conditions, accounting for the effects of U-D relationship on Rstom would reduce the uncertainty of modeling canopy gas exchange more than accounting for the direct effect of U on RA.

  17. Phenological changes in morphological, physiological and optical properties of single-leaves in canopy trees of a cool-temperate deciduous forest in Japan

    NASA Astrophysics Data System (ADS)

    Noda, H. M.; Muraoka, H.

    2013-12-01

    Phenology of forest canopy has been focused in carbon cycle studies, but still we need further understandings on its ecophysiological dynamics, to link them to the ecosystem function. For example, combined analysis of yearly NEP (net ecosystem production) by eddy covariance and NPP (net primary production) by biometric measurements in a cool-temperate deciduous broadleaf forest in Japan showed that the interannual variability of NEP is mostly explained by the NPP in tree biomass, rather than those by NPP in foliage nor heterotrophyic respiration (Ohtsuka et al. 2009; Glob. Chan. Ecol.). This result suggests the possible influence of interannual variations in either the length of growing season, phenology and the yearly maximum of leaf photosynthetic capacity, which largely affects GPP (gross primary production). In present study, in order to reveal the phenological pattern and its interannual variation of the leaf ecophysiological properties, leaf mass per area (LMA), chlorophyll contents and photosynthetic traits (Vcmax and Jmax) were measured for dominant canopy tree species Quercus crispla and Betula ermanii in Takayama site (AsiaFlux, JaLTER) for nine years during 2003 and 2012. In addition, to link such ecophysiological traits to the remote sensing of canopy dynamics, the optical properties (reflectance and transmittance spectra) of single leaf were also measured in spring (early June), summer (mid August) and autumn (October) in 2010 and 2012. Leaf budbreak occurred in mid to late May, after two to three weeks of snowmelt, and the photosynthetic capacity increased gradually in Quercus crispla but quickly in Betula ermanii. Seasonal developmental rate, the timing of leaf photosynthetic maturation and its maximum values varied year by year. Photosynthetic capacity was largely correlated with chlorophyll contents throughout the growing season. From spring to summer, i.e., in developing period, both chlorophyll content and LMA increased almost in parallel

  18. Effects of Forest Age on Soil Autotrophic and Heterotrophic Respiration Differ between Evergreen and Deciduous Forests

    PubMed Central

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Yang, Yuanhe; Zeng, Hui

    2013-01-01

    We examined the effects of forest stand age on soil respiration (SR) including the heterotrophic respiration (HR) and autotrophic respiration (AR) of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ∼15, ∼25, and ∼35-year-old Pinus sylvestris var. mongolica (Mongolia pine) and Larix principis-rupprechtii (larch) in a forest-steppe ecotone, northern China (June 2006 to October 2009). We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST), soil water content (SWC) and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator). Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ∼15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ∼35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required. PMID:24282560

  19. Effects of forest age on soil autotrophic and heterotrophic respiration differ between evergreen and deciduous forests.

    PubMed

    Wang, Wei; Zeng, Wenjing; Chen, Weile; Yang, Yuanhe; Zeng, Hui

    2013-01-01

    We examined the effects of forest stand age on soil respiration (SR) including the heterotrophic respiration (HR) and autotrophic respiration (AR) of two forest types. We measured soil respiration and partitioned the HR and AR components across three age classes ~15, ~25, and ~35-year-old Pinus sylvestris var. mongolica (Mongolia pine) and Larix principis-rupprechtii (larch) in a forest-steppe ecotone, northern China (June 2006 to October 2009). We analyzed the relationship between seasonal dynamics of SR, HR, AR and soil temperature (ST), soil water content (SWC) and normalized difference vegetation index (NDVI, a plant greenness and net primary productivity indicator). Our results showed that ST and SWC were driving factors for the seasonal dynamics of SR rather than plant greenness, irrespective of stand age and forest type. For ~15-year-old stands, the seasonal dynamics of both AR and HR were dependent on ST. Higher Q10 of HR compared with AR occurred in larch. However, in Mongolia pine a similar Q10 occurred between HR and AR. With stand age, Q10 of both HR and AR increased in larch. For Mongolia pine, Q10 of HR increased with stand age, but AR showed no significant relationship with ST. As stand age increased, HR was correlated with SWC in Mongolia pine, but for larch AR correlated with SWC. The dependence of AR on NDVI occurred in ~35-year-old Mongolia pine. Our study demonstrated the importance of separating autotrophic and heterotrophic respiration components of SR when stimulating the response of soil carbon efflux to environmental changes. When estimating the response of autotrophic and heterotrophic respiration to environmental changes, the effect of forest type on age-related trends is required.

  20. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia

    PubMed Central

    Büntge, Anna B. S.; Herzog, Sebastian K.; Kessler, Michael

    2010-01-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures. PMID:20949116

  1. Effects of Habitat Structure and Fragmentation on Diversity and Abundance of Primates in Tropical Deciduous Forests in Bolivia.

    PubMed

    Pyritz, Lennart W; Büntge, Anna B S; Herzog, Sebastian K; Kessler, Michael

    2010-10-01

    Habitat structure and anthropogenic disturbance are known to affect primate diversity and abundance. However, researchers have focused on lowland rain forests, whereas endangered deciduous forests have been neglected. We aimed to investigate the relationships between primate diversity and abundance and habitat parameters in 10 deciduous forest fragments southeast of Santa Cruz, Bolivia. We obtained primate data via line-transect surveys and visual and acoustic observations. In addition, we assessed the vegetation structure (canopy height, understory density), size, isolation time, and surrounding forest area of the fragments. We interpreted our results in the context of the historical distribution data for primates in the area before fragmentation and interviews with local people. We detected 5 of the 8 historically observed primate species: Alouatta caraya, Aotus azarae boliviensis, Callithrix melanura, Callicebus donacophilus, and Cebus libidinosus juruanus. Total species number and detection rates decreased with understory density. Detection rates also negatively correlated with forest areas in the surroundings of a fragment, which may be due to variables not assessed, i.e., fragment shape, distance to nearest town. Observations for Alouatta and Aotus were too few to conduct further statistics. Cebus and Callicebus were present in 90% and 70% of the sites, respectively, and their density did not correlate with any of the habitat variables assessed, signaling high ecological plasticity and adaptability to anthropogenic impact in these species. Detections of Callithrix were higher in areas with low forest strata. Our study provides baseline data for future fragmentation studies in Neotropical dry deciduous forests and sets a base for specific conservation measures.

  2. Remote sensing-based estimation of annual soil respiration at two contrasting forest sites

    SciTech Connect

    Gu, Lianhong; Huang, Ni; Black, T. Andrew; Wang, Li; Niu, Zheng

    2015-11-23

    Soil respiration (Rs), an important component of the global carbon cycle, can be estimated using remotely sensed data, but the accuracy of this technique has not been thoroughly investigated. In this article, we proposed a methodology for the remote estimation of annual Rs at two contrasting FLUXNET forest sites (a deciduous broadleaf forest and an evergreen needleleaf forest).

  3. Evaluating remote sensing of deciduous forest phenology at multiple spatial scales using PhenoCam imagery

    NASA Astrophysics Data System (ADS)

    Klosterman, S. T.; Hufkens, K.; Gray, J. M.; Melaas, E.; Sonnentag, O.; Lavine, I.; Mitchell, L.; Norman, R.; Friedl, M. A.; Richardson, A. D.

    2014-02-01

    Plant phenology regulates ecosystem services at local and global scales and is a sensitive indicator of global change. Estimates of phenophase transition dates, such as the start of spring or end of autumn, can be derived from sensor-based time series data at the near-surface and remote scales, but must be interpreted in terms of biologically relevant events. We use the PhenoCam archive of digital repeat photography to implement a consistent protocol for visual assessment of canopy phenology at 13 temperate deciduous forest sites throughout eastern North America, as well as to perform digital image analysis for time series-based estimates of phenology dates. We then compare these near-surface results to remote sensing metrics of phenology at the landscape scale, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) sensors. We present a new type of curve fit, using a generalized sigmoid, to estimate phenology dates. We quantify the statistical uncertainty of phenophase transition dates estimated using this method and show that the generalized sigmoid results in less statistical uncertainty than other curve-fitting methods. Additionally, we find that dates derived from analysis of high-frequency PhenoCam imagery have smaller uncertainties than remote sensing metrics of phenology, and that dates derived from the remotely-sensed enhanced vegetation index (EVI) have smaller uncertainty than those derived from the normalized difference vegetation index (NDVI). Near-surface time series estimates for the start of spring are found to closely match visual assessment of leaf out, as well as remote sensing-derived estimates of the start of spring. However late spring and autumn phenology exhibit larger differences between near-surface and remote scales. Differences in late spring phenology between near-surface and remote scales are found to correlate with a landscape metric of deciduous forest cover. These

  4. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K; Bartlett, Elizabeth A

    2003-06-01

    In a deciduous forest, differences in leaf phenology between juvenile and adult trees could result in juvenile trees avoiding canopy shade for part of the growing season. By expanding leaves earlier or initiating senescence later than canopy trees, juvenile trees would have some period in high light and therefore greater potential carbon gain. We observed leaf phenology of 376 individuals of 13 canopy tree species weekly over 3 years in a deciduous forest in east central Illinois, USA. Our objectives were: (1) to quantify for each species the extent of differences in leaf phenology between juvenile and conspecific adult trees; and (2) to determine the extent of phenological differences between juvenile Aesculus glabra Willd. and Acer saccharum Marsh. trees in understory and gap microhabitats. All species displayed phenological differences between life stages. For 10 species, bud break was significantly earlier, by an average of 8 days, for subcanopy individuals than for canopy individuals. In 11 species, completion of leaf expansion was earlier, by an average of 6 days, for subcanopy individuals than for canopy individuals. In contrast, there were no significant differences between life stages for start of senescence in 10 species and completion of leaf drop in nine species. For eight species, leaf longevity was significantly greater for subcanopy individuals than for canopy individuals by an average of 7 days (range = 4-10 days). Leaf phenology of subcanopy individuals of both Aesculus glabra and Acer saccharum responded to gap conditions. Leaf longevity was 11 days less in the understory than in gaps for Aesculus glabra, but 14 days more in the understory than in gaps for Acer saccharum. Therefore, leaf phenology differed broadly both between life stages and within the juvenile life stage in this community. A vertical gradient in temperature sums is the proposed mechanism explaining the patterns. Temperature sums accumulated more rapidly in the sheltered

  5. Differences in leaf phenology between juvenile and adult trees in a temperate deciduous forest.

    PubMed

    Augspurger, Carol K; Bartlett, Elizabeth A

    2003-06-01

    In a deciduous forest, differences in leaf phenology between juvenile and adult trees could result in juvenile trees avoiding canopy shade for part of the growing season. By expanding leaves earlier or initiating senescence later than canopy trees, juvenile trees would have some period in high light and therefore greater potential carbon gain. We observed leaf phenology of 376 individuals of 13 canopy tree species weekly over 3 years in a deciduous forest in east central Illinois, USA. Our objectives were: (1) to quantify for each species the extent of differences in leaf phenology between juvenile and conspecific adult trees; and (2) to determine the extent of phenological differences between juvenile Aesculus glabra Willd. and Acer saccharum Marsh. trees in understory and gap microhabitats. All species displayed phenological differences between life stages. For 10 species, bud break was significantly earlier, by an average of 8 days, for subcanopy individuals than for canopy individuals. In 11 species, completion of leaf expansion was earlier, by an average of 6 days, for subcanopy individuals than for canopy individuals. In contrast, there were no significant differences between life stages for start of senescence in 10 species and completion of leaf drop in nine species. For eight species, leaf longevity was significantly greater for subcanopy individuals than for canopy individuals by an average of 7 days (range = 4-10 days). Leaf phenology of subcanopy individuals of both Aesculus glabra and Acer saccharum responded to gap conditions. Leaf longevity was 11 days less in the understory than in gaps for Aesculus glabra, but 14 days more in the understory than in gaps for Acer saccharum. Therefore, leaf phenology differed broadly both between life stages and within the juvenile life stage in this community. A vertical gradient in temperature sums is the proposed mechanism explaining the patterns. Temperature sums accumulated more rapidly in the sheltered

  6. Soil Organic Carbon and Total Nitrogen Gains in an Old Growth Deciduous Forest in Germany

    PubMed Central

    Schrumpf, Marion; Kaiser, Klaus; Schulze, Ernst-Detlef

    2014-01-01

    Temperate forests are assumed to be organic carbon (OC) sinks, either because of biomass increases upon elevated CO2 in the atmosphere and large nitrogen deposition, or due to their age structure. Respective changes in soil OC and total nitrogen (TN) storage have rarely been proven. We analysed OC, TN, and bulk densities of 100 soil cores sampled along a regular grid in an old-growth deciduous forest at the Hainich National Park, Germany, in 2004 and again in 2009. Concentrations of OC and TN increased significantly from 2004 to 2009, mostly in the upper 0–20 cm of the mineral soil. Changes in the fine earth masses per soil volume impeded the detection of OC changes based on fixed soil volumes. When calculated on average fine earth masses, OC stocks increased by 323±146 g m−2 and TN stocks by 39±10 g m−2 at 0–20 cm soil depth from 2004 to 2009, giving average annual accumulation rates of 65±29 g OC m−2 yr−1 and 7.8±2 g N m−2 yr−1. Accumulation rates were largest in the upper part of the B horizon. Regional increases in forest biomass, either due to recovery of forest biomass from previous forest management or to fertilization by elevated CO2 and N deposition, are likely causes for the gains in soil OC and TN. As TN increased stronger (1.3% yr−1 of existing stocks) than OC (0.9% yr−1), the OC-to-TN ratios declined significantly. Results of regression analyses between changes in OC and TN stocks suggest that at no change in OC, still 3.8 g TN m−2 yr−1 accumulated. Potential causes for the increase in TN in excess to OC are fixation of inorganic N by the clay-rich soil or changes in microbial communities. The increase in soil OC corresponded on average to 6–13% of the estimated increase in net biome productivity. PMID:24586720

  7. Soil organic carbon and total nitrogen gains in an old growth deciduous forest in Germany.

    PubMed

    Schrumpf, Marion; Kaiser, Klaus; Schulze, Ernst-Detlef

    2014-01-01

    Temperate forests are assumed to be organic carbon (OC) sinks, either because of biomass increases upon elevated CO2 in the atmosphere and large nitrogen deposition, or due to their age structure. Respective changes in soil OC and total nitrogen (TN) storage have rarely been proven. We analysed OC, TN, and bulk densities of 100 soil cores sampled along a regular grid in an old-growth deciduous forest at the Hainich National Park, Germany, in 2004 and again in 2009. Concentrations of OC and TN increased significantly from 2004 to 2009, mostly in the upper 0-20 cm of the mineral soil. Changes in the fine earth masses per soil volume impeded the detection of OC changes based on fixed soil volumes. When calculated on average fine earth masses, OC stocks increased by 323 ± 146 g m(-2) and TN stocks by 39 ± 10 g m(-2) at 0-20 cm soil depth from 2004 to 2009, giving average annual accumulation rates of 65 ± 29 g OC m(-2) yr(-1) and 7.8 ± 2 g N m(-2) yr(-1). Accumulation rates were largest in the upper part of the B horizon. Regional increases in forest biomass, either due to recovery of forest biomass from previous forest management or to fertilization by elevated CO2 and N deposition, are likely causes for the gains in soil OC and TN. As TN increased stronger (1.3% yr(-1) of existing stocks) than OC (0.9% yr(-1)), the OC-to-TN ratios declined significantly. Results of regression analyses between changes in OC and TN stocks suggest that at no change in OC, still 3.8 g TN m(-2) yr(-1) accumulated. Potential causes for the increase in TN in excess to OC are fixation of inorganic N by the clay-rich soil or changes in microbial communities. The increase in soil OC corresponded on average to 6-13% of the estimated increase in net biome productivity. PMID:24586720

  8. Simulated nitrogen cycling response to elevated CO(2) in Pinus taeda and mixed deciduous forests.

    PubMed

    Johnson, D. W.

    1999-04-01

    Interactions between elevated CO(2) and N cycling were explored with a nutrient cycling model (NuCM, Johnson et al. 1993, 1995) for a Pinus taeda L. site at Duke University, North Carolina, and a mixed deciduous site at Walker Branch, Tennessee. The simulations tested whether N limitation would prevent growth increases in response to elevated CO(2), and whether growth responses to CO(2) in N-limited systems could be facilitated by increasing the biomass/N ratio (reducing N concentration) or increasing litter N mineralization, or both. Nitrogen limitation precluded additional growth when target growth rates and litterfall were increased (simulating potential response to elevated CO(2)) at the Duke University site. At the Walker Branch site, increasing target growth and litterfall caused a 7% increase in growth. Reducing foliar N concentrations reduced growth because of N limitation created by reduced litter quality (C:N ratio), reduced decomposition and increased N accumulation on the forest floor. These effects were most pronounced at the Duke University site, because the forest floor N turnover rate was lower than at the Walker Branch site. Reducing wood N concentration allowed prolonged increases in growth because of greater biomass/N; however, N uptake was reduced, allowing greater N immobilization on the forest floor and in soil. Increased N mineralization caused increased growth at the Duke University site, but not at the Walker Branch site. These simulations pose the counterintuitive hypothesis that increased biogeochemical cycling of N (as a result of increased litterfall N) causes reduced growth in an N-limited system because of increased accumulations of N on the forest floor and in soil. Translocation of N from senescing leaves before litterfall mitigates this response by allowing the trees to retain a greater proportion of N taken up rather than recycle it back to the forest floor and soil where it can be immobilized. Eliminating N translocation at

  9. Soil organic carbon and total nitrogen gains in an old growth deciduous forest in Germany.

    PubMed

    Schrumpf, Marion; Kaiser, Klaus; Schulze, Ernst-Detlef

    2014-01-01

    Temperate forests are assumed to be organic carbon (OC) sinks, either because of biomass increases upon elevated CO2 in the atmosphere and large nitrogen deposition, or due to their age structure. Respective changes in soil OC and total nitrogen (TN) storage have rarely been proven. We analysed OC, TN, and bulk densities of 100 soil cores sampled along a regular grid in an old-growth deciduous forest at the Hainich National Park, Germany, in 2004 and again in 2009. Concentrations of OC and TN increased significantly from 2004 to 2009, mostly in the upper 0-20 cm of the mineral soil. Changes in the fine earth masses per soil volume impeded the detection of OC changes based on fixed soil volumes. When calculated on average fine earth masses, OC stocks increased by 323 ± 146 g m(-2) and TN stocks by 39 ± 10 g m(-2) at 0-20 cm soil depth from 2004 to 2009, giving average annual accumulation rates of 65 ± 29 g OC m(-2) yr(-1) and 7.8 ± 2 g N m(-2) yr(-1). Accumulation rates were largest in the upper part of the B horizon. Regional increases in forest biomass, either due to recovery of forest biomass from previous forest management or to fertilization by elevated CO2 and N deposition, are likely causes for the gains in soil OC and TN. As TN increased stronger (1.3% yr(-1) of existing stocks) than OC (0.9% yr(-1)), the OC-to-TN ratios declined significantly. Results of regression analyses between changes in OC and TN stocks suggest that at no change in OC, still 3.8 g TN m(-2) yr(-1) accumulated. Potential causes for the increase in TN in excess to OC are fixation of inorganic N by the clay-rich soil or changes in microbial communities. The increase in soil OC corresponded on average to 6-13% of the estimated increase in net biome productivity.

  10. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest

    NASA Astrophysics Data System (ADS)

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak ( Quercus petraea), beech ( Fagus sylvatica) and ash ( Fraxinus excelsior) with some representatives of sycamore ( Acer pseudoplatanus). Solar radiation ( I), air temperature ( T A), soil temperature ( T S), relative humidity ( h), wind speed ( v) and soil water content (Ψ) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T A, T S, and Ψ increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Ψ. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  11. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest.

    PubMed

    Abd Latif, Zulkiflee; Blackburn, George Alan

    2010-03-01

    The creation of gaps can strongly influence forest regeneration and habitat diversity within forest ecosystems. However, the precise characteristics of such effects depend, to a large extent, upon the way in which gaps modify microclimate and soil water content. Hence, the aim of this study was to understand the effects of gap creation and variations in gap size on forest microclimate and soil water content. The study site, in North West England, was a mixed temperate broadleaved deciduous forest dominated by mature sessile oak (Quercus petraea), beech (Fagus sylvatica) and ash (Fraxinus excelsior) with some representatives of sycamore (Acer pseudoplatanus). Solar radiation (I), air temperature (T(A)), soil temperature (T(S)), relative humidity (h), wind speed (v) and soil water content (Psi) were measured at four natural treefall gaps created after a severe storm in 2006 and adjacent sub-canopy sites. I, T(A), T(S), and Psi increased significantly with gap size; h was consistently lower in gaps than the sub-canopy but did not vary with gap size, while the variability of v could not be explained by the presence or size of gaps. There were systematic diurnal patterns in all microclimate variables in response to gaps, but no such patterns existed for Psi. These results further our understanding of the abiotic and consequent biotic responses to gaps in broadleaved deciduous forests created by natural treefalls, and provide a useful basis for evaluating the implications of forest management practices.

  12. Soil organic matter composition and quality across fire severity gradients in coniferous and deciduous forests of the southern boreal region

    NASA Astrophysics Data System (ADS)

    Miesel, Jessica R.; Hockaday, William C.; Kolka, Randall K.; Townsend, Philip A.

    2015-06-01

    Recent patterns of prolonged regional drought in southern boreal forests of the Great Lakes region, USA, suggest that the ecological effects of disturbance by wildfire may become increasingly severe. Losses of forest soil organic matter (SOM) during fire can limit soil nutrient availability and forest regeneration. These processes are also influenced by the composition of postfire SOM. We sampled the forest floor layer (i.e., full organic horizon) and 0-10 cm mineral soil from stands dominated by coniferous (Pinus banksiana Lamb.) or deciduous (Populus tremuloides Michx.) species 1-2 months after the 2011 Pagami Creek wildfire in northern Minnesota. We used solid-state 13C NMR to characterize SOM composition across a gradient of fire severity in both forest cover types. SOM composition was affected by fire, even when no statistically significant losses of total C stocks were evident. The most pronounced differences in SOM composition between burned and unburned reference areas occurred in the forest floor for both cover types. Carbohydrate stocks in forest floor and mineral horizons decreased with severity level in both cover types, whereas pyrogenic C stocks increased with severity in the coniferous forest floor and decreased in only the highest severity level in the deciduous forest floor. Loss of carbohydrate and lignin pools contributed to a decreased SOM stability index and increased decomposition index. Our results suggest that increases in fire severity expected to occur under future climate scenarios may lead to changes in SOM composition and dynamics with consequences for postfire forest recovery and C uptake.

  13. Habitat selection by owls in a seasonal semi-deciduous forest in southern Brazil.

    PubMed

    Menq, W; Anjos, L

    2015-11-01

    This paper tested the hypothesis that the structural components of vegetation have impact over the distribution of owl species in a fragment of a semi-deciduous seasonal forest. This paper also determined which vegetation variables contributed to the spatial distribution of owl species. It was developed in the Perobas Biological Reserve (PBR) between September and December 2011. To conduct the owl census, a playback technique was applied at hearing points distributed to cover different vegetation types in the study area. A total of 56 individual owls of six species were recorded: Tropical Screech-Owl (Megascops choliba), Black-capped Screech-Owl (Megascops atricapilla), Tawny-browed Owl (Pulsatrix koeniswaldiana), Ferruginous Pygmy-Owl (Glaucidium brasilianum), Mottled Owl (Strix virgata) and Stygian Owl (Asio stygius). The results suggest that the variables of vegetation structure have impact on the occurrence of owls. The canopy height, the presence of hollow trees, fallen trees and glades are the most important structural components influencing owl distribution in the sampled area. PMID:26602354

  14. Comparison of light harvesting and resource allocation strategies between two rhizomatous herbaceous species inhabiting deciduous forests.

    PubMed

    Ida, Takashi Y; Kudo, Gaku

    2009-03-01

    Light conditions on the floor of deciduous forests are determined by the leaf dynamics of canopy trees and gap formation. Such spatiotemporal variations of light availability should affect the resource partitioning strategies of understory herbs. Although rhizomatous species are common in understory, relationships between rhizome structure, vegetative growth, and sexual reproduction are unclear in terms of carbon allocation. We compared the photosynthetic characteristics and carbon translocation patterns in the under-canopy and light-gap sites between two summer-green perennial species: Cardamine leucantha with an annual long rhizome, and Smilacina japonica with a perennial short rhizome system. Flowering of both species occurs in early summer under decreasing light availability. In the light-gap, C. leucantha maintained high photosynthetic activity due to continuous leaf production, resulting in higher seed production than in the under-canopy. In contrast, the photosynthetic rate of S. japonica, producing leaves simultaneously, decreased with time irrespective of light conditions, resulting in stable seed production in both sites. Although seasonally decreasing light availability commonly restricts carbon assimilation of understory herbs, the responses of resource partitioning to variations in light availability depend greatly on the belowground structure of individual species.

  15. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest.

    PubMed

    Kopecky, Jan; Kyselkova, Martina; Omelka, Marek; Cermak, Ladislav; Novotna, Jitka; Grundmann, Genevieve L; Moënne-Loccoz, Yvan; Sagova-Mareckova, Marketa

    2011-11-01

    Members of the Actinobacteria are among the most important litter decomposers in soil. The site of a waterlogged deciduous forest with acidic soil was explored for actinobacteria because seasonality of litter inputs, temperature, and precipitation provided contrasting environmental conditions, particularly variation of organic matter quantity and quality. We hypothesized that these factors, which are known to influence decomposition, were also likely to affect actinobacterial community composition. The relationship between the actinobacterial community, soil moisture and organic matter content was assessed in two soil horizons in the summer and winter seasons using a 16S rRNA taxonomic microarray and cloning-sequencing of 16S rRNA genes. Both approaches showed that the community differed significantly between horizons and seasons, paralleling the changes in soil moisture and organic matter content. The microarray analysis further indicated that the actinobacterial community of the upper horizon was characterized by high incidence of the genus Mycobacterium. In both horizons and seasons, the actinobacterial clone libraries were dominated (by 80%) by sequences of a separate clade sharing an ancestral node with Streptosporangineae. This relatedness is supported also by some common adaptations, for example, to soil acidity and periodic oxygen deprivation or dryness.

  16. Morphological types of arbuscular mycorrhizal fungi in roots of understory plants in Japanese deciduous broadleaved forests.

    PubMed

    Yamato, Masahide; Iwasaki, Masahiro

    2002-12-01

    Morphological types of arbuscular mycorrhizal (AM) fungi in roots of understorey plants were examined in three different Japanese deciduous broadleaved forests. In total, 43 species belonging to 33 genera from 27 families were examined for the morphological types of AM. The number of flowering plant species having Paris-type AM was greater than those having Arum-type AM in each plot. This tendency was more prominent in herbaceous plants than woody plants with nine species having Paris-type associations among ten herbaceous plant species examined. Therefore, it is suggested from the ecological point of view that Paris-type associations could be advantageous for the herbaceous understorey plants growing slowly in these environments. The influence of plant identity on the morphological types of AM was also discussed by arranging the plants examined with the morphological types in a current plant phylogeny scheme. In this study, some new records on the morphological types of AM in some new plant families were obtained including the first report of a typical Arum-type AM in gymnosperms.

  17. Morphological and molecular characterization of Humaria and Genea ectomycorrhizae from Hungarian deciduous forests.

    PubMed

    Eros-Honti, Zsolt; Kovács, Gábor M; Szedlay, Gyöngyi; Jakucs, Erzsébet

    2008-03-01

    The ectomycorrhizae (EM) of Humaria and Genea, two closely related genera of the Pyronemataceae (Ascomycetes), were regularly found in different deciduous forests of Hungary. In the present paper, the morphology and anatomy of these EM are described in detail, including morphometric analyses. Identification of the EM was carried out by molecular taxonomic analyses of the nrDNA ITS sequences obtained from mycorrhizae, herbarium ascomata, and public databases. The anatomy of the EM, examined during this work, was almost identical. They possessed angular outer and epidermoid inner mantle layers and warted, thick-walled emanating hyphae. Ten of our EM sequences grouped into the clade of Humaria hemisphaerica sequences and one into the genus Genea. Both molecular taxonomic analysis and morphometry differentiated three sub-groups within the clade of Humaria, and these methods also clearly separated the EM of Genea from those of Humaria. We may suppose that the previous morphological-anatomical descriptions, lacking molecular taxonomic identification, do not concern the denominated taxa. As a consequence, we stress the importance of revaluating the literature data, based on morphotyping of Humaria and Genea EM, to prevent misidentification in future studies. The presented work demonstrates that combining molecular and morphological analysis is essential for the unambiguous identification of the EM formed by problematic taxa.

  18. Microhabitat of small mammals at ground and understorey levels in a deciduous, southern Atlantic forest.

    PubMed

    Melo, Geruza L; Miotto, Barbara; Peres, Brisa; Cáceres, Nilton C

    2013-01-01

    Each animal species selects specific microhabitats for protection, foraging, or micro-climate. To understand the distribution patterns of small mammals on the ground and in the understorey, we investigated the use of microhabitats by small mammals in a deciduous forest of southern Brazil. Ten trap stations with seven capture points were used to sample the following microhabitats: liana, fallen log, ground litter, terrestrial ferns, simple-trunk tree, forked tree, and Piper sp. shrubs. Seven field phases were conducted, each for eight consecutive days, from September 2006 through January 2008. Four species of rodents (Akodon montensis, Sooretamys angouya, Oligoryzomys nigripes and Mus musculus) and two species of marsupials (Didelphis albiventris and Gracilinanus microtarsus) were captured. Captured species presented significant differences on their microhabitat use (ANOVA, p = 0.003), particularly between ground and understorey sites. Akodon montensis selected positively terrestrial ferns and trunks, S. angouya selected lianas, D. albiventris selected fallen trunks and Piper sp., and G. microtarsus choose tree trunks and lianas. We demonstrated that the local small-mammal assemblage does select microhabitats, with different types of associations between species and habitats. Besides, there is a strong evidence of habitat selection in order to diminish predation.

  19. In situ net mineralization rates in a heterogeneous mixed deciduous forest receiving elevated n deposition.

    PubMed

    Vervaet, H; Boeckx, P; Van Cleemput, O; Hofman, G

    2001-01-01

    In situ net mineralization was studied at 6 locations (E, Eb, Ec, F1, F2, F3) of a heterogeneous mixed deciduous forest ("De Gulkeputten") with oak (Quercus robur L., Quercus rubra) and birch (Betula pendula) as dominant species. Net nitrogen mineralization was determined by means of a sequential in situ incubation experiment using intact soil cores. For all incubations, the net mineralization rates of the organic (F+H) layer varied between -0.4 and 2.0 g N m(-2) month(-1), while the net nitrification rates varied between -0.6 and 0.7 g NO3- -N m(-2) month(-1). The net mineralization and nitrification rates of the mineral (0-30 cm) layer ranged from 4.5 g N m(-2) month(-1)to 8.8 g N m(-2) month(-1)and from -1.0 to 4.9 g NO3- -N m(-2) month(-1) respectively. In general, net mineralization rates increased from August 1998 to October 1998. Net mineralization rates were positively correlated with the gravimetrical moisture content and mineralization and nitrification rates were mutually positively correlated.

  20. Evaluation of time-average dispersion models for estimating pheromone concentration in a deciduous forest.

    PubMed

    Elkinton, J S; Cardé, R T; Mason, C J

    1984-07-01

    The Sutton and more recent Gaussian plume models of atmospheric dispersion were used to estimate downwind concentrations of pheromone in a deciduous forest. Wind measurements from two bivane anemometers were recorded every 12 sec and the pheromone was emitted from a point source 1.6 m above ground level at known rates. The wingfanning response of individually caged male gypsy moths (Lymantria dispar) at 15 sites situated 20 to 80 m downwind was used to monitor when pheromone levels were above threshold over a 15-min interval. Predicted concentrations from these Gaussian-type models at locations where wing fanning occurred were often several orders of magnitude below the known behavioral thresholds determined from wind tunnel tests. Probit analyses of dose-response relationships with these models showed no relationship between predicted dose and actual response. The disparity between the predictions of concentration from these models and the actual response patterns of the male gypsy moth in the field was not unexpected. These time-average models predict concentrations for a fixed position over 3-min or longer intervals, based upon the dispersion coefficients. Thus the models estimate pheromone concentrations for time intervals appreciably longer than required for behavioral response.

  1. Comparison of litter decomposing ability among diverse fungi in a cool temperate deciduous forest in Japan.

    PubMed

    Osono, Takashi; Takeda, Hiroshi

    2002-01-01

    The litter decomposing ability of 79 fungal isolates (41 genera, 60 species) was assessed with the pure culture decomposition test. The isolates were collected qualitatively in a cool temperate deciduous forest in Japan during a 21-mo period. Loss of original weight of sterilized litter ranged from 0.1% to 57.6%. Six isolates in the Basidiomycota caused high weight losses ranging from 15.1% to 57.6%. Fourteen isolates in Xylaria and Geniculosporium (the Xylariaceae and its anamorph) also caused high weight losses ranging from 4.0% to 14.4%. Other isolates in the Ascomycota and associated anamorphs and in the Zygomycota caused low weight losses on mean. Six fungi in the Basidiomycota, and all in the Xylariaceae showed a bleaching activity of the litter and caused lignin and carbohydrate decomposition. Mean lignin/weight loss ratios (L/W) and lignin/carbohydrate loss ratios (L/C), were 0.9 and 0.7 for the Basidiomycota and 0.7 and 0.4 for the Xylariaceae, respectively. Significant differences were found in L/W and L/C between the two groups when the result of Xylaria sp. that showed marked delignification was excluded. These differences in lignin and carbohydrate utilization patterns are discussed in relation to the structural and the chemical properties of the decomposed litter and to the implications for organic chemical changes during litter decomposition processes.

  2. Habitat selection by owls in a seasonal semi-deciduous forest in southern Brazil.

    PubMed

    Menq, W; Anjos, L

    2015-11-01

    This paper tested the hypothesis that the structural components of vegetation have impact over the distribution of owl species in a fragment of a semi-deciduous seasonal forest. This paper also determined which vegetation variables contributed to the spatial distribution of owl species. It was developed in the Perobas Biological Reserve (PBR) between September and December 2011. To conduct the owl census, a playback technique was applied at hearing points distributed to cover different vegetation types in the study area. A total of 56 individual owls of six species were recorded: Tropical Screech-Owl (Megascops choliba), Black-capped Screech-Owl (Megascops atricapilla), Tawny-browed Owl (Pulsatrix koeniswaldiana), Ferruginous Pygmy-Owl (Glaucidium brasilianum), Mottled Owl (Strix virgata) and Stygian Owl (Asio stygius). The results suggest that the variables of vegetation structure have impact on the occurrence of owls. The canopy height, the presence of hollow trees, fallen trees and glades are the most important structural components influencing owl distribution in the sampled area.

  3. Intraspecific sequence variation of chloroplast DNA among the component species of deciduous broad-leaved forests in Japan.

    PubMed

    Iwasaki, Takaya; Aoki, Kyoko; Seo, Akihiro; Murakami, Noriaki

    2006-09-01

    To select appropriate plant materials for a phylogeography of deciduous broad-leaved forests in Japan, we surveyed intraspecific chloroplast DNA variation in 34 species found in these forests. A relatively large number of intraspecific cpDNA variations were detected in ten species: Carpinus japonica (nucleotide diversity pi=0.00083), C. laxiflora (pi=0.00221), Magnolia obovata (pi=0.00134), Lindera triloba (pi=0.00255), L. obtusiloba (pi=0.00289), Pourthiaea villosa var. leavis (pi=0.00263), Acer japonicum (pi=0.00170), A. micranthum (pi=0.00237), Euonymus oxyphyllus (pi=0.00322) and Styrax obassia (pi=0.00100).

  4. Soil fluxes of carbon dioxide, nitrous oxide, and methane at a productive temperate deciduous forest

    SciTech Connect

    Bowden, R.D.; Rullo, G.; Stevens, G.R.; Steudler, P.A.

    2000-02-01

    The authors measured CO{sub 2}, N{sub 2}O, and CH{sub 4} fluxes between soils and the atmosphere in ambient and N-addition plots at a productive black cherry-sugar maple forest in northwest Pennsylvania to examine the link between N-cycling and trace gas fluxes. Fluxes were estimated using in-situ chambers. Net annual N mineralization was 121.0 kg N ha{sup {minus}1}yr{sup {minus}1}, and net nitrification was 85.8 kg N ha{sup {minus}1}yr{sup {minus}1}, or 71% of net mineralization. Carbon dioxide efflux and CH{sub 4} uptake were among the highest rates reported for temperate deciduous forests. Emissions of N{sub 2}O were within the range of rates reported elsewhere, including locations with lower rates of N-cycling. A short-term study (May-Oct.) showed that N fertilization reduced both CO{sub 2} emissions and CH{sub 4} uptake. N{sub 2}O effluxes in fertilized plots were not different from control plots. The relatively high rate of soil respiration corresponded to a high rate of N-cycling; however, N{sub 2}O emissions were not necessarily result in large emissions of N{sub 2}O. Concurrent rapid rates of N-cycling and high rates of CH{sub 4} uptake did not support the hypothesis that N-cycling rates directly control CH{sub 4} uptake. Links between N-cycling and CH{sub 4} oxidation are complex; the influence of N-cycling on flux rates must consider not only the rate of cycling, but also the disposition of N-cycling products, and the factors that influence rates of N dynamics.

  5. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment.

    PubMed

    Norby, Richard J; Ledford, Joanne; Reilly, Carolyn D; Miller, Nicole E; O'Neill, Elizabeth G

    2004-06-29

    Fine-root production and turnover are important regulators of the biogeochemical cycles of ecosystems and key components of their response to global change. We present a nearly continuous 6-year record of fine-root production and mortality from minirhizotron analysis of a closed-canopy, deciduous sweetgum forest in a free-air CO(2) enrichment experiment. Annual production of fine roots was more than doubled in plots with 550 ppm CO(2) compared with plots in ambient air. This response was the primary component of the sustained 22% increase in net primary productivity. Annual fine-root mortality matched annual production, and the mean residence time of roots was not altered by elevated CO(2), but peak fine-root standing crop in midsummer was significantly higher in CO(2)-enriched plots, especially deeper in the soil profile. The preferential allocation of additional carbon to fine roots, which have a fast turnover rate in this species, rather than to stemwood reduces the possibility of long-term enhancement by elevated CO(2) of carbon sequestration in biomass. However, sequestration of some of the fine-root carbon in soil pools is not precluded, and there may be other benefits to the tree from a seasonally larger and deeper fine-root system. Root-system dynamics can explain differences among ecosystems in their response to elevated atmospheric CO(2); hence, accurate assessments of carbon flux and storage in forests in a globally changing atmosphere must account for this unseen and difficult-to-measure component.

  6. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment

    PubMed Central

    Norby, Richard J.; Ledford, Joanne; Reilly, Carolyn D.; Miller, Nicole E.; O'Neill, Elizabeth G.

    2004-01-01

    Fine-root production and turnover are important regulators of the biogeochemical cycles of ecosystems and key components of their response to global change. We present a nearly continuous 6-year record of fine-root production and mortality from minirhizotron analysis of a closed-canopy, deciduous sweetgum forest in a free-air CO2 enrichment experiment. Annual production of fine roots was more than doubled in plots with 550 ppm CO2 compared with plots in ambient air. This response was the primary component of the sustained 22% increase in net primary productivity. Annual fine-root mortality matched annual production, and the mean residence time of roots was not altered by elevated CO2, but peak fine-root standing crop in midsummer was significantly higher in CO2-enriched plots, especially deeper in the soil profile. The preferential allocation of additional carbon to fine roots, which have a fast turnover rate in this species, rather than to stemwood reduces the possibility of long-term enhancement by elevated CO2 of carbon sequestration in biomass. However, sequestration of some of the fine-root carbon in soil pools is not precluded, and there may be other benefits to the tree from a seasonally larger and deeper fine-root system. Root-system dynamics can explain differences among ecosystems in their response to elevated atmospheric CO2; hence, accurate assessments of carbon flux and storage in forests in a globally changing atmosphere must account for this unseen and difficult-to-measure component. PMID:15210962

  7. Temperature-independent diel variation in soil respiration observed from a temperate deciduous forest

    SciTech Connect

    Post, Wilfred M; Liu, Qing; Edwards, Nelson T; Gu, Lianhong; Childs, Joanne; Lenhart, Suzanne M

    2006-01-01

    The response of soil respiration (Rs) to temperature depends largely on the temporal and spatial scales of interest and how other environmental factors interact with this response. They are often represented by empirical exponential equations in many ecosystem analyses because of the difficulties in separating covarying environmental responses and in observing below ground processes. The objective of this study was to quantify a soil temperature-independent component in Rs by examining the diel variation of an Rs time series measured in a temperate deciduous forest located at Oak Ridge, TN, USA between March and December 2003. By fitting 2 hourly, continuous automatic chamber measurements of CO2 efflux at the soil surface to a Q10 function to obtain the temperature-dependent respiration (Rt) and plotting the diel cycles of Rt, Rs, and their difference (Ri), we found that an obvious temperature-independent component exists in Rs during the growing season. The diel cycle of this component has a distinct day/night pattern and agrees well with diel variations in photosynthetically active radiation (PAR) and air temperature. Elevated canopy CO2 concentration resulted in similar patterns in the diel cycle of the temperature-independent component but with different daily average rates in different stages of growing season. We speculate that photosynthesis of the stand is one of the main contributors to this temperature-independent respiration component although more experiments are needed to draw a firm conclusion. We also found that despite its relatively small magnitude compared with the temperature-dependent component, the diel variation in the temperature-independent component can lead to significantly different estimates of the temperature sensitivity of soil respiration in the study forest. As a result, the common practice of using fitted temperature-dependent function from night-time measurements to extrapolate soil respiration during the daytime may underestimate

  8. Soil processes drive seasonal variation in retention of 15N tracers in a deciduous forest catchment.

    PubMed

    Goodale, Christine L; Fredriksen, Guinevere; Weiss, Marissa S; McCalley, K; Sparks, Jed P; Thomas, Steven A

    2015-10-01

    Seasonal patterns of stream nitrate concentration have long been interpreted as demonstrating the central role of plant uptake in regulating stream nitrogen loss from forested catchments. Soil processes are rarely considered as important drivers of these patterns. We examined seasonal variation in N retention in a deciduous forest using three whole-ecosystem 15N tracer additions: in late April (post-snowmelt, pre-leaf-out), late July (mid-growing- season), and late October (end of leaf-fall). We expected that plant 15N uptake would peak in late spring and midsummer, that immobilization in surface litter and soil would peak the following autumn leaf-fall, and that leaching losses would vary inversely with 15N retention. Similar to most other 15N tracer studies, we found that litter and soils dominated ecosystem retention of added 15N. However, 15N recovery in detrital pools varied tremendously by season, with > 90% retention in spring and autumn and sharply reduced 15N retention in late summer. During spring, over half of the 15N retained in soil occurred within one day in the heavy (mineral-associated) soil fraction. During summer, a large decrease in 15N retention one week after addition coincided with increased losses of 15NO3- to soil leachate and seasonal increases in soil and stream NO3- concentrations, although leaching accounted for only a small fraction of the lost 15N (< 0.2%). Uptake of 15N into roots did not vary by season and accounted for < 4% of each tracer addition. Denitrification or other processes that lead to N gas loss may have consumed the rest. These measurements of 15N movement provide strong evidence for the dominant role of soil processes in regulating seasonal N retention and losses in this catchment and perhaps others with similar soils.

  9. Radio-cesium accumulation during decomposition of leaf litter in a deciduous forest after the Fukushima NPP accident.

    NASA Astrophysics Data System (ADS)

    Kaneko, Nobuhiro; Huang, Yao; Nakamori, Taizo; Tanaka, Yoichiro; Nonaka, Masanori

    2013-04-01

    Fukusima NPP accident contaminated vast area in eastern Japan with radio isotopes. Most of the area is covered by natural and plantation forest. The forest floor in deciduous forests, and canopy of evergreen forest were most contaminated by fall out. Radio-cesium is known to stay bioavailable in forest ecosystems for long time, and it is necessary to cut the cycling process to decontaminate the forest ecosystem. Ecological process to recycle radio-Cs in forest ecosystem should be studied to enhance decontamination of radio-Cs. Mushrooms show high concentration of Cs. Although mushroom biomass in a forest ecosystem is small, fungal mycelium in detritus and soil is large, thus fungi contain substantial amount of radio-Cs. It is well known that concentration of some nutrients, such as nitrogen and phosphorus, increase, whereas potassium decreases during the leaf litter decomposition. We observed radio-Cs concentration of leaf litter during decomposition on a forest floor where 134-Cs and 137-Cs of surface soil were 5,700, and 6,800 Bq/kg, respectively. We put 16 g (dry weight) of newly fallen mixed deciduous leaf litter (half of which was oak, Quercus serrata) into 25 cm x 25 cm litter bag (2 mm mesh size) in a deciduous forest about 50 km from Fukushima NPP. Fresh litter 137-Cs concentration was ca. 1,000 Bq/kg in December 2011. During the decomposition process on the forest floor, litter Cs increased exponentially and exceeded 10,000 Bq/kg after 6 months, indicating that Cs and K show contrasting dynamics during early decomposition phase. Increase in fungal biomass in the early stage of litter decomposition was observed. Therefore, this upward movement of Cs from humus and soil layer suggests fungal translocation of nutrients from outside of litter substrate. Retrieving the litter after 6 months can remove 18.0% of 134-Cs. Interaction between fungal species, grazing effect on fungi by fungivorous invertebrates will change the amount of translocation of radio-Cs from

  10. Comparative phylogeography of four component species of deciduous broad-leaved forests in Japan based on chloroplast DNA variation.

    PubMed

    Iwasaki, Takaya; Aoki, Kyoko; Seo, Akihiro; Murakami, Noriaki

    2012-03-01

    A phylogeographic study of four tree species (Padus grayana, Euonymus oxyphyllus, Magnolia hypoleuca, and Carpinus laxiflora) growing in Japanese deciduous broad-leaved forests was conducted based on chloroplast DNA (cpDNA) variations. Using nucleotide sequences of 702-1,059 bp of intergenic spacers of cpDNA, 20, 27, eight, and eight haplotypes were detected among 251, 251, 226, and 262 individuals sampled from 67, 79, 75, and 71 populations of the above species, respectively. The geographical pattern of the cpDNA variations was highly structured in each species, and the following three regional populations were genetically highly differentiated among all four species: (1) the Sea of Japan-side area, (2) the Kanto region, and (3) southwestern Japan. Based on some interspecific similarities among the phylogeographic patterns, the following migration scenario of Japanese deciduous broad-leaved forests was postulated. During the last glacial maximum (LGM), the forests were separately distributed in six regions. After LGM, as the climate warmed, the forests in eastern Japan separately expanded from each of the refugia along the Sea of Japan-side or along the Pacific Ocean-side. In contrast, those in southwestern Japan retreated and moved to high altitudes from each of the continuous forests.

  11. Sapling herbivory, invertebrate herbivores and predators across a natural tree diversity gradient in Germany's largest connected deciduous forest.

    PubMed

    Sobek, Stephanie; Scherber, Christoph; Steffan-Dewenter, Ingolf; Tscharntke, Teja

    2009-05-01

    Tree species-rich forests are hypothesised to be less susceptible to insect herbivores, but so far herbivory-diversity relationships have rarely been tested for tree saplings, and no such study has been published for deciduous forests in Central Europe. We expected that diverse tree communities reduce the probability of detection of host plants and increase abundance of predators, thereby reducing herbivory. We examined levels of herbivory suffered by beech (Fagus sylvatica L.) and maple saplings (Acer pseudoplatanus L. and Acer platanoides L.) across a tree species diversity gradient within Germany's largest remaining deciduous forest area, and investigated whether simple beech or mixed stands were less prone to damage caused by herbivorous insects. Leaf area loss and the frequency of galls and mines were recorded for 1,040 saplings (>13,000 leaves) in June and August 2006. In addition, relative abundance of predators was assessed to test for potential top-down control. Leaf area loss was generally higher in the two species of maple compared to beech saplings, while only beech showed a decline in damage caused by leaf-chewing herbivores across the tree diversity gradient. No significant patterns were found for galls and mines. Relative abundance of predators on beech showed a seasonal response and increased on species-rich plots in June, suggesting higher biological control. We conclude that, in temperate deciduous forests, herbivory-tree diversity relationships are significant, but are tree species-dependent with bottom-up and top-down control as possible mechanisms. In contrast to maple, beech profits from growing in a neighbourhood of higher tree richness, which implies that species identity effects may be of greater importance than tree diversity effects per se. Hence, herbivory on beech appeared to be mediated bottom-up by resource concentration in the sampled forest stands, as well as regulated top-down through biocontrol by natural enemies.

  12. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.

    PubMed

    Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie

    2016-10-01

    For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally. PMID:27232973

  13. More than Drought: Precipitation Variance, Excessive Wetness, Pathogens and the Future of the Western Edge of the Eastern Deciduous Forest.

    PubMed

    Hubbart, Jason A; Guyette, Richard; Muzika, Rose-Marie

    2016-10-01

    For many regions of the Earth, anthropogenic climate change is expected to result in increasingly divergent climate extremes. However, little is known about how increasing climate variance may affect ecosystem productivity. Forest ecosystems may be particularly susceptible to this problem considering the complex organizational structure of specialized species niche adaptations. Forest decline is often attributable to multiple stressors including prolonged heat, wildfire and insect outbreaks. These disturbances, often categorized as megadisturbances, can push temperate forests beyond sustainability thresholds. Absent from much of the contemporary forest health literature, however, is the discussion of excessive precipitation that may affect other disturbances synergistically or that might represent a principal stressor. Here, specific points of evidence are provided including historic climatology, variance predictions from global change modeling, Midwestern paleo climate data, local climate influences on net ecosystem exchange and productivity, and pathogen influences on oak mortality. Data sources reveal potential trends, deserving further investigation, indicating that the western edge of the Eastern Deciduous forest may be impacted by ongoing increased precipitation, precipitation variance and excessive wetness. Data presented, in conjunction with recent regional forest health concerns, suggest that climate variance including drought and excessive wetness should be equally considered for forest ecosystem resilience against increasingly dynamic climate. This communication serves as an alert to the need for studies on potential impacts of increasing climate variance and excessive wetness in forest ecosystem health and productivity in the Midwest US and similar forest ecosystems globally.

  14. Diurnal resting in brown lemurs in a dry deciduous forest, northwestern Madagascar: implications for seasonal thermoregulation.

    PubMed

    Sato, Hiroki

    2012-07-01

    Decreased activity has been reported in both nocturnal and diurnal primates during the prolonged dry season in western Madagascar, and this has been interpreted as a reaction to the severe environment, with its food scarcity and/or thermal stress. Several day-active lemurs rest more as trees defoliate, although the reason for this is unclear. To understand the mechanism underpinning the diurnal resting of lemurs in seasonal deciduous forests, I observed common brown lemurs (Eulemur fulvus fulvus) for one year in Ankarafantsika National Park, northwestern Madagascar. In Ankarafantsika, despite high fruit availability during the dry season, brown lemurs are known to engage in diurnal resting. To examine the effects of thermal factors and defoliation on lemur inactivity, I recorded the activity of a troop at 1 min intervals, hourly ambient temperature, daily rainfall, and weather during observations (06:00-18:00). I quantified the amount of leaves biweekly for 680 trees. I tested correlations between percentages of resting time and each factor across hours during the day and across seasons. During the rainy season, resting time did not differ between sunny and cloudy days, and lemurs were active throughout the daytime. At the hourly level during the dry season, lemurs rested exclusively at midday, apparently at peak sunlight intensity rather than at peak ambient temperature. At seasonal level, percentages of total resting time from 08:00 to 16:00 were greater during dry season (81.9%) than during rainy season (62.6%), and percentages increased as ambient temperatures increased. Defoliation was related to seasonal decrease in weekly rainfall, which served as an index of water retained in the forest. Defoliation probably reflected aridification as well as the penetration of sunlight into the forest. Diurnal resting increased as both the amount of leaves and weekly rainfall decreased seasonally. These results suggest that heat stress under dry conditions may promote

  15. Leaf dynamics of a deciduous forest canopy: no response to elevated CO2.

    PubMed

    Norby, Richard J; Sholtis, Johnna D; Gunderson, Carla A; Jawdy, Sara S

    2003-08-01

    Leaf area index (LAI) and its seasonal dynamics are key determinants of terrestrial productivity and, therefore, of the response of ecosystems to a rising atmospheric CO(2) concentration. Despite the central importance of LAI, there is very little evidence from which to assess how forest LAI will respond to increasing [CO(2)]. We assessed LAI and related leaf indices of a closed-canopy deciduous forest for 4 years in 25-m-diameter plots that were exposed to ambient or elevated CO(2) (542 ppm) in a free-air CO(2) enrichment (FACE) experiment. LAI of this Liquidambar styraciflua (sweetgum) stand was about 6 and was relatively constant year-to-year, including the 2 years prior to the onset of CO(2) treatment. LAI throughout the 1999-2002 growing seasons was assessed through a combination of data on photosynthetically active radiation (PAR) transmittance, mass of litter collected in traps, and leaf mass per unit area (LMA). There was no effect of [CO(2)] on any expression of leaf area, including peak LAI, average LAI, or leaf area duration. Canopy mass and LMA, however, were significantly increased by CO(2) enrichment. The hypothesized connection between light compensation point (LCP) and LAI was rejected because LCP was reduced by [CO(2)] enrichment only in leaves under full sun, but not in shaded leaves. Data on PAR interception also permitted calculation of absorbed PAR (APAR) and light use efficiency (LUE), which are key parameters connecting satellite assessments of terrestrial productivity with ecosystem models of future productivity. There was no effect of [CO(2)] on APAR, and the observed increase in net primary productivity in elevated [CO(2)] was ascribed to an increase in LUE, which ranged from 1.4 to 2.4 g MJ(-1). The current evidence seems convincing that LAI of non-expanding forest stands will not be different in a future CO(2)-enriched atmosphere and that increases in LUE and productivity in elevated [CO(2)] are driven primarily by functional responses

  16. Changes in conifer and deciduous forest foliar and forest floor chemistry and basal area tree growth across a nitrogen (N) deposition gradient in the northeastern US.

    PubMed

    Boggs, Johnny L; McNulty, Steven G; Pardo, Linda H

    2007-10-01

    We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999, we observed a significant correlation between mean growing season temperature and red spruce basal area growth. Red spruce and deciduous foliar %N correlated significantly with N deposition. Although N deposition has not changed significantly from 1987/1988 to 1999, net nitrification potential decreased significantly at Whiteface. This decrease in net potential nitrification is not consistent with the N saturation hypothesis and suggests that non-N deposition controls, such as climatic factors and immobilization of down dead wood, might have limited N cycling.

  17. Nitrogen Limitation is Reducing the Enhancement of NPP by Elevated CO2 in a Deciduous Forest

    SciTech Connect

    Norby, Richard J; Warren, Jeffrey; Iversen, Colleen M; Medlyn, Belinda; McMurtrie, Ross; Hoffman, Forrest M

    2008-01-01

    Accurate model representation of the long-term response of forested ecosystems to elevated atmospheric CO2 concentrations (eCO2) is important for predictions of future concentrations of CO2. For biogeochemical models that predict the response of net primary productivity (NPP) to eCO2, free-air CO2 enrichment (FACE) experiments provide the only source of data for comparison. A synthesis of forest FACE experiments reported a 23% increase in NPP in eCO2, and this result has been used as a model benchmark. Here, we provide new evidence from a FACE experiment in a deciduous forest in Tennessee that N limitation has significantly reduced the stimulation of NPP by eCO2, consistent with predictions from ecosystem and global models that incorporate N feedbacks. The Liquidambar styraciflua stand has been exposed to current ambient atmospheric CO2 or air enriched with CO2 to 550 ppm since 1998. Results from the first 6 years of the experiment indicated that NPP was significantly enhanced by eCO2 and that this was a consistent and sustained response. Now, with 10 years of data, our analysis must be revised. The response of NPP to eCO2 has declined from 24% in 2001-2003 to 9% in 2007. The diminishing response to eCO2 since 2004 coincides with declining NPP in ambient CO2 plots. Productivity of this forest stand is limited by N availability, and the steady decline in forest NPP is closely related to changes in the N economy, as evidenced by declining foliar N concentrations. There is a strong linear relationship between foliar [N] and NPP, and the steeper slope in eCO2 indicates that the NPP response to eCO2 should diminish as foliar N declines. Increased fine-root production and root proliferation deeper in the soil have sustained N uptake, but not to an extent sufficient to benefit aboveground production. The mechanistic basis of the N effect on NPP resides in the photosynthetic machinery. The linear relationships between Jmax and Vcmax with foliar [N] did not change from 1998

  18. [Classification method of deciduous-conifer mixed forest in jilin province based on GIS-TM remote sensing image].

    PubMed

    Wang, Lihai; Zhao, Zhengyong; Yang, Qi

    2006-04-01

    To improve the accuracy of automatic classification and identification of TM remote sensing images in forest area, an expert system for automatically classifying and identifying deciduous-conifer mixed forest was built up, based on the GIS technique, quantitative analysis on the internal relations between geographic factors such as DEM and slope aspect and environment factors like soil type, and qualitative analysis on the spectrum information and preclassification information of sensing images, aimed to build a classification knowledge system. Taking the TM remote sensing image of Wangqing Forest Bureau in Jilin Province as an example, the study showed that this expert system could obviously reduce the influence of mixed pixel and terrain shadow. The classification precision of this system was increased by 14.22%, compared with that of Iterative Self-Organizing Data Analysis Techniques Algorithm (ISODATA) unsupervised classification, and the Kappa index was 0.7556, which could help to classify needle, deciduous and mixed forests. Introducing GIS data into the expert system could also solve the problem that TM remote sensing image could not do, due to the loss of correct spectrum value in cloudy and shady area.

  19. Effects of seasonal variation of photosynthetic capacity on the carbon fluxes of a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Medvigy, David; Jeong, Su-Jong; Clark, Kenneth L.; Skowronski, Nicholas S.; Schäfer, Karina V. R.

    2013-12-01

    Seasonal variation in photosynthetic capacity is an important part of the overall seasonal variability of temperate deciduous forests. However, it has only recently been introduced in a few terrestrial biosphere models, and many models still do not include it. The biases that result from this omission are not well understood. In this study, we use the Ecosystem Demography 2 model to simulate an oak-dominated stand in the New Jersey Pine Barrens. Two alternative model configurations are presented, one with seasonal variation of photosynthetic capacity (SPC-ON) and one without seasonal variation of photosynthetic capacity (SPC-OFF). Under typical climate conditions, the two configurations simulate values of monthly gross primary productivity (GPP) as different as 0.05 kg C m-2 month-1 in the early summer and 0.04 kg C m-2 month-1 in the fall. The differences between SPC-ON and SPC-OFF are amplified when there is temporal correlation between photosynthetic capacity and climate anomalies or disturbances. Warmer spring temperatures enhance GPP in SPC-ON more than in SPC-OFF, but warmer fall temperatures enhance GPP in SPC-OFF more than in SPC-ON. Defoliation by gypsy moth, a class of disturbance that typically happens in late spring in the New Jersey Pine Barrens, has a disproportionately negative impact on GPP in SPC-ON. It is concluded that including seasonal variation of photosynthetic capacity in models will improve simulations of monthly scale ecosystem functioning as well as of longer-term responses to climate change and disturbances.

  20. Carbon Sequestration of Caesalpinia platyloba S. Watt (Leguminosae) (Lott 1985) in the Tropical Deciduous Forest

    PubMed Central

    Diaz-Gustavo, Norma; Martínez-Salvador, Martín; García-Hernández, José Luís; Norzagaray-Campos, Mariano; Luna-González, Antonio; González-Ocampo, Héctor Abelardo

    2015-01-01

    Caesalpinia platyloba was evaluated as an alternative for the retention of atmospheric carbon and as a feasible and viable economic activity in terms of income for tropical deciduous forest (TDF) peasants in the carbon markets. A total of 110 trees of C. platyloba from plantations and a TDF in the Northwest of Mexico were sampled. Growth (increase in height, diameter, and volume curves) was adjusted to assess their growth. Growth of individuals (height, diameter at breast height [DBH], age, and tree crown cover) was recorded. The Schumacher model (H = β0eβ1•E-1), by means of the guided curve method, was used to adjust growth models. Information analysis was made through the non-linear procedure with the multivariate secant or false position (DUD) method using the SAS software. Growth and increase models revealed acceptable adjustments (pseudo R2>0.8). C. platyloba reaches >8m of height with 12cm in diameter and 550cm3 of volume, presenting the highest increase at 11 years considered as basal age. Highest significant density of wood was in good quality sites (0.80g•cm-3), with a carbon content (average of 99.15tC•ha-1) at the highest density of 2500 trees•ha-1 (without thinning). Average incomes of US$483.33tC•ha-1 are expected. The profitability values (NPW = US$81,646.65, IRR = 472%, and B/C = 0.82) for C. platyloba make its cultivation a viable and profitable activity, considering a management scheme of the income derived from wood selling and from carbon credits. PMID:25992905

  1. Carbon Sequestration of Caesalpinia platyloba S. Watt (Leguminosae) (Lott 1985) in the Tropical Deciduous Forest.

    PubMed

    Diaz-Gustavo, Norma; Martínez-Salvador, Martín; García-Hernández, José Luís; Norzagaray-Campos, Mariano; Luna-González, Antonio; González-Ocampo, Héctor Abelardo

    2015-01-01

    Caesalpinia platyloba was evaluated as an alternative for the retention of atmospheric carbon and as a feasible and viable economic activity in terms of income for tropical deciduous forest (TDF) peasants in the carbon markets. A total of 110 trees of C. platyloba from plantations and a TDF in the Northwest of Mexico were sampled. Growth (increase in height, diameter, and volume curves) was adjusted to assess their growth. Growth of individuals (height, diameter at breast height [DBH], age, and tree crown cover) was recorded. The Schumacher model (H = β(0)e(β1 • E-1)), by means of the guided curve method, was used to adjust growth models. Information analysis was made through the non-linear procedure with the multivariate secant or false position (DUD) method using the SAS software. Growth and increase models revealed acceptable adjustments (pseudo R(2)>0.8). C. platyloba reaches >8m of height with 12 cm in diameter and 550 cm(3) of volume, presenting the highest increase at 11 years considered as basal age. Highest significant density of wood was in good quality sites (0.80 g • cm(-3)), with a carbon content (average of 99.15tC • ha(-1)) at the highest density of 2500 trees • ha(-1) (without thinning). Average incomes of US$483.33tC • ha(-1) are expected. The profitability values (NPW = US$81,646.65, IRR = 472%, and B/C = 0.82) for C. platyloba make its cultivation a viable and profitable activity, considering a management scheme of the income derived from wood selling and from carbon credits. PMID:25992905

  2. Nitrogen Leaching During a Deciduous-to-Coniferous Successional Transition in Alaska's Boreal Forest.

    NASA Astrophysics Data System (ADS)

    Brenner, R.; Jones, J.; Boone, R.

    2002-12-01

    We measured lysimeter nitrate (NO3), ammonium (NH4) and dissolved organic nitrogen (DON) concentrations in order to assess the potential for nitrogen leaching over the course of a plant primary successional sequence in the boreal forest. Our study sites were floodplain stands of balsam poplar and white spruce in interior Alaska. These stand types encompass a major successional transition during which there is a decline in soil nitrogen cycling, plant primary productivity and soil temperatures. Soil water was collected weekly during the summers of 2000 and 2001 from lysimeters installed in the organic-mineral interface (~12 cm) and in deeper mineral soil (~40cm) of each stands type. NH4 levels were generally below detection limits (<10 ppb) throughout the course of the study with the NO3 concentrations accounting for the vast majority of inorganic N. Soil water NO3 concentrations in white spruce were significantly higher at 40 cm depth (0.572 mg NO3-N/L) than at 12 cm depth (0.129mg NO3-N/L) and were also significantly higher than the 40 cm depth in balsam poplar (0.198 mg NO3-N/L). DON concentrations decreased with depth in both stand types. Our results suggest that N leaching losses (as NO3) increase over primary succession from a deciduous- to a coniferous-dominated community. We speculate that NO3 losses in white spruce stands may be higher as assimilation by soil micro flora is retarded due to a reduction in soil temperature and available carbon.

  3. Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica).

    PubMed

    Jacob, Mascha; Viedenz, Karin; Polle, Andrea; Thomas, Frank M

    2010-12-01

    We hypothesised that the decomposition rates of leaf litter will increase along a gradient of decreasing fraction of the European beech (Fagus sylvatica) and increasing tree species diversity in the generally beech-dominated Central European temperate deciduous forests due to an increase in litter quality. We studied the decomposition of leaf litter including its lignin fraction in monospecific (pure beech) stands and in stands with up to five tree genera (Acer spp., Carpinus betulus, Fagus sylvatica, Fraxinus excelsior, Tilia spp.) using a litterbag approach. Litter and lignin decomposition was more rapid in stand-representative litter from multispecific stands than in litter from pure beech stands. Except for beech litter, the decomposition rates of species-specific tree litter did not differ significantly among the stand types, but were most rapid in Fraxinus excelsior and slowest in beech in an interspecific comparison. Pairwise comparisons of the decomposition of beech litter with litter of the other tree species (except for Acer platanoides) revealed a "home field advantage" of up to 20% (more rapid litter decomposition in stands with a high fraction of its own species than in stands with a different tree species composition). Decomposition of stand-representative litter mixtures displayed additive characteristics, not significantly more rapid than predicted by the decomposition of litter from the individual tree species. Leaf litter decomposition rates were positively correlated with the initial N and Ca concentrations of the litter, and negatively with the initial C:N, C:P and lignin:N ratios. The results support our hypothesis that the overall decomposition rates are mainly influenced by the chemical composition of the individual litter species. Thus, the fraction of individual tree species in the species composition seems to be more important for the litter decomposition rates than tree species diversity itself.

  4. Fruiting trees as dispersal foci in a semi-deciduous tropical forest.

    PubMed

    Clark, C J; Poulsen, J R; Connor, E F; Parker, V T

    2004-03-01

    Quantification of seed rain patterns is an initial step toward explaining variation in plant recruitment, and consequently, organization of forest communities. Spatially contagious patterns of seed deposition, where seeds are patchily dispersed with some sites receiving relatively high densities and others receiving low densities of seeds, may be a common phenomenon for which we have very little knowledge. For example, prior feeding events by frugivores (monkeys and birds) combined with transport and dispersal of seeds to other fruiting trees may result in the contagious deposition of non-conspecific seeds below them. Here, we examined whether fruiting trees act as dispersal foci in the semi-deciduous tropical rainforest of the Dja Reserve, Cameroon. Seed rain was sampled below the canopies of nine tree species: three typically dispersed by large, frugivorous birds, three dispersed by monkeys, and three dispersed by wind. We found no evidence that monkeys generate spatially contagious patterns of seed rain under fruiting trees at which they feed. However, we found that rates of deposition of non-conspecific seeds and species richness of seeds delivered by birds (hornbills and turacos) were significantly greater during fruiting than non-fruiting periods, and significantly greater under fruiting individuals of bird-dispersed tree species than under fruiting individuals of monkey- or wind-dispersed tree species. Additionally, during fruiting periods, the composition of non-conspecific seed rain under bird-dispersed tree species was more similar to other bird-dispersed trees than to monkey- or wind-dispersed tree species. The contagious dispersal of non-conspecific seeds to fruiting, bird-dispersed trees leads to higher seed densities under fruiting trees than those caused by local seed production. Non-conspecific seeds deposited in high densities may experience increased seed mortality even far from parent trees if predators are generalists. Alternatively, in the

  5. The effects of throughfall manipulation on soil leaching in a deciduous forest.

    PubMed

    Johnson, D W; Hanson, P J; Todd, D E

    2002-01-01

    The effects of changing precipitation on soil leaching in a deciduous forest were examined by experimentally manipulating throughfall fluxes in the field. In addition to an ambient treatment (AMB), throughfall fluxes were reduced by 33% (DRY treatment) and increased by 33% (WET treatment) using a system of rain gutters and sprinklers on Walker Branch Watershed, Tennessee. Soil leaching was measured with resin lysimeters in the O horizons and with ceramic cup lysimeters in the E (25 cm) and Bt (70 cm) horizons. Large and statistically significant treatment effects on N fluxes were found in the O horizons (lower N fluxes in the DRY and higher N fluxes in the WET treatment). Together with the greater O horizon N content observed in the DRY treatment, this suggested that N was being immobilized at a greater rate in the DRY treatment than in the AMB or WET treatments. No statistically significant treatment effects on soil solution were found in the E horizons with the exception of (Ca2+ + Mg2+) to K+ ratio. Statistically significant treatment effects on electrical conductivity (EC), pH, Ca2+, Mg2+, K+, Na+, SO4(2-), and Cl- were found in the Bt horizons due to differences between the DRY and other treatments. Despite this, calculated fluxes of Ca2+, Mg2+, K+, Na+, SO4(2-), and Cl- were lowest in the DRY treatment. These results suggest that lower precipitation will cause temporary N immobilization in litter and long-term enrichment in soil base cations whereas increased precipitation will cause long-term depletion of soil base cations.

  6. Occurrence of culturable soil fungi in a tropical moist deciduous forest Similipal Biosphere Reserve, Odisha, India.

    PubMed

    Jena, Santanu K; Tayung, Kumanand; Rath, Chandi C; Parida, Debraj

    2015-03-01

    Similipal Biosphere Reserve (SBR) is a tropical moist deciduous forest dominated by the species Shorea robusta . To the best of our knowledge their rich biodiversity has not been explored in term of its microbial wealth. In the present investigation, soil samples were collected from ten selected sites inside SBR and studied for their physicochemical parameters and culturable soil fungal diversity. The soil samples were found to be acidic in nature with a pH ranging from of 5.1-6.0. Highest percentage of organic carbon and moisture content were observed in the samples collected from the sites, Chahala-1 and Chahala-2. The plate count revealed that fungal population ranged from 3.6 × 10 (4) -2.1 × 10 (5) and 5.1 × 10 (4) -4.7 × 10 (5) cfu/gm of soil in summer and winter seasons respectively. The soil fungus, Aspergillus niger was found to be the most dominant species and Species Important Values Index (SIVI) was 43.4 and 28.6 in summer and winter seasons respectively. Among the sites studied, highest fungal diversity indices were observed during summer in the sites, Natto-2 and Natto-1. The Shannon-Wiener and Simpson indices in these two sites were found to be 3.12 and 3.022 and 0.9425 and 0.9373 respectively. However, the highest Fisher's alpha was observed during winter in the sites Joranda, Natto-2, Chahala-1 and Natto-1 and the values were 3.780, 3.683, 3.575 and 3.418 respectively. Our investigation revealed that, fungal population was dependent on moisture and organic carbon (%) of the soil but its diversity was found to be regulated by sporulating species like Aspergillus and Penicillium.

  7. Carbon Sequestration of Caesalpinia platyloba S. Watt (Leguminosae) (Lott 1985) in the Tropical Deciduous Forest.

    PubMed

    Diaz-Gustavo, Norma; Martínez-Salvador, Martín; García-Hernández, José Luís; Norzagaray-Campos, Mariano; Luna-González, Antonio; González-Ocampo, Héctor Abelardo

    2015-01-01

    Caesalpinia platyloba was evaluated as an alternative for the retention of atmospheric carbon and as a feasible and viable economic activity in terms of income for tropical deciduous forest (TDF) peasants in the carbon markets. A total of 110 trees of C. platyloba from plantations and a TDF in the Northwest of Mexico were sampled. Growth (increase in height, diameter, and volume curves) was adjusted to assess their growth. Growth of individuals (height, diameter at breast height [DBH], age, and tree crown cover) was recorded. The Schumacher model (H = β(0)e(β1 • E-1)), by means of the guided curve method, was used to adjust growth models. Information analysis was made through the non-linear procedure with the multivariate secant or false position (DUD) method using the SAS software. Growth and increase models revealed acceptable adjustments (pseudo R(2)>0.8). C. platyloba reaches >8m of height with 12 cm in diameter and 550 cm(3) of volume, presenting the highest increase at 11 years considered as basal age. Highest significant density of wood was in good quality sites (0.80 g • cm(-3)), with a carbon content (average of 99.15tC • ha(-1)) at the highest density of 2500 trees • ha(-1) (without thinning). Average incomes of US$483.33tC • ha(-1) are expected. The profitability values (NPW = US$81,646.65, IRR = 472%, and B/C = 0.82) for C. platyloba make its cultivation a viable and profitable activity, considering a management scheme of the income derived from wood selling and from carbon credits.

  8. Soil respiration under mature deciduous forest trees after 7 years of CO2 enrichment

    NASA Astrophysics Data System (ADS)

    Bader, Martin; Körner, Christian

    2010-05-01

    The anthropogenic rise in atmospheric CO2 is expected to impact carbon fluxes not only at ecosystem level but also at the global scale by altering carbon cycle processes in soils. At the Swiss Canopy Crane (SCC), we examined how 7 years of free air CO2 enrichment (FACE) affected soil CO2 dynamics in a c. 100-year-old mixed deciduous forest. The use of 13C-depleted CO2 for canopy enrichment allowed us to trace the flow of recently fixed carbon (C). In the seventh year of growth at ~550 ppm CO2, soil respiratory CO2 consisted of 39% labelled C. During the growing season, soil air CO2 concentration was significantly enhanced under CO2-exposed trees. However, elevated CO2 failed to stimulate cumulative soil respiration (Rs) over the growing season. We found periodic reductions as well as increases in instantaneous rates of Rs in response to elevated CO2, depending on soil temperature and soil volumetric water content (VWC; significant 3-way interaction). During wet periods, soil water savings under CO2-enriched trees led to excessive VWC (>45%) that suppressed Rs. Elevated CO2 stimulated Rs only when VWC was ≤40% and concurrent soil temperature was high (>15 °C). Seasonal Q10 estimates of Rs were significantly lower under elevated (Q10 = 3.30) compared to ambient CO2 (Q10 = 3.97). However, this effect disappeared when 3 consecutive sampling dates of extremely high VWC were disregarded. This suggests that elevated CO2 affected Q10 mainly indirectly through changes in VWC. Fine root respiration did not differ significantly between treatments but soil microbial biomass (Cmic) increased by 14% under elevated CO2 (marginally significant). Our findings do not indicate enhanced soil C emissions in such stands under future atmospheric CO2. It remains to be shown whether C losses via leaching of dissolved organic or inorganic C (DOC, DIC) help to balance the carbon budget in this forest.

  9. Investigation of soil carbon sequestration processes in a temperate deciduous forest using soil respiration experiments

    NASA Astrophysics Data System (ADS)

    Schütze, Claudia; Marañón-Jiménez, Sara; Zöphel, Hendrik; Gimper, Sebastian; Dienstbach, Laura; Garcia Quirós, Inmaculada; Cuntz, Matthias; Rebmann, Corinna

    2016-04-01

    Considering the carbon cycles of terrestrial ecosystems, soils represent a major long-term carbon storage pool. However, the storage capacity depends on several impact parameters based on biotic factors (e.g. vegetation activity, microbial activity, nutrient availability, interactions between vegetation and microbial activity) and abiotic driving factors (e.g. soil moisture, soil temperature, soil composition). Especially, increases in vegetation and microbial activity can lead to raised soil carbon release detectable as higher soil respiration rates. Within the frame of the ICOS project, several soil respiration experiments are under consideration at the temperate deciduous forest site "Hohes Holz" (Central Germany). These experiments started in May 2014. Soil respiration data acquisition was carried out using 8 automatic continuous chambers (LI-COR) and 60 different plots for bi-weekly survey chamber measurements in order to clarify the controlling factors for soil CO2 emissions such as litter availability, above- and belowground vegetation, and activation of microbial activity with temperature, soil moisture and root occurrence. Hence, several treatments (trenched, non-trenched, litter supply) were investigated on different plots within the research area. The data analysis of the 20-month observation period reveals preliminary results of the study. Obviously, significant differences between the trenched and the non-trenched plots concerning the CO2 emissions occurred. Increased soil carbon releases are supposed to be associated to the activation of microbial mineralization of soil organic matter by root inputs. Furthermore, depending on the amount of litter supply, different levels of activation were observed. The data of the continuous chamber measurements with a temporal resolution of one hour sampling interval can be used to show the dependence on above described biogeochemical processes due to abiotic controlling factors. Especially, soil moisture as a

  10. Soil Carbon Response to Soil Warming and Nitrogen Deposition in a Temperate Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Parton, W. J.; Savage, K. E.; Davidson, E. A.; Trumbore, S.; Frey, S. D.

    2011-12-01

    While estimates of global soil C stocks vary widely, it is clear that soils store several times more C than is present in the atmosphere as CO2, and a significant fraction of soil C stocks are potentially subject to faster rates of decomposition in a warmer world. We address, through field based studies and modeling efforts, whether manipulations of soil temperature and nitrogen supply affect the magnitude and relative age of soil C substrates that are respired from a temperate deciduous forest located at Harvard Forest, MA. A soil warming and nitrogen addition experiment was initiated at the Harvard Forest in 2006. The experiment consists of six replicates of four treatments, control, heated, nitrogen, and heat+nitrogen addition. Soil temperatures in the heated plots are continuously elevated 5 oC above ambient and for the fertilized plots an aqueous solution of NH4NO3 is applied at a rate of 5 g m-2 yr-1. Soil C efflux from these plots was measured (n=24, 6 per treatment) biweekly throughout the year, while 14CO2 was measured (3 samples per treatment) several times during the summer months from 2006-2010. Following treatment, observed rates of annual C efflux increased under heating and nitrogen additions with heating treatments showing the greatest increase in respired C. The difference between control and treatments was greatest during the initial year following treatment; however this difference decreased in the subsequent 3 years of measurement. The plots designated for heating had a higher 14C signature from CO2 efflux prior to the heating (presumably due to spatial heterogeneity). However, because of the high spatial heterogeneity in measured 14C among treatments, no significant difference among treatments was observed from 2006 through 2010. Long term datasets (1995 through 2010) of soil C stocks, radiocarbon content, and CO2 efflux were used to parameterize the ForCent model for Harvard forest. The model was then run with the same treatment parameters as

  11. Radiocesium immobilization to leaf litter by fungi during first-year decomposition in a deciduous forest in Fukushima.

    PubMed

    Huang, Yao; Kaneko, Nobuhiro; Nakamori, Taizo; Miura, Toshiko; Tanaka, Yoichiro; Nonaka, Masanori; Takenaka, Chisato

    2016-02-01

    Vast forest areas in eastern Japan have been contaminated with radio-isotopes by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Radiocesium (radioCs) is known to remain bioavailable in forest ecosystems for a long time, and it is necessary to terminate the cycling process to decontaminate the forest ecosystem. We observed radiocesium concentrations of leaf litter during decomposition on a forest floor where radiocesium ((137)Cs) contamination was ∼155 kBq/m(2). Litter bag experiments were conducted with newly fallen mixed deciduous leaf litter in a deciduous forest (alt. 610 m) about 50 km from the FDNPP. Litter bags were retrieved in April, June, August, October, and December 2012. Fresh litter (137)Cs concentration was ∼3000 Bq/kg in December 2011. During the decomposition process on the forest floor, litter (137)Cs concentration increased rapidly and exceeded 25,000 Bq/kg after 6 months, whereas potassium (K) concentration in the litter was rather stable, indicating that radiocesium and K showed contrasting dynamics during the early decomposition phase. Nitrogen, phosphorus, and (137)Cs contents were positively correlated to fungal biomass, evaluated by phospholipid fatty acids in the litter during decomposition. The increase of radiocesium concentration mainly occurred during from April to October, when fungal growth peaked. Therefore, this suggests fungal translocation of nutrients from outside the litter substrate (immobilization) is the mechanism to increase radiocesium in the decomposing litter. The amount of (137)Cs contained in the 1-year-old decomposed leaf litter was estimated to be 4% per area of the soil-contaminated (137)Cs. PMID:26630038

  12. Radiocesium immobilization to leaf litter by fungi during first-year decomposition in a deciduous forest in Fukushima.

    PubMed

    Huang, Yao; Kaneko, Nobuhiro; Nakamori, Taizo; Miura, Toshiko; Tanaka, Yoichiro; Nonaka, Masanori; Takenaka, Chisato

    2016-02-01

    Vast forest areas in eastern Japan have been contaminated with radio-isotopes by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Radiocesium (radioCs) is known to remain bioavailable in forest ecosystems for a long time, and it is necessary to terminate the cycling process to decontaminate the forest ecosystem. We observed radiocesium concentrations of leaf litter during decomposition on a forest floor where radiocesium ((137)Cs) contamination was ∼155 kBq/m(2). Litter bag experiments were conducted with newly fallen mixed deciduous leaf litter in a deciduous forest (alt. 610 m) about 50 km from the FDNPP. Litter bags were retrieved in April, June, August, October, and December 2012. Fresh litter (137)Cs concentration was ∼3000 Bq/kg in December 2011. During the decomposition process on the forest floor, litter (137)Cs concentration increased rapidly and exceeded 25,000 Bq/kg after 6 months, whereas potassium (K) concentration in the litter was rather stable, indicating that radiocesium and K showed contrasting dynamics during the early decomposition phase. Nitrogen, phosphorus, and (137)Cs contents were positively correlated to fungal biomass, evaluated by phospholipid fatty acids in the litter during decomposition. The increase of radiocesium concentration mainly occurred during from April to October, when fungal growth peaked. Therefore, this suggests fungal translocation of nutrients from outside the litter substrate (immobilization) is the mechanism to increase radiocesium in the decomposing litter. The amount of (137)Cs contained in the 1-year-old decomposed leaf litter was estimated to be 4% per area of the soil-contaminated (137)Cs.

  13. A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data

    NASA Astrophysics Data System (ADS)

    Hamraz, Hamid; Contreras, Marco A.; Zhang, Jun

    2016-10-01

    This paper presents a non-parametric approach for segmenting trees from airborne LiDAR data in deciduous forests. Based on the LiDAR point cloud, the approach collects crown information such as steepness and height on-the-fly to delineate crown boundaries, and most importantly, does not require a priori assumptions of crown shape and size. The approach segments trees iteratively starting from the tallest within a given area to the smallest until all trees have been segmented. To evaluate its performance, the approach was applied to the University of Kentucky Robinson Forest, a deciduous closed-canopy forest with complex terrain and vegetation conditions. The approach identified 94% of dominant and co-dominant trees with a false detection rate of 13%. About 62% of intermediate, overtopped, and dead trees were also detected with a false detection rate of 15%. The overall segmentation accuracy was 77%. Correlations of the segmentation scores of the proposed approach with local terrain and stand metrics was not significant, which is likely an indication of the robustness of the approach as results are not sensitive to the differences in terrain and stand structures.

  14. Differential winter stemflow generation under contrasting storm conditions in a southern New England broad-leaved deciduous forest

    NASA Astrophysics Data System (ADS)

    Levia, Delphis F., Jr.

    2004-04-01

    Despite the importance of stemflow as a hydroecological process, differential winter stemflow generation among and within precipitation types (e.g. snow, rain-to-snow) is poorly understood. The purpose of the present study is to understand winter stemflow generation better under contrasting meteorological conditions in a leafless deciduous forest. It is hypothesized that stemflow volume and production, expressed as a funnelling ratio, will differ significantly among and within precipitation event types. Acceptance of this hypothesis would mean that intra-event meteorological conditions have a significant and discernible effect on stemflow production in deciduous forests, differentially affecting soil moisture, groundwater recharge, soil solution chemistry, and nutrient cycling. Stemflow volumes generated from seven canopy trees were monitored in a leafless deciduous forest of southern New England on a precipitation event basis over two successive winter seasons. Stemflow volume was found to differ significantly among different and same-type precipitation events. A rain event that occurred on 8 December 1998 and snow-to-rain event on 18 January 1999 were of similar duration, magnitude, and intensity, yet produced stemflow volumes that differed by a factor of 4. For two snow-to-rain events, stemflow volumes differed by a factor of 11. Stemflow production even varies widely within a discrete precipitation event as a function of meteorological conditions. Significant differential stemflow yield under contrasting storm conditions obviates generalizations concerning stemflow production as a function of precipitation event type and necessitates a deeper, process-level understanding of winter stemflow generation before modelling exercises are undertaken.

  15. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea.

    PubMed

    Choi, Sei-Woong

    2008-01-01

    Three-year (2004-2006) monitoring results of macrolepidoptera using light traps in a temperate deciduous mixed forest were analyzed to investigate the relationship between moth diversity and nine weather variables. Results of stepwise regression analyses showed that mean daily temperature was the main predictor for moth diversity. The present study also revealed that each moth family was affected by a set of different weather factors (rainfall, relative humidity, or duration of sunshine) probably due to different life-history strategies. The impacts of recent climate change on insect populations may be evidenced in the close relationship between moth abundance and mean temperature.

  16. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models. PMID:25044609

  17. A global assessment of forest surface albedo and its relationships with climate and atmospheric nitrogen deposition.

    PubMed

    Leonardi, Stefano; Magnani, Federico; Nolè, Angelo; Van Noije, Twan; Borghetti, Marco

    2015-01-01

    We present a global assessment of the relationships between the short-wave surface albedo of forests, derived from the MODIS satellite instrument product at 0.5° spatial resolution, with simulated atmospheric nitrogen deposition rates (Ndep ), and climatic variables (mean annual temperature Tm and total annual precipitation P), compiled at the same spatial resolution. The analysis was performed on the following five forest plant functional types (PFTs): evergreen needle-leaf forests (ENF); evergreen broad-leaf forests (EBF); deciduous needle-leaf forests (DNF); deciduous broad-leaf forests (DBF); and mixed-forests (MF). Generalized additive models (GAMs) were applied in the exploratory analysis to assess the functional nature of short-wave surface albedo relations to environmental variables. The analysis showed evident correlations of albedo with environmental predictors when data were pooled across PFTs: Tm and Ndep displayed a positive relationship with forest albedo, while a negative relationship was detected with P. These correlations are primarily due to surface albedo differences between conifer and broad-leaf species, and different species geographical distributions. However, the analysis performed within individual PFTs, strengthened by attempts to select 'pure' pixels in terms of species composition, showed significant correlations with annual precipitation and nitrogen deposition, pointing toward the potential effect of environmental variables on forest surface albedo at the ecosystem level. Overall, our global assessment emphasizes the importance of elucidating the ecological mechanisms that link environmental conditions and forest canopy properties for an improved parameterization of surface albedo in climate models.

  18. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    USGS Publications Warehouse

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  19. Ground-based imaging spectrometry of canopy phenology and chemistry in a deciduous forest

    NASA Astrophysics Data System (ADS)

    Toomey, M. P.; Friedl, M. A.; Frolking, S. E.; Hilker, T.; O'Keefe, J.; Richardson, A. D.

    2013-12-01

    Phenology, annual life cycles of plants and animals, is a dynamic ecosystem attribute and an important feedback to climate change. Vegetation phenology is commonly monitored at canopy to continental scales using ground based digital repeat photography and satellite remote sensing, respectively. Existing systems which provide sufficient temporal resolution for phenological monitoring, however, lack the spectral resolution necessary to investigate the coupling of phenology with canopy chemistry (e.g. chlorophyll, nitrogen, lignin-cellulose content). Some researchers have used narrowband (<10 nm resolution) spectrometers at phenology monitoring sites, yielding new insights into seasonal changes in leaf biochemistry. Such instruments integrate the spectral characteristics of the entire canopy, however, masking considerable variability between species and plant functional types. There is an opportunity, then, for exploring the potential of imaging spectrometers to investigate the coupling of canopy phenology and the leaf biochemistry of individual trees. During the growing season of April-October 2013 we deployed an imaging spectrometer with a spectral range of 371-1042 nm and resolution of ~5 nm (Surface Optics Corporation 710; San Diego, CA) on a 35 m tall tower at the Harvard Forest, Massachusetts. The image resolution was ~0.25 megapixels and the field of view encompassed approximately 20 individual tree crowns at a distance of 20-40 m. The instrument was focused on a mixed hardwoods canopy composed of 4 deciduous tree species and one coniferous tree species. Scanning was performed daily with an acquisition frequency of 30 minutes during daylight hours. Derived imagery were used to calculate a suite of published spectral indices used to estimate foliar content of key pigments: cholorophyll, carotenoids and anthocyanins. Additionally, we calculated the photochemical reflectance index (PRI) as well as the position and slope of the red edge as indicators of mid- to

  20. Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest.

    PubMed

    Daley, Michael J; Phillips, Nathan G

    2006-04-01

    Transpiration is generally assumed to be insignificant at night when stomata close in response to the lack of photosynthetically active radiation. However, there is increasing evidence that the stomata of some species remain open at night, which would allow for nighttime transpiration if there were a sufficient environmental driving force. We examined nighttime water use in co-occurring species in a mixed deciduous stand at Harvard Forest, MA, using whole-tree and leaf-level measurements. Diurnal whole-tree water use was monitored continuously with Granier-style sap flux sensors in paper birch (Betula papyrifera Marsh.), red oak (Quercus rubra L.) and red maple (Acer rubrum L.). An analysis was conducted in which nighttime water flux could be partitioned between refilling of internal water stores and transpiration. Substantial nighttime sap flux was observed in all species and much of this flux was attributed to the refilling of depleted water stores. However, in paper birch, nighttime sap flux frequently exceeded recharge estimates. Over 10% of the total daily sap flux during the growing season was due to transpiration at night in paper birch. Nighttime sap flux was over 8% of the total daily flux in red oak and 2% in red maple; however, this flux was mainly associated with recharge. On nights with elevated vapor pressure deficit, sap flux continued through the night in paper birch, whereas it reached zero during the night in red oak and red maple. Measurements of leaf-level gas exchange on a night with elevated vapor pressure deficit showed stomatal conductance dropping by only 25% in paper birch, while approaching zero in red oak and red maple. The study highlighted differences in ecophysiological controls on sap flux exerted by co-occurring species. Paper birch is a fast-growing, shade-intolerant species with an earlier successional status than red oak and red maple. Risking water loss through nighttime transpiration may provide paper birch with an ecological

  1. Deposition Velocity of PM2.5 in the Winter and Spring above Deciduous and Coniferous Forests in Beijing, China

    PubMed Central

    Sun, Fengbin; Yin, Zhe; Lun, Xiaoxiu; Zhao, Yang; Li, Renna; Shi, Fangtian; Yu, Xinxiao

    2014-01-01

    To estimate the deposition effect of PM2.5 (particle matter with aerodynamic diameter <2.5 µm) in forests in northern China, we used the gradient method to measure the deposition velocity of PM2.5 during the winter and spring above a deciduous forest in Olympic Forest Park and above a coniferous forest in Jiufeng National Forest Park. Six aerosol samplers were placed on two towers at each site at heights of 9, 12 and 15 m above the ground surface. The sample filters were exchanged every four hours at 6∶00 AM, 10∶00 AM, 2∶00 PM, 6∶00 PM, 10∶00 PM, and 2∶00 AM. The daytime and nighttime deposition velocities in Jiufeng Park and Olympic Park were compared in this study. The February deposition velocities in Jiufeng Park were 1.2±1.3 and 0.7±0.7 cm s−1 during the day and night, respectively. The May deposition velocities in Olympic Park were 0.9±0.8 and 0.4±0.5 cm s−1 during the day and night, respectively. The May deposition velocities in Jiufeng Park were 1.1±1.2 and 0.6±0.5 cm s−1 during the day and night, respectively. The deposition velocities above Jiufeng National Forest Park were higher than those above Olympic Forest Park. The measured values were smaller than the simulated values obtained by the Ruijgrok et al. (1997) and Wesely et al. (1985) models. However, the reproducibility of the Ruijgrok et al. (1997) model was better than that of the Wesely et al. (1985) model. The Hicks et al. (1977) model was used to analyze additional forest parameters to calculate the PM2.5 deposition, which could better reflect the role of the forest in PM2.5 deposition. PMID:24842850

  2. Deposition velocity of PM2.5 in the winter and spring above deciduous and coniferous forests in Beijing, China.

    PubMed

    Sun, Fengbin; Yin, Zhe; Lun, Xiaoxiu; Zhao, Yang; Li, Renna; Shi, Fangtian; Yu, Xinxiao

    2014-01-01

    To estimate the deposition effect of PM2.5 (particle matter with aerodynamic diameter <2.5 µm) in forests in northern China, we used the gradient method to measure the deposition velocity of PM2.5 during the winter and spring above a deciduous forest in Olympic Forest Park and above a coniferous forest in Jiufeng National Forest Park. Six aerosol samplers were placed on two towers at each site at heights of 9, 12 and 15 m above the ground surface. The sample filters were exchanged every four hours at 6∶00 AM, 10∶00 AM, 2∶00 PM, 6∶00 PM, 10∶00 PM, and 2∶00 AM. The daytime and nighttime deposition velocities in Jiufeng Park and Olympic Park were compared in this study. The February deposition velocities in Jiufeng Park were 1.2±1.3 and 0.7±0.7 cm s-1 during the day and night, respectively. The May deposition velocities in Olympic Park were 0.9±0.8 and 0.4±0.5 cm s-1 during the day and night, respectively. The May deposition velocities in Jiufeng Park were 1.1±1.2 and 0.6±0.5 cm s-1 during the day and night, respectively. The deposition velocities above Jiufeng National Forest Park were higher than those above Olympic Forest Park. The measured values were smaller than the simulated values obtained by the Ruijgrok et al. (1997) and Wesely et al. (1985) models. However, the reproducibility of the Ruijgrok et al. (1997) model was better than that of the Wesely et al. (1985) model. The Hicks et al. (1977) model was used to analyze additional forest parameters to calculate the PM2.5 deposition, which could better reflect the role of the forest in PM2.5 deposition.

  3. Effects of acid irrigation on carbon dioxide evolution, extractable nitrogen, phosphorus, and aluminum in a deciduous forest soil

    SciTech Connect

    Johnson, D.W.; Todd, D.E.

    1984-01-01

    A study was initiated to determine the effects of sulfuric and nitric acid irrigation on CO/sub 2/ evolution, and N, P, and Al availability in a deciduous forest soil. Irrigation with H/sub 2/O, H/sub 2/SO/sub 4/, or HNO/sub 3/ at 0.05 mol (p/sup +/) m/sup -2/ and 0.5 mol (p/sup +/) m/sup -2/ for 1 yr had no consistent effect on CO/sub 2/ evolution, soil NH/sub 4//sup +/, extractable P, or extractable Al in a deciduous forest soil under field conditions. Irrigation with HNO/sub 3/ caused temporary increases in soil NO/sub 3//sup -/, but irrigation with H/sub 2/SO/sub 4/ had no effect on soil NO/sub 3//sup -/. Nitrogen mineralization and nitrification by aerobic incubation were also unaffected by treatments. Seasonal variations in CO/sub 2/ evolution, NH/sub 4//sup +/, and extractable P were pronounced, with peaks in CO/sub 2/ evolution, NH/sub 4//sup +/, in June and a peak extractable P in August. 19 references, 2 tables.

  4. Modeling the impact of disturbances on the carbon cycle of a mixed-deciduous forest in the upper Midwest

    NASA Astrophysics Data System (ADS)

    Frasson, R.; Bohrer, G.; Medvigy, D.; Ivanov, V. Y.; Vogel, C.; Curtis, P.

    2013-12-01

    Disturbances, either natural or anthropogenic, impact the carbon and water cycles. Therefore, understanding their immediate effect, as well as how fluxes evolve while forests recover from disturbances is essential to carbon and water cycle modeling. Our study area is located in northern Michigan and encompasses the mixed-deciduous forest surrounding the University of Michigan Biological Station (UMBS). The two AmeriFlux affiliated towers operated by the UMBS, one with an undisturbed footprint and a second overlooking the Forest Accelerated Succession ExperimenT (FASET) site, a 39 ha area where all aspen (Populus spp.) and birch (Betula papyrifera) trees were girdled, provides the supporting data for our study. We used the Ecosystem Demography model version 2 (ED2) to run three scenarios: a control (undisturbed) case, a homogeneous disturbance (dist-1) where 30% of the leaf area was removed regardless of functional type, and a FASET like disturbance (dist-2) where all early successional trees, which occupy 30% of leaf area, were removed. We parameterized ED2 using observations of monthly and yearly net ecosystem exchange (NEE), latent, and sensible heat fluxes from the undisturbed site (UMBS-AmeriFlux) from pre-disturbance years. We force the model using meteorological data recorded by the flux towers and evaluate the output of the three cases against NEE, latent, and sensible heat fluxes measured at the UMBS-AmeriFlux site (undisturbed case) and against the FASET tower (cases dist-1 and dist-2) after the disturbance occurred. Our results indicate that in such a case of an intermediate disturbance the results of the disturbance are defendant on the functional type that was affected. As a result of this study, we expect to improve the understanding of the role disturbances and the subsequent recovery on carbon and water fluxes of broadleaved deciduous forests.

  5. Reassessment of the use of fire as a management tool in deciduous forests of eastern North America.

    PubMed

    Matlack, Glenn R

    2013-10-01

    Prescribed burning is increasingly being used in the deciduous forests of eastern North America. Recent work suggests that historical fire frequency has been overestimated east of the prairie-woodland transition zone, and its introduction could potentially reduce forest herb and shrub diversity. Fire-history recreations derived from sedimentary charcoal, tree fire scars, and estimates of Native American burning suggest point-return times ranging from 5-10 years to centuries and millennia. Actual return times were probably longer because such records suffer from selective sampling, small sample sizes, and a probable publication bias toward frequent fire. Archeological evidence shows the environmental effect of fire could be severe in the immediate neighborhood of a Native American village. Population density appears to have been low through most of the Holocene, however, and villages were strongly clustered at a regional scale. Thus, it appears that the majority of forests of the eastern United States were little affected by burning before European settlement. Use of prescribed burning assumes that most forest species are tolerant of fire and that burning will have only a minimal effect on diversity. However, common adaptations such as serotiny, epicormic sprouting, resprouting from rhizomes, and smoke-cued germination are unknown across most of the deciduous region. Experimental studies of burning show vegetation responses similar to other forms of disturbance that remove stems and litter and do not necessarily imply adaptation to fire. The general lack of adaptation could potentially cause a reduction in diversity if burning were introduced. These observations suggest a need for a fine-grained examination of fire history with systematic sampling in which all subregions, landscape positions, and community types are represented. Responses to burning need to be examined in noncommercial and nonwoody species in rigorous manipulative experiments. Until such information

  6. Spatial variation in the (137)Cs inventory in soils in a mixed deciduous forest in Fukushima, Japan.

    PubMed

    Takada, Momo; Yamada, Toshihiro; Takahara, Teruhiko; Okuda, Toshinori

    2016-09-01

    The spatial variation of the radiocesium inventory in forest soil was studied c.a. 44 km northwest of the Fukushima Daiichi Nuclear Power Plant, Japan. This study focuses on the effects of canopy interception and downward transfer from the forest canopy to the forest floor via stemflow and throughfall. We established a study plot (400 m(2)) in the canopy layer of a secondary mixed deciduous forest dominated by Japanese oak (Quercus crispula) and Japanese fir (Abies firma), in August and November 2014. Soil was sampled from 0 to 5 cm depth and (137)Cs was measured under the canopy using a 2-m grid and also at the tree trunk bases. We divided the study plot into the five different types of subplot according to the canopy projection areas and the tree species for the analysis. The geometric mean and coefficient of variation of the (137)Cs inventory were 202 kBq m(-2) and 0.11 (0.52 in the arithmetic coefficient of variation), respectively. Within the forest, the variation in the (137)Cs inventory under trees was larger than in crown gap areas. The large spatial variation may be attributed to canopy interception of the initial deposition and downward transfer of radiocesium via stemflow and throughfall.

  7. 137Cs vertical migration in a deciduous forest soil following the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Nakanishi, Takahiro; Matsunaga, Takeshi; Koarashi, Jun; Atarashi-Andoh, Mariko

    2014-02-01

    The large amount of (137)Cs deposited on the forest floor because of the Fukushima Dai-ichi Nuclear Power Plant accident represents a major potential long-term source for mobile (137)Cs. To investigate (137)Cs mobility in forest soils, we investigated the vertical migration of (137)Cs through seepage water, using a lysimetric method. The study was conducted in a deciduous forest soil over a period spanning 2 month to 2 y after the Fukushima nuclear accident. Our observations demonstrated that the major part of (137)Cs in the litter layer moved into the mineral soil within one year after the accident. On the other hand, the topsoil prevented migration of (137)Cs, and only 2% of (137)Cs in the leachate from litter and humus layer penetrated below a 10 cm depth. The annual migration below a 10 cm depth accounted for 0.1% of the total (137)Cs inventory. Therefore, the migration of (137)Cs by seepage water comprised only a very small part of the total (137)Cs inventory in the mineral soil, which was undetectable from the vertical distribution of (137)Cs in the soil profile. In the present and immediate future, most of the (137)Cs deposited on the forest floor will probably remain in the topsoil successively, although a small but certain amount of bioavailable (137)Cs exists in forest surface soil.

  8. Small mammal abundance and habitat relationships on deciduous forested sites with different susceptibility to gypsy moth defoliation

    NASA Astrophysics Data System (ADS)

    Yahner, Richard H.; Smith, Harvey R.

    1991-01-01

    Small mammals are important predators of gypsy moths ( Lymantria dispar L.), which are major defoliators of deciduous forests in the northeastern United States. Abundance and habitat relationships of small mammals were studied during summers 1984 and 1985 on forested sites at Moshannon and Rothrock state forests in two physiographic regions of Pennsylvania (Allegheny High Plateaus Province and Valley and Ridge Province, respectively) that varied in potential susceptibility to defoliation. The white-footed mouse ( Peromyscus leucopus), which is a major vertebrate predator of gypsy moths, was the most common small mammal on all sites. Of the four common species, northern short-tailed shrews ( Blarina brevicauda), southern red-backed voles ( Clethrionomys gapperi), and white-footed mice were more abundant at Moshannon compared to Rothrock State Forest, but masked shrews ( Sorex cinereus) were more abundant at Rothrock. Elevation was a major factor affecting abundance and distribution of small mammals. Because of the greater abundance of small mammals and more suitable physiographic features at Moshannon compared to Rothrock State Forest, small mammals may be more effective as predators on gypsy moths in the Allegheny High Plateaus than the Valley and Ridge Province of Pennsylvania.

  9. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    SciTech Connect

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  10. Spatial variation in the (137)Cs inventory in soils in a mixed deciduous forest in Fukushima, Japan.

    PubMed

    Takada, Momo; Yamada, Toshihiro; Takahara, Teruhiko; Okuda, Toshinori

    2016-09-01

    The spatial variation of the radiocesium inventory in forest soil was studied c.a. 44 km northwest of the Fukushima Daiichi Nuclear Power Plant, Japan. This study focuses on the effects of canopy interception and downward transfer from the forest canopy to the forest floor via stemflow and throughfall. We established a study plot (400 m(2)) in the canopy layer of a secondary mixed deciduous forest dominated by Japanese oak (Quercus crispula) and Japanese fir (Abies firma), in August and November 2014. Soil was sampled from 0 to 5 cm depth and (137)Cs was measured under the canopy using a 2-m grid and also at the tree trunk bases. We divided the study plot into the five different types of subplot according to the canopy projection areas and the tree species for the analysis. The geometric mean and coefficient of variation of the (137)Cs inventory were 202 kBq m(-2) and 0.11 (0.52 in the arithmetic coefficient of variation), respectively. Within the forest, the variation in the (137)Cs inventory under trees was larger than in crown gap areas. The large spatial variation may be attributed to canopy interception of the initial deposition and downward transfer of radiocesium via stemflow and throughfall. PMID:27173786

  11. Spatial and Temporal Variation in Feather Moss Associated Nitrogen Fixation in Coniferous and Deciduous Dominated Alaskan Boreal Forests

    NASA Astrophysics Data System (ADS)

    Jean, M.; Mack, M. C.; Johnstone, J. F.

    2015-12-01

    Dominant canopy tree species have strong effects on the composition and function of understory species. In boreal forests, forest floor bryophytes and their associated microbes are a primary source of ecosystem nitrogen (N) inputs, and thus an important process regulating ecosystem productivity. Bryophyte composition and abundance varies with forest composition, yet how such changes can affect ecosystem processes such as N fixation is still poorly understood. Our goal is to investigate how cyanobacteria-based N fixation occurring in the two most common feather mosses in the Alaskan boreal forest (Pleurozium schreberi and Hylocomium splendens) varies among coniferous and deciduous forest types, over the growing season, and across a nutrient availability gradient. Twelve patches of H. splendens and P. schreberi were identified in three pairs (blocks) of adjacent stands of paper birch (Betula neoalaskana) and black spruce (Picea mariana) near Fairbanks, interior Alaska. Sampling occurred in one block in June, July, August, and September 2014, and in the three blocks once in August 2014. Moss leaf area, moisture and weight, as well as environmental variables such as air temperature and canopy cover were recorded. Fixation rates were consistently higher for P. schreberi than for H. splendens. Overall, N fixation rates were lower in birch than in spruce stands and peaked in August, or July for P. schreberi in birch stands. Moreover, fixation rates varied along the nutrient availability gradient, with fixation rates higher where nutrient availability was lower. This difference was especially clear in spruce stands. Our preliminary results suggest that moss species, canopy type, and environmental factors all influence N fixation rates in Alaskan boreal forests. Our results will enhance the knowledge of the processes that drive N fixation in boreal forests, which is important for predicting ecosystem consequences of changing forest composition.

  12. Water use by a warm-temperate deciduous forest under the influence of the Asian monsoon: contributions of the overstory and understory to forest water use.

    PubMed

    Jung, Eun-Young; Otieno, Dennis; Kwon, Hyojung; Lee, Bora; Lim, Jong-Hwan; Kim, Joon; Tenhunen, John

    2013-09-01

    The warm temperate deciduous forests in Asia have a relatively dense understory, hence, it is imperative that we understand the dynamics of transpiration in both the overstory (E O) and understory (E U) of forest stands under the influence of the Asian monsoon in order to improve the accuracy of forest water use budgeting and to identify key factors controlling forest water use under climate change. In this study, E O and E U of a temperate deciduous forest stand located in South Korea were measured during the growing season of 2008 using sap flow methods. The objectives of this study were (1) to quantify the total transpiration of the forest stand, i.e., overstory and understory, (2) to determine their relative contribution to ecosystem evapotranspiration (E eco), and (3) to identify factors controlling the transpiration of each layer. E O and E U were 174 and 22 mm, respectively. Total transpiration accounted for 55 % of the total E eco, revealing the importance of unaccounted contributions to E eco (i.e., soil evaporation and wet canopy evaporation). During the monsoon period, there was a strong reduction in the total transpiration, likely because of reductions in photosynthetic active radiation, vapor pressure deficit and plant area index. The ratio of E U to E O declined during the same period, indicating an effect of monsoon on the partitioning of E eco in its two components. The seasonal pattern of E O was synchronized with the overstory canopy development, which equally had a strong regulatory influence on E U. PMID:23632811

  13. Water use by a warm-temperate deciduous forest under the influence of the Asian monsoon: contributions of the overstory and understory to forest water use.

    PubMed

    Jung, Eun-Young; Otieno, Dennis; Kwon, Hyojung; Lee, Bora; Lim, Jong-Hwan; Kim, Joon; Tenhunen, John

    2013-09-01

    The warm temperate deciduous forests in Asia have a relatively dense understory, hence, it is imperative that we understand the dynamics of transpiration in both the overstory (E O) and understory (E U) of forest stands under the influence of the Asian monsoon in order to improve the accuracy of forest water use budgeting and to identify key factors controlling forest water use under climate change. In this study, E O and E U of a temperate deciduous forest stand located in South Korea were measured during the growing season of 2008 using sap flow methods. The objectives of this study were (1) to quantify the total transpiration of the forest stand, i.e., overstory and understory, (2) to determine their relative contribution to ecosystem evapotranspiration (E eco), and (3) to identify factors controlling the transpiration of each layer. E O and E U were 174 and 22 mm, respectively. Total transpiration accounted for 55 % of the total E eco, revealing the importance of unaccounted contributions to E eco (i.e., soil evaporation and wet canopy evaporation). During the monsoon period, there was a strong reduction in the total transpiration, likely because of reductions in photosynthetic active radiation, vapor pressure deficit and plant area index. The ratio of E U to E O declined during the same period, indicating an effect of monsoon on the partitioning of E eco in its two components. The seasonal pattern of E O was synchronized with the overstory canopy development, which equally had a strong regulatory influence on E U.

  14. The effects of phenoseason and storm characteristics on throughfall solute washoff and leaching dynamics from a temperate deciduous forest canopy.

    PubMed

    Van Stan, John T; Levia, Delphis F; Inamdar, Shreeram P; Lepori-Bui, Michelle; Mitchell, Myron J

    2012-07-15

    Seasonal variations in the washoff and leaching dynamics of throughfall ionic fluxes represent a significant process affecting the biogeochemical cycling of forested ecosystems-particularly for temperate deciduous forests with distinct phenological seasons (or "phenoseasons"). Most studies on temperate deciduous forests aggregate seasonal throughfall fluxes to the leafed (growing) and leafless (dormant) periods, yet the phenological conditions controlling seasonality demand finer-scale demarcations that include the transitional phenoseasons (leaf senescence and emergence). To fill these gaps our study examines the washoff and leaching dynamics of Na(+), Mg(2+), K(+), Ca(2+), Cl(-), SO(4)(2-), and NO(3)(-) throughfall derived from bulk and sequentially sampled rain events across leafed, leafless and both transitional phenoseasons over a 3-year period (2008-2010). As throughfall washoff and leached solute fluxes are also closely-coupled to rainfall conditions, we further examine the effects of storm characteristics on phenoseasonal washoff-dominated (Na(+) and Cl(-)) and leaching-dominated (K(+), Ca(2+), Mg(2+)) fluxes through intrastorm event comparison plots and factorial MANOVA. Highly significant differences in leached and washoff solute fluxes were found across meteorological conditions (p<0.001) nested within phenoseasonal divisions (p<0.00001). Phenoseasonal washoff Na(+) and Cl(-) fluxes seemed to be more closely related to leaf area; whereas, leaching flux and canopy exchange of all solutes to correspond more with major phenological changes (when the canopies tend to be most metabolically active). The greatest differences in leached Mg(2+), K(+), Ca(2+), and SO(4)(2-) fluxes were not between the full leafed and leafless phenoseasons (33-80% difference), but between the transitional periods (80 to 200 fold greater during leaf senescence than leaf emergence). Intrastorm average canopy NO(3)(-) leaching, however, ranged from low losses (1 μmol(c)m(-2)h(-1)) to

  15. The effects of phenoseason and storm characteristics on throughfall solute washoff and leaching dynamics from a temperate deciduous forest canopy.

    PubMed

    Van Stan, John T; Levia, Delphis F; Inamdar, Shreeram P; Lepori-Bui, Michelle; Mitchell, Myron J

    2012-07-15

    Seasonal variations in the washoff and leaching dynamics of throughfall ionic fluxes represent a significant process affecting the biogeochemical cycling of forested ecosystems-particularly for temperate deciduous forests with distinct phenological seasons (or "phenoseasons"). Most studies on temperate deciduous forests aggregate seasonal throughfall fluxes to the leafed (growing) and leafless (dormant) periods, yet the phenological conditions controlling seasonality demand finer-scale demarcations that include the transitional phenoseasons (leaf senescence and emergence). To fill these gaps our study examines the washoff and leaching dynamics of Na(+), Mg(2+), K(+), Ca(2+), Cl(-), SO(4)(2-), and NO(3)(-) throughfall derived from bulk and sequentially sampled rain events across leafed, leafless and both transitional phenoseasons over a 3-year period (2008-2010). As throughfall washoff and leached solute fluxes are also closely-coupled to rainfall conditions, we further examine the effects of storm characteristics on phenoseasonal washoff-dominated (Na(+) and Cl(-)) and leaching-dominated (K(+), Ca(2+), Mg(2+)) fluxes through intrastorm event comparison plots and factorial MANOVA. Highly significant differences in leached and washoff solute fluxes were found across meteorological conditions (p<0.001) nested within phenoseasonal divisions (p<0.00001). Phenoseasonal washoff Na(+) and Cl(-) fluxes seemed to be more closely related to leaf area; whereas, leaching flux and canopy exchange of all solutes to correspond more with major phenological changes (when the canopies tend to be most metabolically active). The greatest differences in leached Mg(2+), K(+), Ca(2+), and SO(4)(2-) fluxes were not between the full leafed and leafless phenoseasons (33-80% difference), but between the transitional periods (80 to 200 fold greater during leaf senescence than leaf emergence). Intrastorm average canopy NO(3)(-) leaching, however, ranged from low losses (1 μmol(c)m(-2)h(-1)) to

  16. Comparison of throughfall chemistry in a mature hemlock forest and an early-successional deciduous forest resulting from salvage logging in Whately, Massachusetts

    NASA Astrophysics Data System (ADS)

    Zukswert, J. M.; Rhodes, A. L.; Dwyer, C. H.; Sweezy, T.

    2012-12-01

    Removal of foundation species as a result of disturbance events such as exotic species invasions can alter community composition and ecosystem function. The current hemlock woolly adelgid (Adelges tsugae) infestation in eastern North America that threatens the eastern hemlock (Tsuga canadensis), a foundation species, has motivated salvage logging efforts. Ecological succession resulting from salvage logging of hemlock would eventually produce a deciduous hardwood forest. The chemistry of throughfall beneath a mature hemlock forest canopy is expected to be more acidic than throughfall from a mature deciduous forest canopy because hemlock foliage releases more organic acids and fewer base cations. The chemical composition of throughfall during the early successional transition from hemlock to deciduous is less understood. We hypothesize that throughfall chemistry in a deciduous forest consisting primarily of juvenile trees may be more similar to direct precipitation because leaf area index is smaller. Differences between hemlock throughfall and direct precipitation may be larger due to the denser canopy of these mature trees. We compared the chemical composition of precipitation, hemlock throughfall, and black birch throughfall for 26 precipitation events from 4 March to 30 July 2012. The black birch (Betula lenta) forest patch resulted from salvage logging of hemlocks twenty years ago at the MacLeish Field Station in Whately, MA. From the three plots we measured the volume of water collected and pH, acid neutralizing capacity, dissolved organic carbon (DOC), and concentrations of cations (Ca2+, K+, Na+, Mg2+, NH4+), anions (Cl-, NO3-, SO42-), and dissolved silica. Precipitation totaled 405 mm during the course of the study. Throughfall totaled 347 mm in the black birch plot and 315 mm in the hemlock plot. The proportion of precipitation passing through the forest canopy was smaller in hemlock throughfall than black birch throughfall during small precipitation events

  17. The role of fire during climate change in an eastern deciduous forest at Devil`s Bathtub, New York

    SciTech Connect

    Clark, J.S.; Royall, P.D.; Chumbley, C.

    1996-10-01

    Annual record of charcoal and sedimentation rate were compared with fossil pollen to investigate the role of fire in eastern deciduous forest around Devil`s Bathtub, New York, USA. Changes in peak and background charcoal suggest that changes in fire regime have accompanied the principal vegetation and climatic changes of the last 10 400 yr. A distribution of return times (50-200-yr intervals) similar to parts of modern boreal Canada prevailed when late-Glacial spruce woodland dominated the site. Expansion of Pinus banksiana appears to have altered the fire regime to one of crown fires with high particulate emissions, but return intervals similar to those of the preceding Picea forest. Expansion of Pinus strobus might be linked to change in fire occurrence, but the broad dispersal of Pinus pollen makes interpretation difficult. If Pinus strobus expansion around the site is reflected in its pollen curve, then that expansion coincides with a time of frequent fire. Alternatively, if increasing pollen abundance precedes the local expansion of trees, as has been observed elsewhere, then local expansion might correspond to an abrupt decline in fire frequency and in regional importance of fire. An abrupt decline in background charcoal follows a fire and coincides ({+-} 100 yr) with the expansion of hardwood taxa such as Fagus. The decline in background charcoal occurs over several years, suggesting that it may be linked to effects of hardwood expansion on fuels. Fires do not appear to have occurred during the time of hardwood dominance, suggesting that fire may not be an explanation for maintenance of species diversity in this deciduous forest. However, frequent occurrence of thick varves during the latter half of the Holocene suggests that the frequency of other types of disturbance may have increased. 85 refs., 13 figs., 2 tabs.

  18. Comparison of vegetation patterns and soil nutrient relations in an oak-pine forest and a mixed deciduous forest on Long Island, New York

    SciTech Connect

    Peterson, S.C.; Curtis, P.S.

    1980-11-01

    An analysis of soil nutrient relations in two forest communities on Long Island, NY, yielded a correlation between the fertility of the top-soil and vegetational composition. The oak-pine forest soils at Brookhaven National Laboratory contain lower average concentrations of NH/sub 3/, Ca, K, and organic matter than the mixed deciduous forest soils in the Stony Brook area. The pH of the topsoil is also more acidic at Brookhaven. The observed differences between localities are greater than within-locality differences between the two soil series tested (Plymouth and Riverhead), which are common to both localities. Nutrient concentrations in the subsoil are not consistently correlated with either locality or soil series, although organic matter and NH/sub 3/ show significantly higher concentrations at Stony Brook. Supporting data on density and basal area of trees and coverage of shrubs and herbs also reveals significant variation between the two forest communities. An ordination of the vegetation data shows higher similarity within than between localities, while no obvious pattern of within-locality variation due to soil series treatments is apparent. These data support the hypothesis that fertility gradients may influence forest community composition and structure. This hypothesis is discussed with reference to vegetation-soil interactions and other factors, such as frequency of burning, which may direct the future development of the Brookhaven oak-pine forest.

  19. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand.

    PubMed

    Ishida, Atsushi; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Sasrisang, Amornrat; Kaewpakasit, Kanokwan; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Gamo, Minoru; Diloksumpun, Sapit; Puangchit, Ladawan; Ishizuka, Moriyoshi

    2010-08-01

    This study compared leaf gas exchange, leaf hydraulic conductance, twig hydraulic conductivity and leaf osmotic potential at full turgor between two drought-deciduous trees, Vitex peduncularis Wall. and Xylia xylocarpa (Roxb.) W. Theob., and two evergreen trees, Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels, at the uppermost canopies in tropical dry forests in Thailand. The aims were to examine (i) whether leaf and twig hydraulic properties differ in relation to leaf phenology and (ii) whether xylem cavitation is a determinant of leaf shedding during the dry season. The variations in almost all hydraulic traits were more dependent on species than on leaf phenology. Evergreen Hopea exhibited the lowest leaf-area-specific twig hydraulic conductivity (leaf-area-specific K(twig)), lamina hydraulic conductance (K(lamina)) and leaf osmotic potential at full turgor (Ψ(o)) among species, whereas evergreen Syzygium exhibited the highest leaf-area-specific K(twig), K(lamina) and Ψ(o). Deciduous Xylia had the highest sapwood-area-specific K(twig), along with the lowest Huber value (sapwood area/leaf area). More negative osmotic Ψ(o) and leaf osmotic adjustment during the dry season were found in deciduous Vitex and evergreen Hopea, accompanied by low sapwood-area-specific K(twig). Regarding seasonal changes in hydraulics, no remarkable decrease in K(lamina) and K(twig) was found during the dry season in any species. Results suggest that leaf shedding during the dry season is not always associated with extensive xylem cavitation.

  20. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest.

    PubMed

    Klein, Tamir; Vitasse, Yann; Hoch, Günter

    2016-07-01

    In deciduous trees growing in temperate forests, bud break and growth in spring must rely on intrinsic carbon (C) reserves. Yet it is unclear whether growth and C storage occur simultaneously, and whether starch C in branches is sufficient for refoliation. To test in situ the relationships between growth, phenology and C utilization, we monitored stem growth, leaf phenology and stem and branch nonstructural carbohydrate (NSC) dynamics in three deciduous species: Carpinus betulus L., Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. To quantify the role of NSC in C investment into growth, a C balance approach was applied. Across the three species, >95% of branchlet starch was consumed during bud break, confirming the importance of C reserves for refoliation in spring. The C balance calculation showed that 90% of the C investment in foliage (7.0-10.5 kg tree(-1) and 5-17 times the C needed for annual stem growth) was explained by simultaneous branchlet starch degradation. Carbon reserves were recovered sooner than expected, after leaf expansion, in parallel with stem growth. Carpinus had earlier leaf phenology (by ∼25 days) but delayed cambial growth (by ∼15 days) than Fagus and Quercus, the result of a competitive strategy to flush early, while having lower NSC levels. PMID:27126226

  1. Coordination between growth, phenology and carbon storage in three coexisting deciduous tree species in a temperate forest.

    PubMed

    Klein, Tamir; Vitasse, Yann; Hoch, Günter

    2016-07-01

    In deciduous trees growing in temperate forests, bud break and growth in spring must rely on intrinsic carbon (C) reserves. Yet it is unclear whether growth and C storage occur simultaneously, and whether starch C in branches is sufficient for refoliation. To test in situ the relationships between growth, phenology and C utilization, we monitored stem growth, leaf phenology and stem and branch nonstructural carbohydrate (NSC) dynamics in three deciduous species: Carpinus betulus L., Fagus sylvatica L. and Quercus petraea (Matt.) Liebl. To quantify the role of NSC in C investment into growth, a C balance approach was applied. Across the three species, >95% of branchlet starch was consumed during bud break, confirming the importance of C reserves for refoliation in spring. The C balance calculation showed that 90% of the C investment in foliage (7.0-10.5 kg tree(-1) and 5-17 times the C needed for annual stem growth) was explained by simultaneous branchlet starch degradation. Carbon reserves were recovered sooner than expected, after leaf expansion, in parallel with stem growth. Carpinus had earlier leaf phenology (by ∼25 days) but delayed cambial growth (by ∼15 days) than Fagus and Quercus, the result of a competitive strategy to flush early, while having lower NSC levels.

  2. VOLATILE ORGANIC COMPOUND EMISSION RATES FROM MIXED DECIDUOUS AND CONIFEROUS FORESTS IN NORTHERN WISCONSIN, USA

    EPA Science Inventory

    Biogenic emissions of volatile organic compounds (VOC) from forests play an important role in regulating the atmospheric trace gas composition including global tropospheric ozone concentrations. However, more information is needed on VOC emission rates from different forest regio...

  3. Carbon of Woody Debris in Plateau-type Karst Evergreen and Deciduous Broad-leaved Mixed Forest of Central Guizhou Province

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Ni, J.; Liu, L.; Guo, C.

    2014-12-01

    Woody debris (WD) is an essential structural and functional component of forest ecosystems, and plays very significant roles for the biogeochemical cycling of carbon and nutrients. Coarse woody debris (CWD) is considered to be the major part in forest WD and it is primarily composed of logs, snags, stumps and large branches, while fine woody debris (FWD) mainly consists of small twigs. Composition, spatial distribution and carbon storage of WD have been studied in plateau-type karst evergreen and deciduous broad-leaved mixed forest in Tianlong Mountain of central Guizhou Province. Results showed that the carbon storage of WD in karst forests was less than non-karst forests. The major components of WD were fallen trees and snags with 10-20 cm in diameter. Fallen trees and snags with diameter greater than 20 cm were the smallest part of WD. The situation of WD in this region reflects the structural characteristics of WD in mid-late stage of plateau-type karst evergreen and deciduous broad-leaved mixed forest succession. The potential contribution of WD to the regional carbon cycle, and its relationship with climate change were finally discussed. The WD (especially CWD) plays an important role in the carbon cycle of karst forest. Forest WD production and decay rates may partially depend on climatic conditions, the accumulation of CWD and FWD carbon stocks in forests may be correlated with climate. Key words: woody debris, karst forests, carbon storage, spatial distribution, CWD, FWD.

  4. Trace gas fluxes and nitrogen availability in a deciduous forest after one year of elevated soil temperatures

    SciTech Connect

    Peterjohn, W.; Newkirk, K.; Melillo, J.; Steudler, P.; Aber, J. The Ecosystems Center, Woods Hole, MA Univ. of New Hampshire, Durham )

    1993-06-01

    We initiated a field experiment in July of 1991 to determine the response of a deciduous forest to elevated soil temperatures. From July 1991 through June 1992, CO[sub 2] fluxes from control, disturbance control, and heated plots were 711, 791, and 1113 g C/m[sup 2]*yr, respectively. Over the period from July to November 1991, CO[sub 2] fluxes increased 47% due to warming. However, during the same period in 1992, CO[sub 2] fluxes increased only 9% due to warming. These results suggest that heating may have significantly reduced the amount of labile carbon in the soils of the heated plots. Heating also increased CH[sub 4] uptake by 0.21 9 C/m[sup 2]*yr and doubled net N mineralization rates. Unlike CO[sub 2] emissions, the changes in CH[sub 4] uptake and net N mineralization persisted throughout the first year of the experiment.

  5. Relative linkages of canopy-level CO₂ fluxes with the climatic and environmental variables for US deciduous forests.

    PubMed

    Ishtiaq, Khandker S; Abdul-Aziz, Omar I

    2015-04-01

    We used a simple, systematic data-analytics approach to determine the relative linkages of different climate and environmental variables with the canopy-level, half-hourly CO2 fluxes of US deciduous forests. Multivariate pattern recognition techniques of principal component and factor analyses were utilized to classify and group climatic, environmental, and ecological variables based on their similarity as drivers, examining their interrelation patterns at different sites. Explanatory partial least squares regression models were developed to estimate the relative linkages of CO2 fluxes with the climatic and environmental variables. Three biophysical process components adequately described the system-data variances. The 'radiation-energy' component had the strongest linkage with CO2 fluxes, whereas the 'aerodynamic' and 'temperature-hydrology' components were low to moderately linked with the carbon fluxes. On average, the 'radiation-energy' component showed 5 and 8 times stronger carbon flux linkages than that of the 'temperature-hydrology' and 'aerodynamic' components, respectively. The similarity of observed patterns among different study sites (representing gradients in climate, canopy heights and soil-formations) indicates that the findings are potentially transferable to other deciduous forests. The similarities also highlight the scope of developing parsimonious data-driven models to predict the potential sequestration of ecosystem carbon under a changing climate and environment. The presented data-analytics provides an objective, empirical foundation to obtain crucial mechanistic insights; complementing process-based model building with a warranted complexity. Model efficiency and accuracy (R(2) = 0.55-0.81; ratio of root-mean-square error to the observed standard deviations, RSR = 0.44-0.67) reiterate the usefulness of multivariate analytics models for gap-filling of instantaneous flux data.

  6. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan. Topical report, October 1990--August 1992

    SciTech Connect

    Rastorfer, J.R.; Van Dyke, G.D.; Zellmer, S.D.; Wilkey, P.L.

    1995-04-01

    This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth wetland sites mapped Lenawee soils were selected in Midland County, Michigan: Site 1, a younger stand subjected to recent selective logging, and Site 2, a more mature stand. The collection of ecological data to analyze plant succession on the right-of-way (ROW) and the effects of the developing ROW plant communities on adjacent forest communities was initiated in 1989. Cover class estimates were made for understory and ROW plant species on the basis of 1 {times} 1{minus}m quadrats. Individual stem diameters and species counts were recorded for overstory plants in 10{minus}m quadrats. Although long-term studies have not been completed, firm baseline data were established for comparative analyses with future sampling. Current data indicate that vegetation became well-established on the ROW within one year and subsequently increased in coverage. About 65% of the species were wetland indicators, and the dominants included seeded and natural invading species; nevertheless, some elements of the original flora regenerated and persist. The plants of the ecotone understories of both sites changed from their original composition as a result of the installation of the gas pipeline. Although some forest species persist at both sites, the ecotone of Site I was influenced more by the seeded species, whereas the natural invaders were more important at Site 2.

  7. Diurnal and seasonal carbon sequestration potential of seven broadleaved species in a mixed deciduous forest in India

    NASA Astrophysics Data System (ADS)

    Biswas, Soumyajit; Bala, Sanjay; Mazumdar, Asis

    2014-06-01

    The objective of the study was to measure annual carbon sequestration rate of mixed deciduous forest by measuring that of seven young broadleaved tree species (6 years age) as well as selection of better carbon sequestered plant species for future plantation. The diurnal net assimilation rate of Carbon dioxide (CO2) at leaf level was measured with LI-6400 Portable Photosynthesis System at daytime on seasonal basis in a man-made forest at Budge Budge (N 22°28‧ E 88°08‧) of South 24 Parganas, West Bengal, INDIA. Net assimilation rate of carbon at canopy level was calculated by measuring Leaf Area Index with LAI-2200 and using analytical model with non-rectangular hyperbolic light response curve. The average net assimilation rate of CO2 at leaf level was found maximum in Albizzia lebbek (8.13 μmol m-2 s-1) and that of canopy level in Eucalyptus spp. (4.851 g h-1). The minimum was found for Swietenia mahagoni (1.058 g h-1). The annual carbon sequestration rate of the mixed forest in natural condition was estimated 6.01 t ha-1 year-1 by consolidating the potential of all seven species.

  8. Genetic structure and breeding system of a rare understory herb, Dysosma versipellis (Berberidaceae), from temperate deciduous forests in China.

    PubMed

    Guan, Bi-Cai; Fu, Cheng-Xing; Qiu, Ying-Xiong; Zhou, Shi-Liang; Comes, Hans Peter

    2010-01-01

    To evaluate the role of Quaternary refugial isolation in allopatric (incipient) speciation of East Asian temperate forest biotas, we analyzed amplified fragment length polymorphisms (AFLPs) and the breeding system in Dysosma versipellis. The study revealed that D. versipellis is mostly self-incompatible, genetically highly subdivided and depauperate at the population level (e.g., Φ(ST) = 0.572/H(E) = 0.083), and characterized by a low pollen-to-seed migration ratio (r ≈ 4.0). The latter outcome likely reflects limited pollen flow in a low-seed disperser whose hypothesized "sapromyophilous" flowers undergo scarce, inefficient, and likely specialized cross-pollination by small Anoplodera beetles, rather than carrion flies as assumed previously. In consequence, fruit set in D. versipellis was strongly pollen-limited. Our AFLP data support the hypothesis of a long-standing cessation of gene flow between western and central eastern populations, consistent with previous chloroplast DNA data. This phylogeographic pattern supports the role of the Sichuan Basin as a floristic boundary separating the Sino-Himalayan vs. Sino-Japanese Forest subkingdoms. Our genetic data of D. versipellis also imply that temperate deciduous forest elements to the west and the east of this basin responded differently to Quaternary climate change, which may have triggered or is leading to allopatric (incipient) speciation.

  9. Influence of small scale conditions on the diversity of wood decay fungi in a temperate, mixed deciduous forest canopy.

    PubMed

    Unterseher, Martin; Tal, Ophir

    2006-02-01

    Studies on fungal richness and ecology have been largely disregarded since the first intensive efforts to investigate organismal diversity in forest canopies. We used the Leipzig Canopy Crane research facility to sample wood-decaying fungi in a mixed deciduous forest canopy 10-30 m in height. The structural complexity of the canopy was analysed using different methods, including meteorological measurements. With respect to temperature and relative humidity, marked differences existed between forest floor and upper canopy layers that persisted on smaller scales. Of the 118 taxa found in 128 sample units, pyrenomycetes and corticioid fungi outnumbered other macrofungal groups. Fungal communities showed distinct variations both in species richness and composition with respect to substrate (tree species), height in the canopy, stage of decay, and branch diameter. Pyrenomycetes and their anamorphs dominated the mycobiota on thin, exposed twigs at great heights, indicating their ability to overcome extended periods of drought and high levels of solar irradiance. Other taxa of Tremellales (Exidia spp.), Orbiliales (Hyalorbilia inflatula, Orbilia spp.) or Agaricales (Episphaeria fraxinicola, Cyphellopsis anomala, Lachnella spp.) also exhibited features that enabled them to develop in lesser protected habitats within tree crowns.

  10. Estimation of aboveground woody biomass using HJ-1 and Radarsat-2 data for deciduous forests in Daxing'anling, China

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Yang, Le; Liu, Qinhuo; Li, Jing

    2014-11-01

    Accurate estimation of forest aboveground biomass is important for global carbon budgets and ecosystem change studies. Most algorithms for regional or global aboveground biomass estimation using optical and microwave remote sensing data are based on empirical regression and non-parametric training methods, which require large amount of ground measurements for training and are lacking of explicit interaction mechanisms between electromagnetic wave and vegetation. In this study, we proposed an optical/microwave synergy method based on a coherent polarimetric SAR model to estimate woody biomass. The study area is sparse deciduous forest dominated by birch with understory of shrubs and herbs in Daxing'anling, China. HJ-1, Radarsat-2 images, and field LAI were collected during May to August in 2013, tree biophysical parameters were measured at the field campaign during August to September in 2012. The effects of understory and wet ground were evaluated by introducing the NDVI derived from HJ-1 image and rain rate. Field measured LAI was used as an input to the SAR model to define the scattering and attenuation of the green canopy to the total backscatter. Finally, an logarithmic equation between the backscatter coefficient of direct forest scattering mechanism and woody biomass was generated (R2=0.582). The retrieval results were validated with the ground biomass measurements (RMSE=29.01ton/ha). The results indicated the synergy of optical and microwave remote sensing data based on SAR model has the potential to improve the accuracy of woody biomass estimation.

  11. Canopy CO2 enrichment permits tracing the fate of recently assimilated carbon in a mature deciduous forest.

    PubMed

    Keel, Sonja G; Siegwolf, Rolf T W; Körner, Christian

    2006-01-01

    How rapidly newly assimilated carbon (C) is invested into recalcitrant structures of forests, and how closely C pools and fluxes are tied to photosynthesis, is largely unknown. A crane and a purpose-built free-air CO2 enrichment (FACE) system permitted us to label the canopy of a mature deciduous forest with 13C-depleted CO2 for 4 yr and continuously trace the flow of recent C through the forest without disturbance. Potted C4 grasses in the canopy ('isometers') served as a reference for the C-isotope input signal. After four growing seasons, leaves were completely labelled, while newly formed wood (tree rings) still contained 9% old C. Distinct labels were found in fine roots (38%) and sporocarps of mycorrhizal fungi (62%). Soil particles attached to fine roots contained 9% new C, whereas no measurable signal was detected in bulk soil. Soil-air CO2 consisted of 35% new C, indicating that considerable amounts of assimilates were rapidly returned back to the atmosphere. These data illustrate a relatively slow dilution of old mobile C pools in trees, but a pronounced allocation of very recent assimilates to C pools of short residence times.

  12. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  13. Density and pathogenic activity of soil microbes associated with windthrows of temperate deciduous forests in the Allegany national Forest, Pennsylvania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Question/Methods Forest disturbance caused by windthrow events has obvious impacts on forest structure and composition above-ground; however, changes in soil microbial communities are less obvious. Windthrows causing the formation of multiple forest gaps occurred in 2003 throughout the...

  14. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees.

    PubMed

    Yang, Jiang-Ke; Zhang, Jing-Jing; Yu, Heng-Yu; Cheng, Jian-Wen; Miao, Li-Hong

    2014-02-01

    Cellulolytic bacteria in forest soil provide carbon sources to improve the soil fertility and sustain the nutrient balance of the forest ecological system through the decomposition of cellulosic remains. These bacteria can also be utilized for the biological conversion of biomass into renewable biofuels. In this study, the community compositions and activities of cellulolytic bacteria in the soils of forests planted with broad-leaved deciduous (Chang Qing Garden, CQG) and broad-leaved evergreen (Forest Park, FP) trees in Wuhan, China were resolved through restriction fragment length polymorphism (RFLP) and sequencing analysis of the 16S rRNA gene. All of the isolates exhibited 35 RFLP fingerprint patterns and were clustered into six groups at a similarity level of 50 %. The phylogeny analysis based on the 16S rRNA gene sequence revealed that these RFLP groups could be clustered into three phylogenetic groups and further divided into six subgroups at a higher resolution. Group I consists of isolates from Bacillus cereus, Bacillus subtilis complex (I-A) and from Paenibacillus amylolyticus-related complex (I-B) and exhibited the highest cellulase activity among all of the cellulolytic bacteria isolates. Cluster II consists of isolates belonging to Microbacterium testaceum (II-A), Chryseobacterium indoltheticum (II-B), and Flavobacterium pectinovorum and the related complex (II-C). Cluster III consists of isolates belonging to Pseudomonas putida-related species. The community shift with respect to the plant species and the soil properties was evidenced by the phylogenetic composition of the communities. Groups I-A and I-B, which account for 36.0 % of the cellulolytic communities in the CQG site, are the dominant groups (88.4 %) in the FP site. Alternatively, the ratio of the bacteria belonging to group III (P. putida-related isolates) shifted from 28.0 % in CQG to 4.0 % in FP. The soil nutrient analysis revealed that the CQG site planted with deciduous broad

  15. Using eddy covariance, remote sensing, and in situ observations to improve models of springtime phenology in temperate deciduous forests

    NASA Astrophysics Data System (ADS)

    Melaas, Eli Kellen

    Phenological events in temperate forests, such as bud burst and senescence, exert strong control over seasonal fluxes of water, energy and carbon. The timing of these transitions is influenced primarily by air temperature and photoperiod, although the exact nature and magnitude of these controls is poorly understood. In this dissertation, I use in situ and remotely sensed observations of phenology in combination with surface meteorological data and measurements of biosphere-atmosphere carbon exchanges to improve understanding and develop models of canopy phenology in temperate forest ecosystems. In the first element of this research I use surface air temperatures and eddy covariance measurements of carbon dioxide fluxes to evaluate and refine widely used approaches for predicting the onset of photosynthesis in spring that account for geographic variation in thermal and photoperiod constraints on phenology. Results from this analysis show that the refined models predict the onset of spring photosynthetic activity with significantly higher accuracy than existing models. A key challenge in developing and testing these models, however, is lack of adequate data sets that characterize phenology over large areas at multi-decadal time scales. To address this need, I develop a new method for estimating long-term average and interannual dynamics in the phenology of temperate forests using time series of Landsat TM/ETM+ images. Results show that estimated spring and autumn transition dates agree closely with in-situ measurements and that Landsat-derived estimates for the start and end of the growing season in Southern New England varied by as much as 4 weeks over the 30-year record of Landsat images. In the final element of this dissertation, I use meteorological data, species composition maps, satellite remote sensing, and ground observations to develop models of springtime leaf onset in temperate deciduous forests that account for geographic differences in how forest

  16. Biomass of Secondary Evergreen and Deciduous Broadleaved Mixed Forest in Plateau-type Karst Terrain of Guizhou Province, SW China

    NASA Astrophysics Data System (ADS)

    Liu, L.

    2014-12-01

    Using allometric functions, harvest and soil column methods, we investigated the biomass of a secondary evergreen and deciduous broadleaved mixed forest in Tianlongshan permanent monitoring plot (a horizontally-projected area of 2 hectares) of Puding Karst Ecosystem Research Station, Guizhou Province, southwestern China. Results showed that the total biomass of the forest is 165.4 Mg·hm-2. The aboveground biomass and root biomass are 137.7 Mg·hm-2 and 27.7 Mg·hm-2, respectively. Among the aboveground biomass, the tree layer accounts for 97.76%, which is obviously greater than the shrub layer and herb layer. Larger trees (the diameter at breast height, DBH is between 5 cm and 20 cm) occupies 76.85% of the aboveground biomass, especially the five dominant species(Lithocarpus confinis, Platycarya longipes, Itea yunnanensis, Machilus cavaleriei and Carpinus pubescens). Shrubs and lianas (DBH = 1 cm) account for more than 30% of total shrub and liana biomass, although their individuals are less than 2% of total shrub individuals and 1% of total liana individuals, respectively. The root biomass differs in root diameters, i.e. coarse root > medium root > fine root. Root biomass decreases with the increase of soil depth. Within soil depth of 20 cm, the root biomass is 20.1 Mg·hm-2, which is more than 70% of total root biomass. Within soil depth of 50 cm, the root biomass is 26.7 Mg·hm-2, which is 96.39% of total root biomass. Compared with non-karst forests in the same climate zone, karst forest has lower biomass and carbon stock, but it further has greater potential of carbon sink.

  17. Above- and belowground controls on water use by trees of different wood types in an eastern US deciduous forest.

    PubMed

    Meinzer, Frederick C; Woodruff, David R; Eissenstat, David M; Lin, Henry S; Adams, Thomas S; McCulloh, Katherine A

    2013-04-01

    Stomata control tree transpiration by sensing and integrating environmental signals originating in the atmosphere and soil, and co-occurring species may differ in inherent stomatal sensitivity to these above- and belowground signals and in the types of signals to which they respond. Stomatal responsiveness to environmental signals is likely to differ across species having different types of wood (e.g., ring-porous, diffuse-porous and coniferous) because each wood type differs in the structure, size and spatial distribution of its xylem conduits as well as in the scaling of hydraulic properties with stem diameter. The objective of this study was to evaluate the impact of variation in soil water availability and atmospheric evaporative demand on stomatal regulation of transpiration in seven co-occurring temperate deciduous forest species representing three wood types. We measured whole-tree sap flux and soil and atmospheric variables in a mixed deciduous forest in central Pennsylvania over the course of a growing season characterized by severe drought and large fluctuations in atmospheric vapor pressure deficit (D). The relative sensitivity of sap flux to soil drying was ∼2.2-2.3 times greater in the diffuse-porous and coniferous species than in the ring-porous species. Stomata of the ring-porous oaks were only about half as responsive to increased D as those of trees of the other two wood types. These differences in responsiveness to changes in the below- and aboveground environment implied that regulation of leaf water potential in the ring-porous oaks was less stringent than that in the diffuse-porous angiosperms or the conifers. The results suggest that increases in the frequency or intensity of summer droughts in the study region could have multiple consequences for forest function, including altered successional time courses or climax species composition and cumulative effects on whole-tree architecture, resulting in a structural and physiological legacy that

  18. Sustained enhancement of photosynthesis in mature deciduous forest trees after 8 years of free air CO(2) enrichment.

    PubMed

    Bader, Martin Karl-Friedrich; Siegwolf, Rolf; Körner, Christian

    2010-10-01

    Carbon uptake by forests constitutes half of the planet's terrestrial net primary production; therefore, photosynthetic responses of trees to rising atmospheric CO(2) are critical to understanding the future global carbon cycle. At the Swiss Canopy Crane, we investigated gas exchange characteristics and leaf traits in five deciduous tree species during their eighth growing season under free air carbon dioxide enrichment in a 35-m tall, ca. 100-year-old mixed forest. Net photosynthesis of upper-canopy foliage was 48% (July) and 42% (September) higher in CO(2)-enriched trees and showed no sign of down-regulation. Elevated CO(2) had no effect on carboxylation efficiency (V (cmax)) or maximal electron transport (J (max)) driving ribulose-1,5-bisphosphate (RuBP) regeneration. CO(2) enrichment improved nitrogen use efficiency, but did not affect leaf nitrogen (N) concentration, leaf thickness or specific leaf area except for one species. Non-structural carbohydrates accumulated more strongly in leaves grown under elevated CO(2) (largely driven by Quercus). Because leaf area index did not change, the CO(2)-driven stimulation of photosynthesis in these trees may persist in the upper canopy under future atmospheric CO(2) concentrations without reductions in photosynthetic capacity. However, given the lack of growth stimulation, the fate of the additionally assimilated carbon remains uncertain.

  19. Ozone phytotoxic potential with regard to fragments of the Atlantic Semi-deciduous Forest downwind of Sao Paulo, Brazil.

    PubMed

    Moura, Bárbara B; Alves, Edenise S; de Souza, Silvia R; Domingos, Marisa; Vollenweider, Pierre

    2014-09-01

    In the Metropolitan Region of Campinas (MRC), Brazil, high levels of primary pollutants contribute to ozone (O3) formation. However, little is known regarding the O3 effects in the tropics. Objectives in this study were to characterize the present levels of O3 pollution and to evaluate the relevance of current concentration-based indices for assessing the phytotoxic potential of O3. Changes in O3 concentrations and precursors at 5 monitoring stations within towns of MRC were analyzed. The daily O3 profile was typical for urban sites and showed little yearly variation. Given the permanently foliated forest canopy, yearly rather than seasonal O3 indices were thus more appropriate for estimating the effective ozone dose. With yearly SUM00, SUM60 and AOT40 of 156, 16 and 14 ppm h and confirmed by evidence of O3 injury in foliage, oxidative stress in the MRC has reached levels high enough to affect trees from the Atlantic Semi-deciduous Forest.

  20. Catchment-scale distribution of radiocesium air dose rate in a mountainous deciduous forest and its relation to topography.

    PubMed

    Atarashi-Andoh, Mariko; Koarashi, Jun; Takeuchi, Erina; Tsuduki, Katsunori; Nishimura, Syusaku; Matsunaga, Takeshi

    2015-09-01

    A large number of air dose rate measurements were collected by walking through a mountainous area with a small gamma-ray survey system, KURAMA-II. The data were used to map the air dose rate of a mountainous deciduous forest that received radiocesium from the Fukushima Dai-ichi Nuclear Power Plant accident. Measurements were conducted in a small stream catchment (0.6 km(2) in area) in August and September 2013, and the relationship between air dose rates and the mountainous topography was examined. Air dose rates increased with elevation, indicating that more radiocesium was deposited on ridges, and suggesting that it had remained there for 2.5 y with no significant downslope migration by soil erosion or water drainage. Orientation in relation to the dominant winds when the radioactive plume flowed to the catchment also strongly affected the air dose rates. Based on our continuous measurements using the KURAMA-II, we describe the variation in air dose rates in a mountainous forest area and suggest that it is important to consider topography when determining sampling points and resolution to assess the spatial variability of dose rates and contaminant deposition.

  1. The autotrophic contribution to soil respiration in a northern temperate deciduous forest and its response to stand disturbance.

    PubMed

    Levy-Varon, Jennifer H; Schuster, William S F; Griffin, Kevin L

    2012-05-01

    The goal of this study was to evaluate the contribution of oak trees (Quercus spp.) and their associated mycorrhizal fungi to total community soil respiration in a deciduous forest (Black Rock Forest) and to explore the partitioning of autotrophic and heterotrophic respiration. Trees on twelve 75 × 75-m plots were girdled according to four treatments: girdling all the oaks on the plot (OG), girdling half of the oak trees on a plot (O50), girdling all non-oaks on a plot (NO), and a control (C). In addition, one circular plot (diameter 50 m) was created where all trees were girdled (ALL). Soil respiration was measured before and after tree girdling. A conservative estimate of the total autotrophic contribution is approximately 50%, as indicated by results on the ALL and OG plots. Rapid declines in carbon dioxide (CO(2)) flux from both the ALL and OG plots, 37 and 33%, respectively, were observed within 2 weeks following the treatment, demonstrating a fast turnover of recently fixed carbon. Responses from the NO and O50 treatments were statistically similar to the control. A non-proportional decline in respiration rates along the gradient of change in live aboveground biomass complicated partitioning of the overall rate of soil respiration and indicates that belowground carbon flux is not linearly related to aboveground disturbance. Our findings suggest that in this system there is a threshold disturbance level between 35 and 74% of live aboveground biomass loss, beyond which belowground dynamics change dramatically.

  2. Seasonal Nutrient Dynamics of Foliage and Litterfall on Walker Branch Watershed, a Deciduous Forest Ecosystem

    SciTech Connect

    Grizzard, T. Henderson, G.S. Clebsch, E.

    1999-01-01

    A detailed twelve-month study of litterfall, live foliage biomass, and seasonal nutrient (nitrogen, phosphorus, potassium, calcium, sodium, and magnesium) dynamics in tree components was performed for forest types on Walker Branch Watershed, Oak Ridge, Tennessee. Biomass and nutrient content of foliage, reproductive parts and branches were examined for ten dominant trees in order to assess the relative importance of litterfall in returning nutrients to the forest floor in four different forest types. Litterfall, measured in pine, pine-oak-hickory, oak-hickory, and mesophytic hardwood forests, was separated into three components (leaves, reproductive parts, and branches). Seasonal comparisons of those forest types were made for biomass and nutrient inputs for each component and for total litterfall. Each forest types was characterized by total annual input to the forest floor of biomass and individual nutrients for each component as well as total litterfall. Canonical analysis was performed on the yearly totals to test for significant differences among the forest types. Live foliage from the ten predominant species of trees on the watershed, determined by order of total basal area, was analyzed for biomass, nutrient concentration, and changes in nutrient content through the growth season. Seasonal trends for these variables, including the ranking of nutrient concentrations for spring versus fall, were discussed in relation to differential growth, translocation, and leaching factors. Most of the litterfall in all forest types (77-85%) was in leaves with fall maximum. Reproductive parts (8-14% with spring and fall maxima) and branches (8-11% with no seasonal trend) contributed the remainder. The ranking of nutrient content in litterfall was similar in spring and fall, except for the replacement of nitrogen by calcium in autumn as the predominant nutrient (followed by K > Mg > P > Na). Comparisons were made between weight and nutrient content for living leaves and leaf

  3. Species richness and ecological characterization of myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest.

    PubMed

    Schnittler, Martin; Unterseher, Martin; Tesmer, Jens

    2006-01-01

    The ecological community of myxomycetes and myxomycete-like organisms (MMLO) in the canopy of living deciduous trees was studied in a riparian deciduous forest at Leipzig, Germany. A systematic survey carried out with a total of 146 moist chamber cultures resulted in 386 records of 37 taxa, with 32 myxomycetes, two myxobacteria, two protostelids and the fruit body forming ciliate Sorogena stoianovitchae, the latter recorded for the first time for Europe. With 94% of all cultures positive for MMLO, these organisms are present consistently in the investigated sections of white-rotten twigs attached to living trees at 10-30 m above the ground. Our sampling recovered a majority of the likely species, with 37 out of the 42-45 predicted according to a species-accumulation curve and two other estimators of species richness. Nonmetric multidimensional scaling revealed pH, water-holding capacity and stage of decay to explain most of the variation in species distribution. Arcyria cinerea and Perichaena depressa as the most common species occurred in 32% and 29% of all samples, respectively. Viewing the sampled twigs as habitat islands and a single spore as sufficient to establish a population, a simulation program assuming a random spore rain estimated an average of 0.4 and 0.35 spore hits per twig as necessary to explain the observed frequencies. This is matched by the potential productivity of the substrate. All fruit bodies from the cultured twigs would be able to create a spore rain of 86 (A. cinerea) or 40 (P. depressa) spore hits per twig when dispersed evenly over the plot. The terminal fall velocity of spores was measured, revealing that it took about 5 h for a spore to land (30 m) in still air and indicating high dispersal ability for canopy-inhabiting MMLO.

  4. [Error analysis of CO2 storage flux in a temperate deciduous broadleaved forest based on different scalar variables].

    PubMed

    Wang, Jing; Wang, Xing-chang; Wang, Chuan-kuan

    2013-04-01

    Using the measurement data from an 8-level vertical profile of CO2/H2 0 in a temperate deciduous broadleaved forest at the Maoershan Forest Ecosystem Research Station, Northeast China, this paper quantified the errors of CO2 storage flux (Fs ) calculated with three scalar variables, i. e. , CO2 density (rho c), molar fraction (cc), and molar mixing ratio relative to dry air (Xc). The dry air storage in the control volume of flux measurement was not a constant, and thus, the fluctuation of the dry air storage could cause the CO2 molecules transporting out of or into the control volume, i. e. , the variation of the dry air storage adjustment term (Fsd). During nighttime and day-night transition periods, the relative magnitude of Fsd to eddy flux was larger, and ignoring the Fsd could introduce errors in calculating the net CO2 exchange between the forest ecosystem and the atmosphere. Three error sources in the Fs calculation could be introduced from the atmospheric hydrothermal processes, i. e. , 1) air temperature fluctuation, which could cause the largest error, with one order of magnitude larger than that caused by atmospheric pressure (P) , 2) water vapor, its effect being larger than that of P in warm and moist summer but smaller in cold and dry winter, and 3) P, whose effect was generally smaller throughout the year. In estimating the effective CO2 storage (Fs_E) , the Fs value calculated with rho c, cc, and Xc was overestimated averagely by 8. 5%, suggested that in the calculation of Fs, adopting the Xc conservation to atmospheric hydrothermal processes could be more appropriate to minimize the potential errors.

  5. Measurement of isoprene and its oxidation products in a mixed deciduous forest - first results of the ECHO-campaign

    NASA Astrophysics Data System (ADS)

    Schaub, A.; Komenda, M.; Koppmann, R.

    2003-04-01

    Biogenic hydrocarbons contribute significantly to the budget of reactive trace gases in the atmosphere. Isoprene which is emitted from almost every plant is the most abundant of the biogenic VOC. Most of the ambient measurements of isoprene and its oxidation products methacrolein (MACR) and methyl vinyl ketone (MVK) have been carried out only for short periods of several days to weeks. Therefore, the knowledge of long term changes in isoprene emission and photooxidation are scarce. One objective of the ECHO-project (Emission and Chemical transformation of biogenic volatile organic compounds) is to investigate the isoprene chemistry in a mixed deciduous forest and the exchange processes between the forest and the PBL. Here we describe measurements of isoprene and its oxidation products measured with an online GC-FID system between June and November 2002 in a mixed beech oak forest. The results show a diurnal cycle of isoprene mixing ratios being dependent on temperature and light intensity. The mixing ratios were in the range of 0.02 - 3 ppb with a mean daytime maximum of 500 ppt. In October the daytime isoprene mixing ratio decreased to 50 ppt indicating senescence of leaves. For MVK and MACR a diurnal cycle was found with mean daytime maximum values of 60 ppt and 80 ppt, respectively. In June and July 2002 the maximum daytime ratio between MVK and MACR was < 1, in August this ratio increased to 1.6. This surprising result, which pointed towards a strong influence of NOx on the isoprene oxidation pathways, was further investigated in simulation experiments (see contribution by Komenda et al) and model studies (see contribution by Karl and Dorn).

  6. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest.

    PubMed

    Coble, Adam P; VanderWall, Brittany; Mau, Alida; Cavaleri, Molly A

    2016-09-01

    Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac.

  7. How vertical patterns in leaf traits shift seasonally and the implications for modeling canopy photosynthesis in a temperate deciduous forest.

    PubMed

    Coble, Adam P; VanderWall, Brittany; Mau, Alida; Cavaleri, Molly A

    2016-09-01

    Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac. PMID:27246164

  8. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    PubMed

    Zhang, Yuxin; Zhang, Shuang; Ma, Keming; Fu, Bojie; Anand, Madhur

    2014-01-01

    The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr.), planted larch (Larix principis-rupprechtii Mayr.), and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer), while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  9. Photoprotection of evergreen and drought-deciduous tree leaves to overcome the dry season in monsoonal tropical dry forests in Thailand.

    PubMed

    Ishida, Atsushi; Yamazaki, Jun-Ya; Harayama, Hisanori; Yazaki, Kenichi; Ladpala, Phanumard; Nakano, Takashi; Adachi, Minaco; Yoshimura, Kenichi; Panuthai, Samreong; Staporn, Duriya; Maeda, Takahisa; Maruta, Emiko; Diloksumpun, Sapit; Puangchit, Ladawan

    2014-01-01

    In tropical dry forests, uppermost-canopy leaves of evergreen trees possess the ability to use water more conservatively compared with drought-deciduous trees, which may result from significant differences in the photoprotective mechanisms between functional types. We examined the seasonal variations in leaf gas exchange, chlorophyll fluorescence and the amounts of photosynthetic pigments within lamina of the uppermost-canopy leaves of three drought-deciduous trees (Vitex peduncularis Wall., Xylia xylocarpa (Roxb.) W. Theob., Shorea siamensis Miq.), a semi-deciduous tree (Irvingia malayana Miq.) and two evergreen trees (Hopea ferrea Lanessan and Syzygium cumini (L.) Skeels) in Thailand. Area-based maximum carbon assimilation rates (Amax) decreased during the dry season, except in S. siamensis. The electron transport rate (ETR) remained unchanged in deciduous trees, but decreased during the dry season in evergreen and semi-deciduous trees. In the principal component analysis, the first axis (Axis 1) accounted for 44.3% of the total variation and distinguished deciduous from evergreen trees. Along Axis 1, evergreen trees were characterized by a high Stern-Volmer non-photochemical quenching coefficient (NPQ), high xanthophyll cycle pigments/chlorophyll and a high de-epoxidation state of the xanthophyll cycle, whereas the deciduous trees were characterized by a high ETR, a high quantum yield of PSII (ΦPSII = (Fm(') -F)/Fm(')) and a high mass-based Amax under high-light conditions. These findings indicate that drought-deciduous trees showing less conservative water use tend to dissipate a large proportion of electron flow through photosynthesis or alternative pathways. In contrast, the evergreens showed more conservative water use, reduced Amax and ETR and enhanced NPQ and xanthophyll cycle pigments/chlorophyll during the dry season, indicating that down-regulated photosynthesis with enhanced thermal dissipation of excess light energy played an important role in

  10. Differential snow accumulation and melt at southern hemisphere deciduous forested sites

    NASA Astrophysics Data System (ADS)

    McPhee, James; Huerta, Marlene; Molotch, Noah

    2016-04-01

    Little is known about the differential snow dynamics resulting from forest cover in southern hemisphere alpine regions. Tree species variability and differences in local climate preclude extrapolation of northern hemisphere results and introduce uncertainty on the future impacts of climate change on snow-cover duration, maximum accumulation and melt rates. This research presents preliminary results from field observations obtained at an experimental watershed in the Nevados de Chillan region, in south-central Chile. The relatively low elevation of the Andes Cordillera and higher latitude of the site allows the existence of mixed Nothofagus forests, sometimes combined with bamboo-type undergrowth. Rain-on-snow events can be observed during winter and in the early stages of the austral spring. We installed four instrument clusters at the Valle Hermoso experimental catchments, where snow depth, air temperature and relative humidity were measured both under canopy and in forest clearings. The clusters where positioned in order to cover a range of elevations and sun exposure. Preliminary results from two winter seasons suggest that forest cover can impact accumulation rates as much as elevation does, and that melt rates are fairly sensitive to forest cover even in low LAI conditions.

  11. Climatic and Edaphic Effects on the Turnover and Composition of Mineral-Associated Soil Organic Matter in Temperate Deciduous Forests

    NASA Astrophysics Data System (ADS)

    Jastrow, J. D.; Calderon, F. J.; McFarlane, K. J.; Porras, R. C.; Torn, M. S.; Guilderson, T. P.; Hanson, P. J.

    2013-12-01

    Soil organic matter (SOM) is the largest reservoir of carbon (C) in terrestrial ecosystems. But, efforts to predict future changes in soil C stocks are challenged by our incomplete understanding of how soil C pools stabilized by different mechanisms will respond to changing climatic conditions and other environmental forcing factors. One approach to quantifying soil C pools of differing stability is to physically fractionate SOM into (1) a free light fraction representing an unprotected C pool, (2) an occluded light fraction characterizing a pool physically protected within aggregates, and (3) a mineral-associated dense fraction approximating a pool stabilized by organomineral interactions. Although the two light fractions are generally considered to be relatively homogenous pools, any assumption that the dense fraction represents a homogenous pool is problematic. To explore the potential for reducing the heterogeneity within the dense fraction, we isolated acid-hydrolyzable and acid-resistant C pools from the dense fraction at four sites representing a range of soil types and the climatic extent of Eastern deciduous forest. Soils were collected from before and after 14C-enriched leaf-litter manipulations at each site. Across all sites, 50-75% of the C in the dense fraction was acid-hydrolyzable, and the mean turnover time of C in this fraction was 1-2 orders of magnitude faster (~35-350 y) than that of the acid-resistant fraction (~300-1500 y). Remarkably, in some cases leaf-derived 14C accounted for up to about 5% of the C in one or both dense fraction pools after only 2 years, demonstrating the existence of a very rapid turnover component within both pools at some sites. Characterization of these mineral-associated C pools by mid-infrared spectroscopy showed variations in C chemistry across sites and site differences in the types of C isolated by hydrolysis. Taken together, these results demonstrate considerable differences within the Eastern deciduous forest in

  12. The relationship between fire history and an exotic fungal disease in a deciduous forest.

    PubMed

    Holzmueller, Eric J; Jose, Shibu; Jenkins, Michael A

    2008-03-01

    Exotic diseases have fundamentally altered the structure and function of forest ecosystems. Controlling exotic diseases across large expanses of forest has proven difficult, but fire may reduce the levels of diseases that are sensitive to environmental conditions. We examined Cornus florida populations in burned and unburned Quercus-Carya stands to determine if burning prior to anthracnose infection has reduced the impacts of an exotic fungal disease, dogwood anthracnose, caused by Discula destructiva. We hypothesized that fire has altered stand structure and created open conditions less conducive to dogwood anthracnose. We compared C. florida density, C. florida health, and species composition and density among four sampling categories: unburned stands, and stands that had burned once, twice, and 3 times over a 20-year period (late 1960s to late 1980s). Double burn stands contained the greatest density of C. florida stems (770 stems ha(-1)) followed by triple burn stands (233 stems ha(-1)), single burn stands (225 stems ha(-1)) and unburned stands (70 stems ha(-1); P < 0.01). We observed less crown dieback in small C. florida trees (<5 cm diameter at breast height) in burned stands than in unburned stands (P < 0.05). Indicator species analysis showed that burning favored species historically associated with Quercus-Carya forests and excluded species associated with secondary succession following nearly a century of fire suppression. Our results suggest that fire may mitigate the decline of C. florida populations under attack by an exotic pathogen by altering forest structure and composition. Further, our results suggest that the burns we sampled have had an overall restorative effect on forest communities and were within the fire return interval of the historic fire regime. Consequently, prescribed fire may offer a management tool to reduce the impacts of fungal disease in forest ecosystems that developed under historic burning regimes.

  13. Linking canopy phenology to the seasonality of biosphere-atmosphere interactions in a temperate deciduous forest (Invited)

    NASA Astrophysics Data System (ADS)

    Richardson, A. D.; Toomey, M. P.; Aubrecht, D.; Sonnentag, O.; Ryu, Y.; Hilker, T.

    2013-12-01

    Phenology - the annual rhythm of canopy development and senescence - is a key control on the seasonality of surface-atmosphere fluxes of CO2, water, and energy. Phenology is also a highly sensitive indicator of the biological impacts of climate change. In many biomes, there is strong evidence of trends towards earlier spring onset, and later autumn senescence, over the last four decades. These shifts in phenology may play an imprortant role in mitigating - or amplifying - feedbacks between terrestrial ecosystems and the climate system. To better understand relationships between canopy structure and function in a temperate deciduous forest, we installed a wide array of radiometric instruments and imaging sensors near the top of a 40-m high tower at Harvard Forest beginning in 2011. Our data set includes: - incoming and outgoing visible (including incoming direct and diffuse components), shortwave, and longwave radiation; - narrowband (five visible and three near-infrared channels) canopy reflectance; - leaf area index (LAI, from continuous below-canopy digital cover photography), fraction of absorbed photosynthetically active radiation (fAPAR, from above- and below-canopy quantum sensors), normalized difference vegetation index (NDVI, from broad- and narrow-band radiometric sensors), and photochemical reflectance index (PRI, from narrow-band radiometric sensors); - visible and near-infrared PhenoCam (http://phenocam.sr.unh.edu) canopy imagery; - multi-angular narrowband hyperspectral canopy reflectance (AMSPEC, in 2012); and - beginning in 2013, hyperspectral and thermal canopy imagery. Together with eddy covariance measurements of CO2 and water fluxes from the Harvard Forest AmeriFlux site, located in similar forest about 1 km to the east, on-the-ground visual observations of phenology, and continuous stem diameter measurements with automated band dendrometers, these data provide an unusually detailed view of phenological processes at scales from leaves to trees to

  14. Establishment and production from thinned mature deciduous-forest silvopastures in Appalachia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We thinned a white oak dominated mature second growth forested area establishing two, 0.4 and 0.6 ha, eight and 12-paddock respectively, orchardgrass-perennial ryegrass-white clover silvopasture replications for comparison with two nearby open pasture replications. After thinning trees, silvopastur...

  15. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity.

    PubMed

    Stuart-Haëntjens, Ellen J; Curtis, Peter S; Fahey, Robert T; Vogel, Christoph S; Gough, Christopher M

    2015-09-01

    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand- replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP,) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPPw, and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production. PMID:26594704

  16. [Seedling establishment of Fagus engleriana, a dominant in mountain deciduous forests].

    PubMed

    Guo, Ke

    2003-02-01

    The survival and growth of Fagus engleriana seedlings in three light levels, and with and without supplying additional fertilizer (F1 and F0, respectively) for each light level were studied. The three light levels were to simulate the light regimes in the understorey, small gaps and clearings (L1, L2 and L3 about 1%, 18% and 100% of full sunlight, respectively). The seedling development in L1 was severely inhibited by low light intensity. Seedling mortality was remarkably higher in L1 than in L2 and L3, and in F1 than in F0. The death of the seedlings seemed to result from attack of fungal pathogens. Although seedling survival and growth were significantly improved as light intensities increased from L1 to L2, seedlings in L3 developed similarly as those in L2. It is suggested that the young seedlings could not tolerate the shade of closed forest canopy, and fertile patches on the forest floor might not improve seedling establishment. Successful regeneration of the species in the forests needs better light conditions such as those in gaps than those under the closed forest canopy, at least during the phase of seedling establishment.

  17. VOLATILE ORGANIC COMPOUNDS AND ISOPRENE OXIDATION PRODUCTS AT A TEMPERATE DECIDUOUS FOREST SITE

    EPA Science Inventory

    Biogenic volatile compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs suc...

  18. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity.

    PubMed

    Stuart-Haëntjens, Ellen J; Curtis, Peter S; Fahey, Robert T; Vogel, Christoph S; Gough, Christopher M

    2015-09-01

    The global carbon (C) balance is vulnerable to disturbances that alter terrestrial C storage. Disturbances to forests occur along a continuum of severity, from low-intensity disturbance causing the mortality or defoliation of only a subset of trees to severe stand- replacing disturbance that kills all trees; yet considerable uncertainty remains in how forest production changes across gradients of disturbance intensity. We used a gradient of tree mortality in an upper Great Lakes forest ecosystem to: (1) quantify how aboveground wood net primary production (ANPP,) responds to a range of disturbance severities; and (2) identify mechanisms supporting ANPPw resistance or resilience following moderate disturbance. We found that ANPPw declined nonlinearly with rising disturbance severity, remaining stable until >60% of the total tree basal area senesced. As upper canopy openness increased from disturbance, greater light availability to the subcanopy enhanced the leaf-level photosynthesis and growth of this formerly light-limited canopy stratum, compensating for upper canopy production losses and a reduction in total leaf area index (LAI). As a result, whole-ecosystem production efficiency (ANPPw/LAI) increased with rising disturbance severity, except in plots beyond the disturbance threshold. These findings provide a mechanistic explanation for a nonlinear relationship between ANPPw, and disturbance severity, in which the physiological and growth enhancement of undisturbed vegetation is proportional to the level of disturbance until a threshold is exceeded. Our results have important ecological and management implications, demonstrating that in some ecosystems moderate levels of disturbance minimally alter forest production.

  19. Estimating Dbh of Trees Employing Multiple Linear Regression of the best Lidar-Derived Parameter Combination Automated in Python in a Natural Broadleaf Forest in the Philippines

    NASA Astrophysics Data System (ADS)

    Ibanez, C. A. G.; Carcellar, B. G., III; Paringit, E. C.; Argamosa, R. J. L.; Faelga, R. A. G.; Posilero, M. A. V.; Zaragosa, G. P.; Dimayacyac, N. A.

    2016-06-01

    Diameter-at-Breast-Height Estimation is a prerequisite in various allometric equations estimating important forestry indices like stem volume, basal area, biomass and carbon stock. LiDAR Technology has a means of directly obtaining different forest parameters, except DBH, from the behavior and characteristics of point cloud unique in different forest classes. Extensive tree inventory was done on a two-hectare established sample plot in Mt. Makiling, Laguna for a natural growth forest. Coordinates, height, and canopy cover were measured and types of species were identified to compare to LiDAR derivatives. Multiple linear regression was used to get LiDAR-derived DBH by integrating field-derived DBH and 27 LiDAR-derived parameters at 20m, 10m, and 5m grid resolutions. To know the best combination of parameters in DBH Estimation, all possible combinations of parameters were generated and automated using python scripts and additional regression related libraries such as Numpy, Scipy, and Scikit learn were used. The combination that yields the highest r-squared or coefficient of determination and lowest AIC (Akaike's Information Criterion) and BIC (Bayesian Information Criterion) was determined to be the best equation. The equation is at its best using 11 parameters at 10mgrid size and at of 0.604 r-squared, 154.04 AIC and 175.08 BIC. Combination of parameters may differ among forest classes for further studies. Additional statistical tests can be supplemented to help determine the correlation among parameters such as Kaiser- Meyer-Olkin (KMO) Coefficient and the Barlett's Test for Spherecity (BTS).

  20. Monitoring Spring Phenology in Southeast Deciduous Forests: Influence of Temporal Resolution and Climate

    NASA Astrophysics Data System (ADS)

    Swenson, J. J.; Bausch, A. J.

    2008-12-01

    To predict the effects that a changing climate will have on ecosystem water and carbon fluxes, we must understand how growing season length is influenced by environmental factors such as air and soil temperature. The date of spring leaf onset or flush, the rate of green-up, and maximum greenness have all been measured in the field and by satellite to describe temperate deciduous spring phenology. We identify these key phenological events using near daily satellite images and compare our results with other available MODIS products, concurrent field measurements, and a suite of detailed environmental variables. We created NDVI from MODIS Surface Reflectance (MOD09GQ V5) and applied a Savitzky-Golay filter and a segmented regression technique to identify spring onset and NDVI maximum; we attained an average of an image every 2 to 3 days for the 5 month spring period. Across four years, we compared our spring events to other MODIS products (16-day composites of LAI, EVI, NDVI, the phenology MODIS4NACP product), and to one year of weekly LAI field measurements (LAI2000) at four sites. Among different years and sites in central North Carolina, we found that spring onset varied as much as 15 days among sites for a given year (sites are within 70 km of each other), and the same site could have as much as 20 days difference in spring onset among the four years of data collection. For three years of spring onset dates, we examined the relationship with detailed environmental variables for one site (Ameriflux), and found that soil moisture and days since last freeze were the most significant drivers of spring phenology. In linking environmental drivers with spring onset over time, we conclude that using imagery and field measurements of the highest temporal resolution possible is necessary for precise depiction of phenological events and thereby establishing links with environmental drivers.

  1. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Tang, Jianwu; Mustard, John F.; Lee, Jung-Eun; Rossini, Micol; Joiner, Joanna; Munger, J. William; Kornfeld, Ari; Richardson, Andrew D.

    2015-04-01

    Previous studies have suggested that solar-induced chlorophyll fluorescence (SIF) is correlated with Gross Primary Production (GPP). However, it remains unclear to what extent this relationship is due to absorbed photosynthetically active radiation (APAR) and/or light use efficiency (LUE). Here we present the first time series of near-surface measurement of canopy-scale SIF at 760 nm in temperate deciduous forests. SIF correlated with GPP estimated with eddy covariance at diurnal and seasonal scales (r2 = 0.82 and 0.73, respectively), as well as with APAR diurnally and seasonally (r2 = 0.90 and 0.80, respectively). SIF/APAR is significantly positively correlated with LUE and is higher during cloudy days than sunny days. Weekly tower-based SIF agreed with SIF from the Global Ozone Monitoring Experiment-2 (r2 = 0.82). Our results provide ground-based evidence that SIF is directly related to both APAR and LUE and thus GPP, and confirm that satellite SIF can be used as a proxy for GPP.

  2. Physiological basis of seasonal trend in leaf photosynthesis of five evergreen broad-leaved species in a temperate deciduous forest.

    PubMed

    Miyazawa, Yoshiyuki; Kikuzawa, Kihachiro

    2006-02-01

    The physiological basis of photosynthesis during winter was investigated in saplings of five evergreen broad-leaved species (Camellia japonica L., Cleyera japonica Thunb., Photinia glabra (Thunb.) Maxim., Castanopsis cuspidata (Thunb.) Schottky and Quercus glauca Thunb.) co-occurring under deciduous canopy trees in a temperate forest. We focused on temperature dependence of photosynthetic rate and capacity as important physiological parameters that determine light-saturated rates of net photosynthesis at low temperatures during winter. Under controlled temperature conditions, maximum rates of ribulose bisphosphate carboxylation and electron transport (Vcmax) and Jmax, respectively) increased exponentially with increasing leaf temperature. The temperature dependence of photosynthetic rate did not differ among species. In the field, photosynthetic capacity, determined as Vcmax and Jmax at a common temperature of 25 degrees C (Vcmax(25) and Jmax(25)), increased until autumn and then decreased in species-specific patterns. Values of Vcmax(25) and Jmax(25) differed among species during winter. There was a positive correlation of Vcmax(25) with area-based nitrogen concentration among leaves during winter in Camellia and Photinia. Interspecific differences in Vcmax(25) were responsible for interspecific differences in light-saturated rates of net photosynthesis during winter.

  3. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest.

    PubMed

    Wilson, Kell B.; Baldocchi, Dennis D.; Hanson, Paul J.

    2000-05-01

    We used gas exchange techniques to estimate maximum rate of carboxylation (V(cmax)), a measure of photosynthetic capacity, in the understory and upper crown of a closed deciduous forest over two seasons. There was extensive variability in photosynthetic capacity as a result of vertical canopy position, species type, leaf age and drought. Photosynthetic capacity was greater in oaks than in maples and greater in the overstory than in the understory. Parameter V(cmax) was maximal early in the season but declined slowly throughout most of the summer, and then more rapidly during senescence. There was also an apparent decline during drought in some trees. Variability in V(cmax) as a result of species or vertical canopy gradients was described well by changes in leaf nitrogen per unit area (N(a)). However, temporal changes in V(cmax) were often poorly correlated with leaf nitrogen, especially in spring and summer and during drought. This poor correlation may be the result of a seasonally dependent fractional allocation of leaf nitrogen to Rubisco; however, we could not discount Rubisco inactivation, patchy stomatal closure or changes in mesophyll resistance. Consequently, when a single annual regression equation of V(cmax) versus N(a) was used for this site, there were substantial errors in the temporal patterns in V(cmax) that will inevitably result in modeling errors.

  4. Leaf anatomy and light acclimation in woody seedlings after gap formation in a cool-temperate deciduous forest.

    PubMed

    Oguchi, R; Hikosaka, K; Hiura, T; Hirose, T

    2006-10-01

    The photosynthetic light acclimation of fully expanded leaves of tree seedlings in response to gap formation was studied with respect to anatomical and photosynthetic characteristics in a natural cool-temperate deciduous forest. Eight woody species of different functional groups were used; two species each from mid-successional canopy species (Kalopanax pictus and Magnolia obovata), from late-successional canopy species (Quercus crispula and Acer mono), from sub-canopy species (Acer japonicum and Fraxinus lanuginosa) and from vine species (Schizophragma hydrangeoides and Hydrangea petiolaris). The light-saturated rate of photosynthesis (Pmax) increased significantly after gap formation in six species other than vine species. Shade leaves of K. pictus, M. obovata and Q. crispula had vacant spaces along cell walls in mesophyll cells, where chloroplasts were absent. The vacant space was filled after the gap formation by increased chloroplast volume, which in turn increased Pmax. In two Acer species, an increase in the area of mesophyll cells facing the intercellular space enabled the leaves to increase Pmax after maturation. The two vine species did not significantly change their anatomical traits. Although the response and the mechanism of acclimation to light improvement varied from species to species, the increase in the area of chloroplast surface facing the intercellular space per unit leaf area accounted for most of the increase in Pmax, demonstrating the importance of leaf anatomy in increasing Pmax.

  5. Dynamics of Litter Decomposition, Microbiota Populations, and Nutrient Movement Following Nitrogen and Phosphorus Additions to a Deciduous Forest Stand

    SciTech Connect

    Kelly, J.M.

    2002-10-29

    The objective of this study was quantification of the dynamics of litter decomposition, microbiota populations, and nutrient movement in response to nitrogen and phosphorus additions to a deciduous forest stand. Nitrogen (urea) was applied at rates of 0, 550, and 1100 kg/ha in combination with phosphorus (concentrated superphosphate) at rates of 0, 275, and 550 kg/ha. Total loss of organic material from white oak, red maple, and black gum litter bags over a 16-month period was 34, 35, and 45%, respectively. Phosphorus treatment retarded weight loss from litter bags of all species. Weight loss for the 0-, 275-, and 55-kg/ha levels of phosphorus averaged 23, 20, and 19% for white oak; 26, 25, and 25% for red maple; 29, 27 and 26% for black gum. Weight losses were increased by a small amount (1 to 2%) or not at all by nitrogen treatment. The NP interfaction weight loss means were intermediate to the main treatment means. The increase in decomposition associated with nitrogen was offset by the decrease associated with phosphorus. Litter and soil bacterial populations were significantly increased by nitrogen additions, while litter and soil fungi did not respond to nitrogen. Soil fungal populations were increased by phosphorus addition, while litter bacterial populations were reduced. Litter fungi and soil bacteria did not respond to phosphorus. Combined additions of nitrogen and phosphorus increased bacterial populations, though not as much as nitrogen alone. There was a good correlation (r = 0.70) between bacterial population and litter weight loss.

  6. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests.

    PubMed

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars; Smolander, Aino; Prescott, Cindy; Ranger, Jacques

    2015-05-01

    It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production is usually similar or lower in DA stands than in stands of EGs. Aboveground production of dead organic matter appears to be of the same order of magnitude between tree species groups growing on the same site. Some DAs induce more rapid decomposition of litter than EGs because of the chemical properties of their tissues, higher soil moisture and favourable conditions for earthworms. Forest floors consequently tend to be thicker in EG forests compared to DA forests. Many factors, such as litter lignin content, influence litter decomposition and it is difficult to identify specific litter-quality parameters that distinguish litter decomposition rates of EGs from DAs. Although it has been suggested that DAs can result in higher accumulation of soil carbon stocks, evidence from

  7. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests.

    PubMed

    Augusto, Laurent; De Schrijver, An; Vesterdal, Lars; Smolander, Aino; Prescott, Cindy; Ranger, Jacques

    2015-05-01

    It has been recognized for a long time that the overstorey composition of a forest partly determines its biological and physical-chemical functioning. Here, we review evidence of the influence of evergreen gymnosperm (EG) tree species and deciduous angiosperm (DA) tree species on the water balance, physical-chemical soil properties and biogeochemical cycling of carbon and nutrients. We used scientific publications based on experimental designs where all species grew on the same parent material and initial soil, and were similar in stage of stand development, former land use and current management. We present the current state of the art, define knowledge gaps, and briefly discuss how selection of tree species can be used to mitigate pollution or enhance accumulation of stable organic carbon in the soil. The presence of EGs generally induces a lower rate of precipitation input into the soil than DAs, resulting in drier soil conditions and lower water discharge. Soil temperature is generally not different, or slightly lower, under an EG canopy compared to a DA canopy. Chemical properties, such as soil pH, can also be significantly modified by taxonomic groups of tree species. Biomass production is usually similar or lower in DA stands than in stands of EGs. Aboveground production of dead organic matter appears to be of the same order of magnitude between tree species groups growing on the same site. Some DAs induce more rapid decomposition of litter than EGs because of the chemical properties of their tissues, higher soil moisture and favourable conditions for earthworms. Forest floors consequently tend to be thicker in EG forests compared to DA forests. Many factors, such as litter lignin content, influence litter decomposition and it is difficult to identify specific litter-quality parameters that distinguish litter decomposition rates of EGs from DAs. Although it has been suggested that DAs can result in higher accumulation of soil carbon stocks, evidence from

  8. Leaf litter and roots as sources of mineral soil organic matter in temperate deciduous forest with and without earthworms

    NASA Astrophysics Data System (ADS)

    Fahey, T.; Yavitt, J. B.

    2012-12-01

    We labeled sugar maple trees with 13C to quantify the separate contributions of decaying leaf litter and root turnover/rhizosphere C flux to mineral soil organic matter (SOM). Labeled leaf litter was applied to forest plots with and without earthworms and recovery of the label in SOM was quantified over three years. In parallel, label recovery was quantified in soils from the labeling chambers where all label was supplied by belowground C flux. In the absence of earthworms about half of the label added as leaf litter remained in the surface organic horizons after three years, with about 3% recovered in mineral SOM. The label was most enriched on silt + clay surfaces, representing precipitation of DOC derived from litter. Earthworms mixed nearly all the leaf litter into mineral soil within one year, and after two years the label was most enriched in particulate organic matter held within soil aggregates produced by worms. After three years 15-20% of the added label was recovered in mineral SOM. In the labeling chambers over 75% of belowground C allocation (BCA) was used in root and rhizosphere respiration in the first year after labeling. We recovered only 3.8% of estimated BCA in SOM after 3 years; however, expressed as a proportion of fine root production plus rhizosphere C flux, this value is 15.4%, comparable to that for leaf litter in the presence of earthworms. In conclusion, both roots and leaf litter contribute significantly to the formation of stabilized mineral SOM in temperate deciduous forests, and this process is profoundly altered by the invasion of lumbricid earthworms.

  9. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2.

    PubMed

    Körner, Christian; Asshoff, Roman; Bignucolo, Olivier; Hättenschwiler, Stephan; Keel, Sonja G; Peláez-Riedl, Susanna; Pepin, Steeve; Siegwolf, Rolf T W; Zotz, Gerhard

    2005-08-26

    Whether rising atmospheric carbon dioxide (CO2) concentrations will cause forests to grow faster and store more carbon is an open question. Using free air CO2 release in combination with a canopy crane, we found an immediate and sustained enhancement of carbon flux through 35-meter-tall temperate forest trees when exposed to elevated CO2. However, there was no overall stimulation in stem growth and leaf litter production after 4 years. Photosynthetic capacity was not reduced, leaf chemistry changes were minor, and tree species differed in their responses. Although growing vigorously, these trees did not accrete more biomass carbon in stems in response to elevated CO2, thus challenging projections of growth responses derived from tests with smaller trees.

  10. Influence of gas-particle partitioning on ammonia and nitric acid fluxes above a deciduous forest in the Midwestern USA

    NASA Astrophysics Data System (ADS)

    Hansen, K.; Sørensen, L. L.; Hornsby, K. E.; Boegh, E.; Pryor, S. C.

    2013-12-01

    Quantifying the atmosphere-biosphere exchange of reactive nitrogen gasses (including ammonia (NH3) and nitric acid (HNO3)) is crucial to assessing the impact of anthropogenic activities on natural and semi-natural ecosystems. However, measuring the deposition of reactive nitrogen is challenging due to bi-directionality of the flux, and the dynamics of the chemical gas/aerosol equilibrium of NH3 and HNO3 (or other atmospheric acids) with aerosol-phase ammonium (NH4+) and nitrate (NO3-). NH3 and HNO3 are both very reactive and typically exhibit higher deposition velocities than aerosol NH4+. Therefore, the phase partitioning between gas and aerosol phases can have a significant effect on local budgets and atmospheric transport distances (Nemitz et al., Atmos. Chem. Phys., 2004). In this study, fluxes of NH3, HNO3 and carbon dioxide (CO2) along with size-resolved N-aerosol concentrations are measured above the deciduous forest, Morgan Monroe State Forest (MMSF) in south-central Indiana (39°53'N, 86°25'W) during a field campaign. Two relaxed eddy accumulation (REA) systems are used to measure fluxes and concentrations of NH3 and HNO3 at 44 m. The NH3 REA system operates based on wet effluent diffusion denuders with detection by florescence and half-hourly flux measurements are calculated. HNO3 REA system is based on gas capture on sodium chloride (NaCl) coated denuders with subsequent analysis by ion-chromatography, and the resulting fluxes have a resolution of 3-4 hours. CO2 fluxes are measured by eddy covariance using a closed-path Licor LI-7500, while two MSP MOUDI-110 impactors are used to measure the 24-hourly average inorganic and 48 hourly averaged organic ion concentrations in 11 size bins, respectively, just above the canopy level (28 m). The results of this field campaign are used to quantify the fluxes of NH3, HNO3, CO2 to/from the forest during the transition towards senescence, and to investigate process-level controls (e.g. the role of phase

  11. An Experimental Test of Competition among Mice, Chipmunks, and Squirrels in Deciduous Forest Fragments.

    PubMed

    Brunner, Jesse L; Duerr, Shannon; Keesing, Felicia; Killilea, Mary; Vuong, Holly; Ostfeld, Richard S

    2013-01-01

    Mixed hardwood forests of the northeast United States support a guild of granivorous/omnivorous rodents including gray squirrels (Sciurus carolinensis), eastern chipmunks (Tamias striatus), and white-footed mice (Peromyscus leucopus). These species coincide geographically, co-occur locally, and consume similar food resources. Despite their idiosyncratic responses to landscape and patch variables, patch occupancy models suggest that competition may influence their respective distributions and abundances, and accordingly their influence on the rest of the forest community. Experimental studies, however, are wanting. We present the result of a large-scale experiment in which we removed white-footed mice or gray squirrels from small, isolated forest fragments in Dutchess County, New York, and added these mammals to other fragments in order to alter the abundance of these two species. We then used mark-recapture analyses to quantify the population-level and individual-level effects on resident mice, squirrels, and chipmunks. Overall, we found little evidence of competition. There were essentially no within-season numerical responses to changes in the abundance of putative competitors. Moreover, while individual-level responses (apparent survival and capture probability) did vary with competitor densities in some models, these effects were often better explained by site-specific parameters and were restricted to few of the 19 sites we studied. With only weak or nonexistent competition among these three common rodent species, we expect their patterns of habitat occupancy and population dynamics to be largely independent of one another. PMID:23824654

  12. An Experimental Test of Competition among Mice, Chipmunks, and Squirrels in Deciduous Forest Fragments

    PubMed Central

    Brunner, Jesse L.; Duerr, Shannon; Keesing, Felicia; Killilea, Mary; Vuong, Holly; Ostfeld, Richard S.

    2013-01-01

    Mixed hardwood forests of the northeast United States support a guild of granivorous/omnivorous rodents including gray squirrels (Sciurus carolinensis), eastern chipmunks (Tamias striatus), and white-footed mice (Peromyscus leucopus). These species coincide geographically, co-occur locally, and consume similar food resources. Despite their idiosyncratic responses to landscape and patch variables, patch occupancy models suggest that competition may influence their respective distributions and abundances, and accordingly their influence on the rest of the forest community. Experimental studies, however, are wanting. We present the result of a large-scale experiment in which we removed white-footed mice or gray squirrels from small, isolated forest fragments in Dutchess County, New York, and added these mammals to other fragments in order to alter the abundance of these two species. We then used mark–recapture analyses to quantify the population-level and individual-level effects on resident mice, squirrels, and chipmunks. Overall, we found little evidence of competition. There were essentially no within-season numerical responses to changes in the abundance of putative competitors. Moreover, while individual-level responses (apparent survival and capture probability) did vary with competitor densities in some models, these effects were often better explained by site-specific parameters and were restricted to few of the 19 sites we studied. With only weak or nonexistent competition among these three common rodent species, we expect their patterns of habitat occupancy and population dynamics to be largely independent of one another. PMID:23824654

  13. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests.

    PubMed

    Elmore, Andrew J; Nelson, David M; Craine, Joseph M

    2016-01-01

    There is wide agreement that anthropogenic climate warming has influenced the phenology of forests during the late twentieth and early twenty-first centuries(1,2). Longer growing seasons can lead to increased photosynthesis and productivity(3), which would represent a negative feedback to rising CO2 and consequently warming(4,5). Alternatively, increased demand for soil resources because of a longer photosynthetically active period in conjunction with other global change factors might exacerbate resource limitation(6,7), restricting forest productivity response to a longer growing season(8,9). In this case, increased springtime productivity has the potential to increase plant nitrogen limitation by increasing plant demand for nitrogen more than nitrogen supplies, or increasing early-season ecosystem nitrogen losses(10,11). Here we show that for 222 trees representing three species in eastern North America earlier spring phenology during the past 30 years has caused declines in nitrogen availability to trees by increasing demand for nitrogen relative to supply. The observed decline in nitrogen availability is not associated with reduced wood production, suggesting that other environmental changes such as increased atmospheric CO2 and water availability are likely to have overwhelmed reduced nitrogen availability. Given current trajectories of environmental changes, nitrogen limitation is likely to continue to increase for these forests, possibly further limiting carbon sequestration potential. PMID:27618399

  14. An Experimental Test of Competition among Mice, Chipmunks, and Squirrels in Deciduous Forest Fragments.

    PubMed

    Brunner, Jesse L; Duerr, Shannon; Keesing, Felicia; Killilea, Mary; Vuong, Holly; Ostfeld, Richard S

    2013-01-01

    Mixed hardwood forests of the northeast United States support a guild of granivorous/omnivorous rodents including gray squirrels (Sciurus carolinensis), eastern chipmunks (Tamias striatus), and white-footed mice (Peromyscus leucopus). These species coincide geographically, co-occur locally, and consume similar food resources. Despite their idiosyncratic responses to landscape and patch variables, patch occupancy models suggest that competition may influence their respective distributions and abundances, and accordingly their influence on the rest of the forest community. Experimental studies, however, are wanting. We present the result of a large-scale experiment in which we removed white-footed mice or gray squirrels from small, isolated forest fragments in Dutchess County, New York, and added these mammals to other fragments in order to alter the abundance of these two species. We then used mark-recapture analyses to quantify the population-level and individual-level effects on resident mice, squirrels, and chipmunks. Overall, we found little evidence of competition. There were essentially no within-season numerical responses to changes in the abundance of putative competitors. Moreover, while individual-level responses (apparent survival and capture probability) did vary with competitor densities in some models, these effects were often better explained by site-specific parameters and were restricted to few of the 19 sites we studied. With only weak or nonexistent competition among these three common rodent species, we expect their patterns of habitat occupancy and population dynamics to be largely independent of one another.

  15. Earlier springs are causing reduced nitrogen availability in North American eastern deciduous forests.

    PubMed

    Elmore, Andrew J; Nelson, David M; Craine, Joseph M

    2016-09-12

    There is wide agreement that anthropogenic climate warming has influenced the phenology of forests during the late twentieth and early twenty-first centuries(1,2). Longer growing seasons can lead to increased photosynthesis and productivity(3), which would represent a negative feedback to rising CO2 and consequently warming(4,5). Alternatively, increased demand for soil resources because of a longer photosynthetically active period in conjunction with other global change factors might exacerbate resource limitation(6,7), restricting forest productivity response to a longer growing season(8,9). In this case, increased springtime productivity has the potential to increase plant nitrogen limitation by increasing plant demand for nitrogen more than nitrogen supplies, or increasing early-season ecosystem nitrogen losses(10,11). Here we show that for 222 trees representing three species in eastern North America earlier spring phenology during the past 30 years has caused declines in nitrogen availability to trees by increasing demand for nitrogen relative to supply. The observed decline in nitrogen availability is not associated with reduced wood production, suggesting that other environmental changes such as increased atmospheric CO2 and water availability are likely to have overwhelmed reduced nitrogen availability. Given current trajectories of environmental changes, nitrogen limitation is likely to continue to increase for these forests, possibly further limiting carbon sequestration potential.

  16. [Original humus forms in a semi-deciduous tropical forest in Guadeloupe].

    PubMed

    Loranger, G

    2001-08-01

    Humus profiles underneath the canopy of dominant tree species in two secondary semi-evergreen forest sites in Grande-Terre (Guadeloupe) were analysed with a micromorphological method. In the vertisol of a tree plantation, the humus formed was rather similar under all tree species being an eumull and essentially due to the activity of the endoanecic earthworm Polypheretima elongata. In a natural secondary forest located on a steep slope and associated with a rendzina soil (without endoanecic earthworms), the humus forms were described at lower, mid- and upper slope. In this forest, two particular humus forms were observed. At the middle slope, underneath the canopy of Pisonia subcordata L. that produces nitrogen-rich litter, a calcareous amphimull, characterised by an OH horizon made of millipede faecal pellets, was formed. In the upper slope, underneath the canopy of Bursera simaruba (L.) Sarg. that produces a litter rich in resins and aromatic compounds that are poorly consumed by soil animals, a dysmull with a thick root mat (OFRh horizon) developed. Other humus forms were intermediate. The formation of these humus forms is discussed.

  17. The relationship between canopy structure, light dynamics and deciduousness in a seasonal tropical forest in Panama: A multiple scale study using remote sensing and allometry

    NASA Astrophysics Data System (ADS)

    Bohlman, Stephanie Ann

    This dissertation uses two tools, remote sensing and allometry, to quantify canopy structure, phenology and light interception on stand to landscape levels in a semi-deciduous tropical forest in Panama. The remote sensing studies used a multiple scale approach. First relationships between spectral and physiological data were developed on a fine spatial scale. Then the interpretations were verified at a series of plots across the landscape. Finally, interpretation was applied to satellite images of the whole Panama Canal Zone. Using this approach, the applicability of the relationship between the Normalized Difference Vegetation Index (NDVI) and fraction of intercepted photosynthetically active radiation (FPAR) was tested for the first time in a tropical forest. NDVI was more strongly related to changes in the FPAR of the upper canopy than FPAR of the whole canopy profile. Both NDVI and FPAR were driven by the contrast of deciduous and non-deciduous tree crowns in the dry season. On a landscape scale, spectral mixture analysis (SMA) of remotely-sensed images quantified the percent of deciduous tree crowns in the overstory very accurately. Using the map of deciduousness developed from a Landsat image, I found high fine scale variability in deciduousness, highly deciduous patches throughout the canal zone of 4--250 ha in size, and landscape trends related to rainfall and geologic formation. Allometric relationships between stem diameter, tree height and crown size were developed for 65 species on Barro Colorado Island. Tree height was asymptotic with stem diameter, but crown radius was not, continuing to grow at large diameters. Allometric relationships through ontongeny varied among different functional groups. Gap species are taller than shade species when both functional groups were below 10 cm dbh, but have smaller crowns than shade species above 10 cm dbh. Subcanopy species are shorter with larger canopies than tall species. A simple canopy model based on these

  18. Implementation of a two-source energy balance model in a sub-Arctic deciduous boreal forest

    NASA Astrophysics Data System (ADS)

    Cristóbal-Rosselló, J.; Prakash, A.; Starkenburg, D. P.; Fochesatto, G. J.; Anderson, M. C.; Kustas, W. P.; Alfieri, J. G.; Gens, R.; Kane, D. L.

    2013-12-01

    Evaporation and transpiration are the two main processes involved in water transfer from vegetated and non-vegetated areas to the atmosphere. Evapotranspiration (ET) from the Earth's vegetation constitutes 88% of the total terrestrial ET, and returns more than 50% of terrestrial precipitation to the atmosphere (Oki and Kanae, 2006); therefore it plays a key role in both the hydrological cycle and the energy balance of the land surface. In Arctic and sub-Arctic regions, surface-atmosphere exchanges due to ET are estimated from water balance computations to be about 74% of summer precipitation or 50% of annual precipitation. Even though ET is a significant component of the hydrologic cycle in this region, these bulk estimates do not accurately account for spatial and temporal variability due to vegetation type, topography, etc. (Kane and Yang, 2004). In this work we present the implementation of the Two-Source Energy Balance method, TSEB (Norman et al., 1995), in a sub-Arctic boreal deciduous forest mainly composed of paper birch (Betula papyrifera), as a base-line to retrieve energy fluxes at the regional scale from remote sensing imagery in boreal deciduous areas. In order to calibrate and validate the model, a flux tower located at the Caribou-Poker Creeks Research Watershed (lat: 65.2, long: -147.5) was used. This flux tower is equipped with a sonic anemometer and gas analyzer at 24 m above ground level (agl) operating at a 20Hz sampling rate, as well as a four component net radiometer sensor. To monitor ground heat, temperature, heat flux and soil moisture sensors have been installed in the subsurface soil layers (see http://www.et.alaska.edu/ for further details). The TSEB model mainly requires meteorological inputs as well as land surface temperature (LST) and leaf area index (LAI) data. In this study, TSEB was run from mid August to late September 2012 in all sky conditions using half hour intervals of meteorological data from the flux tower, and the LST

  19. Climatic and management influence on the carbon sequestration capacity of a deciduous oak coppice forest in Italy

    NASA Astrophysics Data System (ADS)

    Belelli Marchesini, L.; Rey Simó, A.; Papale, D.; Valentini, R.

    2010-12-01

    Recent updated estimates of the carbon balance of European forests based on a suite of ecological inventories and models confirmed their active role as sink (Ciais at al. 2008, Luyssaert et al. 2010), determined primarily by the management applied in the last decades with wood removals being lower than Net Primary Productivity (NPP). Eddy covariance (EC) continuous measurements of CO2 fluxes can detect responses of the carbon dynamics to environmental or management factors in the short term, overcoming the limitation of inventories representing a snapshot of the carbon pools typically at temporal resolution of several years or decades. However the majority of EC studies, so far performed mostly on middle-aged or mature stands, still have poorly investigated the role of actively managed forest types such as coppices, the changes in the Net Ecosystem Produtivity (NEP) over long chronosequence data and ultimately their capacity to store the uptaken atmospheric carbon in the long term. In the framework of the Carbo-Extreme EU project, we present an analysis of Net Ecosystem Exchange (NEE) of a deciduous oak (Quercus cerris L.) coppice forest in central Italy (Roccarespampani site) monitored during the years 2000-2008 over two differently aged forest stands covering almost all the stages of the 20 years rotation period. After coppicing the forest ecosystem turned into a net C source for 1 year only, then it intensified its sink strength along with stand age (R2=0.66; P<0.001) up to a maximum observed NEE of -1077.9 gC m-2 yr-1. This trend was explained by a decreasing ratio between Ecosystem Respiration (Reco) and Gross Primary Productivity (GPP)(R2=0.70; P<0.001), underlying the noticeable effect of the harvesting on the enhancement of soil CO2 effluxes, partly because of altered microclimatic conditions but also due to changes in the availability of decomposable substrate and nutrients, as witnessed by a negative correlation of temperature independent basal

  20. Summer global atmospheric patterns enhanced the Mediterranean East-West differences on tree growth at rear-edge temperate deciduous forests

    NASA Astrophysics Data System (ADS)

    Dorado Liñán, Isabel; Zorita, Eduardo; Gea-Izquierdo, Guillermo; Martínez-Sancho, Elisabet; Levanic, Tom; Zlatanov, Tzvetan; Di Filippo, Alfredo; Zang, Christian; Gutiérrez, Emilia; Menzel, Annette

    2016-04-01

    Overlaid to a general decrease on European beech and Sessile oak tree growth over the recent decades in the Mediterranean Basin, tree-ring records from western populations display a stronger growth decrease than eastern populations. We investigate here to what extent this spatial pattern of tree growth can be explained by the impact of sustained atmospheric circulation patterns in summertime. We use Canonical Correlation Analysis, a statistical method that identifies the patterns of two multivariate variables that are optimally correlated. A generalized change in growth trends, turning from a general increase during the period 1950-1981 to a generalized decrease in growth observed during the last three decades can be attributed to increasing summer temperatures, which exerts a dominant and negative influence on tree growth across sites. However, summer precipitation has gained in importance coinciding with the intensification of the geographical differences in tree sensitivity across the Mediterranean Basin. This intensification of the geographical differences in tree- growth during the last three decades can be traced back to an intensification of the Summer North Atlantic Oscillation that imparts an east-west dipole in summer precipitation. Under persistent positive SNAO, western populations are expected to face harsher summer conditions than central and eastern rear-edge populations, due to stronger decrease of precipitation in the west Mediterranean Basin. This increase in xericity will likely be negative for temperate deciduous broadleaf species at the rear-edge of their distribution in the Mediterranean Basin.

  1. Synoptic Climatological Approaches to Assessing Subcanopy Hydrologic and Nutrient Fluxes in a Temperate Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Siegert, C. M.; Levia, D. F.; Leathers, D. J.

    2012-12-01

    The partitioning of precipitation incident to a forest canopy into throughfall and stemflow is controlled by biotic and abiotic factors. Biotic factors include canopy architecture, bark and leaf morphology, and leaf presence whereas abiotic factors include precipitation, antecedent moisture conditions, and wind speed. Previous studies relating the subcanopy hydrologic flux to storm events consider the aforementioned abiotic factors at the event level. This research applies atmospheric classification methods from the field of synoptic climatology to relate large scale weather patterns to local forest hydrologic conditions. A daily synoptic calendar is employed to categorize the observed subcanopy hydrologic flux during storm events and is evaluated as a tool for historical reconstruction and future prediction of forest hydrologic conditions as precipitation regimes are influenced by climate change. At the seasonal scale, the majority of precipitation occurs in 4 out of 13 synoptic types in winter, 4 out of 13 in spring, 2 out of 9 in summer, and 5 out of 11 in autumn, the remaining synoptic types are dominated by fair weather conditions (although small precipitation amounts are sometimes observed). During the study period, precipitation is correctly predicted by synoptic types 82% of the time in winter, 70% in spring, 88% in summer, and 73% in autumn. Analysis of variance (ANOVA) indicates that spring, summer, and fall precipitation-producing synoptic types predict statistically different subcanopy throughfall fluxes. The absence of foliage and more homogenous winter canopy may diminish the predictive ability of synoptic typing in regards to throughfall at that time of year. Biogeochemical canopy fluxes associated with storm events are also distinguishable using the synoptic calendar.

  2. Observations of ultra-fine particles above a deciduous forest in Denmark

    NASA Astrophysics Data System (ADS)

    Pryor, S. C.; Barthelmie, R. J.; Prip, H.; Sørensen, L. L.

    2005-03-01

    We report physical particle size distribution and chemical composition data over a Beech forest in Denmark during May and June of 2004 with a focus on four days characterized by high concentrations of ultra-fine particles. Highest number concentrations of sub-30 nm particles were observed when net radiation >300 W m-2 and ambient particle surface area <100 μm2 cm-3. The 10-30 nm particles show growth rates of 1.5-4.5 nm hr-1 and are comprised predominantly of ammonium, sulfate and associated water.

  3. Surface forest fire spreading to the fall-off of coniferous and deciduous trees

    NASA Astrophysics Data System (ADS)

    Dolgov, A. A.; Reino, V. V.; Tsvyk, Ruvim S.; Sherstobitov, M. V.

    1999-11-01

    Experimental results on forest combustibles (FC) burning are treated in the paper. The relations V equals V0exp(-W2/W02) are proposed to describe the dependence of the burning front movement velocity on the humidity W (V0 equals 3 mm/s is the velocity of the burning front movement for dry FC). Maximum radiation temperature of the condensed phase burning within the range of the 3 to 12 micrometers , reconstructed by the blackbody radiation law at the radiation coefficient (epsilon) of 1, is 800 - 900 K for dry needles of pine and cedar. The higher is humidity, the lower is the maximum radiation temperature.

  4. Tree seedling richness, but not neighborhood composition, influences insect herbivory in a temperate deciduous forest community.

    PubMed

    Murphy, Stephen J; Xu, Kaiyang; Comita, Liza S

    2016-09-01

    Insect herbivores can serve as important regulators of plant dynamics, but their impacts in temperate forest understories have received minimal attention at local scales. Here, we test several related hypotheses about the influence of plant neighborhood composition on insect leaf damage in southwestern Pennsylvania, USA. Using data on seedlings and adult trees sampled at 36 sites over an approximately 900 ha area, we tested for the effects of total plant density, rarefied species richness (i.e., resource concentration and dietary-mixing hypotheses), conspecific density (i.e., Janzen-Connell hypothesis), and heterospecific density (i.e., herd-immunity hypothesis), on the proportion of leaf tissue removed from 290 seedlings of 20 species. We also tested for the effects of generic- and familial-level neighborhoods. Our results showed that the proportion of leaf tissue removed ranged from zero to just under 50% across individuals, but was generally quite low (<2%). Using linear mixed models, we found a significant negative relationship between insect damage and rarefied species richness, but no relationship with neighborhood density or composition. In addition, leaf damage had no significant effect on subsequent seedling growth or survival, likely due to the low levels of damage experienced by most individuals. Our results provide some support for the resource concentration hypothesis, but suggest a limited role for insect herbivores in driving local-scale seedling dynamics in temperate forest understories.

  5. Nighttime Chemistry and Morning Isoprene Can Drive Urban Ozone Downwind of a Major Deciduous Forest.

    PubMed

    Millet, Dylan B; Baasandorj, Munkhbayar; Hu, Lu; Mitroo, Dhruv; Turner, Jay; Williams, Brent J

    2016-04-19

    Isoprene is the predominant non-methane volatile organic compound emitted to the atmosphere and shapes tropospheric composition and biogeochemistry through its effects on ozone, other oxidants, aerosols, and the nitrogen cycle. Isoprene is emitted naturally by vegetation during daytime, when its photo-oxidation is rapid, and in the presence of nitrogen oxides (NOx) produces ozone and degrades air quality in polluted regions. Here, we show for a city downwind of an isoprene-emitting forest (St. Louis, MO) that isoprene actually peaks at night; ambient levels then endure, owing to low nighttime OH radical concentrations. Nocturnal chemistry controls the fate of that isoprene and the likelihood of a high-ozone episode the following day. When nitrate (NO3) radicals are suppressed, high isoprene persists through the night, providing photochemical fuel upon daybreak and leading to a dramatic late-morning ozone peak. On nights with significant NO3, isoprene is removed before dawn; days with low morning isoprene then have lower ozone with a more typical afternoon peak. This biogenic-anthropogenic coupling expands the daily high-ozone window and likely has an opposite O3-NOx response to what would otherwise be expected, with implications for exposure and air-quality management in cities that, like St. Louis, are downwind of major isoprene-emitting forests.

  6. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees.

    PubMed

    Rosling, Anna; Midgley, Meghan G; Cheeke, Tanya; Urbina, Hector; Fransson, Petra; Phillips, Richard P

    2016-02-01

    Although much is known about how trees and their associated microbes influence nitrogen cycling in temperate forest soils, less is known about biotic controls over phosphorus (P) cycling. Given that mycorrhizal fungi are instrumental for P acquisition and that the two dominant associations - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - possess different strategies for acquiring P, we hypothesized that P cycling would differ in stands dominated by trees associated with AM vs ECM fungi. We quantified soil solution P, microbial biomass P, and sequentially extracted inorganic and organic P pools from May to November in plots dominated by trees forming either AM or ECM associations in south-central Indiana, USA. Overall, fungal communities in AM and ECM plots were functionally different and soils exhibited fundamental differences in P cycling. Organic forms of P were more available in ECM plots than in AM plots. Yet inorganic P decreased and organic P accumulated over the growing season in both ECM and AM plots, resulting in increasingly P-limited microbial biomass. Collectively, our results suggest that P cycling in hardwood forests is strongly influenced by biotic processes in soil and that these are driven by plant-associated fungal communities. PMID:26510093

  7. Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia.

    PubMed

    Adams, Mary Beth

    2011-01-01

    In June 2008, 303,000 L of hydrofracturing fluid from a natural gas well were applied to a 0.20-ha area of mixed hardwood forest on the Fernow Experimental Forest, West Virginia. During application, severe damage and mortality of ground vegetation was observed, followed about 10 d later by premature leaf drop by the overstory trees. Two years after fluid application, 56% of the trees within the fluid application area were dead. Ehrh. was the tree species with the highest mortality, and L. was the least affected, although all tree species present on the site showed damage symptoms and mortality. Surface soils (0-10 cm) were sampled in July and October 2008, June and October 2009, and May 2010 on the fluid application area and an adjacent reference area to evaluate the effects of the hydrofracturing fluid on soil chemistry and to attempt to identify the main chemical constituents of the hydrofracturing fluid. Surface soil concentrations of sodium and chloride increased 50-fold as a result of the land application of hydrofracturing fluids and declined over time. Soil acidity in the fluid application area declined with time, perhaps from altered organic matter cycling. This case study identifies the need for further research to help understand the nature and the environmental impacts of hydrofracturing fluids to devise optimal, safe disposal strategies. PMID:21712604

  8. Land application of hydrofracturing fluids damages a deciduous forest stand in West Virginia.

    PubMed

    Adams, Mary Beth

    2011-01-01

    In June 2008, 303,000 L of hydrofracturing fluid from a natural gas well were applied to a 0.20-ha area of mixed hardwood forest on the Fernow Experimental Forest, West Virginia. During application, severe damage and mortality of ground vegetation was observed, followed about 10 d later by premature leaf drop by the overstory trees. Two years after fluid application, 56% of the trees within the fluid application area were dead. Ehrh. was the tree species with the highest mortality, and L. was the least affected, although all tree species present on the site showed damage symptoms and mortality. Surface soils (0-10 cm) were sampled in July and October 2008, June and October 2009, and May 2010 on the fluid application area and an adjacent reference area to evaluate the effects of the hydrofracturing fluid on soil chemistry and to attempt to identify the main chemical constituents of the hydrofracturing fluid. Surface soil concentrations of sodium and chloride increased 50-fold as a result of the land application of hydrofracturing fluids and declined over time. Soil acidity in the fluid application area declined with time, perhaps from altered organic matter cycling. This case study identifies the need for further research to help understand the nature and the environmental impacts of hydrofracturing fluids to devise optimal, safe disposal strategies.

  9. Fleshy fruit characteristics in a temperate deciduous forest of Japan: how unique are they?

    PubMed

    Masaki, Takashi; Takahashi, Kazuaki; Sawa, Ayako; Kado, Tomoyuki; Naoe, Shoji; Koike, Shinsuke; Shibata, Mitsue

    2012-01-01

    This study investigated the fleshy fruit characteristics of 28 woody species in a Japanese temperate forest where large sedentary seed-dispersing mammals are present. We tested whether the findings in previous studies in temperate forests of Europe and North America are universal or not. Results have suggested that fruits of all species were eaten both by birds and mammals except for four species with larger fruits, which were eaten only by mammals. A gradient was found from a syndrome characterized by small, oily, and large-seeded fruits to a syndrome characterized by large, succulent, non-oily, and small-seeded fruits. The sizes and colors of the fruits were not conspicuously different from previous findings in Europe and North America. On the other hand, nitrogen and lipids in the fleshy part did not show seasonally increasing trends, or even seasonally decreasing trends in terms of dry weight. This result, suggesting the absence of community-level adaptation of fruit traits to migratory bird dispersers, contrasted with findings in Europe and North America. Large sedentary arboreal or tree-climbing mammals may have a greater effect on the evolution of fruit-disperser relations than opportunistic migratory birds.

  10. Phosphorus cycling in deciduous forest soil differs between stands dominated by ecto- and arbuscular mycorrhizal trees.

    PubMed

    Rosling, Anna; Midgley, Meghan G; Cheeke, Tanya; Urbina, Hector; Fransson, Petra; Phillips, Richard P

    2016-02-01

    Although much is known about how trees and their associated microbes influence nitrogen cycling in temperate forest soils, less is known about biotic controls over phosphorus (P) cycling. Given that mycorrhizal fungi are instrumental for P acquisition and that the two dominant associations - arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi - possess different strategies for acquiring P, we hypothesized that P cycling would differ in stands dominated by trees associated with AM vs ECM fungi. We quantified soil solution P, microbial biomass P, and sequentially extracted inorganic and organic P pools from May to November in plots dominated by trees forming either AM or ECM associations in south-central Indiana, USA. Overall, fungal communities in AM and ECM plots were functionally different and soils exhibited fundamental differences in P cycling. Organic forms of P were more available in ECM plots than in AM plots. Yet inorganic P decreased and organic P accumulated over the growing season in both ECM and AM plots, resulting in increasingly P-limited microbial biomass. Collectively, our results suggest that P cycling in hardwood forests is strongly influenced by biotic processes in soil and that these are driven by plant-associated fungal communities.

  11. Tree seedling richness, but not neighborhood composition, influences insect herbivory in a temperate deciduous forest community.

    PubMed

    Murphy, Stephen J; Xu, Kaiyang; Comita, Liza S

    2016-09-01

    Insect herbivores can serve as important regulators of plant dynamics, but their impacts in temperate forest understories have received minimal attention at local scales. Here, we test several related hypotheses about the influence of plant neighborhood composition on insect leaf damage in southwestern Pennsylvania, USA. Using data on seedlings and adult trees sampled at 36 sites over an approximately 900 ha area, we tested for the effects of total plant density, rarefied species richness (i.e., resource concentration and dietary-mixing hypotheses), conspecific density (i.e., Janzen-Connell hypothesis), and heterospecific density (i.e., herd-immunity hypothesis), on the proportion of leaf tissue removed from 290 seedlings of 20 species. We also tested for the effects of generic- and familial-level neighborhoods. Our results showed that the proportion of leaf tissue removed ranged from zero to just under 50% across individuals, but was generally quite low (<2%). Using linear mixed models, we found a significant negative relationship between insect damage and rarefied species richness, but no relationship with neighborhood density or composition. In addition, leaf damage had no significant effect on subsequent seedling growth or survival, likely due to the low levels of damage experienced by most individuals. Our results provide some support for the resource concentration hypothesis, but suggest a limited role for insect herbivores in driving local-scale seedling dynamics in temperate forest understories. PMID:27648245

  12. Nighttime Chemistry and Morning Isoprene Can Drive Urban Ozone Downwind of a Major Deciduous Forest.

    PubMed

    Millet, Dylan B; Baasandorj, Munkhbayar; Hu, Lu; Mitroo, Dhruv; Turner, Jay; Williams, Brent J

    2016-04-19

    Isoprene is the predominant non-methane volatile organic compound emitted to the atmosphere and shapes tropospheric composition and biogeochemistry through its effects on ozone, other oxidants, aerosols, and the nitrogen cycle. Isoprene is emitted naturally by vegetation during daytime, when its photo-oxidation is rapid, and in the presence of nitrogen oxides (NOx) produces ozone and degrades air quality in polluted regions. Here, we show for a city downwind of an isoprene-emitting forest (St. Louis, MO) that isoprene actually peaks at night; ambient levels then endure, owing to low nighttime OH radical concentrations. Nocturnal chemistry controls the fate of that isoprene and the likelihood of a high-ozone episode the following day. When nitrate (NO3) radicals are suppressed, high isoprene persists through the night, providing photochemical fuel upon daybreak and leading to a dramatic late-morning ozone peak. On nights with significant NO3, isoprene is removed before dawn; days with low morning isoprene then have lower ozone with a more typical afternoon peak. This biogenic-anthropogenic coupling expands the daily high-ozone window and likely has an opposite O3-NOx response to what would otherwise be expected, with implications for exposure and air-quality management in cities that, like St. Louis, are downwind of major isoprene-emitting forests. PMID:27010702

  13. Elevated CO2 reduces sap flux in mature deciduous forest trees.

    PubMed

    Cech, Patrick G; Pepin, Steeve; Körner, Christian

    2003-10-01

    We enriched in CO2 the canopy of 14 broad-leaved trees in a species-rich, ca. 30-m-tall forest in NW Switzerland to test whether elevated CO2 reduces water use in mature forest trees. Measurements of sap flux density (JS) were made prior to CO2 enrichment (summer 2000) and throughout the first whole growing season of CO2 exposure (2001) using the constant heat-flow technique. The short-term responses of sap flux to brief (1.5-3 h) interruptions of CO2 enrichment were also examined. There were no significant a priori differences in morphological and physiological traits between trees which were later exposed to elevated CO2 (n=14) and trees later used as controls (n=19). Over the entire growing season, CO2 enrichment resulted in an average 10.7% reduction in mean daily JS across all species compared to control trees. Responses were most pronounced in Carpinus, Acer, Prunus and Tilia, smaller in Quercus and close to zero in Fagus trees. The JS of treated trees significantly increased by 7% upon transient exposure to ambient CO2 concentrations at noon. Hence, responses of the different species were, in the short term, similar in magnitude to those observed over the whole season (though opposite because of the reversed treatment). The reductions in mean JS of CO2-enriched trees were high (22%) under conditions of low evaporative demand (vapour pressure deficit, VPD <5 hPa) and small (2%) when mean daily VPD was greater than 10 hPa. During a relatively dry period, the effect of elevated CO2 on JS even appeared to be reversed. These results suggest that daily water savings by CO2-enriched trees may have accumulated to a significantly improved water status by the time when control trees were short of soil moisture. Our data indicate that the magnitude of CO2 effects on stand transpiration will depend on rainfall regimes and the relative abundance of the different species, being more pronounced under humid conditions and in stands dominated by species such as Carpinus and

  14. Soil acidification and foliar nutrient status of Ontario's deciduous forest in 1986 and 2005.

    PubMed

    Miller, Diane E; Watmough, Shaun A

    2009-02-01

    To assess the impacts of the decline in sulphur (S) deposition over the past 20 years in Ontario, soil chemistry and sugar maple (Acer saccharum Marsh) foliar chemistry were measured at 17 sites in south and central Ontario in 2005 and compared with archived samples collected in 1986. Foliar S concentrations were lower in 2005, reflecting the decline in S deposition whereas foliar N remained unchanged, reflecting the lack of change in N deposition in Ontario. Mineral soil pH, exchangeable base cations were lower in 2005 whereas total S, N and cation exchange capacity (CEC) were unchanged. Foliar concentrations of Ca were positively related to soil Ca levels in the A-horizon and were lower in 2005. Despite evidence of increasing soil acidity and losses of calcium, foliar base cation concentrations at most sites were adequate for sugar maple and forest health in terms of canopy appearance (Decline Index) improved.

  15. Observations of 14CO2 in ecosystem respiration from a temperate deciduous forest in Northern Wisconsin

    NASA Astrophysics Data System (ADS)

    Phillips, Claire L.; McFarlane, Karis J.; LaFranchi, Brian; Desai, Ankur R.; Miller, John B.; Lehman, Scott J.

    2015-04-01

    The 14CO2 composition of plant and soil respiration can be used to determine the residence time of photosynthetically fixed carbon before it is released back to the atmosphere. To estimate the residence time of actively cycled carbon in a temperate forest, we employed two approaches for estimating the Δ14CO2 of ecosystem respiration (Δ14C-Reco) at the Willow Creek AmeriFlux site in Northern Wisconsin, USA. Our first approach was to construct nighttime Keeling plots from subcanopy profiles of Δ14CO2 and CO2, providing estimates of Δ14C-Reco of 121.7‰ in June and 42.0‰ in August 2012. These measurements are likely dominated by soil fluxes due to proximity to the ground level. Our second approach utilized samples taken over 20 months within the forest canopy and from 396 m above ground level at the nearby LEF NOAA tall tower site (Park Falls, WI). In this canopy-minus-background approach we employed a mixing model described by Miller and Tans (2003) for estimating isotopic sources by subtracting time-varying background conditions. For the period from May 2011 to December 2012 the estimated Δ14C-Reco using the Miller-Tans model was 76.8‰. Together, these Δ14C-Reco values represent mean Reco carbon ages of approximately 1-19 years. We also found that heterotrophic soil-respired Δ 14C at Willow Creek was 5-38‰ higher (i.e., 1-10 years older) than predicted by the Carnegie-Ames-Stanford Approach global biosphere carbon model for the 1 × 1 pixel nearest to the site. This study provides much needed observational constraints of ecosystem carbon residence times, which are a major source of uncertainty in terrestrial carbon cycle models.

  16. Determinants of seed removal distance by scatter-hoarding rodents in deciduous forests.

    PubMed

    Moore, Jeffrey E; McEuen, Amy B; Swihart, Robert K; Contreras, Thomas A; Steele, Michael A

    2007-10-01

    Scatter-hoarding rodents should space food caches to maximize cache recovery rate (to minimize loss to pilferers) relative to the energetic cost of carrying food items greater distances. Optimization models of cache spacing make two predictions. First, spacing of caches should be greater for food items with greater energy content. Second, the mean distance between caches should increase with food abundance. However, the latter prediction fails to account for the effect of food abundance on the behavior of potential pilferers or on the ability of caching individuals to acquire food by means other than recovering their own caches. When considering these factors, shorter cache distances may be predicted in conditions of higher food abundance. We predicted that seed caching distances would be greater for food items of higher energy content and during lower ambient food abundance and that the effect of seed type on cache distance variation would be lower during higher food abundance. We recorded distances moved for 8636 seeds of five seed types at 15 locations in three forested sites in Pennsylvania, USA, and 29 forest fragments in Indiana, U.S.A., across five different years. Seed production was poor in three years and high in two years. Consistent with previous studies, seeds with greater energy content were moved farther than less profitable food items. Seeds were dispersed less far in seed-rich years than in seed-poor years, contrary to predictions of conventional models. Interactions were important, with seed type effects more evident in seed-poor years. These results suggest that, when food is superabundant, optimal cache distances are more strongly determined by minimizing energy cost of caching than by minimizing pilfering rates and that cache loss rates may be more strongly density-dependent in times of low seed abundance.

  17. Antioxidant content in two CAM bromeliad species as a response to seasonal light changes in a tropical dry deciduous forest.

    PubMed

    González-Salvatierra, Claudia; Luis Andrade, José; Escalante-Erosa, Fabiola; García-Sosa, Karlina; Manuel Peña-Rodríguez, Luis

    2010-07-01

    Plants have evolved photoprotective mechanisms to limit photodamage; one of these mechanisms involves the biosynthesis of antioxidant metabolites to neutralize reactive oxygen species generated when plants are exposed to excess light. However, it is known that exposure of plants to conditions of extreme water stress and high light intensity results in their enhanced susceptibility to over-excitation of photosystem II and to photooxidative stress. In this investigation we used the 2,2-diphenyl-1-picrylhydrazyl reduction assay to conduct a broad survey of the effect of water availability and light exposure conditions on the antioxidant activity of the leaf extracts of two bromeliad species showing crassulacean acid metabolism. One of these was an epiphyte, Tillandsia brachycaulos, and the other a terrestrial species, Bromelia karatas. Both species were found growing wild in the tropical dry deciduous forest of Dzibilchaltún National Park, México. The microenvironment of T. brachycaulos and B. karatas experiences significant diurnal and seasonal light variations as well as changes in temperature and water availability. The results obtained showed that, for both bromeliads, increases in antioxidant activity occurred during the dry season, as a consequence of water stress and higher light conditions. Additionally, in T. brachycaulos there was a clear correlation between high light intensity conditions and the content of anthocyanins which accumulated below the leaf epidermis. This result suggests that the role of these pigments is as photoprotective screens in the leaves. The red coloration below the leaf epidermis of B. karatas was not due to anthocyanins but to other unidentified pigments.

  18. Drought during canopy development has lasting effect on annual carbon balance in a deciduous temperate forest.

    PubMed

    Noormets, Asko; McNulty, Steve G; DeForest, Jared L; Sun, Ge; Li, Qinglin; Chen, Jiquan

    2008-01-01

    * Climate change projections predict an intensifying hydrologic cycle and an increasing frequency of droughts, yet quantitative understanding of the effects on ecosystem carbon exchange remains limited. * Here, the effect of contrasting precipitation and soil moisture dynamics were evaluated on forest carbon exchange using 2 yr of eddy covariance and microclimate data from a 50-yr-old mixed oak woodland in northern Ohio, USA. * The stand accumulated 40% less carbon in a year with drought between bud-break and full leaf expansion (354 +/- 81 g C m(-2) yr(-1) in 2004 and 252 +/- 45 g C m(-2) yr(-1) in 2005). This was caused by greater suppression of gross ecosystem productivity (GEP; 16% = 200 g) than of ecosystem respiration (ER; 11% = 100 g) by drought. Suppressed GEP was traced to lower leaf area, lower apparent quantum yield and lower canopy conductance. The moisture sensitivity of ER may have been mediated by GEP. * The results highlight the vulnerability of the ecosystem to even a moderate drought, when it affects a critical aspect of development. Although the drought was preceded by rain, the storage capacity of the soil seemed limited to 1-2 wk, and therefore droughts longer than this are likely to impair productivity in the region.

  19. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest.

    PubMed

    Iversen, Colleen M; Ledford, Joanne; Norby, Richard J

    2008-01-01

    * Greater fine-root production under elevated [CO2] may increase the input of carbon (C) and nitrogen (N) to the soil profile because fine root populations turn over quickly in forested ecosystems. * Here, the effect of elevated [CO)] was assessed on root biomass and N inputs at several soil depths by combining a long-term minirhizotron dataset with continuous, root-specific measurements of root mass and [N]. The experiment was conducted in a CO(2)-enriched sweetgum (Liquidambar styraciflua) plantation. * CO2) enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production and standing crop were doubled under elevated [CO2]. Though fine-root turnover declined under elevated [CO2], fine-root mortality was also nearly doubled under CO2 enrichment. Over 9 yr, root mortality resulted in 681 g m(-2) of extra C and 9 g m(-2) of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. * Increased C and N input to the soil under CO2 enrichment, especially below 30 cm depth, might alter soil C storage and N mineralization. Future research should focus on quantifying root decomposition dynamics and C and N mineralization deeper in the soil.

  20. Mapping of deciduous forest cover using simulated Landsat-D TM data

    NASA Technical Reports Server (NTRS)

    Rock, B. N.

    1982-01-01

    An evaluation is presented of the supervised vegetation classification images of heavily forested terrain in the eastern US produced from simulated Landsat-D Thematic Mapper data as part of the Joint NASA/Geosat Test Case study of the Lost River, West Virginia, gas field. This investigation utilized data supplied by the NS-001 aircraft multispectral scanner (15 m IFOV) of NASA. The instruments recognized a total of 9 vegetation classes and one soil class. A hybrid parallelepiped-Bayesian maximum likelihood classifier was employed to produce the supervised vegetation classifications. The data were obtained at the height of the fall foliage display for this portion of West Virginia. Results show that both classifications are highly accurate, based on a comparison of assignment of vegetation classes on each of the images with actual ground conditions. It is noted that the anomalous distribution of certain woody species found in the resulting supervised classifications may be related to the microseepage of methane from the gas reservoir.

  1. CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest.

    SciTech Connect

    Iversen, Colleen M; Childs, Joanne; Norby, Richard J

    2008-08-01

    Greater root production under elevated [CO2] may drive changes in soil C storage and N cycling. However, this depends on root population turnover and chemistry, and the soil depth at which the roots are produced. We assessed the effect of elevated [CO2] on root biomass and N inputs at several soil depths using a long-term minirhizotron data set combined with continuous, root-specific measurements of root mass per unit length and [N]. Our experiment was conducted in a Liquidambar styraciflua forest stand exposed to current or elevated atmospheric [CO2] for 9 years. CO2-enrichment had no effect on root tissue density or [N] within a given diameter class. Root biomass production, standing crop and mortality were doubled under elevated [CO2]. Over 9 years, root mortality resulted in 681 g m-2 of extra C and 9 g m-2 of extra N input to the soil system under elevated [CO2]. At least half of these inputs were below 30 cm soil depth. Quantification of the effects of elevated CO2 on root detritus, especially at depth in the soil, will provide critical information needed for predicting processes such as long-term soil C storage and N cycling.

  2. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    SciTech Connect

    Seco, Roger; Karl, Thomas; Guenther, Alex B.; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegeta-tion and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately repre-sented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diur-nal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were domi-nated by isoprene, which attained high emission rates of up to 35.4 mg m-2h-1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which high-lights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Never-theless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, conflrming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement cam-paign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes

  3. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA).

    PubMed

    Seco, Roger; Karl, Thomas; Guenther, Alex; Hosman, Kevin P; Pallardy, Stephen G; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-10-01

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere-atmosphere-climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m(-2)  h(-1) at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7-17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The meganv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events.

  4. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA).

    PubMed

    Seco, Roger; Karl, Thomas; Guenther, Alex; Hosman, Kevin P; Pallardy, Stephen G; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-10-01

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere-atmosphere-climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. We describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m(-2)  h(-1) at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7-17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. The meganv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events. PMID:25980459

  5. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    SciTech Connect

    Seco, Roger; Karl, Thomas; Guenther, Alex; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. Here, we describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene, which attained high emission rates of up to 35.4 mg m 2 h 1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. In conclusion, the MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought

  6. Ecosystem-scale volatile organic compound fluxes during an extreme drought in a broadleaf temperate forest of the Missouri Ozarks (central USA)

    DOE PAGESBeta

    Seco, Roger; Karl, Thomas; Guenther, Alex; Hosman, Kevin P.; Pallardy, Stephen G.; Gu, Lianhong; Geron, Chris; Harley, Peter; Kim, Saewung

    2015-07-07

    Considerable amounts and varieties of biogenic volatile organic compounds (BVOCs) are exchanged between vegetation and the surrounding air. These BVOCs play key ecological and atmospheric roles that must be adequately represented for accurately modeling the coupled biosphere–atmosphere–climate earth system. One key uncertainty in existing models is the response of BVOC fluxes to an important global change process: drought. Here, we describe the diurnal and seasonal variation in isoprene, monoterpene, and methanol fluxes from a temperate forest ecosystem before, during, and after an extreme 2012 drought event in the Ozark region of the central USA. BVOC fluxes were dominated by isoprene,more » which attained high emission rates of up to 35.4 mg m 2 h 1 at midday. Methanol fluxes were characterized by net deposition in the morning, changing to a net emission flux through the rest of the daylight hours. Net flux of CO2 reached its seasonal maximum approximately a month earlier than isoprenoid fluxes, which highlights the differential response of photosynthesis and isoprenoid emissions to progressing drought conditions. Nevertheless, both processes were strongly suppressed under extreme drought, although isoprene fluxes remained relatively high compared to reported fluxes from other ecosystems. Methanol exchange was less affected by drought throughout the season, confirming the complex processes driving biogenic methanol fluxes. The fraction of daytime (7–17 h) assimilated carbon released back to the atmosphere combining the three BVOCs measured was 2% of gross primary productivity (GPP) and 4.9% of net ecosystem exchange (NEE) on average for our whole measurement campaign, while exceeding 5% of GPP and 10% of NEE just before the strongest drought phase. In conclusion, the MEGANv2.1 model correctly predicted diurnal variations in fluxes driven mainly by light and temperature, although further research is needed to address model BVOC fluxes during drought events.« less

  7. Representing Sub-Plot Canopy Heterogeneity Improves Model Prediction of Net Ecosystem Exchange in a Mixed-Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Frasson, R. P. M.; Bohrer, G.; Medvigy, D.; Vogel, C. S.; Gough, C. M.; Curtis, P.

    2014-12-01

    Canopy density and composition may vary within an eddy covariance tower's footprint in response to small-scale topographic features, biotic interactions such as herbivory, local disturbances, etc. We are investigating how different representations of canopy heterogeneity influence predictions of net ecosystem CO2 exchange in a mixed-deciduous forest by an age/plant functional type structured ecosystem model. Our study area is located at the University of Michigan Biological Station (UMBS) where two eddy covariance towers and periodic tree censuses provide a rich long-term record of ecosystem structure, weather, and carbon uptake. Meteorological measurements collected at the US-UMB AmeriFlux tower served to force, optimize, and evaluate the Ecosystem Demography model version 2 (ED2), while tree census information was used to initialize ED2. To test the influence that representing canopy heterogeneity has on model-tower agreement, we ran a set of ED2 site-level simulations with an increasing number of sub-grid patches. The first simulation, which we call 'aggregated', had one large patch explicitly containing all trees. The aggregated canopy represents a case where different size cohorts of each plant functional type are distributed homogeneously throughout the plot with uniform stem density. Six other simulations represented patch-level canopies with varying degrees of heterogeneity, ranging from 5 to 64 sub-plot patches; each patch represented from one to several of the 0.1 ha tree census plots. A preliminary comparison of the aggregated and the 20-plot heterogeneous simulations showed that including patch-level heterogeneity in the canopy description improved model prediction quality. For example, compared to the single-patch, aggregated simulation, including 20 sub-plot patches improved model bias in the estimated accumulated 5-year net ecosystem exchange from 17% to 5%, which is smaller than our tower observation uncertainty. As a result of this study, we will

  8. Leaf area index of a tropical semi-deciduous forest of the southern Amazon Basin

    NASA Astrophysics Data System (ADS)

    Pinto-Júnior, Osvaldo Borges; Sanches, Luciana; de Almeida Lobo, Francisco; Brandão, Adilson Amorim; de Souza Nogueira, José

    2011-03-01

    Leaf area index (LAI) is an important ecophysiological variable because leaves are the organs responsible for gas exchange between plants and the atmosphere. This variable can be calculated from primary values of leaf area assessed by destructive or non-destructive methods, which is relatively easy when crop species are investigated, but is not the case when the focus is on natural wood plants communities. In this paper, we analyze the seasonality of LAI estimated by three different methods in the Amazonia-savannah transitional forest, located 50 km north-east of Sinop city, Mato Grosso, Brazil. In the first method, we combine Monsi and Saekis' original method [Monsi M, Saeki T (1953) Jpn J Bot 14:22-52], which measures LAI using the Beer-Lambert extinction law, and the proposition of Goudriaan [Goudriaan J (1988) Agric For Meteorol 43:155-169] to estimate the extinction coefficient from solar height. The second method differed from the first only in the way in which the daily fraction of intercepted photosynthetic active radiation (FPAR) was calculated, as proposed by Charles-Edwards and Lawn (Charles-Edwards DA, Lawn RJ (1984) Plant Cell Environ 7:247-251]. In the third method, we used a remote sensing technique [MOD15_BU-collection 4, produced and distributed by EROS Data Center Distributed Active Archive Center (EDC DAAC)]. We found that the first and the second methods revealed the expected LAI dynamics, which increased during the dry-wet transition and wet season, and decreased during the wet-dry transition and dry season. From 20 randomly distributed sets in a 1.0 ha area, only 3 showed significant differences in LAI estimated from the first two methods; conversely, LAI was overestimated by the third method.

  9. Responses of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest.

    PubMed

    Hogg, E. H.; Saugier, B.; Pontailler, J.-Y.; Black, T. A.; Chen, W.; Hurdle, P. A.; Wu, A.

    2000-06-01

    The branch bag method was used to monitor photosynthesis and transpiration of trembling aspen (Populus tremuloides Michx.) and hazelnut (Corylus cornuta Marsh.) over a 42-day midsummer period in 1996, as part of the Boreal Ecosystem-Atmosphere Study (BOREAS). During the same period, daytime measurements of stomatal conductance (g(s)) and leaf water potential (Psi(leaf)) were made on these species, and sap flow was monitored in aspen stems by the heat pulse method. Weather conditions during the study period were similar to the long-term average. Despite moist soils, both species showed an inverse relationship between daytime g(s) and vapor pressure deficit (D) when D was > 0.5 kPa. Daytime Psi(leaf) was below -2 MPa in aspen and near -1.5 MPa in hazelnut, except on rainy days. These results are consistent with the hypothesis that stomatal responses are constrained by hydraulic resistance from root to leaf, and by the need to maintain Psi(leaf) above a minimum threshold value. Reductions in g(s) on sunny afternoons with elevated ambient D (maximum 2.3 kPa) were associated with a significant decrease in photosynthetic rates. However, day-to-day variation in mean carbon assimilation rate was small in both species, and appeared to be governed more by solar radiation than D. These results may be generally applicable to healthy aspen stands under normal midsummer conditions in the southern boreal forest. However, strong reductions in carbon uptake may be expected at the more extreme values of D (> 4 kPa) that occur during periods of regional drought, even if soil water is not locally limiting.

  10. Leaf area index of a tropical semi-deciduous forest of the southern Amazon Basin.

    PubMed

    Pinto-Júnior, Osvaldo Borges; Sanches, Luciana; de Almeida Lobo, Francisco; Brandão, Adilson Amorim; de Souza Nogueira, José

    2011-03-01

    Leaf area index (LAI) is an important ecophysiological variable because leaves are the organs responsible for gas exchange between plants and the atmosphere. This variable can be calculated from primary values of leaf area assessed by destructive or non-destructive methods, which is relatively easy when crop species are investigated, but is not the case when the focus is on natural wood plants communities. In this paper, we analyze the seasonality of LAI estimated by three different methods in the Amazonia-savannah transitional forest, located 50 km north-east of Sinop city, Mato Grosso, Brazil. In the first method, we combine Monsi and Saekis' original method [Monsi M, Saeki T (1953) Jpn J Bot 14:22-52], which measures LAI using the Beer-Lambert extinction law, and the proposition of Goudriaan [Goudriaan J (1988) Agric For Meteorol 43:155-169] to estimate the extinction coefficient from solar height. The second method differed from the first only in the way in which the daily fraction of intercepted photosynthetic active radiation (FPAR) was calculated, as proposed by Charles-Edwards and Lawn (Charles-Edwards DA, Lawn RJ (1984) Plant Cell Environ 7:247-251]. In the third method, we used a remote sensing technique [MOD15_BU-collection 4, produced and distributed by EROS Data Center Distributed Active Archive Center (EDC DAAC)]. We found that the first and the second methods revealed the expected LAI dynamics, which increased during the dry-wet transition and wet season, and decreased during the wet-dry transition and dry season. From 20 randomly distributed sets in a 1.0 ha area, only 3 showed significant differences in LAI estimated from the first two methods; conversely, LAI was overestimated by the third method.

  11. Comparison of soil respiration methods in a mid-latitude deciduous forest

    SciTech Connect

    Wayson, C. A.; Randolph, J. C.; Hanson, Paul J; Schmid, H. P.; Grimmond, CSB

    2006-01-01

    In forest ecosystems the single largest respiratory flux influencing net ecosystem productivity (NEP) is the total soil CO2 efflux; however, it is difficult to make measurements of this flux that are accurate at the ecosystem scale. We examined patterns of soil CO2 efflux using five different methods: auto-chambers, portable gas analyzers, eddy covariance along and two models parameterized with the observed data. The relation between soil temperature and soil moisture with soil CO2 effluxes are also investigated, both inter-annually and seasonally, using these observations/results. Soil respiration rates (Rsoil) are greatest during the growing season when soil temperatures are between 15 and 25 C, but some soil CO2 efflux occurs throughout the year. Measured soil respiration was sensitive to soil temperature, particularly during the spring and fall. All measurement methods produced similar annual estimates. Depending on the time of the year, the eddy covariance (flux tower) estimate for ecosystem respiration is similar to or slightly lower than estimates of annual soil CO2 efflux from the other methods. As the eddy covariance estimate includes foliar and stem respiration which the other methods do not; it was expected to be larger (perhaps 15-30%). The auto-chamber system continuously measuring soil CO2 efflux rates provides a level of temporalr esolution that permits investigation of short- to longer term influences of factors on these efflux rates. The expense of building and maintaining an auto chamber system may not be necessary for those esearchers interested in estimating Rsoil annually, but auto-chambers do allow the capture of data from all seasons needed for model parameterization.

  12. Carbon Modeling Using fAPARchl for Crops and a Deciduous Forest

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Zhang, Q.; Lyapustin, A.; Wang, Y.; Middleton, E.

    2013-12-01

    Carbon sequestration by terrestrial plants is a key factor to a comprehensive understanding of carbon budget at global scale. In this context, accurate measurements and estimates of GPP will allow us to achieve improved carbon monitoring and to quantitatively assess impacts from climate changes and human activities. Spaceborne remote sensing observations can provide a variety of land surface parameterizations for modeling photosynthetic activities at various spatial and temporal scales. This study utilized a simple light use efficiency (LUE) model, GPP=LUE*PAR*fPAR, coupling different land surface parameterizations and examined their capabilities to model and monitor GPP. Two maize-soybean rotation fields in Nebraska, USA and the Barlett Experimental Forest in New Hampshire, USA were selected to study. Tower-based eddy-covariance carbon exchange and photosynthetic active radiation (PAR) measurements were collected on the study sites. For the model parameterization, we utilized different values of LUE and fAPAR derived from different algorithms. We utilized the approach and parameters from the MODIS MOD17 Biome Properties Look-Up Table (BPLUT) to derived LUE. We also used a site-specific analytic approach on tower-based NEE and PAR to estimate maximum potential LUE (LUEmax) to derive LUE. For the fAPAR parameter, the MODIS MOD15A2 fPAR product was used. We also derived fAPARchl, a parameter accounting for fAPAR at chlorophyll level, derived using a Markov Chain Monte Carlo (MCMC) inversion of PROSPECT-SAIL2 (PROSAIL2) radiative transfer model. fAPARchl exhibited a closer match of seasonal dynamics with the flux tower based GPP than MOD15A2 fPAR, especially in spring and fall in the agricultural sites. When using the MODIS MOD17 based parameters to estimate LUE, fAPARchl generated better agreements with GPP (r2=0.79 to 0.91) than MOD15A2 fPAR (r2=0.57 to 0.84). However, significant underestimation was observed for all three of the study sites. When applying the site

  13. Component and whole-system respiration fluxes in northern deciduous forests.

    PubMed

    Bolstad, P V; Davis, K J; Martin, J; Cook, B D; Wang, W

    2004-05-01

    We measured component and whole-system respiration fluxes in northern hardwood (Acer saccharum Marsh., Tilia americana L., Fraxinus pennsylvanica Marsh.) and aspen (Populus tremuloides Michx.) forest stands in Price County, northern Wisconsin from 1999 through 2002. Measurements of soil, leaf and stem respiration, stem biomass, leaf area and biomass, and vertical profiles of leaf area were combined with biometric measurements to create site-specific respiration models and to estimate component and whole-system respiration fluxes. Hourly estimates of component respiration were based on site measurements of air, soil and stem temperature, leaf mass, sapwood volume and species composition. We also measured whole-system respiration from an above-canopy eddy flux tower. Measured soil respiration rates varied significantly among sites, but not consistently among dominant species (P < 0.05 and P > 0.1). Annual soil respiration ranged from 8.09 to 11.94 Mg C ha(-1) year(-1). Soil respiration varied linearly with temperature (P < 0.05), but not with soil water content (P > 0.1). Stem respiration rates per unit volume and per unit area differed significantly among species (P < 0.05). Stem respiration per unit volume of sapwood was highest in F. pennsylvanica (up to 300 micro mol m(3) s(-1)) and lowest in T. americana (22 micro mol m(3) s(-1)) when measured at peak summer temperatures (27 to 29 degrees C). In northern hardwood stands, south-side stem temperatures were higher and more variable than north-side temperatures during leaf-off periods, but were not different statistically during leaf-on periods. Cumulative annual stem respiration varied by year and species (P < 0.05) and averaged 1.59 Mg C ha(-1) year(-1). Leaf respiration rates varied significantly among species (P < 0.05). Respiration rates per unit leaf mass measured at 30 degrees C were highest for P. tremuloides (38.8 nmol g(-1) s(-1)), lowest for Ulmus rubra Muhlenb. (13.1 nmol g(-1) s(-1)) and intermediate

  14. Sapling biomass allocation and growth in the understory of a deciduous hardwood forest.

    PubMed

    Delucia, E; Sipe, T; Herrick, J; Maherali, H

    1998-07-01

    Above- and belowground tissues of co-occurring saplings (0.1-1 m height) of Acer saccharum Marsh. (very shade tolerant), Acer rubrum L. (shade tolerant), Fraxinus americana L. (intermediate shade tolerant), and Prunus serotina Ehrh. (shade intolerant) were harvested from a forest understory to test the hypothesis that the pattern of biomass allocation varied predictably with shade-tolerance rank. The placement and length of branches along the main axis were consistent with the formation of a monolayer of foliage for the tolerant and intermediate species. Other morphological characteristics did not vary predictably with shade-tolerance rank. The maintenance of high specific leaf area (SLA; leaf area/leaf mass) and leaf area ratio (LAR; leaf area/sapling mass) is considered important for growth under extreme shade, yet these traits were not clearly related to the shade-tolerance rank of these species. Fraxinus americana, an intermediate species, had the highest LAR and growth rate in the understory, and with the exception of P. serotina, the very shade-tolerant A. saccharum had the lowest LAR. Prunus serotina maintained a large starch-rich tap root and shoot dieback was common, yielding the largest root/shoot ratio for these species. The observed allocation patterns were not similar to the long-standing expectation for the phenotypic response of juvenile trees to shade, but were consistent with three hypothetical "growth strategies" in the understory: (1) the low SLA and LAR of A. saccharum may provide a measure of defense against herbivores and pathogens and thus promote persistence in the understory, (2) the high SLA for F. americana and high LAR for F. americana and A. rubrum may enable these species to achieve high growth rates in shade, and (3) the large carbohydrate stores of P. serotina may poise this species for opportunistic growth following disturbance. The relative importance of resistance to herbivores and pathogens vs. the maintenance of high growth

  15. Sapling biomass allocation and growth in the understory of a deciduous hardwood forest.

    PubMed

    Delucia, E; Sipe, T; Herrick, J; Maherali, H

    1998-07-01

    Above- and belowground tissues of co-occurring saplings (0.1-1 m height) of Acer saccharum Marsh. (very shade tolerant), Acer rubrum L. (shade tolerant), Fraxinus americana L. (intermediate shade tolerant), and Prunus serotina Ehrh. (shade intolerant) were harvested from a forest understory to test the hypothesis that the pattern of biomass allocation varied predictably with shade-tolerance rank. The placement and length of branches along the main axis were consistent with the formation of a monolayer of foliage for the tolerant and intermediate species. Other morphological characteristics did not vary predictably with shade-tolerance rank. The maintenance of high specific leaf area (SLA; leaf area/leaf mass) and leaf area ratio (LAR; leaf area/sapling mass) is considered important for growth under extreme shade, yet these traits were not clearly related to the shade-tolerance rank of these species. Fraxinus americana, an intermediate species, had the highest LAR and growth rate in the understory, and with the exception of P. serotina, the very shade-tolerant A. saccharum had the lowest LAR. Prunus serotina maintained a large starch-rich tap root and shoot dieback was common, yielding the largest root/shoot ratio for these species. The observed allocation patterns were not similar to the long-standing expectation for the phenotypic response of juvenile trees to shade, but were consistent with three hypothetical "growth strategies" in the understory: (1) the low SLA and LAR of A. saccharum may provide a measure of defense against herbivores and pathogens and thus promote persistence in the understory, (2) the high SLA for F. americana and high LAR for F. americana and A. rubrum may enable these species to achieve high growth rates in shade, and (3) the large carbohydrate stores of P. serotina may poise this species for opportunistic growth following disturbance. The relative importance of resistance to herbivores and pathogens vs. the maintenance of high growth

  16. Comparison of Soil Organic Matter Dynamics at Four Temperate Deciduous Forests with Physical Fractionation and Radiocarbon Measurements

    NASA Astrophysics Data System (ADS)

    McFarlane, K. J.; Torn, M. S.; Hanson, P. J.; Swanston, C.; Guilderson, T. P.; Porras, R. C.

    2009-12-01

    Forest soils represent a significant pool for C sequestration and storage, but the factors controlling soil C cycling are not well constrained. We used density fractionation and radiocarbon measurements to assess differences in soil C cycling amongst four eastern deciduous forests that are part of the AmeriFlux Network and vary in climate, soil type, parent material, and soil ecology. We collected mineral soil from 0-5 cm and 5-15 cm depth at Harvard Forest (HAF) in central Massachusetts, Bartlett Experimental Forest (BEF) in New Hampshire, the University of Michigan Biological Station (UMBS), and Baskett Wildlife Recreation and Education Area in the Missouri Ozarks (MOZ). Deeper soil samples have been collected (to 75 cm in some cases) for future analysis. We fractionated soil samples by density into free light (unprotected SOM), occluded light (physically protected SOM), and dense (mineral-protected) fractions using sodium polytungstate (1.65 g ml-1), measured C concentration and radiocarbon in bulk soil and fractions, and used a three-pool steady-state model to determine radiocarbon-based turnover times for fractions. The northeastern sites, HAF and BEF, had higher bulk soil C (65 and 40 g C kg soil-1, respectively) than did MOZ or UMBS (20 and 10 g C kg soil-1). Bulk soil radiocarbon values (Δ14C) decreased with depth and were lower at northeastern sites than Midwestern sites (36, 8, 113, and 65 ‰ for 0-5 cm at HF, BEF, MOZ, and UMBS, respectively). Soil C distribution amongst fractions was similar at HAF, BEF, and MOZ with the unprotected free light fraction containing about 40% of bulk soil C for 0-5 cm and 20% of bulk soil C for 5-15 cm. At these three sites, the physically protected occluded light fraction contained about 10% of bulk soil C, with the mineral-protected dense fraction containing the remaining 50-70%. In contrast, UMBS, the site with the sandiest soil, had a greater portion of bulk soil C recovered in the unprotected free light fraction and

  17. Assessing the potential for leaf-off LiDAR data to model canopy closure in temperate deciduous forests

    NASA Astrophysics Data System (ADS)

    Parent, Jason R.; Volin, John C.

    2014-09-01

    Estimates of canopy closure have many important uses in forest management and ecological research. Field measurements, however, are typically not practical to acquire over expansive areas or for large numbers of locations. This problem has been addressed, in recent years, through the use of airborne light detection and ranging (LiDAR) technology which has proven effective in modeling canopy closure remotely. The techniques developed to use LiDAR for this purpose have been designed and evaluated for datasets acquired during leaf-on conditions. However, a large number of LiDAR datasets are acquired during leaf-off conditions since their primary purpose is to generate bare-earth Digital Elevation Models. In this paper, we develop and evaluate techniques for leveraging small-footprint leaf-off LiDAR data to model leaf-on canopy closure in temperate deciduous forests. We evaluate three techniques for modeling canopy closure: (1) the canopy-to-total-return-ratio (CTRR), (2) the canopy-to-total-pixel-ratio (CTPR), and (3) the hemispherical-viewshed (HV). The first technique has been used widely, in various forms, and has been shown to be effective with leaf-on LiDAR datasets. The CTRR technique that we tested uses the first-return LiDAR data only. The latter two techniques are new contributions that we develop and present in this paper. These techniques use Canopy Height Models (CHM) to detect significant gaps in the forest canopy which are of primary importance in estimating closure. The techniques we tested each showed good promise for predicting canopy closure using leaf-off LiDAR data with the CTPR and HV models having particularly high correlations with closure estimates from hemispherical photographs. The CTRR model had performance on par with results from previous studies that used leaf-on LiDAR, although, with leaf-off data the model tended to be negatively biased with respect to species having simple and compound leaf types and positively biased for coniferous

  18. Leaf Area Influence on Surface Layer in a Deciduous Forest. Part 2; Detecting Leaf Area and Surface Resistance During Transition Seasons

    NASA Technical Reports Server (NTRS)

    Sakai, Ricardo K.; Fitzjarrald, David R.; Moore, Kathleen E.; Sicker, John W.; Munger, Willian J.; Goulden, Michael L.; Wofsy, Steven C.

    1996-01-01

    Temperate deciduous forest exhibit dramatic seasonal changes in surface exchange properties following on the seasonal changes in leaf area index. The canopy resistance to water vapor transport r(sub c) decreased abruptly at leaf emergence in each year but then also continued to decrease slowly during the remaining growing season due to slowly increasing LAI. Canopy resistance and PAR-albedo (albedo from photosynthetically active radiation) began to increase about one month before leaf fall with the diminishment of CO2 gradient above the canopy as well. At this time evaporation begun to be controlled as if the canopy were leafless.

  19. AmeriFlux US-MMS Morgan Monroe State Forest

    SciTech Connect

    Philip, Rich; Novick, Kim

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-MMS Morgan Monroe State Forest. Site Description - Owned by the Indiana Department of Natural Resources (IDNR), the Morgan Monroe State Forest, the site's namesake, is operated thanks to the long-term agreement between Indiana University and IDNR. The first settlers cleared the surrounding ridges for farming, but were largely unsuccessful. The state of Indiana purchased the land in 1929, creating the Morgan Monroe State Forest. Many of the trees in the tower footprint are 60-80 years old, surviving selective logging that ended over the past 10 years. Today, the forest is a secondary successional broadleaf forest within the maple-beech to oak hickory transition zone of the eastern deciduous forest.

  20. Stable Isotope Fluxes of CO2 and H2O for a Temperate Deciduous Forest in Canada

    NASA Astrophysics Data System (ADS)

    Santos, E. A.; Wagner-Riddle, C.; Warland, J. S.; Brown, S. E.; Lee, X.; Kim, K.; Staebler, R. M.

    2009-12-01

    Stable isotopes of carbon dioxide and water vapor, including 13CO2, C18O16O, HDO and H218O have been used to study the carbon and water cycle. These stable isotopes are particularly useful to separate the contribution of different ecosystem components to the net flux. For example, 13CO2 can be applied as a tracer at sites where soil organic matter and plants present a different isotopic ratio. C18O16O can be used to partitioning soil from foliar respiration, since leaf water is significantly enriched in 18O during the day as a result of leaf transpiration. Continuous measurements of CO2 and H2O exchange and their isotopic values in ecosystems are necessary to better understand the processes related to isotope discrimination. The objective of this study was to investigate the isotopic fluxes of CO2 and H2O continuously in a temperate deciduous forest. The experiment was conducted at the Environment Canada research station, Camp Borden, ON, Canada from June to August 2009. Mixing ratios of C16O2, 13CO2, C18O16O, H216O, HDO and H218O in the sampled air were measured continuously using two tunable diode laser trace gas analyzers (TGA 100A, Campbell Sci., UT, USA). Air was sampled at two heights above the canopy and two heights in the under-storey. The TGA mixing ratio measurements were calibrated by regularly measuring tanks with known concentrations of CO2 isotopic species and water vapor of known isotopic ratios. Atmospheric carbon dioxide (δ13C, and δ18O) and water vapor isotope ratios were calculated, and the isotope signatures of CO2 (δ13N and δ18N) and water vapor flux were obtained based on the flux ratio method. Atmospheric δ13C ranged from -7 (during daytime) to -10 per mil during nighttime, while δ18O values ranged from -1 to -3 per mil. The isotope ratio of the CO2 fluxes in the overstorey ranged from -15 to -22 per mil for δ18N and -22 to -32 per mil for δ13N. These preliminary data will be discussed in light of H2O vapor and flux isotopic ratio

  1. Spatiotemporal dynamics of Floerkea proserpinacoides (Limnanthaceae), an annual plant of the deciduous forest of eastern North America.

    PubMed

    Houle, G; McKenna, M F; Lapointe, L

    2001-04-01

    Because environmental filters are temporally and spatially heterogeneous, there often is a lack of significant relationship between the spatial patterns of successive life stages in plant populations. In this study, we determined the spatiotemporal relationships between different life stages in two populations of an annual plant of the deciduous forests of eastern North America, Floerkea proserpinacoides. Demographic surveys were done over a 4-yr period, and experiments were performed in the field and under controlled conditions to test for the effects of various environmental factors on population dynamics. There was a general lack of relationship between the spatial patterns of seed bank and seedling density, and a lack of similarity between their spatial correlograms. This was related mostly to the effects of spatially variable environmental filters operating on germination and emergence. However, environmental filters acting on plant survival were stable through time and contributed to stabilize the density and spatial patterns of the populations. Despite density-dependent presenescence mortality, spatial patterns of seedlings and mature individuals were similar and their correlograms were alike, suggesting that mortality did not fully compensate for density. Estimated fecundity was negatively correlated with population density over the study period. Although flower production started only 2-3 wk after emergence, seed maturation mostly occurred at the end of the life cycle, just before the onset of plant senescence. Yet, individual fecundity was low for an annual plant, i.e., 3.0 ± 0.5 mature seeds/plant (mean ± 1 SE). Seed predation by vertebrates was not significant. Low soil moisture had little effect on the total number of seeds germinating, although it slowed down the germination process. In quadrats where leaf litter was experimentally doubled, seedling emergence was lower than in control quadrats; in quadrats where leaf litter was completely removed

  2. Mapping tropical forests and deciduous rubber plantations in Hainan Island, China by integrating PALSAR 25-m and multi-temporal Landsat images

    NASA Astrophysics Data System (ADS)

    Chen, Bangqian; Li, Xiangping; Xiao, Xiangming; Zhao, Bin; Dong, Jinwei; Kou, Weili; Qin, Yuanwei; Yang, Chuan; Wu, Zhixiang; Sun, Rui; Lan, Guoyu; Xie, Guishui

    2016-08-01

    Updated and accurate maps of tropical forests and industrial plantations, like rubber plantations, are essential for understanding carbon cycle and optimal forest management practices, but existing optical-imagery-based efforts are greatly limited by frequent cloud cover. Here we explored the potential utility of integrating 25-m cloud-free Phased Array type L-band Synthetic Aperture Radar (PALSAR) mosaic product and multi-temporal Landsat images to map forests and rubber plantations in Hainan Island, China. Based on structure information detected by PALSAR and yearly maximum Normalized Difference Vegetation Index (NDVI), we first identified and mapped forests with a producer accuracy (PA) of 96% and user accuracy (UA) of 98%. The resultant forest map showed reasonable spatial and areal agreements with the optical-based forest maps of Fine Resolution Observation and Monitoring Global Land Clover (FROM-GLC) and GlobalLand30. We then extracted rubber plantations from the forest map according to their deciduous features (using minimum Land Surface Water Index, LSWI) and rapid changes in canopies during Rubber Defoliation and Foliation (RDF) period (using standard deviation of LSWI) and dense canopy in growing season (using maximum NDVI). The rubber plantation map yielded a high accuracy when validated by ground truth-based data (PA/UA > 86%) and evaluated with three farm-scale rubber plantation maps (PA/UA >88%). It is estimated that in 2010, Hainan Island had 2.11 × 106 ha of forest and 5.15 × 105 ha of rubber plantations. This study has demonstrated the potential of integrating 25-m PALSAR-based structure information, and Landsat-based spectral and phenology information for mapping tropical forests and rubber plantations.

  3. [Forest biomass and its dynamics in Pearl River Delta].

    PubMed

    Yang, Kun; Guan, Dong-Sheng

    2007-04-01

    Based on the observation data obtained from 69 sampling sites of different age class forests, and by using biomass expansion factor function, the regression equations of stand biomass and volume of the main forest types in Pearl River Delta were built, and the regional forest biomass and its dynamics were estimated on the basis of forest inventory data. The results showed that most of the forests in Pearl River Delta were of young-medium age, which occupied 80% or more of the total forest area, and their undergrowth biomass accounted for about 33% of the total forest biomass, indicating that the regional forest biomass could be estimated more exactly if undergrowth biomass was fully concerned. In the periods of 1989-1993, 1994-1998 and 1999-2003, the forest biomass in Pearl River Delta increased by 14. 67 x 10(6) t in total, among which, Pinus massoniana forest, evergreen broadleaf forest, and conifer and deciduous mixed forest contributed about 80%. Young-medium age forest biomass accounted for 90% of the total, but the proportion was decreased gradually. The forest area in the Delta almost kept unvaried, and the forest biomass was increasing year after year, with an annual increment of about 1.2%. Better fostering and managing the existing forests is very important to have more forest biomass and better environmental effect that regional forests offered.

  4. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest

    PubMed Central

    Walker, Donald M; Lawrence, Brandy R; Esterline, Dakota; Graham, Sean P; Edelbrock, Michael A; Wooten, Jessica A

    2014-01-01

    The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web. PMID:25505537

  5. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest.

    PubMed

    Walker, Donald M; Lawrence, Brandy R; Esterline, Dakota; Graham, Sean P; Edelbrock, Michael A; Wooten, Jessica A

    2014-11-01

    The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web. PMID:25505537

  6. A unique Middle Pleistocene beech (Fagus)-rich deciduous broad-leaved forest in the Yangtze Delta Plain, East China: Its climatic and stratigraphic implication

    NASA Astrophysics Data System (ADS)

    Shu, Jun-wu; Wang, Wei-ming

    2012-08-01

    Pollen analysis of Middle Pleistocene sediments from the Yangtze Delta Plain provides a paleoecological reconstruction and has implications for stratigraphic correlation in East China. The pollen assemblage is characterized by high values of Fagus (16.8% on average), which is unusual because Fagus is generally present only sporadically in other lowland Quaternary pollen records from the region. In addition to Fagus, the assemblage has a rich diversity of broad-leaved deciduous trees, including Quercus, Ulmus, Carpinus/Ostrya, Juglans, Betula, and Liquidambar, as well as conifers, including Pinus, Picea, Abies, Larix, and Tsuga. Thus, the pollen flora suggests a broad-leaved deciduous forest mixed with abundant conifers, which developed under cooler and more humid conditions than present. The stable pollen sequence throughout the studied section suggests a stable environment. Beech forests also characterize the Middle Pleistocene of Taiwan and Japan, and thus may be a stratigraphic indicator of the Middle Pleistocene in East Asia. The Yangtze Delta Plain may have been an important refugium for the last survival of Fagus in the lowlands.

  7. Predicting the onset of net carbon uptake by deciduous forests with soil temperature and climate data: a synthesis of FLUXNET data.

    PubMed

    Baldocchi, Dennis D; Black, T A; Curtis, P S; Falge, E; Fuentes, J D; Granier, A; Gu, L; Knohl, A; Pilegaard, K; Schmid, H P; Valentini, R; Wilson, K; Wofsy, S; Xu, L; Yamamoto, S

    2005-07-01

    We tested the hypothesis that the date of the onset of net carbon uptake by temperate deciduous forest canopies corresponds with the time when the mean daily soil temperature equals the mean annual air temperature. The hypothesis was tested using over 30 site-years of data from 12 field sites where CO(2) exchange is being measured continuously with the eddy covariance method. The sites spanned the geographic range of Europe, North America and Asia and spanned a climate space of 16 degrees C in mean annual temperature. The tested phenology rule was robust and worked well over a 75 day range of the initiation of carbon uptake, starting as early as day 88 near Ione, California to as late as day 147 near Takayama, Japan. Overall, we observed that 64% of variance in the timing when net carbon uptake started was explained by the date when soil temperature matched the mean annual air temperature. We also observed a strong correlation between mean annual air temperature and the day that a deciduous forest starts to be a carbon sink. Consequently we are able to provide a simple phenological rule that can be implemented in regional carbon balance models and be assessed with soil and temperature outputs produced by climate and weather models.

  8. A metagenomics-based approach to the top-down effect on the detritivore food web: a salamanders influence on fungal communities within a deciduous forest.

    PubMed

    Walker, Donald M; Lawrence, Brandy R; Esterline, Dakota; Graham, Sean P; Edelbrock, Michael A; Wooten, Jessica A

    2014-11-01

    The flow of energy within an ecosystem can be considered either top-down, where predators influence consumers, or bottom-up, where producers influence consumers. Plethodon cinereus (Red-backed Salamander) is a terrestrial keystone predator who feeds on invertebrates within the ecosystem. We investigated the impact of the removal of P. cinereus on the detritivore food web in an upland deciduous forest in northwest Ohio, U.S.A. A total of eight aluminum enclosures, each containing a single P. cinereus under a small log, were constructed in the deciduous forest. On Day 1 of the experiment, four salamanders were evicted from four of the eight enclosures. Organic matter and soil were collected from the center of each enclosure at Day 1 and Day 21. From each sample, DNA was extracted, fungal-specific amplification performed, and 454 pyrosequencing was used to sequence the nuclear ribosomal internal transcribed spacer (ITS2) region and partial ribosomal large subunit (LSU). Changes in overall fungal community composition or species diversity were not statistically significant between treatments. Statistically significant shifts in the most abundant taxonomic groups of fungi were documented in presence but not absence enclosures. We concluded that P. cinereus does not affect the overall composition or diversity of fungal communities, but does have an impact on specific groups of fungi. This study used a metagenomics-based approach to investigate a missing link among a keystone predator, P. cinereus, invertebrates, and fungal communities, all of which are critical in the detritivore food web.

  9. Transpiration by tree roots in the deep unsaturated regolith buffers the recharge process in a tropical watershed under deciduous forest (Mule Hole, India)

    NASA Astrophysics Data System (ADS)

    Ruiz, Laurent; Varma, Murari Rr; Mohan Kumar, Ms; Sekhar, Muddu; Molenat, Jerome; Marechal, Jean-Christophe; Descloitres, Marc; Riotte, Jean; Kumar, Sat; Braun, Jean-Jacques

    2010-05-01

    Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments where deep tree root can uptake water at considerable depth. In this presentation, we assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using the lumped conceptual model COMFORT (Ruiz et al., 2010) to simulate discharge and groundwater levels monitored during six year in an experimental watershed under dry deciduous forest (Mule Hole, South India), which is part of the project "Observatoire de Recherche en Environnement - Bassin Versant Expérimentaux Tropicaux" (http://www.ore.fr/). The model was calibrated on the first four years data, and tested on the two remaining years. The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with successions of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm.year-1 and the evapotranspiration was about 900 mm.year-1 out of which 100 mm.year-1 was uptake from the deep regolith horizons. The stream flow was 100 mm.year-1 while the groundwater underflow was 80 mm.year-1. The simulation results show that i) deciduous trees can uptake a significant amount of water from the deep regolith, ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers, iii) water table response to recharge is buffered due to the long vertical travel time

  10. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Ward, Eric J; Siqueira, Mario B S; Juang, Jehn-Yih; Stoy, Paul C

    2015-02-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight-year-long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co-located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long-time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines. PMID:25168968

  11. Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles.

    PubMed

    Vourlitis, George L; de Souza Nogueira, José; de Almeida Lobo, Francisco; Pinto, Osvaldo Borges

    2015-02-01

    Tropical forests exchange large amounts of water and energy with the atmosphere and are important in controlling regional and global climate; however, climate and evaportranspiration (E) vary significantly across multiple time scales. To better understand temporal patterns in E and climate, we measured the energy balance and meteorology of a semi-deciduous forest in the rainforest-savanna ecotone of northern Mato Grosso, Brazil, over a 7-year period and analyzed regional climate patterns over a 16-year period. Spectral analysis revealed that E and local climate exhibited consistent cycles over annual, seasonal, and weekly time scales. Annual and seasonal cycles were also apparent in the regional monthly rainfall and humidity time series, and a cycle on the order of 3-5.5 years was also apparent in the regional air temperature time series, which is coincident with the average return interval of El Niño. Annual rates of E were significantly affected by the 2002 El Niño. Prior to this event, annual E was on average 1,011 mm/year and accounted for 52% of the annual rainfall, while after, annual E was 931 mm/year and accounted for 42% of the annual rainfall. Our data also suggest that E declined significantly over the 7-year study period while air temperature significantly increased, which was coincident with a long-term, regional warming and drying trend. These results suggest that drought and warming induced by El Niño and/or climate change cause declines in E for semi-deciduous forests of the southeast Amazon Basin.

  12. On the difference in the net ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern United States.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Ward, Eric J; Siqueira, Mario B S; Juang, Jehn-Yih; Stoy, Paul C

    2015-02-01

    The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight-year-long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co-located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long-time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines.

  13. Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles.

    PubMed

    Vourlitis, George L; de Souza Nogueira, José; de Almeida Lobo, Francisco; Pinto, Osvaldo Borges

    2015-02-01

    Tropical forests exchange large amounts of water and energy with the atmosphere and are important in controlling regional and global climate; however, climate and evaportranspiration (E) vary significantly across multiple time scales. To better understand temporal patterns in E and climate, we measured the energy balance and meteorology of a semi-deciduous forest in the rainforest-savanna ecotone of northern Mato Grosso, Brazil, over a 7-year period and analyzed regional climate patterns over a 16-year period. Spectral analysis revealed that E and local climate exhibited consistent cycles over annual, seasonal, and weekly time scales. Annual and seasonal cycles were also apparent in the regional monthly rainfall and humidity time series, and a cycle on the order of 3-5.5 years was also apparent in the regional air temperature time series, which is coincident with the average return interval of El Niño. Annual rates of E were significantly affected by the 2002 El Niño. Prior to this event, annual E was on average 1,011 mm/year and accounted for 52% of the annual rainfall, while after, annual E was 931 mm/year and accounted for 42% of the annual rainfall. Our data also suggest that E declined significantly over the 7-year study period while air temperature significantly increased, which was coincident with a long-term, regional warming and drying trend. These results suggest that drought and warming induced by El Niño and/or climate change cause declines in E for semi-deciduous forests of the southeast Amazon Basin. PMID:24830756

  14. Performance evaluation of the SITE® model to estimate energy flux in a tropical semi-deciduous forest of the southern Amazon Basin.

    PubMed

    Sanches, Luciana; de Andrade, Nara Luísa Reis; Costa, Marcos Heil; Alves, Marcelo de Carvalho; Gaio, Denilton

    2011-05-01

    The SITE® model was originally developed to study the response of tropical ecosystems to varying environmental conditions. The present study evaluated the applicability of the SITE model to simulation of energy fluxes in a tropical semi-deciduous forest of the southern Amazon Basin. The model was simulated with data representing the wet and dry season, and was calibrated according to each season. The output data of the calibrated model [net radiation (Rn), latent heat flux (LE) and sensible heat flux (H)] were compared with data observed in the field for validation. Considering changes in parameter calibration for a time step simulation of 30 min, the magnitude of variation in temporal flux was satisfactory when compared to observation field data. There was a tendency to underestimate and overestimate LE and H, respectively. Of all the calibration parameters, the soil moisture parameter presented the highest variation over the seasons, thus influencing SITE model performance.

  15. Expression of the Agrobacterium rhizogenes rolC Gene in a Deciduous Forest Tree Alters Growth and Development and Leads to Stem Fasciation.

    PubMed Central

    Nilsson, O.; Moritz, T.; Sundberg, B.; Sandberg, G.; Olsson, O.

    1996-01-01

    We have altered the growth and development of a deciduous forest tree by transforming hybrid aspen (Populus tremula x Populus tremuloides) with the Agrobacterium rhizogenes rolC gene expressed under the strong cauliflower mosaic virus 35S promoter. We demonstrate that the genetically manipulated perennial plants, after a period of dormancy, maintain the induced phenotypical changes during the second growing period. Furthermore, mass-spectrometrical quantifications of the free and conjugated forms of indole-3-acetic acid and cytokinins and several gibberellins on one transgenic line correlate the induced developmental alterations such as stem fasciation to changes in plant hormone metabolism. We also show that the presence of the RolC protein increases the levels of the free cytokinins, but not by a process involving hydrolysis of the inactive cytokinin conjugates. PMID:12226405

  16. Expression of the Agrobacterium rhizogenes rolC Gene in a Deciduous Forest Tree Alters Growth and Development and Leads to Stem Fasciation.

    PubMed

    Nilsson, O.; Moritz, T.; Sundberg, B.; Sandberg, G.; Olsson, O.

    1996-10-01

    We have altered the growth and development of a deciduous forest tree by transforming hybrid aspen (Populus tremula x Populus tremuloides) with the Agrobacterium rhizogenes rolC gene expressed under the strong cauliflower mosaic virus 35S promoter. We demonstrate that the genetically manipulated perennial plants, after a period of dormancy, maintain the induced phenotypical changes during the second growing period. Furthermore, mass-spectrometrical quantifications of the free and conjugated forms of indole-3-acetic acid and cytokinins and several gibberellins on one transgenic line correlate the induced developmental alterations such as stem fasciation to changes in plant hormone metabolism. We also show that the presence of the RolC protein increases the levels of the free cytokinins, but not by a process involving hydrolysis of the inactive cytokinin conjugates.

  17. Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.

    PubMed

    Levia, Delphis F; Shiklomanov, Alexey N; Van Stan, John T; Scheick, Carrie E; Inamdar, Shreeram P; Mitchell, Myron J; McHale, Patrick J

    2015-07-01

    Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles. PMID:26100445

  18. Calcium and aluminum cycling in a temperate broadleaved deciduous forest of the eastern USA: relative impacts of tree species, canopy state, and flux type.

    PubMed

    Levia, Delphis F; Shiklomanov, Alexey N; Van Stan, John T; Scheick, Carrie E; Inamdar, Shreeram P; Mitchell, Myron J; McHale, Patrick J

    2015-07-01

    Ca/Al molar ratios are commonly used to assess the extent of aluminum stress in forests. This is among the first studies to quantify Ca/Al molar ratios for stemflow. Ca/Al molar ratios in bulk precipitation, throughfall, stemflow, litter leachate, near-trunk soil solution, and soil water were quantified for a deciduous forest in northeastern MD, USA. Data were collected over a 3-year period. The Ca/Al molar ratios in this study were above the threshold for aluminum stress (<1). Fagus grandifolia Ehrh. (American beech) had a median annual stemflow Ca/Al molar ratio of 15.7, with the leafed and leafless values of 12.4 and 19.2, respectively. The corresponding Ca/Al molar ratios for Liriodendron tulipifera L. (yellow poplar) were 11.9 at the annual time scale and 11.9 and 13.6 for leafed and leafless periods, respectively. Bayesian statistical analysis showed no significant effect of canopy state (leafed, leafless) on Ca/Al molar ratios. DOC was consistently an important predictor of calcium, aluminum, and Ca/Al ratios. pH was occasionally an important predictor of calcium and aluminum concentrations, but was not a good predictor of Ca/Al ratio in any of the best-fit models (of >500 examined). This study supplies new data on Ca/Al molar ratios for stemflow from two common deciduous tree species. Future work should examine Ca/Al molar ratios in stemflow of other species and examine both inorganic and organic aluminum species to better gauge the potential for, and understand the dynamics of, aluminum toxicity in the proximal area around tree boles.

  19. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species.

    PubMed

    Jo, Insu; Fridley, Jason D; Frank, Douglas A

    2016-01-01

    Invaders often have greater rates of production and produce more labile litter than natives. The increased litter quantity and quality of invaders should increase nutrient cycling through faster litter decomposition. However, the limited number of invasive species that have been included in decomposition studies has hindered the ability to generalize their impacts on decomposition rates. Further, previous decomposition studies have neglected roots. We measured litter traits and decomposition rates of leaves for 42 native and 36 nonnative woody species, and those of fine roots for 23 native and 25 nonnative species that occur in temperate deciduous forests throughout the Eastern USA. Among the leaf and root traits that differed between native and invasive species, only leaf nitrogen was significantly associated with decomposition rate. However, native and nonnative species did not differ systematically in leaf and root decomposition rates. We found that among the parameters measured, litter decomposer activity was driven by litter chemical quality rather than tissue density and structure. Our results indicate that litter decomposition rate per se is not a pathway by which forest woody invasive species affect North American temperate forest soil carbon and nutrient processes. PMID:26333347

  20. More of the same? In situ leaf and root decomposition rates do not vary between 80 native and nonnative deciduous forest species.

    PubMed

    Jo, Insu; Fridley, Jason D; Frank, Douglas A

    2016-01-01

    Invaders often have greater rates of production and produce more labile litter than natives. The increased litter quantity and quality of invaders should increase nutrient cycling through faster litter decomposition. However, the limited number of invasive species that have been included in decomposition studies has hindered the ability to generalize their impacts on decomposition rates. Further, previous decomposition studies have neglected roots. We measured litter traits and decomposition rates of leaves for 42 native and 36 nonnative woody species, and those of fine roots for 23 native and 25 nonnative species that occur in temperate deciduous forests throughout the Eastern USA. Among the leaf and root traits that differed between native and invasive species, only leaf nitrogen was significantly associated with decomposition rate. However, native and nonnative species did not differ systematically in leaf and root decomposition rates. We found that among the parameters measured, litter decomposer activity was driven by litter chemical quality rather than tissue density and structure. Our results indicate that litter decomposition rate per se is not a pathway by which forest woody invasive species affect North American temperate forest soil carbon and nutrient processes.

  1. Mercury emission from terrestrial background surfaces in the eastern USA. Part I: Air/surface exchange of mercury within a southeastern deciduous forest (Tennessee) over one year

    SciTech Connect

    Kuiken, Todd; Zhang, Hong; Gustin, Mae S.; Lindberg, Steven Eric

    2008-03-01

    This study focused on the development of a seasonal data set of the Hg air/surface exchange over soils associated with low Hg containing surfaces in a deciduous forest in the southern USA. Data were collected every month for 11 months in 2004 within Standing Stone State Forest in Tennessee using the dynamic flux chamber method. Mercury air/surface exchange associated with the litter covered forest floor was very low with the annual mean daytime flux being 0.4 0.5 ng m-2 h-1 (n = 301). The daytime Hg air/surface exchange over the year oscillated between emission (81% of samples with positive flux) and deposition (19% of samples with negative flux). A seasonal trend of lower emission in the spring and summer (closed canopy) relative to the fall and winter (open canopy) was observed. Correlations were found between the air/surface exchange and certain environmental factors on specific days sampled but not collectively over the entire year. The very low magnitude of Hg air/surface exchange as observed in this study suggests that an improved methodology for determining and reporting emission fluxes is needed when the values of fluxes and chamber blanks are both very low and comparable. This study raises questions and points to a need for more research regarding how to scale the Hg air/surface exchange for surfaces with very low emissions.

  2. Seasonal and Inter-annual Changes in Photosynthetic and Soil Respiratory Processes in a Cool-temperate Deciduous Forest on a Mountainous Landscape in Japan.

    NASA Astrophysics Data System (ADS)

    Muraoka, H.; Noh, N. J.; Saitoh, T. M.; Nagao, A.; Noda, H. M.; Kuribayashi, M.; Nagai, S.

    2015-12-01

    Carbon budget of terrestrial ecosystems is one of the most crucial themes in ecosystem sciences under current and future climate changes as it would affect our Earth system. Remote sensing and modeling analysis studies from continental to global scales have been indicating that the recent climate change is influential to photosynthetic processes in terrestrial vegetation such as forests and grasslands, by altering phenology (seasonal change) and foliage biomass. In addition, increasing temperature and possibly changing photosynthetic activities of plants are influential to soil carbon dynamics. Our deeper and broader understandings on such photosynthetic and respiratory processes governing carbon cycle and hence budget of terrestrial ecosystems are critical to detect the changes of ecosystem processes and the functions in changing environments, as they would influence the biodiversity, ecosystem services and Earth system.In order to reveal the nature of temporal changes in photosynthetic and respiratory processes in forest ecosystems, we have been conducting multi-disciplinary observations of ecophysiological and optical properties for canopy photosynthesis in a cool-temperate deciduous forest since 2003 ("Takayama site", contributing to AsiaFlux and JaLTER). In addition, open-field warming experiments have been conducted since 2011 to examine the possible influence of near-future warming condition on forest canopy photosynthesis and soil respiration. (1) Our long-term measurements of leaf and canopy photosynthesis revealed that their phenology is influenced by inter-annual variation of micrometeorological conditions. (2) Combined analysis of leaf-canopy photosynthesis and optical properties enabled us to estimate the forest photosynthetic productivity at regional scale by satellite data. (3) Open-field warming experiments suggested that tree foliage and soil processes would acclimate to near-future warming conditions.

  3. Effects of mineral characteristics on the content and stability of organic matter fractions sequentially separated from seven topsoils under temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Kaiser, Michael; Zederer, Dan P.; Ellerbrock, Ruth H.; Sommer, Michael; Ludwig, Bernard

    2015-04-01

    Mineral topsoils under forest possess high organic carbon (OC) contents and are therefore of large importance for the terrestrial C cycle. However, less is known about the mechanisms controlling the preservation of organic matter (OM) against microbial decomposition in mineral topsoils under temperate deciduous forest. We took samples from the uppermost mineral topsoil horizon (0 to 5 cm) of seven sites under mature deciduous forest in Germany showing OC contents between 69 and 164 g kg-1. The study sites showed a wide range in mineral characteristics supposed to be important for OM protection against microbial attack. At first we removed the organic particles and the water-extractable OM assumed to be less associated with the mineral phase from the soil samples. Thereafter, we sequentially separated the Na-pyrophosphate extractable organic matter (OM(PY) supposed to be indicative for OM bound via cation mediated interactions in soil and the OM remaining in the extraction residue supposed to be indicative for OM occluded in stable micro-aggregates. The OM(PY) and OM(ER) fractions were quantified and analyzed by 14C and FTIR measurements. The OC remaining in the extraction residues accounted for 38 to 59% of the bulk soil OC suggesting a much larger relevance of OM(ER) for the OM dynamic in the analyzed soils than with OM(PY) that accounted for 1.6 to 7.5% of the bulk soil OC. Regression analyses indicated an increase in the stability of OM(PY) with the content of Na-pyrophosphate soluble Mg and the soil pH. Therefore, we assume the turnover of OM(PY) in the studied forest mineral surface soils to be influenced by cation mediated interactions between organic molecules such as cross-linking. We detected an increase in the stability of OM(ER) with the contents of clay and oxalate soluble Al that were shown to be involved in the formation of aggregates smaller than 20 µm. Therefore, we assume an occlusion in highly stable micro-aggregates to be important for the

  4. Temporal disparity in leaf chlorophyll content and leaf area index across a growing season in a temperate deciduous forest

    NASA Astrophysics Data System (ADS)

    Croft, H.; Chen, J. M.; Zhang, Y.

    2014-12-01

    Spatial and temporal variations in canopy structure and leaf biochemistry have considerable influence on fluxes of CO2, water and energy and nutrient cycling in vegetation. Two vegetation indices (VI), NDVI and Macc01, were used to model the spatio-temporal variability of broadleaf chlorophyll content and leaf area index (LAI) across a growing season. Ground data including LAI, hyperspectral leaf reflectance factors (400-2500 nm) and leaf chlorophyll content were measured across the growing season and satellite-derived canopy reflectance data was acquired for 33 dates at 1200 m spatial resolution. Key phenological information was extracted using the TIMESAT software. Results showed that LAI and chlorophyll start of season (SOS) dates were at day of year (DOY) 130 and 157 respectively, and total season duration varied by 57 days. The spatial variability of chlorophyll and LAI phenology was also analyzed at the landscape scale to investigate phenological patterns over a larger spatial extent. Whilst a degree of spatial variability existed, results showed that chlorophyll SOS lagged approximately 20-35 days behind LAI SOS, and the end of season (EOS) LAI dates were predominantly between 20 and 30 days later than chlorophyll EOS. The large temporal differences between VI-derived chlorophyll content and LAI has important implications for biogeochemical models using NDVI or LAI to represent the fraction of photosynthetically active radiation absorbed by a canopy, in neglecting to account for delays in chlorophyll production and thus photosynthetic capacity.

  5. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA.

    PubMed

    Jennings, Katie A; Guerrieri, Rossella; Vadeboncoeur, Matthew A; Asbjornsen, Heidi

    2016-04-01

    Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) ofQuercus velutinaLamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low- and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar %N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increasedQ. velutinasensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2has improved iWUE, with N fertilization and CO2having synergistic effects on iWUE.

  6. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA.

    PubMed

    Jennings, Katie A; Guerrieri, Rossella; Vadeboncoeur, Matthew A; Asbjornsen, Heidi

    2016-04-01

    Nitrogen (N) deposition and changing climate patterns in the northeastern USA can influence forest productivity through effects on plant nutrient relations and water use. This study evaluates the combined effects of N fertilization, climate and rising atmospheric CO2on tree growth and ecophysiology in a temperate deciduous forest. Tree ring widths and stable carbon (δ(13)C) and oxygen (δ(18)O) isotopes were used to assess tree growth (basal area increment, BAI) and intrinsic water use efficiency (iWUE) ofQuercus velutinaLamb., the dominant tree species in a 20+ year N fertilization experiment at Harvard Forest (MA, USA). We found that fertilized trees exhibited a pronounced and sustained growth enhancement relative to control trees, with the low- and high-N treatments responding similarly. All treatments exhibited improved iWUE over the study period (1984-2011). Intrinsic water use efficiency trends in the control trees were primarily driven by changes in stomatal conductance, while a stimulation in photosynthesis, supported by an increase in foliar %N, contributed to enhancing iWUE in fertilized trees. All treatments were predominantly influenced by growing season vapor pressure deficit (VPD), with BAI responding most strongly to early season VPD and iWUE responding most strongly to late season VPD. Nitrogen fertilization increasedQ. velutinasensitivity to July temperature and precipitation. Combined, these results suggest that ambient N deposition in N-limited northeastern US forests has enhanced tree growth over the past 30 years, while rising ambient CO2has improved iWUE, with N fertilization and CO2having synergistic effects on iWUE. PMID:26917704

  7. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis.

    PubMed

    Holland, V; Koller, S; Brüggemann, W

    2014-07-01

    Climate change is one of the major issues nowadays, and Mediterranean broadleaf species have been suggested to fill possible future gaps created by climate change in Central European forests. To provide a scientific-based foundation for such practical strategies, it is important to obtain a general idea about differences and similarities in the physiology of Central European and Mediterranean species. In the present study, we evaluated the onset of leaf senescence of a broad spectrum of oak species under the Central European climate in a common garden experiment. Degradation of the photosynthetic apparatus of evergreen (Quercus ilex, Q. suber), semi-evergreen (Q.×turneri, Q.×hispanica) and deciduous oaks (Q. robur, Q. cerris, Q. frainetto, Q. pubescens) was monitored as chlorophyll content and analysed chlorophyll fluorescence induction transients. In the deciduous species, a significant decline in chlorophyll content was observed during autumn/winter, with Q. pubescens showing the slowest decline. Analysis of fluorescence induction transients revealed a significant decline in quantum efficiency of the primary photochemistry and reaction centre density and later, a decrease in quantum efficiency of end acceptor reduction. Alterations in fluorescence parameters were compared to the decline in chlorophyll content, which occurred much more slowly than expected from the fluorescence data. The evergreen species showed no decline in chlorophyll content, nor different chlorophyll a fluorescence induction behaviour despite temperature falling below 0 °C. The hybrids showed intermediate behaviour between their parental evergreen and deciduous taxa.

  8. Sub-biome variability in the biophysical influence of forests on climate using the Community Earth System Model

    NASA Astrophysics Data System (ADS)

    Ahlswede, B.; Thomas, R. Q.

    2014-12-01

    Forests influence local climate through biophysical processes. It is well established that boreal forests have a warming effect by reducing albedo and tropical forests have a cooling effect due to increased evapotranspiration. However the influence of temperate forests on climate is less certain. Previous model experiments have shown the average effect of temperate forests as a whole to be a weak warming effect. However, some non-model studies that examine these effects at the sub-biome level show a latitudinal gradient of effects presumably due to differences in climate; while other studies show variation in biophysical effects due to forest type that is independent of latitude. Using the Community Earth System Model, we explore spatial variation in the direction and magnitude of the climate response to simulated deforestation in temperate forests. Our analysis focuses on the relative importance of pre-deforestation temperature, pre-deforestation precipitation, and the percentage of a grid cell occupied by needle-leaf evergreen trees as factors explaining how deforestation influences climate. We use results from deforestation simulations where forests are subdivided into temperature and precipitation clusters to develop a statistical model that predicts the change in regional air temperature, precipitation, and relative humidity based on climate. To examine the sensitivity of results to the plant-type we repeated the simulations of deforestation in the climate clusters using two pre-deforestation forest compositions: 100% needle-leaf evergreen trees (0 % broad-leaf deciduous) and 0% needle-leaf evergreen trees (100 % broad-leaf deciduous). Overall, we found that within the temperate forests warmer, wetter forests cooled climate while cooler, wetter forests warmed climate. The influence of plant-type was most pronounced in cooler regions. Our results help better understand how land-cover change in the temperate region influences climate and highlights how changes

  9. Seasonal fluctuations and temperature dependence of leaf gas exchange parameters of co-occurring evergreen and deciduous trees in a temperate broad-leaved forest.

    PubMed

    Kosugi, Yoshiko; Matsuo, Naoko

    2006-09-01

    Seasonal fluctuations in leaf gas exchange parameters were investigated in three evergreen (Quercus glauca Thunb., Cinnamomum camphora Sieb. and Castanopsis cuspidata Schottky) and one deciduous (Quercus serrata Thunb.) co-occurring, dominant tree species in a temperate broad-leaved forest. Dark respiration rate (Rn), maximum carboxylation rate (Vcmax) and stomatal coefficient (m), the ratio of stomatal conductance to net assimilation rate after adjustment to the vapor pressure deficit and internal carbon dioxide (CO2) concentration, were derived inversely from instantaneous field gas exchange data (one-point method). The normalized values of Rn and Vcmax at the reference temperature of 25 degrees C (Rn25, Vcmax25) and their temperature dependencies (Delta Ha(Rn), Delta Ha(Vcmax)) were analyzed. Parameter Vcmax25 ranged from 24.0-40.3 micromol m(-2) s(-1) and Delta Ha(Vcmax) ranged from 29.1- 67.0 kJ mol(-1). Parameter Rn25 ranged from 0.6-1.4 micromol m(-2) s(-1) and Delta Ha(Rn) ranged from 47.4-95.4 kJ mol(-1). The stomatal coefficient ranged from 7.2-8.2. For the three evergreen trees, a single set of Vcmax25 and Rn25 parameters and temperature dependence curves produced satisfactory estimates of carbon uptake throughout the year, except during the period of simultaneous leaf fall and leaf expansion, which occurs in April and May. In the deciduous oak, declines in Vcmax25 were observed after summer, along with changes in Vcmax25 and Rn25 during the leaf expansion period. In all species, variation in m during periods of leaf expansion and drought should be considered in modeling studies. We conclude that the changes in normalized gas exchange parameters during periods of leaf expansion and drought need to be considered when modeling carbon uptake of evergreen broad-leaved species.

  10. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation.

    PubMed

    Zhao, Cai; Wang, Chang-Bao; Ma, Xiang-Guang; Liang, Qian-Long; He, Xing-Jin

    2013-09-01

    This study investigates the influence of climate-induced oscillations and complicated geological conditions on the evolutionary processes responsible for species formation in presently fragmented temperate forest habitats, located in continental East Asia. In addition to this, we also investigate the heavily debated issue of whether temperate forests migrated southwards during such glacial periods or, alternatively, whether there existed refugia within north China, enabling localized survival of temperate forests within this region. In order to achieve these, we surveyed the phylogeography of Bupleurum longiradiatum Turcz. (a herbaceous plant solely confined to temperate forests) constructed from sequence variation in three chloroplast (cp) DNA fragments: trnL-trnF, psbA-trnH and rps16. Our analyses show high genetic diversity within species (h(T)=0.948) and pronounced genetic differentiation among groups (yellow and purple flowers) with a significant phylogeographical pattern (N(ST)>G(ST), P<0.05). Forty-three haplotypes were identified and clustered into two lineages (the purple-flowered lineage and the yellow-flowered lineage). Two corresponding refuge areas, one in Qinling and its adjacent regions and one in the Changbai Mountains/eastern China, were revealed across the entire distribution ranges of Bupleurum longiradiatum. These results provide evidence for the hypothesis that independent refugia were maintained across the range of temperate forests in northern China during the last glacial maximum or earlier cold periods. Bupleurum longiradiatum var. porphyranthum formed a single taxon based on molecular data. This specific formation process suggests that the historical vicariance factors, i.e. climate-induced eco-geographic isolation through the biotic displacement of temperate-deciduous forest habitats, enhanced the divergence of the yellow and purple flower lineages at different spatial-temporal scales and over glacial and interglacial periods

  11. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation.

    PubMed

    Zhao, Cai; Wang, Chang-Bao; Ma, Xiang-Guang; Liang, Qian-Long; He, Xing-Jin

    2013-09-01

    This study investigates the influence of climate-induced oscillations and complicated geological conditions on the evolutionary processes responsible for species formation in presently fragmented temperate forest habitats, located in continental East Asia. In addition to this, we also investigate the heavily debated issue of whether temperate forests migrated southwards during such glacial periods or, alternatively, whether there existed refugia within north China, enabling localized survival of temperate forests within this region. In order to achieve these, we surveyed the phylogeography of Bupleurum longiradiatum Turcz. (a herbaceous plant solely confined to temperate forests) constructed from sequence variation in three chloroplast (cp) DNA fragments: trnL-trnF, psbA-trnH and rps16. Our analyses show high genetic diversity within species (h(T)=0.948) and pronounced genetic differentiation among groups (yellow and purple flowers) with a significant phylogeographical pattern (N(ST)>G(ST), P<0.05). Forty-three haplotypes were identified and clustered into two lineages (the purple-flowered lineage and the yellow-flowered lineage). Two corresponding refuge areas, one in Qinling and its adjacent regions and one in the Changbai Mountains/eastern China, were revealed across the entire distribution ranges of Bupleurum longiradiatum. These results provide evidence for the hypothesis that independent refugia were maintained across the range of temperate forests in northern China during the last glacial maximum or earlier cold periods. Bupleurum longiradiatum var. porphyranthum formed a single taxon based on molecular data. This specific formation process suggests that the historical vicariance factors, i.e. climate-induced eco-geographic isolation through the biotic displacement of temperate-deciduous forest habitats, enhanced the divergence of the yellow and purple flower lineages at different spatial-temporal scales and over glacial and interglacial periods

  12. Ecology and pathology of European chestnut (Castanea sativa) in the deciduous forests of the Caucasus Mountains in southern Russia

    USGS Publications Warehouse

    Pridnya, M.V.; Cherpakov, V.V.; Paillet, Frederick L.

    1996-01-01

    Chestnut-dominated forests of the Caucasus Mountain area of Russia are very similar to former chestnut-dominated forests in eastern North America. The distribution, pathology, and reproductive status of European chestnut (Castanea sativa) in the Caucasus are described and compared to that of American chestnut (C. dentata). Chestnut forests are distributed continuously along the southern slope of the Caucasus mountains near the Black Sea, and are found in isolated populations on the north side of the Caucasus, at elevations ranging from 200 to 1300 meters. Chestnut blight was apparently introduced into the region after 1880 and continues to destroy chestnut forests today. Chestnut in the Caucasus is also infected by several other fungal and bacterial parasites and the joint infection of blight and bacteria may be especially dangerous for chestnut trees. Chestnut-dominated forests comprise only a few percent of total forest cover in the Caucasus Biosphere Preserve, and usually occur in mountain valleys or coves with deep brown soil. The age structure and reproductive status of chestnut in the Caucasus was investigated on six study plots in the Caucasus Biosphere Forest Preserve near the upper altitudinal limit of chestnut. Although chestnut is at least 70 percent of the overstory on these sites, there are very few trees less than 50 years old, and very few recent seedlings on any of the plots. Most large chestnut trees appear to have originated as basal spouts from previously established stems. Although chestnut seed production appears adequate, we suspect that competition with shrubs and other tree seedlings, and predation by herbivores and rodents, now prevent the establishment and survival of chestnut seedlings in the Biosphere Preserve.

  13. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest.

    PubMed

    Hardiman, Brady S; Bohrer, Gil; Gough, Christopher M; Vogel, Christoph S; Curtisi, Peter S

    2011-09-01

    The even-aged northern hardwood forests of the Upper Great Lakes Region are undergoing an ecological transition during which structural and biotic complexity is increasing. Early-successional aspen (Populus spp.) and birch (Betula papyrifera) are senescing at an accelerating rate and are being replaced by middle-successional species including northern red oak (Quercus rubra), red maple (Acer rubrum), and white pine (Pinus strobus). Canopy structural complexity may increase due to forest age, canopy disturbances, and changing species diversity. More structurally complex canopies may enhance carbon (C) sequestration in old forests. We hypothesize that these biotic and structural alterations will result in increased structural complexity of the maturing canopy with implications for forest C uptake. At the University of Michigan Biological Station (UMBS), we combined a decade of observations of net primary productivity (NPP), leaf area index (LAI), site index, canopy tree-species diversity, and stand age with canopy structure measurements made with portable canopy lidar (PCL) in 30 forested plots. We then evaluated the relative impact of stand characteristics on productivity through succession using data collected over a nine-year period. We found that effects of canopy structural complexity on wood NPP (NPPw) were similar in magnitude to the effects of total leaf area and site quality. Furthermore, our results suggest that the effect of stand age on NPPw is mediated primarily through its effect on canopy structural complexity. Stand-level diversity of canopy-tree species was not significantly related to either canopy structure or NPPw. We conclude that increasing canopy structural complexity provides a mechanism for the potential maintenance of productivity in aging forests. PMID:21939078

  14. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest.

    PubMed

    Hardiman, Brady S; Bohrer, Gil; Gough, Christopher M; Vogel, Christoph S; Curtisi, Peter S

    2011-09-01

    The even-aged northern hardwood forests of the Upper Great Lakes Region are undergoing an ecological transition during which structural and biotic complexity is increasing. Early-successional aspen (Populus spp.) and birch (Betula papyrifera) are senescing at an accelerating rate and are being replaced by middle-successional species including northern red oak (Quercus rubra), red maple (Acer rubrum), and white pine (Pinus strobus). Canopy structural complexity may increase due to forest age, canopy disturbances, and changing species diversity. More structurally complex canopies may enhance carbon (C) sequestration in old forests. We hypothesize that these biotic and structural alterations will result in increased structural complexity of the maturing canopy with implications for forest C uptake. At the University of Michigan Biological Station (UMBS), we combined a decade of observations of net primary productivity (NPP), leaf area index (LAI), site index, canopy tree-species diversity, and stand age with canopy structure measurements made with portable canopy lidar (PCL) in 30 forested plots. We then evaluated the relative impact of stand characteristics on productivity through succession using data collected over a nine-year period. We found that effects of canopy structural complexity on wood NPP (NPPw) were similar in magnitude to the effects of total leaf area and site quality. Furthermore, our results suggest that the effect of stand age on NPPw is mediated primarily through its effect on canopy structural complexity. Stand-level diversity of canopy-tree species was not significantly related to either canopy structure or NPPw. We conclude that increasing canopy structural complexity provides a mechanism for the potential maintenance of productivity in aging forests.

  15. MODIS Based Estimation of Forest Aboveground Biomass in China

    PubMed Central

    Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha−1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y−1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y−1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y−1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  16. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests. PMID:26115195

  17. MODIS Based Estimation of Forest Aboveground Biomass in China.

    PubMed

    Yin, Guodong; Zhang, Yuan; Sun, Yan; Wang, Tao; Zeng, Zhenzhong; Piao, Shilong

    2015-01-01

    Accurate estimation of forest biomass C stock is essential to understand carbon cycles. However, current estimates of Chinese forest biomass are mostly based on inventory-based timber volumes and empirical conversion factors at the provincial scale, which could introduce large uncertainties in forest biomass estimation. Here we provide a data-driven estimate of Chinese forest aboveground biomass from 2001 to 2013 at a spatial resolution of 1 km by integrating a recently reviewed plot-level ground-measured forest aboveground biomass database with geospatial information from 1-km Moderate-Resolution Imaging Spectroradiometer (MODIS) dataset in a machine learning algorithm (the model tree ensemble, MTE). We show that Chinese forest aboveground biomass is 8.56 Pg C, which is mainly contributed by evergreen needle-leaf forests and deciduous broadleaf forests. The mean forest aboveground biomass density is 56.1 Mg C ha-1, with high values observed in temperate humid regions. The responses of forest aboveground biomass density to mean annual temperature are closely tied to water conditions; that is, negative responses dominate regions with mean annual precipitation less than 1300 mm y-1 and positive responses prevail in regions with mean annual precipitation higher than 2800 mm y-1. During the 2000s, the forests in China sequestered C by 61.9 Tg C y-1, and this C sink is mainly distributed in north China and may be attributed to warming climate, rising CO2 concentration, N deposition, and growth of young forests.

  18. Autumn coloring, photosynthetic performance and leaf development of deciduous broad-leaved trees in relation to forest succession.

    PubMed

    Koike, T.

    1990-12-01

    Autumn coloring of deciduous broad-leaved trees in northern Japan was found to develop either from the inner part of the crown outward (inner-type), or from the outer part of the crown inward (outer-type). Inner-type trees had early-successional characteristics, whereas outer-type trees had late-successional characteristics. Although alders (Alnus hirsuta (Spach) Rupr. and A. japonica (Thunb.) Steud.) did not change color in the fall, these early-successional species were also studied. Both chlorophyll content and chlorophyll a/b ratio increased then decreased with increasing leaf age. In early fall, however, chlorophyll content of leaves on the same branch decreased from older to younger leaves only in the inner-type species. Net photosynthetic rates at light saturation of individual leaves increased then decreased at a greater rate in inner-type species than in outer-type species. Leaf dry weight per unit area decreased more before leaf fall in outer-type species than in inner-type species. Inner-type species have younger leaves at the outer surface of crowns, whereas in outer-type species, leaf age is similar throughout the crown. Leaf senescence of outer-type species began in the outer surface of crowns. The pattern of leaf senescence and the development of fall colorations may be related to the growth strategy of the species.

  19. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest.

    PubMed

    Lang, Christa; Seven, Jasmin; Polle, Andrea

    2011-05-01

    Mycorrhizal species richness and host ranges were investigated in mixed deciduous stands composed of Fagus sylvatica, Tilia spp., Carpinus betulus, Acer spp., and Fraxinus excelsior. Acer and Fraxinus were colonized by arbuscular mycorrhizas and contributed 5% to total stand mycorrhizal fungal species richness. Tilia hosted similar and Carpinus half the number of ectomycorrhizal (EM) fungal taxa compared with Fagus (75 putative taxa). The relative abundance of the host tree the EM fungal richness decreased in the order Fagus > Tilia > Carpinus. After correction for similar sampling intensities, EM fungal species richness of Carpinus was still about 30-40% lower than that of Fagus and Tilia. About 10% of the mycorrhizal species were shared among the EM forming trees; 29% were associated with two host tree species and 61% with only one of the hosts. The latter group consisted mainly of rare EM fungal species colonizing about 20% of the root tips and included known specialists but also putative non-host associations such as conifer or shrub mycorrhizas. Our data indicate that EM fungal species richness was associated with tree identity and suggest that Fagus secures EM fungal diversity in an ecosystem since it shared more common EM fungi with Tilia and Carpinus than the latter two among each other.

  20. Effects of bark beetle outbreaks on species composition, biomass, and nutrient distribution in a mixed deciduous forest

    SciTech Connect

    Johnson, D.W.; Henderson, G.S.; Harris, W.F.

    1987-01-01

    The increment of forest biomass and nutrient content on Walker Branch Watershed, Tennessee, from 1967 to 1983 was interrupted by two bark beetle outbreaks. An outbreak of the southern pine beetle in the early 1970s and an outbreak of the hickory borer in the late 1970s, early 1980s killed a number of shortleaf pine (Pinus echinata) and hickory (Carya spp.) respectively. Yellow-poplar (Liriodendron tulipifera) growth increased over this 16-year period, especially in response to the mortality of shortleaf pine. The net result of these events was little change in total biomass but a substantial shift in species composition (from pine to yellow-poplar) in the Pine forest type over this period. No species has yet responded to the mortality of hickory. Due to the shift in species composition in the Pine type, calcium and magnesium accumulation rates in biomass increased but foliage biomass decreased over the inventory period. There was little change in foliage biomass or nutrient content in other forest types. The beetle attacks, combined with apparently natural self-thinning, caused a large increase in standing dead biomass and in nutrient return via tree fall. This increased rate of return will substantially alter forest floor nutrient content and availability, especially with regard to calcium and nitrogen.

  1. Impact of fencing on the recovery of the ground flora on heavily eroded slopes of a deciduous forest.

    PubMed

    Godefroid, Sandrine; Massant, Wim; Weyembergh, Gisele; Koedam, Nico

    2003-07-01

    This paper seeks to outline early stages in the recovery of forest ground flora on eroded slopes impacted by recreation activities and to suggest how these data might be applied in the formulation of management policies for forest recreation areas. Based on a fencing experiment in the Sonian Forest near Brussels, we investigated whether, over a 6-year period, the vegetation was able to recover after having been destroyed by recreation use. Short-term trends in overall species composition were already observable during this 6-year study. Species recovery on eroded hills was related to slope, aspect, and soil type. During the considered time scale, the proportion of hemicryptophytes and the number of ancient forest species increased significantly. A downward trend was detected for Ellenberg's nitrogen and temperature indexes and for the proportion of therophytes and pioneer plants of disturbed places. Changes in species' frequencies suggest six recovery strategies: early, late, expanding, disappearing, transient, and fluctuating species. Aside from seedling reproduction from overstory influences, Luzula sylvatica appeared to be the most resilient of the species identified in the study since this species has the highest global frequency in our sampling plots and has increased its cover during the study period. Study results indicate that (1) protection from recreation has initiated the recovery of species in the herb layer, but (2) it may take a long time before vegetation previously present in the ground flora may recover in both density and species composition.

  2. Rapid rebound of soil respiration following partial stand disturbance by tree girdling in a temperate deciduous forest.

    PubMed

    Levy-Varon, Jennifer H; Schuster, William S F; Griffin, Kevin L

    2014-04-01

    Forests serve an essential role in climate change mitigation by removing CO2 from the atmosphere. Within a forest, disturbance events can greatly impact C cycling and subsequently influence the exchange of CO2 between forests and the atmosphere. This connection makes understanding the forest C cycle response to disturbance imperative for climate change research. The goal of this study was to examine the temporal response of soil respiration after differing levels of stand disturbance for 3 years at the Black Rock Forest (southeastern NY, USA; oaks comprise 67% of the stand). Tree girdling was used to mimic pathogen attack and create the following treatments: control, girdling all non-oaks (NOG), girdling half of the oak trees (O50), and girdling all the oaks (OG). Soil respiratory rates on OG plots declined for 2 years following girdling before attaining a full rebound of belowground activity in the third year. Soil respiration on NOG and O50 were statistically similar to the control for the duration of the study although a trend for a stronger decline in respiration on O50 relative to NOG occurred in the first 2 years. Respiratory responses among the various treatments were not proportional to the degree of disturbance and varied over time. The short-lived respiratory response on O50 and OG suggests that belowground activity is resilient to disturbance; however, sources of the recovered respiratory flux on these plots are likely different than they were pre-treatment. The differential taxon response between oaks and non-oaks suggests that after a defoliation or girdling event, the temporal response of the soil respiratory flux may be related to the C allocation pattern of the affected plant group.

  3. Rapid rebound of soil respiration following partial stand disturbance by tree girdling in a temperate deciduous forest.

    PubMed

    Levy-Varon, Jennifer H; Schuster, William S F; Griffin, Kevin L

    2014-04-01

    Forests serve an essential role in climate change mitigation by removing CO2 from the atmosphere. Within a forest, disturbance events can greatly impact C cycling and subsequently influence the exchange of CO2 between forests and the atmosphere. This connection makes understanding the forest C cycle response to disturbance imperative for climate change research. The goal of this study was to examine the temporal response of soil respiration after differing levels of stand disturbance for 3 years at the Black Rock Forest (southeastern NY, USA; oaks comprise 67% of the stand). Tree girdling was used to mimic pathogen attack and create the following treatments: control, girdling all non-oaks (NOG), girdling half of the oak trees (O50), and girdling all the oaks (OG). Soil respiratory rates on OG plots declined for 2 years following girdling before attaining a full rebound of belowground activity in the third year. Soil respiration on NOG and O50 were statistically similar to the control for the duration of the study although a trend for a stronger decline in respiration on O50 relative to NOG occurred in the first 2 years. Respiratory responses among the various treatments were not proportional to the degree of disturbance and varied over time. The short-lived respiratory response on O50 and OG suggests that belowground activity is resilient to disturbance; however, sources of the recovered respiratory flux on these plots are likely different than they were pre-treatment. The differential taxon response between oaks and non-oaks suggests that after a defoliation or girdling event, the temporal response of the soil respiratory flux may be related to the C allocation pattern of the affected plant group. PMID:24337785

  4. N : P Stoichiometry in a Forested Runoff during Storm Events: Comparisons with Regions and Vegetation Types

    PubMed Central

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo. PMID:22547978

  5. N : P stoichiometry in a forested runoff during storm events: comparisons with regions and vegetation types.

    PubMed

    Guo, Lanlan; Chen, Yi; Zhang, Zhao; Fukushima, Takehiko

    2012-01-01

    Nitrogen and phosphorus are considered the most important limiting elements in terrestrial and aquatic ecosystems. however, very few studies have focused on which is from forested streams, a bridge between these two systems. To fill this gap, we examined the concentrations of dissolved N and P in storm waters from forested watersheds of five regions in Japan, to characterize nutrient limitation and its potential controlling factors. First, dissolved N and P concentrations and the N : P ratio on forested streams were higher during storm events relative to baseflow conditions. Second, significantly higher dissolved inorganic N concentrations were found in storm waters from evergreen coniferous forest streams than those from deciduous broadleaf forest streams in Aichi, Kochi, Mie, Nagano, and with the exception of Tokyo. Finally, almost all the N : P ratios in the storm water were generally higher than 34, implying that the storm water should be P-limited, especially for Tokyo.

  6. Efficacy of pitfall trapping, Winkler and Berlese extraction methods for measuring ground-dwelling arthropods in moist-deciduous forests in the Western Ghats.

    PubMed

    Sabu, Thomas K; Shiju, Raj T

    2010-01-01

    The present study provides data to decide on the most appropriate method for sampling of ground-dwelling arthropods measured in a moist-deciduous forest in the Western Ghats in South India. The abundance of ground-dwelling arthropods was compared among large numbers of samples obtained using pitfall trapping, Berlese and Winkler extraction methods. Highest abundance and frequency of most of the represented taxa indicated pitfall trapping as the ideal method for sampling of ground-dwelling arthropods. However, with possible bias towards surface-active taxa, pitfall-trapping data is inappropriate for quantitative studies, and Berlese extraction is the better alternative. Berlese extraction is the better method for quantitative measurements than the other two methods, whereas pitfall trapping would be appropriate for qualitative measurements. A comparison of the Berlese and Winkler extraction data shows that in a quantitative multigroup approach, Winkler extraction was inferior to Berlese extraction because the total number of arthropods caught was the lowest; and many of the taxa that were caught from an identical sample via Berlese extraction method were not caught. Significantly a greater frequency and higher abundance of arthropods belonging to Orthoptera, Blattaria, and Diptera occurred in pitfall-trapped samples and Psocoptera and Acariformes in Berlese-extracted samples than that were obtained in the other two methods, indicating that both methods are useful, one complementing the other, eliminating a chance for possible under-representation of taxa in quantitative studies.

  7. Dero (Allodero) lutzi Michaelsen, 1926 (Oligochaeta: Naididae) associated with Scinax fuscovarius (Lutz, 1925) (Anura: Hylidae) from Semi-deciduous Atlantic Rain Forest, southern Brazil.

    PubMed

    Oda, F H; Petsch, D K; Ragonha, F H; Batista, V G; Takeda, A M; Takemoto, R M

    2015-01-01

    Amphibians are hosts for a wide variety of ecto- and endoparasites, such as protozoans and parasitic worms. Naididae is a family of Oligochaeta whose species live on a wide range of substrates, including mollusks, aquatic macrophytes, sponges, mosses, liverworts, and filamentous algae. However, some species are known as endoparasitic from vertebrates, such as Dero (Allodero) lutzi, which is parasitic of the urinary tracts of frogs, but also have a free-living stage. Specimens in the parasitic stage lack dorsal setae, branchial fossa, and gills. Here we report the occurrence of D. (A.) lutzi associated with anuran Scinax fuscovarius from Semi-deciduous Atlantic Rain Forest in southern Brazil. The study took place at the Caiuá Ecological Station, Diamante do Norte, Paraná, southern Brazil. Seven specimens of S. fuscovarius were examined for parasites but only one was infected. Parasites occurred in ureters and urinary bladder. Previous records of this D. (A.) lutzi include the Brazilian States of Santa Catarina, São Paulo, Rio de Janeiro, and Minas Gerais, as well as Cuba and North America. This is a new locality record for this species in Brazil. Reports of Dero (Allodero) lutzi are rare, due to difficulty of observation, and such events are restricted only the fortuitous cases. It is important to emphasize the necessity of future studies, which are fundamental to the understanding of biological and ecological aspects of this species. PMID:25945624

  8. Dero (Allodero) lutzi Michaelsen, 1926 (Oligochaeta: Naididae) associated with Scinax fuscovarius (Lutz, 1925) (Anura: Hylidae) from Semi-deciduous Atlantic Rain Forest, southern Brazil.

    PubMed

    Oda, F H; Petsch, D K; Ragonha, F H; Batista, V G; Takeda, A M; Takemoto, R M

    2015-01-01

    Amphibians are hosts for a wide variety of ecto- and endoparasites, such as protozoans and parasitic worms. Naididae is a family of Oligochaeta whose species live on a wide range of substrates, including mollusks, aquatic macrophytes, sponges, mosses, liverworts, and filamentous algae. However, some species are known as endoparasitic from vertebrates, such as Dero (Allodero) lutzi, which is parasitic of the urinary tracts of frogs, but also have a free-living stage. Specimens in the parasitic stage lack dorsal setae, branchial fossa, and gills. Here we report the occurrence of D. (A.) lutzi associated with anuran Scinax fuscovarius from Semi-deciduous Atlantic Rain Forest in southern Brazil. The study took place at the Caiuá Ecological Station, Diamante do Norte, Paraná, southern Brazil. Seven specimens of S. fuscovarius were examined for parasites but only one was infected. Parasites occurred in ureters and urinary bladder. Previous records of this D. (A.) lutzi include the Brazilian States of Santa Catarina, São Paulo, Rio de Janeiro, and Minas Gerais, as well as Cuba and North America. This is a new locality record for this species in Brazil. Reports of Dero (Allodero) lutzi are rare, due to difficulty of observation, and such events are restricted only the fortuitous cases. It is important to emphasize the necessity of future studies, which are fundamental to the understanding of biological and ecological aspects of this species.

  9. [Isotopic signature (15N/14N and 13C/12C) confirms similarity of trophic niches of millipedes (Myriapoda, Diplopoda) in a temperate deciduous forest].

    PubMed

    Semeniuk, I I; Tiunov, A V

    2011-01-01

    The species composition, abundance, and isotopic signature of millipedes (Myriapoda, Diplopoda) were investigated in seven biotopes of Kaluzhskie Zaseki State Nature Reserve. Nine Diplopoda species were found in total, and the local species diversity (within a sampling plot) reached seven species. The Diplopoda tissues were similar to the plant litter in the isotopic composition of nitrogen (delta15N was by 0.4% per hundred higher, on average), but were more strongly enriche