Sample records for broadly applicable method

  1. 76 FR 9777 - Recent Postings of Broadly Applicable Alternative Test Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... technical questions about individual alternative test method decisions, refer to the contact person...

  2. 77 FR 8865 - Recent Postings of Broadly Applicable Alternative Test Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... INFORMATION CONTACT: An electronic copy of each alternative test method approval document is available on the...

  3. 75 FR 7593 - Recent Postings of Broadly Applicable Alternative Test Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-22

    ... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... electronic copy of each alternative test method approval document is available on EPA's Web site at http...

  4. 78 FR 11174 - Recent Postings of Broadly Applicable Alternative Test Methods

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... Applicable Alternative Test Methods AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the broadly applicable alternative test method approval decisions... INFORMATION CONTACT: An electronic copy of each alternative test method approval document is available on the...

  5. BASTet: Shareable and Reproducible Analysis and Visualization of Mass Spectrometry Imaging Data via OpenMSI.

    PubMed

    Rubel, Oliver; Bowen, Benjamin P

    2018-01-01

    Mass spectrometry imaging (MSI) is a transformative imaging method that supports the untargeted, quantitative measurement of the chemical composition and spatial heterogeneity of complex samples with broad applications in life sciences, bioenergy, and health. While MSI data can be routinely collected, its broad application is currently limited by the lack of easily accessible analysis methods that can process data of the size, volume, diversity, and complexity generated by MSI experiments. The development and application of cutting-edge analytical methods is a core driver in MSI research for new scientific discoveries, medical diagnostics, and commercial-innovation. However, the lack of means to share, apply, and reproduce analyses hinders the broad application, validation, and use of novel MSI analysis methods. To address this central challenge, we introduce the Berkeley Analysis and Storage Toolkit (BASTet), a novel framework for shareable and reproducible data analysis that supports standardized data and analysis interfaces, integrated data storage, data provenance, workflow management, and a broad set of integrated tools. Based on BASTet, we describe the extension of the OpenMSI mass spectrometry imaging science gateway to enable web-based sharing, reuse, analysis, and visualization of data analyses and derived data products. We demonstrate the application of BASTet and OpenMSI in practice to identify and compare characteristic substructures in the mouse brain based on their chemical composition measured via MSI.

  6. Liquid Chromatography-Mass Spectrometry-based Quantitative Proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Fang; Liu, Tao; Qian, Weijun

    2011-07-22

    Liquid chromatography-mass spectrometry (LC-MS)-based quantitative proteomics has become increasingly applied for a broad range of biological applications due to growing capabilities for broad proteome coverage and good accuracy in quantification. Herein, we review the current LC-MS-based quantification methods with respect to their advantages and limitations, and highlight their potential applications.

  7. Gas-phase broadband spectroscopy using active sources: progress, status, and applications

    PubMed Central

    Cossel, Kevin C.; Waxman, Eleanor M.; Finneran, Ian A.; Blake, Geoffrey A.; Ye, Jun; Newbury, Nathan R.

    2017-01-01

    Broadband spectroscopy is an invaluable tool for measuring multiple gas-phase species simultaneously. In this work we review basic techniques, implementations, and current applications for broadband spectroscopy. We discuss components of broad-band spectroscopy including light sources, absorption cells, and detection methods and then discuss specific combinations of these components in commonly-used techniques. We finish this review by discussing potential future advances in techniques and applications of broad-band spectroscopy. PMID:28630530

  8. Broad-scale assessments of ecological landscapes: developing methods and applications

    USGS Publications Warehouse

    Carr, Natasha B.; Wood, David J. A.; Bowen, Zachary H.; Haby, Travis S.

    2015-01-01

    A major component of the BLM Landscape Approach is the Rapid Ecoregional Assessment (REA) program. REAs identify important ecosystems and wildlife habitats at broad spatial scales and determine where these resources are at risk from environmental stressors that can affect the integrity of ecological systems. Building on the lessons learned from completed or current REAs, the BLM, in partnership with the U.S. Geological Survey, will perform systematic comparisons of REA methods to identify the most promising suite of landscape-level analysis tools. In addition, the BLM and USGS will develop practical applications that demonstrate how to incorporate assessment information to address existing management issues, such as cumulative effects of proposed management actions. The outcome of these efforts will be a set of comprehensive technical guidance documents for conducting and applying broad-scale assessments.

  9. Flat field concave holographic grating with broad spectral region and moderately high resolution.

    PubMed

    Wu, Jian Fen; Chen, Yong Yan; Wang, Tai Sheng

    2012-02-01

    In order to deal with the conflicts between broad spectral region and high resolution in compact spectrometers based on a flat field concave holographic grating and line array CCD, we present a simple and practical method to design a flat field concave holographic grating that is capable of imaging a broad spectral region at a moderately high resolution. First, we discuss the principle of realizing a broad spectral region and moderately high resolution. Second, we provide the practical method to realize our ideas, in which Namioka grating theory, a genetic algorithm, and ZEMAX are used to reach this purpose. Finally, a near-normal-incidence example modeled in ZEMAX is shown to verify our ideas. The results show that our work probably has a general applicability in compact spectrometers with a broad spectral region and moderately high resolution.

  10. Argon thermochronology of mineral deposits; a review of analytical methods, formulations, and selected applications

    USGS Publications Warehouse

    Snee, Lawrence W.

    2002-01-01

    40Ar/39Ar geochronology is an experimentally robust and versatile method for constraining time and temperature in geologic processes. The argon method is the most broadly applied in mineral-deposit studies. Standard analytical methods and formulations exist, making the fundamentals of the method well defined. A variety of graphical representations exist for evaluating argon data. A broad range of minerals found in mineral deposits, alteration zones, and host rocks commonly is analyzed to provide age, temporal duration, and thermal conditions for mineralization events and processes. All are discussed in this report. The usefulness of and evolution of the applicability of the method are demonstrated in studies of the Panasqueira, Portugal, tin-tungsten deposit; the Cornubian batholith and associated mineral deposits, southwest England; the Red Mountain intrusive system and associated Urad-Henderson molybdenum deposits; and the Eastern Goldfields Province, Western Australia.

  11. Evaluation of DNA extraction methods and their clinical application for direct detection of causative bacteria in continuous ambulatory peritoneal dialysis culture fluids from patients with peritonitis by using broad-range PCR.

    PubMed

    Kim, Si Hyun; Jeong, Haeng Soon; Kim, Yeong Hoon; Song, Sae Am; Lee, Ja Young; Oh, Seung Hwan; Kim, Hye Ran; Lee, Jeong Nyeo; Kho, Weon-Gyu; Shin, Jeong Hwan

    2012-03-01

    The aims of this study were to compare several DNA extraction methods and 16S rDNA primers and to evaluate the clinical utility of broad-range PCR in continuous ambulatory peritoneal dialysis (CAPD) culture fluids. Six type strains were used as model organisms in dilutions from 10(8) to 10(0) colony-forming units (CFU)/mL for the evaluation of 5 DNA extraction methods and 5 PCR primer pairs. Broad-range PCR was applied to 100 CAPD culture fluids, and the results were compared with conventional culture results. There were some differences between the various DNA extraction methods and primer sets with regard to the detection limits. The InstaGene Matrix (Bio-Rad Laboratories, USA) and Exgene Clinic SV kits (GeneAll Biotechnology Co. Ltd, Korea) seem to have higher sensitivities than the others. The results of broad-range PCR were concordant with the results from culture in 97% of all cases (97/100). Two culture-positive cases that were broad-range PCR-negative were identified as Candida albicans, and 1 PCR-positive but culture-negative sample was identified as Bacillus circulans by sequencing. Two samples among 54 broad-range PCR-positive products could not be sequenced. There were differences in the analytical sensitivity of various DNA extraction methods and primers for broad-range PCR. The broad-range PCR assay can be used to detect bacterial pathogens in CAPD culture fluid as a supplement to culture methods.

  12. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    Noteworthy experimental practices, which are advancing forward the frontiers of the field of two-dimensional (2D) correlation spectroscopy, are reviewed with the focus on various perturbation methods currently practiced to induce spectral changes, pertinent examples of applications in various fields, and types of analytical probes employed. Types of perturbation methods found in the published literature are very diverse, encompassing both dynamic and static effects. Although a sizable portion of publications report the use of dynamic perturbatuions, much greater number of studies employ static effect, especially that of temperature. Fields of applications covered by the literature are also very broad, ranging from fundamental research to practical applications in a number of physical, chemical and biological systems, such as synthetic polymers, composites and biomolecules. Aside from IR spectroscopy, which is the most commonly used tool, many other analytical probes are used in 2D correlation analysis. The ever expanding trend in depth, breadth and versatility of 2D correlation spectroscopy techniques and their broad applications all point to the robust and healthy state of the field.

  13. A Logistic Regression Analysis of Student Experience Factors for the Enhancement of Developmental Post-Secondary Retention Initiatives

    ERIC Educational Resources Information Center

    Shenkle, Michael Thomas

    2017-01-01

    In response to stagnant undergraduate completion rates and growing demands for post-secondary accountability, institutions are actively pursuing effective, broadly applicable methods for promoting student success. One notable scarcity in existing research is found in the tailoring of broad academic interventions to better meet the specific needs…

  14. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first broad-band acoustic pulse at a first broad-band frequency range having a first central frequency and a first bandwidth spread; generating a second broad-band acoustic pulse at a second broad-band frequency range different than the first frequency range having a second central frequency and a second bandwidth spread, wherein the first acoustic pulse and second acoustic pulse are generated by at least one transducer arranged on a tool located within the borehole; and transmitting the first and the second broad-band acoustic pulses into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated pulse by a non-linear mixing of the first and second acoustic pulses, wherein the collimated pulse has a frequency equal to the difference in frequencies between the first central frequency and the second central frequency and a bandwidth spread equal to the sum of the first bandwidth spread and the second bandwidth spread.

  15. Fish-friendly prophylaxis/disinfection in aquaculture: Low concentration of peracetic acid is stress-free to the carp (Cyprinus carpio) after repeated applications

    USDA-ARS?s Scientific Manuscript database

    Application of peracetic acid (PAA) at low concentrations has been proved to be a broad functional and eco-friendly prophylaxis/disinfection method against various fish pathogens. Therefore, regular applications of low concentration PAA is sufficient to control (potential) pathogens in recirculatin...

  16. Mild and General Access to Diverse 1H-Benzotriazoles via Diboron-Mediated N-OH Deoxygenation and Palladium-Catalyzed C-C and C-N Bond Formation.

    PubMed

    Gurram, Venkateshwarlu; Akula, Hari K; Garlapati, Ramesh; Pottabathini, Narender; Lakshman, Mahesh K

    2015-02-09

    Benzotriazoles are a highly important class of compounds with broad-ranging applications in such diverse areas as medicinal chemistry, as auxiliaries in organic synthesis, in metallurgical applications, in aircraft deicing and brake fluids, and as antifog agents in photography. Although there are numerous approaches to N-substituted benzotriazoles, the essentially one general method to N-unsubstituted benzotriazoles is via diazotization of o -phenylenediamines, which can be limited by the availability of suitable precursors. Other methods to N-unsubstitued benzotriazoles are quite specialized. Although reduction of 1-hydroxy-1 H -benzotriazoles is known the reactions are not particularly convenient or broadly applicable. This presents a limitation for easy access to and availability of diverse benzotriazoles. Herein, we demonstrate a new, broadly applicable method to diverse 1 H -benzotriazoles via a mild diboron-reagent mediated deoxygenation of 1-hydroxy-1 H -benzotriazoles. We have also evaluated sequential deoxygenation and Pd-mediated C-C and C-N bond formation as a one-pot process for further diversification of the benzotriazole moiety. However, results indicated that purification of the deoxygenation product prior to the Pd-mediated reaction is critical to the success of such reactions. The overall chemistry allows for facile access to a variety of new benzotriazoles. Along with the several examples presented, a discussion of the advantages of the approaches is described, as also a possible mechanism for the deoxygenation process.

  17. Mild and General Access to Diverse 1H-Benzotriazoles via Diboron-Mediated N–OH Deoxygenation and Palladium-Catalyzed C–C and C–N Bond Formation

    PubMed Central

    Gurram, Venkateshwarlu; Akula, Hari K.; Garlapati, Ramesh; Pottabathini, Narender; Lakshman, Mahesh K.

    2015-01-01

    Benzotriazoles are a highly important class of compounds with broad-ranging applications in such diverse areas as medicinal chemistry, as auxiliaries in organic synthesis, in metallurgical applications, in aircraft deicing and brake fluids, and as antifog agents in photography. Although there are numerous approaches to N-substituted benzotriazoles, the essentially one general method to N-unsubstituted benzotriazoles is via diazotization of o-phenylenediamines, which can be limited by the availability of suitable precursors. Other methods to N-unsubstitued benzotriazoles are quite specialized. Although reduction of 1-hydroxy-1H-benzotriazoles is known the reactions are not particularly convenient or broadly applicable. This presents a limitation for easy access to and availability of diverse benzotriazoles. Herein, we demonstrate a new, broadly applicable method to diverse 1H-benzotriazoles via a mild diboron-reagent mediated deoxygenation of 1-hydroxy-1H-benzotriazoles. We have also evaluated sequential deoxygenation and Pd-mediated C–C and C–N bond formation as a one-pot process for further diversification of the benzotriazole moiety. However, results indicated that purification of the deoxygenation product prior to the Pd-mediated reaction is critical to the success of such reactions. The overall chemistry allows for facile access to a variety of new benzotriazoles. Along with the several examples presented, a discussion of the advantages of the approaches is described, as also a possible mechanism for the deoxygenation process. PMID:25729343

  18. A practical examination of RNA isolation methods for European pear (Pyrus communis)

    USDA-ARS?s Scientific Manuscript database

    With the goal of identifying fast, reliable and broadly applicable RNA isolation methods in European pear fruit for downstream transcriptome analysis, we evaluated several commercially available kit-based RNA isolations methods, plus our modified version of a published cetyl trimethyl ammonium bromi...

  19. Multi-Role Project (MRP): A New Project-Based Learning Method for STEM

    ERIC Educational Resources Information Center

    Warin, Bruno; Talbi, Omar; Kolski, Christophe; Hoogstoel, Frédéric

    2016-01-01

    This paper presents the "Multi-Role Project" method (MRP), a broadly applicable project-based learning method, and describes its implementation and evaluation in the context of a Science, Technology, Engineering, and Mathematics (STEM) course. The MRP method is designed around a meta-principle that considers the project learning activity…

  20. Evaluation of Novel Broad-Range Real-Time PCR Assay for Rapid Detection of Human Pathogenic Fungi in Various Clinical Specimens▿

    PubMed Central

    Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2008-01-01

    In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens. PMID:18385440

  1. Evaluation of novel broad-range real-time PCR assay for rapid detection of human pathogenic fungi in various clinical specimens.

    PubMed

    Vollmer, Tanja; Störmer, Melanie; Kleesiek, Knut; Dreier, Jens

    2008-06-01

    In the present study, a novel broad-range real-time PCR was developed for the rapid detection of human pathogenic fungi. The assay targets a part of the 28S large-subunit ribosomal RNA (rDNA) gene. We investigated its application for the most important human pathogenic fungal genera, including Aspergillus, Candida, Cryptococcus, Mucor, Penicillium, Pichia, Microsporum, Trichophyton, and Scopulariopsis. Species were identified in PCR-positive reactions by direct DNA sequencing. A noncompetitive internal control was applied to prevent false-negative results due to PCR inhibition. The minimum detection limit for the PCR was determined to be one 28S rDNA copy per PCR, and the 95% detection limit was calculated to 15 copies per PCR. To assess the clinical applicability of the PCR method, intensive-care patients with artificial respiration and patients with infective endocarditis were investigated. For this purpose, 76 tracheal secretion samples and 70 heart valve tissues were analyzed in parallel by real-time PCR and cultivation. No discrepancies in results were observed between PCR analysis and cultivation methods. Furthermore, the application of the PCR method was investigated for other clinical specimens, including cervical swabs, nail and horny skin scrapings, and serum, blood, and urine samples. The combination of a broad-range real-time PCR and direct sequencing facilitates rapid screening for fungal infection in various clinical specimens.

  2. Emergy Algebra: Improving Matrix Methods for Calculating Tranformities

    EPA Science Inventory

    Transformity is one of the core concepts in Energy Systems Theory and it is fundamental to the calculation of emergy. Accurate evaluation of transformities and other emergy per unit values is essential for the broad acceptance, application and further development of emergy method...

  3. 10 CFR 33.12 - Applications for specific licenses of broad scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...

  4. 10 CFR 33.12 - Applications for specific licenses of broad scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...

  5. 10 CFR 33.12 - Applications for specific licenses of broad scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...

  6. 10 CFR 33.12 - Applications for specific licenses of broad scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...

  7. 10 CFR 33.12 - Applications for specific licenses of broad scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Applications for specific licenses of broad scope. 33.12 Section 33.12 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.12 Applications for specific licenses of broad scope. A...

  8. Formalisms for user interface specification and design

    NASA Technical Reports Server (NTRS)

    Auernheimer, Brent J.

    1989-01-01

    The application of formal methods to the specification and design of human-computer interfaces is described. A broad outline of human-computer interface problems, a description of the field of cognitive engineering and two relevant research results, the appropriateness of formal specification techniques, and potential NASA application areas are described.

  9. 15kD Granulysin for Monocyte Differentiation: A New Immunotherapeutic for Both in vivo and ex vivo Applications | NCI Technology Transfer Center | TTC

    Cancer.gov

    Researchers at the NCI have developed a method of enhancing immune response in patients by using 15 kD granulysin. Granulysin, a proinflammatory molecule, is broadly applicable for the treatment of several diseases.

  10. Real-time PCR: Advanced technologies and applications

    USDA-ARS?s Scientific Manuscript database

    This book brings together contributions from 20 experts in the field of PCR, providing a broad perspective of the applications of quantitative real-time PCR (qPCR). The editors state in the preface that the aim is to provide detailed insight into underlying principles and methods of qPCR to provide ...

  11. Alternative Methods by Which Basic Science Pharmacy Faculty Can Relate to Clinical Practice.

    ERIC Educational Resources Information Center

    Kabat, Hugh F.; And Others

    1982-01-01

    A panel of pharmacy faculty ranked a broad inventory of basic pharmaceutical science topics in terms of their applicability to clinical pharmacy practice. The panel concluded that basic pharmaceutical sciences are essentially applications of foundation areas in biological, physical, and social sciences. (Author/MLW)

  12. Process for guidance, containment, treatment, and imaging in a subsurface environment utilizing ferro-fluids

    DOEpatents

    Moridis, George J.; Oldenburg, Curtis M.

    2001-01-01

    Disclosed are processes for monitoring and control of underground contamination, which involve the application of ferrofluids. Two broad uses of ferrofluids are described: (1) to control liquid movement by the application of strong external magnetic fields; and (2) to image liquids by standard geophysical methods.

  13. Toward extending terrestrial laser scanning applications in forestry: a case study of broad- and needle-leaf tree classification

    NASA Astrophysics Data System (ADS)

    Lin, Yi; Jiang, Miao

    2017-01-01

    Tree species information is essential for forest research and management purposes, which in turn require approaches for accurate and precise classification of tree species. One such remote sensing technology, terrestrial laser scanning (TLS), has proved to be capable of characterizing detailed tree structures, such as tree stem geometry. Can TLS further differentiate between broad- and needle-leaves? If the answer is positive, TLS data can be used for classification of taxonomic tree groups by directly examining their differences in leaf morphology. An analysis was proposed to assess TLS-represented broad- and needle-leaf structures, followed by a Bayes classifier to perform the classification. Tests indicated that the proposed method can basically implement the task, with an overall accuracy of 77.78%. This study indicates a way of implementing the classification of the two major broad- and needle-leaf taxonomies measured by TLS in accordance to their literal definitions, and manifests the potential of extending TLS applications in forestry.

  14. Temperature Dependence of Errors in Parameters Derived from Van't Hoff Studies.

    ERIC Educational Resources Information Center

    Dec, Steven F.; Gill, Stanley J.

    1985-01-01

    The method of Clarke and Glew is broadly applicable to studies of the temperature dependence of equilibrium constant measurements. The method is described and examples of its use in comparing calorimetric results and temperature dependent gas solubility studies are provided. (JN)

  15. Design of virus-based nanomaterials for medicine, biotechnology, and energy

    PubMed Central

    Wen, Amy M.; Steinmetz, Nicole F.

    2016-01-01

    Virus-based nanomaterials are versatile materials that naturally self-assemble and have relevance for a broad range of applications including medicine, biotechnology, and energy. This review provides an overview of recent developments in “chemical virology.” Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials. PMID:27152673

  16. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials.

    PubMed

    Martin-Olmos, Cristina; Stieg, Adam Z; Gimzewski, James K

    2012-06-15

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.

  17. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials

    NASA Astrophysics Data System (ADS)

    Martin-Olmos, Cristina; Stieg, Adam Z.; Gimzewski, James K.

    2012-06-01

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.

  18. What’s in a drop? Correlating observations and outcomes to guide macromolecular crystallization experiments

    PubMed Central

    Luft, Joseph R.; Wolfley, Jennifer R.; Snell, Edward H.

    2011-01-01

    Observations of crystallization experiments are classified as specific outcomes and integrated through a phase diagram to visualize solubility and thereby direct subsequent experiments. Specific examples are taken from our high-throughput crystallization laboratory which provided a broad scope of data from 20 million crystallization experiments on 12,500 different biological macromolecules. The methods and rationale are broadly and generally applicable in any crystallization laboratory. Through a combination of incomplete factorial sampling of crystallization cocktails, standard outcome classifications, visualization of outcomes as they relate chemically and application of a simple phase diagram approach we demonstrate how to logically design subsequent crystallization experiments. PMID:21643490

  19. Water-assisted crystallization of mesoporous anatase TiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhang, Qiao; Joo, Ji Bong; Lu, Zhenda; Dahl, Michael; Gan, Yang; Yin, Yadong

    2016-04-01

    We report a facile water-assisted crystallization process for the conversion of amorphous sol-gel derived TiO2 into mesoporous anatase nanostructures with a high surface area and well-controlled porosity and crystallinity. As an alternative to conventional calcination methods, this approach works under very mild conditions and is therefore much desired for broad biological, environmental and catalytic applications.We report a facile water-assisted crystallization process for the conversion of amorphous sol-gel derived TiO2 into mesoporous anatase nanostructures with a high surface area and well-controlled porosity and crystallinity. As an alternative to conventional calcination methods, this approach works under very mild conditions and is therefore much desired for broad biological, environmental and catalytic applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01892k

  20. Reconstructing Spatial Distributions from Anonymized Locations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horey, James L; Forrest, Stephanie; Groat, Michael

    2012-01-01

    Devices such as mobile phones, tablets, and sensors are often equipped with GPS that accurately report a person's location. Combined with wireless communication, these devices enable a wide range of new social tools and applications. These same qualities, however, leave location-aware applications vulnerable to privacy violations. This paper introduces the Negative Quad Tree, a privacy protection method for location aware applications. The method is broadly applicable to applications that use spatial density information, such as social applications that measure the popularity of social venues. The method employs a simple anonymization algorithm running on mobile devices, and a more complex reconstructionmore » algorithm on a central server. This strategy is well suited to low-powered mobile devices. The paper analyzes the accuracy of the reconstruction method in a variety of simulated and real-world settings and demonstrates that the method is accurate enough to be used in many real-world scenarios.« less

  1. Electrostatic removal of airborne particulates employing fiber beds

    DOEpatents

    Postma, Arlin Keith; Winegardner, W. Kevin

    1977-01-01

    A method and apparatus for collecting aerosol particles. The particles are subjected to an electrostatic charge prior to collection in an electrically resistive fiber bed. The method is applicable to particles in a broad size range, including the difficult-to-remove particles having diameters between 0.01 and 2 microns.

  2. [Methods for measuring skin aging].

    PubMed

    Zieger, M; Kaatz, M

    2016-02-01

    Aging affects human skin and is becoming increasingly important with regard to medical, social and aesthetic issues. Detection of intrinsic and extrinsic components of skin aging requires reliable measurement methods. Modern techniques, e.g., based on direct imaging, spectroscopy or skin physiological measurements, provide a broad spectrum of parameters for different applications.

  3. Research in Distance Education: A System Modeling Approach.

    ERIC Educational Resources Information Center

    Saba, Farhad; Twitchell, David

    This demonstration of the use of a computer simulation research method based on the System Dynamics modeling technique for studying distance education reviews research methods in distance education, including the broad categories of conceptual and case studies, and presents a rationale for the application of systems research in this area. The…

  4. [NDVI difference rate recognition model of deciduous broad-leaved forest based on HJ-CCD remote sensing data].

    PubMed

    Wang, Yan; Tian, Qing-Jiu; Huang, Yan; Wei, Hong-Wei

    2013-04-01

    The present paper takes Chuzhou in Anhui Province as the research area, and deciduous broad-leaved forest as the research object. Then it constructs the recognition model about deciduous broad-leaved forest was constructed using NDVI difference rate between leaf expansion and flowering and fruit-bearing, and the model was applied to HJ-CCD remote sensing image on April 1, 2012 and May 4, 2012. At last, the spatial distribution map of deciduous broad-leaved forest was extracted effectively, and the results of extraction were verified and evaluated. The result shows the validity of NDVI difference rate extraction method proposed in this paper and also verifies the applicability of using HJ-CCD data for vegetation classification and recognition.

  5. Methods for Generation and Detection of Nonstationary Vapor Nanobubbles Around Plasmonic Nanoparticles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Lapotko, Dmitri O

    2017-01-01

    Laser pulse-induced vapor nanobubbles are nonstationary nanoevents that offer a broad range of applications, especially in the biomedical field. Plasmonic (usually gold) nanoparticles have the highest energy efficacy of the generation of vapor nanobubbles and such nanobubbles were historically named as plasmonic nanobubbles. Below we review methods (protocols) for generating and detecting plasmonic nanobubbles in liquids. The biomedical applications of plasmonic nanobubbles include in vivo and in vitro detection and imaging, gene transfer, micro-surgery, drug delivery, and other diagnostic, therapeutic, and theranostic applications.

  6. Contribution of Electrochemistry to the Biomedical and Pharmaceutical Analytical Sciences.

    PubMed

    Kauffmann, Jean-Michel; Patris, Stephanie; Vandeput, Marie; Sarakbi, Ahmad; Sakira, Abdul Karim

    2016-01-01

    All analytical techniques have experienced major progress since the last ten years and electroanalysis is also involved in this trend. The unique characteristics of phenomena occurring at the electrode-solution interface along with the variety of electrochemical methods currently available allow for a broad spectrum of applications. Potentiometric, conductometric, voltammetric and amperometric methods are briefly reviewed with a critical view in terms of performance of the developed instrumentation with special emphasis on pharmaceutical and biomedical applications.

  7. Alternative prophylaxis/disinfection in aquaculture - Adaptable stress induced by peracetic acid at low concentration and its application strategy in RAS

    USDA-ARS?s Scientific Manuscript database

    The application of peracetic acid (PAA) at low concentrations has been proven to be a broad-functioning and eco-friendly prophylaxis/disinfection method against various fish pathogens. However, there is lack of knowledge on how to apply PAA in a recirculating aquaculture system (RAS), and whether th...

  8. Evaluating Students' Perception of Group Work for Mobile Application Development Learning, Productivity, Enjoyment and Confidence in Quality

    ERIC Educational Resources Information Center

    Powell, Loreen M.; Wimmer, Hayden

    2016-01-01

    Teaching programming and mobile application development concepts can be challenging for instructors; however, teaching an interdisciplinary class with varied skill levels amplifies this challenge. To encompass a broad range of students, many instructors have sought to improve their lessons and methods by experimenting with group/team programming.…

  9. Combined caloric effects in a multiferroic Ni-Mn-Ga alloy with broad refrigeration temperature region

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Li, Zongbin; Yang, Bo; Qian, Suxin; Gan, Weimin; Gong, Yuanyuan; Li, Yang; Zhao, Dewei; Liu, Jian; Zhao, Xiang; Zuo, Liang; Wang, Dunhui; Du, Youwei

    2017-04-01

    Solid-state refrigeration based on the caloric effects is promising to replace the traditional vapor-compressing refrigeration technology due to environmental protection and high efficiency. However, the narrow working temperature region has hindered the application of these refrigeration technologies. In this paper, we propose a method of combined caloric, through which a broad refrigeration region can be realized in a multiferroic alloy, Ni-Mn-Ga, by combining its elastocaloric and magnetocaloric effects. Moreover, the materials' efficiency of elastocaloric effect has been greatly improved in our sample. These results illuminate a promising way to use multiferroic alloys for refrigeration with a broad refrigeration temperature region.

  10. A Simple Method to Determine the "R" or "S" Configuration of Molecules with an Axis of Chirality

    ERIC Educational Resources Information Center

    Wang, Cunde; Wu, Weiming

    2011-01-01

    A simple method for the "R" or "S" designation of molecules with an axis of chirality is described. The method involves projection of the substituents along the chiral axis, utilizes the Cahn-Ingold-Prelog sequence rules in assigning priority to the substituents, is easy to use, and has broad applicability. (Contains 5 figures.)

  11. Development of potent in vivo mutagenesis plasmids with broad mutational spectra

    PubMed Central

    Badran, Ahmed H.; Liu, David R.

    2015-01-01

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms. PMID:26443021

  12. Development of potent in vivo mutagenesis plasmids with broad mutational spectra.

    PubMed

    Badran, Ahmed H; Liu, David R

    2015-10-07

    Methods to enhance random mutagenesis in cells offer advantages over in vitro mutagenesis, but current in vivo methods suffer from a lack of control, genomic instability, low efficiency and narrow mutational spectra. Using a mechanism-driven approach, we created a potent, inducible, broad-spectrum and vector-based mutagenesis system in E. coli that enhances mutation 322,000-fold over basal levels, surpassing the mutational efficiency and spectra of widely used in vivo and in vitro methods. We demonstrate that this system can be used to evolve antibiotic resistance in wild-type E. coli in <24 h, outperforming chemical mutagens, ultraviolet light and the mutator strain XL1-Red under similar conditions. This system also enables the continuous evolution of T7 RNA polymerase variants capable of initiating transcription using the T3 promoter in <10 h. Our findings enable broad-spectrum mutagenesis of chromosomes, episomes and viruses in vivo, and are applicable to both bacterial and bacteriophage-mediated laboratory evolution platforms.

  13. Methods for Fabricating Gradient Alloy Articles with Multi-Functional Properties

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Suh, Eric J. (Inventor); Borgonia, John Paul C. (Inventor); Dillon, Robert P. (Inventor); Mulder, Jerry L. (Inventor); Gardner, Paul B. (Inventor)

    2015-01-01

    Systems and methods for fabricating multi-functional articles comprised of additively formed gradient materials are provided. The fabrication of multi-functional articles using the additive deposition of gradient alloys represents a paradigm shift from the traditional way that metal alloys and metal/metal alloy parts are fabricated. Since a gradient alloy that transitions from one metal to a different metal cannot be fabricated through any conventional metallurgy techniques, the technique presents many applications. Moreover, the embodiments described identify a broad range of properties and applications.

  14. Demonstration of ECDA Applicability and Reliability for Demanding Situations

    DOT National Transportation Integrated Search

    2008-08-31

    On June 2, 2005, PHMSA issued the fifth Broad Agency Announcement, #DTPH56-05-BAA-0001, which included research to improve the understanding of Direct Assessment (DA) methods and practices in challenging situations. This project received support from...

  15. UPIC + GO: Zeroing in on informative markers

    USDA-ARS?s Scientific Manuscript database

    Microsatellites/SSRs (simple sequence repeats) have become a powerful tool in genomic biology because of their broad range of applications and availability. An efficient method recently developed to generate microsatellite-enriched libraries used in combination with high throughput DNA pyrosequencin...

  16. Introduction to electronic warfare

    NASA Astrophysics Data System (ADS)

    Schleher, D. C.

    A broad overview of electronic warfare (EW) is given, emphasizing radar-related EW applications. A broad perspective of the EW field is first given, defining EW terms and giving methods of EW threat analysis and simulation. Electronic support measures and electronic countermeasures (ECM) systems are described, stressing their application to radar EW. Radars are comprehensively discussed from a system viewpoint with emphasis on their application in weapon systems and their electronic counter-countermeasures capabilities. Some general topics in C3 systems are described, stressing communication systems, C3I systems, and air defense systems. Performance calculations for EW and radar systems are covered, and modern EW signal processing is described from an airborne ECM perspective. Future trends and technology in the EW world are considered, discussing such topics as millimeter-wave EW, low-observable EW technology, GaAs monolithic circuits, VHSIC, and AI.

  17. Preface: Special Topic on Reaction Pathways

    NASA Astrophysics Data System (ADS)

    Clementi, Cecilia; Henkelman, Graeme

    2017-10-01

    This Special Topic Issue on Reaction Pathways collects original research articles illustrating the state of the art in the development and application of methods to describe complex chemical systems in terms of relatively simple mechanisms and collective coordinates. A broad range of applications is presented, spanning the sub-fields of biophysics and material science, in an attempt to showcase the similarities in the formulation of the approaches and highlight the different needs of the different application domains.

  18. Chemically Patterned Inverse Opal Created by a Selective Photolysis Modification Process.

    PubMed

    Tian, Tian; Gao, Ning; Gu, Chen; Li, Jian; Wang, Hui; Lan, Yue; Yin, Xianpeng; Li, Guangtao

    2015-09-02

    Anisotropic photonic crystal materials have long been pursued for their broad applications. A novel method for creating chemically patterned inverse opals is proposed here. The patterning technique is based on selective photolysis of a photolabile polymer together with postmodification on released amine groups. The patterning method allows regioselective modification within an inverse opal structure, taking advantage of selective chemical reaction. Moreover, combined with the unique signal self-reporting feature of the photonic crystal, the fabricated structure is capable of various applications, including gradient photonic bandgap and dynamic chemical patterns. The proposed method provides the ability to extend the structural and chemical complexity of the photonic crystal, as well as its potential applications.

  19. Biosynthesis and Characterization of AgNPs–Silk/PVA Film for Potential Packaging Application

    PubMed Central

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-01-01

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag+ by the tyrosine residue of fibroin, and then prepared AgNPs–silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs–silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs–silk/PVA film offers more choices to be potentially applied in the active packaging field. PMID:28773026

  20. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application.

    PubMed

    Tao, Gang; Cai, Rui; Wang, Yejing; Song, Kai; Guo, Pengchao; Zhao, Ping; Zuo, Hua; He, Huawei

    2017-06-17

    Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.

  1. Behavioral Self-Monitoring of Safety and Productivity in the Workplace: A Methodological Primer and Quantitative Literature Review

    ERIC Educational Resources Information Center

    Olson, Ryan; Winchester, Jamey

    2008-01-01

    Workplace applications of behavioral self-monitoring (BSM) methods have been studied periodically for over 35 years, yet the literature has never been systematically reviewed. Recent occupational safety interventions including BSM resulted in relatively large behavior changes. Moreover, BSM methods are functional for addressing a broad range of…

  2. Apparatus and method for fabricating a microbattery

    DOEpatents

    Shul, Randy J.; Kravitz, Stanley H.; Christenson, Todd R.; Zipperian, Thomas E.; Ingersoll, David

    2002-01-01

    An apparatus and method for fabricating a microbattery that uses silicon as the structural component, packaging component, and semiconductor to reduce the weight, size, and cost of thin film battery technology is described. When combined with advanced semiconductor packaging techniques, such a silicon-based microbattery enables the fabrication of autonomous, highly functional, integrated microsystems having broad applicability.

  3. Shaping the Library to the Life of the User: Adapting, Empowering, Partnering, Engaging

    ERIC Educational Resources Information Center

    Proffitt, Merrilee; Michalko, James; Renspie, Melissa

    2015-01-01

    What began with a few libraries' early application of ethnographic methods to learn more about user behaviors and needs has grown to become a significant body of work done across many institutions using a broad range of methods. User-centered investigations are increasingly influential in discussions about the shape and future of the research…

  4. 10 CFR 33.16 - Application for other specific licenses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...

  5. 10 CFR 33.16 - Application for other specific licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...

  6. 10 CFR 33.16 - Application for other specific licenses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...

  7. 10 CFR 33.16 - Application for other specific licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...

  8. 10 CFR 33.16 - Application for other specific licenses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....16 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.16 Application for other specific licenses. An application filed pursuant to part 30 of this chapter for a specific license other than one of broad scope will be...

  9. Solid-State Nanopore.

    PubMed

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-20

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  10. Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-01

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  11. sscMap: an extensible Java application for connecting small-molecule drugs using gene-expression signatures.

    PubMed

    Zhang, Shu-Dong; Gant, Timothy W

    2009-07-31

    Connectivity mapping is a process to recognize novel pharmacological and toxicological properties in small molecules by comparing their gene expression signatures with others in a database. A simple and robust method for connectivity mapping with increased specificity and sensitivity was recently developed, and its utility demonstrated using experimentally derived gene signatures. This paper introduces sscMap (statistically significant connections' map), a Java application designed to undertake connectivity mapping tasks using the recently published method. The software is bundled with a default collection of reference gene-expression profiles based on the publicly available dataset from the Broad Institute Connectivity Map 02, which includes data from over 7000 Affymetrix microarrays, for over 1000 small-molecule compounds, and 6100 treatment instances in 5 human cell lines. In addition, the application allows users to add their custom collections of reference profiles and is applicable to a wide range of other 'omics technologies. The utility of sscMap is two fold. First, it serves to make statistically significant connections between a user-supplied gene signature and the 6100 core reference profiles based on the Broad Institute expanded dataset. Second, it allows users to apply the same improved method to custom-built reference profiles which can be added to the database for future referencing. The software can be freely downloaded from http://purl.oclc.org/NET/sscMap.

  12. Coherent-subspace array processing based on wavelet covariance: an application to broad-band, seismo-volcanic signals

    NASA Astrophysics Data System (ADS)

    Saccorotti, G.; Nisii, V.; Del Pezzo, E.

    2008-07-01

    Long-Period (LP) and Very-Long-Period (VLP) signals are the most characteristic seismic signature of volcano dynamics, and provide important information about the physical processes occurring in magmatic and hydrothermal systems. These events are usually characterized by sharp spectral peaks, which may span several frequency decades, by emergent onsets, and by a lack of clear S-wave arrivals. These two latter features make both signal detection and location a challenging task. In this paper, we propose a processing procedure based on Continuous Wavelet Transform of multichannel, broad-band data to simultaneously solve the signal detection and location problems. Our method consists of two steps. First, we apply a frequency-dependent threshold to the estimates of the array-averaged WCO in order to locate the time-frequency regions spanned by coherent arrivals. For these data, we then use the time-series of the complex wavelet coefficients for deriving the elements of the spatial Cross-Spectral Matrix. From the eigenstructure of this matrix, we eventually estimate the kinematic signals' parameters using the MUltiple SIgnal Characterization (MUSIC) algorithm. The whole procedure greatly facilitates the detection and location of weak, broad-band signals, in turn avoiding the time-frequency resolution trade-off and frequency leakage effects which affect conventional covariance estimates based upon Windowed Fourier Transform. The method is applied to explosion signals recorded at Stromboli volcano by either a short-period, small aperture antenna, or a large-aperture, broad-band network. The LP (0.2 < T < 2s) components of the explosive signals are analysed using data from the small-aperture array and under the plane-wave assumption. In this manner, we obtain a precise time- and frequency-localization of the directional properties for waves impinging at the array. We then extend the wavefield decomposition method using a spherical wave front model, and analyse the VLP components (T > 2s) of the explosion recordings from the broad-band network. Source locations obtained this way are fully compatible with those retrieved from application of more traditional (and computationally expensive) time-domain techniques, such as the Radial Semblance method.

  13. The local properties of ocean surface waves by the phase-time method

    NASA Technical Reports Server (NTRS)

    Huang, Norden E.; Long, Steven R.; Tung, Chi-Chao; Donelan, Mark A.; Yuan, Yeli; Lai, Ronald J.

    1992-01-01

    A new approach using phase information to view and study the properties of frequency modulation, wave group structures, and wave breaking is presented. The method is applied to ocean wave time series data and a new type of wave group (containing the large 'rogue' waves) is identified. The method also has the capability of broad applications in the analysis of time series data in general.

  14. Cathode luminescence light source for broadband applications in the visible spectrum

    NASA Technical Reports Server (NTRS)

    Foster, John E. (Inventor)

    2007-01-01

    A device and method for generating cathode luminescence is provided. The device and method generate broad spectrum electromagnetic radiation in the visible. A layer of particles, such as quartz or alumina powder, is exposed to electrons in a plasma discharge. Surface excitation of these particles or the generations/excitation of F-center sites give rise to luminescence.

  15. Photoacoustic tomography and sensing in biomedicine

    PubMed Central

    Li, Changhui; Wang, Lihong V.

    2010-01-01

    Photoacoustics has been broadly studied in biomedicine, for both human and small animal tissues. Photoacoustics uniquely combines the absorption contrast of light or radio frequency waves with ultrasound resolution. Moreover, it is non-ionizing and non-invasive, and is the fastest growing new biomedical method, with clinical applications on the way. This article provides a brief review of recent developments in photoacoustics in biomedicine, from basic principles to applications. The emphasized areas include the new imaging modalities, hybrid detection methods, photoacoustic contrast agents, and the photoacoustic Doppler effect, as well as translational research topics. PMID:19724102

  16. Aircraft operability methods applied to space launch vehicles

    NASA Astrophysics Data System (ADS)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  17. 26 CFR 1.509(a)-3 - Broadly, publicly supported organizations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... this paragraph, if applicable, the basic consideration is whether its organizational structure... paragraph in determining whether the organizational structure, programs or activities, and method of... subparagraph based on a computation period of taxable years 1971 through 1974 or 1972 through 1975, such an...

  18. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells.

    PubMed

    Zhou, Yuexin; Zhu, Shiyou; Cai, Changzu; Yuan, Pengfei; Li, Chunmei; Huang, Yanyi; Wei, Wensheng

    2014-05-22

    Targeted genome editing technologies are powerful tools for studying biology and disease, and have a broad range of research applications. In contrast to the rapid development of toolkits to manipulate individual genes, large-scale screening methods based on the complete loss of gene expression are only now beginning to be developed. Here we report the development of a focused CRISPR/Cas-based (clustered regularly interspaced short palindromic repeats/CRISPR-associated) lentiviral library in human cells and a method of gene identification based on functional screening and high-throughput sequencing analysis. Using knockout library screens, we successfully identified the host genes essential for the intoxication of cells by anthrax and diphtheria toxins, which were confirmed by functional validation. The broad application of this powerful genetic screening strategy will not only facilitate the rapid identification of genes important for bacterial toxicity but will also enable the discovery of genes that participate in other biological processes.

  19. A Minimally Invasive Method for Retrieving Single Adherent Cells of Different Types from Cultures

    PubMed Central

    Zeng, Jia; Mohammadreza, Aida; Gao, Weimin; Merza, Saeed; Smith, Dean; Kelbauskas, Laimonas; Meldrum, Deirdre R.

    2014-01-01

    The field of single-cell analysis has gained a significant momentum over the last decade. Separation and isolation of individual cells is an indispensable step in almost all currently available single-cell analysis technologies. However, stress levels introduced by such manipulations remain largely unstudied. We present a method for minimally invasive retrieval of selected individual adherent cells of different types from cell cultures. The method is based on a combination of mechanical (shear flow) force and biochemical (trypsin digestion) treatment. We quantified alterations in the transcription levels of stress response genes in individual cells exposed to varying levels of shear flow and trypsinization. We report optimal temperature, RNA preservation reagents, shear force and trypsinization conditions necessary to minimize changes in the stress-related gene expression levels. The method and experimental findings are broadly applicable and can be used by a broad research community working in the field of single cell analysis. PMID:24957932

  20. [The application of radiological image in forensic medicine].

    PubMed

    Zhang, Ji-Zong; Che, Hong-Min; Xu, Li-Xiang

    2006-04-01

    Personal identification is an important work in forensic investigation included sex discrimination, age and stature estimation. Human identification depended on radiological image technique analysis is a practice and proper method in forensic science field. This paper intended to understand the advantage and defect by reviewed the employing of forensic radiology in forensic science field broadly and provide a reference to perfect the application of forensic radiology in forensic science field.

  1. Laser-directed 3D assembly of carbon nanotubes using two-photon polymerization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xiong, Wei; Jiang, Li Jia; Zhou, Yunshen; Li, Dawei; Jiang, Lan; Silvain, Jean-Francois; Lu, Yongfeng

    2017-02-01

    Precise assembly of carbon nanotubes (CNTs) in arbitrary 3D space with proper alignment is critically important and desirable for CNT applications but still remains as a long-standing challenge. Using the two-photon polymerization (TPP) technique, it is possible to fabricate 3D micro/nanoscale CNT/polymer architectures with proper CNT alignments in desired directions, which is expected to enable a broad range of applications of CNTs in functional devices. To unleash the full potential of CNTs, it is strategically important to develop TPP-compatible resins with high CNT concentrations for precise assembly of CNTs into 3D micro/nanostructures for functional device applications. We investigated a thiol grafting method in functionalizing multiwalled carbon nanotubes (MWNTs) to develop TPP-compatible MWNT-thiol-acrylate (MTA) composite resins. The composite resins developed had high MWNT concentrations up to 0.2 wt%, over one order of magnitude higher than previously published work. Significantly enhanced electrical and mechanical properties of the 3D micro/nanostructures were achieved. Precisely controlled MWNT assembly and strong anisotropic effects were confirmed. Microelectronic devices made of the MTA composite polymer were demonstrated. The nanofabrication method can achieve controlled assembly of MWNTs in 3D micro/nanostructures, enabling a broad range of CNT applications, including 3D electronics, integrated photonics, and micro/nanoelectromechanical systems (MEMS/NEMS).

  2. Machine intelligence applications to securities production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.K.

    1987-01-01

    The production of security documents provides a cache of interesting problems ranging across a broad spectrum. Some of the problems do not have rigorous scientific solutions available at this time and provide opportunities for less structured approaches such as AI. AI methods can be used in conjunction with traditional scientific and computational methods. The most productive applications of AI occur when this marriage of methods can be carried out without motivation to prove that one method is better than the other. Fields such as ink chemistry and technology, and machine inspection of graphic arts printing offer interesting challenges which willmore » continue to intrigue current and future generations of researchers into the 21st century.« less

  3. Approaches to Fungal Genome Annotation

    PubMed Central

    Haas, Brian J.; Zeng, Qiandong; Pearson, Matthew D.; Cuomo, Christina A.; Wortman, Jennifer R.

    2011-01-01

    Fungal genome annotation is the starting point for analysis of genome content. This generally involves the application of diverse methods to identify features on a genome assembly such as protein-coding and non-coding genes, repeats and transposable elements, and pseudogenes. Here we describe tools and methods leveraged for eukaryotic genome annotation with a focus on the annotation of fungal nuclear and mitochondrial genomes. We highlight the application of the latest technologies and tools to improve the quality of predicted gene sets. The Broad Institute eukaryotic genome annotation pipeline is described as one example of how such methods and tools are integrated into a sequencing center’s production genome annotation environment. PMID:22059117

  4. Digitally switchable multi-focal lens using freeform optics.

    PubMed

    Wang, Xuan; Qin, Yi; Hua, Hong; Lee, Yun-Han; Wu, Shin-Tson

    2018-04-16

    Optical technologies offering electrically tunable optical power have found a broad range of applications, from head-mounted displays for virtual and augmented reality applications to microscopy. In this paper, we present a novel design and prototype of a digitally switchable multi-focal lens (MFL) that offers the capability of rapidly switching the optical power of the system among multiple foci. It consists of a freeform singlet and a customized programmable optical shutter array (POSA). Time-multiplexed multiple foci can be obtained by electrically controlling the POSA to switch the light path through different segments of the freeform singlet rapidly. While this method can be applied to a broad range of imaging and display systems, we experimentally demonstrate a proof-of-concept prototype for a multi-foci imaging system.

  5. The Use of Life Cycle Tools to Support Decision Making for Sustainable Nanotechnologies

    EPA Science Inventory

    Nanotechnology is a broad-impact technology with applications ranging from materials and electronics to analytical methods and metrology. The many benefits that can be realized through the utilization of nanotechnology are intended to lead to an improved quality of life. However,...

  6. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    ERIC Educational Resources Information Center

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  7. Memoized Online Variational Inference for Dirichlet Process Mixture Models

    DTIC Science & Technology

    2014-06-27

    breaking process [7], which places artifically large mass on the final component. It is more efficient and broadly applicable than an alternative trunction...models. In Uncertainty in Artificial Intelligence , 2008. [13] N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential

  8. Efficiently computing and deriving topological relation matrices between complex regions with broad boundaries

    NASA Astrophysics Data System (ADS)

    Du, Shihong; Guo, Luo; Wang, Qiao; Qin, Qimin

    The extended 9-intersection matrix is used to formalize topological relations between uncertain regions while it is designed to satisfy the requirements at a concept level, and to deal with the complex regions with broad boundaries (CBBRs) as a whole without considering their hierarchical structures. In contrast to simple regions with broad boundaries, CBBRs have complex hierarchical structures. Therefore, it is necessary to take into account the complex hierarchical structure and to represent the topological relations between all regions in CBBRs as a relation matrix, rather than using the extended 9-intersection matrix to determine topological relations. In this study, a tree model is first used to represent the intrinsic configuration of CBBRs hierarchically. Then, the reasoning tables are presented for deriving topological relations between child, parent and sibling regions from the relations between two given regions in CBBRs. Finally, based on the reasoning, efficient methods are proposed to compute and derive the topological relation matrix. The proposed methods can be incorporated into spatial databases to facilitate geometric-oriented applications.

  9. New applications of the renormalization group method in physics: a brief introduction.

    PubMed

    Meurice, Y; Perry, R; Tsai, S-W

    2011-07-13

    The renormalization group (RG) method developed by Ken Wilson more than four decades ago has revolutionized the way we think about problems involving a broad range of energy scales such as phase transitions, turbulence, continuum limits and bifurcations in dynamical systems. The Theme Issue provides articles reviewing recent progress made using the RG method in atomic, condensed matter, nuclear and particle physics. In the following, we introduce these articles in a way that emphasizes common themes and the universal aspects of the method.

  10. Magnitude of cyantraniliprole residues in tomato following open field application: pre-harvest interval determination and risk assessment.

    PubMed

    Malhat, Farag; Kasiotis, Konstantinos M; Shalaby, Shehata

    2018-02-05

    Cyantraniliprole is an anthranilic diamide insecticide, belonging to the ryanoid class, with a broad range of applications against several pests. In the presented work, a reliable analytical technique employing high-performance liquid chromatography coupled with photodiode array detector (HPLC-DAD) for analyzing cyantraniliprole residues in tomato was developed. The method was then applied to field-incurred tomato samples collected after applications under open field conditions. The latter aimed to ensure the safe application of cyantraniliprole to tomato and contribute the derived residue data to the risk assessment under field conditions. Sample preparation involved a single step extraction with acetonitrile and sodium chloride for partitioning. The extract was purified utilizing florisil as cleanup reagent. The developed method was further evaluated by comparing the analytical results with those obtained using the QuEChERS technique. The novel method outbalanced QuEChERS regarding matrix interferences in the analysis, while it met all guideline criteria. Hence, it showed excellent linearity over the assayed concentration and yielded satisfactory recovery rate in the range of 88.9 to 96.5%. The half-life of degradation of cyantraniliprole was determined at 2.6 days. Based on the Codex MRL, the pre-harvest interval (PHI) for cyantraniliprole on tomato was 3 days, after treatment at the recommended dose. To our knowledge, the present work provides the first record on PHI determination of cyantraniliprole in tomato under open field conditions in Egypt and the broad Mediterranean region.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerner, Ryan; Mann, R.B.

    We investigate quantum tunnelling methods for calculating black hole temperature, specifically the null-geodesic method of Parikh and Wilczek and the Hamilton-Jacobi Ansatz method of Angheben et al. We consider application of these methods to a broad class of spacetimes with event horizons, including Rindler and nonstatic spacetimes such as Kerr-Newman and Taub-NUT. We obtain a general form for the temperature of Taub-NUT-AdS black holes that is commensurate with other methods. We examine the limitations of these methods for extremal black holes, taking the extremal Reissner-Nordstrom spacetime as a case in point.

  12. Comparison of three PCR-based assays for SNP genotyping in sugar beet

    USDA-ARS?s Scientific Manuscript database

    Background: PCR allelic discrimination technologies have broad applications in the detection of single nucleotide polymorphisms (SNPs) in genetics and genomics. The use of fluorescence-tagged probes is the leading method for targeted SNP detection, but assay costs and error rates could be improved t...

  13. Designing Flat-Plate Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    Report presents overview of state of art in design techniques for flat-plate solar photovoltaic modules and arrays. Paper discusses design requirements, design analyses, and test methods identified and developed for this technology over past several years in effort to reduce cost and improve utility and reliability for broad spectrum of terrestrial applications.

  14. EXPERIENCES WITH USING PROBABILISTIC EXPOSURE ANALYSIS METHODS IN THE U.S. EPA

    EPA Science Inventory

    Over the past decade various Offices and Programs within the U.S. EPA have either initiated or increased the development and application of probabilistic exposure analysis models. These models have been applied to a broad range of research or regulatory problems in EPA, such as e...

  15. Situating and Constructing Diversity in Semi-Structured Interviews

    PubMed Central

    McIntosh, Michele J.; Morse, Janice M.

    2015-01-01

    Although semi-structured interviews (SSIs) are used extensively in research, scant attention is given to their diversity, underlying assumptions, construction, and broad applications to qualitative and mixed-method research. In this three-part article, we discuss the following: (a) how the SSI is situated historically including its evolution and diversification, (b) the principles of constructing SSIs, and (c) how SSIs are utilized as a stand-alone research method, and as strategy within a mixed-method design. PMID:28462313

  16. Development and Application of On-line Monitor for the ZLW-1 Axis Cracks

    NASA Astrophysics Data System (ADS)

    Shi-jun, Yang; Qian-hui, Yang; Jian-guo, Jin

    2018-03-01

    This article mainly introduces a method that uses acoustic emission techniques to achieve on-line monitor for the shaft cracks and crack growth. According to this method, axis crack monitor is produced by acoustic emission techniques. This instrument can apply to all the pressure vessels, pipelines and rotor machines that can bear buckling load. It has the online real-time monitoring, automatic recording, printing, sound and light alarm, collecting crack information function. After a series of tests in both laboratory and field, it shows that this instrument is very versatile and possesses broad prospects of development and application.

  17. Homogeneous Biosensing Based on Magnetic Particle Labels

    PubMed Central

    Schrittwieser, Stefan; Pelaz, Beatriz; Parak, Wolfgang J.; Lentijo-Mozo, Sergio; Soulantica, Katerina; Dieckhoff, Jan; Ludwig, Frank; Guenther, Annegret; Tschöpe, Andreas; Schotter, Joerg

    2016-01-01

    The growing availability of biomarker panels for molecular diagnostics is leading to an increasing need for fast and sensitive biosensing technologies that are applicable to point-of-care testing. In that regard, homogeneous measurement principles are especially relevant as they usually do not require extensive sample preparation procedures, thus reducing the total analysis time and maximizing ease-of-use. In this review, we focus on homogeneous biosensors for the in vitro detection of biomarkers. Within this broad range of biosensors, we concentrate on methods that apply magnetic particle labels. The advantage of such methods lies in the added possibility to manipulate the particle labels by applied magnetic fields, which can be exploited, for example, to decrease incubation times or to enhance the signal-to-noise-ratio of the measurement signal by applying frequency-selective detection. In our review, we discriminate the corresponding methods based on the nature of the acquired measurement signal, which can either be based on magnetic or optical detection. The underlying measurement principles of the different techniques are discussed, and biosensing examples for all techniques are reported, thereby demonstrating the broad applicability of homogeneous in vitro biosensing based on magnetic particle label actuation. PMID:27275824

  18. Plasticity - Theory and finite element applications.

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Levine, H. S.

    1972-01-01

    A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.

  19. A general-purpose machine learning framework for predicting properties of inorganic materials

    DOE PAGES

    Ward, Logan; Agrawal, Ankit; Choudhary, Alok; ...

    2016-08-26

    A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method formore » partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.« less

  20. A general-purpose machine learning framework for predicting properties of inorganic materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Logan; Agrawal, Ankit; Choudhary, Alok

    A very active area of materials research is to devise methods that use machine learning to automatically extract predictive models from existing materials data. While prior examples have demonstrated successful models for some applications, many more applications exist where machine learning can make a strong impact. To enable faster development of machine-learning-based models for such applications, we have created a framework capable of being applied to a broad range of materials data. Our method works by using a chemically diverse list of attributes, which we demonstrate are suitable for describing a wide variety of properties, and a novel method formore » partitioning the data set into groups of similar materials to boost the predictive accuracy. In this manuscript, we demonstrate how this new method can be used to predict diverse properties of crystalline and amorphous materials, such as band gap energy and glass-forming ability.« less

  1. Entropy Stable Spectral Collocation Schemes for the Navier-Stokes Equations: Discontinuous Interfaces

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.; Nielsen, Eric J.; Frankel, Steven H.

    2013-01-01

    Nonlinear entropy stability and a summation-by-parts framework are used to derive provably stable, polynomial-based spectral collocation methods of arbitrary order. The new methods are closely related to discontinuous Galerkin spectral collocation methods commonly known as DGFEM, but exhibit a more general entropy stability property. Although the new schemes are applicable to a broad class of linear and nonlinear conservation laws, emphasis herein is placed on the entropy stability of the compressible Navier-Stokes equations.

  2. Methods for compressible multiphase flows and their applications

    NASA Astrophysics Data System (ADS)

    Kim, H.; Choe, Y.; Kim, H.; Min, D.; Kim, C.

    2018-06-01

    This paper presents an efficient and robust numerical framework to deal with multiphase real-fluid flows and their broad spectrum of engineering applications. A homogeneous mixture model incorporated with a real-fluid equation of state and a phase change model is considered to calculate complex multiphase problems. As robust and accurate numerical methods to handle multiphase shocks and phase interfaces over a wide range of flow speeds, the AUSMPW+_N and RoeM_N schemes with a system preconditioning method are presented. These methods are assessed by extensive validation problems with various types of equation of state and phase change models. Representative realistic multiphase phenomena, including the flow inside a thermal vapor compressor, pressurization in a cryogenic tank, and unsteady cavitating flow around a wedge, are then investigated as application problems. With appropriate physical modeling followed by robust and accurate numerical treatments, compressible multiphase flow physics such as phase changes, shock discontinuities, and their interactions are well captured, confirming the suitability of the proposed numerical framework to wide engineering applications.

  3. Topology Optimization using the Level Set and eXtended Finite Element Methods: Theory and Applications

    NASA Astrophysics Data System (ADS)

    Villanueva Perez, Carlos Hernan

    Computational design optimization provides designers with automated techniques to develop novel and non-intuitive optimal designs. Topology optimization is a design optimization technique that allows for the evolution of a broad variety of geometries in the optimization process. Traditional density-based topology optimization methods often lack a sufficient resolution of the geometry and physical response, which prevents direct use of the optimized design in manufacturing and the accurate modeling of the physical response of boundary conditions. The goal of this thesis is to introduce a unified topology optimization framework that uses the Level Set Method (LSM) to describe the design geometry and the eXtended Finite Element Method (XFEM) to solve the governing equations and measure the performance of the design. The methodology is presented as an alternative to density-based optimization approaches, and is able to accommodate a broad range of engineering design problems. The framework presents state-of-the-art methods for immersed boundary techniques to stabilize the systems of equations and enforce the boundary conditions, and is studied with applications in 2D and 3D linear elastic structures, incompressible flow, and energy and species transport problems to test the robustness and the characteristics of the method. A comparison of the framework against density-based topology optimization approaches is studied with regards to convergence, performance, and the capability to manufacture the designs. Furthermore, the ability to control the shape of the design to operate within manufacturing constraints is developed and studied. The analysis capability of the framework is validated quantitatively through comparison against previous benchmark studies, and qualitatively through its application to topology optimization problems. The design optimization problems converge to intuitive designs and resembled well the results from previous 2D or density-based studies.

  4. Final ecosystem services for stream ecosystems and the metrics, methods and challenges to apply them in a national monitoring context

    EPA Science Inventory

    The challenge of translating notions of ecosystem services from the theoretical arena to practical application at large scales (e.g. national) requires an interdisciplinary approach. To meet this challenge, we convened a workshop involving a broad suite of natural and social scie...

  5. Cultural and chemical pest control methods alter habitat suitability for biological control agents: An example from Wisconsin commercial cranberry

    USDA-ARS?s Scientific Manuscript database

    An integrated pest control program requires an in-depth understanding of the compatibility of all control strategies used. In Wisconsin commercial cranberry production, early-season control strategies may include either a broad-spectrum insecticide application or a corresponding spring flood, along ...

  6. Review of forest landscape models: types, methods, development and applications

    Treesearch

    Weimin Xi; Robert N. Coulson; Andrew G. Birt; Zong-Bo Shang; John D. Waldron; Charles W. Lafon; David M. Cairns; Maria D. Tchakerian; Kier D. Klepzig

    2009-01-01

    Forest landscape models simulate forest change through time using spatially referenced data across a broad spatial scale (i.e. landscape scale) generally larger than a single forest stand. Spatial interactions between forest stands are a key component of such models. These models can incorporate other spatio-temporal processes such as...

  7. Data Science for Imbalanced Data: Methods and Applications

    ERIC Educational Resources Information Center

    Johnson, Reid A.

    2016-01-01

    Data science is a broad, interdisciplinary field concerned with the extraction of knowledge or insights from data, with the classification of data as a core, fundamental task. One of the most persistent challenges faced when performing classification is the class imbalance problem. Class imbalance refers to when the frequency with which each class…

  8. Stereo- and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β- amino triazoles

    EPA Science Inventory

    Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...

  9. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology.

    PubMed

    Ittig, Simon J; Schmutz, Christoph; Kasper, Christoph A; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R; Nigg, Erich A; Arrieumerlou, Cécile

    2015-11-23

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. © 2015 Ittig et al.

  10. Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry

    PubMed Central

    Wilson, Alphus D.

    2013-01-01

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191

  11. Diverse applications of electronic-nose technologies in agriculture and forestry.

    PubMed

    Wilson, Alphus D

    2013-02-08

    Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.

  12. Targeted methods for quantitative analysis of protein glycosylation

    PubMed Central

    Goldman, Radoslav; Sanda, Miloslav

    2018-01-01

    Quantification of proteins by LC-MS/MS-MRM has become a standard method with broad projected clinical applicability. MRM quantification of protein modifications is, however, far less utilized, especially in the case of glycoproteins. This review summarizes current methods for quantitative analysis of protein glycosylation with a focus on MRM methods. We describe advantages of this quantitative approach, analytical parameters that need to be optimized to achieve reliable measurements, and point out the limitations. Differences between major classes of N- and O-glycopeptides are described and class-specific glycopeptide assays are demonstrated. PMID:25522218

  13. Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2006-01-01

    Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.

  14. Applicability Analysis of Validation Evidence for Biomedical Computational Models

    DOE PAGES

    Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.; ...

    2017-09-07

    Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less

  15. Applicability Analysis of Validation Evidence for Biomedical Computational Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pathmanathan, Pras; Gray, Richard A.; Romero, Vicente J.

    Computational modeling has the potential to revolutionize medicine the way it transformed engineering. However, despite decades of work, there has only been limited progress to successfully translate modeling research to patient care. One major difficulty which often occurs with biomedical computational models is an inability to perform validation in a setting that closely resembles how the model will be used. For example, for a biomedical model that makes in vivo clinically relevant predictions, direct validation of predictions may be impossible for ethical, technological, or financial reasons. Unavoidable limitations inherent to the validation process lead to challenges in evaluating the credibilitymore » of biomedical model predictions. Therefore, when evaluating biomedical models, it is critical to rigorously assess applicability, that is, the relevance of the computational model, and its validation evidence to the proposed context of use (COU). However, there are no well-established methods for assessing applicability. In this paper, we present a novel framework for performing applicability analysis and demonstrate its use with a medical device computational model. The framework provides a systematic, step-by-step method for breaking down the broad question of applicability into a series of focused questions, which may be addressed using supporting evidence and subject matter expertise. The framework can be used for model justification, model assessment, and validation planning. While motivated by biomedical models, it is relevant to a broad range of disciplines and underlying physics. Finally, the proposed applicability framework could help overcome some of the barriers inherent to validation of, and aid clinical implementation of, biomedical models.« less

  16. Reconstructing a plasmonic metasurface for a broadband high-efficiency optical vortex in the visible frequency.

    PubMed

    Lu, Bing-Rui; Deng, Jianan; Li, Qi; Zhang, Sichao; Zhou, Jing; Zhou, Lei; Chen, Yifang

    2018-06-14

    Metasurfaces consisting of a two-dimensional metallic nano-antenna array are capable of transferring a Gaussian beam into an optical vortex with a helical phase front and a phase singularity by manipulating the polarization/phase status of light. This miniaturizes a laboratory scaled optical system into a wafer scale component, opening up a new area for broad applications in optics. However, the low conversion efficiency to generate a vortex beam from circularly polarized light hinders further development. This paper reports our recent success in improving the efficiency over a broad waveband at the visible frequency compared with the existing work. The choice of material, the geometry and the spatial organization of meta-atoms, and the fabrication fidelity are theoretically investigated by the Jones matrix method. The theoretical conversion efficiency over 40% in the visible wavelength range is worked out by systematic calculation using the finite difference time domain (FDTD) method. The fabricated metasurface based on the parameters by theoretical optimization demonstrates a high quality vortex in optical frequencies with a significantly enhanced efficiency of over 20% in a broad waveband.

  17. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, Christopher J.

    Charge transfer and charge transport in photoactivated systems are fundamental processes that underlie solar energy capture, solar energy conversion, and photoactivated catalysis, both organometallic and enzymatic. We developed methods, algorithms, and software tools needed for reliable treatment of the underlying physics for charge transfer and charge transport, an undertaking with broad applicability to the goals of the fundamental-interaction component of the Department of Energy Office of Basic Energy Sciences and the exascale initiative of the Office of Advanced Scientific Computing Research.

  18. General and practical formation of thiocyanates from thiols.

    PubMed

    Frei, Reto; Courant, Thibaut; Wodrich, Matthew D; Waser, Jerome

    2015-02-02

    A new method for the cyanation of thiols and disulfides using cyanobenziodoxol(on)e hypervalent iodine reagents is described. Both aliphatic and aromatic thiocyanates can be accessed in good yields in a few minutes at room temperature starting from a broad range of thiols with high chemioselectivity. The complete conversion of disulfides to thiocyanates was also possible. Preliminary computational studies indicated a low energy concerted transition state for the cyanation of the thiolate anion or radical. The developed thiocyanate synthesis has broad potential for various applications in synthetic chemistry, chemical biology and materials science. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Application of laser in obstetrics and gynecology

    NASA Astrophysics Data System (ADS)

    Ding, Ai-Hua

    1998-11-01

    Mainman developed the first ruby laser in 1960 and after 13 Kaplan successfully reported the use of CO2 laser in the treatment of cervicitis. Soon after, Chinese gynecologists started to use the laser for diagnosis and therapy. It had been proved that more than 30 kinds of gynecological diseases could be treated effectively by laser. The remarkable laser treatment technique partially replaced with conventional methods used in that century. However, the application of laser had shown a broad prospect along with its further investigation.

  20. Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.

    2004-01-01

    A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.

  1. One-Pot Isomerization–Cross Metathesis–Reduction (ICMR) Synthesis of Lipophilic Tetrapeptides

    PubMed Central

    2015-01-01

    An efficient, versatile and rapid method toward homologue series of lipophilic tetrapeptide derivatives (herein, the opioid peptides H-TIPP-OH and H-DIPP-OH) is reported. High atom economy and a minimal number of synthetic steps resulted from a one-pot tandem isomerization-cross metathesis-reduction sequence (ICMR), applicable both in solution and solid phase methodology. The broadly applicable synthesis proceeds with short reaction times and simple work-up, as illustrated in this work for alkylated opioid tetrapeptides. PMID:24906051

  2. Design of virus-based nanomaterials for medicine, biotechnology, and energy.

    PubMed

    Wen, Amy M; Steinmetz, Nicole F

    2016-07-25

    This review provides an overview of recent developments in "chemical virology." Viruses, as materials, provide unique nanoscale scaffolds that have relevance in chemical biology and nanotechnology, with diverse areas of applications. Some fundamental advantages of viruses, compared to synthetically programmed materials, include the highly precise spatial arrangement of their subunits into a diverse array of shapes and sizes and many available avenues for easy and reproducible modification. Here, we will first survey the broad distribution of viruses and various methods for producing virus-based nanoparticles, as well as engineering principles used to impart new functionalities. We will then examine the broad range of applications and implications of virus-based materials, focusing on the medical, biotechnology, and energy sectors. We anticipate that this field will continue to evolve and grow, with exciting new possibilities stemming from advancements in the rational design of virus-based nanomaterials.

  3. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    NASA Astrophysics Data System (ADS)

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-03-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions.

  4. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics

    PubMed Central

    Cremer, Johannes W.; Thaler, Klemens M.; Haisch, Christoph; Signorell, Ruth

    2016-01-01

    Photochemistry taking place in atmospheric aerosol droplets has a significant impact on the Earth's climate. Nanofocusing of electromagnetic radiation inside aerosols plays a crucial role in their absorption behaviour, since the radiation flux inside the droplet strongly affects the activation rate of photochemically active species. However, size-dependent nanofocusing effects in the photokinetics of small aerosols have escaped direct observation due to the inability to measure absorption signatures from single droplets. Here we show that photoacoustic measurements on optically trapped single nanodroplets provide a direct, broadly applicable method to measure absorption with attolitre sensitivity. We demonstrate for a model aerosol that the photolysis is accelerated by an order of magnitude in the sub-micron to micron size range, compared with larger droplets. The versatility of our technique promises broad applicability to absorption studies of aerosol particles, such as atmospheric aerosols where quantitative photokinetic data are critical for climate predictions. PMID:26979973

  5. 10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...

  6. 10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...

  7. 10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...

  8. 10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...

  9. 10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...

  10. 10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...

  11. 10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...

  12. 10 CFR 33.14 - Requirements for the issuance of a Type B specific license of broad scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of broad scope. 33.14 Section 33.14 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.14 Requirements for the issuance of a Type B specific license of broad scope. An application for a Type B specific license of broad...

  13. 10 CFR 33.15 - Requirements for the issuance of a Type C specific license of broad scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of broad scope. 33.15 Section 33.15 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.15 Requirements for the issuance of a Type C specific license of broad scope. An application for a Type C specific license of broad...

  14. 10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...

  15. 10 CFR 33.15 - Requirements for the issuance of a Type C specific license of broad scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... of broad scope. 33.15 Section 33.15 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.15 Requirements for the issuance of a Type C specific license of broad scope. An application for a Type C specific license of broad...

  16. 10 CFR 33.15 - Requirements for the issuance of a Type C specific license of broad scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of broad scope. 33.15 Section 33.15 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.15 Requirements for the issuance of a Type C specific license of broad scope. An application for a Type C specific license of broad...

  17. 10 CFR 33.13 - Requirements for the issuance of a Type A specific license of broad scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of broad scope. 33.13 Section 33.13 Energy NUCLEAR REGULATORY COMMISSION SPECIFIC DOMESTIC LICENSES OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.13 Requirements for the issuance of a Type A specific license of broad scope. An application for a Type A specific license of broad...

  18. Universal mobile electrochemical detector designed for use in resource-limited applications

    PubMed Central

    Nemiroski, Alex; Christodouleas, Dionysios C.; Hennek, Jonathan W.; Kumar, Ashok A.; Maxwell, E. Jane; Fernández-Abedul, Maria Teresa; Whitesides, George M.

    2014-01-01

    This paper describes an inexpensive, handheld device that couples the most common forms of electrochemical analysis directly to “the cloud” using any mobile phone, for use in resource-limited settings. The device is designed to operate with a wide range of electrode formats, performs on-board mixing of samples by vibration, and transmits data over voice using audio—an approach that guarantees broad compatibility with any available mobile phone (from low-end phones to smartphones) or cellular network (second, third, and fourth generation). The electrochemical methods that we demonstrate enable quantitative, broadly applicable, and inexpensive sensing with flexibility based on a wide variety of important electroanalytical techniques (chronoamperometry, cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and potentiometry), each with different uses. Four applications demonstrate the analytical performance of the device: these involve the detection of (i) glucose in the blood for personal health, (ii) trace heavy metals (lead, cadmium, and zinc) in water for in-field environmental monitoring, (iii) sodium in urine for clinical analysis, and (iv) a malarial antigen (Plasmodium falciparum histidine-rich protein 2) for clinical research. The combination of these electrochemical capabilities in an affordable, handheld format that is compatible with any mobile phone or network worldwide guarantees that sophisticated diagnostic testing can be performed by users with a broad spectrum of needs, resources, and levels of technical expertise. PMID:25092346

  19. Remote sensing in Michigan for land resource management

    NASA Technical Reports Server (NTRS)

    Sattinger, I. J.; Istvan, L. B.; Roller, N. E. G.; Lowe, D. S.

    1977-01-01

    An extensive program was conducted to establish practical uses of NASA earth resource survey technology in meeting resource management problems throughout Michigan. As a result, a broad interest in and understanding of the usefulness of remote sensing methods was developed and a wide variety of applications was undertaken to provide information needed for informed decision making and effective action.

  20. High School Biology Students' Transfer of the Concept of Natural Selection: A Mixed-Methods Approach

    ERIC Educational Resources Information Center

    Pugh, Kevin J.; Koskey, Kristin L. K.; Linnenbrink-Garcia, Lisa

    2014-01-01

    The concept of natural selection serves as a foundation for understanding diverse biological concepts and has broad applicability to other domains. However, we know little about students' abilities to transfer (i.e. apply to a new context or use generatively) this concept and the relation between students' conceptual understanding and transfer…

  1. Multilayer graphene-based metasurfaces: robust design method for extremely broadband, wide-angle, and polarization-insensitive terahertz absorbers.

    PubMed

    Rahmanzadeh, Mahdi; Rajabalipanah, Hamid; Abdolali, Ali

    2018-02-01

    In this study, by using an equivalent circuit method, a polarization-insensitive terahertz (THz) absorber based on multilayer graphene-based metasurfaces (MGBMs) is systematically designed, providing an extremely broad absorption bandwidth (BW). The proposed absorber is a compact, three-layer structure, comprising square-, cross-, and circular-shaped graphene metasurfaces embedded between three separator dielectrics. The equivalent-conductivity method serves as a parameter retrieval technique to characterize the graphene metasurfaces as the components of the proposed circuit model. Good agreement is observed between the full-wave simulations and the equivalent-circuit predictions. The optimum MGBM absorber exhibits >90% absorbance in an extremely broad frequency band of 0.55-3.12 THz (BW=140%). The results indicate a significant BW enhancement compared with both the previous metal- and graphene-based THz absorbers, highlighting the capability of the designed MGBM absorber. To clarify the physical mechanism of absorption, the surface current and the electric-field distributions, as well as the power loss density of each graphene metasurface, are monitored and discussed. The MGBM functionality is evaluated under a wide range of incident wave angles to prove that the proposed absorber is omnidirectional and polarization-insensitive. These superior performances guarantee the applicability of the MGBM structure as an ultra-broadband absorber for various THz applications.

  2. A method of distributed avionics data processing based on SVM classifier

    NASA Astrophysics Data System (ADS)

    Guo, Hangyu; Wang, Jinyan; Kang, Minyang; Xu, Guojing

    2018-03-01

    Under the environment of system combat, in order to solve the problem on management and analysis of the massive heterogeneous data on multi-platform avionics system, this paper proposes a management solution which called avionics "resource cloud" based on big data technology, and designs an aided decision classifier based on SVM algorithm. We design an experiment with STK simulation, the result shows that this method has a high accuracy and a broad application prospect.

  3. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James L.

    2010-01-01

    NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.

  4. Simultaneous Determination of Glass Transition Temperatures of Several Polymers.

    PubMed

    He, Jiang; Liu, Wei; Huang, Yao-Xiong

    2016-01-01

    A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers.

  5. Membrane fouling in a submerged membrane bioreactor: New method and its applications in interfacial interaction quantification.

    PubMed

    Hong, Huachang; Cai, Xiang; Shen, Liguo; Li, Renjie; Lin, Hongjun

    2017-10-01

    Quantification of interfacial interactions between two rough surfaces represents one of the most pressing requirements for membrane fouling prediction and control in membrane bioreactors (MBRs). This study firstly constructed regularly rough membrane and particle surfaces by using rigorous mathematical equations. Thereafter, a new method involving surface element integration (SEI) method, differential geometry and composite Simpson's rule was proposed to quantify the interfacial interactions between the two constructed rough surfaces. This new method were then applied to investigate interfacial interactions in a MBR with the data of surface properties of membrane and foulants experimentally measured. The feasibility of the new method was verified. It was found that asperity amplitude and period of the membrane surface exerted profound effects on the total interaction. The new method had broad potential application fields especially including guiding membrane surface design for membrane fouling mitigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fabrication of Mechanically Tunable and Bioactive Metal Scaffolds for Biomedical Applications

    PubMed Central

    Jung, Hyun-Do; Lee, Hyun; Kim, Hyoun-Ee; Koh, Young-Hag; Song, Juha

    2015-01-01

    Biometal systems have been widely used for biomedical applications, in particular, as load-bearing materials. However, major challenges are high stiffness and low bioactivity of metals. In this study, we have developed a new method towards fabricating a new type of bioactive and mechanically reliable porous metal scaffolds-densified porous Ti scaffolds. The method consists of two fabrication processes, 1) the fabrication of porous Ti scaffolds by dynamic freeze casting, and 2) coating and densification of the porous scaffolds. The dynamic freeze casting method to fabricate porous Ti scaffolds allowed the densification of porous scaffolds by minimizing the chemical contamination and structural defects. The densification process is distinctive for three reasons. First, the densification process is simple, because it requires a control of only one parameter (degree of densification). Second, it is effective, as it achieves mechanical enhancement and sustainable release of biomolecules from porous scaffolds. Third, it has broad applications, as it is also applicable to the fabrication of functionally graded porous scaffolds by spatially varied strain during densification. PMID:26709604

  7. Finite elements of nonlinear continua.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1972-01-01

    The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.

  8. Fluorescence molecular painting of enveloped viruses.

    PubMed

    Metzner, Christoph; Kochan, Feliks; Dangerfield, John A

    2013-01-01

    In this study, we describe a versatile, flexible, and quick method to label different families of enveloped viruses with glycosylphosphatidylinositol-modified green fluorescent protein, termed fluorescence molecular painting (FMP). As an example for a potential application, we investigated virus attachment by means of flow cytometry to determine if viral binding behavior may be analyzed after FMP of enveloped viruses. Virus attachment was inhibited by using either dextran sulfate or by blocking attachment sites with virus pre-treatment. Results from the FMP-flow cytometry approach were verified by immunoblotting and enzyme-linked immunosorbent assay. Since the modification strategy is applicable to a broad range of proteins and viruses, variations of this method may be useful in a range of research and applied applications from bio-distribution studies to vaccine development and targeted infection for gene delivery.

  9. Compact and multiple plasmonic nanofilter based on ultra-broad stopband in partitioned semicircle or semiring stub waveguide

    NASA Astrophysics Data System (ADS)

    Zheng, Mingfei; Li, Hongjian; Chen, Zhiquan; He, Zhihui; Xu, Hui; Zhao, Mingzhuo

    2017-11-01

    We propose a compact plasmonic nanofilter in partitioned semicircle or semiring stub waveguide, and investigate the transmission characteristics of the two novel systems by using the finite-difference time-domain method. An ultra-broad stopband phenomenon is generated by partitioning a single stub into a double stub with a rectangular metal partition, which is caused by the destructive interference superposition of the reflected and transmitted waves from each stub. A tunable stopband is realized in the multiple plasmonic nanofilter by adjusting the width of the partition and the (outer) radius and inner radius of the stub, whose starting wavelength, ending wavelength, center wavelength, bandwidth and total tunable bandwidth are discussed, and specific filtering waveband and optimum structural parameter are obtained. The proposed structures realize asymmetrical stub and achieve ultra-broad stopband, and have potential applications in band-stop nanofilters and high-density plasmonic integrated optical circuits.

  10. Broad-range PCR: past, present, or future of bacteriology?

    PubMed

    Renvoisé, A; Brossier, F; Sougakoff, W; Jarlier, V; Aubry, A

    2013-08-01

    PCR targeting the gene encoding 16S ribosomal RNA (commonly named broad-range PCR or 16S PCR) has been used for 20 years as a polyvalent tool to study prokaryotes. Broad-range PCR was first used as a taxonomic tool, then in clinical microbiology. We will describe the use of broad-range PCR in clinical microbiology. The first application was identification of bacterial strains obtained by culture but whose phenotypic or proteomic identification remained difficult or impossible. This changed bacterial taxonomy and allowed discovering many new species. The second application of broad-range PCR in clinical microbiology is the detection of bacterial DNA from clinical samples; we will review the clinical settings in which the technique proved useful (such as endocarditis) and those in which it did not (such as characterization of bacteria in ascites, in cirrhotic patients). This technique allowed identifying the etiological agents for several diseases, such as Whipple disease. This review is a synthesis of data concerning the applications, assets, and drawbacks of broad-range PCR in clinical microbiology. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  11. Assessment of Impact of Monoenergetic Photon Sources on Prioritized Nonproliferation Applications: Simulation Study Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, Cameron; Ludewigt, Bernhard; Valentine, John

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current broad-band, bremsstrahlung photon sources (e.g., linacs and betatrons) deliver unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations,more » and must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they are technically challenging to produce. Candidate MPS technologies for nonproliferation applications are now being developed, each of which have different properties (e.g. broad divergence vs. narrow). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. To guide development, requirements for each application of interest must be defined and simulations conducted to define MPS parameters that deliver benefit relative to current systems. The present project conducted a broad assessment of potential nonproliferation applications where MPSs may provide new capabilities or significant performance enhancement (reported separately), which led to prioritization of several applications for detailed analysis. The applications prioritized were: cargo screening and interdiction of Special Nuclear Materials (SNM), detection of hidden SNM, treaty/dismantlement verification, and spent fuel dry storage cask content verification. High resolution imaging for stockpile stewardship was considered as a sub-area of the treaty topic, as it is also of interest for future treaty use. This report presents higher-fidelity calculations and modeling results to quantitatively evaluate the prioritized applications, and to derive the key MPS properties that drive application benefit. Simulations focused on the conventional signatures of radiography, photofission, and NRF to enable comparison to present methods and evaluation of benefit.« less

  12. REVIEW ARTICLE: Spectrophotometric applications of digital signal processing

    NASA Astrophysics Data System (ADS)

    Morawski, Roman Z.

    2006-09-01

    Spectrophotometry is more and more often the method of choice not only in analysis of (bio)chemical substances, but also in the identification of physical properties of various objects and their classification. The applications of spectrophotometry include such diversified tasks as monitoring of optical telecommunications links, assessment of eating quality of food, forensic classification of papers, biometric identification of individuals, detection of insect infestation of seeds and classification of textiles. In all those applications, large numbers of data, generated by spectrophotometers, are processed by various digital means in order to extract measurement information. The main objective of this paper is to review the state-of-the-art methodology for digital signal processing (DSP) when applied to data provided by spectrophotometric transducers and spectrophotometers. First, a general methodology of DSP applications in spectrophotometry, based on DSP-oriented models of spectrophotometric data, is outlined. Then, the most important classes of DSP methods for processing spectrophotometric data—the methods for DSP-aided calibration of spectrophotometric instrumentation, the methods for the estimation of spectra on the basis of spectrophotometric data, the methods for the estimation of spectrum-related measurands on the basis of spectrophotometric data—are presented. Finally, the methods for preprocessing and postprocessing of spectrophotometric data are overviewed. Throughout the review, the applications of DSP are illustrated with numerous examples related to broadly understood spectrophotometry.

  13. CentiServer: A Comprehensive Resource, Web-Based Application and R Package for Centrality Analysis.

    PubMed

    Jalili, Mahdi; Salehzadeh-Yazdi, Ali; Asgari, Yazdan; Arab, Seyed Shahriar; Yaghmaie, Marjan; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran

    2015-01-01

    Various disciplines are trying to solve one of the most noteworthy queries and broadly used concepts in biology, essentiality. Centrality is a primary index and a promising method for identifying essential nodes, particularly in biological networks. The newly created CentiServer is a comprehensive online resource that provides over 110 definitions of different centrality indices, their computational methods, and algorithms in the form of an encyclopedia. In addition, CentiServer allows users to calculate 55 centralities with the help of an interactive web-based application tool and provides a numerical result as a comma separated value (csv) file format or a mapped graphical format as a graph modeling language (GML) file. The standalone version of this application has been developed in the form of an R package. The web-based application (CentiServer) and R package (centiserve) are freely available at http://www.centiserver.org/.

  14. CentiServer: A Comprehensive Resource, Web-Based Application and R Package for Centrality Analysis

    PubMed Central

    Jalili, Mahdi; Salehzadeh-Yazdi, Ali; Asgari, Yazdan; Arab, Seyed Shahriar; Yaghmaie, Marjan; Ghavamzadeh, Ardeshir; Alimoghaddam, Kamran

    2015-01-01

    Various disciplines are trying to solve one of the most noteworthy queries and broadly used concepts in biology, essentiality. Centrality is a primary index and a promising method for identifying essential nodes, particularly in biological networks. The newly created CentiServer is a comprehensive online resource that provides over 110 definitions of different centrality indices, their computational methods, and algorithms in the form of an encyclopedia. In addition, CentiServer allows users to calculate 55 centralities with the help of an interactive web-based application tool and provides a numerical result as a comma separated value (csv) file format or a mapped graphical format as a graph modeling language (GML) file. The standalone version of this application has been developed in the form of an R package. The web-based application (CentiServer) and R package (centiserve) are freely available at http://www.centiserver.org/ PMID:26571275

  15. Computational drug discovery

    PubMed Central

    Ou-Yang, Si-sheng; Lu, Jun-yan; Kong, Xiang-qian; Liang, Zhong-jie; Luo, Cheng; Jiang, Hualiang

    2012-01-01

    Computational drug discovery is an effective strategy for accelerating and economizing drug discovery and development process. Because of the dramatic increase in the availability of biological macromolecule and small molecule information, the applicability of computational drug discovery has been extended and broadly applied to nearly every stage in the drug discovery and development workflow, including target identification and validation, lead discovery and optimization and preclinical tests. Over the past decades, computational drug discovery methods such as molecular docking, pharmacophore modeling and mapping, de novo design, molecular similarity calculation and sequence-based virtual screening have been greatly improved. In this review, we present an overview of these important computational methods, platforms and successful applications in this field. PMID:22922346

  16. Effective visibility analysis method in virtual geographic environment

    NASA Astrophysics Data System (ADS)

    Li, Yi; Zhu, Qing; Gong, Jianhua

    2008-10-01

    Visibility analysis in virtual geographic environment has broad applications in many aspects in social life. But in practical use it is urged to improve the efficiency and accuracy, as well as to consider human vision restriction. The paper firstly introduces a high-efficient 3D data modeling method, which generates and organizes 3D data model using R-tree and LOD techniques. Then a new visibility algorithm which can realize real-time viewshed calculation considering the shelter of DEM and 3D building models and some restrictions of human eye to the viewshed generation. Finally an experiment is conducted to prove the visibility analysis calculation quickly and accurately which can meet the demand of digital city applications.

  17. Vacuum Freeze-Drying, a Method Used To Salvage Water-Damaged Archival and Library Materials: A RAMP Study with Guidelines.

    ERIC Educational Resources Information Center

    McCleary, John M.

    This Records and Archives Management Programme (RAMP) study covers the conservation of archival documents and the application of freeze-drying to the salvage of documents damaged by flood. Following an introductory discussion of the hazards of water, the study presents a broad summary of data on freeze-drying, including the behavior of…

  18. Synthesis and Characterization of Antimicrobial Nanomaterials

    DTIC Science & Technology

    2013-01-01

    coatings have broad application in medical and food processing fields. Additional potential exists for active disinfection/decontamination processes as well...technique to form homogenous silica nanoparticles. The reaction also provides a method to entrap additional enzyme in silica matrices. When additional ...elucidate the mechanism of lysozyme-mediated silica formation.22 The biocidal spectrum of the material can be broadened by addition of other

  19. Innovative Methods for Estimating Densities and Detection Probabilities of Secretive Reptiles Including Invasive Constrictors and Rare Upland Snakes

    DTIC Science & Technology

    2018-01-30

    1  Department of Defense Legacy Resource Management Program Agreement # W9132T-14-2-0010 ( Project # 14-754) Innovative Methods for Estimating...Upland Snakes NA 5c. PROGRAM ELEMENT NUMBER NA 6. AUTHOR(S) 5d. PROJECT NUMBER John D. Willson, Ph.D. 14-754 Shannon Pittman, Ph.D. 5e. TASK NUMBER...STATEMENT Publically available 13. SUPPLEMENTARY NOTES NA 14. ABSTRACT This project demonstrates the broad applicability of a novel simulation

  20. Real-time spatio-temporal coherence estimation for autonomous mode identification and invariance tracking

    NASA Technical Reports Server (NTRS)

    Park, Han G. (Inventor); Zak, Michail (Inventor); James, Mark L. (Inventor); Mackey, Ryan M. E. (Inventor)

    2003-01-01

    A general method of anomaly detection from time-correlated sensor data is disclosed. Multiple time-correlated signals are received. Their cross-signal behavior is compared against a fixed library of invariants. The library is constructed during a training process, which is itself data-driven using the same time-correlated signals. The method is applicable to a broad class of problems and is designed to respond to any departure from normal operation, including faults or events that lie outside the training envelope.

  1. Automatic item generation implemented for measuring artistic judgment aptitude.

    PubMed

    Bezruczko, Nikolaus

    2014-01-01

    Automatic item generation (AIG) is a broad class of methods that are being developed to address psychometric issues arising from internet and computer-based testing. In general, issues emphasize efficiency, validity, and diagnostic usefulness of large scale mental testing. Rapid prominence of AIG methods and their implicit perspective on mental testing is bringing painful scrutiny to many sacred psychometric assumptions. This report reviews basic AIG ideas, then presents conceptual foundations, image model development, and operational application to artistic judgment aptitude testing.

  2. The consequences of landscape change on ecological resources: An assessment of the United States mid-Atlantic region, 1973-1993

    USGS Publications Warehouse

    Jones, K.B.; Neale, A.C.; Wade, T.G.; Wickham, J.D.; Cross, C.L.; Edmonds, C.M.; Loveland, Thomas R.; Nash, M.S.; Riitters, K.H.; Smith, E.R.

    2001-01-01

    Spatially explicit identification of changes in ecological conditions over large areas is key to targeting and prioritizing areas for environmental protection and restoration by managers at watershed, basin, and regional scales. A critical limitation to this point has been the development of methods to conduct such broad-scale assessments. Field-based methods have proven to be too costly and too inconsistent in their application to make estimates of ecological conditions over large areas. New spatial data derived from satellite imagery and other sources, the development of statistical models relating landscape composition and pattern to ecological endpoints, and geographic information systems (GIS) make it possible to evaluate ecological conditions at multiple scales over broad geographic regions. In this study, we demonstrate the application of spatially distributed models for bird habitat quality and nitrogen yield to streams to assess the consequences of landcover change across the mid-Atlantic region between the 1970s and 1990s. Moreover, we present a way to evaluate spatial concordance between models related to different environmental endpoints. Results of this study should help environmental managers in the mid-Atlantic region target those areas in need of conservation and protection.

  3. Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wu, Tian; Zhang, Lieyu

    2015-12-01

    Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.

  4. Ultrasound and photochemical procedures for nanocatalysts preparation: application in photocatalytic biomass valorization.

    PubMed

    Colmenares, Juan Carlos

    2013-07-01

    Nano-photocatalysis is becoming increasingly important due to its multiple applications and multidisciplinary aspects. Applications such as water/air purification, solar energy storage, chemicals production and optoelectronics are some of the most promising. In recent years, the development of novel environmental friendly and cost efficient methods for materials preparation that could replace the old ones is on demand. Unconventional and "soft" techniques such as sonication and photochemistry offer huge possibilities for the synthesis of a broad spectrum of nanostructured materials (e.g., nano-photocatalysts). In the present study, I focus on ultrasound and photochemical procedures for the preparation of nanostructured photocatalysts (e.g., supported metals, metal oxides) and their application in food organic wastes valorization.

  5. Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork

    PubMed Central

    Villafana, Tana Elizabeth; Brown, William P.; Delaney, John K.; Palmer, Michael; Warren, Warren S.; Fischer, Martin C.

    2014-01-01

    The layering structure of a painting contains a wealth of information about the artist's choice of materials and working methods, but currently, no 3D noninvasive method exists to replace the taking of small paint samples in the study of the stratigraphy. Here, we adapt femtosecond pump-probe imaging, previously shown in tissue, to the case of the color palette in paintings, where chromophores have much greater variety. We show that combining the contrasts of multispectral and multidelay pump-probe spectroscopy permits nondestructive 3D imaging of paintings with molecular and structural contrast, even for pigments with linear absorption spectra that are broad and relatively featureless. We show virtual cross-sectioning capabilities in mockup paintings, with pigment separation and nondestructive imaging on an intact 14th century painting (The Crucifixion by Puccio Capanna). Our approach makes it possible to extract microscopic information for a broad range of applications to cultural heritage. PMID:24449855

  6. Computer-aided drug discovery.

    PubMed

    Bajorath, Jürgen

    2015-01-01

    Computational approaches are an integral part of interdisciplinary drug discovery research. Understanding the science behind computational tools, their opportunities, and limitations is essential to make a true impact on drug discovery at different levels. If applied in a scientifically meaningful way, computational methods improve the ability to identify and evaluate potential drug molecules, but there remain weaknesses in the methods that preclude naïve applications. Herein, current trends in computer-aided drug discovery are reviewed, and selected computational areas are discussed. Approaches are highlighted that aid in the identification and optimization of new drug candidates. Emphasis is put on the presentation and discussion of computational concepts and methods, rather than case studies or application examples. As such, this contribution aims to provide an overview of the current methodological spectrum of computational drug discovery for a broad audience.

  7. Optimal quantum networks and one-shot entropies

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Ebler, Daniel

    2016-09-01

    We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interative tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.

  8. Applications of species accumulation curves in large-scale biological data analysis.

    PubMed

    Deng, Chao; Daley, Timothy; Smith, Andrew D

    2015-09-01

    The species accumulation curve, or collector's curve, of a population gives the expected number of observed species or distinct classes as a function of sampling effort. Species accumulation curves allow researchers to assess and compare diversity across populations or to evaluate the benefits of additional sampling. Traditional applications have focused on ecological populations but emerging large-scale applications, for example in DNA sequencing, are orders of magnitude larger and present new challenges. We developed a method to estimate accumulation curves for predicting the complexity of DNA sequencing libraries. This method uses rational function approximations to a classical non-parametric empirical Bayes estimator due to Good and Toulmin [Biometrika, 1956, 43, 45-63]. Here we demonstrate how the same approach can be highly effective in other large-scale applications involving biological data sets. These include estimating microbial species richness, immune repertoire size, and k -mer diversity for genome assembly applications. We show how the method can be modified to address populations containing an effectively infinite number of species where saturation cannot practically be attained. We also introduce a flexible suite of tools implemented as an R package that make these methods broadly accessible.

  9. Applications of species accumulation curves in large-scale biological data analysis

    PubMed Central

    Deng, Chao; Daley, Timothy; Smith, Andrew D

    2016-01-01

    The species accumulation curve, or collector’s curve, of a population gives the expected number of observed species or distinct classes as a function of sampling effort. Species accumulation curves allow researchers to assess and compare diversity across populations or to evaluate the benefits of additional sampling. Traditional applications have focused on ecological populations but emerging large-scale applications, for example in DNA sequencing, are orders of magnitude larger and present new challenges. We developed a method to estimate accumulation curves for predicting the complexity of DNA sequencing libraries. This method uses rational function approximations to a classical non-parametric empirical Bayes estimator due to Good and Toulmin [Biometrika, 1956, 43, 45–63]. Here we demonstrate how the same approach can be highly effective in other large-scale applications involving biological data sets. These include estimating microbial species richness, immune repertoire size, and k-mer diversity for genome assembly applications. We show how the method can be modified to address populations containing an effectively infinite number of species where saturation cannot practically be attained. We also introduce a flexible suite of tools implemented as an R package that make these methods broadly accessible. PMID:27252899

  10. High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke

    2017-04-01

    We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.

  11. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.

    2016-05-03

    ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. Themetabolite,protein, andlipidextraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of thismore » protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental,in vitro, and clinical). IMPORTANCEIn systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample.« less

  12. Applications of yeast surface display for protein engineering

    PubMed Central

    Cherf, Gerald M.; Cochran, Jennifer R.

    2015-01-01

    The method of displaying recombinant proteins on the surface of Saccharomyces cerevisiae via genetic fusion to an abundant cell wall protein, a technology known as yeast surface display, or simply, yeast display, has become a valuable protein engineering tool for a broad spectrum of biotechnology and biomedical applications. This review focuses on the use of yeast display for engineering protein affinity, stability, and enzymatic activity. Strategies and examples for each protein engineering goal are discussed. Additional applications of yeast display are also briefly presented, including protein epitope mapping, identification of protein-protein interactions, and uses of displayed proteins in industry and medicine. PMID:26060074

  13. Design of pressure-driven microfluidic networks using electric circuit analogy.

    PubMed

    Oh, Kwang W; Lee, Kangsun; Ahn, Byungwook; Furlani, Edward P

    2012-02-07

    This article reviews the application of electric circuit methods for the analysis of pressure-driven microfluidic networks with an emphasis on concentration- and flow-dependent systems. The application of circuit methods to microfluidics is based on the analogous behaviour of hydraulic and electric circuits with correlations of pressure to voltage, volumetric flow rate to current, and hydraulic to electric resistance. Circuit analysis enables rapid predictions of pressure-driven laminar flow in microchannels and is very useful for designing complex microfluidic networks in advance of fabrication. This article provides a comprehensive overview of the physics of pressure-driven laminar flow, the formal analogy between electric and hydraulic circuits, applications of circuit theory to microfluidic network-based devices, recent development and applications of concentration- and flow-dependent microfluidic networks, and promising future applications. The lab-on-a-chip (LOC) and microfluidics community will gain insightful ideas and practical design strategies for developing unique microfluidic network-based devices to address a broad range of biological, chemical, pharmaceutical, and other scientific and technical challenges.

  14. Simultaneous Determination of Glass Transition Temperatures of Several Polymers

    PubMed Central

    He, Jiang; Liu, Wei; Huang, Yao-Xiong

    2016-01-01

    Aims A simple and easy optical method is proposed for the determination of glass transition temperature (Tg) of polymers. Methods & Results Tg was determined using the technique of microsphere imaging to monitor the variation of the refractive index of polymer microsphere as a function of temperature. It was demonstrated that the method can eliminate most thermal lag and has sensitivity about six fold higher than the conventional method in Tg determination. So the determined Tg is more accurate and varies less with cooling/heating rate than that obtained by conventional methods. The most attractive character of the method is that it can simultaneously determine the Tg of several polymers in a single experiment, so it can greatly save experimental time and heating energy. Conclusion The method is not only applicable for polymer microspheres, but also for the materials with arbitrary shapes. Therefore, it is expected to be broadly applied to different fundamental researches and practical applications of polymers. PMID:26985670

  15. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems.

    PubMed

    Wolf, Elizabeth Skubak; Anderson, David F

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased for a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.

  16. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects

    PubMed Central

    2014-01-01

    Background Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. Results The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Conclusions Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems. PMID:24964954

  17. SHERPA: an image segmentation and outline feature extraction tool for diatoms and other objects.

    PubMed

    Kloster, Michael; Kauer, Gerhard; Beszteri, Bánk

    2014-06-25

    Light microscopic analysis of diatom frustules is widely used both in basic and applied research, notably taxonomy, morphometrics, water quality monitoring and paleo-environmental studies. In these applications, usually large numbers of frustules need to be identified and/or measured. Although there is a need for automation in these applications, and image processing and analysis methods supporting these tasks have previously been developed, they did not become widespread in diatom analysis. While methodological reports for a wide variety of methods for image segmentation, diatom identification and feature extraction are available, no single implementation combining a subset of these into a readily applicable workflow accessible to diatomists exists. The newly developed tool SHERPA offers a versatile image processing workflow focused on the identification and measurement of object outlines, handling all steps from image segmentation over object identification to feature extraction, and providing interactive functions for reviewing and revising results. Special attention was given to ease of use, applicability to a broad range of data and problems, and supporting high throughput analyses with minimal manual intervention. Tested with several diatom datasets from different sources and of various compositions, SHERPA proved its ability to successfully analyze large amounts of diatom micrographs depicting a broad range of species. SHERPA is unique in combining the following features: application of multiple segmentation methods and selection of the one giving the best result for each individual object; identification of shapes of interest based on outline matching against a template library; quality scoring and ranking of resulting outlines supporting quick quality checking; extraction of a wide range of outline shape descriptors widely used in diatom studies and elsewhere; minimizing the need for, but enabling manual quality control and corrections. Although primarily developed for analyzing images of diatom valves originating from automated microscopy, SHERPA can also be useful for other object detection, segmentation and outline-based identification problems.

  18. Steps Toward Unveiling the True Population of AGN: Photometric Selection of Broad-Line AGN

    NASA Astrophysics Data System (ADS)

    Schneider, Evan; Impey, C.

    2012-01-01

    We present an AGN selection technique that enables identification of broad-line AGN using only photometric data. An extension of infrared selection techniques, our method involves fitting a given spectral energy distribution with a model consisting of three physically motivated components: infrared power law emission, optical accretion disk emission, and host galaxy emission. Each component can be varied in intensity, and a reduced chi-square minimization routine is used to determine the optimum parameters for each object. Using this model, both broad- and narrow-line AGN are seen to fall within discrete ranges of parameter space that have plausible bounds, allowing physical trends with luminosity and redshift to be determined. Based on a fiducial sample of AGN from the catalog of Trump et al. (2009), we find the region occupied by broad-line AGN to be distinct from that of quiescent or star-bursting galaxies. Because this technique relies only on photometry, it will allow us to find AGN at fainter magnitudes than are accessible in spectroscopic surveys, and thus probe a population of less luminous and/or higher redshift objects. With the vast availability of photometric data in large surveys, this technique should have broad applicability and result in large samples that will complement X-ray AGN catalogs.

  19. Constructing Repairable Meta-Structures of Ultra-Broad-Band Electromagnetic Absorption from Three-Dimensional Printed Patterned Shells.

    PubMed

    Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining

    2017-12-13

    Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss  smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.

  20. The wind power prediction research based on mind evolutionary algorithm

    NASA Astrophysics Data System (ADS)

    Zhuang, Ling; Zhao, Xinjian; Ji, Tianming; Miao, Jingwen; Cui, Haina

    2018-04-01

    When the wind power is connected to the power grid, its characteristics of fluctuation, intermittent and randomness will affect the stability of the power system. The wind power prediction can guarantee the power quality and reduce the operating cost of power system. There were some limitations in several traditional wind power prediction methods. On the basis, the wind power prediction method based on Mind Evolutionary Algorithm (MEA) is put forward and a prediction model is provided. The experimental results demonstrate that MEA performs efficiently in term of the wind power prediction. The MEA method has broad prospect of engineering application.

  1. Do-it-yourself networks: a novel method of generating weighted networks.

    PubMed

    Shanafelt, D W; Salau, K R; Baggio, J A

    2017-11-01

    Network theory is finding applications in the life and social sciences for ecology, epidemiology, finance and social-ecological systems. While there are methods to generate specific types of networks, the broad literature is focused on generating unweighted networks. In this paper, we present a framework for generating weighted networks that satisfy user-defined criteria. Each criterion hierarchically defines a feature of the network and, in doing so, complements existing algorithms in the literature. We use a general example of ecological species dispersal to illustrate the method and provide open-source code for academic purposes.

  2. Viewpoint Invariant Gesture Recognition and 3D Hand Pose Estimation Using RGB-D

    ERIC Educational Resources Information Center

    Doliotis, Paul

    2013-01-01

    The broad application domain of the work presented in this thesis is pattern classification with a focus on gesture recognition and 3D hand pose estimation. One of the main contributions of the proposed thesis is a novel method for 3D hand pose estimation using RGB-D. Hand pose estimation is formulated as a database retrieval problem. The proposed…

  3. Measurement of lengths and angles by means of a photoelectric direct reading-off microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Priver, L.S.

    1995-11-01

    We consider the measurement of lengths and angles over a broad range with error amounting to fractions of a micrometer or angular second using a newly designed mockup of a photoelectric direct reading-off microscope. The microscope implements a pulse-position method of transforming information through application of a scanner in the form of a rotating polyhedral mirror.

  4. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process

    PubMed Central

    Zakaria, Rosita; Allen, Katrina J.; Koplin, Jennifer J.; Roche, Peter

    2016-01-01

    Introduction Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. Methods To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; “blood spot” and “mass spectrometry”; while excluding “newborn”; and “neonate”. In addition, databases were restricted to English language and human specific. There was no time period limit applied. Results As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. Conclusions DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required. PMID:28149263

  5. General Dialdehyde Click Chemistry for Amine Bioconjugation.

    PubMed

    Elahipanah, Sina; O'Brien, Paul J; Rogozhnikov, Dmitry; Yousaf, Muhammad N

    2017-05-17

    The development of methods for conjugating a range of molecules to primary amine functional groups has revolutionized the fields of chemistry, biology, and material science. The primary amine is a key functional group and one of the most important nucleophiles and bases used in all of synthetic chemistry. Therefore, tremendous interest in the synthesis of molecules containing primary amines and strategies to devise chemical reactions to react with primary amines has been at the core of chemical research. In particular, primary amines are a ubiquitous functional group found in biological systems as free amino acids, as key side chain lysines in proteins, and in signaling molecules and metabolites and are also present in many natural product classes. Due to its abundance, the primary amine is the most convenient functional group handle in molecules for ligation to other molecules for a broad range of applications that impact all scientific fields. Because of the primary amine's central importance in synthetic chemistry, acid-base chemistry, redox chemistry, and biology, many methods have been developed to efficiently react with primary amines, including activated carboxylic acids, isothiocyanates, Michael addition type systems, and reaction with ketones or aldehydes followed by in situ reductive amination. Herein, we introduce a new traceless, high-yield, fast click-chemistry method based on the rapid and efficient trapping of amine groups via a functionalized dialdehyde group. The click reaction occurs in mild conditions in organic solvents or aqueous media and proceeds in high yield, and the starting dialdehyde reagent and resulting dialdehyde click conjugates are stable. Moreover, no catalyst or dialdehyde-activating group is required, and the only byproduct is water. The initial dialdehyde and the resulting conjugate are both straightforward to characterize, and the reaction proceeds with high atom economy. To demonstrate the broad scope of this new click-conjugation strategy, we designed a straightforward scheme to synthesize a suite of dialdehyde reagents. The dialdehyde molecules were used for applications in cell-surface engineering and for tailoring surfaces for material science applications. We anticipate the broad utility of the general dialdehyde click chemistry to primary amines in all areas of chemical research, ranging from polymers and bioconjugation to material science and nanoscience.

  6. Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

    PubMed Central

    Novobrantseva, Tatiana I; Borodovsky, Anna; Wong, Jamie; Klebanov, Boris; Zafari, Mohammad; Yucius, Kristina; Querbes, William; Ge, Pei; Ruda, Vera M; Milstein, Stuart; Speciner, Lauren; Duncan, Rick; Barros, Scott; Basha, Genc; Cullis, Pieter; Akinc, Akin; Donahoe, Jessica S; Narayanannair Jayaprakash, K; Jayaraman, Muthusamy; Bogorad, Roman L; Love, Kevin; Whitehead, Katie; Levins, Chris; Manoharan, Muthiah; Swirski, Filip K; Weissleder, Ralph; Langer, Robert; Anderson, Daniel G; de Fougerolles, Antonin; Nahrendorf, Matthias; Koteliansky, Victor

    2012-01-01

    Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells. PMID:23344621

  7. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.

    PubMed

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A

    2015-09-22

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.

  8. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes

    PubMed Central

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; Xiao, Dongqing; Liu, Yuhao; Luan, Haiwen; Fu, Haoran; Wang, Xizhu; Yang, Qinglin; Wang, Jiechen; Ren, Wen; Si, Hongzhi; Liu, Fei; Yang, Lihen; Li, Hejun; Wang, Juntong; Guo, Xuelin; Luo, Hongying; Wang, Liang; Huang, Yonggang; Rogers, John A.

    2015-01-01

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This paper introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved using other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane–nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. A 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design. PMID:26372959

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yihui; Yan, Zheng; Nan, Kewang

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This article introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved usingmore » other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. Lastly, a 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.« less

  10. Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries

    NASA Astrophysics Data System (ADS)

    Xu, Ao; Shyy, Wei; Zhao, Tianshou

    2017-06-01

    Fuel cells and flow batteries are promising technologies to address climate change and air pollution problems. An understanding of the complex multiscale and multiphysics transport phenomena occurring in these electrochemical systems requires powerful numerical tools. Over the past decades, the lattice Boltzmann (LB) method has attracted broad interest in the computational fluid dynamics and the numerical heat transfer communities, primarily due to its kinetic nature making it appropriate for modeling complex multiphase transport phenomena. More importantly, the LB method fits well with parallel computing due to its locality feature, which is required for large-scale engineering applications. In this article, we review the LB method for gas-liquid two-phase flows, coupled fluid flow and mass transport in porous media, and particulate flows. Examples of applications are provided in fuel cells and flow batteries. Further developments of the LB method are also outlined.

  11. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools.

    PubMed

    Maton, Cedric; De Vos, Nils; Stevens, Christian V

    2013-07-07

    The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.

  12. A Group Contribution Method for Estimating Cetane and Octane Numbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubic, William Louis

    Much of the research on advanced biofuels is devoted to the study of novel chemical pathways for converting nonfood biomass into liquid fuels that can be blended with existing transportation fuels. Many compounds under consideration are not found in the existing fuel supplies. Often, the physical properties needed to assess the viability of a potential biofuel are not available. The only reliable information available may be the molecular structure. Group contribution methods for estimating physical properties from molecular structure have been used for more than 60 years. The most common application is estimation of thermodynamic properties. More recently, group contributionmore » methods have been developed for estimating rate dependent properties including cetane and octane numbers. Often, published group contribution methods are limited in terms of types of function groups and range of applicability. In this study, a new, broadly-applicable group contribution method based on an artificial neural network was developed to estimate cetane number research octane number, and motor octane numbers of hydrocarbons and oxygenated hydrocarbons. The new method is more accurate over a greater range molecular weights and structural complexity than existing group contribution methods for estimating cetane and octane numbers.« less

  13. General method for the synthesis of hierarchical nanocrystal-based mesoporous materials.

    PubMed

    Rauda, Iris E; Buonsanti, Raffaella; Saldarriaga-Lopez, Laura C; Benjauthrit, Kanokraj; Schelhas, Laura T; Stefik, Morgan; Augustyn, Veronica; Ko, Jesse; Dunn, Bruce; Wiesner, Ulrich; Milliron, Delia J; Tolbert, Sarah H

    2012-07-24

    Block copolymer templating of inorganic materials is a robust method for the production of nanoporous materials. The method is limited, however, by the fact that the molecular inorganic precursors commonly used generally form amorphous porous materials that often cannot be crystallized with retention of porosity. To overcome this issue, here we present a general method for the production of templated mesoporous materials from preformed nanocrystal building blocks. The work takes advantage of recent synthetic advances that allow organic ligands to be stripped off of the surface of nanocrystals to produce soluble, charge-stabilized colloids. Nanocrystals then undergo evaporation-induced co-assembly with amphiphilic diblock copolymers to form a nanostructured inorganic/organic composite. Thermal degradation of the polymer template results in nanocrystal-based mesoporous materials. Here, we show that this method can be applied to nanocrystals with a broad range of compositions and sizes, and that assembly of nanocrystals can be carried out using a broad family of polymer templates. The resultant materials show disordered but homogeneous mesoporosity that can be tuned through the choice of template. The materials also show significant microporosity, formed by the agglomerated nanocrystals, and this porosity can be tuned by the nanocrystal size. We demonstrate through careful selection of the synthetic components that specifically designed nanostructured materials can be constructed. Because of the combination of open and interconnected porosity, high surface area, and compositional tunability, these materials are likely to find uses in a broad range of applications. For example, enhanced charge storage kinetics in nanoporous Mn(3)O(4) is demonstrated here.

  14. Application of Higuchi's fractal dimension from basic to clinical neurophysiology: A review.

    PubMed

    Kesić, Srdjan; Spasić, Sladjana Z

    2016-09-01

    For more than 20 years, Higuchi's fractal dimension (HFD), as a nonlinear method, has occupied an important place in the analysis of biological signals. The use of HFD has evolved from EEG and single neuron activity analysis to the most recent application in automated assessments of different clinical conditions. Our objective is to provide an updated review of the HFD method applied in basic and clinical neurophysiological research. This article summarizes and critically reviews a broad literature and major findings concerning the applications of HFD for measuring the complexity of neuronal activity during different neurophysiological conditions. The source of information used in this review comes from the PubMed, Scopus, Google Scholar and IEEE Xplore Digital Library databases. The review process substantiated the significance, advantages and shortcomings of HFD application within all key areas of basic and clinical neurophysiology. Therefore, the paper discusses HFD application alone, combined with other linear or nonlinear measures, or as a part of automated methods for analyzing neurophysiological signals. The speed, accuracy and cost of applying the HFD method for research and medical diagnosis make it stand out from the widely used linear methods. However, only a combination of HFD with other nonlinear methods ensures reliable and accurate analysis of a wide range of neurophysiological signals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Motionless phase stepping in X-ray phase contrast imaging with a compact source

    PubMed Central

    Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han

    2013-01-01

    X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599

  16. System and Method for Determining Fluence of a Substance

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A. (Inventor)

    2016-01-01

    A system and method for measuring a fluence of gas are disclosed. The system has a first light detector capable of outputting an electrical signal based on an amount of light received. A barrier is positionable adjacent the first light detector and is susceptible to a change in dimension from the fluence of the gas. The barrier permits a portion of light from being received by the first light detector. The change in the dimension of the barrier changes the electrical signal output from the first light detector. A second light detector is positionable to receive light representative of the first light detector without the barrier. The system and method have broad application to detect fluence of gas that may cause erosion chemical reaction causing erosive deterioration. One application is in low orbit Earth for detecting the fluence of atomic oxygen.

  17. Oxybenzone oxidation following solar irradiation of skin: photoprotection versus antioxidant inactivation.

    PubMed

    Schallreuter, K U; Wood, J M; Farwell, D W; Moore, J; Edwards, H G

    1996-03-01

    We used noninvasive Fourier transform (FT) Raman spectroscopy to follow the fate of the broadly used ultraviolet UVA sun blocker, oxybenzone, after topical application to the skin. Our results showed that oxybenzone is rapidly photo-oxidized, yielding oxybenzone semiquinone, a potent electrophile, which reacts with thiol groups on important anti-oxidant enzymes and substrates, such as thioredoxin reductase and reduced glutathione, respectively. Although oxybenzone is an excellent broad spectrum UVA filter, its rapid oxidation followed by the inactivation of important antioxidant systems indicates that this substance may be rather harmful to the homeostasis of the epidermis. Furthermore, these results demonstrate that FT-Raman spectroscopy is a useful method for studying the transport and metabolism of active ingredients in topical preparations.

  18. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions

    NASA Astrophysics Data System (ADS)

    Donahue, William; Newhauser, Wayne D.; Ziegler, James F.

    2016-09-01

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u-1 to 450 MeV u-1 or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  19. Analytical model for ion stopping power and range in the therapeutic energy interval for beams of hydrogen and heavier ions.

    PubMed

    Donahue, William; Newhauser, Wayne D; Ziegler, James F

    2016-09-07

    Many different approaches exist to calculate stopping power and range of protons and heavy charged particles. These methods may be broadly categorized as physically complete theories (widely applicable and complex) or semi-empirical approaches (narrowly applicable and simple). However, little attention has been paid in the literature to approaches that are both widely applicable and simple. We developed simple analytical models of stopping power and range for ions of hydrogen, carbon, iron, and uranium that spanned intervals of ion energy from 351 keV u(-1) to 450 MeV u(-1) or wider. The analytical models typically reproduced the best-available evaluated stopping powers within 1% and ranges within 0.1 mm. The computational speed of the analytical stopping power model was 28% faster than a full-theoretical approach. The calculation of range using the analytic range model was 945 times faster than a widely-used numerical integration technique. The results of this study revealed that the new, simple analytical models are accurate, fast, and broadly applicable. The new models require just 6 parameters to calculate stopping power and range for a given ion and absorber. The proposed model may be useful as an alternative to traditional approaches, especially in applications that demand fast computation speed, small memory footprint, and simplicity.

  20. Broad-Enrich: functional interpretation of large sets of broad genomic regions.

    PubMed

    Cavalcante, Raymond G; Lee, Chee; Welch, Ryan P; Patil, Snehal; Weymouth, Terry; Scott, Laura J; Sartor, Maureen A

    2014-09-01

    Functional enrichment testing facilitates the interpretation of Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) data in terms of pathways and other biological contexts. Previous methods developed and used to test for key gene sets affected in ChIP-seq experiments treat peaks as points, and are based on the number of peaks associated with a gene or a binary score for each gene. These approaches work well for transcription factors, but histone modifications often occur over broad domains, and across multiple genes. To incorporate the unique properties of broad domains into functional enrichment testing, we developed Broad-Enrich, a method that uses the proportion of each gene's locus covered by a peak. We show that our method has a well-calibrated false-positive rate, performing well with ChIP-seq data having broad domains compared with alternative approaches. We illustrate Broad-Enrich with 55 ENCODE ChIP-seq datasets using different methods to define gene loci. Broad-Enrich can also be applied to other datasets consisting of broad genomic domains such as copy number variations. http://broad-enrich.med.umich.edu for Web version and R package. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  1. A New Black Hole Mass Estimate for Obscured Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Minezaki, Takeo; Matsushita, Kyoko

    2015-04-01

    We propose a new method for estimating the mass of a supermassive black hole, applicable to obscured active galactic nuclei (AGNs). This method estimates the black hole mass using the width of the narrow core of the neutral FeKα emission line in X-rays and the distance of its emitting region from the black hole based on the isotropic luminosity indicator via the luminosity scaling relation. Assuming the virial relation between the locations and the velocity widths of the neutral FeKα line core and the broad Hβ emission line, the luminosity scaling relation of the neutral FeKα line core emitting region is estimated. We find that the velocity width of the neutral FeKα line core falls between that of the broad Balmer emission lines and the corresponding value at the dust reverberation radius for most of the target AGNs. The black hole mass {{M}BH,FeKα } estimated with this method is then compared with other black hole mass estimates, such as the broad emission-line reverberation mass {{M}BH,rev} for type 1 AGNs, the mass {{M}BH,{{H2}O}} based on the H2O maser, and the single-epoch mass estimate {{M}BH,pol} based on the polarized broad Balmer lines for type 2 AGNs. We find that {{M}BH,FeKα } is consistent with {{M}BH,rev} and {{M}BH,pol}, and find that {{M}BH,FeKα } correlates well with {{M}BH,{{H2}O}}. These results suggest that {{M}BH,FeKα } is a potential indicator of the black hole mass for obscured AGNs. In contrast, {{M}BH,FeKα } is systematically larger than {{M}BH,{{H2}O}} by about a factor of 5, and the possible origins are discussed.

  2. Rapid flow cytometric measurement of protein inclusions and nuclear trafficking

    PubMed Central

    Whiten, D. R.; San Gil, R.; McAlary, L.; Yerbury, J. J.; Ecroyd, H.; Wilson, M. R.

    2016-01-01

    Proteinaceous cytoplasmic inclusions are an indicator of dysfunction in normal cellular proteostasis and a hallmark of many neurodegenerative diseases. We describe a simple and rapid new flow cytometry-based method to enumerate, characterise and, if desired, physically recover protein inclusions from cells. This technique can analyse and resolve a broad variety of inclusions differing in both size and protein composition, making it applicable to essentially any model of intracellular protein aggregation. The method also allows rapid quantification of the nuclear trafficking of fluorescently labelled molecules. PMID:27516358

  3. Enhanced image capture through fusion

    NASA Technical Reports Server (NTRS)

    Burt, Peter J.; Hanna, Keith; Kolczynski, Raymond J.

    1993-01-01

    Image fusion may be used to combine images from different sensors, such as IR and visible cameras, to obtain a single composite with extended information content. Fusion may also be used to combine multiple images from a given sensor to form a composite image in which information of interest is enhanced. We present a general method for performing image fusion and show that this method is effective for diverse fusion applications. We suggest that fusion may provide a powerful tool for enhanced image capture with broad utility in image processing and computer vision.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokop'ev, I.A.; Churshukov, E.S.; Maiko, L.P.

    This article evaluates the stability of the protective properties of preservative oils when they are oxidized in the bulk and in a thin layer. Proposes a method based on a quantitative evaluation of the changes in protective properties of the oils after artificial oxidation in the bulk and in a thin layer on a metal surface. Finds that the proposed method makes it possible to establish the character of changes in protective properties of preservative oils during storage and application, and to differentiate oils with respect to this index over a broad range of protective levels.

  5. Heterofunctional nanomaterials: fabrication, properties and applications in nanobiotechnology.

    PubMed

    Kumart, S Anil; Khan, M I

    2010-07-01

    Nanotechnology and nanoengineering includes a novel class of materials that are gaining significant recognition to pursuit technological/biological advances in diverse fields including, biology, medicine, electronics, engineering etc. due to their unique size- and shape-dependent intrinsic physicochemical, optoelectronic and biological properties. Characteristics such as high surface to volume ratios and quantum confinement results in materials that are qualitatively different from their bulk counterparts. These properties not only make them suitable for numerous applications in existing and emerging technologies, but also have outstanding role in many fields that provide inspiration for their fabrication. In Today's trend nanotechnology is spreading vigorously where researchers all over the world are focusing towards their synthesis and applications. Therefore, this review is helpful for the researchers in the field of nanobiotechnology/nanomedicine, providing a brief overview of nanotechnology, covering nanomaterial synthesis methods (with emphasis on environmentally benign greener approaches), their properties, and applications; such as drug delivery, bio-labeling, nanotoxicity etc. The influence of synthesis methods and surface coatings/stabilizing agents and their subsequent applications is discussed, and a broad outline on the biomedical applications into which they have been implemented is also presented.

  6. Application of Stable Isotope-Assisted Metabolomics for Cell Metabolism Studies

    PubMed Central

    You, Le; Zhang, Baichen; Tang, Yinjie J.

    2014-01-01

    The applications of stable isotopes in metabolomics have facilitated the study of cell metabolisms. Stable isotope-assisted metabolomics requires: (1) properly designed tracer experiments; (2) stringent sampling and quenching protocols to minimize isotopic alternations; (3) efficient metabolite separations; (4) high resolution mass spectrometry to resolve overlapping peaks and background noises; and (5) data analysis methods and databases to decipher isotopic clusters over a broad m/z range (mass-to-charge ratio). This paper overviews mass spectrometry based techniques for precise determination of metabolites and their isotopologues. It also discusses applications of isotopic approaches to track substrate utilization, identify unknown metabolites and their chemical formulas, measure metabolite concentrations, determine putative metabolic pathways, and investigate microbial community populations and their carbon assimilation patterns. In addition, 13C-metabolite fingerprinting and metabolic models can be integrated to quantify carbon fluxes (enzyme reaction rates). The fluxome, in combination with other “omics” analyses, may give systems-level insights into regulatory mechanisms underlying gene functions. More importantly, 13C-tracer experiments significantly improve the potential of low-resolution gas chromatography-mass spectrometry (GC-MS) for broad-scope metabolism studies. We foresee the isotope-assisted metabolomics to be an indispensable tool in industrial biotechnology, environmental microbiology, and medical research. PMID:24957020

  7. Simulation methods to estimate design power: an overview for applied research

    PubMed Central

    2011-01-01

    Background Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. Methods We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. Results We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Conclusions Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research. PMID:21689447

  8. [The application of metabonomics in modern studies of Chinese materia medica].

    PubMed

    Chen, Hai-Bin; Zhou, Hong-Guang; Yu, Xiao-Yi

    2012-06-01

    Metabonomics, a newly developing subject secondary to genomics, transcriptomics, and proteomics, is an important constituent part of systems biology. It is believed to be the final direction of the systems biology. It can be directly applied to understand the physiological and biochemical states by its "metabolome profile" as a whole. Therefore, it can provide a huge amount of information different from those originating from other "omics". In the modernization of Chinese materia medica research, the application of metabonomics methods and technologies has a broad potential for future development. Especially it is of important theoretical significance and application value in holistic efficacies evaluation, active ingredients studies, and safety research of Chinese materia medica.

  9. Ontology-based content analysis of US patent applications from 2001-2010.

    PubMed

    Weber, Lutz; Böhme, Timo; Irmer, Matthias

    2013-01-01

    Ontology-based semantic text analysis methods allow to automatically extract knowledge relationships and data from text documents. In this review, we have applied these technologies for the systematic analysis of pharmaceutical patents. Hierarchical concepts from the knowledge domains of chemical compounds, diseases and proteins were used to annotate full-text US patent applications that deal with pharmacological activities of chemical compounds and filed in the years 2001-2010. Compounds claimed in these applications have been classified into their respective compound classes to review the distribution of scaffold types or general compound classes such as natural products in a time-dependent manner. Similarly, the target proteins and claimed utility of the compounds have been classified and the most relevant were extracted. The method presented allows the discovery of the main areas of innovation as well as emerging fields of patenting activities - providing a broad statistical basis for competitor analysis and decision-making efforts.

  10. Allostery: An Overview of Its History, Concepts, Methods, and Applications.

    PubMed

    Liu, Jin; Nussinov, Ruth

    2016-06-01

    The concept of allostery has evolved in the past century. In this Editorial, we briefly overview the history of allostery, from the pre-allostery nomenclature era starting with the Bohr effect (1904) to the birth of allostery by Monod and Jacob (1961). We describe the evolution of the allostery concept, from a conformational change in a two-state model (1965, 1966) to dynamic allostery in the ensemble model (1999); from multi-subunit (1965) proteins to all proteins (2004). We highlight the current available methods to study allostery and their applications in studies of conformational mechanisms, disease, and allosteric drug discovery. We outline the challenges and future directions that we foresee. Altogether, this Editorial narrates the history of this fundamental concept in the life sciences, its significance, methodologies to detect and predict it, and its application in a broad range of living systems.

  11. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    PubMed Central

    Kumirska, Jolanta; Czerwicka, Małgorzata; Kaczyński, Zbigniew; Bychowska, Anna; Brzozowski, Krzysztof; Thöming, Jorg; Stepnowski, Piotr

    2010-01-01

    Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds. PMID:20559489

  12. Functionality in Electrospun Nanofibrous Membranes Based on Fiber's Size, Surface Area, and Molecular Orientation

    PubMed Central

    Matsumoto, Hidetoshi; Tanioka, Akihiko

    2011-01-01

    Electrospinning is a versatile method for forming continuous thin fibers based on an electrohydrodynamic process. This method has the following advantages: (i) the ability to produce thin fibers with diameters in the micrometer and nanometer ranges; (ii) one-step forming of the two- or three-dimensional nanofiber network assemblies (nanofibrous membranes); and (iii) applicability for a broad spectrum of molecules, such as synthetic and biological polymers and polymerless sol-gel systems. Electrospun nanofibrous membranes have received significant attention in terms of their practical applications. The major advantages of nanofibers or nanofibrous membranes are the functionalities based on their nanoscaled-size, highly specific surface area, and highly molecular orientation. These functionalities of the nanofibrous membranes can be controlled by their fiber diameter, surface chemistry and topology, and internal structure of the nanofibers. This report focuses on our studies and describes fundamental aspects and applications of electrospun nanofibrous membranes. PMID:24957735

  13. Nanoparticles from renewable polymers

    PubMed Central

    Wurm, Frederik R.; Weiss, Clemens K.

    2014-01-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights (polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications. PMID:25101259

  14. Bio-inspired voltage-dependent calcium channel blockers.

    PubMed

    Yang, Tingting; He, Lin-Ling; Chen, Ming; Fang, Kun; Colecraft, Henry M

    2013-01-01

    Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVβ, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.

  15. Nondestructive testing techniques

    NASA Astrophysics Data System (ADS)

    Bray, Don E.; McBride, Don

    A comprehensive reference covering a broad range of techniques in nondestructive testing is presented. Based on years of extensive research and application at NASA and other government research facilities, the book provides practical guidelines for selecting the appropriate testing methods and equipment. Topics discussed include visual inspection, penetrant and chemical testing, nuclear radiation, sonic and ultrasonic, thermal and microwave, magnetic and electromagnetic techniques, and training and human factors. (No individual items are abstracted in this volume)

  16. Chemical modification: the key to clinical application of RNA interference?

    PubMed Central

    Corey, David R.

    2007-01-01

    RNA interference provides a potent and specific method for controlling gene expression in human cells. To translate this potential into a broad new family of therapeutics, it is necessary to optimize the efficacy of the RNA-based drugs. As discussed in this Review, it might be possible to achieve this optimization using chemical modifications that improve their in vivo stability, cellular delivery, biodistribution, pharmacokinetics, potency, and specificity. PMID:18060019

  17. Broadband antireflective silicon nanostructures produced by spin-coated Ag nanoparticles

    PubMed Central

    2014-01-01

    We report the fabrication of broadband antireflective silicon (Si) nanostructures fabricated using spin-coated silver (Ag) nanoparticles as an etch mask followed by inductively coupled plasma (ICP) etching process. This fabrication technique is a simple, fast, cost-effective, and high-throughput method, making it highly suitable for mass production. Prior to the fabrication of Si nanostructures, theoretical investigations were carried out using a rigorous coupled-wave analysis method in order to determine the effects of variations in the geometrical features of Si nanostructures to obtain antireflection over a broad wavelength range. The Ag ink ratio and ICP etching conditions, which can affect the distribution, distance between the adjacent nanostructures, and height of the resulting Si nanostructures, were carefully adjusted to determine the optimal experimental conditions for obtaining desirable Si nanostructures for practical applications. The Si nanostructures fabricated using the optimal experimental conditions showed a very low average reflectance of 8.3%, which is much lower than that of bulk Si (36.8%), as well as a very low reflectance for a wide range of incident angles and different polarizations over a broad wavelength range of 300 to 1,100 nm. These results indicate that the fabrication technique is highly beneficial to produce antireflective structures for Si-based device applications requiring low light reflection. PMID:24484636

  18. Quantification of larval zebrafish motor function in multi-well plates using open-source MATLAB® applications

    PubMed Central

    Zhou, Yangzhong; Cattley, Richard T.; Cario, Clinton L.; Bai, Qing; Burton, Edward A.

    2014-01-01

    This article describes a method to quantify the movements of larval zebrafish in multi-well plates, using the open-source MATLAB® applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly-illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB® scripts; implementation of validation controls. The method is reliable, automated and flexible, requires less than one hour of hands-on work for completion once optimized, and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine: positional preference; displacement, velocity and acceleration; duration and frequency of movement events and rest periods. This approach is widely applicable to analyze spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multi-well plate format suitable for high-throughput applications. PMID:24901738

  19. Quantification of larval zebrafish motor function in multiwell plates using open-source MATLAB applications.

    PubMed

    Zhou, Yangzhong; Cattley, Richard T; Cario, Clinton L; Bai, Qing; Burton, Edward A

    2014-07-01

    This article describes a method to quantify the movements of larval zebrafish in multiwell plates, using the open-source MATLAB applications LSRtrack and LSRanalyze. The protocol comprises four stages: generation of high-quality, flatly illuminated video recordings with exposure settings that facilitate object recognition; analysis of the resulting recordings using tools provided in LSRtrack to optimize tracking accuracy and motion detection; analysis of tracking data using LSRanalyze or custom MATLAB scripts; and implementation of validation controls. The method is reliable, automated and flexible, requires <1 h of hands-on work for completion once optimized and shows excellent signal:noise characteristics. The resulting data can be analyzed to determine the following: positional preference; displacement, velocity and acceleration; and duration and frequency of movement events and rest periods. This approach is widely applicable to the analysis of spontaneous or stimulus-evoked zebrafish larval neurobehavioral phenotypes resulting from a broad array of genetic and environmental manipulations, in a multiwell plate format suitable for high-throughput applications.

  20. Detection of time delays and directional interactions based on time series from complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Ma, Huanfei; Leng, Siyang; Tao, Chenyang; Ying, Xiong; Kurths, Jürgen; Lai, Ying-Cheng; Lin, Wei

    2017-07-01

    Data-based and model-free accurate identification of intrinsic time delays and directional interactions is an extremely challenging problem in complex dynamical systems and their networks reconstruction. A model-free method with new scores is proposed to be generally capable of detecting single, multiple, and distributed time delays. The method is applicable not only to mutually interacting dynamical variables but also to self-interacting variables in a time-delayed feedback loop. Validation of the method is carried out using physical, biological, and ecological models and real data sets. Especially, applying the method to air pollution data and hospital admission records of cardiovascular diseases in Hong Kong reveals the major air pollutants as a cause of the diseases and, more importantly, it uncovers a hidden time delay (about 30-40 days) in the causal influence that previous studies failed to detect. The proposed method is expected to be universally applicable to ascertaining and quantifying subtle interactions (e.g., causation) in complex systems arising from a broad range of disciplines.

  1. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions.

    PubMed

    Belmonte, Frances R; Martin, James L; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A; Kaufman, Brett A

    2016-04-28

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.

  2. Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions

    PubMed Central

    Belmonte, Frances R.; Martin, James L.; Frescura, Kristin; Damas, Joana; Pereira, Filipe; Tarnopolsky, Mark A.; Kaufman, Brett A.

    2016-01-01

    Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error. PMID:27122135

  3. Meat Science and Muscle Biology Symposium: Ecological and dietary impactors of foodborne pathogens and methods to reduce fecal shedding in cattle.

    PubMed

    Callaway, T R; Edrington, T S; Nisbet, D J

    2014-04-01

    Pathogenic bacteria can live asymptomatically within and on cattle and can enter the food chain but also can be transmitted to humans by fecal or direct animal contact. Reducing pathogenic bacterial incidence and populations within live cattle represents an important step in improving food safety. A broad range of preslaughter intervention strategies are being developed, which can be loosely classified as 1) directly antipathogen strategies, 2) competitive enhancement strategies (that use the microbiome's competitive nature against pathogens), and 3) animal management strategies. Included within these broad categories are such diverse methods as vaccination against foodborne pathogens, probiotics and prebiotics, bacterial viruses (i.e., bacteriophages), sodium chlorate feeding, and dietary and management changes that specifically alter the microbiome. The simultaneous application of 1 or more preharvest strategies has the potential to reduce human foodborne illnesses by erecting multiple hurdles preventing entry into humans. However, economic factors that govern producer profitability must be kept in mind while improving food safety.

  4. Seedless Synthesis of Monodispersed Gold Nanorods with Remarkably High Yield: Synergistic Effect of Template Modification and Growth Kinetics Regulation.

    PubMed

    Liu, Kang; Bu, Yanru; Zheng, Yuanhui; Jiang, Xuchuan; Yu, Aibing; Wang, Huanting

    2017-03-08

    Gold nanorods (AuNRs) are versatile materials due to their broadly tunable optical properties associated with their anisotropic feature. Conventional seed-mediated synthesis is, however, not only limited by the operational complexity and over-sensitivity towards subtle changes of experimental conditions but also suffers from low yield (≈15 %). A facile seedless method is reported to overcome these challenges. Monodispersed AuNRs with high yield (≈100 %) and highly adjustable longitudinal surface plasmon resonance (LSPR) are reproducibly synthesized. The parameters that influence the AuNRs growth were thoroughly investigated in terms of growth kinetics and soft-template regulation, offering a better understanding of the template-based mechanism. The facile synthesis, broad tunability of LSRP, high reproducibility, high yield, and ease of scale-up make this method promising for the future mass production of monodispersed AuNRs for applications in catalysis, sensing, and biomedicine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Practical Aerobic Oxidations of Alcohols and Amines with Homogeneous Cu/TEMPO and Related Catalyst Systems

    PubMed Central

    Ryland, Bradford L.; Stahl, Shannon S.

    2014-01-01

    Alcohol and amine oxidations are common reactions in laboratory and industrial synthesis of organic molecules. Aerobic oxidation methods have long been sought for these transformations, but few practical methods exist that offer advantages over traditional oxidation methods. Recently developed homogeneous Cu/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) and related catalyst systems appear to fill this void. The reactions exhibit high levels of chemoselectivity and broad functional-group tolerance, and they often operate efficiently at room temperature with ambient air as the oxidant. These advances, together with their historical context and recent applications, are highlighted in this minireview. PMID:25044821

  6. Fabricated nanogap-rich plasmonic nanostructures through an optothermal surface bubble in a droplet.

    PubMed

    Karim, Farzia; Vasquez, Erick S; Zhao, Chenglong

    2018-01-15

    A rapid and cost-effective method for the fabrication of nanogap-rich structures is demonstrated in this Letter. The method utilizes the Marangoni convection around an optothermal surface bubble inside a liquid droplet with a nanoliter volume. The liquid droplet containing metallic nanoparticles reduces the sample consumption and confines the liquid flow. The optothermal surface bubble creates a strong convective flow that allows for the rapid deposition of the metallic nanoparticles to form nanogap-rich structures on any substrate under ambient conditions. This method will enable a broad range of applications such as biosensing, environmental analysis, and nonlinear optics.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yijian; Hong, Mingyi; Dall'Anese, Emiliano

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  8. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    PubMed Central

    Islam, Md. Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-01-01

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed. PMID:24763250

  9. Thin metal nanostructures: synthesis, properties and applications

    PubMed Central

    Fan, Zhanxi; Huang, Xiao; Tan, Chaoliang

    2015-01-01

    Two-dimensional nanomaterials, especially graphene and single- or few-layer transition metal dichalcogenide nanosheets, have attracted great research interest in recent years due to their distinctive physical, chemical and electronic properties as well as their great potentials for a broad range of applications. Recently, great efforts have also been devoted to the controlled synthesis of thin nanostructures of metals, one of the most studied traditional materials, for various applications. In this minireview, we review the recent progress in the synthesis and applications of thin metal nanostructures with a focus on metal nanoplates and nanosheets. First of all, various methods for the synthesis of metal nanoplates and nanosheets are summarized. After a brief introduction of their properties, some applications of metal nanoplates and nanosheets, such as catalysis, surface enhanced Raman scattering (SERS), sensing and near-infrared photothermal therapy are described. PMID:28553459

  10. Improving Foster Parent Engagement: Using Qualitative Methods to Guide Tailoring of Evidence-based Engagement Strategies

    PubMed Central

    Conover, Kate L.; Cox, Julia Revillion

    2014-01-01

    Objective This qualitative study examined applicability and need for tailoring of an evidence-based engagement intervention, combined with Trauma-focused Cognitive Behavioral Therapy, for foster parents. Method Qualitative methods were used, including individual interviews with participating foster parents (N = 7), review of interview findings with an independent group of foster parents (N = 5), and review of the combined foster parent findings by child welfare caseworkers (N = 5), an important stakeholder group. Results The engagement intervention, with its primary focus on perceptual barriers (e.g., past experiences with mental health), was relevant for the foster care population. However, the study identified areas for tailoring to better recognize and address the unique needs and situation of foster parents as substitute caregivers. Conclusions Perceptually-focused engagement interventions may have broad applicability to a range of populations, including foster parents, with the potential for improving caregiver participation in children’s mental health services. PMID:24611600

  11. Fabricating and Controlling Silicon Zigzag Nanowires by Diffusion-Controlled Metal-Assisted Chemical Etching Method.

    PubMed

    Chen, Yun; Zhang, Cheng; Li, Liyi; Tuan, Chia-Chi; Wu, Fan; Chen, Xin; Gao, Jian; Ding, Yong; Wong, Ching-Ping

    2017-07-12

    Silicon (Si) zigzag nanowires (NWs) have a great potential in many applications because of its high surface/volume ratio. However, fabricating Si zigzag NWs has been challenging. In this work, a diffusion-controlled metal-assisted chemical etching method is developed to fabricate Si zigzag NWs. By tailoring the composition of etchant to change its diffusivity, etching direction, and etching time, various zigzag NWs can be easily fabricated. In addition, it is also found that a critical length of NW (>1 μm) is needed to form zigzag nanowires. Also, the amplitude of zigzag increases as the location approaches the center of the substrate and the length of zigzag nanowire increases. It is also demonstrated that such zigzag NWs can help the silicon substrate for self-cleaning and antireflection. This method may provide a feasible and economical way to fabricate zigzag NWs and novel structures for broad applications.

  12. Normal mode analysis and applications in biological physics.

    PubMed

    Dykeman, Eric C; Sankey, Otto F

    2010-10-27

    Normal mode analysis has become a popular and often used theoretical tool in the study of functional motions in enzymes, viruses, and large protein assemblies. The use of normal modes in the study of these motions is often extremely fruitful since many of the functional motions of large proteins can be described using just a few normal modes which are intimately related to the overall structure of the protein. In this review, we present a broad overview of several popular methods used in the study of normal modes in biological physics including continuum elastic theory, the elastic network model, and a new all-atom method, recently developed, which is capable of computing a subset of the low frequency vibrational modes exactly. After a review of the various methods, we present several examples of applications of normal modes in the study of functional motions, with an emphasis on viral capsids.

  13. Printed Flexible Plastic Microchip for Viral Load Measurement through Quantitative Detection of Viruses in Plasma and Saliva

    PubMed Central

    Shafiee, Hadi; Kanakasabapathy, Manoj Kumar; Juillard, Franceline; Keser, Mert; Sadasivam, Magesh; Yuksekkaya, Mehmet; Hanhauser, Emily; Henrich, Timothy J.; Kuritzkes, Daniel R.; Kaye, Kenneth M.; Demirci, Utkan

    2015-01-01

    We report a biosensing platform for viral load measurement through electrical sensing of viruses on a flexible plastic microchip with printed electrodes. Point-of-care (POC) viral load measurement is of paramount importance with significant impact on a broad range of applications, including infectious disease diagnostics and treatment monitoring specifically in resource-constrained settings. Here, we present a broadly applicable and inexpensive biosensing technology for accurate quantification of bioagents, including viruses in biological samples, such as plasma and artificial saliva, at clinically relevant concentrations. Our microchip fabrication is simple and mass-producible as we print microelectrodes on flexible plastic substrates using conductive inks. We evaluated the microchip technology by detecting and quantifying multiple Human Immunodeficiency Virus (HIV) subtypes (A, B, C, D, E, G, and panel), Epstein-Barr Virus (EBV), and Kaposi’s Sarcoma-associated Herpes Virus (KSHV) in a fingerprick volume (50 µL) of PBS, plasma, and artificial saliva samples for a broad range of virus concentrations between 102 copies/mL and 107 copies/mL. We have also evaluated the microchip platform with discarded, de-identified HIV-infected patient samples by comparing our microchip viral load measurement results with reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) as the gold standard method using Bland-Altman Analysis. PMID:26046668

  14. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-05-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  15. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maccari, A.

    1997-08-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio{endash}temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a {open_quotes}universal{close_quotes} character, inasmuch as they may be derived from a very large classmore » of nonlinear evolution equations with a linear dispersive part. {copyright} {ital 1997 American Institute of Physics.}« less

  16. Fungal Secretome Analysis via PepSAVI-MS: Identification of the Bioactive Peptide KP4 from Ustilago maydis

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Christine L.; Parsley, Nicole C.; Bartges, Tessa E.; Cooke, Madeline E.; Evans, Wilaysha S.; Heil, Lilian R.; Smith, Thomas J.; Hicks, Leslie M.

    2018-02-01

    Fungal secondary metabolites represent a rich and largely untapped source for bioactive molecules, including peptides with substantial structural diversity and pharmacological potential. As methods proceed to take a deep dive into fungal genomes, complimentary methods to identify bioactive components are required to keep pace with the expanding fungal repertoire. We developed PepSAVI-MS to expedite the search for natural product bioactive peptides and herein demonstrate proof-of-principle applicability of the pipeline for the discovery of bioactive peptides from fungal secretomes via identification of the antifungal killer toxin KP4 from Ustilago maydis P4. This work opens the door to investigating microbial secretomes with a new lens, and could have broad applications across human health, agriculture, and food safety. [Figure not available: see fulltext.

  17. Advanced analysis technique for the evaluation of linear alternators and linear motors

    NASA Technical Reports Server (NTRS)

    Holliday, Jeffrey C.

    1995-01-01

    A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.

  18. Recent Methods for Purification and Structure Determination of Oligonucleotides.

    PubMed

    Zhang, Qiulong; Lv, Huanhuan; Wang, Lili; Chen, Man; Li, Fangfei; Liang, Chao; Yu, Yuanyuan; Jiang, Feng; Lu, Aiping; Zhang, Ge

    2016-12-18

    Aptamers are single-stranded DNA or RNA oligonucleotides that can interact with target molecules through specific three-dimensional structures. The excellent features, such as high specificity and affinity for target proteins, small size, chemical stability, low immunogenicity, facile chemical synthesis, versatility in structural design and engineering, and accessible for site-specific modifications with functional moieties, make aptamers attractive molecules in the fields of clinical diagnostics and biopharmaceutical therapeutics. However, difficulties in purification and structural identification of aptamers remain a major impediment to their broad clinical application. In this mini-review, we present the recently attractive developments regarding the purification and identification of aptamers. We also discuss the advantages, limitations, and prospects for the major methods applied in purifying and identifying aptamers, which could facilitate the application of aptamers.

  19. Longitudinal tests of competing factor structures for the Rosenberg Self-Esteem Scale: traits, ephemeral artifacts, and stable response styles.

    PubMed

    Marsh, Herbert W; Scalas, L Francesca; Nagengast, Benjamin

    2010-06-01

    Self-esteem, typically measured by the Rosenberg Self-Esteem Scale (RSE), is one of the most widely studied constructs in psychology. Nevertheless, there is broad agreement that a simple unidimensional factor model, consistent with the original design and typical application in applied research, does not provide an adequate explanation of RSE responses. However, there is no clear agreement about what alternative model is most appropriate-or even a clear rationale for how to test competing interpretations. Three alternative interpretations exist: (a) 2 substantively important trait factors (positive and negative self-esteem), (b) 1 trait factor and ephemeral method artifacts associated with positively or negatively worded items, or (c) 1 trait factor and stable response-style method factors associated with item wording. We have posited 8 alternative models and structural equation model tests based on longitudinal data (4 waves of data across 8 years with a large, representative sample of adolescents). Longitudinal models provide no support for the unidimensional model, undermine support for the 2-factor model, and clearly refute claims that wording effects are ephemeral, but they provide good support for models positing 1 substantive (self-esteem) factor and response-style method factors that are stable over time. This longitudinal methodological approach has not only resolved these long-standing issues in self-esteem research but also has broad applicability to most psychological assessments based on self-reports with a mix of positively and negatively worded items.

  20. Simulation methods to estimate design power: an overview for applied research.

    PubMed

    Arnold, Benjamin F; Hogan, Daniel R; Colford, John M; Hubbard, Alan E

    2011-06-20

    Estimating the required sample size and statistical power for a study is an integral part of study design. For standard designs, power equations provide an efficient solution to the problem, but they are unavailable for many complex study designs that arise in practice. For such complex study designs, computer simulation is a useful alternative for estimating study power. Although this approach is well known among statisticians, in our experience many epidemiologists and social scientists are unfamiliar with the technique. This article aims to address this knowledge gap. We review an approach to estimate study power for individual- or cluster-randomized designs using computer simulation. This flexible approach arises naturally from the model used to derive conventional power equations, but extends those methods to accommodate arbitrarily complex designs. The method is universally applicable to a broad range of designs and outcomes, and we present the material in a way that is approachable for quantitative, applied researchers. We illustrate the method using two examples (one simple, one complex) based on sanitation and nutritional interventions to improve child growth. We first show how simulation reproduces conventional power estimates for simple randomized designs over a broad range of sample scenarios to familiarize the reader with the approach. We then demonstrate how to extend the simulation approach to more complex designs. Finally, we discuss extensions to the examples in the article, and provide computer code to efficiently run the example simulations in both R and Stata. Simulation methods offer a flexible option to estimate statistical power for standard and non-traditional study designs and parameters of interest. The approach we have described is universally applicable for evaluating study designs used in epidemiologic and social science research.

  1. Hybrid pathwise sensitivity methods for discrete stochastic models of chemical reaction systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Elizabeth Skubak, E-mail: ewolf@saintmarys.edu; Anderson, David F., E-mail: anderson@math.wisc.edu

    2015-01-21

    Stochastic models are often used to help understand the behavior of intracellular biochemical processes. The most common such models are continuous time Markov chains (CTMCs). Parametric sensitivities, which are derivatives of expectations of model output quantities with respect to model parameters, are useful in this setting for a variety of applications. In this paper, we introduce a class of hybrid pathwise differentiation methods for the numerical estimation of parametric sensitivities. The new hybrid methods combine elements from the three main classes of procedures for sensitivity estimation and have a number of desirable qualities. First, the new methods are unbiased formore » a broad class of problems. Second, the methods are applicable to nearly any physically relevant biochemical CTMC model. Third, and as we demonstrate on several numerical examples, the new methods are quite efficient, particularly if one wishes to estimate the full gradient of parametric sensitivities. The methods are rather intuitive and utilize the multilevel Monte Carlo philosophy of splitting an expectation into separate parts and handling each in an efficient manner.« less

  2. Immersed boundary methods for simulating fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Sotiropoulos, Fotis; Yang, Xiaolei

    2014-02-01

    Fluid-structure interaction (FSI) problems commonly encountered in engineering and biological applications involve geometrically complex flexible or rigid bodies undergoing large deformations. Immersed boundary (IB) methods have emerged as a powerful simulation tool for tackling such flows due to their inherent ability to handle arbitrarily complex bodies without the need for expensive and cumbersome dynamic re-meshing strategies. Depending on the approach such methods adopt to satisfy boundary conditions on solid surfaces they can be broadly classified as diffused and sharp interface methods. In this review, we present an overview of the fundamentals of both classes of methods with emphasis on solution algorithms for simulating FSI problems. We summarize and juxtapose different IB approaches for imposing boundary conditions, efficient iterative algorithms for solving the incompressible Navier-Stokes equations in the presence of dynamic immersed boundaries, and strong and loose coupling FSI strategies. We also present recent results from the application of such methods to study a wide range of problems, including vortex-induced vibrations, aquatic swimming, insect flying, human walking and renewable energy. Limitations of such methods and the need for future research to mitigate them are also discussed.

  3. Core Science Systems--Mission overview

    USGS Publications Warehouse

    Gallagher, Kevin T.

    2012-01-01

    CSS provides a foundation for all USGS Mission Areas, as well as for the mission of the Department of the Interior (DOI), in the following ways: 1) Conducts basic and applied science research and development 2) Fosters broad understanding and application of analyses and information 3) Provides a framework for data and information sharing 4) Creates new geospatially enabled data and information 5) Provides technical expertise in standards and methods 6) Builds and facilitates partnerships and innovation

  4. Broad spectrum pesticide application alters natural enemy communities and may facilitate secondary pest outbreaks

    PubMed Central

    Macfadyen, Sarina; Nash, Michael A.

    2017-01-01

    Background Pesticide application is the dominant control method for arthropod pests in broad-acre arable systems. In Australia, organophosphate pesticides are often applied either prophylactically, or reactively, including at higher concentrations, to control crop establishment pests such as false wireworms and earth mite species. Organophosphates are reported to be disruptive to beneficial species, such as natural enemies, but this has not been widely assessed in Australian systems. Neither has the risk that secondary outbreaks may occur if the natural enemy community composition or function is altered. Methods We examine the abundance of ground-dwelling invertebrate communities in an arable field over successive seasons under rotation; barley, two years of wheat, then canola. Two organophosphates (chlorpyrifos and methidathion) were initially applied at recommended rates. After no discernible impact on target pest species, the rate for chlorpyrifos was doubled to elicit a definitive response to a level used at establishment when seedling damage is observed. Invertebrates were sampled using pitfalls and refuge traps throughout the experiments. We applied measures of community diversity, principal response curves and multiple generalised linear modelling techniques to understand the changes in pest and natural enemy communities. Results There was large variability due to seasonality and crop type. Nevertheless, both pest (e.g., mites and aphids) and natural enemy (e.g., predatory beetles) invertebrate communities were significantly affected by application of organophosphates. When the rate of chlorpyrifos was increased there was a reduction in the number of beetles that predate on slug populations. Slugs displayed opposite trends to many of the other target pests, and actually increased in numbers under the higher rates of chlorpyrifos in comparison to the other treatments. Slug numbers in the final rotation of canola resulted in significant yield loss regardless of pesticide application. Discussion Organophosphates are a cost-effective tool to control emergent pests in broad-acre arable systems in Australia. We found risks associated with prophylactic application in fields under rotation between different crop types and significant changes to the community of pests and natural enemy. Disrupting key predators reduced effective suppression of other pests, such as slugs, and may lead to secondary outbreaks when rotating with susceptible crops such as canola. Such non-target impacts are rarely documented when studies focus on single-species, rather than community assessments. This study represents a single demonstration of how pesticide application can lead to secondary outbreaks and reinforces the need for studies that include a longer temporal component to understand this process further. PMID:29302395

  5. MPLEx: a Robust and Universal Protocol for Single-Sample Integrative Proteomic, Metabolomic, and Lipidomic Analyses

    PubMed Central

    Nakayasu, Ernesto S.; Nicora, Carrie D.; Sims, Amy C.; Burnum-Johnson, Kristin E.; Kim, Young-Mo; Kyle, Jennifer E.; Matzke, Melissa M.; Shukla, Anil K.; Chu, Rosalie K.; Schepmoes, Athena A.; Jacobs, Jon M.; Baric, Ralph S.; Webb-Robertson, Bobbie-Jo; Smith, Richard D.

    2016-01-01

    ABSTRACT Integrative multi-omics analyses can empower more effective investigation and complete understanding of complex biological systems. Despite recent advances in a range of omics analyses, multi-omic measurements of the same sample are still challenging and current methods have not been well evaluated in terms of reproducibility and broad applicability. Here we adapted a solvent-based method, widely applied for extracting lipids and metabolites, to add proteomics to mass spectrometry-based multi-omics measurements. The metabolite, protein, and lipid extraction (MPLEx) protocol proved to be robust and applicable to a diverse set of sample types, including cell cultures, microbial communities, and tissues. To illustrate the utility of this protocol, an integrative multi-omics analysis was performed using a lung epithelial cell line infected with Middle East respiratory syndrome coronavirus, which showed the impact of this virus on the host glycolytic pathway and also suggested a role for lipids during infection. The MPLEx method is a simple, fast, and robust protocol that can be applied for integrative multi-omic measurements from diverse sample types (e.g., environmental, in vitro, and clinical). IMPORTANCE In systems biology studies, the integration of multiple omics measurements (i.e., genomics, transcriptomics, proteomics, metabolomics, and lipidomics) has been shown to provide a more complete and informative view of biological pathways. Thus, the prospect of extracting different types of molecules (e.g., DNAs, RNAs, proteins, and metabolites) and performing multiple omics measurements on single samples is very attractive, but such studies are challenging due to the fact that the extraction conditions differ according to the molecule type. Here, we adapted an organic solvent-based extraction method that demonstrated broad applicability and robustness, which enabled comprehensive proteomics, metabolomics, and lipidomics analyses from the same sample. Author Video: An author video summary of this article is available. PMID:27822525

  6. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes

    DOE PAGES

    Zhang, Yihui; Yan, Zheng; Nan, Kewang; ...

    2015-09-08

    Assembly of 3D micro/nanostructures in advanced functional materials has important implications across broad areas of technology. Existing approaches are compatible, however, only with narrow classes of materials and/or 3D geometries. This article introduces ideas for a form of Kirigami that allows precise, mechanically driven assembly of 3D mesostructures of diverse materials from 2D micro/nanomembranes with strategically designed geometries and patterns of cuts. Theoretical and experimental studies demonstrate applicability of the methods across length scales from macro to nano, in materials ranging from monocrystalline silicon to plastic, with levels of topographical complexity that significantly exceed those that can be achieved usingmore » other approaches. A broad set of examples includes 3D silicon mesostructures and hybrid nanomembrane-nanoribbon systems, including heterogeneous combinations with polymers and metals, with critical dimensions that range from 100 nm to 30 mm. Lastly, a 3D mechanically tunable optical transmission window provides an application example of this Kirigami process, enabled by theoretically guided design.« less

  7. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M.

    2015-04-15

    Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized bymore » separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.« less

  8. A bee-hive frequency selective surface for Wi-Max and GPS applications

    NASA Astrophysics Data System (ADS)

    Ray, A.; Kahar, M.; Sarkar, P. P.

    2013-10-01

    The paper presents investigations on a bee-hive cell, concentric aperture frequency selective surface (FSS) tuned to pass 1.5 GHz for global positioning system application and 3.5 GHz for worldwide interoperability for microwave access applications. The designed dual-band FSS screen is easy to fabricate with low cost materials, exhibiting low weight, with two broad transmission bands, where the maximum recorded -10 dB transmission percentage bandwidth is 68.67 %. Due to symmetrical nature of design, FSS is insensitive to variation of RF incidence angle for 60° rotations. A computationally efficient method for analysing this FSS is presented. Experimental investigation is performed using standard microwave test bench. It is observed that the computed and experimental results are in close agreement.

  9. Behavioral economics and empirical public policy.

    PubMed

    Hursh, Steven R; Roma, Peter G

    2013-01-01

    The application of economics principles to the analysis of behavior has yielded novel insights on value and choice across contexts ranging from laboratory animal research to clinical populations to national trends of global impact. Recent innovations in demand curve methods provide a credible means of quantitatively comparing qualitatively different reinforcers as well as quantifying the choice relations between concurrently available reinforcers. The potential of the behavioral economic approach to inform public policy is illustrated with examples from basic research, pre-clinical behavioral pharmacology, and clinical drug abuse research as well as emerging applications to public transportation and social behavior. Behavioral Economics can serve as a broadly applicable conceptual, methodological, and analytical framework for the development and evaluation of empirical public policy. © Society for the Experimental Analysis of Behavior.

  10. InP (Indium Phosphide): Into the future

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1989-01-01

    Major industry is beginning to be devoted to indium phosphide and its potential applications. Key to these applications are high speed and radiation tolerance; however the high cost of indium phosphide may be an inhibitor to progress. The broad applicability of indium phosphide to many devices will be discussed with an emphasis on photovoltaics. Major attention is devoted to radiation tolerance and means of reducing cost of devices. Some of the approaches applicable to solar cells may also be relevant to other devices. The intent is to display the impact of visionary leadership in the field and enable the directions and broad applicability of indium phosphide.

  11. Ethanol catalytic optical driven deposition for 1D and 2D materials with ultra-low power threshold of 0 dBm

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Bohua; Xiao, Xu; Guo, Chaoshi; Zhang, Xiaoyan; Wang, Jun; Jiang, Meng; Wu, Kan; Chen, Jianping

    2018-01-01

    We have demonstrated a generalized optical driven deposition method, ethanol catalytic deposition (ECD) method, which is widely applicable to the deposition of a broad range of one-dimensional (1D) and two-dimensional (2D) materials with common deposition parameters. Using ECD method, deposition of 1D material carbon nanotubes and 2D materials MoS2, MoSe2, WS2 and WSe2 on tapered fiber has been demonstrated with the threshold power as low as 0 dBm. To our knowledge, this is the lowest threshold power ever reported in optical driven deposition, noting that the conventional optical driven deposition has a threshold typically near 15 dBm. It means ECD method can significantly reduce the power requirement and simplify the setup of the optical driven deposition as well as its wide applicability to different materials, which benefits the research on optical nonlinearity and ultrafast photonics of 1D and 2D materials.

  12. Instrumentation in Diffuse Optical Imaging

    PubMed Central

    Zhang, Xiaofeng

    2014-01-01

    Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804

  13. Differentiation between Staphylococcus aureus and Staphylococcus epidermidis strains using Raman spectroscopy.

    PubMed

    Rebrošová, Katarína; Šiler, Martin; Samek, Ota; Růžička, Filip; Bernatová, Silvie; Ježek, Jan; Zemánek, Pavel; Holá, Veronika

    2017-08-01

    Raman spectroscopy is an analytical method with a broad range of applications across multiple scientific fields. We report on a possibility to differentiate between two important Gram-positive species commonly found in clinical material - Staphylococcus aureus and Staphylococcus epidermidis - using this rapid noninvasive technique. For this, we tested 87 strains, 41 of S. aureus and 46 of S. epidermidis, directly from colonies grown on a Mueller-Hinton agar plate using Raman spectroscopy. The method paves a way for separation of these two species even on high number of samples and therefore, it can be potentially used in clinical diagnostics.

  14. Difunctionalization of alkenes with iodine and tert-butyl hydroperoxide (TBHP) at room temperature for the synthesis of 1-(tert-butylperoxy)-2-iodoethanes.

    PubMed

    Wang, Hao; Chen, Cui; Liu, Weibing; Zhu, Zhibo

    2017-01-01

    We developed a direct vicinal difunctionalization of alkenes with iodine and TBHP at room temperature. This iodination and peroxidation in a one-pot synthesis produces 1-( tert -butylperoxy)-2-iodoethanes, which are inaccessible through conventional synthetic methods. This method generates multiple radical intermediates in situ and has excellent regioselectivity, a broad substrate scope and mild conditions. The iodine and peroxide groups of 1-( tert -butylperoxy)-2-iodoethanes have several potential applications and allow further chemical modifications, enabling the preparation of synthetically valuable molecules.

  15. A method for the determination of acrylamide in a broad variety of processed foods by GC-MS using xanthydrol derivatization.

    PubMed

    Yamazaki, Kumiko; Isagawa, Satoshi; Kibune, Nobuyuki; Urushiyama, Tetsuo

    2012-01-01

    A novel GC-MS method was developed for the determination of acrylamide, which is applicable to a variety of processed foods, including potato snacks, corn snacks, biscuits, instant noodles, coffee, soy sauces and miso (fermented soy bean paste). The method involves the derivatization of acrylamide with xanthydrol instead of a bromine compound. Isotopically labelled acrylamide (d₃-acrylamide) was used as the internal standard. The aqueous extract from samples was purified using Sep-Pak™ C₁₈ and Sep-Pak™ AC-2 columns. For amino acid-rich samples, such as miso or soy sauce, an Extrelut™ column was used for purification or extraction. After reaction with xanthydrol, the resultant N-xanthyl acrylamide was determined by GC-MS. The method was validated for various food matrices and showed good linearity, precision and trueness. The limit of detection and limit of quantification ranged 0.5-5 and 5-20 µg kg⁻¹), respectively. The developed method was applied as an exploratory survey of acrylamide in Japanese foods and the method was shown to be applicable for all samples tested.

  16. Bulk production and evaluation of high specific activity 186g Re for cancer therapy using enriched 186 WO 3 targets in a proton beam

    DOE PAGES

    Mastren, Tara; Radchenko, Valery; Bach, Hong T.; ...

    2017-06-01

    Rhenium-186 g (t 1/2 = 3.72 d) is a β– emitting isotope suitable for theranostic applications. Current production methods rely on reactor production by way of the reaction 185Re(n,γ) 186gRe, which results in low specific activities limiting its use for cancer therapy. Production via charged particle activation of enriched 186W results in a 186gRe product with a much specific activity, allowing it to be used more broadly for targeted radiotherapy applications. Furthermore, this targets the unmet clinical need for more efficient radiotherapeutics.

  17. Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery.

    PubMed

    Gonzalez, Graciela H; Tahsin, Tasnia; Goodale, Britton C; Greene, Anna C; Greene, Casey S

    2016-01-01

    Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. © The Author 2015. Published by Oxford University Press.

  18. INTERNAL REPAIR OF PIPELINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robin Gordon; Bill Bruce; Nancy Porter

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: twomore » with composite liners and two without.« less

  19. Bulk production and evaluation of high specific activity 186g Re for cancer therapy using enriched 186 WO 3 targets in a proton beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastren, Tara; Radchenko, Valery; Bach, Hong T.

    Rhenium-186 g (t 1/2 = 3.72 d) is a β– emitting isotope suitable for theranostic applications. Current production methods rely on reactor production by way of the reaction 185Re(n,γ) 186gRe, which results in low specific activities limiting its use for cancer therapy. Production via charged particle activation of enriched 186W results in a 186gRe product with a much specific activity, allowing it to be used more broadly for targeted radiotherapy applications. Furthermore, this targets the unmet clinical need for more efficient radiotherapeutics.

  20. Recent Advances and Emerging Applications in Text and Data Mining for Biomedical Discovery

    PubMed Central

    Gonzalez, Graciela H.; Tahsin, Tasnia; Goodale, Britton C.; Greene, Anna C.

    2016-01-01

    Precision medicine will revolutionize the way we treat and prevent disease. A major barrier to the implementation of precision medicine that clinicians and translational scientists face is understanding the underlying mechanisms of disease. We are starting to address this challenge through automatic approaches for information extraction, representation and analysis. Recent advances in text and data mining have been applied to a broad spectrum of key biomedical questions in genomics, pharmacogenomics and other fields. We present an overview of the fundamental methods for text and data mining, as well as recent advances and emerging applications toward precision medicine. PMID:26420781

  1. Toward Decentralized Agrigenomic Surveillance? A Polymerase Chain Reaction-Restriction Fragment Length Polymorphism Approach for Adaptable and Rapid Detection of User-Defined Fungal Pathogens in Potato Crops.

    PubMed

    Kambouris, Manousos E; Manoussopoulos, Yiannis; Kritikou, Stavroula; Milioni, Aphroditi; Mantzoukas, Spyridon; Velegraki, Aristea

    2018-04-01

    Agrigenomics is one of the emerging focus areas for omics sciences. Yet, agrigenomics differs from medical omics applications such as pharmacogenomics and precision medicine, by virtue of vastly distributed geography of applications at the intersection of agriculture, nutrition, and genomics research streams. Crucially, agrigenomics can address diagnostics and safety surveillance needs in remote and rural farming communities or decentralized food, crop, and environmental monitoring programs for prompt, selective, and differential identification of pathogens. A case in point is the potato crop that serves as a fundamental nutritional source worldwide. Decentralized potato crop and plant protection facilities are pivotal to minimize unnecessary, preemptive use of broad-spectrum fungicides, thus helping to curtail the costs, environmental burden, and the development of resistance in opportunistic human pathogenic fungi. We report here a polymerase chain reaction-restriction fragment length polymorphism approach that is sensitive and adaptable in detection and broad identification of fungal pathogens in potato crops, with a view to future decentralized agrigenomic surveillance programs. Notably, the fingerprinting patterns obtained by the method fully differentiated 12 fungal species examined in silico, with 10 of them also tested in vitro. The method can be scaled up through improvements in electrophoresis and enzyme panel for adaption to other crops and/or pathogens. We suggest that decentralized and integrated agrosurveillance programs and translational agrigenomic programs can inform future innovations in multidomain biosecurity, particularly across omics applications from agriculture and nutrition to clinical medicine and environmental biosafety.

  2. The art and science of knowledge synthesis.

    PubMed

    Tricco, Andrea C; Tetzlaff, Jennifer; Moher, David

    2011-01-01

    To review methods for completing knowledge synthesis. We discuss how to complete a broad range of knowledge syntheses. Our article is intended as an introductory guide. Many groups worldwide conduct knowledge syntheses, and some methods are applicable to most reviews. However, variations of these methods are apparent for different types of reviews, such as realist reviews and mixed-model reviews. Review validity is dependent on the validity of the included primary studies and the review process itself. Steps should be taken to avoid bias in the conduct of knowledge synthesis. Transparency in reporting will help readers assess review validity and applicability, increasing its utility. Given the magnitude of the literature, the increasing demands on knowledge syntheses teams, and the diversity of approaches, continuing efforts will be important to increase the efficiency, validity, and applicability of systematic reviews. Future research should focus on increasing the uptake of knowledge synthesis, how best to update reviews, the comparability between different types of reviews (eg, rapid vs. comprehensive reviews), and how to prioritize knowledge synthesis topics. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Randomized Vehicle-Controlled Study of Short Drug Incubation Aminolevulinic Acid Photodynamic Therapy for Actinic Keratoses of the Face or Scalp.

    PubMed

    Pariser, David M; Houlihan, Anna; Ferdon, Mary Beth; Berg, James E

    2016-03-01

    Aminolevulinic acid photodynamic therapy (ALA-PDT) can be effective and well tolerated when applied over a broad area and for short drug incubation times. To evaluate the effect of short-incubation time and application method on the safety and efficacy of ALA-PDT versus vehicle (VEH-PDT) in the treatment of actinic keratoses (AKs) of the face or scalp. Aminolevulinic acid or VEH was applied to face or scalp as a broad area application for 1, 2, or 3 hours or as a spot application for 2 hours before blue light activation. An identical treatment was repeated at Week 8 if any AK lesions remained. Median AK clearance rate for ALA-treated subjects ranged from 68% to 79% at Week 12, compared with 7% of the VEH-treated group (p < .0001). Complete clearance rate for ALA-treated subjects ranged from 17% (8/46) to 30% (14/47) at Week 12, compared with 2% (1/46) of the VEH-treated group (p = .0041). The safety profile seen in this study is consistent with previously reported side effects of the therapy. Short-incubation ALA-PDT was found to be superior to VEH-PDT for AK lesion clearance. A second treatment improves efficacy.

  4. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics.

    PubMed

    Weber, Marc; Teeling, Hanno; Huang, Sixing; Waldmann, Jost; Kassabgy, Mariette; Fuchs, Bernhard M; Klindworth, Anna; Klockow, Christine; Wichels, Antje; Gerdts, Gunnar; Amann, Rudolf; Glöckner, Frank Oliver

    2011-05-01

    Next-generation sequencing (NGS) technologies have enabled the application of broad-scale sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes. However, both approaches remain isolated, as long as the taxonomic and functional information cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation, demonstrate its potential and practicability, and provide a web-based service for public usage. Evaluation with published data sets mimicking varyingly complex habitats resulted into classification specificities and sensitivities of close to 100% to above 90% from phylum to genus level for assemblies exceeding 8 kb for low and medium complexity data. When applied to five real-world metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters, classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and confirming high classification specificities. This was validated by two protein-based classifications (PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb with high accuracy and thus assists in linking biodiversity and functions in metagenome studies, which is a precondition to study microbial ecology in a holistic fashion.

  5. 10 CFR 33.15 - Requirements for the issuance of a Type C specific license of broad scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF BROAD SCOPE FOR BYPRODUCT MATERIAL Specific Licenses of Broad Scope § 33.15 Requirements for the... this chapter; and (b) The applicant submits a statement that byproduct material will be used only by... bachelor level, or equivalent training and experience, in the physical or biological sciences or in...

  6. A novel baseline-correction method for standard addition based derivative spectra and its application to quantitative analysis of benzo(a)pyrene in vegetable oil samples.

    PubMed

    Li, Na; Li, Xiu-Ying; Zou, Zhe-Xiang; Lin, Li-Rong; Li, Yao-Qun

    2011-07-07

    In the present work, a baseline-correction method based on peak-to-derivative baseline measurement was proposed for the elimination of complex matrix interference that was mainly caused by unknown components and/or background in the analysis of derivative spectra. This novel method was applicable particularly when the matrix interfering components showed a broad spectral band, which was common in practical analysis. The derivative baseline was established by connecting two crossing points of the spectral curves obtained with a standard addition method (SAM). The applicability and reliability of the proposed method was demonstrated through both theoretical simulation and practical application. Firstly, Gaussian bands were used to simulate 'interfering' and 'analyte' bands to investigate the effect of different parameters of interfering band on the derivative baseline. This simulation analysis verified that the accuracy of the proposed method was remarkably better than other conventional methods such as peak-to-zero, tangent, and peak-to-peak measurements. Then the above proposed baseline-correction method was applied to the determination of benzo(a)pyrene (BaP) in vegetable oil samples by second-derivative synchronous fluorescence spectroscopy. The satisfactory results were obtained by using this new method to analyze a certified reference material (coconut oil, BCR(®)-458) with a relative error of -3.2% from the certified BaP concentration. Potentially, the proposed method can be applied to various types of derivative spectra in different fields such as UV-visible absorption spectroscopy, fluorescence spectroscopy and infrared spectroscopy.

  7. Application of Methods of Numerical Analysis to Physical and Engineering Data.

    DTIC Science & Technology

    1980-10-15

    directed algorithm would seem to be called for. However, 1(0) is itself a random process, making its gradient too unreliable for such a sensitive algorithm...radiation energy on the detector . Active laser systems, on the other hand, have created now the possibility for extremely narrow path band systems...emitted by the earth and its atmosphere. The broad spectral range was selected so that the field of view of the detector could be narrowed to obtain

  8. Graph-based linear scaling electronic structure theory.

    PubMed

    Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  9. Graph-based linear scaling electronic structure theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  10. Toxin Inhibition - Deconvolution Strategies and Assay Screening of Combinatorial Peptide Libraries

    DTIC Science & Technology

    2007-08-01

    that could serve as lead compounds in the development of drug therapies to toxins. The libraries have typical structures of X I - X2 - hinge - X3 - X4...or passive vaccines have limited efficacies. There are no drug prophylaxes or therapies available. This technical report describes research to provide...broadly applicable drug discovery methods for a wide range of toxins. Future Work: The work conducted in the TIF project raised and renewed interest in

  11. Volcanic hazards in Central America

    USGS Publications Warehouse

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  12. Exploiting enzyme catalysis in ultra-low ion strength media for impedance biosensing of avian influenza virus using a bare interdigitated electrode.

    PubMed

    Fu, Yingchun; Callaway, Zachary; Lum, Jacob; Wang, Ronghui; Lin, Jianhan; Li, Yanbin

    2014-02-18

    Enzyme catalysis is broadly used in various fields but generally applied in media with high ion strength. Here, we propose the exploitation of enzymatic catalysis in ultra-low ion strength media to induce ion strength increase for developing a novel impedance biosensing method. Avian influenza virus H5N1, a serious worldwide threat to poultry and human health, was adopted as the analyte. Magnetic beads were modified with H5N1-specific aptamer to capture the H5N1 virus. This was followed by binding concanavalin A (ConA), glucose oxidase (GOx), and Au nanoparticles (AuNPs) to create bionanocomposites through a ConA-glycan interaction. The yielded sandwich complex was transferred to a glucose solution to trigger an enzymatic reaction to produce gluconic acid, which ionized to increase the ion strength of the solution, thus decreasing the impedance on a screen-printed interdigitated array electrode. This method took advantages of the high efficiency of enzymatic catalysis and the high susceptibility of electrochemical impedance on the ion strength and endowed the biosensor with high sensitivity and a detection limit of 8 × 10(-4) HAU in 200 μL sample, which was magnitudes lower than that of some analogues based on biosensing methods. Furthermore, the proposed method required only a bare electrode for measurements of ion strength change and had negligible change on the surficial properties of the electrode, though some modification of magnetic beads/Au nanoparticles and the construction of a sandwich complex were still needed. This helped to avoid the drawbacks of commonly used electrode immobilization methods. The merit for this method makes it highly useful and promising for applications. The proposed method may create new possibilities in the broad and well-developed enzymatic catalysis fields and find applications in developing sensitive, rapid, low-cost, and easy-to-operate biosensing and biocatalysis devices.

  13. Regulation of Renewable Energy Sources to Optimal Power Flow Solutions Using ADMM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall-Anese, Emiliano; Zhang, Yijian; Hong, Mingyi

    This paper considers power distribution systems featuring renewable energy sources (RESs), and develops a distributed optimization method to steer the RES output powers to solutions of AC optimal power flow (OPF) problems. The design of the proposed method leverages suitable linear approximations of the AC-power flow equations, and is based on the Alternating Direction Method of Multipliers (ADMM). Convergence of the RES-inverter output powers to solutions of the OPF problem is established under suitable conditions on the stepsize as well as mismatches between the commanded setpoints and actual RES output powers. In a broad sense, the methods and results proposedmore » here are also applicable to other distributed optimization problem setups with ADMM and inexact dual updates.« less

  14. Self-adaptive enhanced sampling in the energy and trajectory spaces: accelerated thermodynamics and kinetic calculations.

    PubMed

    Gao, Yi Qin

    2008-04-07

    Here, we introduce a simple self-adaptive computational method to enhance the sampling in energy, configuration, and trajectory spaces. The method makes use of two strategies. It first uses a non-Boltzmann distribution method to enhance the sampling in the phase space, in particular, in the configuration space. The application of this method leads to a broad energy distribution in a large energy range and a quickly converged sampling of molecular configurations. In the second stage of simulations, the configuration space of the system is divided into a number of small regions according to preselected collective coordinates. An enhanced sampling of reactive transition paths is then performed in a self-adaptive fashion to accelerate kinetics calculations.

  15. Methods, apparatuses, and computer-readable media for projectional morphological analysis of N-dimensional signals

    DOEpatents

    Glazoff, Michael V.; Gering, Kevin L.; Garnier, John E.; Rashkeev, Sergey N.; Pyt'ev, Yuri Petrovich

    2016-05-17

    Embodiments discussed herein in the form of methods, systems, and computer-readable media deal with the application of advanced "projectional" morphological algorithms for solving a broad range of problems. In a method of performing projectional morphological analysis, an N-dimensional input signal is supplied. At least one N-dimensional form indicative of at least one feature in the N-dimensional input signal is identified. The N-dimensional input signal is filtered relative to the at least one N-dimensional form and an N-dimensional output signal is generated indicating results of the filtering at least as differences in the N-dimensional input signal relative to the at least one N-dimensional form.

  16. Electronic Holography with a Broad Spectrum Laser for Time Gated Imaging Through Highly Scattering Media.

    NASA Astrophysics Data System (ADS)

    Shih, Marian Pei-Ling

    The problem of optical imaging through a highly scattering volume diffuser, in particular, biological tissue, has received renewed interest in recent years because of a search for alternative imaging diagnostics in the optical wavelengths for the early detection of human breast cancer. This dissertation discusses the optical imaging of objects obscured by diffusers that contribute an otherwise overwhelming degree of multiple scatter. Many optical imaging techniques are based on the first-arriving light principle. These methods usually combine a transilluminating optical short pulse with a time windowing gate in order to form a flat shadowgraph image of absorbing objects either embedded within or hidden behind a scattering medium. The gate selectively records an image of the first-arriving light, while simultaneously rejecting the later-arriving scattered light. One set of the many implementations of the first -arriving light principle relies on the gating property of holography. This thesis presents several holographic optical gating experiments that demonstrate the role that the temporal coherence function of the illumination source plays in the imaging of all objects with short coherence length holography, with special emphasis on the application to image through diffusers and its resolution capabilities. Previous researchers have already successfully combined electronic holography, holography in which the recording medium is a two dimensional detector array instead of photographic film, with light-in-flight holography into a short coherence length holography method that images through various types of multiply scattering random media, including chicken breast tissue and wax. This thesis reports further experimental exploration of the short coherence holography method for imaging through severely scattering diffusers. There is a study on the effectiveness of spatial filtering of the first-arriving light, as well as a report of the imaging, by means of the short coherence holographic method, of an absorber through a living human hand. This thesis also includes both theoretical analyses and experimental results of a spectral dispersion holography system which, instead of optically synthesizing the broad spectrum illumination source that is used for the short coherence holography method, digitally synthesizes a broad spectrum hologram from a collection of single frequency component holograms. This system has the time gating properties of short coherence length holography, as well as experimentally demonstrated applications for imaging through multiply scattering media.

  17. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goncharov, Vasily; Hall, Gregory

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  18. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    DOE PAGES

    Goncharov, Vasily; Hall, Gregory

    2016-08-25

    Here, we have developed phase-sensitive signal detection and processing algorithms for Fourier transform spectrometers fitted with supercontinuum sources for applications requiring ultimate sensitivity. Similar to well-established approach of source noise cancellation through balanced detection of monochromatic light, our method is capable of reducing the relative intensity noise of polychromatic light by 40 dB. Unlike conventional balanced detection, which relies on differential absorption measured with a well matched pair of photo-detectors, our algorithm utilizes phase-sensitive differential detection on a single photodiode and is capable of the real-time correction for instabilities in supercontinuum spectral structure over a broad range of wavelengths. Inmore » the resulting method is universal in terms of applicable wavelengths and compatible with commercial spectrometers. We present a proof-of-principle experimental« less

  19. Fast preparation of ultrafine monolayered transition-metal dichalcogenide quantum dots using electrochemical shock for explosive detection.

    PubMed

    Chen, Zhigang; Tao, Zhengxu; Cong, Shan; Hou, Junyu; Zhang, Dengsong; Geng, Fengxia; Zhao, Zhigang

    2016-09-15

    A simple, general and fast method called "electrochemical shock" is developed to prepare monolayered transition-metal dichalcogenide (TMD) QDs with an average size of 2-4 nm and an average thickness of 0.85 ± 0.5 nm with only about 10 min of ultrasonication. Just like nails hammered into a plate, the electrochemical shock with Al 3+ ions and the following extraction with the help of oleic acid can disintegrate bulk TMD crystals into ultrafine TMD QDs. The fast-prepared QDs are then applied to detect highly explosive molecules such as 2,4,6-trinitrophenol (TNP) with a low detection limit of 10 -6 M. Our versatile method could be broadly applicable for the fast production of ultrathin QDs of other materials with great promise for various applications.

  20. Time-frequency analysis of acoustic emission signals generated by the Glass Fibre Reinforced Polymer Composites during the tensile test

    NASA Astrophysics Data System (ADS)

    Świt, G.; Adamczak, A.; Krampikowska, A.

    2017-10-01

    Fibre reinforced polymer composites are currently dominating in the composite materials market. The lack of detailed knowledge about their properties and behaviour in various conditions of exposure under load significantly limits the broad possibilities of application of these materials. Occurring and accumulation of defects in material during the exploitation of the construction lead to the changes of its technical condition. The necessity to control the condition of the composite is therefore justified. For this purpose, non-destructive method of acoustic emission can be applied. This article presents an example of application of acoustic emission method based on time analysis and time-frequency analysis for the evaluation of the progress of the destructive processes and the level of degradation of glass fibre reinforced composite tapes that were subject to tensile testing.

  1. Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application

    NASA Astrophysics Data System (ADS)

    Samuel, Boni; Mathew, S.; Anand, V. R.; Correya, Adrine Antony; Nampoori, V. P. N.; Mujeeb, A.

    2018-02-01

    This paper reports, broadband photoluminescence from CdSe quantum dots (QDs) under the excitation of 403 nm using fluorimeter and 403 nm CW laser excitation. The broad spectrum obtained from the colloidal quantum dots was ranges from 450 nm to 800 nm. The broadness of the spectra was attributed to the merging of band edge and defect driven emissions from the QDs. Six different sizes of particles were prepared via kinetic growth method by using CdO and elemental Se as sources of Cd and Se respectively. The particle sizes were measured from TEM images. The size dependent effect on broad emission was also studied and the defect state emission was found to be predominant in very small QDs. The defect driven emission was also observed to be redshifted, similar to the band edge emission, due to quantum confinement effect. The emission corresponding to different laser power was also studied and a linear relation was obtained. In order to study the colour characteristics of the emission, CIE chromaticity coordinate, CRI and CCT of the prepared samples were measured. It is observed that, these values were tunable by the addition of suitable intensity of blue light from the excitation source to yield white light of various colour temperatures. The broad photoluminescence spectrum of the QDs, were compared with that of a commercially available white LED. It was found that the prepared QDs are good alternatives for the phosphor in phosphor converted white LEDs, to provide good spectral tunability.

  2. Synthesis of Protein Bioconjugates via Cysteine-maleimide Chemistry.

    PubMed

    Mason, Alexander F; Thordarson, Pall

    2016-07-20

    The chemical linking or bioconjugation of proteins to fluorescent dyes, drugs, polymers and other proteins has a broad range of applications, such as the development of antibody drug conjugates (ADCs) and nanomedicine, fluorescent microscopy and systems chemistry. For many of these applications, specificity of the bioconjugation method used is of prime concern. The Michael addition of maleimides with cysteine(s) on the target proteins is highly selective and proceeds rapidly under mild conditions, making it one of the most popular methods for protein bioconjugation. We demonstrate here the modification of the only surface-accessible cysteine residue on yeast cytochrome c with a ruthenium(II) bisterpyridine maleimide. The protein bioconjugation is verified by gel electrophoresis and purified by aqueous-based fast protein liquid chromatography in 27% yield of isolated protein material. Structural characterization with MALDI-TOF MS and UV-Vis is then used to verify that the bioconjugation is successful. The protocol shown here is easily applicable to other cysteine - maleimide coupling of proteins to other proteins, dyes, drugs or polymers.

  3. An historical overview of cavity-enhanced methods

    NASA Astrophysics Data System (ADS)

    Paldus, B. A.; Kachanov, A. A.

    2005-10-01

    An historical overview of laser-based, spectroscopic methods that employ high-finesse optical resonators is presented. The overview begins with the early work in atomic absorption (1962) and optical cavities (1974) that led to the first mirror reflectivity measurements in 1980. This paper concludes with very recent extensions of cavity-enhanced methods for the study of condensed-phase media and biological systems. Methods described here include cavity ring-down spectroscopy, integrated cavity output spectroscopy, and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Given the explosive growth of the field over the past decade, this review does not attempt to present a comprehensive bibliography of all work published in cavity-enhanced spectroscopy, but rather strives to illustrate the rich history, creative diversity, and broad applications potential of these methods.

  4. Quantitative characterization of the spatial distribution of particles in materials: Application to materials processing

    NASA Technical Reports Server (NTRS)

    Parse, Joseph B.; Wert, J. A.

    1991-01-01

    Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.

  5. Foodomics and Food Safety: Where We Are.

    PubMed

    Andjelković, Uroš; Šrajer Gajdošik, Martina; Gašo-Sokač, Dajana; Martinović, Tamara; Josić, Djuro

    2017-09-01

    The power of foodomics as a discipline that is now broadly used for quality assurance of food products and adulteration identification, as well as for determining the safety of food, is presented. Concerning sample preparation and application, maintenance of highly sophisticated instruments for both high-performance and high-throughput techniques, and analysis and data interpretation, special attention has to be paid to the development of skilled analysts. The obtained data shall be integrated under a strong bioinformatics environment. Modern mass spectrometry is an extremely powerful analytical tool since it can provide direct qualitative and quantitative information about a molecule of interest from only a minute amount of sample. Quality of this information is influenced by the sample preparation procedure, the type of mass spectrometer used and the analyst's skills. Technical advances are bringing new instruments of increased sensitivity, resolution and speed to the market. Other methods presented here give additional information and can be used as complementary tools to mass spectrometry or for validation of obtained results. Genomics and transcriptomics, as well as affinity-based methods, still have a broad use in food analysis. Serious drawbacks of some of them, especially the affinity-based methods, are the cross-reactivity between similar molecules and the influence of complex food matrices. However, these techniques can be used for pre-screening in order to reduce the large number of samples. Great progress has been made in the application of bioinformatics in foodomics. These developments enabled processing of large amounts of generated data for both identification and quantification, and for corresponding modeling.

  6. Foodomics and Food Safety: Where We Are

    PubMed Central

    Andjelković, Uroš

    2017-01-01

    Summary The power of foodomics as a discipline that is now broadly used for quality assurance of food products and adulteration identification, as well as for determining the safety of food, is presented. Concerning sample preparation and application, maintenance of highly sophisticated instruments for both high-performance and high-throughput techniques, and analysis and data interpretation, special attention has to be paid to the development of skilled analysts. The obtained data shall be integrated under a strong bioinformatics environment. Modern mass spectrometry is an extremely powerful analytical tool since it can provide direct qualitative and quantitative information about a molecule of interest from only a minute amount of sample. Quality of this information is influenced by the sample preparation procedure, the type of mass spectrometer used and the analyst’s skills. Technical advances are bringing new instruments of increased sensitivity, resolution and speed to the market. Other methods presented here give additional information and can be used as complementary tools to mass spectrometry or for validation of obtained results. Genomics and transcriptomics, as well as affinity-based methods, still have a broad use in food analysis. Serious drawbacks of some of them, especially the affinity-based methods, are the cross-reactivity between similar molecules and the influence of complex food matrices. However, these techniques can be used for pre-screening in order to reduce the large number of samples. Great progress has been made in the application of bioinformatics in foodomics. These developments enabled processing of large amounts of generated data for both identification and quantification, and for corresponding modeling. PMID:29089845

  7. Multi-spectral fiber spectroscopy in 0,4-16μm range for biomedical applications(Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Artyushenko, Viacheslav

    2017-02-01

    Various biomedical applications of fiber optics in a broad spectral range 0,4-16μm span from endoscopic imaging and Photo Dynamic Diagnostics (PDD) to laser power delivery for minimal invasive laser surgery, tissue coagulation and welding, Photo Dynamic Therapy (PDT), etc. Present review will highlight the latest results in advanced fiber solutions for a precise tissue diagnostics and control of some therapy methods - for so called "theranostic". Spectral fiber sensing for label free analysis of tissue composition helps to differentiate malignant and normal tissue to secure minimal invasive, but complete tumor removal or treatment. All key methods of Raman, fluorescence, diffuse reflection & MIR-absorption spectroscopy will be compared when used for the same spot of tissue - to select the most specific, sensitive and accurate method or to combine them for the synergy enhanced effect. The most informative spectral features for distinct organs/ tumor can be used to design special fiber sensors to be developed for portable and low cost applications with modern IT-features. Examples of multi-spectral tissue diagnostics promising for the future clinical applications will be presented to enable reduced mortality from cancer in the future. Translation of described methods into clinical practice will be discussed in comparison with the other method of optical diagnostics which should enhance modern medicine by less invasive, more precise and more effective methods of therapy to be fused with in-vivo diagnostics sensors & systems.

  8. Graphene Inks with Cellulosic Dispersants: Development and Applications for Printed Electronics

    NASA Astrophysics Data System (ADS)

    Secor, Ethan Benjamin

    Graphene offers promising opportunities for applications in printed and flexible electronic devices due to its high electrical and thermal conductivity, mechanical flexibility and strength, and chemical and environmental stability. However, scalable production and processing of graphene presents a critical technological challenge preventing the application of graphene for flexible electronic interconnects, electrochemical energy storage, and chemically robust electrical contacts. In this thesis, a promising and versatile platform for the production, patterning, and application of graphene inks is presented based on cellulosic dispersants. Graphene is produced from flake graphite using scalable liquid-phase exfoliation methods, using the polymers ethyl cellulose and nitrocellulose as multifunctional dispersing agents. These cellulose derivatives offer high colloidal stability and broadly tunable rheology for graphene dispersions, providing an effective and tunable platform for graphene ink development. Thermal or photonic annealing decomposes the polymer dispersant to yield high conductivity, flexible graphene patterns for various electronics applications. In particular, the chemical stability of graphene enables robust electrical contacts for ceramic, metallic, organic and electrolytic materials, validating the diverse applicability of graphene in printed electronics. Overall, the strategy for graphene ink design presented here offers a simple, efficient, and versatile method for integrating graphene in a wide range of printed devices and systems, providing both fundamental insight for nanomaterial ink development and realistic opportunities for practical applications.

  9. The Cladistic Basis for the Phylogenetic Diversity (PD) Measure Links Evolutionary Features to Environmental Gradients and Supports Broad Applications of Microbial Ecology’s “Phylogenetic Beta Diversity” Framework

    PubMed Central

    Faith, Daniel P.; Lozupone, Catherine A.; Nipperess, David; Knight, Rob

    2009-01-01

    The PD measure of phylogenetic diversity interprets branch lengths cladistically to make inferences about feature diversity. PD calculations extend conventional species-level ecological indices to the features level. The “phylogenetic beta diversity” framework developed by microbial ecologists calculates PD-dissimilarities between community localities. Interpretation of these PD-dissimilarities at the feature level explains the framework’s success in producing ordinations revealing environmental gradients. An example gradients space using PD-dissimilarities illustrates how evolutionary features form unimodal response patterns to gradients. This features model supports new application of existing species-level methods that are robust to unimodal responses, plus novel applications relating to climate change, commercial products discovery, and community assembly. PMID:20087461

  10. Introduction to Pharmaceutical Biotechnology, Volume 1; Basic techniques and concepts

    NASA Astrophysics Data System (ADS)

    Bhatia, Saurabh; Goli, Divakar

    2018-05-01

    Animal biotechnology is a broad field including polarities of fundamental and applied research, as well as DNA science, covering key topics of DNA studies and its recent applications. In Introduction to Pharmaceutical Biotechnology, DNA isolation procedures followed by molecular markers and screening methods of the genomic library are explained. Interesting areas like isolation, sequencing and synthesis of genes, with the broader coverage on synthesis of genes, are also described. The book begins with an introduction to biotechnology and its main branches, explaining both the basic science and the applications of biotechnology-derived pharmaceuticals, with special emphasis on their clinical use. It then moves on to historical development and scope of biotechnology with an overall review of early applications that scientists employed long before the field was defined.

  11. Cadmium-containing quantum dots: properties, applications, and toxicity.

    PubMed

    Mo, Dan; Hu, Liang; Zeng, Guangming; Chen, Guiqiu; Wan, Jia; Yu, Zhigang; Huang, Zhenzhen; He, Kai; Zhang, Chen; Cheng, Min

    2017-04-01

    The marriage of biology with nanomaterials has significantly accelerated advancement of biological techniques, profoundly facilitating practical applications in biomedical fields. With unique optical properties (e.g., tunable broad excitation, narrow emission spectra, robust photostability, and high quantum yield), fluorescent quantum dots (QDs) have been reasonably functionalized with controllable interfaces and extensively used as a new class of optical probe in biological researches. In this review, we summarize the recent progress in synthesis and properties of QDs. Moreover, we provide an overview of the outstanding potential of QDs for biomedical research and innovative methods of drug delivery. Specifically, the applications of QDs as novel fluorescent nanomaterials for biomedical sensing and imaging have been detailedly highlighted and discussed. In addition, recent concerns on potential toxicity of QDs are also introduced, ranging from cell researches to animal models.

  12. Steady induction effects in geomagnetism. Part 1C: Geomagnetic estimation of steady surficial core motions: Application to the definitive geomagnetic reference field models

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    In the source-free mantle/frozen-flux core magnetic earth model, the non-linear inverse steady motional induction problem was solved using the method presented in Part 1B. How that method was applied to estimate steady, broad-scale fluid velocity fields near the top of Earth's core that induce the secular change indicated by the Definitive Geomagnetic Reference Field (DGRF) models from 1945 to 1980 are described. Special attention is given to the derivation of weight matrices for the DGRF models because the weights determine the apparent significance of the residual secular change. The derived weight matrices also enable estimation of the secular change signal-to-noise ratio characterizing the DGRF models. Two types of weights were derived in 1987-88: radial field weights for fitting the evolution of the broad-scale portion of the radial geomagnetic field component at Earth's surface implied by the DGRF's, and general weights for fitting the evolution of the broad-scale portion of the scalar potential specified by these models. The difference is non-trivial because not all the geomagnetic data represented by the DGRF's constrain the radial field component. For radial field weights (or general weights), a quantitatively acceptable explication of broad-scale secular change relative to the 1980 Magsat epoch must account for 99.94271 percent (or 99.98784 percent) of the total weighted variance accumulated therein. Tolerable normalized root-mean-square weighted residuals of 2.394 percent (or 1.103 percent) are less than the 7 percent errors expected in the source-free mantle/frozen-flux core approximation.

  13. Medical student appraisal: searching on smartphones.

    PubMed

    Khalifian, S; Markman, T; Sampognaro, P; Mitchell, S; Weeks, S; Dattilo, J

    2013-01-01

    The rapidly growing industry for mobile medical applications provides numerous smartphone resources designed for healthcare professionals. However, not all applications are equally useful in addressing the questions of early medical trainees. Three popular, free, mobile healthcare applications were evaluated along with a Google(TM) web search on both Apple(TM) and Android(TM) devices. Six medical students at a large academic hospital evaluated each application for a one-week period while on various clinical rotations. Google(TM) was the most frequently used search method and presented multimedia resources but was inefficient for obtaining clinical management information. Epocrates(TM) Pill ID feature was praised for its clinical utility. Medscape(TM) had the highest satisfaction of search and excelled through interactive educational features. Micromedex(TM) offered both FDA and off-label dosing for drugs. Google(TM) was the preferred search method for questions related to basic disease processes and multimedia resources, but was inadequate for clinical management. Caution should also be exercised when using Google(TM) in front of patients. Medscape(TM) was the most appealing application due to a broad scope of content and educational features relevant to medical trainees. Students should also be cognizant of how mobile technology may be perceived by their evaluators to avoid false impressions.

  14. In silico and experimental methods revealed highly diverse bacteria with quorum sensing and aromatics biodegradation systems--a potential broad application on bioremediation.

    PubMed

    Huang, Yili; Zeng, Yanhua; Yu, Zhiliang; Zhang, Jing; Feng, Hao; Lin, Xiuchun

    2013-11-01

    Phylogenetic overlaps between aromatics-degrading bacteria and acyl-homoserine-lactone (AHL) or autoinducer (AI) based quorum-sensing (QS) bacteria were evident in literatures; however, the diversity of bacteria with both activities had never been finely described. In-silico searching in NCBI genome database revealed that more than 11% of investigated population harbored both aromatic ring-hydroxylating-dioxygenase (RHD) gene and AHL/AI-synthetase gene. These bacteria were distributed in 10 orders, 15 families, 42 genus and 78 species. Horizontal transfers of both genes were common among them. Using enrichment and culture dependent method, 6 Sphingomonadales and 4 Rhizobiales with phenanthrene- or pyrene-degrading ability and AHL-production were isolated from marine, wetland and soil samples. Thin-layer-chromatography and gas-chromatography-mass-spectrum revealed that these Sphingomonads produced various AHL molecules. This is the first report of highly diverse bacteria that harbored both aromatics-degrading and QS systems. QS regulation may have broad impacts on aromatics biodegradation, and would be a new angle for developing bioremediation technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Indirect spectrophotometric determination of sodium ceftriaxone with n-propyl alcohol-ammonium sulfate-water system by extraction flotation of copper(II).

    PubMed

    Zhao, Wei; Zhang, Yan; Li, Quanmin

    2008-05-01

    Although the determination methods of sodium ceftriaxone has been increasingly reported, these methods have their inherent limits preventing them from being broadly applied in common laboratories. In order to circumvent this problem, a rapid and simple method for the indirect spectrophotometric determination of sodium ceftriaxone is reported. Sodium ceftriaxone was degraded completely in the presence of 0.20 mol/l sodium hydroxide in boiling water bath for 20 min. The thiol group (-SH) of the degradation product (I) of sodium ceftriaxone could reduce cupric to cuprous ions, and the resulting which was precipitated with the thiol group (-SH) of the degradation product (II) at pH 4.0. By determining the residual amount of copper (II), the indirect determination of sodium ceftriaxone can be achieved. Standard curve of sodium ceftriaxone versus the flotation yield of copper(II) showed that sodium ceftriaxone could be determined in low concentrations. The linear range of sodium ceftriaxone was 0.70-32 microg/ml and the detection limit evaluated by calibration curve (3sigma/k) was found to be 0.60 microg/ml. A simple and efficient method was developed and it has been successfully applied to the determination of sodium ceftriaxone in human serum and urine samples, respectively. It is expected that this method will find broad applications in the detection of cephalosporin derivatives with similar structure.

  16. 29 CFR 1630.1 - Purpose, applicability, and construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... programs. (4) Broad coverage. The primary purpose of the ADAAA is to make it easier for people with... broad scope of protection under the ADA, the definition of “disability” in this part shall be construed...

  17. Strategies to induce broadly protective antibody responses to viral glycoproteins.

    PubMed

    Krammer, F

    2017-05-01

    Currently, several universal/broadly protective influenza virus vaccine candidates are under development. Many of these vaccines are based on strategies to induce protective antibody responses against the surface glycoproteins of antigenically and genetically diverse influenza viruses. These strategies might also be applicable to surface glycoproteins of a broad range of other important viral pathogens. Areas covered: Common strategies include sequential vaccination with divergent antigens, multivalent approaches, vaccination with glycan-modified antigens, vaccination with minimal antigens and vaccination with antigens that have centralized/optimized sequences. Here we review these strategies and the underlying concepts. Furthermore, challenges, feasibility and applicability to other viral pathogens are discussed. Expert commentary: Several broadly protective/universal influenza virus vaccine strategies will be tested in humans in the coming years. If successful in terms of safety and immunological readouts, they will move forward into efficacy trials. In the meantime, successful vaccine strategies might also be applied to other antigenically diverse viruses of concern.

  18. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian B.; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2016-03-08

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  19. Detection of Trypanosoma cruzi by Polymerase Chain Reaction.

    PubMed

    Márquez, María Elizabeth; Concepción, Juan Luis; González-Marcano, Eglys; Mondolfi, Alberto Paniz

    2016-01-01

    American Trypanosomiasis (Chagas disease) is an infectious disease caused by the hemoflagellate parasite Trypanosoma cruzi which is transmitted by reduviid bugs. T. cruzi infection occurs in a broad spectrum of reservoir animals throughout North, Central, and South America and usually evolves into an asymptomatic chronic clinical stage of the disease in which diagnosis is often challenging. This chapter describes the application of polymerase chain reaction (PCR) for the detection of Trypanosoma cruzi DNA including protocols for sample preparation, DNA extraction, and target amplification methods.

  20. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    DOEpatents

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  1. Copper-facilitated Suzuki reactions: application to 2-heterocyclic boronates.

    PubMed

    Deng, James Z; Paone, Daniel V; Ginnetti, Anthony T; Kurihara, Hideki; Dreher, Spencer D; Weissman, Steven A; Stauffer, Shaun R; Burgey, Christopher S

    2009-01-15

    The palladium-catalyzed Suzuki-Miyaura reaction has been utilized as one of the most powerful methods for C-C bond formation. However, Suzuki reactions of electron-deficient 2-heterocyclic boronates generally give low conversions and remain challenging. The successful copper(I) facilitated Suzuki coupling of 2-heterocyclic boronates that is broad in scope is reported. Use of this methodology affords greatly enhanced yields of these notoriously difficult couplings. Furthermore, mechanistic investigations suggest a possible role of copper in the catalytic cycle.

  2. The applicability of remote sensing to Earth biological problems. Part 2: The potential of remote sensing in pest management

    NASA Technical Reports Server (NTRS)

    Polhemus, J. T.

    1980-01-01

    Five troublesome insect pest groups were chosen for study. These represent a broad spectrum of life cycles, ecological indicators, pest management strategies, and remote sensing requirements. Background data, and field study results for each of these subjects is discussed for each insect group. Specific groups studied include tsetse flies, locusts, western rangeland grasshoppers, range caterpillars, and mosquitoes. It is concluded that remote sensing methods are aplicable to the pest management of the insect groups studied.

  3. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis.

    PubMed

    Ventre, Sandrine; Petronijevic, Filip R; MacMillan, David W C

    2015-05-06

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F(•) transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol.

  4. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  5. Secure communication in fiber optic systems via transmission of broad-band optical noise.

    PubMed

    Buskila, O; Eyal, A; Shtaif, M

    2008-03-03

    We propose a new scheme for data encryption in the physical layer. Our scheme is based on the distribution of a broadband optical noise-like signal between Alice and Bob. The broadband signal is used for the establishment of a secret key that can be used for the secure transmission of information by using the one-time-pad method. We characterize the proposed scheme and study its applicability to the existing fiber-optics communications infrastructure.

  6. The use of newly developed real-time PCR for the rapid identification of bacteria in culture-negative osteomyelitis.

    PubMed

    Kobayashi, Naomi; Bauer, Thomas W; Sakai, Hiroshige; Togawa, Daisuke; Lieberman, Isador H; Fujishiro, Takaaki; Procop, Gary W

    2006-12-01

    We report a case of a culture-negative osteomyelitis in which our newly developed real-time polymerase chain reaction (PCR) could differentiate Staphylococcus aureus from Staphylococcus epidermidis. This is the first report that described the application of this novel assay to an orthopedics clinical sample. This assay may be useful for other clinical culture-negative cases in a combination with a broad-spectrum assay as a rapid microorganism identification method.

  7. A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications

    NASA Astrophysics Data System (ADS)

    Rangarajan, Ramsharan; Gao, Huajian

    2015-09-01

    We introduce a finite element method to compute equilibrium configurations of fluid membranes, identified as stationary points of a curvature-dependent bending energy functional under certain geometric constraints. The reparameterization symmetries in the problem pose a challenge in designing parametric finite element methods, and existing methods commonly resort to Lagrange multipliers or penalty parameters. In contrast, we exploit these symmetries by representing solution surfaces as normal offsets of given reference surfaces and entirely bypass the need for artificial constraints. We then resort to a Galerkin finite element method to compute discrete C1 approximations of the normal offset coordinate. The variational framework presented is suitable for computing deformations of three-dimensional membranes subject to a broad range of external interactions. We provide a systematic algorithm for computing large deformations, wherein solutions at subsequent load steps are identified as perturbations of previously computed ones. We discuss the numerical implementation of the method in detail and demonstrate its optimal convergence properties using examples. We discuss applications of the method to studying adhesive interactions of fluid membranes with rigid substrates and to investigate the influence of membrane tension in tether formation.

  8. Advantages and Challenges of Dried Blood Spot Analysis by Mass Spectrometry Across the Total Testing Process.

    PubMed

    Zakaria, Rosita; Allen, Katrina J; Koplin, Jennifer J; Roche, Peter; Greaves, Ronda F

    2016-12-01

    Through the introduction of advanced analytical techniques and improved throughput, the scope of dried blood spot testing utilising mass spectrometric methods, has broadly expanded. Clinicians and researchers have become very enthusiastic about the potential applications of dried blood spot based mass spectrometric applications. Analysts on the other hand face challenges of sensitivity, reproducibility and overall accuracy of dried blood spot quantification. In this review, we aim to bring together these two facets to discuss the advantages and current challenges of non-newborn screening applications of dried blood spot quantification by mass spectrometry. To address these aims we performed a key word search of the PubMed and MEDLINE online databases in conjunction with individual manual searches to gather information. Keywords for the initial search included; "blood spot" and "mass spectrometry"; while excluding "newborn"; and "neonate". In addition, databases were restricted to English language and human specific. There was no time period limit applied. As a result of these selection criteria, 194 references were identified for review. For presentation, this information is divided into: 1) clinical applications; and 2) analytical considerations across the total testing process; being pre-analytical, analytical and post-analytical considerations. DBS analysis using MS applications is now broadly applied, with drug monitoring for both therapeutic and toxicological analysis being the most extensively reported. Several parameters can affect the accuracy of DBS measurement and further bridge experiments are required to develop adjustment rules for comparability between dried blood spot measures and the equivalent serum/plasma values. Likewise, the establishment of independent reference intervals for dried blood spot sample matrix is required.

  9. Hints of correlation between broad-line and radio variations for 3C 120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H. T.; Bai, J. M.; Li, S. K.

    2014-01-01

    In this paper, we investigate the correlation between broad-line and radio variations for the broad-line radio galaxy 3C 120. By the z-transformed discrete correlation function method and the model-independent flux randomization/random subset selection (FR/RSS) Monte Carlo method, we find that broad Hβ line variations lead the 15 GHz variations. The FR/RSS method shows that the Hβ line variations lead the radio variations by a factor of τ{sub ob} = 0.34 ± 0.01 yr. This time lag can be used to locate the position of the emitting region of radio outbursts in the jet, on the order of ∼5 lt-yr frommore » the central engine. This distance is much larger than the size of the broad-line region. The large separation of the radio outburst emitting region from the broad-line region will observably influence the gamma-ray emission in 3C 120.« less

  10. Novel Peptide Sequence (“IQ-tag”) with High Affinity for NIR Fluorochromes Allows Protein and Cell Specific Labeling for In Vivo Imaging

    PubMed Central

    McCarthy, Jason R.; Weissleder, Ralph

    2007-01-01

    Background Probes that allow site-specific protein labeling have become critical tools for visualizing biological processes. Methods Here we used phage display to identify a novel peptide sequence with nanomolar affinity for near infrared (NIR) (benz)indolium fluorochromes. The developed peptide sequence (“IQ-tag”) allows detection of NIR dyes in a wide range of assays including ELISA, flow cytometry, high throughput screens, microscopy, and optical in vivo imaging. Significance The described method is expected to have broad utility in numerous applications, namely site-specific protein imaging, target identification, cell tracking, and drug development. PMID:17653285

  11. Expansion of Microbial Forensics

    PubMed Central

    Schmedes, Sarah E.; Sajantila, Antti

    2016-01-01

    Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. PMID:26912746

  12. Method for making devices having intermetallic structures and intermetallic devices made thereby

    DOEpatents

    Paul, Brian Kevin; Wilson, Richard Dean; Alman, David Eli

    2004-01-06

    A method and system for making a monolithic intermetallic structure are presented. The structure is made from lamina blanks which comprise multiple layers of metals which are patternable, or intermetallic lamina blanks that are patternable. Lamina blanks are patterned, stacked and registered, and processed to form a monolithic intermetallic structure. The advantages of a patterned monolithic intermetallic structure include physical characteristics such as melting temperature, thermal conductivity, and corrosion resistance. Applications are broad, and include among others, use as a microreactor, heat recycling device, and apparatus for producing superheated steam. Monolithic intermetallic structures may contain one or more catalysts within the internal features.

  13. Epidemiology as a liberal art.

    PubMed

    Fraser, D W

    1987-02-05

    Epidemiology has features that resemble those of the traditional liberal arts. This makes it fit both for inclusion in an undergraduate curriculum and as an example in medical school of the continuing value of a liberal education. As a "low-technology" science, epidemiology is readily accessible to nonspecialists. Because it is useful for taking a first look at a new problem, it is applicable to a broad range of interesting phenomena. Furthermore, it emphasizes method rather than arcane knowledge and illustrates the approaches to problems and the kinds of thinking that a liberal education should cultivate: the scientific method, analogic thinking, deductive reasoning, problem solving within constraints, and concern for aesthetic values.

  14. Reconstructing multi-mode networks from multivariate time series

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Yang, Yu-Xuan; Dang, Wei-Dong; Cai, Qing; Wang, Zhen; Marwan, Norbert; Boccaletti, Stefano; Kurths, Jürgen

    2017-09-01

    Unveiling the dynamics hidden in multivariate time series is a task of the utmost importance in a broad variety of areas in physics. We here propose a method that leads to the construction of a novel functional network, a multi-mode weighted graph combined with an empirical mode decomposition, and to the realization of multi-information fusion of multivariate time series. The method is illustrated in a couple of successful applications (a multi-phase flow and an epileptic electro-encephalogram), which demonstrate its powerfulness in revealing the dynamical behaviors underlying the transitions of different flow patterns, and enabling to differentiate brain states of seizure and non-seizure.

  15. Valuing inter-sectoral costs and benefits of interventions in the healthcare sector: methods for obtaining unit prices.

    PubMed

    Drost, Ruben M W A; Paulus, Aggie T G; Ruwaard, Dirk; Evers, Silvia M A A

    2017-02-01

    There is a lack of knowledge about methods for valuing health intervention-related costs and monetary benefits in the education and criminal justice sectors, also known as 'inter-sectoral costs and benefits' (ICBs). The objective of this study was to develop methods for obtaining unit prices for the valuation of ICBs. By conducting an exploratory literature study and expert interviews, several generic methods were developed. The methods' feasibility was assessed through application in the Netherlands. Results were validated in an expert meeting, which was attended by policy makers, public health experts, health economists and HTA-experts, and discussed at several international conferences and symposia. The study resulted in four methods, including the opportunity cost method (A) and valuation using available unit prices (B), self-constructed unit prices (C) or hourly labor costs (D). The methods developed can be used internationally and are valuable for the broad international field of HTA.

  16. On the efficacy of stochastic collocation, stochastic Galerkin, and stochastic reduced order models for solving stochastic problems

    DOE PAGES

    Richard V. Field, Jr.; Emery, John M.; Grigoriu, Mircea Dan

    2015-05-19

    The stochastic collocation (SC) and stochastic Galerkin (SG) methods are two well-established and successful approaches for solving general stochastic problems. A recently developed method based on stochastic reduced order models (SROMs) can also be used. Herein we provide a comparison of the three methods for some numerical examples; our evaluation only holds for the examples considered in the paper. The purpose of the comparisons is not to criticize the SC or SG methods, which have proven very useful for a broad range of applications, nor is it to provide overall ratings of these methods as compared to the SROM method.more » Furthermore, our objectives are to present the SROM method as an alternative approach to solving stochastic problems and provide information on the computational effort required by the implementation of each method, while simultaneously assessing their performance for a collection of specific problems.« less

  17. Cell-Based Selection Expands the Utility of DNA-Encoded Small-Molecule Library Technology to Cell Surface Drug Targets: Identification of Novel Antagonists of the NK3 Tachykinin Receptor.

    PubMed

    Wu, Zining; Graybill, Todd L; Zeng, Xin; Platchek, Michael; Zhang, Jean; Bodmer, Vera Q; Wisnoski, David D; Deng, Jianghe; Coppo, Frank T; Yao, Gang; Tamburino, Alex; Scavello, Genaro; Franklin, G Joseph; Mataruse, Sibongile; Bedard, Katie L; Ding, Yun; Chai, Jing; Summerfield, Jennifer; Centrella, Paolo A; Messer, Jeffrey A; Pope, Andrew J; Israel, David I

    2015-12-14

    DNA-encoded small-molecule library technology has recently emerged as a new paradigm for identifying ligands against drug targets. To date, this technology has been used with soluble protein targets that are produced and used in a purified state. Here, we describe a cell-based method for identifying small-molecule ligands from DNA-encoded libraries against integral membrane protein targets. We use this method to identify novel, potent, and specific inhibitors of NK3, a member of the tachykinin family of G-protein coupled receptors (GPCRs). The method is simple and broadly applicable to other GPCRs and integral membrane proteins. We have extended the application of DNA-encoded library technology to membrane-associated targets and demonstrate the feasibility of selecting DNA-tagged, small-molecule ligands from complex combinatorial libraries against targets in a heterogeneous milieu, such as the surface of a cell.

  18. CSM research: Methods and application studies

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.

    1989-01-01

    Computational mechanics is that discipline of applied science and engineering devoted to the study of physical phenomena by means of computational methods based on mathematical modeling and simulation, utilizing digital computers. The discipline combines theoretical and applied mechanics, approximation theory, numerical analysis, and computer science. Computational mechanics has had a major impact on engineering analysis and design. When applied to structural mechanics, the discipline is referred to herein as computational structural mechanics. Complex structures being considered by NASA for the 1990's include composite primary aircraft structures and the space station. These structures will be much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. NASA has initiated a research activity in structural analysis called Computational Structural Mechanics (CSM). The broad objective of the CSM activity is to develop advanced structural analysis technology that will exploit modern and emerging computers, such as those with vector and/or parallel processing capabilities. Here, the current research directions for the Methods and Application Studies Team of the Langley CSM activity are described.

  19. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy.

    PubMed

    Yu, Xinghua; Cai, Xingke; Cui, Haodong; Lee, Seung-Wuk; Yu, Xue-Feng; Liu, Bilu

    2017-11-23

    Titanium carbide MXene quantum dots (QDs) were synthesized using an effective fluorine-free method as a biocompatible and highly efficient nanoagent for photothermal therapy (PTT) applications. In contrast to the traditional, hazardous and time-consuming process of HF pretreatment, our fluorine-free method is safe and simple. More importantly, abundant Al oxoanions were found to be modified on the MXene QD surface by the fluorine-free method, which endowed the QDs with strong and broad absorption in the NIR region. As a result, the as-prepared MXene QDs exhibited an extinction coefficient as large as 52.8 Lg -1 cm -1 at 808 nm and a photothermal conversion efficiency as high as 52.2%. Both the values are among the best reported so far. The as-prepared MXene QDs achieved simultaneous photoacoustic (PA) imaging and the remarkable PTT effect of tumors. Moreover, MXene QDs showed great biocompatibility without causing noticeable toxicity in vitro and in vivo, indicating their high potential for clinical applications.

  20. Modeling and Characterization of Damage Processes in Metallic Materials

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Saether, E.; Smith, S. W.; Hochhalter, J. D.; Yamakov, V. I.; Gupta, V.

    2011-01-01

    This paper describes a broad effort that is aimed at understanding the fundamental mechanisms of crack growth and using that understanding as a basis for designing materials and enabling predictions of fracture in materials and structures that have small characteristic dimensions. This area of research, herein referred to as Damage Science, emphasizes the length scale regimes of the nanoscale and the microscale for which analysis and characterization tools are being developed to predict the formation, propagation, and interaction of fundamental damage mechanisms. Examination of nanoscale processes requires atomistic and discrete dislocation plasticity simulations, while microscale processes can be examined using strain gradient plasticity, crystal plasticity and microstructure modeling methods. Concurrent and sequential multiscale modeling methods are being developed to analytically bridge between these length scales. Experimental methods for characterization and quantification of near-crack tip damage are also being developed. This paper focuses on several new methodologies in these areas and their application to understanding damage processes in polycrystalline metals. On-going and potential applications are also discussed.

  1. Review of Electronics Based on Single-Walled Carbon Nanotubes.

    PubMed

    Cao, Yu; Cong, Sen; Cao, Xuan; Wu, Fanqi; Liu, Qingzhou; Amer, Moh R; Zhou, Chongwu

    2017-08-14

    Single-walled carbon nanotubes (SWNTs) are extremely promising materials for building next-generation electronics due to their unique physical and electronic properties. In this article, we will review the research efforts and achievements of SWNTs in three electronic fields, namely analog radio-frequency electronics, digital electronics, and macroelectronics. In each SWNT-based electronic field, we will present the major challenges, the evolutions of the methods to overcome these challenges, and the state-of-the-art of the achievements. At last, we will discuss future directions which could lead to the broad applications of SWNTs. We hope this review could inspire more research on SWNT-based electronics, and accelerate the applications of SWNTs.

  2. Engineering of gadofluoroprobes: Broad-spectrum applications from cancer diagnosis to therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, Ranu A., E-mail: ranu.dutta16@gmail.com; NanoeRA medicare Private Limited, Uttar Pradesh; Sharma, Prashant K.

    2014-01-13

    The engineering of the Gadolinium based nanostructures have been demonstrated in this paper. Nanostructures of α-Gd{sub 2}S{sub 3} exhibit a unique transition between ferromagnetic state and paramagnetic state of the system. It was demonstrated that their properties could be tuned for a wide range of applications ranging from hyperthermia to Magnetic Resonance Imaging, owing to their magnetic moments and large relaxivities. Metallic Gd nanoparticles obtained by reduction method were employed for cancer imaging in mice. The Gd nanoparticles were coated with Curcumin and their biomedical implications in the field of simultaneous diagnosis and therapy of cancer and related diseases hasmore » been discussed.« less

  3. Classifications, applications, and design challenges of drones: A review

    NASA Astrophysics Data System (ADS)

    Hassanalian, M.; Abdelkefi, A.

    2017-05-01

    Nowadays, there is a growing need for flying drones with diverse capabilities for both civilian and military applications. There is also a significant interest in the development of novel drones which can autonomously fly in different environments and locations and can perform various missions. In the past decade, the broad spectrum of applications of these drones has received most attention which led to the invention of various types of drones with different sizes and weights. In this review paper, we identify a novel classification of flying drones that ranges from unmanned air vehicles to smart dusts at both ends of this spectrum, with their new defined applications. Design and fabrication challenges of micro drones, existing methods for increasing their endurance, and various navigation and control approaches are discussed in details. Limitations of the existing drones, proposed solutions for the next generation of drones, and recommendations are also presented and discussed.

  4. Research and application of microbial enzymes--India's contribution.

    PubMed

    Chand, Subhash; Mishra, Prashant

    2003-01-01

    Enzymes have attracted the attention of scientists world over due to their wide range of physiological, analytical and industrial applications. Although enzymes have been isolated, purified and studied from microbial, animal and plant sources, microorganisms represent the most common source of enzymes due to their broad biochemical diversity, feasibility of mass culture and ease of genetic manipulation. With the advent of molecular biology techniques, a number of genes of industrially important enzymes has been cloned and expressed in order to improve the production of enzymes, substrate utilization and other commercially useful properties. Special attention has been focused on enzymes isolated from thermophiles due to their inherent stability and industrial applications. In addition, a variety of methods have been employed to modify enzymes for their industrial usage including strain improvement, chemical modifications, modification of reaction environment, immobilization and protein engineering. A wide range of applications of enzymes in different bioprocess industries is discussed.

  5. Management and Research Applications of Long-range Surveillance Radar Data for Birds, Bats, and Flying Insects

    USGS Publications Warehouse

    Ruth, Janet M.; Buler, Jeffrey J.; Diehl, Robert H.; Sojda, Richard S.

    2008-01-01

    There is renewed interest in using long-range surveillance radar as a biological research tool due to substantial improvements in the network of radars within the United States. Technical improvements, the digital nature of the radar data, and the availability of computing power and geographic information systems, enable a broad range of biological applications. This publication provides a summary of long-range surveillance radar technology and applications of these data to questions about movement patterns of birds and other flying wildlife. The intended audience is potential radar-data end users, including natural-resource management and regulatory agencies, conservation organizations, and industry. This summary includes a definition of long-range surveillance radar, descriptions of its strengths and weaknesses, information on applications of the data, cost, methods of calibration, and what end users need to do, and some key references and resources.

  6. Efficient Generation and Use of Power Series for Broad Application.

    NASA Astrophysics Data System (ADS)

    Rudmin, Joseph; Sochacki, James

    2017-01-01

    A brief history and overview of the Parker-Sockacki Method of Power Series generation is presented. This method generates power series to order n in time n2 for any system of differential equations that has a power series solution. The method is simple enough that novices to differential equations can easily learn it and immediately apply it. Maximal absolute error estimates allow one to determine the number of terms needed to reach desired accuracy. Ratios of coefficients in a solution with global convergence differ signficantly from that for a solution with only local convergence. Divergence of the series prevents one from overlooking poles. The method can always be cast in polynomial form, which allows separation of variables in almost all physical systems, facilitating exploration of hidden symmetries, and is implicitly symplectic.

  7. Unlocking the Potential of Phenacyl Protecting Groups: CO2-Based Formation and Photocatalytic Release of Caged Amines.

    PubMed

    Speckmeier, Elisabeth; Klimkait, Michael; Zeitler, Kirsten

    2018-04-06

    Orthogonal protection and deprotection of amines remain important tools in synthetic design as well as in chemical biology and material research applications. A robust, highly efficient, and sustainable method for the formation of phenacyl-based carbamate esters was developed using CO 2 for the in situ preparation of the intermediate carbamates. Our mild and broadly applicable protocol allows for the formation of phenacyl urethanes of anilines, primary amines, including amino acids, and secondary amines in high to excellent yields. Moreover, we demonstrate the utility by a mild and convenient photocatalytic deprotection protocol using visible light. A key feature of the [Ru(bpy) 3 ](PF 6 ) 2 -catalyzed method is the use of ascorbic acid as reductive quencher in a neutral, buffered, two-phase acetonitrile/water mixture, granting fast and highly selective deprotection for all presented examples.

  8. Photovoltaic design optimization for terrestrial applications

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1978-01-01

    As part of the Jet Propulsion Laboratory's Low-Cost Solar Array Project, a comprehensive program of module cost-optimization has been carried out. The objective of these studies has been to define means of reducing the cost and improving the utility and reliability of photovoltaic modules for the broad spectrum of terrestrial applications. This paper describes one of the methods being used for module optimization, including the derivation of specific equations which allow the optimization of various module design features. The method is based on minimizing the life-cycle cost of energy for the complete system. Comparison of the life-cycle energy cost with the marginal cost of energy each year allows the logical plant lifetime to be determined. The equations derived allow the explicit inclusion of design parameters such as tracking, site variability, and module degradation with time. An example problem involving the selection of an optimum module glass substrate is presented.

  9. Artificial 3D hierarchical and isotropic porous polymeric materials

    PubMed Central

    Musteata, Valentina-Elena; Behzad, Ali Reza

    2018-01-01

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene-b-poly(t-butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  10. Artificial 3D hierarchical and isotropic porous polymeric materials.

    PubMed

    Chisca, Stefan; Musteata, Valentina-Elena; Sougrat, Rachid; Behzad, Ali Reza; Nunes, Suzana P

    2018-05-01

    Hierarchical porous materials that replicate complex living structures are attractive for a wide variety of applications, ranging from storage and catalysis to biological and artificial systems. However, the preparation of structures with a high level of complexity and long-range order at the mesoscale and microscale is challenging. We report a simple, nonextractive, and nonreactive method used to prepare three-dimensional porous materials that mimic biological systems such as marine skeletons and honeycombs. This method exploits the concurrent occurrence of the self-assembly of block copolymers in solution and macrophase separation by nucleation and growth. We obtained a long-range order of micrometer-sized compartments. These compartments are interconnected by ordered cylindrical nanochannels. The new approach is demonstrated using polystyrene- b -poly( t -butyl acrylate), which can be further explored for a broad range of applications, such as air purification filters for viruses and pollution particle removal or growth of bioinspired materials for bone regeneration.

  11. Proposed Standardized Neurological Endpoints for Cardiovascular Clinical Trials: An Academic Research Consortium Initiative.

    PubMed

    Lansky, Alexandra J; Messé, Steven R; Brickman, Adam M; Dwyer, Michael; Bart van der Worp, H; Lazar, Ronald M; Pietras, Cody G; Abrams, Kevin J; McFadden, Eugene; Petersen, Nils H; Browndyke, Jeffrey; Prendergast, Bernard; Ng, Vivian G; Cutlip, Donald E; Kapadia, Samir; Krucoff, Mitchell W; Linke, Axel; Scala Moy, Claudia; Schofer, Joachim; van Es, Gerrit-Anne; Virmani, Renu; Popma, Jeffrey; Parides, Michael K; Kodali, Susheel; Bilello, Michel; Zivadinov, Robert; Akar, Joseph; Furie, Karen L; Gress, Daryl; Voros, Szilard; Moses, Jeffrey; Greer, David; Forrest, John K; Holmes, David; Kappetein, Arie P; Mack, Michael; Baumbach, Andreas

    2018-05-14

    Surgical and catheter-based cardiovascular procedures and adjunctive pharmacology have an inherent risk of neurological complications. The current diversity of neurological endpoint definitions and ascertainment methods in clinical trials has led to uncertainties in the neurological risk attributable to cardiovascular procedures and inconsistent evaluation of therapies intended to prevent or mitigate neurological injury. Benefit-risk assessment of such procedures should be on the basis of an evaluation of well-defined neurological outcomes that are ascertained with consistent methods and capture the full spectrum of neurovascular injury and its clinical effect. The Neurologic Academic Research Consortium is an international collaboration intended to establish consensus on the definition, classification, and assessment of neurological endpoints applicable to clinical trials of a broad range of cardiovascular interventions. Systematic application of the proposed definitions and assessments will improve our ability to evaluate the risks of cardiovascular procedures and the safety and effectiveness of preventive therapies.

  12. Emerging technologies in medical applications of minimum volume vitrification

    PubMed Central

    Zhang, Xiaohui; Catalano, Paolo N; Gurkan, Umut Atakan; Khimji, Imran; Demirci, Utkan

    2011-01-01

    Cell/tissue biopreservation has broad public health and socio-economic impact affecting millions of lives. Cryopreservation technologies provide an efficient way to preserve cells and tissues targeting the clinic for applications including reproductive medicine and organ transplantation. Among these technologies, vitrification has displayed significant improvement in post-thaw cell viability and function by eliminating harmful effects of ice crystal formation compared to the traditional slow freezing methods. However, high cryoprotectant agent concentrations are required, which induces toxicity and osmotic stress to cells and tissues. It has been shown that vitrification using small sample volumes (i.e., <1 μl) significantly increases cooling rates and hence reduces the required cryoprotectant agent levels. Recently, emerging nano- and micro-scale technologies have shown potential to manipulate picoliter to nanoliter sample sizes. Therefore, the synergistic integration of nanoscale technologies with cryogenics has the potential to improve biopreservation methods. PMID:21955080

  13. Advances in Molecular Rotational Spectroscopy for Applied Science

    NASA Astrophysics Data System (ADS)

    Harris, Brent; Fields, Shelby S.; Pulliam, Robin; Muckle, Matt; Neill, Justin L.

    2017-06-01

    Advances in chemical sensitivity and robust, solid-state designs for microwave/millimeter-wave instrumentation compel the expansion of molecular rotational spectroscopy as research tool into applied science. It is familiar to consider molecular rotational spectroscopy for air analysis. Those techniques for molecular rotational spectroscopy are included in our presentation of a more broad application space for materials analysis using Fourier Transform Molecular Rotational Resonance (FT-MRR) spectrometers. There are potentially transformative advantages for direct gas analysis of complex mixtures, determination of unknown evolved gases with parts per trillion detection limits in solid materials, and unambiguous chiral determination. The introduction of FT-MRR as an alternative detection principle for analytical chemistry has created a ripe research space for the development of new analytical methods and sampling equipment to fully enable FT-MRR. We present the current state of purpose-built FT-MRR instrumentation and the latest application measurements that make use of new sampling methods.

  14. Cosinor-based rhythmometry

    PubMed Central

    2014-01-01

    A brief overview is provided of cosinor-based techniques for the analysis of time series in chronobiology. Conceived as a regression problem, the method is applicable to non-equidistant data, a major advantage. Another dividend is the feasibility of deriving confidence intervals for parameters of rhythmic components of known periods, readily drawn from the least squares procedure, stressing the importance of prior (external) information. Originally developed for the analysis of short and sparse data series, the extended cosinor has been further developed for the analysis of long time series, focusing both on rhythm detection and parameter estimation. Attention is given to the assumptions underlying the use of the cosinor and ways to determine whether they are satisfied. In particular, ways of dealing with non-stationary data are presented. Examples illustrate the use of the different cosinor-based methods, extending their application from the study of circadian rhythms to the mapping of broad time structures (chronomes). PMID:24725531

  15. Comparison of Sensor Selection Mechanisms for an ERP-Based Brain-Computer Interface

    PubMed Central

    Metzen, Jan H.

    2013-01-01

    A major barrier for a broad applicability of brain-computer interfaces (BCIs) based on electroencephalography (EEG) is the large number of EEG sensor electrodes typically used. The necessity for this results from the fact that the relevant information for the BCI is often spread over the scalp in complex patterns that differ depending on subjects and application scenarios. Recently, a number of methods have been proposed to determine an individual optimal sensor selection. These methods have, however, rarely been compared against each other or against any type of baseline. In this paper, we review several selection approaches and propose one additional selection criterion based on the evaluation of the performance of a BCI system using a reduced set of sensors. We evaluate the methods in the context of a passive BCI system that is designed to detect a P300 event-related potential and compare the performance of the methods against randomly generated sensor constellations. For a realistic estimation of the reduced system's performance we transfer sensor constellations found on one experimental session to a different session for evaluation. We identified notable (and unanticipated) differences among the methods and could demonstrate that the best method in our setup is able to reduce the required number of sensors considerably. Though our application focuses on EEG data, all presented algorithms and evaluation schemes can be transferred to any binary classification task on sensor arrays. PMID:23844021

  16. Accurate force field for molybdenum by machine learning large materials data

    NASA Astrophysics Data System (ADS)

    Chen, Chi; Deng, Zhi; Tran, Richard; Tang, Hanmei; Chu, Iek-Heng; Ong, Shyue Ping

    2017-09-01

    In this work, we present a highly accurate spectral neighbor analysis potential (SNAP) model for molybdenum (Mo) developed through the rigorous application of machine learning techniques on large materials data sets. Despite Mo's importance as a structural metal, existing force fields for Mo based on the embedded atom and modified embedded atom methods do not provide satisfactory accuracy on many properties. We will show that by fitting to the energies, forces, and stress tensors of a large density functional theory (DFT)-computed dataset on a diverse set of Mo structures, a Mo SNAP model can be developed that achieves close to DFT accuracy in the prediction of a broad range of properties, including elastic constants, melting point, phonon spectra, surface energies, grain boundary energies, etc. We will outline a systematic model development process, which includes a rigorous approach to structural selection based on principal component analysis, as well as a differential evolution algorithm for optimizing the hyperparameters in the model fitting so that both the model error and the property prediction error can be simultaneously lowered. We expect that this newly developed Mo SNAP model will find broad applications in large and long-time scale simulations.

  17. Multiplexed Liquid Chromatography-Multiple Reaction Monitoring Mass Spectrometry Quantification of Cancer Signaling Proteins

    PubMed Central

    Chen, Yi; Fisher, Kate J.; Lloyd, Mark; Wood, Elizabeth R.; Coppola, Domenico; Siegel, Erin; Shibata, David; Chen, Yian A.; Koomen, John M.

    2017-01-01

    Quantitative evaluation of protein expression across multiple cancer-related signaling pathways (e.g. Wnt/β-catenin, TGF-β, receptor tyrosine kinases (RTK), MAP kinases, NF-κB, and apoptosis) in tumor tissues may enable the development of a molecular profile for each individual tumor that can aid in the selection of appropriate targeted cancer therapies. Here, we describe the development of a broadly applicable protocol to develop and implement quantitative mass spectrometry assays using cell line models and frozen tissue specimens from colon cancer patients. Cell lines are used to develop peptide-based assays for protein quantification, which are incorporated into a method based on SDS-PAGE protein fractionation, in-gel digestion, and liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). This analytical platform is then applied to frozen tumor tissues. This protocol can be broadly applied to the study of human disease using multiplexed LC-MRM assays. PMID:28808993

  18. Semiconductor lasers driven by self-sustained chaotic electronic oscillators and applications to optical chaos cryptography.

    PubMed

    Kingni, Sifeu Takougang; Mbé, Jimmi Hervé Talla; Woafo, Paul

    2012-09-01

    In this work, we numerically study the dynamics of vertical cavity surface emitting laser (VCSEL) firstly when it is driven by Chua's oscillator, secondly in case where it is driven by a broad frequency spectral bandwidth chaotic oscillator developed by Nana et al. [Commun. Nonlinear Sci. Numer. Simul. 14, 2266 (2009)]. We demonstrated that the VCSEL generated robust chaotic dynamics compared to the ones found in VCSEL subject to a sinusoidally modulated current and therefore it is more suitable for chaos encryption techniques. The synchronization characteristics and the communication performances of unidirectional coupled VCSEL driven by the broad frequency spectral bandwidth chaotic oscillators are investigated numerically. The results show that high-quality synchronization and transmission of messages can be realized for suitable system parameters. Chaos shift keying method is successfully applied to encrypt a message at a high bitrate.

  19. Correlations in the degeneracy of structurally controllable topologies for networks

    NASA Astrophysics Data System (ADS)

    Campbell, Colin; Aucott, Steven; Ruths, Justin; Ruths, Derek; Shea, Katriona; Albert, Réka

    2017-04-01

    Many dynamic systems display complex emergent phenomena. By directly controlling a subset of system components (nodes) via external intervention it is possible to indirectly control every other component in the system. When the system is linear or can be approximated sufficiently well by a linear model, methods exist to identify the number and connectivity of a minimum set of external inputs (constituting a so-called minimal control topology, or MCT). In general, many MCTs exist for a given network; here we characterize a broad ensemble of empirical networks in terms of the fraction of nodes and edges that are always, sometimes, or never a part of an MCT. We study the relationships between the measures, and apply the methodology to the T-LGL leukemia signaling network as a case study. We show that the properties introduced in this report can be used to predict key components of biological networks, with potentially broad applications to network medicine.

  20. A Multidimensional Diversity‐Oriented Synthesis Strategy for Structurally Diverse and Complex Macrocycles

    PubMed Central

    Nie, Feilin; Kunciw, Dominique L.; Wilcke, David; Stokes, Jamie E.; Galloway, Warren R. J. D.; Bartlett, Sean; Sore, Hannah F.

    2016-01-01

    Abstract Synthetic macrocycles are an attractive area in drug discovery. However, their use has been hindered by a lack of versatile platforms for the generation of structurally (and thus shape) diverse macrocycle libraries. Herein, we describe a new concept in library synthesis, termed multidimensional diversity‐oriented synthesis, and its application towards macrocycles. This enabled the step‐efficient generation of a library of 45 novel, structurally diverse, and highly‐functionalized macrocycles based around a broad range of scaffolds and incorporating a wide variety of biologically relevant structural motifs. The synthesis strategy exploited the diverse reactivity of aza‐ylides and imines, and featured eight different macrocyclization methods, two of which were novel. Computational analyses reveal a broad coverage of molecular shape space by the library and provides insight into how the various diversity‐generating steps of the synthesis strategy impact on molecular shape. PMID:27484830

  1. Field Penetration in a Rectangular Box Using Numerical Techniques: An Effort to Obtain Statistical Shielding Effectiveness

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Yu, Shih-Pin

    2006-01-01

    This paper emphasizes the application of numerical methods to explore the ideas related to shielding effectiveness from a statistical view. An empty rectangular box is examined using a hybrid modal/moment method. The basic computational method is presented followed by the results for single- and multiple observation points within the over-moded empty structure. The statistics of the field are obtained by using frequency stirring, borrowed from the ideas connected with reverberation chamber techniques, and extends the ideas of shielding effectiveness well into the multiple resonance regions. The study presented in this paper will address the average shielding effectiveness over a broad spatial sample within the enclosure as the frequency is varied.

  2. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems.

    PubMed

    Ryland, Bradford L; Stahl, Shannon S

    2014-08-18

    Oxidations of alcohols and amines are common reactions in the synthesis of organic molecules in the laboratory and industry. Aerobic oxidation methods have long been sought for these transformations, but few practical methods exist that offer advantages over traditional oxidation methods. Recently developed homogeneous Cu/TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidinyl-N-oxyl) and related catalyst systems appear to fill this void. The reactions exhibit high levels of chemoselectivity and broad functional-group tolerance, and they often operate efficiently at room temperature with ambient air as the oxidant. These advances, together with their historical context and recent applications, are highlighted in this Minireview. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Communication: Density functional theory overcomes the failure of predicting intermolecular interaction energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Podeszwa, Rafal; Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716; Szalewicz, Krzysztof

    2012-04-28

    Density-functional theory (DFT) revolutionized the ability of computational quantum mechanics to describe properties of matter and is by far the most often used method. However, all the standard variants of DFT fail to predict intermolecular interaction energies. In recent years, a number of ways to go around this problem has been proposed. We show that some of these approaches can reproduce interaction energies with median errors of only about 5% in the complete range of intermolecular configurations. Such errors are comparable to typical uncertainties of wave-function-based methods in practical applications. Thus, these DFT methods are expected to find broad applicationsmore » in modelling of condensed phases and of biomolecules.« less

  4. Cellular Engineering with Membrane Fusogenic Liposomes to Produce Functionalized Extracellular Vesicles.

    PubMed

    Lee, Junsung; Lee, Hyoungjin; Goh, Unbyeol; Kim, Jiyoung; Jeong, Moonkyoung; Lee, Jean; Park, Ji-Ho

    2016-03-23

    Engineering of extracellular vesicles (EVs) without affecting biological functions remains a challenge, limiting the broad applications of EVs in biomedicine. Here, we report a method to equip EVs with various functional agents, including fluorophores, drugs, lipids, and bio-orthogonal chemicals, in an efficient and controlled manner by engineering parental cells with membrane fusogenic liposomes, while keeping the EVs intact. As a demonstration of how this method can be applied, we prepared EVs containing azide-lipids, and conjugated them with targeting peptides using copper-free click chemistry to enhance targeting efficacy to cancer cells. We believe that this liposome-based cellular engineering method will find utility in studying the biological roles of EVs and delivering therapeutic agents through their innate pathway.

  5. Energy Conversion and Storage Program

    NASA Astrophysics Data System (ADS)

    Cairns, E. J.

    1993-06-01

    This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

  6. Energy stable and high-order-accurate finite difference methods on staggered grids

    NASA Astrophysics Data System (ADS)

    O'Reilly, Ossian; Lundquist, Tomas; Dunham, Eric M.; Nordström, Jan

    2017-10-01

    For wave propagation over distances of many wavelengths, high-order finite difference methods on staggered grids are widely used due to their excellent dispersion properties. However, the enforcement of boundary conditions in a stable manner and treatment of interface problems with discontinuous coefficients usually pose many challenges. In this work, we construct a provably stable and high-order-accurate finite difference method on staggered grids that can be applied to a broad class of boundary and interface problems. The staggered grid difference operators are in summation-by-parts form and when combined with a weak enforcement of the boundary conditions, lead to an energy stable method on multiblock grids. The general applicability of the method is demonstrated by simulating an explosive acoustic source, generating waves reflecting against a free surface and material discontinuity.

  7. Finding and estimating chemical property data for environmental assessment.

    PubMed

    Boethling, Robert S; Howard, Philip H; Meylan, William M

    2004-10-01

    The ability to predict the behavior of a chemical substance in a biological or environmental system largely depends on knowledge of the physicochemical properties and reactivity of that substance. We focus here on properties, with the objective of providing practical guidance for finding measured values and using estimation methods when necessary. Because currently available computer software often makes it more convenient to estimate than to retrieve measured values, we try to discourage irrational exuberance for these tools by including comprehensive lists of Internet and hard-copy data resources. Guidance for assessors is presented in the form of a process to obtain data that includes establishment of chemical identity, identification of data sources, assessment of accuracy and reliability, substructure searching for analogs when experimental data are unavailable, and estimation from chemical structure. Regarding property estimation, we cover estimation from close structural analogs in addition to broadly applicable methods requiring only the chemical structure. For the latter, we list and briefly discuss the most widely used methods. Concluding thoughts are offered concerning appropriate directions for future work on estimation methods, again with an emphasis on practical applications.

  8. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.).

    PubMed

    Breseghello, Flavio; Coelho, Alexandre Siqueira Guedes

    2013-09-04

    Plant breeding can be broadly defined as alterations caused in plants as a result of their use by humans, ranging from unintentional changes resulting from the advent of agriculture to the application of molecular tools for precision breeding. The vast diversity of breeding methods can be simplified into three categories: (i) plant breeding based on observed variation by selection of plants based on natural variants appearing in nature or within traditional varieties; (ii) plant breeding based on controlled mating by selection of plants presenting recombination of desirable genes from different parents; and (iii) plant breeding based on monitored recombination by selection of specific genes or marker profiles, using molecular tools for tracking within-genome variation. The continuous application of traditional breeding methods in a given species could lead to the narrowing of the gene pool from which cultivars are drawn, rendering crops vulnerable to biotic and abiotic stresses and hampering future progress. Several methods have been devised for introducing exotic variation into elite germplasm without undesirable effects. Cases in rice are given to illustrate the potential and limitations of different breeding approaches.

  9. Report on the sixth blind test of organic crystal structure prediction methods

    PubMed Central

    Reilly, Anthony M.; Cooper, Richard I.; Adjiman, Claire S.; Bhattacharya, Saswata; Boese, A. Daniel; Brandenburg, Jan Gerit; Bygrave, Peter J.; Bylsma, Rita; Campbell, Josh E.; Car, Roberto; Case, David H.; Chadha, Renu; Cole, Jason C.; Cosburn, Katherine; Cuppen, Herma M.; Curtis, Farren; Day, Graeme M.; DiStasio Jr, Robert A.; Dzyabchenko, Alexander; van Eijck, Bouke P.; Elking, Dennis M.; van den Ende, Joost A.; Facelli, Julio C.; Ferraro, Marta B.; Fusti-Molnar, Laszlo; Gatsiou, Christina-Anna; Gee, Thomas S.; de Gelder, René; Ghiringhelli, Luca M.; Goto, Hitoshi; Grimme, Stefan; Guo, Rui; Hofmann, Detlef W. M.; Hoja, Johannes; Hylton, Rebecca K.; Iuzzolino, Luca; Jankiewicz, Wojciech; de Jong, Daniël T.; Kendrick, John; de Klerk, Niek J. J.; Ko, Hsin-Yu; Kuleshova, Liudmila N.; Li, Xiayue; Lohani, Sanjaya; Leusen, Frank J. J.; Lund, Albert M.; Lv, Jian; Ma, Yanming; Marom, Noa; Masunov, Artëm E.; McCabe, Patrick; McMahon, David P.; Meekes, Hugo; Metz, Michael P.; Misquitta, Alston J.; Mohamed, Sharmarke; Monserrat, Bartomeu; Needs, Richard J.; Neumann, Marcus A.; Nyman, Jonas; Obata, Shigeaki; Oberhofer, Harald; Oganov, Artem R.; Orendt, Anita M.; Pagola, Gabriel I.; Pantelides, Constantinos C.; Pickard, Chris J.; Podeszwa, Rafal; Price, Louise S.; Price, Sarah L.; Pulido, Angeles; Read, Murray G.; Reuter, Karsten; Schneider, Elia; Schober, Christoph; Shields, Gregory P.; Singh, Pawanpreet; Sugden, Isaac J.; Szalewicz, Krzysztof; Taylor, Christopher R.; Tkatchenko, Alexandre; Tuckerman, Mark E.; Vacarro, Francesca; Vasileiadis, Manolis; Vazquez-Mayagoitia, Alvaro; Vogt, Leslie; Wang, Yanchao; Watson, Rona E.; de Wijs, Gilles A.; Yang, Jack; Zhu, Qiang; Groom, Colin R.

    2016-01-01

    The sixth blind test of organic crystal structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal and a bulky flexible molecule. This blind test has seen substantial growth in the number of participants, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and ‘best practices’ for performing CSP calculations. All of the targets, apart from a single potentially disordered Z′ = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms. PMID:27484368

  10. Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers.

    PubMed

    Zhang, Cheng; Su, Jheng-Wun; Deng, Heng; Xie, Yunchao; Yan, Zheng; Lin, Jian

    2017-11-29

    An assembly of three-dimensional (3D) architectures with defined configurations has important applications in broad areas. Among various approaches of constructing 3D structures, a stress-driven assembly provides the capabilities of creating 3D architectures in a broad range of functional materials with unique merits. However, 3D architectures built via previous methods are simple, irreversible, or not free-standing. Furthermore, the substrates employed for the assembly remain flat, thus not involved as parts of the final 3D architectures. Herein, we report a reversible self-assembly of various free-standing 3D architectures actuated by the self-folding of smart polymer substrates with programmed geometries. The strategically designed polymer substrates can respond to external stimuli, such as organic solvents, to initiate the 3D assembly process and subsequently become the parts of the final 3D architectures. The self-assembly process is highly controllable via origami and kirigami designs patterned by direct laser writing. Self-assembled geometries include 3D architectures such as "flower", "rainbow", "sunglasses", "box", "pyramid", "grating", and "armchair". The reported self-assembly also shows wide applicability to various materials including epoxy, polyimide, laser-induced graphene, and metal films. The device examples include 3D architectures integrated with a micro light-emitting diode and a flex sensor, indicting the potential applications in soft robotics, bioelectronics, microelectromechanical systems, and others.

  11. Modeling Longitudinal Data Containing Non-Normal Within Subject Errors

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan; Glenn, Nancy L.

    2013-01-01

    The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.

  12. Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger.

    PubMed

    van Munster, Jolanda M; Thomas, Baptiste; Riese, Michel; Davis, Adrienne L; Gray, Christopher J; Archer, David B; Flitsch, Sabine L

    2017-02-21

    Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry.

  13. How to evaluate population management? Transforming the Care Continuum Alliance population health guide toward a broadly applicable analytical framework.

    PubMed

    Struijs, Jeroen N; Drewes, Hanneke W; Heijink, Richard; Baan, Caroline A

    2015-04-01

    Many countries face the persistent twin challenge of providing high-quality care while keeping health systems affordable and accessible. As a result, the interest for more efficient strategies to stimulate population health is increasing. A possible successful strategy is population management (PM). PM strives to address health needs for the population at-risk and the chronically ill at all points along the health continuum by integrating services across health care, prevention, social care and welfare. The Care Continuum Alliance (CCA) population health guide, which recently changed their name in Population Health Alliance (PHA) provides a useful instrument for implementing and evaluating such innovative approaches. This framework is developed for PM specifically and describes the core elements of the PM-concept on the basis of six subsequent interrelated steps. The aim of this article is to transform the CCA framework into an analytical framework. Quantitative methods are refined and we operationalized a set of indicators to measure the impact of PM in terms of the Triple Aim (population health, quality of care and cost per capita). Additionally, we added a qualitative part to gain insight into the implementation process of PM. This resulted in a broadly applicable analytical framework based on a mixed-methods approach. In the coming years, the analytical framework will be applied within the Dutch Monitor Population Management to derive transferable 'lessons learned' and to methodologically underpin the concept of PM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication

    NASA Astrophysics Data System (ADS)

    Wang, Fu; Xie, Zheng; Zhang, Bing; Liu, Yun; Yang, Wendong; Liu, Chun-Yan

    2014-03-01

    Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on.Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on. Electronic supplementary information (ESI) available: Details of FTIR, XRD and DLS of CDF, optical properties of CDF, TEM images of other obtained products, luminescent spectra of CDF at different temperatures, and the optical photographs of CDF inks and silica glasses with different concentrations under normal, UV and 800 nm light. See DOI: 10.1039/c3nr05869g

  15. 7 CFR 3560.555 - Eligibility requirements for off-farm labor housing loans and grants.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Eligibility for loans. Applicants for off-farm labor housing loans must be: (1) A broad-based nonprofit... requirements of § 3560.55, excluding § 3560.55(a)(6). A broad-based nonprofit organization is a nonprofit...

  16. 7 CFR 3560.555 - Eligibility requirements for off-farm labor housing loans and grants.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Eligibility for loans. Applicants for off-farm labor housing loans must be: (1) A broad-based nonprofit... requirements of § 3560.55, excluding § 3560.55(a)(6). A broad-based nonprofit organization is a nonprofit...

  17. 7 CFR 3560.555 - Eligibility requirements for off-farm labor housing loans and grants.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Eligibility for loans. Applicants for off-farm labor housing loans must be: (1) A broad-based nonprofit... requirements of § 3560.55, excluding § 3560.55(a)(6). A broad-based nonprofit organization is a nonprofit...

  18. Computational Methods in Drug Discovery

    PubMed Central

    Sliwoski, Gregory; Kothiwale, Sandeepkumar; Meiler, Jens

    2014-01-01

    Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades. These methods are broadly classified as either structure-based or ligand-based methods. Structure-based methods are in principle analogous to high-throughput screening in that both target and ligand structure information is imperative. Structure-based approaches include ligand docking, pharmacophore, and ligand design methods. The article discusses theory behind the most important methods and recent successful applications. Ligand-based methods use only ligand information for predicting activity depending on its similarity/dissimilarity to previously known active ligands. We review widely used ligand-based methods such as ligand-based pharmacophores, molecular descriptors, and quantitative structure-activity relationships. In addition, important tools such as target/ligand data bases, homology modeling, ligand fingerprint methods, etc., necessary for successful implementation of various computer-aided drug discovery/design methods in a drug discovery campaign are discussed. Finally, computational methods for toxicity prediction and optimization for favorable physiologic properties are discussed with successful examples from literature. PMID:24381236

  19. Synthesis of new nanocrystal materials

    NASA Astrophysics Data System (ADS)

    Hassan, Yasser Hassan Abd El-Fattah

    Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of TiO2 NRs using seeded--growth type colloidal injection approach. Chapter 5 explores a novel approach of directly synthesized CdSe NCs with electroactive ligands. The last Chapter focuses on a new class of perovskites. I describe my discovery of a (bottom-up) simple method to synthesize colloidally stable methyl ammonium lead halide perovskite nanocrystals seeded from high quality PbX2 NCs with a pre-targeted size. This chapter reports advances in preparation of both these materials (PbX2, and lead halide perovskite NCs).

  20. Broad-spectrum sunscreens offer protection against urocanic acid photoisomerization by artificial ultraviolet radiation in human skin.

    PubMed

    van der Molen, R G; Out-Luiting, C; Driller, H; Claas, F H; Koerten, H K; Mommaas, A M

    2000-09-01

    Cis-urocanic acid (UCA) has been indicated as an important mediator of ultraviolet (UV)-induced immunosuppression. In this study we describe a rapid, noninvasive method for the determination of the protective capacity of various sunscreens against the UV-induced isomerization of trans-UCA into its cis form. For this purpose we applied sunscreens prior to in vivo exposure of human volunteers with single or repeated broadband UVB irradiations of 100 mJ per cm2. We found significant but different levels of protection against UCA photoisomerization by all sunscreens that correlated with the sun protection factor. A comparison of various sunscreens with a sun protection factor of 10, showed that the best protection was offered by the sunscreens (containing organic UV filters or TiO2) with broad absorption spectra. The ability to inhibit cis-UCA formation was not influenced by the penetration characteristics of sunscreens, as determined by application of the sunscreen on quartz glass that was placed on the skin, preventing penetration of sunscreen in the skin. In addition ex vivo UV exposure of human skin was employed to permit other tests of immunomodulation, in this case the mixed epidermal cell lymphocyte reaction. The advantage of this ex vivo method is that there is no need to take biopsies from volunteers. Ex vivo irradiation of human skin with a single dose of 200 mJ per cm2 resulted in similar protection by the sunscreens against cis-UCA formation as in the in vivo system. Furthermore, the mixed epidermal cell lymphocyte reaction data correlated with the cis-UCA findings. We conclude that UCA isomerization is an excellent method to determine sunscreen efficacy and that broad-spectrum sunscreens offer good immunoprotection.

  1. Evaluation of Koontz Lake (North Indiana) Ecological Restoration Options - Comparison of Dredging and Aeration - and Broad Application to USACE Projects

    DTIC Science & Technology

    2018-01-01

    Restoration Options – Comparison of Dredging and Aeration – and Broad Application to USACE Projects En vi ro nm en ta l L ab or at or y Victor F. Medina... Projects Victor F. Medina, Kaytee Pokrzywinski, and Edith Martinez-Guerra Environmental Laboratory U.S. Army Engineer Research and Development...Operations Technical Support Program 3909 Halls Ferry Road Vicksburg, MS 39180 Under Project No. TA2017-002, “Evaluation of Koontz Lake (Indiana

  2. Recent studies of measures to improve basamid soil disinfestation.

    PubMed

    Van Wambeke, E

    2011-01-01

    Basamid micro-granule is used worldwide as a broad spectrum soil fumigant generator and has replaced methyl bromide for many applications. A lot is known for decades regarding the factors determining the success of the application from soil preparation and conditions to the application and soil sealing or soil tarping, as well as the operations and hygienic measures after the fumigant contact time. This paper explains last 6 years studies regarding the improvement of application methods, both from the viewpoint of homogenous incorporation of the granule over the soil profile to become treated as well as from possible premature loss of the gaseous active methyl isothiocyanate (MITC) by using improved tarping materials. Both result in lower environmental exposure and better biological performance of the application. In that respect, product incorporation in soil was studied in France and in Italy with more recent commercially available Basamid application machinery, and 29 plastic films have been compared for their MITC barrier properties with an 'in house' developed method. Film testing allowed clear categorizing in standard (monolayer) films, V.I.F. (Virtually Impermeable Film) and T.I.F. (Totally Impermeable Film). The paper presents the methodology for granule incorporation study and results from trials with two specific Basamid application machines compared with a classic rotovator, the methodology and comparison of plastic film barrier properties testing, and directives to minimize exposure and to maximize performance.

  3. Simple Sodium Dodecyl Sulfate-Assisted Sample Preparation Method for LC-MS-based Proteomic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianying; Dann, Geoffrey P.; Shi, Tujin

    2012-03-10

    Sodium dodecyl sulfate (SDS) is one of the most popular laboratory reagents used for highly efficient biological sample extraction; however, SDS presents a significant challenge to LC-MS-based proteomic analyses due to its severe interference with reversed-phase LC separations and electrospray ionization interfaces. This study reports a simple SDS-assisted proteomic sample preparation method facilitated by a novel peptide-level SDS removal protocol. After SDS-assisted protein extraction and digestion, SDS was effectively (>99.9%) removed from peptides through ion substitution-mediated DS- precipitation with potassium chloride (KCl) followed by {approx}10 min centrifugation. Excellent peptide recovery (>95%) was observed for less than 20 {mu}g of peptides.more » Further experiments demonstrated the compatibility of this protocol with LC-MS/MS analyses. The resulting proteome coverage from this SDS-assisted protocol was comparable to or better than those obtained from other standard proteomic preparation methods in both mammalian tissues and bacterial samples. These results suggest that this SDS-assisted protocol is a practical, simple, and broadly applicable proteomic sample processing method, which can be particularly useful when dealing with samples difficult to solubilize by other methods.« less

  4. EpiSweep: Computationally Driven Reengineering of Therapeutic Proteins to Reduce Immunogenicity While Maintaining Function.

    PubMed

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E; Bailey-Kellogg, Chris

    2017-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics render them subject to immune surveillance within the patient's body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity.To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure-based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates.

  5. EpiSweep: Computationally-driven Reengineering of Therapeutic Proteins to Reduce immunogenicity while Maintaining Function

    PubMed Central

    Choi, Yoonjoo; Verma, Deeptak; Griswold, Karl E.; Bailey-Kellogg, Chris

    2016-01-01

    Therapeutic proteins are yielding ever more advanced and efficacious new drugs, but the biological origins of these highly effective therapeutics renders them subject to immune surveillance within the patient’s body. When recognized by the immune system as a foreign agent, protein drugs elicit a coordinated response that can manifest a range of clinical complications including rapid drug clearance, loss of functionality and efficacy, delayed infusion-like allergic reactions, more serious anaphylactic shock, and even induced auto-immunity. It is thus often necessary to deimmunize an exogenous protein in order to enable its clinical application; critically, the deimmunization process must also maintain the desired therapeutic activity. To meet the growing need for effective, efficient, and broadly applicable protein deimmunization technologies, we have developed the EpiSweep suite of protein design algorithms. EpiSweep seamlessly integrates computational prediction of immunogenic T cell epitopes with sequence- or structure- based assessment of the impacts of mutations on protein stability and function, in order to select combinations of mutations that make Pareto optimal trade-offs between the competing goals of low immunogenicity and high-level function. The methods are applicable both to the design of individual functionally deimmunized variants as well as the design of combinatorial libraries enriched in functionally deimmunized variants. After validating EpiSweep in a series of retrospective case studies providing comparisons to conventional approaches to T cell epitope deletion, we have experimentally demonstrated it to be highly effective in prospective application to deimmunization of a number of different therapeutic candidates. We conclude that our broadly applicable computational protein design algorithms guide the engineer towards the most promising deimmunized therapeutic candidates, and thereby have the potential to accelerate development of new protein drugs by shortening time frames and improving hit rates. PMID:27914063

  6. Two-Relaxation-Time Lattice Boltzmann Method and its Application to Advective-Diffusive-Reactive Transport

    DOE PAGES

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; ...

    2017-09-05

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less

  7. Two-relaxation-time lattice Boltzmann method and its application to advective-diffusive-reactive transport

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; Hilpert, Markus

    2017-11-01

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments. These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. The TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.

  8. Index of cyber integrity

    NASA Astrophysics Data System (ADS)

    Anderson, Gustave

    2014-05-01

    Unfortunately, there is no metric, nor set of metrics, that are both general enough to encompass all possible types of applications yet specific enough to capture the application and attack specific details. As a result we are left with ad-hoc methods for generating evaluations of the security of our systems. Current state of the art methods for evaluating the security of systems include penetration testing and cyber evaluation tests. For these evaluations, security professionals simulate an attack from malicious outsiders and malicious insiders. These evaluations are very productive and are able to discover potential vulnerabilities resulting from improper system configuration, hardware and software flaws, or operational weaknesses. We therefore propose the index of cyber integrity (ICI), which is modeled after the index of biological integrity (IBI) to provide a holistic measure of the health of a system under test in a cyber-environment. The ICI provides a broad base measure through a collection of application and system specific metrics. In this paper, following the example of the IBI, we demonstrate how a multi-metric index may be used as a holistic measure of the health of a system under test in a cyber-environment.

  9. Shape-Controllable Gold Nanoparticle-MoS2 Hybrids Prepared by Tuning Edge-Active Sites and Surface Structures of MoS2 via Temporally Shaped Femtosecond Pulses.

    PubMed

    Zuo, Pei; Jiang, Lan; Li, Xin; Li, Bo; Xu, Yongda; Shi, Xuesong; Ran, Peng; Ma, Tianbao; Li, Dawei; Qu, Liangti; Lu, Yongfeng; Grigoropoulos, Costas P

    2017-03-01

    Edge-active site control of MoS 2 is crucial for applications such as chemical catalysis, synthesis of functional composites, and biochemical sensing. This work presents a novel nonthermal method to simultaneously tune surface chemical (edge-active sites) and physical (surface periodic micro/nano structures) properties of MoS 2 using temporally shaped femtosecond pulses, through which shape-controlled gold nanoparticles are in situ and self-assembly grown on MoS 2 surfaces to form Au-MoS 2 hybrids. The edge-active sites with unbound sulfurs of laser-treated MoS 2 drive the reduction of gold nanoparticles, while the surface periodic structures of laser-treated MoS 2 assist the shape-controllable growth of gold nanoparticles. The proposed novel method highlights the broad application potential of MoS 2 ; for example, these Au-MoS 2 hybrids exhibit tunable and highly sensitive SERS activity with an enhancement factor up to 1.2 × 10 7 , indicating the marked potential of MoS 2 in future chemical and biological sensing applications.

  10. Two-Relaxation-Time Lattice Boltzmann Method and its Application to Advective-Diffusive-Reactive Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Zhifeng; Yang, Xiaofan; Li, Siliang

    The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less

  11. Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications.

    PubMed

    Hammes, Frederik; Egli, Thomas

    2010-06-01

    Rapid detection of microbial cells is a challenge in microbiology, particularly when complex indigenous communities or subpopulations varying in viability, activity and physiological state are investigated. Flow cytometry (FCM) has developed during the last 30 years into a multidisciplinary technique for analysing bacteria. When used correctly, FCM can provide a broad range of information at the single-cell level, including (but not limited to) total counts, size measurements, nucleic acid content, cell viability and activity, and detection of specific bacterial groups or species. The main advantage of FCM is that it is fast and easy to perform. It is a robust technique, which is adaptable to different types of samples and methods, and has much potential for automation. Hence, numerous FCM applications have emerged in industrial biotechnology, food and pharmaceutical quality control, routine monitoring of drinking water and wastewater systems, and microbial ecological research in soils and natural aquatic habitats. This review focuses on the information that can be gained from the analysis of bacteria in water, highlighting some of the main advantages, pitfalls and applications.

  12. Contour detection improved by context-adaptive surround suppression.

    PubMed

    Sang, Qiang; Cai, Biao; Chen, Hao

    2017-01-01

    Recently, many image processing applications have taken advantage of a psychophysical and neurophysiological mechanism, called "surround suppression" to extract object contour from a natural scene. However, these traditional methods often adopt a single suppression model and a fixed input parameter called "inhibition level", which needs to be manually specified. To overcome these drawbacks, we propose a novel model, called "context-adaptive surround suppression", which can automatically control the effect of surround suppression according to image local contextual features measured by a surface estimator based on a local linear kernel. Moreover, a dynamic suppression method and its stopping mechanism are introduced to avoid manual intervention. The proposed algorithm is demonstrated and validated by a broad range of experimental results.

  13. Expansion of Microbial Forensics.

    PubMed

    Schmedes, Sarah E; Sajantila, Antti; Budowle, Bruce

    2016-08-01

    Microbial forensics has been defined as the discipline of applying scientific methods to the analysis of evidence related to bioterrorism, biocrimes, hoaxes, or the accidental release of a biological agent or toxin for attribution purposes. Over the past 15 years, technology, particularly massively parallel sequencing, and bioinformatics advances now allow the characterization of microorganisms for a variety of human forensic applications, such as human identification, body fluid characterization, postmortem interval estimation, and biocrimes involving tracking of infectious agents. Thus, microbial forensics should be more broadly described as the discipline of applying scientific methods to the analysis of microbial evidence in criminal and civil cases for investigative purposes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Investigation on structural and optical properties of ZnO film prepared by simple wet chemical method

    NASA Astrophysics Data System (ADS)

    Sholehah, Amalia; Mulyadi, Rendi; Haryono, Didied; Muttakin, Imamul; Rusbana, Tb Bahtiar; Mardiyanto

    2018-04-01

    ZnO thin layer has a broad potential application in electronic and optoelectronic devices. In this study, vertically align ZnO layers were deposited on ITO glass using wet chemistry method. The seed layers were prepared using electrodeposition technique at 3°C. The growing process was carried out using chemical bath deposition at 90°C. To improve the structural properties, two different hydrothermal treatment variations were applied separately. From the experiment, it is shown that the hydrothermal process using N2 gas has given the best result, with average diameter, crystallite size, and band-gap energy of 68.83 nm; 56.37 nm; and 3.16 eV, respectively.

  15. Strategies used to guide the design and implementation of a national river monitoring programme in South Africa.

    PubMed

    Roux, D J

    2001-06-01

    This article explores the strategies that were, and are being, used to facilitate the transition from scientific development to operational application of the South African River Health Programme (RHP). Theoretical models from the field of the management of technology are used to provide insight into the dynamics that influence the relationship between the creation and application of environmental programmes, and the RHP in particular. Four key components of the RHP design are analysed, namely the (a) guiding team, (b) concepts, tools and methods, (c) infra-structural innovations and (d) communication. These key components evolved over three broad life stages of the programme, which are called the design, growth and anchoring stages.

  16. State and parameter estimation of spatiotemporally chaotic systems illustrated by an application to Rayleigh-Bénard convection.

    PubMed

    Cornick, Matthew; Hunt, Brian; Ott, Edward; Kurtuldu, Huseyin; Schatz, Michael F

    2009-03-01

    Data assimilation refers to the process of estimating a system's state from a time series of measurements (which may be noisy or incomplete) in conjunction with a model for the system's time evolution. Here we demonstrate the applicability of a recently developed data assimilation method, the local ensemble transform Kalman filter, to nonlinear, high-dimensional, spatiotemporally chaotic flows in Rayleigh-Bénard convection experiments. Using this technique we are able to extract the full temperature and velocity fields from a time series of shadowgraph measurements. In addition, we describe extensions of the algorithm for estimating model parameters. Our results suggest the potential usefulness of our data assimilation technique to a broad class of experimental situations exhibiting spatiotemporal chaos.

  17. NIST biometric evaluations and developments

    NASA Astrophysics Data System (ADS)

    Garris, Michael D.; Wilson, Charles L.

    2005-05-01

    This paper presents an R&D framework used by the National Institute of Standards and Technology (NIST) for biometric technology testing and evaluation. The focus of this paper is on fingerprint-based verification and identification. Since 9-11 the NIST Image Group has been mandated by Congress to run a program for biometric technology assessment and biometric systems certification. Four essential areas of activity are discussed: 1) developing test datasets, 2) conducting performance assessment; 3) technology development; and 4) standards participation. A description of activities and accomplishments are provided for each of these areas. In the process, methods of performance testing are described and results from specific biometric technology evaluations are presented. This framework is anticipated to have broad applicability to other technology and application domains.

  18. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    PubMed

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  19. System safety checklist Skylab program report

    NASA Technical Reports Server (NTRS)

    Mcnail, E. M.

    1974-01-01

    Design criteria statement applicable to a wide variety of flight systems, experiments and other payloads, associated ground support equipment and facility support systems are presented. The document reflects a composite of experience gained throughout the aerospace industry prior to Skylab and additional experience gained during the Skylab Program. It has been prepared to provide current and future program organizations with a broad source of safety-related design criteria and to suggest methods for systematic and progressive application of the criteria beginning with preliminary development of design requirements and specifications. Recognizing the users obligation to shape the checklist to his particular needs, a summary of the historical background, rationale, objectives, development and implementation approach, and benefits based on Skylab experience has been included.

  20. An organic dye with very large Stokes-shift and broad tunability of fluorescence: Potential two-photon probe for bioimaging and ultra-sensitive solid-state gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Tingchao; Tian, Xiaoqing; Lin, Xiaodong, E-mail: linxd@szu.edu.cn, E-mail: hdsun@ntu.edu.sg

    Light-emitting nonlinear optical molecules, especially those with large Stokes shifts and broad tunability of their emission wavelength, have attracted considerable attention for various applications including biomedical imaging and fluorescent sensors. However, most fluorescent chromophores have only limited potential for such applications due to small Stokes shifts, narrow tunability of fluorescence emissions, and small optical nonlinearity in highly polar solvents. In this work, we demonstrate that a two-photon absorbing stilbene chromophore exhibits a large two-photon absorption action cross-section (ηδ = 320 GM) in dimethylsulfoxide (DMSO) and shows broad fluorescence tunability (125 nm) by manipulating the polarity of the surrounding medium. Importantly, a very large Stokesmore » shift of up to 227 nm is achieved in DMSO. Thanks to these features, this chromophore can be utilized as a two-photon probe for bioimaging applications and in an ultrasensitive solid-state gas detector.« less

  1. Sorting Rotating Micromachines by Variations in Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Howell, Taylor A.; Osting, Braxton; Abbott, Jake J.

    2018-05-01

    We consider sorting for the broad class of micromachines (also known as microswimmers, microrobots, micropropellers, etc.) propelled by rotating magnetic fields. We present a control policy that capitalizes on the variation in magnetic properties between otherwise-homogeneous micromachines to enable the sorting of a select fraction of a group from the remainder and prescribe its net relative movement, using a uniform magnetic field that is applied equally to all micromachines. The method enables us to accomplish this sorting task using open-loop control, without relying on a structured environment or localization information of individual micromachines. With our method, the control time to perform the sort is invariant to the number of micromachines. The method is verified through simulations and scaled experiments. Finally, we include an extended discussion about the limitations of the method and address open questions related to its practical application.

  2. Investigation of the Effects of Antibiotic Application on the Intestinal Flora in Elderly Hypertension Patients with Infectious Diseases

    PubMed Central

    SU, Changhai; LIU, Yang; ZHANG, Haiwen; XIAO, Bin; BA, Te’er

    2018-01-01

    Background: This study aimed to investigate the effects of antibiotic application on the intestinal flora in elderly hypertension patients with infectious diseases. Methods: A total of 2350 infected patients treated in Ordos Central Hospital (Inner Mongolia, China) from January 2010 to August 2016 were retrospectively analyzed and 790 healthy hypertension patients were selected as the control group. The 2350 patients were assigned into group A and B based on the administration with narrow-spectrum antibiotic or broad-spectrum antibiotic. The feces specimens of patients at the 1st, 5th, 9th and 14th day after antibiotic treatment were collected to analyze the bacteriological data and the cases of intestinal flora imbalance after applying the narrow-spectrum and broad-spectrum antibiotic were compared and the differences in the bacterial colony compositions of intestinal floras from those of the healthy hypertension patients at the same period were analyzed. Results: The ratio of intestinal flora imbalance was 50.4% after applying antibiotic in patients from group A and 78.3% in group B. grade I and II imbalance were predominant in group A and grade III imbalance was the most severe one in group B (P<0.05). Compared with the intestinal flora in healthy elderly hypertension patients, the ratio of the primary composition flora of patients with imbalanced intestinal flora was changed obviously. Conclusion: The application of narrow-spectrum antibiotic and shortening the application time of antibiotic can more effectively protect the normal intestinal flora of elderly hypertension patients.

  3. An open source Bayesian Monte Carlo isotope mixing model with applications in Earth surface processes

    NASA Astrophysics Data System (ADS)

    Arendt, Carli A.; Aciego, Sarah M.; Hetland, Eric A.

    2015-05-01

    The implementation of isotopic tracers as constraints on source contributions has become increasingly relevant to understanding Earth surface processes. Interpretation of these isotopic tracers has become more accessible with the development of Bayesian Monte Carlo (BMC) mixing models, which allow uncertainty in mixing end-members and provide methodology for systems with multicomponent mixing. This study presents an open source multiple isotope BMC mixing model that is applicable to Earth surface environments with sources exhibiting distinct end-member isotopic signatures. Our model is first applied to new δ18O and δD measurements from the Athabasca Glacier, which showed expected seasonal melt evolution trends and vigorously assessed the statistical relevance of the resulting fraction estimations. To highlight the broad applicability of our model to a variety of Earth surface environments and relevant isotopic systems, we expand our model to two additional case studies: deriving melt sources from δ18O, δD, and 222Rn measurements of Greenland Ice Sheet bulk water samples and assessing nutrient sources from ɛNd and 87Sr/86Sr measurements of Hawaiian soil cores. The model produces results for the Greenland Ice Sheet and Hawaiian soil data sets that are consistent with the originally published fractional contribution estimates. The advantage of this method is that it quantifies the error induced by variability in the end-member compositions, unrealized by the models previously applied to the above case studies. Results from all three case studies demonstrate the broad applicability of this statistical BMC isotopic mixing model for estimating source contribution fractions in a variety of Earth surface systems.

  4. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharti, Amardeep, E-mail: abharti@pu.ac.in; Goyal, Navdeep; Singh, Suman

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  5. CuS nanoplates from ionic liquid precursors—Application in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Kim, Yohan; Heyne, Benjamin; Abouserie, Ahed; Pries, Christopher; Ippen, Christian; Günter, Christina; Taubert, Andreas; Wedel, Armin

    2018-05-01

    Hexagonal p-type semiconductor CuS nanoplates were synthesized via a hot injection method from bis(trimethylsilyl)sulfide and the ionic liquid precursor bis(N-dodecylpyridinium) tetrachloridocuprate(ii). The particles have a broad size distribution with diameters between 30 and 680 nm and well-developed crystal habits. The nanoplates were successfully incorporated into organic photovoltaic (OPV) cells as hole conduction materials. The power conversion efficiency of OPV cells fabricated with the nanoplates is 16% higher than that of a control device fabricated without the nanoplates.

  6. Mass spectrometry for biomarker development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Chaochao; Liu, Tao; Baker, Erin Shammel

    2015-06-19

    Biomarkers potentially play a crucial role in early disease diagnosis, prognosis and targeted therapy. In the past decade, mass spectrometry based proteomics has become increasingly important in biomarker development due to large advances in technology and associated methods. This chapter mainly focuses on the application of broad (e.g. shotgun) proteomics in biomarker discovery and the utility of targeted proteomics in biomarker verification and validation. A range of mass spectrometry methodologies are discussed emphasizing their efficacy in the different stages in biomarker development, with a particular emphasis on blood biomarker development.

  7. In vitro and ex vivo strategies for intracellular delivery

    NASA Astrophysics Data System (ADS)

    Stewart, Martin P.; Sharei, Armon; Ding, Xiaoyun; Sahay, Gaurav; Langer, Robert; Jensen, Klavs F.

    2016-10-01

    Intracellular delivery of materials has become a critical component of genome-editing approaches, ex vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current technologies motivate development of next-generation systems that can deliver a broad variety of cargo to diverse cell types. Here we review in vitro and ex vivo intracellular delivery approaches with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and laboratory-on-chip technology in advancing the field.

  8. Sequencing technologies - the next generation.

    PubMed

    Metzker, Michael L

    2010-01-01

    Demand has never been greater for revolutionary technologies that deliver fast, inexpensive and accurate genome information. This challenge has catalysed the development of next-generation sequencing (NGS) technologies. The inexpensive production of large volumes of sequence data is the primary advantage over conventional methods. Here, I present a technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments. I also outline the broad range of applications for NGS technologies, in addition to providing guidelines for platform selection to address biological questions of interest.

  9. Decarboxylative Fluorination of Aliphatic Carboxylic Acids via Photoredox Catalysis

    PubMed Central

    Ventre, Sandrine; Petronijevic, Filip R.; MacMillan, David W. C.

    2016-01-01

    The direct conversion of aliphatic carboxylic acids to the corresponding alkyl fluorides has been achieved via visible light-promoted photoredox catalysis. This operationally simple, redox-neutral fluorination method is amenable to a wide variety of carboxylic acids. Photon-induced oxidation of carboxylates leads to the formation of carboxyl radicals, which upon rapid CO2-extrusion and F• transfer from a fluorinating reagent yield the desired fluoroalkanes with high efficiency. Experimental evidence indicates that an oxidative quenching pathway is operable in this broadly applicable fluorination protocol. PMID:25881929

  10. Untargeted UPLC-MS Profiling Pipeline to Expand Tissue Metabolome Coverage: Application to Cardiovascular Disease

    PubMed Central

    2015-01-01

    Metabolic profiling studies aim to achieve broad metabolome coverage in specific biological samples. However, wide metabolome coverage has proven difficult to achieve, mostly because of the diverse physicochemical properties of small molecules, obligating analysts to seek multiplatform and multimethod approaches. Challenges are even greater when it comes to applications to tissue samples, where tissue lysis and metabolite extraction can induce significant systematic variation in composition. We have developed a pipeline for obtaining the aqueous and organic compounds from diseased arterial tissue using two consecutive extractions, followed by a different untargeted UPLC-MS analysis method for each extract. Methods were rationally chosen and optimized to address the different physicochemical properties of each extract: hydrophilic interaction liquid chromatography (HILIC) for the aqueous extract and reversed-phase chromatography for the organic. This pipeline can be generic for tissue analysis as demonstrated by applications to different tissue types. The experimental setup and fast turnaround time of the two methods contributed toward obtaining highly reproducible features with exceptional chromatographic performance (CV % < 0.5%), making this pipeline suitable for metabolic profiling applications. We structurally assigned 226 metabolites from a range of chemical classes (e.g., carnitines, α-amino acids, purines, pyrimidines, phospholipids, sphingolipids, free fatty acids, and glycerolipids) which were mapped to their corresponding pathways, biological functions and known disease mechanisms. The combination of the two untargeted UPLC-MS methods showed high metabolite complementarity. We demonstrate the application of this pipeline to cardiovascular disease, where we show that the analyzed diseased groups (n = 120) of arterial tissue could be distinguished based on their metabolic profiles. PMID:25664760

  11. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo.

    PubMed

    Chen, Wenqiang; Luo, Hongchen; Liu, Xingjiang; Foley, James W; Song, Xiangzhi

    2016-04-05

    Glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) are small biomolecular thiols that are present in all cells and extracellular fluids of healthy mammals. It is well-known that each plays a separate, critically important role in human physiology and that abnormal levels of each are predictive of a variety of different disease states. Although a number of fluorescence-based methods have been developed that can detect biomolecules that contain sulfhydryl moieties, few are able to differentiate between GSH and Cys/Hcy. In this report, we demonstrate a broadly applicable approach for the design of fluorescent probes that can achieve this goal. The strategy we employ is to conjugate a fluorescence-quenching 7-nitro-2,1,3-benzoxadiazole (NBD) moiety to a selected fluorophore (Dye) through a sulfhydryl-labile ether linkage to afford nonfluorescent NBD-O-Dye. In the presence of GSH or Cys/Hcy, the ether bond is cleaved with the concomitant generation of both a nonfluorescent NBD-S-R derivative and a fluorescent dye having a characteristic intense emission band (B1). In the special case of Cys/Hcy, the NBD-S-Cys/Hcy cleavage product can undergo a further, rapid, intramolecular Smiles rearrangement to form a new, highly fluorescent NBD-N-Cys/Hcy compound (band B2); because of geometrical constraints, the GSH derived NBD-S-GSH derivative cannot undergo a Smiles rearrangement. Thus, the presence of a single B1 or double B1 + B2 signature can be used to detect and differentiate GSH from Cys/Hcy, respectively. We demonstrate the broad applicability of our approach by including in our studies members of the Flavone, Bodipy, and Coumarin dye families. Particularly, single excitation wavelength could be applied for the probe NBD-OF in the detection of GSH over Cys/Hcy in both aqueous solution and living cells.

  12. Mid-infrared hyperspectral imaging for the detection of explosive compounds

    NASA Astrophysics Data System (ADS)

    Ruxton, K.; Robertson, G.; Miller, W.; Malcolm, G. P. A.; Maker, G. T.

    2012-10-01

    Active hyperspectral imaging is a valuable tool in a wide range of applications. A developing market is the detection and identification of energetic compounds through analysis of the resulting absorption spectrum. This work presents a selection of results from a prototype mid-infrared (MWIR) hyperspectral imaging instrument that has successfully been used for compound detection at a range of standoff distances. Active hyperspectral imaging utilises a broadly tunable laser source to illuminate the scene with light over a range of wavelengths. While there are a number of illumination methods, this work illuminates the scene by raster scanning the laser beam using a pair of galvanometric mirrors. The resulting backscattered light from the scene is collected by the same mirrors and directed and focussed onto a suitable single-point detector, where the image is constructed pixel by pixel. The imaging instrument that was developed in this work is based around a MWIR optical parametric oscillator (OPO) source with broad tunability, operating at 2.6 μm to 3.7 μm. Due to material handling procedures associated with explosive compounds, experimental work was undertaken initially using simulant compounds. A second set of compounds that was tested alongside the simulant compounds is a range of confusion compounds. By having the broad wavelength tunability of the OPO, extended absorption spectra of the compounds could be obtained to aid in compound identification. The prototype imager instrument has successfully been used to record the absorption spectra for a range of compounds from the simulant and confusion sets and current work is now investigating actual explosive compounds. The authors see a very promising outlook for the MWIR hyperspectral imager. From an applications point of view this format of imaging instrument could be used for a range of standoff, improvised explosive device (IED) detection applications and potential incident scene forensic investigation.

  13. Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics

    PubMed Central

    Weber, Marc; Teeling, Hanno; Huang, Sixing; Waldmann, Jost; Kassabgy, Mariette; Fuchs, Bernhard M; Klindworth, Anna; Klockow, Christine; Wichels, Antje; Gerdts, Gunnar; Amann, Rudolf; Glöckner, Frank Oliver

    2011-01-01

    Next-generation sequencing (NGS) technologies have enabled the application of broad-scale sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes. However, both approaches remain isolated, as long as the taxonomic and functional information cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation, demonstrate its potential and practicability, and provide a web-based service for public usage. Evaluation with published data sets mimicking varyingly complex habitats resulted into classification specificities and sensitivities of close to 100% to above 90% from phylum to genus level for assemblies exceeding 8 kb for low and medium complexity data. When applied to five real-world metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters, classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and confirming high classification specificities. This was validated by two protein-based classifications (PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb with high accuracy and thus assists in linking biodiversity and functions in metagenome studies, which is a precondition to study microbial ecology in a holistic fashion. PMID:21160538

  14. Structure and information in spatial segregation

    PubMed Central

    2017-01-01

    Ethnoracial residential segregation is a complex, multiscalar phenomenon with immense moral and economic costs. Modeling the structure and dynamics of segregation is a pressing problem for sociology and urban planning, but existing methods have limitations. In this paper, we develop a suite of methods, grounded in information theory, for studying the spatial structure of segregation. We first advance existing profile and decomposition methods by posing two related regionalization methods, which allow for profile curves with nonconstant spatial scale and decomposition analysis with nonarbitrary areal units. We then formulate a measure of local spatial scale, which may be used for both detailed, within-city analysis and intercity comparisons. These methods highlight detailed insights in the structure and dynamics of urban segregation that would be otherwise easy to miss or difficult to quantify. They are computationally efficient, applicable to a broad range of study questions, and freely available in open source software. PMID:29078323

  15. Structure and information in spatial segregation.

    PubMed

    Chodrow, Philip S

    2017-10-31

    Ethnoracial residential segregation is a complex, multiscalar phenomenon with immense moral and economic costs. Modeling the structure and dynamics of segregation is a pressing problem for sociology and urban planning, but existing methods have limitations. In this paper, we develop a suite of methods, grounded in information theory, for studying the spatial structure of segregation. We first advance existing profile and decomposition methods by posing two related regionalization methods, which allow for profile curves with nonconstant spatial scale and decomposition analysis with nonarbitrary areal units. We then formulate a measure of local spatial scale, which may be used for both detailed, within-city analysis and intercity comparisons. These methods highlight detailed insights in the structure and dynamics of urban segregation that would be otherwise easy to miss or difficult to quantify. They are computationally efficient, applicable to a broad range of study questions, and freely available in open source software. Published under the PNAS license.

  16. A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity.

    PubMed

    Buryska, Tomas; Babkova, Petra; Vavra, Ondrej; Damborsky, Jiri; Prokop, Zbynek

    2018-01-15

    The haloalkane dehalogenase enzyme DmmA was identified by marine metagenomic screening. Determination of its crystal structure revealed an unusually large active site compared to those of previously characterized haloalkane dehalogenases. Here we present a biochemical characterization of this interesting enzyme with emphasis on its structure-function relationships. DmmA exhibited an exceptionally broad substrate specificity and degraded several halogenated environmental pollutants that are resistant to other members of this enzyme family. In addition to having this unique substrate specificity, the enzyme was highly tolerant to organic cosolvents such as dimethyl sulfoxide, methanol, and acetone. Its broad substrate specificity, high overexpression yield (200 mg of protein per liter of cultivation medium; 50% of total protein), good tolerance to organic cosolvents, and a broad pH range make DmmA an attractive biocatalyst for various biotechnological applications. IMPORTANCE We present a thorough biochemical characterization of the haloalkane dehalogenase DmmA from a marine metagenome. This enzyme with an unusually large active site shows remarkably broad substrate specificity, high overexpression, significant tolerance to organic cosolvents, and activity under a broad range of pH conditions. DmmA is an attractive catalyst for sustainable biotechnology applications, e.g., biocatalysis, biosensing, and biodegradation of halogenated pollutants. We also report its ability to convert multiple halogenated compounds to corresponding polyalcohols. Copyright © 2018 American Society for Microbiology.

  17. 28 CFR 40.5 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 28 Judicial Administration 1 2013-07-01 2013-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...

  18. 28 CFR 40.5 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 28 Judicial Administration 1 2011-07-01 2011-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...

  19. 28 CFR 40.5 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 28 Judicial Administration 1 2014-07-01 2014-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...

  20. 28 CFR 40.5 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...

  1. 28 CFR 40.5 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 28 Judicial Administration 1 2012-07-01 2012-07-01 false Applicability. 40.5 Section 40.5 Judicial Administration DEPARTMENT OF JUSTICE STANDARDS FOR INMATE GRIEVANCE PROCEDURES Minimum Standards for Inmate Grievance Procedures § 40.5 Applicability. The grievance procedure shall be applicable to a broad range of...

  2. Modern analytical methods for the detection of food fraud and adulteration by food category.

    PubMed

    Hong, Eunyoung; Lee, Sang Yoo; Jeong, Jae Yun; Park, Jung Min; Kim, Byung Hee; Kwon, Kisung; Chun, Hyang Sook

    2017-09-01

    This review provides current information on the analytical methods used to identify food adulteration in the six most adulterated food categories: animal origin and seafood, oils and fats, beverages, spices and sweet foods (e.g. honey), grain-based food, and others (organic food and dietary supplements). The analytical techniques (both conventional and emerging) used to identify adulteration in these six food categories involve sensory, physicochemical, DNA-based, chromatographic and spectroscopic methods, and have been combined with chemometrics, making these techniques more convenient and effective for the analysis of a broad variety of food products. Despite recent advances, the need remains for suitably sensitive and widely applicable methodologies that encompass all the various aspects of food adulteration. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  4. Triaxial Measurement Method for Analysis of Residual Stress after High Feed Milling by X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Čuma, Matúš; Török, Jozef; Telišková, Monika

    2016-12-01

    Surface integrity is a broad term which includes various quality factors affecting the functional properties of parts. Residual stress is one of these factors. Machining generates residual stresses in the surface and subsurface layers of the structural elements. X-ray diffractometry is a non-destructive method applicable for the measurement of residual stresses in surface and subsurface layers of components. The article is focused on the non-destructive progressive method of triaxial measurement of residual stress after machining the surface of sample by high feed milling technology. Significance of triaxial measuring is the capability of measuring in different angles so it is possible to acquire stress tensor containing normal and shear stress components acting in the spot of measuring, using a Cartesian coordinate system.

  5. Automated analysis of clonal cancer cells by intravital imaging

    PubMed Central

    Coffey, Sarah Earley; Giedt, Randy J; Weissleder, Ralph

    2013-01-01

    Longitudinal analyses of single cell lineages over prolonged periods have been challenging particularly in processes characterized by high cell turn-over such as inflammation, proliferation, or cancer. RGB marking has emerged as an elegant approach for enabling such investigations. However, methods for automated image analysis continue to be lacking. Here, to address this, we created a number of different multicolored poly- and monoclonal cancer cell lines for in vitro and in vivo use. To classify these cells in large scale data sets, we subsequently developed and tested an automated algorithm based on hue selection. Our results showed that this method allows accurate analyses at a fraction of the computational time required by more complex color classification methods. Moreover, the methodology should be broadly applicable to both in vitro and in vivo analyses. PMID:24349895

  6. Wind tunnel simulation of air pollution dispersion in a street canyon.

    PubMed

    Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek

    2002-01-01

    Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.

  7. Impact of Monoenergetic Photon Sources on Nonproliferation Applications Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, Cameron; Ludewigt, Bernhard; Valentine, John

    Near-monoenergetic photon sources (MPSs) have the potential to improve sensitivity at greatly reduced dose in existing applications and enable new capabilities in other applications, particularly where passive signatures do not penetrate or are insufficiently accurate. MPS advantages include the ability to select energy, energy spread, flux, and pulse structures to deliver only the photons needed for the application, while suppressing extraneous dose and background. Some MPSs also offer narrow angular divergence photon beams which can target dose and/or mitigate scattering contributions to image contrast degradation. Current bremsstrahlung photon sources (e.g., linacs and betatrons) produce photons over a broad range ofmore » energies, thus delivering unnecessary dose that in some cases also interferes with the signature to be detected and/or restricts operations. Current sources must be collimated (reducing flux) to generate narrow divergence beams. While MPSs can in principle resolve these issues, they remain at relatively low TRL status. Candidate MPS technologies for nonproliferation applications are now being developed, each of which has different properties (e.g. broad vs. narrow angular divergence). Within each technology, source parameters trade off against one another (e.g. flux vs. energy spread), representing a large operation space. This report describes a broad survey of potential applications, identification of high priority applications, and detailed simulations addressing those priority applications. Requirements were derived for each application, and analysis and simulations were conducted to define MPS parameters that deliver benefit. The results can inform targeting of MPS development to deliver strong impact relative to current systems.« less

  8. Pathogenic human viruses in coastal waters

    USGS Publications Warehouse

    Griffin, Dale W.; Donaldson, Kim A.; Paul, J.H.; Rose, Joan B.

    2003-01-01

    This review addresses both historical and recent investigations into viral contamination of marine waters. With the relatively recent emergence of molecular biology-based assays, a number of investigations have shown that pathogenic viruses are prevalent in marine waters being impacted by sewage. Research has shown that this group of fecal-oral viral pathogens (enteroviruses, hepatitis A viruses, Norwalk viruses, reoviruses, adenoviruses, rotaviruses, etc.) can cause a broad range of asymptomatic to severe gastrointestinal, respiratory, and eye, nose, ear, and skin infections in people exposed through recreational use of the water. The viruses and the nucleic acid signature survive for an extended period in the marine environment. One of the primary concerns of public health officials is the relationship between the presence of pathogens and the recreational risk to human health in polluted marine environments. While a number of studies have attempted to address this issue, the relationship is still poorly understood. A contributing factor to our lack of progress in the field has been the lack of sensitive methods to detect the broad range of both bacterial and viral pathogens. The application of new and advanced molecular methods will continue to contribute to our current state of knowledge in this emerging and

  9. Parallel evaluation of broad virus detection methods.

    PubMed

    Modrof, Jens; Berting, Andreas; Kreil, Thomas R

    2014-01-01

    The testing for adventitious viruses is of critical importance during development and production of biological products. The recent emergence and ongoing development of broad virus detection methods calls for an evaluation of whether these methods can appropriately be implemented into current adventitious agent testing procedures. To assess the suitability of several broad virus detection methods, a comparative experimental study was conducted: four virus preparations, which were spiked at two different concentrations each into two different cell culture media, were sent to four investigators in a blinded fashion for analysis with broad virus detection methods such as polymerase chain reaction-electrospray ionization mass spectrometry (PCR-ESI/MS), microarray, and two approaches utilizing massively parallel sequencing. The results that were reported by the investigators revealed that all methods were able to identify the majority of samples correctly (mean 83%), with a surprisingly narrow range among the methods, that is, between 72% (PCR-ESI/MS) and 95% (microarray). In addition to the correct results, a variety of unexpected assignments were reported for a minority of samples, again with little variation regarding the methods used (range 20-45%), while false negatives were reported for 0-25% of the samples. Regarding assay sensitivity, the viruses were detected by all methods included in this study at concentrations of about 4-5 log10 quantitative PCR copies/mL, and probably with higher sensitivity in some cases. In summary, the broad virus detection methods investigated were shown to be suitable even for detection of relatively low virus concentrations. However, there is also some potential for the production of false-positive as well as false-negative assignments, which indicates the requirement for further improvements before these methods can be considered for routine use. © PDA, Inc. 2014.

  10. Applications of multi-frequency single beam sonar fisheries analysis methods for seep quantification and characterization

    NASA Astrophysics Data System (ADS)

    Price, V.; Weber, T.; Jerram, K.; Doucet, M.

    2016-12-01

    The analysis of multi-frequency, narrow-band single-beam acoustic data for fisheries applications has long been established, with methodology focusing on characterizing targets in the water column by utilizing complex algorithms and false-color time series data to create and compare frequency response curves for dissimilar biological groups. These methods were built on concepts developed for multi-frequency analysis of satellite imagery for terrestrial analysis and have been applied to a broad range of data types and applications. Single-beam systems operating at multiple frequencies are also used for the detection and identification of seeps in water column data. Here we incorporate the same analysis and visualization techniques used for fisheries applications to attempt to characterize and quantify seeps by creating and comparing frequency response curves and applying false coloration to shallow and deep multi-channel seep data. From this information, we can establish methods to differentiate bubble size in the echogram and differentiate seep composition. These techniques are also useful in differentiating plume content from biological noise (volume reverberation) created by euphausid layers and fish with gas-filled swim bladders. The combining of the multiple frequencies using false coloring and other image analysis techniques after applying established normalization and beam pattern correction algorithms is a novel approach to quantitatively describing seeps. Further, this information could be paired with geological models, backscatter, and bathymetry data to assess seep distribution.

  11. Development and application of traffic flow information collecting and analysis system based on multi-type video

    NASA Astrophysics Data System (ADS)

    Lu, Mujie; Shang, Wenjie; Ji, Xinkai; Hua, Mingzhuang; Cheng, Kuo

    2015-12-01

    Nowadays, intelligent transportation system (ITS) has already become the new direction of transportation development. Traffic data, as a fundamental part of intelligent transportation system, is having a more and more crucial status. In recent years, video observation technology has been widely used in the field of traffic information collecting. Traffic flow information contained in video data has many advantages which is comprehensive and can be stored for a long time, but there are still many problems, such as low precision and high cost in the process of collecting information. This paper aiming at these problems, proposes a kind of traffic target detection method with broad applicability. Based on three different ways of getting video data, such as aerial photography, fixed camera and handheld camera, we develop a kind of intelligent analysis software which can be used to extract the macroscopic, microscopic traffic flow information in the video, and the information can be used for traffic analysis and transportation planning. For road intersections, the system uses frame difference method to extract traffic information, for freeway sections, the system uses optical flow method to track the vehicles. The system was applied in Nanjing, Jiangsu province, and the application shows that the system for extracting different types of traffic flow information has a high accuracy, it can meet the needs of traffic engineering observations and has a good application prospect.

  12. Crystalline, Highly Oriented MOF Thin Film: the Fabrication and Application.

    PubMed

    Fu, Zhihua; Xu, Gang

    2017-05-01

    The thin film of metal-organic frameworks (MOFs) is a rapidly developing research area which has tremendous potential applications in many fields. One of the major challenges in this area is to fabricate MOF thin film with good crystallinity, high orientation and well-controlled thickness. In order to address this challenge, different appealing approaches have been studied intensively. Among various oriented MOF films, many efforts have also been devoted to developing novel properties and broad applications, such as in gas separator, thermoelectric, storage medium and photovoltaics. As a result, there has been a large demand for fundamental studies that can provide guidance and experimental data for further applications. In this account, we intend to present an overview of current synthetic methods for fabricating oriented crystalline MOF thin film and bring some updated applications. We give our perspective on the background, preparation and applications that led to the developments in this area and discuss the opportunities and challenges of using crystalline, highly oriented MOF thin film. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Method Designed to Respect Molecular Heterogeneity Can Profoundly Correct Present Data Interpretations for Genome-Wide Expression Analysis

    PubMed Central

    Chen, Chih-Hao; Hsu, Chueh-Lin; Huang, Shih-Hao; Chen, Shih-Yuan; Hung, Yi-Lin; Chen, Hsiao-Rong; Wu, Yu-Chung

    2015-01-01

    Although genome-wide expression analysis has become a routine tool for gaining insight into molecular mechanisms, extraction of information remains a major challenge. It has been unclear why standard statistical methods, such as the t-test and ANOVA, often lead to low levels of reproducibility, how likely applying fold-change cutoffs to enhance reproducibility is to miss key signals, and how adversely using such methods has affected data interpretations. We broadly examined expression data to investigate the reproducibility problem and discovered that molecular heterogeneity, a biological property of genetically different samples, has been improperly handled by the statistical methods. Here we give a mathematical description of the discovery and report the development of a statistical method, named HTA, for better handling molecular heterogeneity. We broadly demonstrate the improved sensitivity and specificity of HTA over the conventional methods and show that using fold-change cutoffs has lost much information. We illustrate the especial usefulness of HTA for heterogeneous diseases, by applying it to existing data sets of schizophrenia, bipolar disorder and Parkinson’s disease, and show it can abundantly and reproducibly uncover disease signatures not previously detectable. Based on 156 biological data sets, we estimate that the methodological issue has affected over 96% of expression studies and that HTA can profoundly correct 86% of the affected data interpretations. The methodological advancement can better facilitate systems understandings of biological processes, render biological inferences that are more reliable than they have hitherto been and engender translational medical applications, such as identifying diagnostic biomarkers and drug prediction, which are more robust. PMID:25793610

  14. Controlling chaos faster.

    PubMed

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  15. Energy diffusion controlled reaction rate of reacting particle driven by broad-band noise

    NASA Astrophysics Data System (ADS)

    Deng, M. L.; Zhu, W. Q.

    2007-10-01

    The energy diffusion controlled reaction rate of a reacting particle with linear weak damping and broad-band noise excitation is studied by using the stochastic averaging method. First, the stochastic averaging method for strongly nonlinear oscillators under broad-band noise excitation using generalized harmonic functions is briefly introduced. Then, the reaction rate of the classical Kramers' reacting model with linear weak damping and broad-band noise excitation is investigated by using the stochastic averaging method. The averaged Itô stochastic differential equation describing the energy diffusion and the Pontryagin equation governing the mean first-passage time (MFPT) are established. The energy diffusion controlled reaction rate is obtained as the inverse of the MFPT by solving the Pontryagin equation. The results of two special cases of broad-band noises, i.e. the harmonic noise and the exponentially corrected noise, are discussed in details. It is demonstrated that the general expression of reaction rate derived by the authors can be reduced to the classical ones via linear approximation and high potential barrier approximation. The good agreement with the results of the Monte Carlo simulation verifies that the reaction rate can be well predicted using the stochastic averaging method.

  16. Forensic Science in Support of Wildlife Conservation Efforts - Genetic Approaches (Global Trends).

    PubMed

    Linacre, A

    2011-01-01

    Wildlife forensic science is a relatively recent development to meet the increasing need of the criminal justice system where there are investigations in alleged transgressions of either international or national legislation. This application of science draws on conservation genetics and forensic geneticists from mainstream forensic science. This review is a broad overview of the history of forensic wildlife science and some of the recent developments in forensic wildlife genetics with the application of DNA developments to nonhuman samples encountered in a forensic science investigation. The review will move from methods to look at the entire genome, when there is no previous knowledge of the species studied, through methods of species identification, using DNA to determine a possible geographic origin, through to assigning samples to a particular individual or a close genetic relative of this individual. The transfer of research methods into the criminal justice system for the investigation of wildlife crimes has been largely successful as is illustrated in the review. The review concludes with comments on the need for standardization and regulation in wildlife forensic science. Copyright © 2011 Central Police University.

  17. Dosage delivery of sensitive reagents enables glove-box-free synthesis

    NASA Astrophysics Data System (ADS)

    Sather, Aaron C.; Lee, Hong Geun; Colombe, James R.; Zhang, Anni; Buchwald, Stephen L.

    2015-08-01

    Contemporary organic chemists employ a broad range of catalytic and stoichiometric methods to construct molecules for applications in the material sciences, and as pharmaceuticals, agrochemicals, and sensors. The utility of a synthetic method may be greatly reduced if it relies on a glove box to enable the use of air- and moisture-sensitive reagents or catalysts. Furthermore, many synthetic chemistry laboratories have numerous containers of partially used reagents that have been spoiled by exposure to the ambient atmosphere. This is exceptionally wasteful from both an environmental and a cost perspective. Here we report an encapsulation method for stabilizing and storing air- and moisture-sensitive compounds. We demonstrate this approach in three contexts, by describing single-use capsules that contain all of the reagents (catalysts, ligands, and bases) necessary for the glove-box-free palladium-catalysed carbon-fluorine, carbon-nitrogen, and carbon-carbon bond-forming reactions. This strategy should reduce the number of error-prone, tedious and time-consuming weighing procedures required for such syntheses and should be applicable to a wide range of reagents, catalysts, and substrate combinations.

  18. Systematic generation of buffer systems for pH gradient ion exchange chromatography and their application.

    PubMed

    Kröner, Frieder; Hubbuch, Jürgen

    2013-04-12

    pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Proteome-Wide Profiling of Targets of Cysteine reactive Small Molecules by Using Ethynyl Benziodoxolone Reagents.

    PubMed

    Abegg, Daniel; Frei, Reto; Cerato, Luca; Prasad Hari, Durga; Wang, Chao; Waser, Jerome; Adibekian, Alexander

    2015-09-07

    In this study, we present a highly efficient method for proteomic profiling of cysteine residues in complex proteomes and in living cells. Our method is based on alkynylation of cysteines in complex proteomes using a "clickable" alkynyl benziodoxolone bearing an azide group. This reaction proceeds fast, under mild physiological conditions, and with a very high degree of chemoselectivity. The formed azide-capped alkynyl-cysteine adducts are readily detectable by LC-MS/MS, and can be further functionalized with TAMRA or biotin alkyne via CuAAC. We demonstrate the utility of alkynyl benziodoxolones for chemical proteomics applications by identifying the proteomic targets of curcumin, a diarylheptanoid natural product that was and still is part of multiple human clinical trials as anticancer agent. Our results demonstrate that curcumin covalently modifies several key players of cellular signaling and metabolism, most notably the enzyme casein kinase I gamma. We anticipate that this new method for cysteine profiling will find broad application in chemical proteomics and drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Broad-band flared horn with low sidelobes. [applicable to cosmic background radiation measurement

    NASA Technical Reports Server (NTRS)

    Mather, J. C.

    1981-01-01

    A circular horn antenna flared like a trumpet is analyzed with the geometrical theory of diffraction and then tested experimentally. Sidelobes are found to be extremely low (-75 dB), in agreement with theory. Low sidelobe performance is predicted to be broad-band and to improve at higher frequencies. The full aperture of the tested horn is approximately 50 wavelengths. Suggestions for even better low sidelobe antennas are made. The applicability of this horn to the measurement of cosmic background radiation is noted.

  1. Broad application and optimization of a single wash-step for integrated endotoxin depletion during protein purification.

    PubMed

    Koziel, David; Michaelis, Uwe; Kruse, Tobias

    2018-08-01

    Endotoxins contaminate proteins that are produced in E. coli. High levels of endotoxins can influence cellular assays and cause severe adverse effects when administered to humans. Thus, endotoxin removal is important in protein purification for academic research and in GMP manufacturing of biopharmaceuticals. Several methods exist to remove endotoxin, but often require additional downstream-processing steps, decrease protein yield and are costly. These disadvantages can be avoided by using an integrated endotoxin depletion (iED) wash-step that utilizes Triton X-114 (TX114). In this paper, we show that the iED wash-step is broadly applicable in most commonly used chromatographies: it reduces endotoxin by a factor of 10 3 to 10 6 during NiNTA-, MBP-, SAC-, GST-, Protein A and CEX-chromatography but not during AEX or HIC-chromatography. We characterized the iED wash-step using Design of Experiments (DoE) and identified optimal experimental conditions for application scenarios that are relevant to academic research or industrial GMP manufacturing. A single iED wash-step with 0.75% (v/v) TX114 added to the feed and wash buffer can reduce endotoxin levels to below 2 EU/ml or deplete most endotoxin while keeping the manufacturing costs as low as possible. The comprehensive characterization enables academia and industry to widely adopt the iED wash-step for a routine, efficient and cost-effective depletion of endotoxin during protein purification at any scale. Copyright © 2018. Published by Elsevier B.V.

  2. Analyzing the dynamics of cell cycle processes from fixed samples through ergodic principles

    PubMed Central

    Wheeler, Richard John

    2015-01-01

    Tools to analyze cyclical cellular processes, particularly the cell cycle, are of broad value for cell biology. Cell cycle synchronization and live-cell time-lapse observation are widely used to analyze these processes but are not available for many systems. Simple mathematical methods built on the ergodic principle are a well-established, widely applicable, and powerful alternative analysis approach, although they are less widely used. These methods extract data about the dynamics of a cyclical process from a single time-point “snapshot” of a population of cells progressing through the cycle asynchronously. Here, I demonstrate application of these simple mathematical methods to analysis of basic cyclical processes—cycles including a division event, cell populations undergoing unicellular aging, and cell cycles with multiple fission (schizogony)—as well as recent advances that allow detailed mapping of the cell cycle from continuously changing properties of the cell such as size and DNA content. This includes examples using existing data from mammalian, yeast, and unicellular eukaryotic parasite cell biology. Through the ongoing advances in high-throughput cell analysis by light microscopy, electron microscopy, and flow cytometry, these mathematical methods are becoming ever more important and are a powerful complementary method to traditional synchronization and time-lapse cell cycle analysis methods. PMID:26543196

  3. Filtration Characterization Method as Tool to Assess Membrane Bioreactor Sludge Filterability—The Delft Experience

    PubMed Central

    Lousada-Ferreira, Maria; Krzeminski, Pawel; Geilvoet, Stefan; Moreau, Adrien; Gil, Jose A.; Evenblij, Herman; van Lier, Jules B.; van der Graaf, Jaap H. J. M.

    2014-01-01

    Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs), responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability and critical flux are described, commented and evaluated. Both parameters characterize the fouling potential in full-scale MBRs. The article focuses on the Delft Filtration Characterization method (DFCm) as a convenient tool to characterize sludge properties, namely on data processing, accuracy, reproducibility, reliability, and applicability, defining the boundaries of the DFCm. Significant progress was made concerning fouling measurements in particular by using straight forward approaches focusing on the applicability of the obtained results. Nevertheless, a fouling measurement method is still to be defined which is capable of being unequivocal, concerning the fouling parameters definitions; practical and simple, in terms of set-up and operation; broad and useful, in terms of obtained results. A step forward would be the standardization of the aforementioned method to assess the sludge filtration quality. PMID:24957174

  4. A moment-convergence method for stochastic analysis of biochemical reaction networks.

    PubMed

    Zhang, Jiajun; Nie, Qing; Zhou, Tianshou

    2016-05-21

    Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.

  5. Life cycle-based water assessment of a hand dishwashing product: opportunities and limitations.

    PubMed

    Van Hoof, Gert; Buyle, Bea; Kounina, Anna; Humbert, Sebastien

    2013-10-01

    It is only recently that life cycle-based indicators have been used to evaluate products from a water use impact perspective. The applicability of some of these methods has been primarily demonstrated on agricultural materials or products, because irrigation requirements in food production can be water-intensive. In view of an increasing interest on life cycle-based water indicators from different products, we ran a study on a hand dishwashing product. A number of water assessment methods were applied with the purpose of identifying both product improvement opportunities, as well as understanding the potential for underlying database and methodological improvements. The study covered the entire life cycle of the product and focused on environmental issues related to water use, looking in-depth at inventory, midpoint, and endpoint methods. "Traditional" water emission driven methods, such as freshwater eutrophication, were excluded from the analysis. The use of a single formula with the same global supply chain, manufactured in 1 location was evaluated in 2 countries with different water scarcity conditions. The study shows differences ranging up to 4 orders in magnitude for indicators with similar units associated with different water use types (inventory methods) and different cause-effect chain models (midpoint and endpoint impact categories). No uncertainty information was available on the impact assessment methods, whereas uncertainty from stochastic variability was not available at the time of study. For the majority of the indicators studied, the contribution from the consumer use stage is the most important (>90%), driven by both direct water use (dishwashing process) as well as indirect water use (electricity generation to heat the water). Creating consumer awareness on how the product is used, particularly in water-scarce areas, is the largest improvement opportunity for a hand dishwashing product. However, spatial differentiation in the inventory and impact assessment model may lead to very different results for the product used under exactly the same consumer use conditions, making the communication of results a real challenge. From a practitioner's perspective, the data collection step in relation to the goal and scope of the study sets high requirements for both foreground and background data. In particular, databases covering a broad spectrum of inventory data with spatially differentiated water use information are lacking. For some impact methods, it is unknown as to whether or not characterization factors should be spatially differentiated, which creates uncertainty in their interpretation and applicability. Finally, broad application of life cycle-based water assessment will require further development of commercial life cycle assessment software. © 2013 SETAC.

  6. Tunable optical coherence tomography in the infrared range using visible photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna V.; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2018-04-01

    Optical coherence tomography (OCT) is an appealing technique for bio-imaging, medicine, and material analysis. For many applications, OCT in mid- and far-infrared (IR) leads to significantly more accurate results. Reported mid-IR OCT systems require light sources and photodetectors which operate in mid-IR range. These devices are expensive and need cryogenic cooling. Here, we report a proof-of-concept demonstration of a wavelength tunable IR OCT technique with detection of only visible range photons. Our method is based on the nonlinear interference of frequency correlated photon pairs. The nonlinear crystal, introduced in the Michelson-type interferometer, generates photon pairs with one photon in the visible and another in the IR range. The intensity of detected visible photons depends on the phase and loss of IR photons, which interact with the sample under study. This enables us to characterize sample properties and perform imaging in the IR range by detecting visible photons. The technique possesses broad wavelength tunability and yields a fair axial and lateral resolution, which can be tailored to the specific application. The work contributes to the development of versatile 3D imaging and material characterization systems working in a broad range of IR wavelengths, which do not require the use of IR-range light sources and photodetectors.

  7. Conditional moment closure for two-phase flows - A review of recent developments and application to various spray combustion configurations

    NASA Astrophysics Data System (ADS)

    Wright, Y. M.; Bolla, M.; Boulouchos, K.; Borghesi, G.; Mastorakos, E.

    2015-01-01

    Energy conversion devices of practical interest such as engines or combustors operate in highly turbulent flow regimes. Due to the nature of the hydrocarbon fuels employed, the oxidation chemistry involves a broad range of time-scales some of which cannot be decoupled from the flow. Among the approaches utilised to tackle the modelling of turbulent combustion, Conditional Moment Closure (CMC), belonging to the computationally efficient class of presumed PDF methods, has shown great potential. For single-phase flows it has been demonstrated on non-premixed turbulent lifted and opposed jets, lifted flames and auto-igniting jets. Here we seek to review recent advances in both modelling and application of CMC for auto-ignition of fuel sprays. The experiments chosen for code validation and model improvement include generic spray test rigs with dimensions of passenger car as well as large two-stroke marine engines. Data for a broad range of operating conditions of a heavy-duty truck engine is additionally employed to assess the predictive capability of the model with respect to NOx emissions. An outlook on future enhancements including e.g. LES-CMC formulation also for two-phase flows as well as developments in the field of soot emissions are summarised briefly.

  8. Correlative atomic force microscopy quantitative imaging-laser scanning confocal microscopy quantifies the impact of stressors on live cells in real-time.

    PubMed

    Bhat, Supriya V; Sultana, Taranum; Körnig, André; McGrath, Seamus; Shahina, Zinnat; Dahms, Tanya E S

    2018-05-29

    There is an urgent need to assess the effect of anthropogenic chemicals on model cells prior to their release, helping to predict their potential impact on the environment and human health. Laser scanning confocal microscopy (LSCM) and atomic force microscopy (AFM) have each provided an abundance of information on cell physiology. In addition to determining surface architecture, AFM in quantitative imaging (QI) mode probes surface biochemistry and cellular mechanics using minimal applied force, while LSCM offers a window into the cell for imaging fluorescently tagged macromolecules. Correlative AFM-LSCM produces complimentary information on different cellular characteristics for a comprehensive picture of cellular behaviour. We present a correlative AFM-QI-LSCM assay for the simultaneous real-time imaging of living cells in situ, producing multiplexed data on cell morphology and mechanics, surface adhesion and ultrastructure, and real-time localization of multiple fluorescently tagged macromolecules. To demonstrate the broad applicability of this method for disparate cell types, we show altered surface properties, internal molecular arrangement and oxidative stress in model bacterial, fungal and human cells exposed to 2,4-dichlorophenoxyacetic acid. AFM-QI-LSCM is broadly applicable to a variety of cell types and can be used to assess the impact of any multitude of contaminants, alone or in combination.

  9. Extension of the Bgl Broad Group Cross Section Library

    NASA Astrophysics Data System (ADS)

    Kirilova, Desislava; Belousov, Sergey; Ilieva, Krassimira

    2009-08-01

    The broad group cross-section libraries BUGLE and BGL are applied for reactor shielding calculation using the DOORS package based on discrete ordinates method and multigroup approximation of the neutron cross-sections. BUGLE and BGL libraries are problem oriented for PWR or VVER type of reactors respectively. They had been generated by collapsing the problem independent fine group library VITAMIN-B6 applying PWR and VVER one-dimensional radial model of the reactor middle plane using the SCALE software package. The surveillance assemblies (SA) of VVER-1000/320 are located on the baffle above the reactor core upper edge in a region where geometry and materials differ from those of the middle plane and the neutron field gradient is very high which would result in a different neutron spectrum. That is why the application of the fore-mentioned libraries for the neutron fluence calculation in the region of SA could lead to an additional inaccuracy. This was the main reason to study the necessity for an extension of the BGL library with cross-sections appropriate for the SA region. Comparative analysis of the neutron spectra of the SA region calculated by the VITAMIN-B6 and BGL libraries using the two-dimensional code DORT have been done with purpose to evaluate the BGL applicability for SA calculation.

  10. A broad-spectrum, efficient and nontransgenic approach to control plant viruses by application of salicylic acid and jasmonic acid.

    PubMed

    Shang, Jing; Xi, De-Hui; Xu, Fei; Wang, Shao-Dong; Cao, Sen; Xu, Mo-Yun; Zhao, Ping-Ping; Wang, Jian-Hui; Jia, Shu-Dan; Zhang, Zhong-Wei; Yuan, Shu; Lin, Hong-Hui

    2011-02-01

    Plant viruses cause many diseases that lead to significant economic losses. However, most of the approaches to control plant viruses, including transgenic processes or drugs are plant-species-limited or virus-species-limited, and not very effective. We introduce an application of jasmonic acid (JA) and salicylic acid (SA), a broad-spectrum, efficient and nontransgenic method, to improve plant resistance to RNA viruses. Applying 0.06 mM JA and then 0.1 mM SA 24 h later, enhanced resistance to Cucumber mosaic virus (CMV), Tobacco mosaic virus (TMV) and Turnip crinkle virus (TCV) in Arabidopsis, tobacco, tomato and hot pepper. The inhibition efficiency to virus replication usually achieved up to 80-90%. The putative molecular mechanism was investigated. Some possible factors affecting the synergism of JA and SA have been defined, including WRKY53, WRKY70, PDF1.2, MPK4, MPK2, MPK3, MPK5, MPK12, MPK14, MKK1, MKK2, and MKK6. All genes involving in the synergism of JA and SA were investigated. This approach is safe to human beings and environmentally friendly and shows potential as a strong tool for crop protection against plant viruses.

  11. Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching

    NASA Astrophysics Data System (ADS)

    Dai, Yawei; Bao, Wenzhong; Hu, Linfeng; Liu, Chunsen; Yan, Xiao; Chen, Lin; Sun, Qingqing; Ding, Shijin; Zhou, Peng; Zhang, David Wei

    2017-06-01

    Two-dimensional layered materials (2DLMs) have attracted broad interest from fundamental sciences to industrial applications. Their applications in memory devices have been demonstrated, yet much still remains to explore optimal materials and device structure for practical application. In this work, a forming-free, bipolar resistive switching behavior are demonstrated in 2D TiO2-based resistive random access memory (RRAM). Physical adsorption method is adopted to achieve high quality, continuous 2D TiO2 network efficiently. The 2D TiO2 RRAM devices exhibit superior properties such as fast switching capability (20 ns of erase operation) and extremely low erase energy consumption (0.16 fJ). Furthermore, the resistive switching mechanism is attributed to the formation and rupture of oxygen vacancies-based percolation path in 2D TiO2 crystals. Our results pave the way for the implementation of high performance 2DLMs-based RRAM in the next generation non-volatile memory (NVM) application.

  12. Advances and perspectives in the application of CRISPR/Cas9 in insects.

    PubMed

    Chen, Lei; Wang, Gui; Zhu, Ya-Nan; Xiang, Hui; Wang, Wen

    2016-07-18

    Insects compose more than half of all living organisms on earth, playing essential roles in global ecosystems and forming complex relationships with humans. Insect research has significant biological and practical importance. However, the application of genetic manipulation technology has long been restricted to several model insects only, such as gene knockout in Drosophila, which has severely restrained the development of insect biology research. Recently, with the increase in the release of insect genome data and the introduction of the CRISPR/Cas9 system for efficient genetic modification, it has been possible to conduct meaningful functional studies in a broad array of insect species. Here, we summarize the advances in CRISPR/Cas9 in different insect species, discuss methods for its promotion, and consider its application in future insect studies. This review provides detailed information about the application of the CRISPR/Cas9 system in insect research and presents possible ways to improve its use in functional studies and insect pest control.

  13. Advances and perspectives in the application of CRISPR/Cas9 in insects

    PubMed Central

    CHEN, Lei; WANG, Gui; ZHU, Ya-Nan; XIANG, Hui; WANG, Wen

    2016-01-01

    Insects compose more than half of all living organisms on earth, playing essential roles in global ecosystems and forming complex relationships with humans. Insect research has significant biological and practical importance. However, the application of genetic manipulation technology has long been restricted to several model insects only, such as gene knockout in Drosophila, which has severely restrained the development of insect biology research. Recently, with the increase in the release of insect genome data and the introduction of the CRISPR/Cas9 system for efficient genetic modification, it has been possible to conduct meaningful functional studies in a broad array of insect species. Here, we summarize the advances in CRISPR/Cas9 in different insect species, discuss methods for its promotion, and consider its application in future insect studies. This review provides detailed information about the application of the CRISPR/Cas9 system in insect research and presents possible ways to improve its use in functional studies and insect pest control. PMID:27469253

  14. Telemedicine: legal and licensure issues

    NASA Astrophysics Data System (ADS)

    Wood, Michael B.; Whelan, Leo J.

    1995-10-01

    The National Information Infrastructure program offers a great opportunity for the United States to capitalize on remarkable technological advancements over a broad range of applications benefiting society. One such application, telemedicine, has the potential to offer widespread access to sophisticated medical care, curtailed health care delivery costs, and homogeneous health and health-related educational opportunities. However, there are a variety of barriers to widespread application of telemedicine once the technical infrastructure of the information highway is well established and ubiquitous. These barriers include technical limitations, reimbursement issues, equipment and networking costs, and appropriate scientific studies to document efficacy and cost effectiveness. These issues may prove to be only transient disincentives which can be surmounted. Additional barriers exist, however, that may not be as readily resolved by traditional methods of analysis and more widespread practice applications. These political and regulatory obstacles will require clarification of the issues and solutions based on national consensus. It is the purpose of this discussion to amplify on these particular barriers which include licensure and tort jurisdiction.

  15. Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition.

    PubMed

    Liu, Yuanyuan; Shang, Fanhua; Fan, Wei; Cheng, James; Cheng, Hong

    2016-12-01

    Low-rank tensor completion (LRTC) has successfully been applied to a wide range of real-world problems. Despite the broad, successful applications, existing LRTC methods may become very slow or even not applicable for large-scale problems. To address this issue, a novel core tensor trace-norm minimization (CTNM) method is proposed for simultaneous tensor learning and decomposition, and has a much lower computational complexity. In our solution, first, the equivalence relation of trace norm of a low-rank tensor and its core tensor is induced. Second, the trace norm of the core tensor is used to replace that of the whole tensor, which leads to two much smaller scale matrix TNM problems. Finally, an efficient alternating direction augmented Lagrangian method is developed to solve our problems. Our CTNM formulation needs only O((R N +NRI)log(√{I N })) observations to reliably recover an N th-order I×I×…×I tensor of n -rank (r,r,…,r) , compared with O(rI N-1 ) observations required by those tensor TNM methods ( I > R ≥ r ). Extensive experimental results show that CTNM is usually more accurate than them, and is orders of magnitude faster.

  16. Theory and practice of conventional adventitious virus testing.

    PubMed

    Gregersen, Jens-Peter

    2011-01-01

    CONFERENCE PROCEEDING Proceedings of the PDA/FDA Adventitious Viruses in Biologics: Detection and Mitigation Strategies Workshop in Bethesda, MD, USA; December 1-3, 2010 Guest Editors: Arifa Khan (Bethesda, MD), Patricia Hughes (Bethesda, MD) and Michael Wiebe (San Francisco, CA) For decades conventional tests in cell cultures and in laboratory animals have served as standard methods for broad-spectrum screening for adventitious viruses. New virus detection methods based on molecular biology have broadened and improved our knowledge about potential contaminating viruses and about the suitability of the conventional test methods. This paper summarizes and discusses practical aspects of conventional test schemes, such as detectability of various viruses, questionable or false-positive results, animal numbers needed, time and cost of testing, and applicability for rapidly changing starting materials. Strategies to improve the virus safety of biological medicinal products are proposed. The strategies should be based upon a flexible application of existing and new methods along with a scientifically based risk assessment. However, testing alone does not guarantee the absence of adventitious agents and must be accompanied by virus removing or virus inactivating process steps for critical starting materials, raw materials, and for the drug product.

  17. Quantification of antioxidants by using chlorpromazine hydrochloride: application of the method to food and medicinal plant samples.

    PubMed

    Nagaraja, Padmarajaiah; Aradhana, Narayanan; Suma, Aandamurthy; Shivakumar, Anantharaman; Chamaraja, Nelligere Arkeshwaraiah

    2014-01-01

    Chlorpromazine hydrochloride (CPH) (3-(2-chloro-phenothiazine-10-yl)-propyl] dimethylamine hydrochloride) has been the subject of a large number of studies employing a broad spectrum of oxidants, and chosen to examine the course of electron transfer reactions. We report on a method to determine the antioxidant activity of some food and medicinal plants using the oxidation of CPH by chromium(VI) to form a stable CPH radical in the 1:1 orthophosphoric acid-ethyl alcohol (OPA-EtOH) medium. The pink color of the control solution was measured at λ(max) of 530 nm. Nine standard antioxidants have been studied by this method, along with the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. The EC50, TEC50, antioxidant efficacy and the stoichiometric values for antioxidants have been evaluated. The radical scavenging activity expressed as EC50 ranged from 9.2 μg/mL in Camellia sinensis to 448.18 μg/mL in Cuminum cyminum. The application of a simple and versatile antioxidant capacity assay for dietary polyphenols and medicinal plant extracts, which are commonly used in Ayurveda opens its relevance in the field of antioxidant analysis.

  18. Rapid Flow-Based Peptide Synthesis

    PubMed Central

    Simon, Mark D.; Heider, Patrick L.; Adamo, Andrea; Vinogradov, Alexander A.; Mong, Surin K.; Li, Xiyuan; Berger, Tatiana; Policarpo, Rocco L.; Zhang, Chi; Zou, Yekui; Liao, Xiaoli; Spokoyny, Alexander M.; Jensen, Klavs F.

    2014-01-01

    A flow-based solid phase peptide synthesis methodology that enables the incorporation of an amino acid residue every 1.8 minutes under automatic control, or every three minutes under manual control, is described. This is accomplished by passing a stream of reagent through a heat exchanger, into a low volume, low backpressure reaction vessel, and through a UV detector. These features enable the continuous delivery of heated solvents and reagents to the solid support at high flow rate, maintaining a maximal concentration of reagents in the reaction vessel, quickly exchanging reagents, and eliminating the need to rapidly heat reagents after they have been added to the vessel. The UV detector enables continuous monitoring of the process. To demonstrate the broad applicability and reliability of this method, it was employed in the total synthesis of a small protein, as well as dozens of peptides. The quality of the material obtained with this method is comparable to traditional batch methods, and, in all cases, the desired material was readily purifiable via RP-HPLC. The application of this method to the synthesis of the 113 residue B. amyloliquefaciens RNase and the 130 residue pE59 DARPin is described in the accompanying manuscript. PMID:24616230

  19. A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection.

    PubMed

    Song, Yun S; Steinrücken, Matthias

    2012-03-01

    The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.

  20. Networking—a statistical physics perspective

    NASA Astrophysics Data System (ADS)

    Yeung, Chi Ho; Saad, David

    2013-03-01

    Networking encompasses a variety of tasks related to the communication of information on networks; it has a substantial economic and societal impact on a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption requires new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with nonlinear large-scale systems. This review aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.

  1. A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection

    PubMed Central

    Song, Yun S.; Steinrücken, Matthias

    2012-01-01

    The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance. PMID:22209899

  2. Application of carbohydrate arrays coupled with mass spectrometry to detect activity of plant-polysaccharide degradative enzymes from the fungus Aspergillus niger

    PubMed Central

    van Munster, Jolanda M.; Thomas, Baptiste; Riese, Michel; Davis, Adrienne L.; Gray, Christopher J.; Archer, David B.; Flitsch, Sabine L.

    2017-01-01

    Renewables-based biotechnology depends on enzymes to degrade plant lignocellulose to simple sugars that are converted to fuels or high-value products. Identification and characterization of such lignocellulose degradative enzymes could be fast-tracked by availability of an enzyme activity measurement method that is fast, label-free, uses minimal resources and allows direct identification of generated products. We developed such a method by applying carbohydrate arrays coupled with MALDI-ToF mass spectrometry to identify reaction products of carbohydrate active enzymes (CAZymes) of the filamentous fungus Aspergillus niger. We describe the production and characterization of plant polysaccharide-derived oligosaccharides and their attachment to hydrophobic self-assembling monolayers on a gold target. We verify effectiveness of this array for detecting exo- and endo-acting glycoside hydrolase activity using commercial enzymes, and demonstrate how this platform is suitable for detection of enzyme activity in relevant biological samples, the culture filtrate of A. niger grown on wheat straw. In conclusion, this versatile method is broadly applicable in screening and characterisation of activity of CAZymes, such as fungal enzymes for plant lignocellulose degradation with relevance to biotechnological applications as biofuel production, the food and animal feed industry. PMID:28220903

  3. Characterization of microcracks by application of digital image correlation to SPM images

    NASA Astrophysics Data System (ADS)

    Keller, Juergen; Gollhardt, Astrid; Vogel, Dietmar; Michel, Bernd

    2004-07-01

    With the development of micro- and nanotechnological products such as sensors, MEMS/NEMS and their broad application in a variety of market segments new reliability issues will arise. The increasing interface-to-volume ratio in highly integrated systems and nanoparticle filled materials and unsolved questions of size effect of nanomaterials are challenges for experimental reliability evaluation. To fulfill this needs the authors developed the nanoDAC method (nano Deformation Analysis by Correlation), which allows the determination and evaluation of 2D displacement fields based on scanning probe microscopy (SPM) data. In-situ SPM scans of the analyzed object are carried out at different thermo-mechanical load states. The obtained topography-, phase- or error-images are compared utilizing grayscale cross correlation algorithms. This allows the tracking of local image patterns of the analyzed surface structure. The measurement results of the nanoDAC method are full-field displacement and strain fields. Due to the application of SPM equipment deformations in the micro-, nanometer range can be easily detected. The method can be performed on bulk materials, thin films and on devices i.e microelectronic components, sensors or MEMS/NEMS. Furthermore, the characterization and evaluation of micro- and nanocracks or defects in bulk materials, thin layers and at material interfaces can be carried out.

  4. The Uncertainties on the GIS Based Land Suitability Assessment for Urban and Rural Planning

    NASA Astrophysics Data System (ADS)

    Liu, H.; Zhan, Q.; Zhan, M.

    2017-09-01

    The majority of the research on the uncertainties of spatial data and spatial analysis focuses on some specific data feature or analysis tool. Few have accomplished the uncertainties of the whole process of an application like planning, making the research of uncertainties detached from practical applications. The paper discusses the uncertainties of the geographical information systems (GIS) based land suitability assessment in planning on the basis of literature review. The uncertainties considered range from index system establishment to the classification of the final result. Methods to reduce the uncertainties arise from the discretization of continuous raster data and the index weight determination are summarized. The paper analyzes the merits and demerits of the "Nature Breaks" method which is broadly used by planners. It also explores the other factors which impact the accuracy of the final classification like the selection of class numbers, intervals and the autocorrelation of the spatial data. In the conclusion part, the paper indicates that the adoption of machine learning methods should be modified to integrate the complexity of land suitability assessment. The work contributes to the application of spatial data and spatial analysis uncertainty research on land suitability assessment, and promotes the scientific level of the later planning and decision-making.

  5. An improved UHPLC-UV method for separation and quantification of carotenoids in vegetable crops.

    PubMed

    Maurer, Megan M; Mein, Jonathan R; Chaudhuri, Swapan K; Constant, Howard L

    2014-12-15

    Carotenoid identification and quantitation is critical for the development of improved nutrition plant varieties. Industrial analysis of carotenoids is typically carried out on multiple crops with potentially thousands of samples per crop, placing critical needs on speed and broad utility of the analytical methods. Current chromatographic methods for carotenoid analysis have had limited industrial application due to their low throughput, requiring up to 60 min for complete separation of all compounds. We have developed an improved UHPLC-UV method that resolves all major carotenoids found in broccoli (Brassica oleracea L. var. italica), carrot (Daucus carota), corn (Zea mays), and tomato (Solanum lycopersicum). The chromatographic method is completed in 13.5 min allowing for the resolution of the 11 carotenoids of interest, including the structural isomers lutein/zeaxanthin and α-/β-carotene. Additional minor carotenoids have also been separated and identified with this method, demonstrating the utility of this method across major commercial food crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Highly broad-specific and sensitive enzyme-linked immunosorbent assay for screening sulfonamides: Assay optimization and application to milk samples

    USDA-ARS?s Scientific Manuscript database

    A broad-specific and sensitive immunoassay for the detection of sulfonamides was developed by optimizing the conditions of an enzyme-linked immunosorbent assay (ELISA) in regard to different monoclonal antibodies (MAbs), assay format, immunoreagents, and several physicochemical factors (pH, salt, de...

  7. Broad-specificity immunoassay for O,O-diethyl organophosphorus pesticides: Application of molecular modeling to improve assay sensitivity and study antibody recognition

    USDA-ARS?s Scientific Manuscript database

    A monoclonal antibody (MAb) against 4-(diethoxyphosphorothioyloxy)benzoic acid (hapten 1) was raised and used to develop a broad-specificity competitive indirect enzyme-linked immunosorbent assay (ciELISA) for 14 O,O-diethyl organophosphorus pesticides (OPs). Computer-assisted molecular modeling was...

  8. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.

    PubMed

    Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin

    2017-03-22

    The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.

  9. Guidelines for Genome-Scale Analysis of Biological Rhythms.

    PubMed

    Hughes, Michael E; Abruzzi, Katherine C; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M Fernanda; Chen, Zheng; Chiu, Joanna C; Cox, Juergen; Crowell, Alexander M; DeBruyne, Jason P; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J; Duffield, Giles E; Dunlap, Jay C; Eckel-Mahan, Kristin; Esser, Karyn A; FitzGerald, Garret A; Forger, Daniel B; Francey, Lauren J; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H; Herzel, Hanspeter; Herzog, Erik D; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J; Hurley, Jennifer M; de la Iglesia, Horacio O; Johnson, Carl; Kay, Steve A; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A; Li, Jiajia; Li, Xiaodong; Liu, Andrew C; Loros, Jennifer J; Martino, Tami A; Menet, Jerome S; Merrow, Martha; Millar, Andrew J; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N; Olmedo, Maria; Nusinow, Dmitri A; Ptáček, Louis J; Rand, David; Reddy, Akhilesh B; Robles, Maria S; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D; Rund, Samuel S C; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J; Storch, Kai-Florian; Takahashi, Joseph S; Ueda, Hiroki R; Wang, Han; Weitz, Charles; Westermark, Pål O; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B

    2017-10-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.

  10. Guidelines for Genome-Scale Analysis of Biological Rhythms

    PubMed Central

    Hughes, Michael E.; Abruzzi, Katherine C.; Allada, Ravi; Anafi, Ron; Arpat, Alaaddin Bulak; Asher, Gad; Baldi, Pierre; de Bekker, Charissa; Bell-Pedersen, Deborah; Blau, Justin; Brown, Steve; Ceriani, M. Fernanda; Chen, Zheng; Chiu, Joanna C.; Cox, Juergen; Crowell, Alexander M.; DeBruyne, Jason P.; Dijk, Derk-Jan; DiTacchio, Luciano; Doyle, Francis J.; Duffield, Giles E.; Dunlap, Jay C.; Eckel-Mahan, Kristin; Esser, Karyn A.; FitzGerald, Garret A.; Forger, Daniel B.; Francey, Lauren J.; Fu, Ying-Hui; Gachon, Frédéric; Gatfield, David; de Goede, Paul; Golden, Susan S.; Green, Carla; Harer, John; Harmer, Stacey; Haspel, Jeff; Hastings, Michael H.; Herzel, Hanspeter; Herzog, Erik D.; Hoffmann, Christy; Hong, Christian; Hughey, Jacob J.; Hurley, Jennifer M.; de la Iglesia, Horacio O.; Johnson, Carl; Kay, Steve A.; Koike, Nobuya; Kornacker, Karl; Kramer, Achim; Lamia, Katja; Leise, Tanya; Lewis, Scott A.; Li, Jiajia; Li, Xiaodong; Liu, Andrew C.; Loros, Jennifer J.; Martino, Tami A.; Menet, Jerome S.; Merrow, Martha; Millar, Andrew J.; Mockler, Todd; Naef, Felix; Nagoshi, Emi; Nitabach, Michael N.; Olmedo, Maria; Nusinow, Dmitri A.; Ptáček, Louis J.; Rand, David; Reddy, Akhilesh B.; Robles, Maria S.; Roenneberg, Till; Rosbash, Michael; Ruben, Marc D.; Rund, Samuel S.C.; Sancar, Aziz; Sassone-Corsi, Paolo; Sehgal, Amita; Sherrill-Mix, Scott; Skene, Debra J.; Storch, Kai-Florian; Takahashi, Joseph S.; Ueda, Hiroki R.; Wang, Han; Weitz, Charles; Westermark, Pål O.; Wijnen, Herman; Xu, Ying; Wu, Gang; Yoo, Seung-Hee; Young, Michael; Zhang, Eric Erquan; Zielinski, Tomasz; Hogenesch, John B.

    2017-01-01

    Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them. PMID:29098954

  11. Fabrication of ultra-fine nanostructures using edge transfer printing.

    PubMed

    Xue, Mianqi; Li, Fengwang; Cao, Tingbing

    2012-03-21

    The exploration of new methods and techniques for application in diverse fields, such as photonics, microfluidics, biotechnology and flexible electronics is of increasing scientific and technical interest for multiple uses over distance of 10-100 nm. This article discusses edge transfer printing--a series of unconventional methods derived from soft lithography for nanofabrication. It possesses the advantages of easy fabrication, low-cost and great serviceability. In this paper, we show how to produce exposed edges and use various materials for edge transfer printing, while nanoskiving, nanotransfer edge printing and tunable cracking for nanogaps are introduced. Besides this, different functional materials, such as metals, inorganic semiconductors and polymers, as well as localised heating and charge patterning, are described here as unconventional "inks" for printing. Edge transfer printing, which can effectively produce sub-100 nm scale ultra-fine structures, has broad applications, including metallic nanowires as nanoelectrodes, semiconductor nanowires for chemical sensors, heterostructures of organic semiconductors, plasmonic devices and so forth. This journal is © The Royal Society of Chemistry 2012

  12. Damage Identification in Beam Structure using Spatial Continuous Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Janeliukstis, R.; Rucevskis, S.; Wesolowski, M.; Kovalovs, A.; Chate, A.

    2015-11-01

    In this paper the applicability of spatial continuous wavelet transform (CWT) technique for damage identification in the beam structure is analyzed by application of different types of wavelet functions and scaling factors. The proposed method uses exclusively mode shape data from the damaged structure. To examine limitations of the method and to ascertain its sensitivity to noisy experimental data, several sets of simulated data are analyzed. Simulated test cases include numerical mode shapes corrupted by different levels of random noise as well as mode shapes with different number of measurement points used for wavelet transform. A broad comparison of ability of different wavelet functions to detect and locate damage in beam structure is given. Effectiveness and robustness of the proposed algorithms are demonstrated experimentally on two aluminum beams containing single mill-cut damage. The modal frequencies and the corresponding mode shapes are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer with PZT actuator as vibration excitation source for the experimental study.

  13. Current characterization methods for cellulose nanomaterials.

    PubMed

    Foster, E Johan; Moon, Robert J; Agarwal, Umesh P; Bortner, Michael J; Bras, Julien; Camarero-Espinosa, Sandra; Chan, Kathleen J; Clift, Martin J D; Cranston, Emily D; Eichhorn, Stephen J; Fox, Douglas M; Hamad, Wadood Y; Heux, Laurent; Jean, Bruno; Korey, Matthew; Nieh, World; Ong, Kimberly J; Reid, Michael S; Renneckar, Scott; Roberts, Rose; Shatkin, Jo Anne; Simonsen, John; Stinson-Bagby, Kelly; Wanasekara, Nandula; Youngblood, Jeff

    2018-04-23

    A new family of materials comprised of cellulose, cellulose nanomaterials (CNMs), having properties and functionalities distinct from molecular cellulose and wood pulp, is being developed for applications that were once thought impossible for cellulosic materials. Commercialization, paralleled by research in this field, is fueled by the unique combination of characteristics, such as high on-axis stiffness, sustainability, scalability, and mechanical reinforcement of a wide variety of materials, leading to their utility across a broad spectrum of high-performance material applications. However, with this exponential growth in interest/activity, the development of measurement protocols necessary for consistent, reliable and accurate materials characterization has been outpaced. These protocols, developed in the broader research community, are critical for the advancement in understanding, process optimization, and utilization of CNMs in materials development. This review establishes detailed best practices, methods and techniques for characterizing CNM particle morphology, surface chemistry, surface charge, purity, crystallinity, rheological properties, mechanical properties, and toxicity for two distinct forms of CNMs: cellulose nanocrystals and cellulose nanofibrils.

  14. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry.

    PubMed

    Wang, Huai-Song; Song, Min; Hang, Tai-Jun

    2016-02-10

    The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.

  15. High Efficiency CRISPR/Cas9-mediated Gene Editing in Primary Human T-cells Using Mutant Adenoviral E4orf6/E1b55k "Helper" Proteins.

    PubMed

    Gwiazda, Kamila S; Grier, Alexandra E; Sahni, Jaya; Burleigh, Stephen M; Martin, Unja; Yang, Julia G; Popp, Nicholas A; Krutein, Michelle C; Khan, Iram F; Jacoby, Kyle; Jensen, Michael C; Rawlings, David J; Scharenberg, Andrew M

    2016-09-29

    Many future therapeutic applications of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 and related RNA-guided nucleases are likely to require their use to promote gene targeting, thus necessitating development of methods that provide for delivery of three components-Cas9, guide RNAs and recombination templates-to primary cells rendered proficient for homology-directed repair. Here, we demonstrate an electroporation/transduction codelivery method that utilizes mRNA to express both Cas9 and mutant adenoviral E4orf6 and E1b55k helper proteins in association with adeno-associated virus (AAV) vectors expressing guide RNAs and recombination templates. By transiently enhancing target cell permissiveness to AAV transduction and gene editing efficiency, this novel approach promotes efficient gene disruption and/or gene targeting at multiple loci in primary human T-cells, illustrating its broad potential for application in translational gene editing.

  16. Characterization of Low Pressure Cold Plasma in the Cleaning of Contaminated Surfaces

    NASA Technical Reports Server (NTRS)

    Lanz, Devin Garrett; Hintze, Paul E.

    2016-01-01

    The characterization of low pressure cold plasma is a broad topic which would benefit many different applications involving such plasma. The characterization described in this paper focuses on cold plasma used as a medium in cleaning and disinfection applications. Optical Emission Spectroscopy (OES) and Mass Spectrometry (MS) are the two analytical methods used in this paper to characterize the plasma. OES analyzes molecules in the plasma phase by displaying the light emitted by the plasma molecules on a graph of wavelength vs. intensity. OES was most useful in identifying species which may interact with other molecules in the plasma, such as atomic oxygen or hydroxide radicals. Extracting useful data from the MS is done by filtering out the peaks generated by expected molecules and looking for peaks caused by foreign ones leaving the plasma chamber. This paper describes the efforts at setting up and testing these methods in order to accurately and effectively characterize the plasma.

  17. Controlling Kink Geometry in Nanowires Fabricated by Alternating Metal-Assisted Chemical Etching.

    PubMed

    Chen, Yun; Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Xin; Gao, Jian; Wong, Ching-Ping

    2017-02-08

    Kinked silicon (Si) nanowires (NWs) have many special properties that make them attractive for a number of applications, such as microfluidics devices, microelectronic devices, and biosensors. However, fabricating NWs with controlled three-dimensional (3D) geometry has been challenging. In this work, a novel method called alternating metal-assisted chemical etching is reported for the fabrication of kinked Si NWs with controlled 3D geometry. By the use of multiple etchants with carefully selected composition, one can control the number of kinks, their locations, and their angles by controlling the number of etchant alternations and the time in each etchant. The resulting number of kinks equals the number times the etchant is alternated, the length of each segment separated by kinks has a linear relationship with the etching time, and the kinking angle is related to the surface tension and viscosity of the etchants. This facile method may provide a feasible and economical way to fabricate novel silicon nanowires, nanostructures, and devices for broad applications.

  18. Proposed Standardized Neurological Endpoints for Cardiovascular Clinical Trials: An Academic Research Consortium Initiative.

    PubMed

    Lansky, Alexandra J; Messé, Steven R; Brickman, Adam M; Dwyer, Michael; van der Worp, H Bart; Lazar, Ronald M; Pietras, Cody G; Abrams, Kevin J; McFadden, Eugene; Petersen, Nils H; Browndyke, Jeffrey; Prendergast, Bernard; Ng, Vivian G; Cutlip, Donald E; Kapadia, Samir; Krucoff, Mitchell W; Linke, Axel; Moy, Claudia Scala; Schofer, Joachim; van Es, Gerrit-Anne; Virmani, Renu; Popma, Jeffrey; Parides, Michael K; Kodali, Susheel; Bilello, Michel; Zivadinov, Robert; Akar, Joseph; Furie, Karen L; Gress, Daryl; Voros, Szilard; Moses, Jeffrey; Greer, David; Forrest, John K; Holmes, David; Kappetein, Arie P; Mack, Michael; Baumbach, Andreas

    2017-02-14

    Surgical and catheter-based cardiovascular procedures and adjunctive pharmacology have an inherent risk of neurological complications. The current diversity of neurological endpoint definitions and ascertainment methods in clinical trials has led to uncertainties in the neurological risk attributable to cardiovascular procedures and inconsistent evaluation of therapies intended to prevent or mitigate neurological injury. Benefit-risk assessment of such procedures should be on the basis of an evaluation of well-defined neurological outcomes that are ascertained with consistent methods and capture the full spectrum of neurovascular injury and its clinical effect. The Neurologic Academic Research Consortium is an international collaboration intended to establish consensus on the definition, classification, and assessment of neurological endpoints applicable to clinical trials of a broad range of cardiovascular interventions. Systematic application of the proposed definitions and assessments will improve our ability to evaluate the risks of cardiovascular procedures and the safety and effectiveness of preventive therapies. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Magnetic Nanoparticles for Antibiotics Detection

    PubMed Central

    Cristea, Cecilia; Tertis, Mihaela; Galatus, Ramona

    2017-01-01

    Widespread use of antibiotics has led to pollution of waterways, potentially creating resistance among freshwater bacterial communities. Microorganisms resistant to commonly prescribed antibiotics (superbug) have dramatically increased over the last decades. The presence of antibiotics in waters, in food and beverages in both their un-metabolized and metabolized forms are of interest for humans. This is due to daily exposure in small quantities, that, when accumulated, could lead to development of drug resistance to antibiotics, or multiply the risk of allergic reaction. Conventional analytical methods used to quantify antibiotics are relatively expensive and generally require long analysis time associated with the difficulties to perform field analyses. In this context, electrochemical and optical based sensing devices are of interest, offering great potentials for a broad range of analytical applications. This review will focus on the application of magnetic nanoparticles in the design of different analytical methods, mainly sensors, used for the detection of antibiotics in different matrices (human fluids, the environmental, food and beverages samples). PMID:28538684

  20. On the Active and Passive Flow Separation Control Techniques over Airfoils

    NASA Astrophysics Data System (ADS)

    Moghaddam, Tohid; Banazadeh Neishabouri, Nafiseh

    2017-10-01

    In the present work, recent advances in the field of the active and passive flow separation control, particularly blowing and suction flow control techniques, applied on the common airfoils are briefly reviewed. This broad research area has remained the point of interest for many years as it is applicable to various applications. The suction and blowing flow control methods, among other methods, are more technically feasible and market ready techniques. It is well established that the uniform and/or oscillatory blowing and suction flow control mechanisms significantly improve the lift-to-drag ratio, and further, postpone the boundary layer separation as well as the stall. The oscillatory blowing and suction flow control, however, is more efficient compared to the uniform one. A wide range of parameters is involved in controlling the behavior of a blowing and/or suction flow control, including the location, length, and angle of the jet slots. The oscillation range of the jet slot is another substantial parameter.

  1. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.

    PubMed

    Salahinejad, Maryam

    2015-01-01

    Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.

  2. Using foresight methods to anticipate future threats: the case of disease management.

    PubMed

    Ma, Sai; Seid, Michael

    2006-01-01

    We describe a unique foresight framework for health care managers to use in longer-term planning. This framework uses scenario-building to envision plausible alternate futures of the U.S. health care system and links those broad futures to business-model-specific "load-bearing" assumptions. Because the framework we describe simultaneously addresses very broad and very specific issues, it can be easily applied to a broad range of health care issues by using the broad framework and business-specific assumptions for the particular case at hand. We illustrate this method using the case of disease management, pointing out that although the industry continues to grow rapidly, its future also contains great uncertainties.

  3. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB–siRNA conjugates

    PubMed Central

    Cuellar, Trinna L.; Barnes, Dwight; Nelson, Christopher; Tanguay, Joshua; Yu, Shang-Fan; Wen, Xiaohui; Scales, Suzie J.; Gesch, Julie; Davis, David; van Brabant Smith, Anja; Leake, Devin; Vandlen, Richard; Siebel, Christian W.

    2015-01-01

    Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody–siRNA complexes provide a possible solution. However, initial reports of antibody–siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody–siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges. PMID:25550431

  4. Mathematic modeling the relationship of bacteria number in a dairy product and the color difference measured by a CCD image sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen; Zhao, Zhigang; Chen, Dongkui; Liu, Yuping

    2005-01-01

    Although many methods, such as bacteria plate count, flow cytometry and impedance method have been broadly used in the dairy industry to quantitate bacteria numbers around the world, none of them is a quick, low cost and easy one. In this study, we proposed to apply the color difference theory in this field to establish a mathematic model to quantitate bacteria number in fresh milk. Preliminary testing results not only indicate that the application of the color difference theory to the new system is practical, but also confirm the theoretical relationship between the numbers of bacteria, incubation time and color difference. The proof of the principal study in this article further suggests that the novel method has the potential to replace the traditional methods to determine bacteria numbers for the food industry.

  5. Charge carrier mobility in thin films of organic semiconductors by the gated van der Pauw method

    PubMed Central

    Rolin, Cedric; Kang, Enpu; Lee, Jeong-Hwan; Borghs, Gustaaf; Heremans, Paul; Genoe, Jan

    2017-01-01

    Thin film transistors based on high-mobility organic semiconductors are prone to contact problems that complicate the interpretation of their electrical characteristics and the extraction of important material parameters such as the charge carrier mobility. Here we report on the gated van der Pauw method for the simple and accurate determination of the electrical characteristics of thin semiconducting films, independently from contact effects. We test our method on thin films of seven high-mobility organic semiconductors of both polarities: device fabrication is fully compatible with common transistor process flows and device measurements deliver consistent and precise values for the charge carrier mobility and threshold voltage in the high-charge carrier density regime that is representative of transistor operation. The gated van der Pauw method is broadly applicable to thin films of semiconductors and enables a simple and clean parameter extraction independent from contact effects. PMID:28397852

  6. Regularization of the double period method for experimental data processing

    NASA Astrophysics Data System (ADS)

    Belov, A. A.; Kalitkin, N. N.

    2017-11-01

    In physical and technical applications, an important task is to process experimental curves measured with large errors. Such problems are solved by applying regularization methods, in which success depends on the mathematician's intuition. We propose an approximation based on the double period method developed for smooth nonperiodic functions. Tikhonov's stabilizer with a squared second derivative is used for regularization. As a result, the spurious oscillations are suppressed and the shape of an experimental curve is accurately represented. This approach offers a universal strategy for solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear reactions important for controlled thermonuclear fusion. Tables recommended as reference data are obtained. These results are used to calculate the reaction rates, which are approximated in a way convenient for gasdynamic codes. These approximations are superior to previously known formulas in the covered temperature range and accuracy.

  7. Use of superparamagnetic beads for the isolation of a peptide with specificity to cymbidium mosaic virus.

    PubMed

    Ooi, Diana Jia Miin; Dzulkurnain, Adriya; Othman, Rofina Yasmin; Lim, Saw Hoon; Harikrishna, Jennifer Ann

    2006-09-01

    A modified method for the rapid isolation of specific ligands to whole virus particles is described. Biopanning against cymbidium mosaic virus was carried out with a commercial 12-mer random peptide display library. A solution phase panning method was devised using streptavidin-coated superparamagnetic beads. The solution based panning method was more efficient than conventional immobilized target panning when using whole viral particles of cymbidium mosaic virus as a target. Enzyme-linked immunosorbent assay of cymbidium mosaic virus-binding peptides isolated from the library identified seven peptides with affinity for cymbidium mosaic virus and one peptide which was specific to cymbidium mosaic virus and had no significant binding to odontoglossum ringspot virus. This method should have broad application for the screening of whole viral particles towards the rapid development of diagnostic reagents without the requirement for cloning and expression of single antigens.

  8. Multiple defocused coherent diffraction imaging: method for simultaneously reconstructing objects and probe using X-ray free-electron lasers.

    PubMed

    Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio

    2016-05-30

    The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.

  9. L.E.A.D.: a framework for evidence gathering and use for the prevention of obesity and other complex public health problems.

    PubMed

    Chatterji, Madhabi; Green, Lawrence W; Kumanyika, Shiriki

    2014-02-01

    This article summarizes a comprehensive, systems-oriented framework designed to improve the use of a wide variety of evidence sources to address population-wide obesity problems. The L.E.A.D. framework (for Locate the evidence, Evaluate the evidence, Assemble the evidence, and inform Decisions), developed by an expert consensus committee convened by the Institute of Medicine, is broadly applicable to complex, community-wide health problems. The article explains how to use the framework, presenting an evidence typology that helps specify relevant research questions and includes examples of how particular research methodologies and sources of evidence relate to questions that stem from decision-maker needs. The utility of a range of quantitative, qualitative, and mixed method designs and data sources for assembling a broad and credible evidence base is discussed, with a call for ongoing "evidence generation" to fill information gaps using the recommended systems perspective.

  10. Portable paper-based device for quantitative colorimetric assays relying on light reflectance principle.

    PubMed

    Li, Bowei; Fu, Longwen; Zhang, Wei; Feng, Weiwei; Chen, Lingxin

    2014-04-01

    This paper presents a novel paper-based analytical device based on the colorimetric paper assays through its light reflectance. The device is portable, low cost (<20 dollars), and lightweight (only 176 g) that is available to assess the cost-effectiveness and appropriateness of the original health care or on-site detection information. Based on the light reflectance principle, the signal can be obtained directly, stably and user-friendly in our device. We demonstrated the utility and broad applicability of this technique with measurements of different biological and pollution target samples (BSA, glucose, Fe, and nitrite). Moreover, the real samples of Fe (II) and nitrite in the local tap water were successfully analyzed, and compared with the standard UV absorption method, the quantitative results showed good performance, reproducibility, and reliability. This device could provide quantitative information very conveniently and show great potential to broad fields of resource-limited analysis, medical diagnostics, and on-site environmental detection. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Highly Oriented Growth of Catalytically Active Zeolite ZSM-5 Films with a Broad Range of Si/Al Ratios.

    PubMed

    Fu, Donglong; Schmidt, Joel E; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian; Weckhuysen, Bert M

    2017-09-04

    Highly b-oriented zeolite ZSM-5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al 3+ usually disrupts the orientation of zeolite films. Herein, using structure-directing agents with hydroxy groups, we demonstrate a new method to prepare highly b-oriented zeolite ZSM-5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro-(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X-ray diffraction, and show Al 3+ framework incorporation and illustrate the differences between misoriented and b-oriented films. The methanol-to-hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro-spectroscopy with on-line mass spectrometry, showing that the b-oriented zeolite ZSM-5 films are active and stable under realistic process conditions. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. Highly Oriented Growth of Catalytically Active Zeolite ZSM‐5 Films with a Broad Range of Si/Al Ratios

    PubMed Central

    Fu, Donglong; Schmidt, Joel E.; Ristanović, Zoran; Chowdhury, Abhishek Dutta; Meirer, Florian

    2017-01-01

    Abstract Highly b‐oriented zeolite ZSM‐5 films are critical for applications in catalysis and separations and may serve as models to study diffusion and catalytic properties in single zeolite channels. However, the introduction of catalytically active Al3+ usually disrupts the orientation of zeolite films. Herein, using structure‐directing agents with hydroxy groups, we demonstrate a new method to prepare highly b‐oriented zeolite ZSM‐5 films with a broad range of Si/Al ratios (Si/Al=45 to ∞). Fluorescence micro‐(spectro)scopy was used to monitor misoriented microstructures, which are invisible to X‐ray diffraction, and show Al3+ framework incorporation and illustrate the differences between misoriented and b‐oriented films. The methanol‐to‐hydrocarbons process was studied by operando UV/Vis diffuse reflectance micro‐spectroscopy with on‐line mass spectrometry, showing that the b‐oriented zeolite ZSM‐5 films are active and stable under realistic process conditions. PMID:28675590

  13. A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis

    NASA Astrophysics Data System (ADS)

    Yang, Zheng Rong; Bullifent, Helen L.; Moore, Karen; Paszkiewicz, Konrad; Saint, Richard J.; Southern, Stephanie J.; Champion, Olivia L.; Senior, Nicola J.; Sarkar-Tyson, Mitali; Oyston, Petra C. F.; Atkins, Timothy P.; Titball, Richard W.

    2017-02-01

    Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses.

  14. A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis

    PubMed Central

    Yang, Zheng Rong; Bullifent, Helen L.; Moore, Karen; Paszkiewicz, Konrad; Saint, Richard J.; Southern, Stephanie J.; Champion, Olivia L.; Senior, Nicola J.; Sarkar-Tyson, Mitali; Oyston, Petra C. F.; Atkins, Timothy P.; Titball, Richard W.

    2017-01-01

    Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses. PMID:28165493

  15. A satellite-based radar wind sensor

    NASA Technical Reports Server (NTRS)

    Xin, Weizhuang

    1991-01-01

    The objective is to investigate the application of Doppler radar systems for global wind measurement. A model of the satellite-based radar wind sounder (RAWS) is discussed, and many critical problems in the designing process, such as the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and backscattering of radar signals from different types of clouds, are discussed along with their computer simulations. In addition, algorithms for measuring mean frequency of radar echoes, such as the Fast Fourier Transform (FFT) estimator, the covariance estimator, and the estimators based on autoregressive models, are discussed. Monte Carlo computer simulations were used to compare the performance of these algorithms. Anti-alias methods are discussed for the FFT and the autoregressive methods. Several algorithms for reducing radar ambiguity were studied, such as random phase coding methods and staggered pulse repitition frequncy (PRF) methods. Computer simulations showed that these methods are not applicable to the RAWS because of the broad spectral widths of the radar echoes from clouds. A waveform modulation method using the concept of spread spectrum and correlation detection was developed to solve the radar ambiguity. Radar ambiguity functions were used to analyze the effective signal-to-noise ratios for the waveform modulation method. The results showed that, with suitable bandwidth product and modulation of the waveform, this method can achieve the desired maximum range and maximum frequency of the radar system.

  16. Detecting scaling in the period dynamics of multimodal signals: Application to Parkinsonian tremor

    NASA Astrophysics Data System (ADS)

    Sapir, Nir; Karasik, Roman; Havlin, Shlomo; Simon, Ely; Hausdorff, Jeffrey M.

    2003-03-01

    Patients with Parkinson’s disease exhibit tremor, involuntary movement of the limbs. The frequency spectrum of tremor typically has broad peaks at “harmonic” frequencies, much like that seen in other physical processes. In general, this type of harmonic structure in the frequency domain may be due to two possible mechanisms: a nonlinear oscillation or a superposition of (multiple) independent modes of oscillation. A broad peak spectrum generally indicates that a signal is semiperiodic with a fluctuating period. These fluctuations may posses intrinsic order that can be quantified using scaling analysis. We propose a method to extract the correlation (scaling) properties in the period dynamics of multimodal oscillations, in order to distinguish between a nonlinear oscillation and a superposition of individual modes of oscillation. The method is based on our finding that the information content of the temporal correlations in a fluctuating period of a single oscillator is contained in a finite frequency band in the power spectrum, allowing for decomposition of modes by bandpass filtering. Our simulations for a nonlinear oscillation show that harmonic modes possess the same scaling properties. In contrast, when the method is applied to tremor records from patients with Parkinson’s disease, the first two modes of oscillations yield different scaling patterns, suggesting that these modes may not be simple harmonics, as might be initially assumed.

  17. Toward the characterization of biological toxins using field-based FT-IR spectroscopic instrumentation

    NASA Astrophysics Data System (ADS)

    Schiering, David W.; Walton, Robert B.; Brown, Christopher W.; Norman, Mark L.; Brewer, Joseph; Scott, James

    2004-12-01

    IR spectroscopy is a broadly applicable technique for the identification of covalent materials. Recent advances in instrumentation have made Fourier Transform infrared (FT-IR) spectroscopy available for field characterization of suspect materials. Presently, this instrumentation is broadly deployed and used for the identification of potential chemical hazards. This discussion concerns work towards expanding the analytical utility of field-based FT-IR spectrometry in the characterization of biological threats. Two classes of materials were studied: biologically produced chemical toxins which were non-peptide in nature and peptide toxin. The IR spectroscopic identification of aflatoxin-B1, trichothecene T2 mycotoxin, and strychnine was evaluated using the approach of spectral searching against large libraries of materials. For pure components, the IR method discriminated the above toxins at better than the 99% confidence level. The ability to identify non-peptide toxins in mixtures was also evaluated using a "spectral stripping" search approach. For the mixtures evaluated, this method was able to identify the mixture components from ca. 32K spectral library entries. Castor bean extract containing ricin was used as a representative peptide toxin. Due to similarity in protein spectra, a SIMCA pattern recognition methodology was evaluated for classifying peptide toxins. In addition to castor bean extract the method was validated using bovine serum albumin and myoglobin as simulants. The SIMCA approach was successful in correctly classifying these samples at the 95% confidence level.

  18. An overview of municipal solid waste management and landfill leachate treatment: Malaysia and Asian perspectives.

    PubMed

    Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Rui, Lo Ming; Isa, Awatif Md; Zawawi, Mohd Hafiz; Alrozi, Rasyidah

    2017-12-01

    Currently, generation of solid waste per capita in Malaysia is about 1.1 kg/day. Over 26,500 t of solid waste is disposed almost solely through 166 operating landfills in the country every day. Despite the availability of other disposal methods, landfill is the most widely accepted and prevalent method for municipal solid waste (MSW) disposal in developing countries, including Malaysia. This is mainly ascribed to its inherent forte in terms cost saving and simpler operational mechanism. However, there is a downside. Environmental pollution caused by the landfill leachate has been one of the typical dilemmas of landfilling method. Leachate is the liquid produced when water percolates through solid waste and contains dissolved or suspended materials from various disposed materials and biodecomposition processes. It is often a high-strength wastewater with extreme pH, chemical oxygen demand (COD), biochemical oxygen demand (BOD), inorganic salts and toxicity. Its composition differs over the time and space within a particular landfill, influenced by a broad spectrum of factors, namely waste composition, landfilling practice (solid waste contouring and compacting), local climatic conditions, landfill's physico-chemical conditions, biogeochemistry and landfill age. This paper summarises an overview of landfill operation and leachate treatment availability reported in literature: a broad spectrum of landfill management opportunity, leachate parameter discussions and the way forward of landfill leachate treatment applicability.

  19. Variational principles for dissipative (sub)systems, with applications to the theory of linear dispersion and geometrical optics

    DOE PAGES

    Dodin, I. Y.; Zhmoginov, A. I.; Ruiz, D. E.

    2017-02-24

    Applications of variational methods are typically restricted to conservative systems. Some extensions to dissipative systems have been reported too but require ad hoc techniques such as the artificial doubling of the dynamical variables. We propose a different approach. Here, we show that for a broad class of dissipative systems of practical interest, variational principles can be formulated using constant Lagrange multipliers and Lagrangians nonlocal in time, which allow treating reversible and irreversible dynamics on the same footing. A general variational theory of linear dispersion is formulated as an example. Particularly, we present a variational formulation for linear geometrical optics inmore » a general dissipative medium, which is allowed to be nonstationary, inhomogeneous, anisotropic, and exhibit both temporal and spatial dispersion simultaneously.« less

  20. Magnetic ionic liquids in analytical chemistry: A review.

    PubMed

    Clark, Kevin D; Nacham, Omprakash; Purslow, Jeffrey A; Pierson, Stephen A; Anderson, Jared L

    2016-08-31

    Magnetic ionic liquids (MILs) have recently generated a cascade of innovative applications in numerous areas of analytical chemistry. By incorporating a paramagnetic component within the cation or anion, MILs exhibit a strong response toward external magnetic fields. Careful design of the MIL structure has yielded magnetoactive compounds with unique physicochemical properties including high magnetic moments, enhanced hydrophobicity, and the ability to solvate a broad range of molecules. The structural tunability and paramagnetic properties of MILs have enabled magnet-based technologies that can easily be added to the analytical method workflow, complement needed extraction requirements, or target specific analytes. This review highlights the application of MILs in analytical chemistry and examines the important structural features of MILs that largely influence their physicochemical and magnetic properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simple and robust generation of ultrafast laser pulse trains using polarization-independent parallel-aligned thin films

    NASA Astrophysics Data System (ADS)

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Wang, Zhi; Du, Kun; Lu, Yongfeng

    2018-05-01

    Ultrafast laser pulse temporal shaping has been widely applied in various important applications such as laser materials processing, coherent control of chemical reactions, and ultrafast imaging. However, temporal pulse shaping has been limited to only-in-lab technique due to the high cost, low damage threshold, and polarization dependence. Herein we propose a novel design of ultrafast laser pulse train generation device, which consists of multiple polarization-independent parallel-aligned thin films. Various pulse trains with controllable temporal profile can be generated flexibly by multi-reflections within the splitting films. Compared with other pulse train generation techniques, this method has advantages of compact structure, low cost, high damage threshold and polarization independence. These advantages endow it with high potential for broad utilization in ultrafast applications.

  2. [Advance of heterologous expression study of eukaryote-origin laccases].

    PubMed

    Ning, Na; Tan, Huijun; Sun, Xinxin; Ni, Jinfeng

    2017-04-25

    Laccases are enzymes belonging to the group of multi-copper oxidases. These enzymes are widely distributed in insects, plants, fungi and bacteria. In general, laccases can oxidize an exceptionally high number of substrates, so they have broad applications in textile, pulp, food and the degradation of lignin. However, low yield, low activity and thermo-instability of laccase in nature limit the application of laccase. High efficient heterologous expression of the protein is an effective way for solving this problem. Here, we summarize the research advances of heterologous expression of eukaryote-origin laccases. We focus on the overexpression of eukaryote-origin laccases using different expression system and the method for improving the production yield and enzyme activity in yeast cells. Information provided in this review would be helpful for researchers in the field.

  3. X-ray Scattering Combined with Coordinate-Based Analyses for Applications in Natural and Artificial Photosynthesis

    PubMed Central

    Tiede, David M.; Mardis, Kristy L.; Zuo, Xiaobing

    2009-01-01

    Advances in x-ray light sources and detectors have created opportunities for advancing our understanding of structure and structural dynamics for supramolecular assemblies in solution by combining x-ray scattering measurement with coordinate-based modeling methods. In this review the foundations for x-ray scattering are discussed and illustrated with selected examples demonstrating the ability to correlate solution x-ray scattering measurements to molecular structure, conformation, and dynamics. These approaches are anticipated to have a broad range of applications in natural and artificial photosynthesis by offering possibilities for structure resolution for dynamic supramolecular assemblies in solution that can not be fully addressed with crystallographic techniques, and for resolving fundamental mechanisms for solar energy conversion by mapping out structure in light-excited reaction states. PMID:19636808

  4. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  5. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  6. Higher-dimensional Wannier Interpolation for the Modern Theory of the Dzyaloshinskii-Moriya Interaction: Application to Co-based Trilayers

    NASA Astrophysics Data System (ADS)

    Hanke, Jan-Philipp; Freimuth, Frank; Blügel, Stefan; Mokrousov, Yuriy

    2018-04-01

    We present an advanced first-principles formalism to evaluate the Dzyaloshinskii-Moriya interaction (DMI) in its modern theory as well as Berry curvatures in complex spaces based on a higher-dimensional Wannier interpolation. Our method is applied to the Co-based trilayer systems IrδPt1-δ/Co/Pt and AuγPt1-γ/Co/Pt, where we gain insights into the correlations between the electronic structure and the DMI, and we uncover prominent sign changes of the chiral interaction with the overlayer composition. Beyond the discussed phenomena, the scope of applications of our Wannier-based scheme is particularly broad as it is ideally suited to study efficiently the Hamiltonian evolution under the slow variation of very general parameters.

  7. Low power integrated pumping and valving arrays for microfluidic systems

    DOEpatents

    Krulevitch, Peter A [Pleasanton, CA; Benett, William J [Livermore, CA; Rose, Klint A [Livermore, CA; Hamilton, Julie [Tracy, CA; Maghribi, Mariam [Davis, CA

    2006-04-11

    Low power integrated pumping and valving arrays which provide a revolutionary approach for performing pumping and valving approach for performing pumping and valving operations in microfabricated fluidic systems for applications such as medical diagnostic microchips. Traditional methods rely on external, large pressure sources that defeat the advantages of miniaturization. Previously demonstrated microfabrication devices are power and voltage intensive, only function at sufficient pressure to be broadly applicable. This approach integrates a lower power, high-pressure source with a polymer, ceramic, or metal plug enclosed within a microchannel, analogous to a microsyringe. When the pressure source is activated, the polymer plug slides within the microchannel, pumping the fluid on the opposite side of the plug without allowing fluid to leak around the plug. The plugs also can serve as microvalves.

  8. Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication.

    PubMed

    Wang, Fu; Xie, Zheng; Zhang, Bing; Liu, Yun; Yang, Wendong; Liu, Chun-yan

    2014-04-07

    Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, DA; Li, T; Yang, B

    Genome editing is the practice of making predetermined and precise changes to a genome by controlling the location of DNA DSBs (double-strand breaks) and manipulating the cell's repair mechanisms. This technology results from harnessing natural processes that have taken decades and multiple lines of inquiry to understand. Through many false starts and iterative technology advances, the goal of genome editing is just now falling under the control of human hands as a routine and broadly applicable method. The present review attempts to define the technique and capture the discovery process while following its evolution from meganucleases and zinc finger nucleasesmore » to the current state of the art: TALEN (transcription-activator-like effector nuclease) technology. We also discuss factors that influence success, technical challenges, and future prospects of this quickly evolving area of study and application.« less

  10. Automated synthesis of 4-[(18)F]fluoroanisole, [(18)F]DAA1106 and 4-[(18)F]FPhe using Cu-mediated radiofluorination under "minimalist" conditions.

    PubMed

    Zischler, Johannes; Krapf, Philipp; Richarz, Raphael; Zlatopolskiy, Boris D; Neumaier, Bernd

    2016-09-01

    The application of the "minimalist" approach to Cu-mediated radiofluorination allows the efficient preparation of (18)F-labeled arenes regardless of their electronic properties. The implementation of this methodology on a commercially available synthesis module (hotbox(three), Scintomics, Germany) enabled the automated production of 4-[(18)F]fluoroanisole as well as the clinically relevant PET-tracers, 4-[(18)F]FPhe and [(18)F]DAA1106, in radiochemical yields of 41-61% and radiochemical purities of >95% within 30-60min. These results demonstrated the high efficacy and versatility of the developed method that will open up opportunities for a broad application of Cu-mediated radiofluorination in PET-chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Polymer Brushes as Functional, Patterned Surfaces for Nanobiotechnology.

    PubMed

    Welch, M Elizabeth; Xu, Youyong; Chen, Hongjun; Smith, Norah; Tague, Michele E; Abruña, Héctor D; Baird, Barbara; Ober, Christopher K

    2013-01-01

    Polymer brushes have many desirable characteristics such as the ability to tether molecules to a substrate or change the properties of a surface. Patterning of polymer films has been an area of great interest due to the broad range of applications including bio-related and medicinal research. Consequently, we have investigated patterning techniques for polymer brushes which allow for two different functionalities on the same surface. This method has been applied to a biosensor device which requires both polymer brushes and a photosensitizer to be polymerized on a patterned gold substrate. Additionally, the nature of patterned polymer brushes as removable thin films was explored. An etching process has enabled us to lift off very thin membranes for further characterization with the potential of using them as Janus membranes for biological applications.

  12. Advanced Life Support Systems: Opportunities for Technology Transfer

    NASA Technical Reports Server (NTRS)

    Fields, B.; Henninger, D.; Ming, D.; Verostko, C. E.

    1994-01-01

    NASA's future missions to explore the solar system will be of long-duration possibly lasting years at a time. Human life support systems will have to operate with very high reliability for these long periods with essentially no resupply from Earth. Such life support systems will make extensive use of higher plants, microorganisms, and physicochemical processes for recycling air and water, processing wastes, and producing food. Development of regenerative life support systems will be a pivotal capability for NASA's future human missions. A fully functional closed loop human life support system currently does not exist and thus represents a major technical challenge for space exploration. Technologies where all life support consumables are recycled have many potential terrestrial applications as well. Potential applications include providing human habitation in hostile environments such as the polar regions or the desert in such a way as to minimize energy expenditures and to minimize negative impacts on those often ecologically-sensitive areas. Other potential applications include production of food and ornamental crops without damaging the environment from fertilizers that contaminate water supplies; removal of trace gas contaminants from tightly sealed, energy-efficient buildings (the so-called sick building syndrome); and even the potential of gaining insight into the dynamics of the Earth's biosphere such that we can better manage our global environment. Two specific advanced life support technologies being developed by NASA, with potential terrestrial application, are the zeoponic plant growth system and the Hybrid Regenerative Water Recovery System (HRWRS). The potential applications for these candidate dual use technologies are quite different as are the mechanisms for transfer. In the case of zeoponics, a variety of commercial applications has been suggested which represent potentially lucrative markets. Also, the patented nature of this product offers opportunities for licensing to commercial entities. In the case of the HRWRS, commercial markets with broad applications have not been identified but some terrestrial applications are being explored where this approach has advantages over other methods of waste water processing. Although these potential applications do not appear to have the same broad attraction from the standpoint of rapid commercialization, they represent niches where commercialization possibilities as well as social benefits could be realized.

  13. Green chemistry for nanoparticle synthesis.

    PubMed

    Duan, Haohong; Wang, Dingsheng; Li, Yadong

    2015-08-21

    The application of the twelve principles of green chemistry in nanoparticle synthesis is a relatively new emerging issue concerning the sustainability. This field has received great attention in recent years due to its capability to design alternative, safer, energy efficient, and less toxic routes towards synthesis. These routes have been associated with the rational utilization of various substances in the nanoparticle preparations and synthetic methods, which have been broadly discussed in this tutorial review. This article is not meant to provide an exhaustive overview of green synthesis of nanoparticles, but to present several pivotal aspects of synthesis with environmental concerns, involving the selection and evaluation of nontoxic capping and reducing agents, the choice of innocuous solvents and the development of energy-efficient synthetic methods.

  14. Analysis of suspended solids by single-particle scattering. [for Lake Superior pollution monitoring

    NASA Technical Reports Server (NTRS)

    Diehl, S. R.; Smith, D. T.; Sydor, M.

    1979-01-01

    Light scattering by individual particulates is used in a multiple-detector system to categorize the composition of suspended solids in terms of broad particulate categories. The scattering signatures of red clay and taconite tailings, the two primary particulate contaminants in western Lake Superior, along with two types of asbestiform fibers, amphibole and chrysolite, were studied in detail. A method was developed to predict the concentration of asbestiform fibers in filtration plant samples for which electron microscope analysis was done concurrently. Fiber levels as low as 50,000 fibers/liter were optically detectable. The method has application in optical categorization of samples for remote sensing purposes and offers a fast, inexpensive means for analyzing water samples from filtration plants for specific particulate contaminants.

  15. 32 CFR 203.7 - Eligible applicants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... interests are broadly represented. The applicant must certify that the request represents the wishes of a simple majority of the community members of the RAB or TRC. Certification includes, but is not limited to...

  16. Investigation of converging and collimated beam instrument geometry on specular gloss measurements

    NASA Astrophysics Data System (ADS)

    Zwinkels, Joanne C.; Côté, Éric; Morgan, John

    2018-02-01

    Specular gloss is an important appearance property of a wide variety of manufactured goods. Depending upon the application, e.g. paints, paper, ceramics, etc. different instrument designs and measurement geometries are specified in standard test methods. For a given specular angle, these instrument designs can be broadly classified as converging beam (TAPPI method) and collimated beam (DIN method). In recent comparisons of specular gloss measurements using different glossmeters, very large standard deviations have been reported, well exceeding the manufacturers claims. In this paper, we investigate the effect of instrument beam geometry on gloss measurements. These results indicate that this difference in beam geometry can give the magnitude of gloss differences reported in these comparisons and highlights the importance of educating the user community of best measurement practices and obtaining appropriate traceability for their glossmeters.

  17. Recent Development of Dual-Dictionary Learning Approach in Medical Image Analysis and Reconstruction.

    PubMed

    Wang, Bigong; Li, Liang

    2015-01-01

    As an implementation of compressive sensing (CS), dual-dictionary learning (DDL) method provides an ideal access to restore signals of two related dictionaries and sparse representation. It has been proven that this method performs well in medical image reconstruction with highly undersampled data, especially for multimodality imaging like CT-MRI hybrid reconstruction. Because of its outstanding strength, short signal acquisition time, and low radiation dose, DDL has allured a broad interest in both academic and industrial fields. Here in this review article, we summarize DDL's development history, conclude the latest advance, and also discuss its role in the future directions and potential applications in medical imaging. Meanwhile, this paper points out that DDL is still in the initial stage, and it is necessary to make further studies to improve this method, especially in dictionary training.

  18. Efficient Regressions via Optimally Combining Quantile Information*

    PubMed Central

    Zhao, Zhibiao; Xiao, Zhijie

    2014-01-01

    We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods. PMID:25484481

  19. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    DOE PAGES

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; ...

    2016-08-12

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expectedmore » two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.« less

  20. Recent Development of Dual-Dictionary Learning Approach in Medical Image Analysis and Reconstruction

    PubMed Central

    Wang, Bigong; Li, Liang

    2015-01-01

    As an implementation of compressive sensing (CS), dual-dictionary learning (DDL) method provides an ideal access to restore signals of two related dictionaries and sparse representation. It has been proven that this method performs well in medical image reconstruction with highly undersampled data, especially for multimodality imaging like CT-MRI hybrid reconstruction. Because of its outstanding strength, short signal acquisition time, and low radiation dose, DDL has allured a broad interest in both academic and industrial fields. Here in this review article, we summarize DDL's development history, conclude the latest advance, and also discuss its role in the future directions and potential applications in medical imaging. Meanwhile, this paper points out that DDL is still in the initial stage, and it is necessary to make further studies to improve this method, especially in dictionary training. PMID:26089956

Top