Sample records for bromoform

  1. Bromoform

    Integrated Risk Information System (IRIS)

    Bromoform ; CASRN 75 - 25 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  2. Quantitative Measurement of Bromoform in Swimming Pool Water Using SPME with GC-MS. An Undergraduate Instrumental Analysis Experiment

    NASA Astrophysics Data System (ADS)

    Hardee, John R.; Long, John; Otts, Julie

    2002-05-01

    A senior-level undergraduate laboratory experiment that demonstrates the use of solid-phase microextraction (SPME) and capillary gas chromatography-mass spectrometry (GC-MS) was developed for the quantitative determination of bromoform in swimming pool water. Bromoform was extracted by SPME from the headspace of vials containing sodium chloride-saturated swimming pool water. Bromoform concentrations were determined from comparisons of peak areas on a student-generated calibration curve. Students compared results to OSHA water and air exposure limits for bromoform.

  3. Clathrate formation and phase equilibria in the thiourea-bromoform system

    NASA Astrophysics Data System (ADS)

    Chekhova, G. N.; Shubin, Yu. V.; Pinakov, D. V.; Alferova, N. I.

    2008-07-01

    Phase equilibria in the thiourea (host)-bromoform (guest) binary system were studied by physicochemical analysis methods over the temperature range 270 455 K. The stoichiometry and stability region were determined for the channel-type compound CHBr3 · 2.40(2)(NH2)2CS; the compound was observed for the first time. When heated, the clathrate incongruently decomposed at 424.0 ± 0.8 K to rhombic thiourea and the guest component. The solubility isotherm of the thiourea-bromoform-acetic acid system was studied to find that the compound was thermodynamically stable at 293 K over the range of guest component concentrations 100 35 wt %. A decrease in its content in an equilibrium mother liquor resulted in the appearance of X-ray diffraction reflections of the initial host α polymorph. Rhombohedral cell parameters were determined (space group R-3 c, a = 15.89(1) Å, c = 12.40(1) Å, V = 2711(6) Å3, d calcd = 2.000 g/cm3, and d expt = 1.98(2) g/cm3). The mode of packing of bromoform molecules was compared with the organization of the guest subsystem in inclusion compounds formed by the substances studied.

  4. Genotoxicity of drinking water disinfection by-products (bromoform and chloroform) by using both Allium anaphase-telophase and comet tests.

    PubMed

    Khallef, Messaouda; Liman, Recep; Konuk, Muhsin; Ciğerci, İbrahim Hakkı; Benouareth, Djameleddine; Tabet, Mouna; Abda, Ahlem

    2015-03-01

    Genotoxic effects of bromoform and chloroform, disinfection by-products of the chlorination of drinking water, were examined by using mitotic index (MI), mitotic phase, chromosome aberrations (CAs) and comet assay on root meristematic cells of Allium cepa. Different concentrations of bromoform (25, 50, 75 and 100 μg/mL) and chloroform (25, 50, 100 and 200 μg/mL) were introduced to onion tuber roots. Distilled water was used as a negative control and methyl methansulfonate (MMS-10 μg/mL) as positive control. All obtained data were subjected to statistical analyses by using SPSS 15.0 for Windows software. For comparison purposes, Duncan multiple range tests by using one-way analysis of variance were employed and p < 0.05 was accepted as significant value. Exposure of both chemicals (except 25 μg/mL applications of bromoform) significantly decreased MI. Bromoform and chloroform (except 25 μg/mL applications) increased total CAs in Allium anaphase-telophase test. A significant increase in DNA damage was also observed at all concentrations of both bromoform and chloroform examined by comet assay. The damages were higher than that of positive control especially at 75-100 μg/mL for bromoform and 100-200 μg/mL for chloroform.

  5. Atmospheric bromoform at Cape Point, South Africa: an initial fixed-point data set on the African continent

    NASA Astrophysics Data System (ADS)

    Kuyper, Brett; Palmer, Carl J.; Labuschagne, Casper; Reason, Chris J. C.

    2018-04-01

    Bromoform mixing ratios in marine air were measured at Cape Point Global Atmospheric Watch Station, South Africa. This represents the first such bromoform data set recorded at this location. Manual daily measurements were made during a month-long field campaign (austral spring 2011) using a gas chromatograph-electron capture detector (GC-ECD) with a custom-built front end thermal desorption trap. The measured concentrations ranged between 4.4 and 64.6 (± 22.2 %) ppt with a mean of 24.8 ± 14.8 ppt. The highest mixing ratios recorded here occurred at, or shortly after, low tide. The diurnal cycle exhibited a morning and evening maximum with lower concentrations throughout the rest of the day. Initial analysis of the data presented indicates that the local kelp beds were the dominant source of the bromoform reported. A concentration-weighted trajectory analysis of the bromoform measurements suggests that two offshore source areas may exist. These source areas appear to be centred on the Agulhas retroflection and extend from St Helena Bay to the southwest.

  6. Modeling the interaction of ozone with chloroform and bromoform under conditions close to stratospheric

    NASA Astrophysics Data System (ADS)

    Strokova, N. E.; Yagodovskaya, T. V.; Savilov, S. V.; Lukhovitskaya, E. E.; Vasil'ev, E. S.; Morozov, I. I.; Lunin, V. V.

    2013-02-01

    The reactions of ozone with chloroform and bromoform are studied using a flow gas discharge vacuum unit under conditions close to stratospheric (temperature range, 77-250 K; pressure, 10-3-0.1 Torr in the presence of nitrate ice). It is shown that the reaction with bromoform begins at 160 K; the reaction with chloroform, at 190 K. The reaction products are chlorine and bromine oxides of different composition, identified by low-temperature FTIR spectroscopy. The presence of nitrate ice raises the temperature of reaction onset to 210 K.

  7. Development of a Simplified, Cost Effective GC-ECD Methodology for the Sensitive Detection of Bromoform in the Troposphere

    PubMed Central

    Kuyper, Brett; Labuschagne, Casper; Philibert, Raïssa; Moyo, Nicholas; Waldron, Howard; Reason, Chris; Palmer, Carl

    2012-01-01

    Wherever measurements have been made bromoform was found to be ubiquitous in the surface ocean in pmolar-nmolar concentrations. These measurements show concentrations in coastal regions orders of magnitude higher than in the pelagic oceans. Its atmospheric presence is primarily due to its release from algae and rapid transport to the marine boundary troposphere where it is known to participate in ozone chemistry via photochemical and catalytic pathways. Until quite recently, a limited number of studies existed (compared to other marine volatile organic compounds (VOCs)), mainly due to the analytical challenge(s) presented by the low environmental mixing ratios. In this work we detail the development of a simplified, cost effective method to detect and quantify bromoform in environmental air samples. Air samples (1.5 L) were preconcentrated onto a precooled adsorbent (Carbopack X/Carboxen 1016) trap. These samples were injected by means of rapid thermal desorption for separation and detection by GC-ECD. The system was calibrated by means of a custom-built permeation oven. A linear system response was achieved, having a detection limit of 0.73 ± 0.09 ppt. A range of environmental samples was analysed to demonstrate the ability of the technique to separate and identify bromoform from air samples. The results showed that bromoform concentrations typically averaged 24.7 ± 17.3 ppt in marine air samples, 68.5 ± 26.3 ppt in Cape Town urban air samples and 33.9 ± 40.5 ppt in simulated biomass burning plumes (SBBP). PMID:23202011

  8. HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE WITH CHLOROFORM, CHLORODIBROMOMETHANE AND BROMOFORM

    EPA Science Inventory

    HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE (BDCM) WITH CHLOROFORM (CHC13), CHLORODIBROMOMETHANE (CDBM) AND BROMOFORM (CHBr3). Y M Se'', C Gennings2, A McDonald', L K Teuschler3, A Hamm2and J E Simmons .'NHEERL, ORD, U.S. EPA, RTP, NC; 2MCV, VCU, Ric...

  9. REDUCTIVE DEHALOGENATION OF HEXACHLOROETHANE, CARBON TETRACHLORIDE, AND BROMOFORM BY ANTHRAHYDROQUINONE DISULFONATE AND HUMIC ACID

    EPA Science Inventory

    The reductive dehalogenation of hexachloroethane (CzCLj), carbon tetrachloride (CC14), and bromoform (CHBr3) was examined at 50 “C in aqueous solutions containing ei- ther (1) 500 pM of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 pM Fe2+, or (3) 250 pM HS-. The pH ranged ...

  10. REDUCTIVE DEHALOGENATION OF HEXACHLOROETHANE, CARBON TETRACHLORIDE, AND BROMOFORM BY ANAHYDROQUINONE DISULFONATE AND HUMIC ACID

    EPA Science Inventory

    The reductive dehalogenation of hexachloroethane (C2CI6), carbon tetrachloride (CC14), and bromoform (CHBr3) was examined at 50 degrees C in aqueous solutions containing either (1) 500 uM of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 uM Fe2+, or (3) 250 uM HS. The pH ran...

  11. Hugoniot and refractive indices of bromoform under shock compression

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  12. Ames and random amplified polymorphic DNA tests for the validation of the mutagenic and/or genotoxic potential of the drinking water disinfection by-products chloroform and bromoform.

    PubMed

    Khallef, Messaouda; Cenkci, Süleyman; Akyil, Dilek; Özkara, Arzu; Konuk, Muhsin; Benouareth, Djamel Eddine

    2018-01-28

    Chloroform and Bromoform are two abundant trihalomethanes found in Algerian drinking water. The investigation of the mutagenic hazard of these disinfection by-products was studied by Ames test as prokaryotic bioassay to show their mutagenic effects. For this, Salmonella typhimurium TA98 and TA100 strains were employed. Both chloroform and bromoform showed a direct mutagenic effect since the number of revertant colonies gradually increase in dose-dependent manner with all concentrations tested with the two bacterial strains and these were both in the absence and presence of S9 metabolic activation. The genotoxic hazard was also studied by random amplified polymorphic DNA test on the root cells of Allium cepa as eukaryotic bioassay. DNA extracted from the roots of the onion were incubated at different concentrations of chloroform and bromoform and then amplified by polymerase chain reaction. This was based on demonstrating a major effect of disappearance of bands compared to roots incubated in the negative control (distilled water). The results showed that these two compounds affected genomic DNA by breaks although by mutations.

  13. 2D THz-THz-Raman Photon-Echo Spectroscopy of Molecular Vibrations in Liquid Bromoform.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2017-09-21

    Fundamental properties of molecular liquids are governed by long-range interactions that most prominently manifest at terahertz (THz) frequencies. Here we report the detection of nonlinear THz photon-echo (rephasing) signals in liquid bromoform using THz-THz-Raman spectroscopy. Together, the many observed signatures span frequencies from 0.5 to 8.5 THz and result from couplings between thermally populated ladders of vibrational states. The strongest peaks in the spectrum are found to be multiquantum dipole and 1-quantum polarizability transitions and may arise from nonlinearities in the intramolecular dipole moment surface driven by intermolecular interactions.

  14. Modelling the chemistry and transport of bromoform within a sea breeze driven convective system during the SHIVA Campaign

    NASA Astrophysics Data System (ADS)

    Hamer, P. D.; Marécal, V.; Hossaini, R.; Pirre, M.; Warwick, N.; Chipperfield, M.; Samah, A. A.; Harris, N.; Robinson, A.; Quack, B.; Engel, A.; Krüger, K.; Atlas, E.; Subramaniam, K.; Oram, D.; Leedham, E.; Mills, G.; Pfeilsticker, K.; Sala, S.; Keber, T.; Bönisch, H.; Peng, L. K.; Nadzir, M. S. M.; Lim, P. T.; Mujahid, A.; Anton, A.; Schlager, H.; Catoire, V.; Krysztofiak, G.; Fühlbrügge, S.; Dorf, M.; Sturges, W. T.

    2013-08-01

    We carry out a case study of the transport and chemistry of bromoform and its product gases (PGs) in a sea breeze driven convective episode on 19 November 2011 along the North West coast of Borneo during the "Stratospheric ozone: Halogen Impacts in a Varying Atmosphere" (SHIVA) campaign. We use ground based, ship, aircraft and balloon sonde observations made during the campaign, and a 3-D regional online transport and chemistry model capable of resolving clouds and convection explicitly that includes detailed bromine chemistry. The model simulates the temperature, wind speed, wind direction fairly well for the most part, and adequately captures the convection location, timing, and intensity. The simulated transport of bromoform from the boundary layer up to 12 km compares well to aircraft observations to support our conclusions. The model makes several predictions regarding bromine transport from the boundary layer to the level of convective detrainment (11 to 12 km). First, the majority of bromine undergoes this transport as bromoform. Second, insoluble organic bromine carbonyl species are transported to between 11 and 12 km, but only form a small proportion of the transported bromine. Third, soluble bromine species, which include bromine organic peroxides, hydrobromic acid (HBr), and hypobromous acid (HOBr), are washed out efficiently within the core of the convective column. Fourth, insoluble inorganic bromine species (principally Br2) are not washed out of the convective column, but are also not transported to the altitude of detrainment in large quantities. We expect that Br2 will make a larger relative contribution to the total vertical transport of bromine atoms in scenarios with higher CHBr3 mixing ratios in the boundary layer, which have been observed in other regions. Finally, given the highly detailed description of the chemistry, transport and washout of bromine compounds within our simulations, we make a series of recommendations about the physical and

  15. Evolution of Bromoform in a Global Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Pierson, J. M.; Douglass, Anne R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is well known that many chlorine and bromine compounds that are inert in the troposphere are destroyed in the stratosphere and contribute to the stratospheric burden of reactive chlorine and bromine species. But the contribution from those chlorine and bromine compounds which are reactive in the troposphere is less certain because it is not known whether convection can transport these gases to the upper troposphere rapidly enough to overcome their short tropospheric lifetimes. We examine this issue using a three-dimensional chemistry and transport model to simulate the evolution of three gases which have surface sources, bromoform (CHBr3), methyl chloroform (CH3CCl3), and carbon dioxide (CO2). Our objective is to determine if CHBr3 might enhance the lower stratospheric burden of reactive bromine. The other two gases provide tests of the quality of the simulation. Both CHBr3 and CH3CCl3 are destroyed in the troposphere by reaction with hydroxyl (OH), whose latitudinal and monthly variation is provided by a two-dimensional model and upon which a diurnal variation is imposed. Comparison of the lifetime of CH3CCl3 computed from observations (5 years) with the lifetime computed from the simulation provides an integrated test of the model's transport and photochemistry. Observations also show that CO2 exhibits a strong seasonal cycle in the northern hemisphere troposphere that is not propagated directly across the tropopause into the lower stratosphere. Thus, maintenance of the observed troposphere-stratosphere distinctness of CO2 in the presence of convection is a critical benchmark for meeting our objective.

  16. A Simulation of Bromoform's Contribution to Stratospheric Bromine

    NASA Technical Reports Server (NTRS)

    Nielsen, J. Eric; Douglass, Anne R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Many chlorinated and brominated compounds that are inert in the troposphere are destroyed in the stratosphere and act as an in-situ source of stratospheric reactive chlorine and bromine. Other halogenated compounds that are reactive in the troposphere might contribute to the stratosphere's halogen budget in two ways. First, like their unreactive companions, rapid convective transport might carry them to the upper troposphere and make them available for subsequent advection by the mean circulation into the stratosphere before they are oxidized or photolyzed. Second, it is more likely that they are destroyed in the troposphere, and the chlorine and bromine that is released might then be transported to the stratosphere. We evaluate the relative influence of these processes on stratospheric bromine in a three-dimensional chemistry and transport model which simulates the distribution of bromoform (CHBr3). CHBr3 is parameterized as a short-lived, ocean-surface source gas whose destruction by photolysis and reaction with hydroxyl (OH) in the troposphere and stratosphere yields inorganic bromine (Br(sub y)). Many of the observed features of CHBr3 are simulated well, and comparisons with observations are used to show that the model represents aspects of transport in the upper troposphere and lower stratosphere that are critical to the evaluation. In particular, the model maintains the observed troposphere-stratosphere distinctness in transport pathways and reproduces the observed seasonal dependence of the mixture of air in the middle- and high-latitude lowermost stratosphere. We estimate that adding CHBr3 to models which already include the long-lived organic brominated compounds (halons and methyl bromide) will increase the simulated stratospheric mass of Br(sub y) by about 15 percent. In-situ stratospheric destruction of CHBr3 produces Br(sub y) in amounts which are comparable to that transported into the stratosphere after photolysis and oxidation of CHBr3 in the

  17. Degradation of Organic UV filters in Chlorinated Seawater Swimming Pools: Transformation Pathways and Bromoform Formation.

    PubMed

    Manasfi, Tarek; Coulomb, Bruno; Ravier, Sylvain; Boudenne, Jean-Luc

    2017-12-05

    Organic ultraviolet (UV) filters are used in sunscreens and other personal-care products to protect against harmful effects of exposure to UV solar radiation. Little is known about the fate of UV filters in seawater swimming pools disinfected with chlorine. The present study investigated the occurrence and fate of five commonly used organic UV filters, namely dioxybenzone, oxybenzone, avobenzone, 2-ethylhexyl-4-methoxycinnamate, and octocrylene, in chlorinated seawater swimming pools. Pool samples were collected to monitor the variation of UV filter concentrations during pool opening hours. Furthermore, laboratory-controlled chlorination experiments were conducted in seawater spiked with UV filters to investigate the reactivity of UV filters. Extracts of chlorination reaction samples were analyzed using high-resolution mass spectrometry and electron-capture detection to identify the potentially formed byproducts. In the collected pool samples, all the UV filters except dioxybenzone were detected. Chlorination reactions showed that only octocrylene was stable in chlorinated seawater. The four reactive UV filters generated brominated transformation products and disinfection byproducts. This formation of brominated products resulted from reactions between the reactive UV filters and bromine, which is formed rapidly when chlorine is added to seawater. Based on the identified byproducts, the transformation pathways of the reactive UV filters were proposed for the first time. Bromoform was generated by all the reactive UV filters at different yields. Bromal hydrate was also detected as one of the byproducts generated by oxybenzone and dioxybenzone.

  18. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid

    USGS Publications Warehouse

    Curtis, G.P.; Reinhard, M.

    1994-01-01

    The reductive dehalogenation of hexachloroethane (C2Cl6), carbon tetrachloride (CCl4), and bromoform (CHBr3) was examined at 50??C in aqueous solutions containing either (1) 500 ??M of 2,6-anthrahydroquinone disulfonate (AHQDS), (2) 250 ??M Fe2+, or (3) 250 ??M HS-. The pH ranged from 4.5 to 11.5 for AHQDS solutions and was 7.2 in the Fe2+ solutions and 7.8 in the HS- solutions. The observed disappearance of C2Cl6 in the presence of AHQDS was pseudo-first-order and fit k??ccl4 = k0[A(OH)2] + k1[A(OH)O-] + k2[A(O)22-] where A(OH)2, A(OH)O-, and A(O)22- represent the concentrations of the three forms of the AHQDS in solution. The values of k0, k1, and k2 were ???0,0.031, and 0.24 M-1 s-1, respectively. The addition of 25 mg of C/L of humic acid or organic matter extracted from Borden aquifer solids to aqueous solutions containing 250 ??M HS- or Fe2+ increased the reduction rate by factors of up to 10. The logarithms of the rate constants for the disappearance of C2Cl6 and CCl4 in seven different experimental systems were significantly correlated; log k???ccl4 = 0-64 log k??? c2cl6 - 0.83 with r2 = 0.80. The observed trend in reaction rates of C2Cl6 > CCl4 > CHBr3 is consistent with a decreasing trend in one-electron reduction potentials. ?? 1994 American Chemical Society.

  19. Detailed intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules with C(3v) symmetry: chloroform, bromoform, and methyl-iodide.

    PubMed

    Pothoczki, Szilvia; Temleitner, László; Pusztai, László

    2011-01-28

    Analyses of the intermolecular structure of molecular liquids containing slightly distorted tetrahedral molecules of the CXY(3)-type are described. The process is composed of the determination of several different distance-dependent orientational correlation functions, including ones that are introduced here. As a result, a complete structure classification could be provided for CXY(3) molecular liquids, namely for liquid chloroform, bromoform, and methyl-iodide. In the present work, the calculations have been conducted on particle configurations resulting from reverse Monte Carlo computer modeling: these particle arrangements have the advantage that they are fully consistent with structure factors from neutron and x-ray diffraction measurements. It has been established that as the separation between neighboring molecules increases, the dominant mutual orientations change from face-to-face to edge-to-edge, via the edge-to-face arrangements. Depending on the actual liquid, these geometrical elements (edges and faces of the distorted tetrahedra) were found to contain different atoms. From the set of liquids studied here, the structure of methyl-iodide was found to be easiest to describe on the basis of pure steric effects (molecular shape, size, and density) and the structure of liquid chloroform seems to be the furthest away from the corresponding "flexible fused hard spheres" like reference system.

  20. Spatial and temporal distributions of bromoform and dibromomethane in the Atlantic Ocean and their relationship with photosynthetic biomass

    NASA Astrophysics Data System (ADS)

    Liu, Yina; Yvon-Lewis, Shari A.; Thornton, Daniel C. O.; Butler, James H.; Bianchi, Thomas S.; Campbell, Lisa; Hu, Lei; Smith, Richard W.

    2013-08-01

    Atmospheric mixing ratios and seawater concentrations of bromoform (CHBr3), dibromomethane (CH2Br2), and other brominated very short-lived substances (BrVSLS) were measured during five cruises from 1994 to 2010. These cruises were conducted over large latitudinal (62°N-60°S) and longitudinal transects (11°W-86°W) in the Atlantic Ocean. Elevated seawater concentrations of CHBr3 and CH2Br2 were often observed in regions where chlorophyll a concentrations were also elevated, which suggests biogeochemical processes associated with photosynthetic biomass may be related to CHBr3 and CH2Br2 production. Our results suggest that, at least in the open ocean, several phytoplankton taxa may contribute to the production of these trace gases. While observed correlations between CHBr3 and CH2Br2 in different regions are usually interpreted as common sources for these compounds, results in this study suggest different biogeochemical processes may contribute separately to the production of these trace gases. Heterotrophic bacterial abundance was significantly correlated with CH2Br2, but not with CHBr3, which suggests the biogeochemical processes associated with heterotrophic bacteria may be related to CH2Br2 in seawater but probably not to CHBr3. In general, the Atlantic Ocean is a net source for CHBr3 and CH2Br2, except for a few locations where these trace gases were undersaturated in seawater. Assuming fluxes measured in the Atlantic open ocean are globally representative, the resulting extrapolated, global open-ocean annual net sea-to-air fluxes calculated from data from the five cruises was estimated at 0.24-3.80 Gmol Br yr-1 for CHBr3 and 0.11-0.77 Gmol Br yr-1 for CH2Br2.

  1. Spectroscopic and computational studies of matrix-isolated iso-CHBr{sub 3}: Structure, properties, and photochemistry of iso-bromoform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, Lisa; Kalume, Aimable; Wagner, James

    Iso-polyhalomethanes are known reactive intermediates that play a pivotal role in the photochemistry of halomethanes in condensed phases. In this work, iso-bromoform (iso-CHBr{sub 3}) and its deuterated isotopomer were characterized by matrix isolation infrared and UV/visible spectroscopy, supported by ab initio and density functional theory calculations, to further probe the structure, spectroscopy, and photochemistry of this important intermediate. Selected wavelength laser irradiation of CHBr{sub 3} isolated in Ar or Ne matrices at {approx}5 K yielded iso-CHBr{sub 3}; the observed infrared and UV/visible absorptions are in excellent agreement with computational predictions, and the energies of various stationary points on the CHBr{submore » 3} potential energy surface were characterized computationally using high-level methods in combination with correlation consistent basis sets. These calculations show that, while the corresponding minima lie {approx}200 kJ/mol above the global CHBr{sub 3} minimum, the isomer is bound by some 60 kJ/mol in the gas phase with respect to the CHBr{sub 2}+ Br asymptote. The photochemistry of iso-CHBr{sub 3} was investigated by selected wavelength laser irradiation into the intense S{sub 0}{yields} S{sub 3} transition, which resulted in back photoisomerization to CHBr{sub 3}. Intrinsic reaction coordinate calculations confirmed the existence of a first-order saddle point connecting the two isomers, which lies energetically below the threshold of the radical channel. Subsequently, natural bond orbital analysis and natural resonance theory were used to characterize the important resonance structures of the isomer and related stationary points, which demonstrate that the isomerization transition state represents a crossover from dominantly covalent to dominantly ionic bonding. In condensed phases, the ion-pair dominated isomerization transition state structure is preferentially stabilized, so that the barrier to isomerization is

  2. Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.

    PubMed

    Zhao, Siyan; Rogers, Matthew J; He, Jianzhong

    2017-07-01

    Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.

  3. Bromoalkane production by Antarctic ice algae

    NASA Technical Reports Server (NTRS)

    Sturges, W. T.; Sullivan, C. W.; Schnell, R. C.; Heidt, L. E.; Pollock, W. H.

    1993-01-01

    Ice microalgae, collected from the underside of annual sea ice in McMurdo Sound, Antarctica, were found to contain and release to seawater a number of brominated hydrocarbons. These included bromoform, dibromomethane, mixed bromochloromethanes, and methyl bromide. Atmospheric measurements in the McMurdo Sound vicinity revealed the presence of bromoform and methyl bromide in the lower atmosphere, with lowest concentrations inland, further indicating that biogenic activity in the Sound is a source of organic bromine gases to the Antarctic atmosphere. This may have important implications for boundary layer chemistry in Antarctica. In the Arctic, the presence of bromoform has been linked to loss of surface ozone in the spring. We report here preliminary evidence for similar surface ozone loss at McMurdo Station.

  4. 40 CFR 413.02 - General definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-bromophenyl phenyl ether Bis (2-chloroisopropyl) ether Bis (2-chloroethoxy) methane Methylene chloride (dichloromethane) Methyl chloride (chloromethane) Methyl bromide (bromomethane) Bromoform (tribromomethane...-phenylene pyrene) Pyrene Tetrachloroethylene Toluene Trichloroethylene Vinyl chloride (chloroethylene...

  5. 40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... byproduct MCLG(mg/L) Bromodichloromethane zero Bromoform zero Bromate zero Chlorite 0.8 Chloroform 0.07 Dibromochloromethane 0.06 Dichloroacetic acid zero Monochloroacetic acid 0.07 Trichloroacetic acid 0.02 [63 FR 69465...

  6. 40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... byproduct MCLG(mg/L) Bromodichloromethane zero Bromoform zero Bromate zero Chlorite 0.8 Chloroform 0.07 Dibromochloromethane 0.06 Dichloroacetic acid zero Monochloroacetic acid 0.07 Trichloroacetic acid 0.02 [63 FR 69465...

  7. 40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... byproduct MCLG(mg/L) Bromodichloromethane zero Bromoform zero Bromate zero Chlorite 0.8 Chloroform 0.07 Dibromochloromethane 0.06 Dichloroacetic acid zero Monochloroacetic acid 0.07 Trichloroacetic acid 0.02 [63 FR 69465...

  8. 40 CFR 141.53 - Maximum contaminant level goals for disinfection byproducts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... byproduct MCLG(mg/L) Bromodichloromethane zero Bromoform zero Bromate zero Chlorite 0.8 Chloroform 0.07 Dibromochloromethane 0.06 Dichloroacetic acid zero Monochloroacetic acid 0.07 Trichloroacetic acid 0.02 [63 FR 69465...

  9. HEALTH AND ENVIRONMENTAL EFFECTS DOCUMENT FOR BROMOFORM

    EPA Science Inventory

    Health and Environmental Effects Documents (HEEDS) are prepared for the Office of Solid Waste and Emergency Response (OSWER). his document series is intended to support listings under the Resource Conservation and Recovery Act (RCRA) as well as to provide health-related limits an...

  10. Pregnancy loss and eye malformations in offspring of F344 rats following gestational exposure to mixtures of regulated trihalomethanes and haloacetic acids

    EPA Science Inventory

    Chlorination of drinking water results in the formation of hundreds of disinfection byproducts (DBPs), the most prevalent are trihalomethanes (THMs) and haloacetic acids (HAAs). Four THMs (chloroform, bromodichloromethane, chlorodibromomethane, bromoform) and five HAAs (chloroac...

  11. The Impact of Mixture Composition, Mixing Ratio and Dose on the Interactions among the Four Trihalomethanes (THMs) Regulated in Drinking Water

    EPA Science Inventory

    Oxidizing disinfectants reduce microbial contamination but react with inorganic and organic materials in water forming disinfection byproducts (DBPs). The U.S. EPA regulates 4 THM DBPs (chloroform, CHCI3; bromodichloromethane, BDCM; chlorodibromomethane, CDBM; bromoform, CHBr3) a...

  12. REMOVING TRIHALOMETHANES FROM DRINKING WATER - AN OVERVIEW OF TREATMENT TECHNIQUES

    EPA Science Inventory

    In 1974 trihalomethanes (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) were discovered to be formed during the disinfection step of drinking water if free chlorine was the disinfectant. This, coupled with the perceived hazard to the consumer's health, led...

  13. Description of trihalomethane levels in three UK water suppliers.

    PubMed

    Whitaker, Heather; Nieuwenhuijsen, Mark J; Best, Nicola; Fawell, John; Gowers, Alison; Elliot, Paul

    2003-01-01

    Samples of drinking water are routinely analysed for four trihalomethanes (THMs), which are indicators of by-products of disinfection with chlorine, by UK water suppliers to demonstrate compliance with regulations. The THM data for 1992-1993 to 1997-1998 for three water suppliers in the north and midlands of England were made available for a UK epidemiological study of the association between disinfection by-products and adverse birth outcomes. This paper describes the THM levels in these three supply regions and discusses possible sources of variation. THM levels varied between different suppliers' water, and average THM levels were within the regulatory limits. Chloroform was the predominant THM in all water types apart from the ground water of one supplier. The supplier that distributed more ground and lowland surface water had higher dibromochloromethane (DBCM) and bromoform levels and lower chloroform levels than the other two suppliers. In the water of two suppliers, seasonal fluctuations in bromodichloromethane (BDCM) and DBCM levels were found with levels peaking in the summer and autumn. In the other water supplier, chloroform levels followed a similar seasonal trend whereas BDCM and DBCM levels did not. For all three water suppliers, chloroform levels declined throughout 1995 when there was a drought period. There was a moderate positive correlation between the THMs most similar in their structure (chloroform and BDCM, BDCM and DBCM, and DBCM and bromoform) and a slight negative correlation between chloroform and bromoform levels.

  14. Disinfection By-Product Exposures and the Risk of Specific Cardiac Birth Defects

    PubMed Central

    Wright, J. Michael; Evans, Amanda; Kaufman, John A.; Rivera-Núñez, Zorimar; Narotsky, Michael G.

    2016-01-01

    Background: Epidemiological studies suggest that women exposed to disinfection by-products (DBPs) have an increased risk of delivering babies with cardiovascular defects (CVDs). Objective: We examined nine CVDs in relation to categorical DBP exposures including bromoform, chloroform, dibromochloromethane (DBCM), bromodichloromethane (BDCM), monobromoacetic acid (MBAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and summary DBP measures (HAA5, THMBr, THM4, and DBP9). Methods: We calculated adjusted odds ratios (aORs) in a case–control study of birth defects in Massachusetts with complete quarterly 1999–2004 trihalomethane (THM) and haloacetic acid (HAA) data. We randomly matched 10 controls each to 904 CVD cases based on week of conception. Weight-averaged aggregate first-trimester DBP exposures were assigned to individuals based on residence at birth. Results: We detected associations for tetralogy of Fallot and the upper exposure categories for TCAA, DCAA, and HAA5 (aOR range, 3.34–6.51) including positive exposure–response relationships for DCAA and HAA5. aORs consistent in magnitude were detected between atrial septal defects and bromoform (aOR = 1.56; 95% CI: 1.01, 2.43), as well as DBCM, chloroform, and THM4 (aOR range, 1.26–1.67). Ventricular septal defects (VSDs) were associated with the highest bromoform (aOR = 1.85; 95% CI: 1.20, 2.83), MBAA (aOR = 1.81; 95% CI: 0.85, 3.84), and DBCM (aOR = 1.54; 95% CI: 1.00, 2.37) exposure categories. Conclusions: To our knowledge, this is the first birth defect study to develop multi-DBP adjusted regression models as well as the first CVD study to evaluate HAA exposures and the second to evaluate bromoform exposures. Our findings, therefore, inform exposure specificity for the consistent associations previously reported between THM4 and CVDs including VSDs. Citation: Wright JM, Evans A, Kaufman JA, Rivera-Núñez Z, Narotsky MG. 2017. Disinfection by-product exposures and the risk of specific

  15. THE INDUCTION OF ABERRANT CRYPT FOCI (ACF) IN THE COLONS OF RATS BY TRIHALOMETHANES ADMINISTERED IN THE DRINKING WATER

    EPA Science Inventory

    Bromodichloromethane (BDCM) and bromoform (TBM) had been demonstrated to be colon carcinogens in male and female F344/N rats following administration by corn oil gavage. Our chronic bioassay of BDCM administered in the drinking water failed to demonstrate an enhanced colon cance...

  16. THE INDUCTION OF ABERRANT CRYPT FOCI IN THE COLONS OF MALE F344/N RATS EXPOSED TO THIHALOMETHANE MIXTURES IN THE DRINKING WATER

    EPA Science Inventory


    THE INDUCTION OF ABERRANT CRYPT FOCI IN THE COLONS OF MALE F344/N
    RATS EXPOSED TO TRIHALOMETHANE MIXTURES IN THE DRINKING WATER

    The trihalomethanes (THM), bromoform (TBM) and bromodichloromethane (BDCM), administered by corn oil gavage were found to increase large...

  17. GTE_TRACEP_P3B Parameters 1

    Atmospheric Science Data Center

    2013-02-19

    ... Methyl bromide (CH3Br) Bromopropane (C3H7 Br) Methyl Chloride (CH3Cl) Ethyl Chloride (C2H5Cl) Vinyl chloride (C2H3Cl) ... Trichloroethylene (C2HCl3) Tetrachloroethylene (C2Cl4) Methylene bromide (CH2Br2) Chlorodibromomethane (CHClBr2) Bromoform ...

  18. GTE_TRACEP_DC8 Parameters 4

    Atmospheric Science Data Center

    2013-02-18

    ... Methyl bromide (CH3Br) Bromopropane (C3H7Br) Methyl Chloride(CH3Cl) Ethyl Chloride (C2H5Cl) Vinyl chloride (C2H3Cl) ... Trichloroethylene (C2HCl3) Tetrachloroethylene (C2Cl4) Methylene bromide (CH2Br2) Chlorodibromomethane(CHClBr2) Bromoform ...

  19. Fate of the CHBrsub2O radical in air

    NASA Technical Reports Server (NTRS)

    Bayes, K. D.; Friedl, R. F.

    2003-01-01

    Trace amounts of bromoform in air have been photolyzed at 266 and 303 nm to form Br atoms and CHBr2 radicals. The Br concentration as a funtion of time is followed by resonance fluorescence. The CHBr2 radicals react with O2 in the air to form peroxy radicals.

  20. Predictors of blood trihalomethane concentrations in NHANES 1999-2006.

    PubMed

    Riederer, Anne M; Dhingra, Radhika; Blount, Benjamin C; Steenland, Kyle

    2014-07-01

    Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999-2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%-76% in blood and 38%-52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002-2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study.

  1. Colon and rectal cancer incidence and water trihalomethane concentrations in New South Wales, Australia

    PubMed Central

    2014-01-01

    Background There is evidence, although inconsistent, that long term exposure to disinfection by products (DBPs) increases the risk of bowel cancer. No study has been conducted in Australia to examine this association and due to difference in the methods of disinfection the risk can vary across geographical regions and. This study was conducted to analyse the association of trihalomethanes (THMs) in water with colon and rectal cancer in NSW Australia. Methods Average yearly concentrations of total and individual species of THMs were obtained for 50 local government areas (LGAs). Indirectly-standardized incidence rates of colon and rectal cancers in LGAs for the period 1995 to 2001 were regressed against mean THM concentrations lagged five years, adjusting for socioeconomic status, high risk drinking, smoking status, usual source of water and year of diagnosis, including local and global random effects within a Bayesian framework. The incidence rate ratios (IRRs) for an interquartile range (IQR) increase in THMs were estimated. Results Using five year lag of exposure there was a positive association between bromoform concentration and CRC in men (IRR = 1.025, 95% CI 1.010, 1.040) but not in women (IRR = 1.003, 95% CI 0.987, 1.018). The association in men was mainly found in colon cancer with bromoform (IRR = 1.035, 95% CI 1.017, 1.053). There was no appreciable association of colorectal cancer with other species of THMs. Sensitivity analyses did not materially change the associations observed. Conclusion A positive association was observed between colon cancer and water bromoform concentrations in men. Given the potential population impact of such an association, further research into the relationship between THMs, particularly brominated species, and colorectal cancer is warranted. PMID:24938491

  2. Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005

    USGS Publications Warehouse

    Ferrell, G.M.

    2009-01-01

    Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

  3. Sensitivity and variability of Presage dosimeter formulations in sheet form with application to SBRT and SRS QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumas, Michael, E-mail: mdumas1127@gmail.com; Rakowski, Joseph T.

    Purpose: To measure sensitivity and stability of the Presage dosimeter in sheet form for various chemical concentrations over a range of clinical photon energies and examine its use for stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) QA. Methods: Presage polymer dosimeters were formulated to investigate and optimize their sensitivity and stability. The dosimeter is composed of clear polyurethane base, leucomalachite green (LMG) reporting dye, and bromoform radical initiator in 0.9–1.0 mm thick sheets. The chemicals are mixed together for 2 min, cast in an aluminum mold, and left to cure at 60 psi for a minimum of twomore » days. Dosimeter response was characterized at energies Co-60, 6 MV, 10 MV flattening-filter free, 15 MV, 50 kVp (mean 19.2 keV), and Ir-192. The dosimeters were scanned by a Microtek Scanmaker i800 at 300 dpi, 2{sup 16} bit depth per color channel. Red component images were analyzed with ImageJ and RIT. SBRT QA was done with gamma analysis tolerances of 2% and 2 mm DTA. Results: The sensitivity of the Presage dosimeter increased with increasing concentration of bromoform. Addition of tin catalyst decreased curing time and had negligible effect on sensitivity. LMG concentration should be at least as high as the bromoform, with ideal concentration being 2% wt. Gamma Knife SRS QA measurements of relative output and profile widths were within 2% of manufacturer’s values validated at commissioning, except the 4 mm collimator relative output which was within 3%. The gamma pass rate of Presage with SBRT was 73.7%, compared to 93.1% for EBT2 Gafchromic film. Conclusions: The Presage dosimeter in sheet form was capable of detecting radiation over all tested photon energies and chemical concentrations. The best sensitivity and photostability of the dosimeter were achieved with 2.5% wt. LMG and 8.2% wt. bromoform. Scanner used should not emit any UV radiation as it will expose the dosimeter, as with the Epson 10000 XL

  4. Predictors of Blood Trihalomethane Concentrations in NHANES 1999–2006

    PubMed Central

    Dhingra, Radhika; Blount, Benjamin C.; Steenland, Kyle

    2014-01-01

    Background: Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999–2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. Objectives: We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. Methods: We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). Results: From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%–76% in blood and 38%–52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002–2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. Conclusions: We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study. Citation: Riederer AM, Dhingra R

  5. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    DOE PAGES

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; ...

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less

  6. 40 CFR Table 1 to Subpart Dd of... - List of Hazardous Air Pollutants (HAP) for Subpart DD

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...(chloromethyl)ether b 0.999 75-25-2 Bromoform 0.998 106-99-0 1,3-Butadiene 1.000 75-15-0 Carbon disulfide 1.000....000 98-82-8 Cumene 1.000 94-75-7 2,4-D, salts and esters 0.167 334-88-3 Diazomethane c 0.999 132-64-9...-41-4 Ethyl benzene 1.000 75-00-3 Ethyl chloride (Chloroethane) 1.000 106-93-4 Ethylene dibromide...

  7. Influence of Natural Organic Matter (NOM) Character on the Distribution of Chlorinated and Chloraminated Disinfection By-Products (DBPs) at Rand Water

    NASA Astrophysics Data System (ADS)

    Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.

    2016-04-01

    Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform < DBCM < BDCM < chloroform. Results of the MSD showed a significant correlation between NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p < 0.05). High molecular weight (HMW) NOM also related well to chloroform formation (R2 = 0.963, p < 0.05) however, the formation of BDCM was not due to HWM fraction as indicated by weak regression coefficient. A positive correlation existed between

  8. Final Decision Document for the Basin a Neck Groundwater Intercept and Treatment System Interim Response Action at the Rocky Mountain Arsenal.

    DTIC Science & Technology

    1989-02-01

    PLAN A Health and Safety Plan has been developed for the prevention of occupational injuries and illnesses during field activities at RMA. This plan...Bicycloheptadiene BCHPD 0(2) Bromoform CHBR3 100(4) note: total trihalomethanes Cadmium CD 10(1) 5(3)* 10(4) I Carbon tetrachloride CCL4 0(3) 5(4) Chlordane CLDAN...comments, numerous carcinogenicity tests in a variety of animals indicate that aldrin and dieldrin promote only liver tumors and the tumors develop only

  9. Degradation Products of Benzophenone-3 in Chlorinated Seawater Swimming Pools.

    PubMed

    Manasfi, Tarek; Storck, Veronika; Ravier, Sylvain; Demelas, Carine; Coulomb, Bruno; Boudenne, Jean-Luc

    2015-08-04

    Oxybenzone (2-hydroxy-4-methoxyphenone, benzophenone-3) is one of the UV filters commonly found in sunscreens. Its presence in swimming pools and its reactivity with chlorine has already been demonstrated but never in seawater swimming pools. In these pools, chlorine added for disinfection results in the formation of bromine, due to the high levels of bromide in seawater, and leads to the formation of brominated disinfection byproducts, known to be more toxic than chlorinated ones. Therefore, it seems important to determine the transformation products of oxybenzone in chlorinated seawater swimming pools; especially that users of seawater swimming pools may apply sunscreens and other personal-care products containing oxybenzone before going to pools. This leads to the introduction of oxybenzone to pools, where it reacts with bromine. For this purpose, the reactivity of oxybenzone has been examined as a function of chlorine dose and temperature in artificial seawater to assess its potential to produce trihalomethanes and to determine the byproducts generated following chlorination. Increasing doses of chlorine and increasing temperatures enhanced the formation of bromoform. Experiments carried out with excess doses of chlorine resulted in the degradation of oxybenzone and allowed the determination of the degradation mechanisms leading to the formation of bromoform. In total, ten transformation products were identified, based on which the transformation pathway was proposed.

  10. In-Situ Groundwater Treatment Technology Using Biodegradation

    DTIC Science & Technology

    1987-05-01

    ice,� Park Drive, P.O. Box 12297, Research Trianglc Pgrk: NC 1 ?770Q 17. . COSAI COOES IL. SUBJEC TERMS (Coas on MuWMz d1 naicnay &W MO uf by I I, a...OF TABLES v 1 . ABSTRACT 1 2. INTRODUCTION 2 3. SUBSURFACE MICROBIOLOGY 5 3.1 Subsurface Biological Activity 5 3.2 Environmental Factors 5 3.2.1...Sulfate during the First Five Months 30 5.2 Column 1 Effluent Versus Time Data for Carbon Tetrachloride, Bromodichloromethane, and Bromoform during the

  11. Disinfection by-products in ballast water treatment: an evaluation of regulatory data.

    PubMed

    Werschkun, Barbara; Sommer, Yasmin; Banerji, Sangeeta

    2012-10-15

    To reduce the global spread of invasive aquatic species, international regulations will soon require reductions of the number of organisms in ballast water discharged by ships. For this purpose, ballast water treatment systems were developed and approved by an international procedure. These systems rely on established water treatment principles which, to different degrees, have been proven to generate disinfection by-products with hazardous properties but have only scarcely been investigated in marine environments. Our study evaluates the publicly available documentation about approved ballast water treatment systems with regard to by-product formation. The most commonly employed methods are chlorination, ozonation, and ultraviolet (UV) irradiation. Chlorination systems generate trihalomethanes, halogenated acetic acids, and bromate in substantially larger quantities than reported for other areas of application. Levels are highest in brackish water, and brominated species predominate, in particular bromoform and dibromoacetic acid. Ozonation, which is less frequently utilized, produces bromoform in lower concentrations but forms higher levels of bromate, both of which were effectively reduced by active carbon treatment. In systems based on UV radiation, medium pressure lamps are employed as well as UV-induced advanced oxidation. For all UV systems, by-product formation is reported only occasionally. The most notable observations were small increases in nitrite, hydrogen peroxide, halogenated methanes and acetic acids. The assessment of by-product formation during ballast water treatment is limited by the lacking completeness and quality of available information. This concerns the extent and statistical characterisation of chemical analysis as well as the documentation of the test water parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Occurrence of brominated disinfection byproducts in the air and water of chlorinated seawater swimming pools.

    PubMed

    Manasfi, Tarek; Temime-Roussel, Brice; Coulomb, Bruno; Vassalo, Laurent; Boudenne, Jean-Luc

    2017-05-01

    An undesirable consequence of disinfection is the formation of chemical contaminants known as disinfection byproducts (DBPs). Chronic exposure to DBPs has been linked to adverse health effects. The occurrence of DBPs in chlorinated pools filled with seawater (such as thalassotherapy pools and pools in spas) has received little attention so far. The present study evaluated the speciation and levels of disinfection byproducts in indoor swimming pools filled with seawater and treated with chlorine. Water and air samples were collected from three indoor swimming pools located in Southern France. Several classes of DBPs including trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetaldehydes were analyzed in water. Halogenated volatile organic compounds were analyzed in air. Extractable organic halides (EOX) contents were determined using combustion/micro-coulometry system. The speciation of DBPs identified in the three pools was predominantly brominated. The mean (arithmetic) concentration of bromoform, dibromoacetic acid, tribromoacetic acid, dibromoacetonitrile and bromal hydrate in the three pools was 79.2, 72.9, 59.9, 26.9 and 10.0μg/L, respectively. By weight, HAAs represented the most abundant chemical class followed by THMs. In air, bromoform was the most abundant THM occurring at a mean concentration of 133.2μg/m 3 in the three pools. The mean EOX level was 706μgCl - /L for the three pools. In average, the quantified DBPs accounted for only 14% of EOX, thus 86% of EOX remained unknown. Further research is warranted to identify the unknown DBPs. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Nitrates, chlorates and trihalomethanes in swimming pool water.

    PubMed Central

    Beech, J A; Diaz, R; Ordaz, C; Palomeque, B

    1980-01-01

    Water from swimming pools in the Miami area was analyzed for nitrates, chlorates and trihalomethanes. The average concentrations of nitrate and chlorate found in freshwater pools were 8.6 mg/liter and 16 mg/liter respectively, with the highest concentrations being 54.9 mg/liter and 124 mg/liter, respectively. The average concentration of total trihalomethanes found in freshwater pools was 125 micrograms/liter (mainly chloroform) and in saline pools was 657 micrograms/liter (mainly bromoform); the highest concentration was 430 micrograms/liter (freshwater) and 1287 micrograms/liter (saltwater). The possible public health significance of these results is briefly discussed. PMID:7350831

  14. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    NASA Astrophysics Data System (ADS)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram

    2015-12-01

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  15. Towards an automated and efficient calculation of resonating vibrational states based on state-averaged multiconfigurational approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian

    Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.

  16. Detailed modeling of the atmospheric degradation mechanism of very-short lived brominated species

    NASA Astrophysics Data System (ADS)

    Krysztofiak, G.; Catoire, V.; Poulet, G.; Marécal, V.; Pirre, M.; Louis, F.; Canneaux, S.; Josse, B.

    2012-11-01

    Detailed chemical reaction schemes for the atmospheric degradations of the very short-lived species (VSLS) bromoform (CHBr3) and dibromomethane (CH2Br2) have been established. These degradation schemes have been implemented in the meteorological/tracer transport model CATT-BRAMS used in the present case as pseudo one-dimensional model with chemistry of CH4, CO, HOx, NOx, NOy and Ox. They include the main possible reactions of the intermediate brominated peroxy radicals RO2 (with R = CH2Br, CHBr2 and CBr3) for which the most likely reaction pathways with HO2 have been found using ab initio computational calculations. The full degradation schemes have been run for two well-defined realistic scenarios, “clean” atmosphere and “moderately” NOy-polluted atmosphere, as representative of a tropical coastal region where these VSLS natural emissions are expected to be important. The Henry's law constants of the brominated organics products have been estimated by using the Bond Contribution Method (BCM; Meylan and Howard, 1991) or the Molecular Connectivity Index (MCI; Nirmalakhandan and Speece, 1988). Using these constants, the least soluble species formed from the VSLS degradation are found to be CBr2O, CHBrO, CBr3O2NO2, CHBr2O2NO2, BrO, BrONO2 and HOBr, which leads those to be potentially transported into the tropical tropopause layer (TTL) in case of deep convection and contribute to stratospheric bromine additionally to the original substances. For bromoform and dibromomethane degradation, the moderate NOy pollution increases the production of the least soluble species and thus approximately doubles the bromine quantity potentially able to reach the TTL (from 22.5% to 43% for CHBr3 and from 8.8% to 20.2% for CH2Br2). The influence of the reactions of the RO2 radicals with HO2, CH3O2 and NO2 on the nature and abundance of the stable intermediate and end-products has been tested for CHBr3 degradation. As a result, the reactions of the RO2 radicals with NO2 have no

  17. Chlorination Disinfection By-Products and Risk of Congenital Anomalies in England and Wales

    PubMed Central

    Nieuwenhuijsen, Mark J.; Toledano, Mireille B.; Bennett, James; Best, Nicky; Hambly, Peter; de Hoogh, Cornelis; Wellesley, Diana; Boyd, Patricia A.; Abramsky, Lenore; Dattani, Nirupa; Fawell, John; Briggs, David; Jarup, Lars; Elliott, Paul

    2008-01-01

    Background Increased risk of various congenital anomalies has been reported to be associated with trihalomethane (THM) exposure in the water supply. Objectives We conducted a registry-based study to determine the relationship between THM concentrations and the risk of congenital anomalies in England and Wales. Methods We obtained congenital anomaly data from the National Congenital Anomalies System, regional registries, and the national terminations registry; THM data were obtained from water companies. Total THM (< 30, 30 to < 60, ≥60 μg/L), total brominated exposure (< 10, 10 to < 20, ≥20 μg/L), and bromoform exposure (< 2, 2 to < 4, ≥4 μg/L) were modeled at the place of residence for the first trimester of pregnancy. We included 2,605,226 live births, stillbirths, and terminations with 22,828 cases of congenital anomalies. Analyses using fixed- and random-effects models were performed for broadly defined groups of anomalies (cleft palate/lip, abdominal wall, major cardiac, neural tube, urinary and respiratory defects), a more restricted set of anomalies with better ascertainment, and for isolated and multiple anomalies. Data were adjusted for sex, maternal age, and socioeconomic status. Results We found no statistically significant trends across exposure categories for either the broadly defined or more restricted sets of anomalies. For the restricted set of anomalies with isolated defects, there were significant (p < 0.05) excess risks in the high-exposure categories of total THMs for ventricular septal defects [odds ratio (OR) = 1.43; 95% confidence interval (CI), 1.00–2.04] and of bromoform for major cardiovascular defects and gastroschisis (OR = 1.18; 95% CI, 1.00–1.39; and OR = 1.38; 95% CI, 1.00–1.92, respectively). Conclusion In this large national study we found little evidence for a relationship between THM concentrations in drinking water and risk of congenital anomalies. PMID:18288321

  18. Genotoxic Effects in Swimmers Exposed to Disinfection By-products in Indoor Swimming Pools

    PubMed Central

    Kogevinas, Manolis; Villanueva, Cristina M.; Font-Ribera, Laia; Liviac, Danae; Bustamante, Mariona; Espinoza, Felicidad; Nieuwenhuijsen, Mark J.; Espinosa, Aina; Fernandez, Pilar; DeMarini, David M.; Grimalt, Joan O.; Grummt, Tamara; Marcos, Ricard

    2010-01-01

    Background Exposure to disinfection by-products (DBPs) in drinking water has been associated with cancer risk. A recent study (Villanueva et al. 2007; Am J Epidemiol 165:148–156) found an increased bladder cancer risk among subjects attending swimming pools relative to those not attending. Objectives We evaluated adults who swam in chlorinated pools to determine whether exposure to DBPs in pool water is associated with biomarkers of genotoxicity. Methods We collected blood, urine, and exhaled air samples from 49 nonsmoking adult volunteers before and after they swam for 40 min in an indoor chlorinated pool. We estimated associations between the concentrations of four trihalomethanes (THMs) in exhaled breath and changes in micronuclei (MN) and DNA damage (comet assay) in peripheral blood lymphocytes before and 1 hr after swimming; urine mutagenicity (Ames assay) before and 2 hr after swimming; and MN in exfoliated urothelial cells before and 2 weeks after swimming. We also estimated associations and interactions with polymorphisms in genes related to DNA repair or to DBP metabolism. Results After swimming, the total concentration of the four THMs in exhaled breath was seven times higher than before swimming. The change in the frequency of micronucleated lymphocytes after swimming increased in association with higher exhaled concentrations of the brominated THMs (p = 0.03 for bromodichloromethane, p = 0.05 for chlorodibromomethane, p = 0.01 for bromoform) but not chloroform. Swimming was not associated with DNA damage detectable by the comet assay. Urine mutagenicity increased significantly after swimming, in association with the higher concentration of exhaled bromoform (p = 0.004). We found no significant associations with changes in micronucleated urothelial cells. Conclusions Our findings support potential genotoxic effects of exposure to DBPs from swimming pools. The positive health effects gained by swimming could be increased by reducing the potential health

  19. METHOD AND MEANS FOR RADIATION DOSIMETRY

    DOEpatents

    Shulte, J.W.; Suttle, J.F.

    1958-02-18

    This patent relates to a method and device for determining quantities of gamma radiation and x radiation by exposing to such radiation a mature of a purified halogenated hydrocarbon chosen from the class consisting of chloroform, bromoform, tetrachloroethane and 1,1,2trichloroethane, and a minor quantity of a sensitizer chosen from the class consisting of oxygen, benzoyl peroxide, sodium peroxide, and nitrobenzene, the proportion of the sensitizer being at least about 10/sup -5/ moles per cubic centimeter of halogenated hydrocarbon, the total amount of sensitizer depending upon the range of radiation to be measured, and chemically measuring the amount of decomposition generated by the irradiation of the sensitized halogenated hydrocarbon.

  20. DEVELOPMENTAL EFFECTS OF DISINFECTANT BY-PRODUCTS BROMOFORM, BROMODICHLOROMETHANE, BROMODICHLOROACETIC ACID, AND BROMOCHLOROACETIC ACID IN MICE

    EPA Science Inventory

    PREGNANCY LOSS CAUSED BY ATRAZINE IN F344 RATS:
    EFFECTS ON SERUM PROGESTERONE LEVELS.
    M.G. Narotsky1, D.S. Best1, S.R. Bielmeier1 and R.L. Cooper1.
    1Endocrinology Branch, US Environmental Protection Agency, Research
    Triangle Park, NC, United States

    Pr...

  1. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

  2. SU-F-T-164: Investigation of PRESAGE Formulation On Signal Quenching in a Proton Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, M; Alqathami, M; Ibbott, G

    2016-06-15

    Purpose: The radiochromic polyurethane PRESAGE by Heuris Pharma has had limited applications with protons because of a dose response dependence on LET resulting in signal quenching in the Bragg peak. This is due to the radical initiator, a halocarbon, radically recombining in high-LET irradiations. This study investigated the use of alternative halocarbons at various chemical concentrations to determine their significance in signal quenching. Methods: PRESAGE was manufactured in-house and cast in small volume cuvettes (1×1×4cm^3). Several compositions were evaluated to determine the influence of the radical initiator component. Mixtures contained one of two halocarbons, chloroform or bromoform, at concentrations ofmore » 5%/10%/15%(w/w). A large volume, cylindrical PRESAGE dosimeter made following the mixture described by Heuris Pharma, 4cm(D)×8.5cm(H), was irradiated with 200-MeV protons to study regions of low- and high-LET along a 10cm spread out Bragg peak isodose profile. Depths corresponding to regions of low quenching (<3%) and high quenching (>20%) were determined. These depths were used for cuvette placement in a solid water phantom. Samples of each formulation were placed at each depth and irradiated to doses between 0 and 10Gy. Results: The cuvettes indicated different levels of quenching for different radical initiator types, concentrations, and total doses. Chloroform formulations showed reduced quenching from 29%(5%-w/w) to 21%(15%-w/w) while bromoform reduced quenching from 27%(5%-w/w) to 17%(15%-w/w). The reduction in quenching was found to be non-linear with concentration of radical initiator. A quenching dose-dependency was also found that changed with formulation. In all cases, quenching was relatively consistent from 0–5Gy but increased at 10Gy. The quenching decreased as concentrations of radical initiator increased. Conclusion: The radical initiator component in PRESAGE is correlated with the signal quenching observed in proton

  3. Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process.

    PubMed

    Duan, Jinxia; Huang, Xintang; Wang, Enke; Ai, Hanhua

    2006-03-28

    Hollow zinc oxide microspheres have been synthesized from a micro ZnBr2·2H2O precursor obtained by an autoclave process in bromoform steam at 220 °C /2.5 MPa. Field-emission scanning electron microscropy (FE-SEM) and transmission electron microscopy (TEM) show that the products are about 1.0 µm single crystal spherical particles with hollow interiors, partly open surfaces and walls self-assembled by ZnO nanoparticles. X-ray diffraction (XRD) analysis shows that the as-prepared ZnO hollow spheres are of a hexagonal phase structure. A possible formation mechanism is suggested on the basis of the shape evolution of ZnO nanostructures observed by SEM and TEM. The room-temperature photoluminescence (PL) spectrum shows UV emission around 386 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microspheres.

  4. The handling, hazards, and maintenance of heavy liquids in the geologic laboratory

    USGS Publications Warehouse

    Hauff, Phoebe L.; Airey, Joseph

    1980-01-01

    In geologic laboratories the organic heavy liquids bromoform, methylene iodide, tetrabromoethane, and clerici compounds have been used for years in mineral separation processes. Because the volume of use of these compounds is low, insufficient data is available on their toxic properties. This report is an attempt to summarize the known data from published and industry sources. The physical properties, hazards of handling,proper storage facilities, and adequate protective Clothing are discussed for each compound as well as for their common and less-common solvents. Toxicity data for these materials is listed along with exposure symptoms and suggested first aid treatments. Safety for the worker is emphasized. Three reclamation methods which recover the solvent used as a dilutant and purify the heavy liquid are discussed and illustrated. These include: the water cascade, re fluxing-distillation-condensation, and flash evaporation methods. Various techniques for restoration and stabilization of these heavy liquids are also included.

  5. Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry.

    PubMed

    Aguilera-Herrador, Eva; Lucena, Rafael; Cárdenas, Soledad; Valcárcel, Miguel

    2008-10-31

    A simple, rapid, solventless method for the determination of trihalomethanes (THMs) (chloroform, bromodichloromethane, dibromochloromethane and bromoform) in water samples is presented. The analytes are extracted from the headspace of the aqueous matrix into a 2 microL drop of the ionic liquid 1-octyl-3-methyl-imidazolium hexafluorophosphate working at 30 degrees C for 30 min. The separation and detection of the target compounds is accomplished by gas chromatography/mass spectrometry owing to the use of an interface that efficiently transfers the analytes extracted in the ionic liquid drop to the gas chromatograph while preventing the ionic liquid from entering the column. The detection limits obtained are below the values compelled by the legislation, ranging from 0.5 microg L(-1) for chloroform and bromodichloromethane to 0.9 microg L(-1) for dibromochloromethane. The use of ionic liquid in the extraction procedure avoids the use of organic solvents and leads to relative standard deviations that range from 3.1% to 4.8%.

  6. Occurrence of trihalomethanes in the nation's ground water and drinking-water supply wells, 1985-2002

    USGS Publications Warehouse

    Schaap, Bryan D.; Zogorski, John S.

    2006-01-01

    This report describes the occurrence of trihalomethanes (THMs) in the Nation's ground water and drinking-water supply wells based on analysis of 5,642 samples of untreated ground water and source water collected or compiled during 1985-2002 by the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program. THMs are a group of volatile organic compounds (VOCs) with natural and anthropogenic sources that are of interest because they are associated with acute and chronic health problems in humans. THMs occur in water primarily from chlorination and are classified as disinfection by-products. In this report, the four THMs are discussed in the order of chloroform, bromodichloromethane, dibromochloromethane, and then bromoform; this sequence corresponds to largest to smallest chlorine content and smallest to largest bromine content. Four trihalomethanes were detected in less than 20 percent of samples from studies of (1) aquifers, (2) shallow ground water in agricultural areas, (3) shallow ground water in urban areas, (4) domestic wells, and (5) public wells. Detection frequencies for individual THMs in the five studies ranged from zero for shallow ground water in agricultural areas to 19.5 percent for shallow ground water in urban areas. None of the samples from aquifer studies, domestic wells, or public wells had total THM concentrations (the sum of the concentrations of chloroform, bromodichloromethane, dibromochloromethane, and bromoform) greater than or equal to the U.S. Environmental Protection Agency Maximum Contaminant Level of 80 micrograms per liter (?g/L). Comparisons of results among studies of aquifers, shallow ground water in agricultural areas, and shallow ground water in urban areas were used to describe the occurrence of the four THMs in ground water for three different land-use settings-mixed, agricultural, and urban, respectively. At the 0.2-?g/L assessment level, one or more of the four THMs were detected in 7.9 percent of the samples

  7. Functionalization of polymer surfaces by medium frequency non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Felix, T.; Trigueiro, J. S.; Bundaleski, N.; Teodoro, O. M. N. D.; Sério, S.; Debacher, N. A.

    2018-01-01

    This work addresses the surface modification of different polymers by argon dielectric barrier discharge, using bromoform vapours. Atomic Force Microscopy and Scanning Electron Microscopy showed that plasma etching occurs in stages and may be related to the reach of the species generated and obviously the gap between the electrodes. In addition, the stages of flatten surface or homogeneity may be the result of the transient crosslinking promoted by the intense UV radiation generated by the non- thermal plasma. X-ray Photoelectron Spectroscopy analysis showed that bromine was inserted on the polymer surface as Csbnd Br bonds and as adsorbed HBr. The obtained results demonstrate that the highest degree of bromofunctionalization was achieved on polypropylene surface, which contains about 8,5% of Br. After its derivatization in ammonia, Br disappeared and about 6% of nitrogen in the form of amine group was incorporated at the surface. This result can be considered as a clear fingerprint of the Br substitution by the amine group, thus illustrating the efficiency of the proposed method for functionalization of polymer surfaces.

  8. Low-molecular-weight organoiodine and organobromine compounds released by polar macroalgae--the influence of abiotic factors.

    PubMed

    Laturnus, F; Giese, B; Wiencke, C; Adams, F C

    2000-01-01

    The influence of temperature, light, salinity and nutrient availability on the release of volatile halogenated hydrocarbons was investigated in the Antarctic red macroalgal species Gymnogongrus antarcticus Skottsberg. Compared to standard culture condition, an increase in the release rates of iodocompounds was generally found for the exposure of the alga to altered environmental conditions. Macroalgae exhibited higher release rates after adaptation for two months to the changed factors, than after short-term exposure. Monitoring the release rates during a 24 h incubation period (8.25 h light, 15.75 h darkness) showed that changes between light and dark periods had no influence on the release of volatile halocarbons. Compounds like bromoform and 1-iodobutane exhibited constant release rates during the 24 h period. The formation mechanisms and biological role of volatile organohalogens are discussed. Although marine macroalgae are not considered to be the major source of biogenically-produced volatile organohalogens, they contribute significantly to the bromine and iodine cycles in the environment. Under possible environmental changes like global warming and uncontrolled entrophication of the oceans their significance may be increase.

  9. Occurrence of Organic Compounds in Source and Finished Samples from Seven Drinking-Water Treatment Facilities in Miami-Dade County, Florida, 2008

    USGS Publications Warehouse

    Foster, Adam L.; Katz, Brian G.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department, conducted a reconnaissance study in 2008 to determine the occurrence of 228 organic compounds in raw, source (untreated) and finished (treated) drinking water at seven municipal water-treatment facilities in Miami-Dade County. Results of this sampling study showed that 25 (about 11 percent) of the 228 organic compounds were detected in at least one source water sample and 22 (about 10 percent) were detected in at least one finished water sample. The concentrations of organic compounds in source water samples were less than or equal to 0.2 (u or mu)g/L (micrograms per liter). The concentrations of organic compounds in finished water samples were generally less than or equal to 0.5 (u or mu)g/L, with the exception of bromoform (a possible disinfection byproduct) at estimated concentrations ranging from 0.7 to 2.8 (u or mu)g/L and diethyl phthalate (a plasticizer compound) at 2 (u or mu)g/L.

  10. Brominating activity of the seaweed Ascophyllum nodosum: Impact on the biosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wever, R.; Tromp, M.G.M.; Krenn, B.E.

    Macroalgae are an important source of volatile halogenated organic compounds, such as bromoform and dibromomethane. The mechanism by which these compounds are formed is still elusive. The authors report that the brown seaweeds Laminaria saccharina, Laminaria digitata, Fucus vesiculosis, Pelvetia canaliculata, and Ascophyllum nodosum and the red seaweeds Chondrus crispus and Plocamium hamatum contain bromoperoxidases. The intact plants are able to brominate exogeneous organic compounds when H{sub 2}O{sub 2} and Br{sup {minus}} are added to seawater. Further, the authors show that the brominating activity of the brown macroalga A. nodosum, which contains a vanadium bromoperoxidase located on the thallus surface,more » occurs when the plant is exposed to light and not in the dark. The rate of bromination of exogenous organic compounds in seawater by this plant is 68 nmol (g of wet alga){sup {minus}1} h{sup {minus}1}. HOBr is a strong biocidal agent and the authors propose that the formation of HOBr by this seaweed is part of a host defense system.« less

  11. Membrane inlet mass spectrometry of volatile organohalogen compounds in drinking water.

    PubMed

    Bocchini, P; Pozzi, R; Andalò, C; Galletti, G C

    1999-01-01

    The analysis of organic pollutants in drinking water is a topic of wide interest, reflecting on public health and life quality. Many different methodologies have been developed and are currently employed in this context, but they often require a time-consuming sample pre-treatment. This step affects the recovery of the highly volatile compounds. Trace analysis of volatile organic pollutants in water can be performed 'on-line' by membrane inlet mass spectrometry (MIMS). In MIMS, the sample is separated from the vacuum of the mass spectrometer by a thin polymeric hollow-fibre membrane. Gases and organic volatile compounds diffuse and concentrate from the sample into the hollow-fibre membrane, and from there into the mass spectrometer. The main advantages of the technique are that no pre-treatment of samples before analysis is needed and that it has fast response times and on-line monitoring capabilities. This paper reports the set-up of the analytical conditions for the analysis of volatile organohalogen compounds (chloroform, bromoform, bromodichloromethane, chlorodibromomethane, tetrachloroethylene, trichloroethylene, 1,1,1-trichloroethane, and carbon tetrachloride). Linearity of response, repeatability, detection limits, and spectra quality are evaluated. Copyright 1999 John Wiley & Sons, Ltd.

  12. Speciation of trihalomethane mixtures for the Mississippi, Missouri, and Ohio Rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane formation potentials were determined for the chlorination of water samples from the Mississippi, Missouri, and Ohio Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at 12 locations on the Mississippi from New Orleans, LA, to Minneapolis, MN, and on the Missouri and Ohio 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH and initial free-chlorine concentration. Chloroform concentrations decreased with distance downstream and approximately paralleled the decrease of the dissolved organic-carbon concentration. Bromide concentrations were 3.7-5.7 times higher for the Missouri and 1.4-1.6 times higher for the Ohio than for the Mississippi above their confluences, resulting in an overall increase of the bromide concentration with distance downstream. Variations of the concentrations of the brominated trihalomethanes with distance downstream approximately paralleled the variation of the bromide concentration. Concentrations of all four trihalomethanes increased as the pH increased. Concentrations of chloroform and bromodichloromethane increased slightly and the concentration of bromoform decreased as the initial free-chlorine concentration increased; the chlorodibromomethane concentration had little dependence on the free-chlorine concentration.

  13. Maps showing mineralogical data for nonmagnetic heavy-mineral concentrates in the Talkeetna Quadrangle, Alaska

    USGS Publications Warehouse

    Tripp, R.B.; Karlson, R.C.; Curtin, G.C.

    1978-01-01

    Reconnaissance geochemical and mineralogical sampling was done in the Talkeetna Quadrangle during 1975 and 1976 as part of the Alaska Mineral Resource Assessment Program (AMRAP). These maps show the distribution of gold, scheelite, chalcopyrite, arsenopyrite, galena, fluorite, cinnabar, and malachite in the nonmagnetic fraction of heavy-mineral concentrates. Heavy-mineral concentrate samples were collected at 812 sites from active stream channels. The heavy-mineral concentrates were obtained by panning stream sediment in the field to remove most of the light minerals. The panned samples were then sieved through a 20-mesh (0.8 mm) sieve in the laboratory, and the minus-20-mesh fraction was further separated with bromoform (specific gravity, 2.86) to remove any remaining light-mineral grains. Magnetite and other strongly magnetic heavy minerals were removed from the heavy-mineral fraction by use of a hand magnet. The remaining sample was passed through a Frantz Isodynamic Separator and a nonmagnetic fraction was examined for its mineralogical content with the aid of a binocular microscope and an x-ray diffractometer. The nonmagnetic concentrates primarily contain phyllite fragments, muscovite, sphene, zircon, apatite, tourmaline, rutile, and anatase. Most ore and ore-related minerals also occur in this fraction.

  14. Nanodetection of the disinfection by-products on GC-MS techniques

    NASA Astrophysics Data System (ADS)

    Ristoiu, Dumitru; Haydee, Melinda; Ristoiu, Tania

    2009-01-01

    Exposures to disinfection by-products (DBPs) in residential drinking water occur through multiple routes and vary across the population because of differences in the amount and ways people use water. Municipal water in the Romania is disinfected, with chlorine being the most common disinfectant agent. Disinfection of water, in additional to having the benefit of destroying microbes that can transmit diseases, has the drawback of producing a series of compounds known as disinfection by-products (DBPs). Chlorination produces many compounds containing chlorine and/or bromine, some of which have been shown to be carcinogenic, mutagenic, and/or teratogenic in animal studies. The most abundant class of DBPs that result from chlorination of drinking water are trihalomethanes (THMs) - chloroform (CHCl3), dichlorobromomethane (CHCl2Br), dibromochloromethane (CHBr2Cl) and bromoform (CHBr3). The most predominant THM species was CHCl3 and it highest concentration was 85•106 ng/m3. The others THMs compounds concentration were lower, between 65•104 ng/m3 and 12•106 ng/m3. THMs compounds were analyzed on gas chromatography coupled with mass spectrometer detector (GC-MS) and head space technique (HS) was used for all analysis.

  15. Bacterial Cellular Materials as Precursors of Chloroform

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  16. A metagenomic-based survey of microbial (de)halogenation potential in a German forest soil

    PubMed Central

    Weigold, Pascal; El-Hadidi, Mohamed; Ruecker, Alexander; Huson, Daniel H.; Scholten, Thomas; Jochmann, Maik; Kappler, Andreas; Behrens, Sebastian

    2016-01-01

    In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications. PMID:27353292

  17. The risks of drinking water

    NASA Astrophysics Data System (ADS)

    Reichhardt, Tony

    1984-04-01

    Three researchers from the Energy and Environmental Policy Center at Harvard University have come up with a new method of calculating the risk from contaminants in drinking water, one that they believe takes into account some of the uncertainties in pronouncing water safe or dangerous to drink. The new method concentrates on the risk of cancer, which authors Edmund Crouch, Richard Wilson, and Lauren Zeise believe has not been properly considered in establishing drinking water standards.Writing in the December 1983 issue of Water Resources Research, the authors state that “current [drinking water] standards for a given chemical or class of chemicals do not account for the presence of other pollutants” that could combine to create dangerous substances. According to Wilson, “Over a hundred industrial pollutants and chlorination byproducts have been found in various samples of drinking water, some of which are known carcinogens, others suspected carcinogens.” The same chlorine that solves one major health problem—the threat of bacterial disease—can thus contribute to another, according to the authors, by increasing the long-term risk of cancer. The largest risks are due to halomethanes such as chloroform and bromoform, produced as chlorine reacts with organic matter in drinking water.

  18. Dissolved organic matter composition drives the marine production of brominated very short-lived substances.

    PubMed

    Liu, Yina; Thornton, Daniel C O; Bianchi, Thomas S; Arnold, William A; Shields, Michael R; Chen, Jie; Yvon-Lewis, Shari A

    2015-03-17

    Brominated very short-lived substances (BrVSLS), such as bromoform, are important trace gases for stratospheric ozone chemistry. These naturally derived trace gases are formed via bromoperoxidase-mediated halogenation of dissolved organic matter (DOM) in seawater. Information on DOM type in relation to the observed BrVSLS concentrations in seawater, however, is scarce. We examined the sensitivity of BrVSLS production in relation to the presence of specific DOM moieties. A total of 28 model DOM compounds in artificial seawater were treated with vanadium bromoperoxidase (V-BrPO). Our results show a clear dependence of BrVSLS production on DOM type. In general, molecules that comprise a large fraction of the bulk DOM pool did not noticeably affect BrVSLS production. Only specific cell metabolites and humic acid appeared to significantly enhance BrVSLS production. Amino acids and lignin phenols suppressed enzyme-mediated BrVSLS production and may instead have formed halogenated nonvolatile molecules. Dibromomethane production was not observed in any experiments, suggesting it is not produced by the same pathway as the other BrVSLS. Our results suggest that regional differences in DOM composition may explain the observed BrVSLS concentration variability in the global ocean. Ultimately, BrVSLS production and concentrations are likely affected by DOM composition, reactivity, and cycling in the ocean.

  19. Quantifying Sulfur-Containing Compounds Over the Santa Barbara Channel

    NASA Astrophysics Data System (ADS)

    Black, J.; Hughes, S.; Blake, D. R.

    2016-12-01

    Carbonyl sulfide (OCS) is emitted to the atmosphere through the outgassing of ocean surface waters. OCS is also the primary source of sulfur-containing compounds in the stratosphere and contributes to the formation of the stratospheric sulfate layer. During the 2016 Student Airborne Research Program (SARP), whole air samples were collected on the NASA DC-8 aircraft over the Santa Barbara Channel. Five additional surface samples were taken at various locations along the Santa Barbara Channel. The samples were analyzed using gas chromatography in the Rowland-Blake lab at UC Irvine, and compounds such as OCS, dimethyl sulfide (DMS), carbon disulfide (CS2), bromoform (CHBr3), and methyl iodide (CH3I) associated with ocean emissions and stratospheric aerosols were analyzed. These marine sourced compounds, excluding OCS, showed expected trends of dilution with increasing altitude. The surface samples from the Santa Barbara Channel all exhibited elevated concentrations of OCS in comparison to samples taken from the aircraft, with an average of 666 ± 12 pptv, whereas the average background concentration of OCS was 587 ± 19 pptv. SARP flights from 2009-2015 over the Santa Barbara Channel saw an average OCS concentration of 548 ± 26 pptv. Elevated levels of OCS have never been detected from the aircraft during SARP flights, indicating that OCS emissions must be measured using surface sampling if emission estimates from the ocean are to be evaluated.

  20. Characterization of dissolved organic matter for prediction of trihalomethane formation potential in surface and sub-surface waters.

    PubMed

    Awad, John; van Leeuwen, John; Chow, Christopher; Drikas, Mary; Smernik, Ronald J; Chittleborough, David J; Bestland, Erick

    2016-05-05

    Dissolved organic matter (DOM) in surface waters used for drinking purposes can vary markedly in character dependent on their sources within catchments. The character of DOM further influences the formation of disinfection by products when precursor DOM present in drinking water reacts with chlorine during disinfection. Here we report the development of models that describe the formation potential of trihalomethanes (THMFP) dependent on the character of DOM in waters from discrete catchments with specific land-use and soil textures. DOM was characterized based on UV absorbance at 254 nm, apparent molecular weight and relative abundances of protein-like and humic-like compounds. DOM character and Br concentration (up to 0.5 mg/L) were used as variables in models (R(2)>0.93) of THMFP, which ranged from 19 to 649 μg/L. Chloroform concentration (12-594 μg/L) and relative abundance (27-99%) were first modeled (R(2)>0.85) and from these, the abundances of bromodichloromethane and chlorodibromomethane estimated using power and exponential functions, respectively (R(2)>0.98). From these, the abundance of bromoform is calculated. The proposed model may be used in risk assessment of catchment factors on formation of trihalomethanes in drinking water, in context of treatment efficiency for removal of organic matter. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  1. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection.

    PubMed

    Alexandrou, Lydon D; Meehan, Barry J; Morrison, Paul D; Jones, Oliver A H

    2017-05-15

    Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid-liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9-9.3 µg/L).

  2. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection

    PubMed Central

    Alexandrou, Lydon D.; Meehan, Barry J.; Morrison, Paul D.; Jones, Oliver A. H.

    2017-01-01

    Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid–liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9–9.3 µg/L). PMID:28505068

  3. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    USGS Publications Warehouse

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  4. Source regions of stratospheric VSLS in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Quack, Birgit; Hepach, Helmke; Atlas, Elliot; Bracher, Astrid; Endres, Sonja; Arevalo-Martinez, Damian; Bange, Hermann; Lennartz, Sinikka; Steinhoff, Tobias; Booge, Dennis; Zarvasky, Alexander; Marandino, Christa; Patey, Matt; Achterberg, Eric; Dengler, Markus; Fiehn, Alina; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated very-short-lived substances (VSLS), which are naturally produced in the ocean, play a significant role in present day ozone depletion, in particular in combination with enhanced stratospheric sulfate aerosol, which is also partly derived from oceanic VSLS. The decline of anthropogenic chlorine in the stratosphere within the 21st century will increase the relative importance of the natural emissions on stratospheric ozone destruction. Especially, oceanic sources and source regions of the compounds need to be better constrained, in order to improve the future prediction. During boreal summer the Asian monsoon circulation transports air masses from the Indian Ocean to the stratosphere, while the contribution of VSLS from this ocean to stratospheric halogen and sulfur is unknown. During the research cruises SO 234/2 and SO 235 in July-August 2014 onboard RV SONNE oceanic and atmospheric halogenated VSLS such as bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) were measured in the subtropical and tropical West Indian Ocean for the first time. Here we present the oceanic sources of the halogenated compounds and their relation to other biogeochemical parameters (short- and longlived trace gases, phytoplankton and nutrients) along the cruise track, which covered coastal, upwelling and open ocean regimes and the Seychelles-Chagos thermocline ridge as important source region for stratospheric bromine.

  5. The Effect of Different Boiling and Filtering Devices on the Concentration of Disinfection By-Products in Tap Water

    PubMed Central

    Carrasco-Turigas, Glòria; Villanueva, Cristina M.; Goñi, Fernando; Rantakokko, Panu; Nieuwenhuijsen, Mark J.

    2013-01-01

    Disinfection by-products (DBPs) are ubiquitous contaminants in tap drinking water with the potential to produce adverse health effects. Filtering and boiling tap water can lead to changes in the DBP concentrations and modify the exposure through ingestion. Changes in the concentration of 4 individual trihalomethanes (THM4) (chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM)), MX, and bromate were tested when boiling and filtering high bromine-containing tap water from Barcelona. For filtering, we used a pitcher-type filter and a household reverse osmosis filter; for boiling, an electric kettle, a saucepan, and a microwave were used. Samples were taken before and after each treatment to determine the change in the DBP concentration. pH, conductivity, and free/total chlorine were also measured. A large decrease of THM4 (from 48% to 97%) and MX concentrations was observed for all experiments. Bromine-containing trihalomethanes were mostly eliminated when filtering while chloroform when boiling. There was a large decrease in the concentration of bromate with reverse osmosis, but there was a little effect in the other experiments. These findings suggest that the exposure to THM4 and MX through ingestion is reduced when using these household appliances, while the decrease of bromate is device dependent. This needs to be considered in the exposure assessment of the epidemiological studies. PMID:23476675

  6. Photolytic dehalogenation of disinfection byproducts in water by natural sunlight irradiation.

    PubMed

    Abusallout, Ibrahim; Hua, Guanghui

    2016-09-01

    The aqueous photolysis of halogenated disinfection byproducts (DBPs) by natural sunlight irradiation was studied to determine their photolytic dehalogenation kinetics. Total organic halogen analysis was used to quantify the dehalogenation extents of DBPs during outdoor photolysis experiments. Dichloroacetamide, chloral hydrate, chloroform, dichloroacetonitrile, monochloro-, monobromo-, dichloro-, dibromo-, and trichloroacetic acids were generally resistant to photolytic dehalogenation and showed less than 10% reduction after 6 h sunlight irradiation. Monoiodoacetic acid, tribromoacetic acid, bromoform, dibromoacetonitrile, and trichloronitromethane showed moderate to high dehalogenation degrees with half-lives of 4.0-19.3 h. Diiodoacetic acid, triiodoacetic acid, and iodoform degraded rapidly under the sunlight irradiation and exhibited half-lives of 5.3-10.2 min. In general, the photosensitive cleavage of carbon-halogen bonds of DBPs increased with increasing number of halogens (tri- > di- > mono-halogenated) and size of the substituted halogens (I > Br > Cl). Nitrate, nitrite, and pH had little impact on the photodehalogenation of DBPs under typical levels in surface waters. The presence of natural organic matter (NOM) inhibited the photodehalogenation of DBPs by light screening. The NOM inhibiting effects were more pronounced for the fast degrading iodinated DBPs. The results of this study improve our understanding about the photolytic dehalogenation of wastewater-derived DBPs in surface waters during water reuse. Published by Elsevier Ltd.

  7. Photolytic removal of DBPs by medium pressure UV in swimming pool water.

    PubMed

    Hansen, Kamilla M S; Zortea, Raissa; Piketty, Aurelia; Vega, Sergio Rodriguez; Andersen, Henrik Rasmus

    2013-01-15

    Medium pressure UV is used for controlling the concentration of combined chlorine (chloramines) in many public swimming pools. Little is known about the fate of other disinfection by-products (DBPs) in UV treatment. Photolysis by medium pressure UV treatment was investigated for 12 DBPs reported to be found in swimming pool water: chloroform, bromodichloromethane, dibromochloromethane, bromoform, dichloroacetonitrile, bromochloroacetonitrile, dibromoacetronitrile, trichloroacetonitrile, trichloronitromethane, dichloropropanone, trichloropropanone, and chloral hydrate. First order photolysis constants ranged 26-fold from 0.020 min(-1) for chloroform to 0.523 min(-1) for trichloronitromethane. The rate constants generally increased with bromine substitution. Using the UV removal of combined chlorine as an actinometer, the rate constants were recalculated to actual treatment doses of UV applied in a swimming pool. In an investigated public pool the UV dose was equivalent to an applied electrical energy of 1.34 kWh m(-3) d(-1) and the UV dose required to removed 90% of trichloronitromethane was 0.4 kWh m(-3) d(-1), while 2.6 kWh m(-3) d(-1) was required for chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes ranged from 0.6 to 3.1 kWh m(-3) d(-1). It was predicted thus that a beneficial side-effect of applying UV for removing combined chlorine from the pool water could be a significant removal of trichloronitromethane, chloral hydrate and the bromine containing haloacetonitriles and trihalomethanes. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. The advanced EctoSys electrolysis as an integral part of a ballast water treatment system.

    PubMed

    Echardt, J; Kornmueller, A

    2009-01-01

    A full-scale 500 m(3)/h ballast water treatment system was tested according to the landbased type approval procedure of the International Maritime Organization (IMO). The system consists of disc filters followed by the advanced EctoSys electrolysis as an integral part for disinfection. The test water quality exceeded by far the minimum requirements for type approval testing. Due to the properties of the special electrodes used together with the striking disinfection effect, the disinfectants assumed to be produced inline by the EctoSys cell in river water were hydroxyl radicals, while in brackish water additionally chlorine and consequently the more stable bromine were formed. In river water, no residual oxidants could be detected in accordance with the assumed production of not responding, highly-reactive and short-living hydroxyl radicals. Accordingly, disinfection byproduct (DBP) formation was very low and close to the limit of quantification in river water. While in brackish water, initial residual oxidant concentrations were maximum 2 mg/L as chlorine and mostly brominated DBP (especially bromoform and bromate) were found. Overall considering this worst case test approach, the DBP concentrations of the treated effluents were below or in the range of the WHO Drinking Water Guideline values and therefore evaluated as acceptable for discharge to the environment. The stringent discharge standard by IMO concerning viable organisms was fully met in river and brackish water, proving the disinfection efficiency of the EctoSys electrolysis against smaller plankton and bacteria.

  9. [Formation and Variation of Brominated Disinfection By-products in A Combined Ultrafiltration and Reverse Osmosis Process for Seawater Desalination].

    PubMed

    Yang, Zhe; Sun, Ying-xue; Shi, Na; Hu, Hong-ying

    2015-10-01

    The characteristics of dissolved organic matter (DOM) and brominated disinfection by-products ( Br-DBPs ) during a seawater desalination ultrafiltration (UF) combined reverse osmosis (RO) process were studied. The seawater contained high level of bromide ion (45.6-50.9 mg x L(-1)) and aromatic compounds with specific ultraviolet absorbance ( SUVA) of 3.6-6.0 L x (mg x m)(-1). The tryptophan-like aromatic protein, fulvic acid-like and soluble microbial by-product-like were the main fluorescent DOM in the seawater. After pre-chlorination of the seawater, the concentrations of DBPs was significantly increased in the influent of UF, which was dominantly the Br-DBPs. Bromoform (CHBr3) accounted for 70.48% - 91.50% of total trihalomethanes (THMs), dibromoacetic acid (Br2CHCO2H) occupied 81.14% - 100% of total haloacetic acids (HAAs) and dibromoacetonitrile (C2HBr2N) occupied 83.77% - 87.45% of total haloacetonitriles ( HANs). The removal efficiency of THMs, HAAs and HANs by the UF membrane was 36.63% - 40.39%, 73.83% - 95.38% and 100%, respectively. The RO membrane could completely remove the HAAs, while a little of the THMs was penetrated. The antiestrogenic activity in the seawater was 0.35 - 0.44 mg x L(-1), which was increased 32% - 69% after the pre-chlorination. The DBPs and other bio-toxic organics which formed during the UF-RO process were finally concentrated in the UF concentrate and RO concentrate.

  10. Water-quality assessment of south-central Texas: Occurrence and distribution of volatile organic compounds in surface water and ground water, 1983-94, and implications for future monitoring

    USGS Publications Warehouse

    Ging, P.B.; Judd, L.J.; Wynn, K.H.

    1997-01-01

    The study area of the South-Central Texas study unit of the National Water-Quality Assessment Program comprises the Edwards aquifer in the San Antonio region and its catchment area. The first phase of the assessment includes evaluation of existing water-quality data for surface water and ground water, including volatile organic compounds, to determine the scope of planned monitoring. Most analyses of volatile organic compounds in surface water are from the National Pollutant Discharge Elimination System sites in San Antonio, Texas. Nine volatile organic compounds were detected at the six sites. The three compounds with the most detections at National Pollutant Discharge Elimination System sites are 1,2,4-trimethylbenzene, toluene, and xylene. Analysis of volatile organic compounds in ground water was limited to Edwards aquifer wells. Twenty-eight volatile organic compounds were detected in samples from 89 wells. The five most commonly detected compounds in samples from wells, in descending order, are tetrachloroethene, trichloroethene, bromoform, chloroform, and dibromochloromethane. Detections of volatile organic compounds in surface water and ground water within the South-Central Texas study area are limited to site-specific sources associated with development; therefore, planned monitoring for possible detections of volatile organic compounds as part of the National Water-Quality Assessment Program will emphasize areas of expanding population and development. Monitoring of volatile organic compounds is planned at National Pollutant Discharge Elimination System sites, at basic fixed surface-water sites, and in the ground-water study-unit surveys.

  11. Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification.

    PubMed

    Silva, Zelinda Isabel; Rebelo, Maria Helena; Silva, Manuela Manso; Alves, Ana Martins; Cabral, Maria da Conceição; Almeida, Ana Cristina; Aguiar, Fátima Rôxo; de Oliveira, Anabela Lopes; Nogueira, Ana Cruz; Pinhal, Hermínia Rodrigues; Aguiar, Pedro Manuel; Cardoso, Ana Sofia

    2012-01-01

    Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality.

  12. Sources and occurrence of chloroform and other trihalomethanes in drinking-water supply wells in the United States, 1986-2001

    USGS Publications Warehouse

    Ivahnenko, Tamara; Zogorski, J.S.

    2006-01-01

    Chloroform and three other trihalomethanes (THMs)--bromodichloromethane, dibromochloromethane, and bromoform--are disinfection by-products commonly produced during the chlorination of water and wastewater. Samples of untreated ground water from drinking-water supply wells (1,096 public and 2,400 domestic wells) were analyzed for THMs and other volatile organic compounds (VOCs) during 1986-2001, or compiled, as part of the U.S. Geological Survey's National Water-Quality Assessment Program. This report provides a summary of potential sources of THMs and of the occurrence and geographical distribution of THMs in samples from public and domestic wells. Evidence for an anthropogenic source of THMs and implications for future research also are presented. Potential sources of THMs to both public and domestic wells include the discharge of chlorinated drinking water and wastewater that may be intentional or inadvertent. Intentional discharge includes the use of municipally supplied chlorinated water to irrigate lawns, golf courses, parks, gardens, and other areas; the use of septic systems; or the regulated discharge of chlorinated wastewater to surface waters or ground-water recharge facilities. Inadvertent discharge includes leakage of chlorinated water from swimming pools, spas, or distribution systems for drinking water or wastewater sewers. Statistical analyses indicate that population density, the percentage of urban land, and the number of Resource Conservation and Recovery Act hazardous-waste facilities near sampled wells are significantly associated with the probability of detection of chloroform, especially for public wells. Domestic wells may have several other sources of THMs, including the practice of well disinfection through shock chlorination, laundry wastewater containing bleach, and septic system effluent. Chloroform was the most frequently detected VOC in samples from drinking-water supply wells (public and domestic wells) in the United States. Although

  13. Influence of physical activity in the intake of trihalomethanes in indoor swimming pools.

    PubMed

    Marco, Esther; Lourencetti, Carolina; Grimalt, Joan O; Gari, Mercè; Fernández, Pilar; Font-Ribera, Laia; Villanueva, Cristina M; Kogevinas, Manolis

    2015-07-01

    This study describes the relationship between physical activity and intake of trihalomethanes (THMs), namely chloroform (CHCl3), bromodichloromethane (CHCl2Br), dibromochloromethane (CHClBr2) and bromoform (CHBr3), in individuals exposed in two indoor swimming pools which used different disinfection agents, chlorine (Cl-SP) and bromine (Br-SP). CHCl3 and CHBr3 were the dominant compounds in air and water of the Cl-SP and Br-SP, respectively. Physical exercise was assessed from distance swum and energy expenditure. The changes in exhaled breath concentrations of these compounds were measured from the differences after and before physical activity. A clear dependence between distance swum or energy expenditure and exhaled breath THM concentrations was observed. The statistically significant relationships involved higher THM concentrations at higher distances swum. However, air concentration was the major factor determining the CHCl3 and CHCl2Br intake in swimmers whereas distance swum was the main factor for CHBr3 intake. These two causes of THM incorporation into swimmers concurrently intensify the concentrations of these compounds into exhaled breath and pointed to inhalation as primary mechanism for THM uptake. Furthermore, the rates of THM incorporation were proportionally higher as higher was the degree of bromination of the THM species. This trend suggested that air-water partition mechanisms in the pulmonary system determined higher retention of the THM compounds with lower Henry's Law volatility constants than those of higher constant values. Inhalation is therefore the primary mechanisms for THM exposure of swimmers in indoor buildings. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soorkia, Satchin; Taatjes, Craig A.; Osborn, David L.

    The reaction of the ground state methylidyne radical CH (X2Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 90 oC (363 K), at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from 79Br atoms, and themore » result is consistent with CH addition to pyrrole followed by Helimination. The Photoionization Efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (dpyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as in gas-phase combustion processes, are discussed.« less

  15. Oceanic Emissions of Organic Very Short Lived Substances from the Indian Ocean and their Transport to the Stratosphere

    NASA Astrophysics Data System (ADS)

    Marandino, C. A.; Quack, B.; Hepach, H.; Atlas, E. L.; Fiehn, A.; Lennartz, S. T.; Bracher, A.; Krüger, K.; Waersted, E.

    2016-02-01

    Within the frame work of the German project OASIS, research cruises SO234-2 (Durban- Port Louis, 08-20 July, 2014) and SO235 (Port Louis - Male, July 23 to August 07, 2014) of the German research vessel SONNE were conducted by the University of Oslo, Norway (www.uio.no) together with the GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany (www.geomar.de) in the subtropical and tropical West Indian Ocean. The research covered the sources and air- sea gas exchange of a suite of natural and anthropogenic short- and long lived trace gases as well as atmospheric composition and transport. Among the gases investigated were very short lived halocarbons such as bromoform, dibromomethane and methyl iodide, which are naturally produced in the oceans and influence stratospheric ozone and climate. The Asian monsoon circulation provides an effective pathway for air masses from the atmospheric boundary layer containing these and other compounds to enter the global stratosphere during boreal summer especially above India and the Bay of Bengal. During the cruises biological, chemical and physical parameters were analyzed in the surface waters and the deep ocean, the atmospheric conditions were determined, the oceanic trace gas emissions calculated and their transport and contribution to the stratospheric halogen budget, deduced from radiosonde launchings and high resolution transport modelling, was determined. The measurements were conducted in various marine biogeochemical regimes close to coasts, near coral reefs and sea banks, in high chlorophyll and oligotrophic regimes. We present novel results from the cruises, including biogeochemical responses to physical forcing and their contribution to the atmosphere.

  16. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung

    2014-01-15

    The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H2, CH4, CO2, and NOx, were 60-115, 0.4-4.0, 1.1-10, 30-95, and 0-0.7mg/g, corresponding to temperatures ranging from 200 to 500°C. When the pyrolysis temperature was lower than 300°C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400°C. When VOC exhaust was flowed through the bed of Fe-impregnated Al2O3, the emission of ozone precursor VOCs could be reduced by 70-80%. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. C{sub 1}-C{sub 15} alkyl nitrates, benzyl nitrate, and bifunctional nitrates: Measurements in California and South Atlantic air and global comparison using C{sub 2}Cl{sub 4} and CHBr{sub 3} as marker molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, M.; Luxenhofer, O.; Deissler, A.

    1998-10-15

    Measurements of C{sub 1}--C{sub 15} alkyl nitrates, perchloroethylene, and bromoform at two different sampling sites near Santa Cruz, CA, were conducted in 1995. The halocarbons were used as marker molecules to differentiate the air parcels collected into marine and continental groups. The average concentration of {Sigma}n/i-C{sub 3}--C{sub 12} alkyl nitrates at the California Coast was lower than the levels obtained in the coastal mountains. This difference was shown to be most significant for the long chain n/i-C{sub 6}--C{sub 12} alkyl nitrates. It is concluded that the {ge}C{sub 6} alkyl nitrates in continental air can contribute 1--2% to the total NO{submore » y}. The results are summarized together with earlier data sets to give a picture of contemporary levels and of the global occurrence of C{sub 3}--C{sub 12} alkyl nitrates. In comparison with South Atlantic air, pattern analysis of n-alkyl nitrates suggests a marine source of primary n-alkyl nitrates. It is also shown that liquid chromatographic preseparation of the air sample extracts leads to a fraction that contains more polar organic nitrates. Several alkyl dinitrates and benzyl nitrate are detected in air samples from California, the South Atlantic region, and Europe. The vicinal alkyl dinitrates show increased abundance in a nighttime sample. The relative abundance of benzyl nitrate compared to alkyl (mono) nitrates is used as a tool for global air mass characterization.« less

  18. Environmental and personal determinants of the uptake of disinfection by-products during swimming.

    PubMed

    Font-Ribera, Laia; Kogevinas, Manolis; Schmalz, Christina; Zwiener, Christian; Marco, Esther; Grimalt, Joan O; Liu, Jiaqi; Zhang, Xiangru; Mitch, William; Critelli, Rossana; Naccarati, Alessio; Heederik, Dick; Spithoven, Jack; Arjona, Lourdes; de Bont, Jeroen; Gracia-Lavedan, Esther; Villanueva, Cristina M

    2016-08-01

    Trihalomethanes (THMs) in exhaled breath and trichloroacetic acid (TCAA) in urine are internal dose biomarkers of exposure to disinfection by-products (DBPs) in swimming pools. We assessed how these biomarkers reflect the levels of a battery of DBPs in pool water and trichloramine in air, and evaluated personal determinants. A total of 116 adults swam during 40min in a chlorinated indoor pool. We measured chloroform, bromodichloromethane, dibromochloromethane and bromoform in exhaled breath and TCAA in urine before and after swimming, trichloramine in air and several DBPs in water. Personal determinants included sex, age, body mass index (BMI), distance swum, energy expenditure, heart rate and 12 polymorphisms in GSTT1, GSTZ1 and CYP2E1 genes. Median level of exhaled total THMs and creatinine adjusted urine TCAA increased from 0.5 to 14.4µg/m(3) and from 2.5 to 5.8µmol/mol after swimming, respectively. The increase in exhaled brominated THMs was correlated with brominated THMs, haloacetic acids, haloacetonitriles, haloketones, chloramines, total organic carbon and total organic halogen in water and trichloramine in air. Such correlations were not detected for exhaled chloroform, total THMs or urine TCAA. Exhaled THM increased more in men, urine TCAA increased more in women, and both were affected by exercise intensity. Genetic variants were associated with differential increases in exposure biomarkers. Our findings suggest that, although affected by sex, physical activity and polymorphisms in key metabolizing enzymes, brominated THMs in exhaled breath could be used as a non-invasive DBP exposure biomarker in swimming pools with bromide-containing source waters. This warrants confirmation with new studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Chlorination by-product concentration levels in seawater and fish of an industrialised bay (Gulf of Fos, France) exposed to multiple chlorinated effluents.

    PubMed

    Boudjellaba, D; Dron, J; Revenko, G; Démelas, C; Boudenne, J-L

    2016-01-15

    Chlorination is one of the most widely used techniques for biofouling control in large industrial units, leading to the formation of halogenated chlorination by-products (CBPs). This study was carried out to evaluate the distribution and the dispersion of these compounds within an industrialised bay hosting multiple chlorination discharges issued from various industrial processes. The water column was sampled at the surface and at 7 m depth (or bottom) in 24 stations for the analysis of CBPs, and muscle samples from 15 conger eel (Conger conger) were also investigated. Temperature and salinity profiles supported the identification of the chlorination releases, with potentially complex patterns. Chemical analyses showed that bromoform was the most abundant CBP, ranging from 0.5 to 2.2 μg L(-1) away from outlets (up to 10 km distance), and up to 18.6 μg L(-1) in a liquefied natural gas (LNG) regasification plume. However, CBP distributions were not homogeneous, halophenols being prominent in a power station outlet and dibromoacetonitrile in more remote stations. A seasonal effect was identified as fewer stations revealed CBPs in summer, probably due to the air and water temperatures increases favouring volatilisation and reactivity. A simple risk assessment of the 11 identified CBPs showed that 7 compounds concentrations were above the potential risk levels to the local marine environment. Finally, conger eel muscles presented relatively high levels of 2,4,6-tribromophenol, traducing a generalised impregnation of the Gulf of Fos to CBPs and a global bioconcentration factor of 25 was determined for this compound. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Brominated VSLSs in and over the East Pacific During the Halocarbon Air-Sea Transect - Pacific Cruise (HalocAST-P)

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yvon-Lewis, S. A.; Hu, L.; Smith, R. W.; Shen, L.; Bianchi, T. S.; Campbell, L.

    2010-12-01

    Brominated very short lived substances (VSLSs), such as bromoform (CHBr3), dibromomethane (CH2Br2), dibromochloromethane (CHClBr2), and dichlorobromomethane (CHBrCl2) can potentially supply a significant amount of inorganic bromine (Bry) to the troposphere and lower stratosphere. Bromine radicals are 50 - 100 times more efficient in depleting ozone (O3) than chlorine radicals; therefore, these compounds are important to the ozone chemistry in the atmosphere. CHBr3, CH2Br2, CHClBr2 and CHBrCl2 are thought to be produced mainly by phytoplankton in the open ocean. During the Halocarbon Air-Sea Transect - Pacific (HalocAST - P) cruise we examined the distributions of halocarbons in the East Pacific Ocean and in the overlying atmosphere. The cruise started from Punta Arenas, Chile on March 29, and finished at Seattle, WA, United States on April 29 2010. Continuous underway measurements of the atmospheric and surface seawater concentrations along with depth profiles of CHBr3, CH2Br2, CHClBr2, CHBrCl2, and a suite of other halogenated compounds were measured over a large cross latitudinal transect. The brominated VSLS measured during this cruise generally exhibit a correlation with chlorophyll a, supporting biogenic production as the predominate source for these compounds in the open ocean. Here, we will be discussing air and seawater concentrations, saturation anomalies, fluxes, and depth profiles for CHBr3, CH2Br2, CHClBr2, and CHBrCl2. Cyanobacteria counts, pigment compositions, nutrient and dissolved organic carbon (DOC) concentrations in the water column were also measured and serve as useful tools for understanding the biological production of these brominated VSLSs.

  1. Polyhalogenated Very Short Live Substances in the Atlantic Ocean, and their Linkages with Ocean Primary Production

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yvon-Lewis, S. A.; Hu, L.; Bianchi, T. S.; Campbell, L.; Smith, R. W.

    2011-12-01

    The Halocarbon Air-Sea Transect - Atlantic (HalocAST-A) cruise was conducted aboard FS Polarstern during the ANT-XXVII/1 expedition. The ship departed from Bremerhaven, Germany on October 25th and arrived in Cape Town, South Africa on November 24th in 2010. The HalocAST-A cruise was devoted to studying air-sea fluxes of a suite of halocarbon compounds. Atmospheric mixing ratios and seawater concentrations of the halocarbons were continuously measured with the gas chromatograph - mass spectrometer (GC-MS). This study focuses on the polyhalogenated very short lived substances (VSLSs) such as bromoform (CHBr3), dibromomethane (CH2Br2), chlorodibromomethane (CHClBr2), and bromodichloromethane (CHBrCl2). The goal of this study is to examine the distributions of these compounds and possible relationship between their emissions and oceanic primary production. Therefore, along with the halocarbon concentrations, parameters like dissolved organic carbon concentrations, nutrient concentrations, pigment concentrations, and picoplankton and heterotrophic bacteria counts were also determined. The observed saturation anomalies indicated these VSLSs were supersaturated for almost the entire duration of the cruise. The highest seawater concentrations for these compounds were observed near the Canary Islands. Air mixing ratios were also elevated in this region. The net fluxes for CHBr3, CH2Br2, CHClBr2, and CHBrCl2 were 13.8 nmol m-2 d-1, 4.5 nmol m-2 d-1, 4.5 nmol m-2 d-1 and 1.2 nmol m-2 d-1, respectively. During the HalocAST-A cruise, these compounds exhibit similar trends with total chlorophyll a. Contributions from selected phytoplankton group will be further assessed through the use of individual pigment biomarkers.

  2. What’s in the Pool? A Comprehensive Identification of Disinfection By-products and Assessment of Mutagenicity of Chlorinated and Brominated Swimming Pool Water

    PubMed Central

    Richardson, Susan D.; DeMarini, David M.; Kogevinas, Manolis; Fernandez, Pilar; Marco, Esther; Lourencetti, Carolina; Ballesté, Clara; Heederik, Dick; Meliefste, Kees; McKague, A. Bruce; Marcos, Ricard; Font-Ribera, Laia; Grimalt, Joan O.; Villanueva, Cristina M.

    2010-01-01

    Background Swimming pool disinfectants and disinfection by-products (DBPs) have been linked to human health effects, including asthma and bladder cancer, but no studies have provided a comprehensive identification of DBPs in the water and related that to mutagenicity. Objectives We performed a comprehensive identification of DBPs and disinfectant species in waters from public swimming pools in Barcelona, Catalonia, Spain, that disinfect with either chlorine or bromine and we determined the mutagenicity of the waters to compare with the analytical results. Methods We used gas chromatography/mass spectrometry (GC/MS) to measure trihalomethanes in water, GC with electron capture detection for air, low- and high-resolution GC/MS to comprehensively identify DBPs, photometry to measure disinfectant species (free chlorine, monochloroamine, dichloramine, and trichloramine) in the waters, and an ion chromatography method to measure trichloramine in air. We assessed mutagenicity with the Salmonella mutagenicity assay. Results We identified > 100 DBPs, including many nitrogen-containing DBPs that were likely formed from nitrogen-containing precursors from human inputs, such as urine, sweat, and skin cells. Many DBPs were new and have not been reported previously in either swimming pool or drinking waters. Bromoform levels were greater in brominated than in chlorinated pool waters, but we also identified many brominated DBPs in the chlorinated waters. The pool waters were mutagenic at levels similar to that of drinking water (~ 1,200 revertants/L-equivalents in strain TA100–S9 mix). Conclusions This study identified many new DBPs not identified previously in swimming pool or drinking water and found that swimming pool waters are as mutagenic as typical drinking waters. PMID:20833605

  3. Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete Platynereis dumerilii.

    PubMed

    Yang, Mengting; Zhang, Xiangru

    2013-10-01

    Using seawater for toilet flushing may introduce high levels of bromide and iodide into a city's sewage treatment works, and result in the formation of brominated and iodinated disinfection byproducts (DBPs) during chlorination to disinfect sewage effluents. In a previous study, the authors' group has detected the presence of many brominated DBPs and identified five new aromatic brominated DBPs in chlorinated saline sewage effluents. The presence of brominated DBPs in chlorinated saline effluents may pose adverse implications for marine ecology. In this study, besides the detection and identification of another seven new aromatic halogenated DBPs in a chlorinated saline sewage effluent, their developmental toxicity was evaluated using the marine polychaete Platynereis dumerilii. For comparison, the developmental toxicity of some commonly known halogenated DBPs was also examined. The rank order of the developmental toxicity of 20 halogenated DBPs was 2,5-dibromohydroquinone > 2,6-diiodo-4-nitrophenol ≥ 2,4,6-triiodophenol > 4-bromo-2-chlorophenol ≥ 4-bromophenol > 2,4-dibromophenol ≥ 2,6-dibromo-4-nitrophenol > 2-bromo-4-chlorophenol > 2,6-dichloro-4-nitrophenol > 2,4-dichlorophenol > 2,4,6-tribromophenol > 3,5-dibromo-4-hydroxybenzaldehyde > bromoform ≥ 2,4,6-trichlorophenol > 2,6-dibromophenol > 2,6-dichlorophenol > iodoacetic acid ≥ tribromoacetic acid > bromoacetic acid > chloroacetic acid. On the basis of developmental toxicity data, a quantitative structure-activity relationship (QSAR) was established. The QSAR involved two physical-chemical property descriptors (log P and pKa) and two electronic descriptors (the lowest unoccupied molecular orbital energy and the highest occupied molecular orbital energy) to indicate the transport, biouptake, and biointeraction of these DBPs. It can well predict the developmental toxicity of most of the DBPs tested.

  4. Intercalation of Lithium in Pitch-Based Graphitized Carbon Fibers Chemically Modified by Fluorine: Soft Carbon With or Without an Oxide Surface

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Prisko, Aniko

    1999-01-01

    The effects of carbon structure and surface oxygen on the carbon's performance as the anode in lithium-ion battery were studied. Two carbon materials were used for the electrochemical tests: soft carbon made from defluorination of graphite fluoride, and the carbon precursor from which the graphite fluoride was made. In this research the precursor was graphitized carbon fiber P-100. It was first fluorinated to form CF(0.68), then defluorinated slowly at 350 to 450 C in bromoform, and finally heated in 1000 C nitrogen before exposed to room temperature air, producing disordered soft carbon having basic surface oxides. This process caused very little carbon loss. The electrochemical test involved cycles of lithium intercalation and deintercalation using C/saturated LiI-50/50 (vol %) EC and DMC/Li half cell. The cycling test had four major results. (1) The presence of a basic oxide surface may prevent solvent from entering the carbon structure and therefore prolong the carbon's cycle life for lithium intercalation-deintercalation. (2) The disordered soft carbon can store lithium through two different mechanisms. One of them is lithium intercalation. which gives the disordered carbon an electrochemical behavior similar to its more ordered graphitic precursor. The other is unknown in its chemistry, but is responsible for the high-N,oltage portion (less than 0.3V) of the charge-discharge curve. (3) Under certain conditions, the disordered carbon can store more lithium than its precursor. (4) These sample and its precursor can intercalate at 200 mA/g. and deintercalate at a rate of 2000 mA/g without significant capacity loss.

  5. Formation and chemical reactivity of carbon fibers prepared by defluorination of graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    Defluorination of graphite fluoride (CFX) by heating to temperatures of 250 to 450 C in chemically reactive environments was studied. This is a new and possibly inexpensive process to produce new carbon-based materials. For example, CF 0.68 fibers, made from P-100 carbon fibers, can be defluorinated in BrH2C-CH = CH-CH2Br (1,4-dibromo-2butene) heated to 370 C, and graphitized to produce fibers with an unusually high modulus and a graphite layer structure that is healed and cross-linked. Conversely, a sulfur-doped, visibly soft carbon fiber was produced by defluorinating CF 0.9 fibers, made from P-25, in sulfur (S) vapor at 370 C and then heating to 660 C in nitrogen (N2). Furthermore, defluorination of the CF 0.68 fibers in bromine (Br2) produced fragile, structurally damaged carbon fibers. Heating these fragile fibers to 1100 C in N2 caused further structural damage, whereas heating to 150 C in bromoform (CHBr3) and then to 1100 C in N2 healed the structural defects. The defluorination product of CFX, tentatively called activated graphite, has the composition and molecular structure of graphite, but is chemically more reactive. Activated graphite is a scavenger of manganese (Mn), and can be intercalated with magnesium (Mg). Also, it can easily collect large amounts of an alloy made from copper (Cu) and type 304 stainless steel to form a composite. Finally, there are indications that activated graphite can wet metals or ceramics, thereby forming stronger composites with them than the pristine carbon fibers can form.

  6. Streamflow and Water-Quality Characteristics for Wind Cave National Park, South Dakota, 2002-03

    USGS Publications Warehouse

    Heakin, Allen J.

    2004-01-01

    permanent fisheries criterion in numerous samples from all three streams. Two samples from Highland Creek also exceeded the coldwater marginal fisheries criterion for water temperature. Mean concentrations of ammonia, orthophosphate, and phosphorous were higher for the upstream site on Beaver Creek than for other water-quality sampling sites. Concentrations of E. coli, fecal coliform, and total coliform bacteria also were higher at the upstream site on Beaver Creek than for any other site. Samples for the analysis of benthic macroinvertebrates were collected from one site on each of the three streams during July 2002 and May 2003. The benthic macroinvertebrate data showed that Beaver Creek had lower species diversity and a higher percentage of tolerant species than the other two streams during 2002, but just the opposite was found during 2003. However, examination of the complete data set indicates that the quality of water at the upstream site was generally poorer than the quality of water at the downstream site. Furthermore, the quality of water at the upstream site on Beaver Creek is somewhat degraded when compared to the quality of water from Highland and Cold Spring Creeks, indicating that anthropogenic activities outside the park probably are affecting the quality of water in Beaver Creek. Samples for the analysis of wastewater compounds were collected at least twice from four of the five water-quality sampling sites. Bromoform, phenol, caffeine, and cholesterol were detected in samples from Cold Spring Creek, but only phenol was detected at concentrations greater than the minimum reporting level. Concentrations of several wastewater compounds were estimated in samples collected from sites on Beaver Creek, including phenol, para-cresol, and para-nonylphenol-total. Phenol was detected at both sites on Beaver Creek at concentrations greater than the minimum reporting level. Bromoform; para-cresol; ethanol,2-butoxy-phosphate; and cholesterol were detected

  7. Free Radical Chemistry of Disinfection Byproducts 1: Kinetics of Hydrated Electron and Hydroxyl Radical Reactions with Halonitromethanes in Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. J. Mincher; R. V. Fox; S. P. Mezyk

    Halonitromethanes are disinfection-byproducts formed during ozonation and chlorine/chloramine treatment of waters that contain bromide ion and natural organic matter. In this study, the chemical kinetics of the free-radical-induced degradations of a series of halonitromethanes were determined. Absolute rate constants for hydroxyl radical, OH, and hydrated electron, eaq-, reaction with both chlorinated and brominated halonitromethanes were measured using the techniques of electron pulse radiolysis and transient absorption spectroscopy. The bimolecular rate constants obtained, k (M-1 s-1), for eaq-/OH, respectively, were the following: chloronitromethane (3.01 ± 0.40) × 1010/(1.94 ± 0.32) × 108; dichloronitromethane (3.21 ± 0.17) × 1010/(5.12 ± 0.77) ×more » 108; bromonitromethane (3.13 ± 0.06) × 1010/(8.36 ± 0.57) × 107; dibromonitromethane (3.07 ± 0.40) × 1010/(4.75 ± 0.98) × 108; tribromonitromethane (2.29 ± 0.39) × 1010/(3.25 ± 0.67) × 108; bromochloronitromethane (2.93 ± 0.47) × 1010/(4.2 ± 1.1) × 108; bromodichloronitromethane (2.68 ± 0.13) × 1010/(1.02 ± 0.15) × 108; and dibromochloronitromethane (2.95 ± 0.43) × 1010 / (1.80 ± 0.31) × 108 at room temperature and pH ~7. Comparison data were also obtained for hydroxyl radical reaction with bromoform (1.50 ± 0.05) × 108, bromodichloromethane (7.11 ± 0.26) × 107, and chlorodibromomethane (8.31 ± 0.25) × 107 M-1 s-1, respectively. These rate constants are compared to recently obtained data for trichloronitromethane and bromonitromethane, as well as to other established literature data for analogous compounds.« less

  8. Convective Transport of Very-short-lived Bromocarbons to the Stratosphere

    NASA Technical Reports Server (NTRS)

    Liang, Qing; Atlas, Elliot Leonard; Blake, Donald Ray; Dorf, Marcel; Pfeilsticker, Klaus August; Schauffler, Sue Myhre

    2014-01-01

    We use the NASA GEOS Chemistry Climate Model (GEOSCCM) to quantify the contribution of two most important brominated very short-lived substances (VSLS), bromoform (CHBr3) and dibromomethane (CH2Br2), to stratospheric bromine and its sensitivity to convection strength. Model simulations suggest that the most active transport of VSLS from the marine boundary layer through the tropopause occurs over the tropical Indian Ocean, the Western Pacific warm pool, and off the Pacific coast of Mexico. Together, convective lofting of CHBr3 and CH2Br2 and their degradation products supplies 8 ppt total bromine to the base of the Tropical Tropopause Layer (TTL, 150 hPa), similar to the amount of VSLS organic bromine available in the marine boundary layer (7.8-8.4 ppt) in the above active convective lofting regions. Of the total 8 ppt VSLS-originated bromine that enters the base of TTL at 150 hPa, half is in the form of source gas injection (SGI) and half as product gas injection (PGI). Only a small portion (< 10%) the VSLS-originated bromine is removed via wet scavenging in the TTL before reaching the lower stratosphere. On global and annual average, CHBr3 and CH2Br2, together, contribute 7.7 pptv to the present-day inorganic bromine in the stratosphere. However, varying model deep convection strength between maximum and minimum convection conditions can introduce a 2.6 pptv uncertainty in the contribution of VSLS to inorganic bromine in the stratosphere (BryVSLS). Contrary to the conventional wisdom, minimum convection condition leads to a larger BryVSLS as the reduced scavenging in soluble product gases, thus a significant increase in PGI (2-3 ppt), greatly exceeds the relative minor decrease in SGI (a few 10ths ppt.

  9. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    PubMed

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-03

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations.

  10. Gene expression changes in blood RNA after swimming in a chlorinated pool.

    PubMed

    Salas, Lucas A; Font-Ribera, Laia; Bustamante, Mariona; Sumoy, Lauro; Grimalt, Joan O; Bonnin, Sarah; Aguilar, Maria; Mattlin, Heidi; Hummel, Manuela; Ferrer, Anna; Kogevinas, Manolis; Villanueva, Cristina M

    2017-08-01

    Exposure to disinfection by-products (DBP) such as trihalomethanes (THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40min in an indoor chlorinated pool. Blood samples were drawn and four THM (chloroform, bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents (METs). Gene expression in whole blood mRNA was evaluated using IlluminaHumanHT-12v3 Expression-BeadChip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1μg/m 3 for exhaled total THM (sum of the four THM). Exhaled THM increased on average 0.94μg/m 3 per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate (Log-fold change range: -0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies. Copyright © 2017. Published by Elsevier B.V.

  11. Determination of volatile organic hydrocarbons in water samples by solid-phase dynamic extraction.

    PubMed

    Jochmann, Maik A; Yuan, Xue; Schmidt, Torsten C

    2007-03-01

    In the present study a headspace solid-phase dynamic extraction method coupled to gas chromatography-mass spectrometry (HS-SPDE-GC/MS) for the trace determination of volatile halogenated hydrocarbons and benzene from groundwater samples was developed and evaluated. As target compounds, benzene as well as 11 chlorinated and brominated hydrocarbons (vinyl chloride, dichloromethane, cis-1,2-dichloroethylene, trans-1,2-dichloroethylene, carbon tetrachloride, chloroform, trichloroethylene, tetrachloroethylene, bromoform) of environmental and toxicological concern were included in this study. The analytes were extracted using a SPDE needle device, coated with a poly(dimethylsiloxane) with 10% embedded activated carbon phase (50-microm film thickness and 56-mm film length) and were analyzed by GC/MS in full-scan mode. Parameters that affect the extraction yield such as extraction and desorption temperature, salting-out, extraction and desorption flow rate, extraction volume and desorption volume, the number of extraction cycles, and the pre-desorption time have been evaluated and optimized. The linearity of the HS-SPDE-GC/MS method was established over several orders of magnitude. Method detection limits (MDLs) for the compounds investigated ranged between 12 ng/L for cis-dichloroethylene and trans-dichloroethylene and 870 ng/L for vinyl chloride. The method was thoroughly validated, and the precision at two concentration levels (0.1 mg/L and a concentration 5 times above the MDL) was between 3.1 and 16% for the analytes investigated. SPDE provides high sensitivity, short sample preparation and extraction times and a high sample throughput because of full automation. Finally, the applicability to real environmental samples is shown exemplarily for various groundwater samples from a former waste-oil recycling facility. Groundwater from the site showed a complex contamination with chlorinated volatile organic compounds and aromatic hydrocarbons.

  12. Airborne measurements of tropospheric ozone destruction and particulate bromide formation in the Arctic

    NASA Technical Reports Server (NTRS)

    Schnell, Russell C.; Sheridan, Patrick J.; Peterson, Richard E.; Oltmans, S. J.

    1988-01-01

    Aircraft profiles of O3 concentrations over the Arctic ice pack in spring exhibit a depletion of O3 beneath the surface temperature inversion. One such profile from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) flights in April, 1986 north of Alert, NWT (YLT, 82.5 N) is shown. The gradient of O3 across the temperature inversion, which is essentially a step function from tropospheric values (35 to 40 ppbv) to 0, is somewhat masked by a 1-min running mean applied to the data. Evidence is presented that O3 destruction beneath the Arctic temperature inversion is the result of a photochemical reaction between gaseous Br compounds and O3 to produce particulate Br aerosol. It is noted that in springtime, O3 at the Alert Baseline Station regularly decreases from 30 to 40 ppbv to near 0 over the period of a few hours to a day. At the same time, there is a production of particulate Br with a near 1.0 anti-correlation to O3 concentration. Surface concentrations of bromoform in the Arctic exhibit a rapid decrease following polar sunrise. AGASP aircraft measurements of filterable bromine particulates in the Arctic (March-April, 1983 and 1986) are shown. The greatest concentrations of Br aerosol (shown as enrichment factors relative to to Na in seawater, EFBR (Na)) were observed in samples collected beneath the surface temperature inversion over ice. Samples collected at the same altitude over open ocean (off Spitzbergen) labeled Marine did not exhibit similar Br enrichments. A second region of particulate Br enrichment was observed in the lower stratosphere, which regularly descends to below 500 mb (5.5 km) in the high Arctic. The NOAA WP-3D flew in the stratosphere on all AGASP flights and occasionally measured O3 concentrations in excess of 300 ppbv.

  13. Release of Oxidized Bromine Species From Diatoms: Implication for the Polar Troposphere and Oceanic Polyhalomethane Production

    NASA Astrophysics Data System (ADS)

    Manley, S. L.; Hill, V. L.

    2006-12-01

    Marine and ice diatoms are known producers of polybromomethanes. These trace gases produced from ice algae have been implicated as a source of photochemically active bromine involved in polar surface ozone depletion events. A more dominant source of reactive bromine, however, has been attributed to the reaction on ice particles and in sea spray aerosols of atmospherically derived HOBr with bromide and chloride to produce the dihalogens Br2 and BrCl. We have measured the release of oxidized bromine species (Brox = HOBr, Br2, Br3-1) from polar and temperate diatoms. The highest rates were measured from Porosira glaciales (CCMP 651). Release rates are range from 0.84 to 180 fmoles bromine/hour/cell depending on the species or an approximate maximum of 950 nmoles bromine/mg chl a/hr (P. glaciales). The flux from the diatoms is 0.1 to 7.5 nmoles bromine/cm2 diatom surface/hr. This release occurs from an extracellular bromoperoxidase when a suitable organic substrate is absent. At 0.84 mM bromide (average seawater concentration), the optimal pH for Brox release is 6.5, which is the putative pH of the apoplastic space, and the optimal H2O2 concentration is 250 nM. Based on these results, it is estimated that the amount of bromine released from ice algae as Brox is 10 to 200 times greater than the release of bromine as bromoform from ice algae. The Brox so produced could participate in the abiotic formation of dihalogens in sea ice. Also, Brox released from diatoms may react with specific components of DOC, if present, to indirectly produce polybromomethanes both in sea ice and seawater. The amount of polyhalomethanes produced is not only dependent on the algal species present but also on the composition of DOC.

  14. Blood Biomarkers of Late Pregnancy Exposure to Trihalomethanes in Drinking Water and Fetal Growth Measures and Gestational Age in a Chinese Cohort

    PubMed Central

    Cao, Wen-Cheng; Zeng, Qiang; Luo, Yan; Chen, Hai-Xia; Miao, Dong-Yue; Li, Li; Cheng, Ying-Hui; Li, Min; Wang, Fan; You, Ling; Wang, Yi-Xin; Yang, Pan; Lu, Wen-Qing

    2015-01-01

    Background: Previous studies have suggested that elevated exposure to disinfection by-products (DBPs) in drinking water during gestation may result in adverse birth outcomes. However, the findings of these studies remain inconclusive. Objective: The purpose of our study was to examine the association between blood biomarkers of late pregnancy exposure to trihalomethanes (THMs) in drinking water and fetal growth and gestational age. Methods: We recruited 1,184 pregnant women between 2011 and 2013 in Wuhan and Xiaogan City, Hubei, China. Maternal blood THM concentrations, including chloroform (TCM), bromodichloromethane (BDCM), dibromochloromethane (DBCM), and bromoform (TBM), were measured as exposure biomarkers during late pregnancy. We estimated associations with gestational age and fetal growth indicators [birth weight, birth length, and small for gestational age (SGA)]. Results: Total THMs (TTHMs; sum of TCM, BDCM, DBCM, and TBM) were associated with lower mean birth weight (–60.9 g; 95% CI: –116.2, –5.6 for the highest vs. lowest tertile; p for trend = 0.03), and BDCM and DBCM exposures were associated with smaller birth length (e.g., –0.20 cm; 95% CI: –0.37, –0.04 for the highest vs. lowest tertile of DBCM; p for trend = 0.02). SGA was increased in association with the second and third tertiles of TTHMs (OR = 2.91; 95% CI: 1.32, 6.42 and OR = 2.25; 95% CI: 1.01, 5.03; p for trend = 0.08). Conclusions: Our results suggested that elevated maternal THM exposure may adversely affect fetal growth. Citation: Cao WC, Zeng Q, Luo Y, Chen HX, Miao DY, Li L, Cheng YH, Li M, Wang F, You L, Wang YX, Yang P, Lu WQ. 2016. Blood biomarkers of late pregnancy exposure to trihalomethanes in drinking water and fetal growth measures and gestational age in a Chinese cohort. Environ Health Perspect 124:536–541; http://dx.doi.org/10.1289/ehp.1409234 PMID:26340795

  15. Changes in Breath Trihalomethane Levels Resulting from Household Water-Use Activities

    PubMed Central

    Gordon, Sydney M.; Brinkman, Marielle C.; Ashley, David L.; Blount, Benjamin C.; Lyu, Christopher; Masters, John; Singer, Philip C.

    2006-01-01

    Common household water-use activities such as showering, bathing, drinking, and washing clothes or dishes are potentially important contributors to individual exposure to trihalomethanes (THMs), the major class of disinfection by-products of water treated with chlorine. Previous studies have focused on showering or bathing activities. In this study, we selected 12 common water-use activities and determined which may lead to the greatest THM exposures and result in the greatest increase in the internal dose. Seven subjects performed the various water-use activities in two residences served by water utilities with relatively high and moderate total THM levels. To maintain a consistent exposure environment, the activities, exposure times, air exchange rates, water flows, water temperatures, and extraneous THM emissions to the indoor air were carefully controlled. Water, indoor air, blood, and exhaled-breath samples were collected during each exposure session for each activity, in accordance with a strict, well-defined protocol. Although showering (for 10 min) and bathing (for 14 min), as well as machine washing of clothes and opening mechanical dishwashers at the end of the cycle, resulted in substantial increases in indoor air chloroform concentrations, only showering and bathing caused significant increases in the breath chloroform levels. In the case of bromodichloromethane (BDCM), only bathing yielded a significantly higher air level in relation to the preexposure concentration. For chloroform from showering, strong correlations were observed for indoor air and exhaled breath, blood and exhaled breath, indoor air and blood, and tap water and blood. Only water and breath, and blood and breath were significantly associated for chloroform from bathing. For BDCM, significant correlations were obtained for blood and air, and blood and water from showering. Neither dibromochloromethane nor bromoform gave measurable breath concentrations for any of the activities

  16. Transport of NMHCs and halocarbons observed by CARIBIC: A case study

    NASA Astrophysics Data System (ADS)

    Baker, A. K.; Brenninkmeijer, C. A. M.; Oram, D. E.; O'Sullivan, D. A.; Schuck, T. J.; Slemr, F.

    2009-04-01

    The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) involves the monthly deployment of an instrument container equipped to make atmospheric measurements from onboard a long-range commercial airliner. Since December 2004, flights for the second phase of CARIBIC have been aboard a Lufthansa Airbus A340-600 traveling between Frankfurt, Germany and destinations in Asia, North America and South America. The instrument package housed in the container is fully automated and during each flight carries out a variety of real-time trace gas and aerosol measurements, and also collects 28 air samples, which are analyzed upon return to the laboratory. Routine measurements made from the sampling flasks include greenhouse gases, nonmethane hydrocarbons (NMHCs), and halocarbons; results of air sample analysis form the basis for the data discussed here. While the majority of CARIBIC samples represent background free tropospheric air and air representative of the upper troposphere/lower stratosphere, the aircraft also, less frequently, encounters air parcels influenced by more recent emissions. Here we present a case study of a round-trip flight between Frankfurt and Toronto, Canada during September 2007. During this flight, different air masses of unique origin were encountered; a number of samples were influenced by transport from the Gulf of Mexico, while others had source regions in Central and Southeast Asia. Samples from the Gulf of Mexico exhibited enhancements in C3-C6 alkanes, as well as a number of halogenated compounds with oceanic sources, such as methyl iodide and bromoform, while Asian samples had enhanced levels of combustion products (CO, acetylene, benzene) and anthropogenic halocarbons (methlyene chloride, chloroform, perchloroethylene). Additionally, a number of samples also showed stratospheric influence, and these samples were characterized by relatively depleted levels of many of the compounds

  17. Evaluating Global Emission Inventories of Biogenic Bromocarbons

    NASA Technical Reports Server (NTRS)

    Hossaini, Ryan; Mantle, H.; Chipperfield, M. P.; Montzka, S. A.; Hamer, P.; Ziska, F.; Quack, B.; Kruger, K.; Tegtmeier, S.; Atlas, E.; hide

    2013-01-01

    Emissions of halogenated very short-lived substances (VSLS) are poorly constrained. However, their inclusion in global models is required to simulate a realistic inorganic bromine (Bry) loading in both the troposphere, where bromine chemistry perturbs global oxidizing capacity, and in the stratosphere, where it is a major sink for ozone (O3). We have performed simulations using a 3-D chemical transport model (CTM) including three top-down and a single bottom-up derived emission inventory of the major brominated VSLS bromoform (CHBr3) and dibromomethane (CH2Br2). We perform the first concerted evaluation of these inventories, comparing both the magnitude and spatial distribution of emissions. For a quantitative evaluation of each inventory, model output is compared with independent long-term observations at National Oceanic and Atmospheric Administration (NOAA) ground-based stations and with aircraft observations made during the NSF (National Science Foundation) HIAPER Pole-to-Pole Observations (HIPPO) project. For CHBr3, the mean absolute deviation between model and surface observation ranges from 0.22 (38 %) to 0.78 (115 %) parts per trillion (ppt) in the tropics, depending on emission inventory. For CH2Br2, the range is 0.17 (24 %) to 1.25 (167 %) ppt. We also use aircraft observations made during the 2011 Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere (SHIVA) campaign, in the tropical western Pacific. Here, the performance of the various inventories also varies significantly, but overall the CTM is able to reproduce observed CHBr3 well in the free troposphere using an inventory based on observed sea-to-air fluxes. Finally, we identify the range of uncertainty associated with these VSLS emission inventories on stratospheric bromine loading due to VSLS (Br(VSLS/y)). Our simulations show Br(VSLS/y) ranges from approximately 4.0 to 8.0 ppt depending on the inventory. We report an optimized estimate at the lower end of this range (approximately 4 ppt

  18. Finding the Missing Stratospheric Br(sub y): A Global Modeling Study of CHBr3 and CH2Br2

    NASA Technical Reports Server (NTRS)

    Liang, Q.; Stolarski, R. S.; Kawa, S. R.; Nielsen, J. E.; Douglass, A. R.; Rodriguez, J. M.; Blake, D. R.; Atlas, E. L.; Ott, L. E.

    2010-01-01

    Recent in situ and satellite measurements suggest a contribution of 5 pptv to stratospheric inorganic bromine from short-lived bromocarbons. We conduct a modeling study of the two most important short-lived bromocarbons, bromoform (CHBr3) and dibromomethane (CH2Br2), with the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to account for this missing stratospheric bromine. We derive a "top-down" emission estimate of CHBr3 and CH2Br2 using airborne measurements in the Pacific and North American troposphere and lower stratosphere obtained during previous NASA aircraft campaigns. Our emission estimate suggests that to reproduce the observed concentrations in the free troposphere, a global oceanic emission of 425 Gg Br yr(exp -1) for CHBr3 and 57 Gg Br yr(exp -l) for CH2Br2 is needed, with 60% of emissions from open ocean and 40% from coastal regions. Although our simple emission scheme assumes no seasonal variations, the model reproduces the observed seasonal variations of the short-lived bromocarbons with high concentrations in winter and low concentrations in summer. This indicates that the seasonality of short-lived bromocarbons is largely due to seasonality in their chemical loss and transport. The inclusion of CHBr3 and CH2Br2 contributes 5 pptv bromine throughout the stratosphere. Both the source gases and inorganic bromine produced from source gas degradation (BrSLS) in the troposphere are transported into the stratosphere, and are equally important. Inorganic bromine accounts for half (2.5 pptv) of the bromine from the inclusion of CHBr3 and CHzBr2 near the tropical tropopause and its contribution rapidly increases to 100% as altitude increases. More than 85% of the wet scavenging of Br(sub y)(sup VSLS) occurs in large-scale precipitation below 500 hPa. Our sensitivity study with wet scavenging in convective updrafts switched off suggests that Br(sub y)(sup SLS) in the stratosphere is not sensitive to convection. Convective scavenging only

  19. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.

    PubMed

    Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E

    2005-05-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  20. Fate of disinfection by-products in groundwater during aquifer storage and recovery with reclaimed water.

    PubMed

    Pavelic, Paul; Nicholson, Brenton C; Dillon, Peter J; Barry, Karen E

    2005-03-01

    Knowledge on the behaviour of disinfection by-products (DBPs) during aquifer storage and recovery (ASR) is limited even though this can be an important consideration where recovered waters are used for potable purposes. A reclaimed water ASR trial in an anoxic aquifer in South Australia has provided some of the first quantitative information at field-scale on the fate and transport of trihalomethanes (THMs) and haloacetic acids (HAAs). The results revealed that THM half-lives varied from <1 to 65 days, with persistence of chloroform being highest and bromoform lowest. HAA attenuation was rapid (<1 day). Rates of THM attenuation were shown to be highly dependent on the geochemical environment as evidenced by the 2-5 fold reduction in half-lives at the ASR well which became methanogenic during the storage phase of the trial, as compared to an observation well situated 4 m away, which remained nitrate-reducing. These findings agree with previous laboratory-based studies which also show persistence declining with increased bromination of THMs and reducing redox conditions. Modelling suggests that the chlorinated injectant has sufficient residual chlorine and natural organic matter for substantial increases in THMs to occur within the aquifer, however this is masked in some of the field observations due to concurrent attenuation, particularly for the more rapidly attenuated brominated compounds. The model is based on data taken from water distribution systems and may not be representative for ASR since bromide and ammonia concentrations in the injected water and the possible role of organic carbon in the aquifer were not taken into consideration. During the storage phase DBP formation potentials were reduced as a result of the removal of precursor material despite an increase in the THM formation potential per unit weight of total organic carbon. This suggests that water quality improvements with respect to THMs and HAAs can be achieved through ASR in anoxic aquifers.

  1. Aggregation and breakup of colloidal particle aggregates in shear flow, studied with video microscopy.

    PubMed

    Tolpekin, V A; Duits, M H G; van den Ende, D; Mellema, J

    2004-03-30

    We used video microscopy to study the behavior of aggregating suspensions in shear flow. Suspensions consisted of 920 nm diameter silica spheres, dispersed in a methanol/bromoform solvent, to which poly(ethylene glycol) (M = 35.000 g) was added to effect weak particle aggregation. With our solvent mixture, the refractive index of the particles could be closely matched, to allow microscopic observations up to 80 microm deep into the suspension. Also the mass density is nearly equal to that of the particles, thus allowing long observation times without problems due to aggregate sedimentation. Particles were visualized via fluorescent molecules incorporated into their cores. Using a fast confocal scanning laser microscope made it possible to characterize the (flowing) aggregates via their contour-area distributions as observed in the focal plane. The aggregation process was monitored from the initial state (just after adding the polymer), until a steady state was reached. The particle volume fraction was chosen at 0.001, to obtain a characteristic aggregation time of a few hundred seconds. On variation of polymer concentration, cP (2.2-12.0 g/L), and shear rate, gamma (3-6/s), it was observed that the volume-averaged size, Dv, in the steady state became larger with polymer concentration and smaller with shear rate. This demonstrates that the aggregate size is set by a competition between cohesive forces caused by the polymer and rupture forces caused by the flow. Also aggregate size distributions were be measured (semiquantitatively). Together with a description for the internal aggregate structure they allowed a modeling of the complete aggregation curve, from t = 0 up to the steady state. A satisfactory description could be obtained by describing the aggregates as fractal objects, with Df = 2.0, as measured from CSLM images after stopping the flow. In this modeling, the fitted characteristic breakup time was found to increase with cP.

  2. Drinking water disinfection by-products during pregnancy and child neuropsychological development in the INMA Spanish cohort study.

    PubMed

    Villanueva, Cristina M; Gracia-Lavedan, Esther; Julvez, Jordi; Santa-Marina, Loreto; Lertxundi, Nerea; Ibarluzea, Jesús; Llop, Sabrina; Ballester, Ferran; Fernández-Somoano, Ana; Tardón, Adonina; Vrijheid, Martine; Guxens, Mònica; Sunyer, Jordi

    2018-01-01

    Disinfection by-products (DBPs) constitute a complex mixture of prevalent chemicals in drinking water and there is evidence of neurotoxicity for some of them. We evaluated the association between estimates of DBP exposure during pregnancy and child neuropsychological outcomes at 1 and 4-5years of age. We conducted a population-based mother-child cohort study in Spain with recruitment at first trimester of gestation (INMA Project, 2003-2008). Neuropsychological development was measured at 1year of age using the Bayley Scales of Infant Development and at 4-5years with the McCarthy Scales of Children's Abilities. Modeled tap water concentrations of trihalomethanes (THM) were combined with personal ingestion, showering and bathing habits to estimate exposure as ingestion uptake, all route (showering, bathing, ingestion) uptake (μg/day) and crude levels (μg/l) in the residence. Chloroform, brominated THMs (bromodichloromethane, dibromochloromethane, bromoform) and total THMs (chloroform and brominated THMs) were analysed separately. Nine haloacetic acids levels were available in one of the areas. Linear regression was used to estimate associations in 1855 subjects adjusting for covariables. The median concentration of total THMs, chloroform, brominated THMs, total haloacetic acids, dichloroacetic acid, and trichloroacetic acid were, respectively 30.3μg/L, 9.4μg/L, 11.6μg/L, 10.5μg/L, 2.7μg/L, and 3.1μg/L. The associations between THM exposure and neuropsychological outcomes were null, except for total and brominated THM uptake though all routes and the general cognitive score at 4-5years, with a decrease in -0.54 points (95%CI -1.03, -0.05) and -0.64 (95%CI -1.16, -0.12), respectively, for doubling total and brominated THM uptake. A positive association found between dichloroacetic acid and the mental score at 1year did not persist at 4-5years. Minor associations observed between DBP exposure during gestation and child neuropsychological development at 1year

  3. Acute changes in serum immune markers due to swimming in a chlorinated pool.

    PubMed

    Vlaanderen, Jelle; van Veldhoven, Karin; Font-Ribera, Laia; Villanueva, Cristina M; Chadeau-Hyam, Marc; Portengen, Lützen; Grimalt, Joan O; Zwiener, Christian; Heederik, Dick; Zhang, Xiangru; Vineis, Paolo; Kogevinas, Manolis; Vermeulen, Roel

    2017-08-01

    Exposure to disinfectants and disinfection byproducts (DBPs) due to swimming in chlorinated water has been associated with allergic and respiratory health effects, including asthma. Biological mechanisms contributing to these associations are largely unknown. We hypothesized a potential pathway involving modulation of the immune system. We assessed levels of immune markers (CCL11, CCL22, CXCL10, CRP, EGF, GCSF, IL-8, IL-17, IL-1RA, MPO, VEGF, Periostin) in serum collected from 30 women and 29 men before and after 40min of swimming in a chlorinated pool. Exposure to DBPs was assessed by measuring bromodichloromethane, bromoform, chloroform, and dibromochloromethane in exhaled breath before and after swimming. Covariate data including information on physical activity was available through questionnaires and measurements. We assessed the association between indicators of swimming in a chlorinated pool and changes in serum immune marker concentrations using linear regression with bivariate normal distributions and adjusted for multiple comparisons by applying the Benjamini-Hochberg procedure. We observed a significant decrease in serum concentrations of IL-8 (-12.53%; q=2.00e-03), CCL22 (-7.28%; q=4.00e-04), CCL11 (-7.15%; q=9.48e-02), CRP (-7.06%; q=4.68e-05), and CXCL10 (-13.03%; q=6.34e-14) and a significant increase in IL-1RA (20.16%; q=4.18e-06) from before to after swimming. Associations with quantitative measurements of DBPs or physical activity were similar in direction and strength. Most of the observed associations became non-significant when we adjusted the effects of exposure to DBPs for physical activity or vice-versa. Our study indicates that swimming in a chlorinated pool induces perturbations of the immune response through acute alterations of patterns of cytokine and chemokine secretion. The observed effects could not be uniquely attributed to either exposure to DBPs or physical activity. Evidence in the literature suggests that observed decreases in

  4. [Risk Assessment of Trihalomethane Production Using the Beijiang River and the Pearl River, Guangzhou as Drinking Water Sources].

    PubMed

    Zhong, Hui-zhou; Wei, Chao-hai

    2015-04-01

    In order to investigate the risk of trihalomethane formation potential (THMFP) in finished waters as drinking water sources, 70 samples, 114 samples, and 70 samples were collected in November 2013, April 2014 and July 2014, respectively from different locations in the Beijiang River and the Pearl River. After filtration by 0.45 μm filter membrane, a total of 254 samples were chlorinated using Uniform Formation Condition (UFC) method for determining their THM Formation Potential (THMFP). The cancer risk and non-cancer risk of THMs were estimated using USEPA risk assessment model while dominant factors for total risk potential were estimated using sensitivity analysis. Among four THM species, chloroform( CF) was the highest ranging from 101.92-2 590.85 μg x L(-1), followed by bromodichloromethane (BDCM), dibromochloromethane (DBCM) and bromoform (BF). Chloroform, the major THMs speciation, accounted for 96.17% of total THMs. Non-cancer and cancer risk from ingesting THMs was estimated. The result indicated that non-cancer risk of THMs level ranged from 2.03 x 10(-7) to 1.00 x 10(-5) and was not more than 1.0 x 10(-5), the minimum or negligible non-cancer risk level defined by the USEPA. The average cancer risk of THMs was 2.91 x 10(-4) for male and 3.30 x 10(-4) for female in the two rivers, respectively, exceeding the minimum or negligible risk level defined by the USEPA (1. 0 x 10 ~6). The difference of cancer risk between the two rivers was that BDCM ranging from 2.50 x 10(-5) to 6.37 x 10(-4) was approximately twice that of CF in Beijing River. BDCM played an important role in the total risk in the Beijiang River while CF played an important role in the total risk in the Pearl River, Guangzhou. Sensitivity analysis showed that CF played an important role in the estimation of total risk potential, and that the direct utilization of water sources from Beijiang River and the Pearl River Guangzhou is dangerous, thus pretreatment is necessary before chlorination.

  5. Variations in trihalomethane levels in three French water distribution systems and the development of a predictive model.

    PubMed

    Mouly, Damien; Joulin, Eric; Rosin, Christophe; Beaudeau, Pascal; Zeghnoun, Abdelkrim; Olszewski-Ortar, Agnès; Munoz, Jean François; Welté, Bénédicte; Joyeux, Michel; Seux, René; Montiel, Antoine; Rodriguez, M J

    2010-10-01

    Epidemiological studies have demonstrated that chlorination by-products in drinking water may cause some types of cancer in humans. However, due to differences in methodology between the various studies, it is not possible to establish a dose-response relationship. This shortcoming is due primarily to uncertainties about how exposure is measured-made difficult by the great number of compounds present-the exposure routes involved and the variation in concentrations in water distribution systems. This is especially true for trihalomethanes for which concentrations can double between the water treatment plant and the consumer tap. The aim of this study is to describe the behaviour of trihalomethanes in three French water distribution systems and develop a mathematical model to predict concentrations in the water distribution system using data collected from treated water at the plant (i.e. the entrance of the distribution system). In 2006 and 2007, samples were taken successively from treated water at the plant and at several points in the water distribution system in three French cities. In addition to the concentrations of the four trihalomethanes (chloroform, dichlorobromomethane, chlorodibromomethane, bromoform), many other parameters involved in their formation that affect their concentration were also measured. The average trihalomethane concentration in the three water distribution systems ranged from 21.6 μg/L to 59.9 μg/L. The increase in trihalomethanes between the treated water at the plant and a given point in the water distribution system varied by a factor of 1.1-5.7 over all of the samples. A log-log linear regression model was constructed to predict THM concentrations in the water distribution system. The five variables used were trihalomethane concentration and free residual chlorine for treated water at the plant, two variables that characterize the reactivity of organic matter (specific UV absorbance (SUVA), an indicator developed for the free

  6. Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community

    NASA Astrophysics Data System (ADS)

    Webb, Alison L.; Leedham-Elvidge, Emma; Hughes, Claire; Hopkins, Frances E.; Malin, Gill; Bach, Lennart T.; Schulz, Kai; Crawfurd, Kate; Brussaard, Corina P. D.; Stuhr, Annegret; Riebesell, Ulf; Liss, Peter S.

    2016-08-01

    The Baltic Sea is a unique environment as the largest body of brackish water in the world. Acidification of the surface oceans due to absorption of anthropogenic CO2 emissions is an additional stressor facing the pelagic community of the already challenging Baltic Sea. To investigate its impact on trace gas biogeochemistry, a large-scale mesocosm experiment was performed off Tvärminne Research Station, Finland, in summer 2012. During the second half of the experiment, dimethylsulfide (DMS) concentrations in the highest-fCO2 mesocosms (1075-1333 µatm) were 34 % lower than at ambient CO2 (350 µatm). However, the net production (as measured by concentration change) of seven halocarbons analysed was not significantly affected by even the highest CO2 levels after 5 weeks' exposure. Methyl iodide (CH3I) and diiodomethane (CH2I2) showed 15 and 57 % increases in mean mesocosm concentration (3.8 ± 0.6 increasing to 4.3 ± 0.4 pmol L-1 and 87.4 ± 14.9 increasing to 134.4 ± 24.1 pmol L-1 respectively) during Phase II of the experiment, which were unrelated to CO2 and corresponded to 30 % lower Chl a concentrations compared to Phase I. No other iodocarbons increased or showed a peak, with mean chloroiodomethane (CH2ClI) concentrations measured at 5.3 (±0.9) pmol L-1 and iodoethane (C2H5I) at 0.5 (±0.1) pmol L-1. Of the concentrations of bromoform (CHBr3; mean 88.1 ± 13.2 pmol L-1), dibromomethane (CH2Br2; mean 5.3 ± 0.8 pmol L-1), and dibromochloromethane (CHBr2Cl, mean 3.0 ± 0.5 pmol L-1), only CH2Br2 showed a decrease of 17 % between Phases I and II, with CHBr3 and CHBr2Cl showing similar mean concentrations in both phases. Outside the mesocosms, an upwelling event was responsible for bringing colder, high-CO2, low-pH water to the surface starting on day t16 of the experiment; this variable CO2 system with frequent upwelling events implies that the community of the Baltic Sea is acclimated to regular significant declines in pH caused by up to 800 µatm fCO2. After

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Alan K; Brown, Victoria L.; Rugg, Brandon K.

    The adhesion of 100 nm thick electron-beam deposited Au and Pt and magnetron sputtered Au thin films onto poly(methyl methacrylate) (PMMA) substrates can be significantly enhanced to over 90% adhesion by either spin-casting or vapor-exposure to hydrohalocarbon solvents prior to metal deposition compared to samples that are either cleaned in isopropyl alcohol or pre-treated with a remote O2 plasma. X-ray photoelectron spectroscopy (XPS) and evolved gas Fourier transform infrared spectroscopy (EGA-FTIR) reveal the presence of residual halogenated solvent molecules at the PMMA surface which chemically activates the surface to produce a stable chemical interaction between the noble metal film andmore » the PMMA. Density functional theory (DFT) calculations show that the halogenated solvent molecules preferentially form a Lewis acid-base adduct with the oxygen atoms in the ester group in PMMA which is consistent with the measured enthalpy of desorption of chloroform (CHCl3) on PMMA determined by EGA-FTIR to be 36 kJ mol-1. The DFT model also supports the experimentally observed change in the high resolution XPS O 1s peak at 533.77 eV after metallization attributed to a change in the local bonding environment of the bridging O in the PMMA ester group. DFT also predicts that the deposited metal atom (M) inserts into the C-X bond where X is the halogen atom on either CHCl3 or bromoform (CHBr3) to form a O M X interaction that is observed by a M-X bond in the high resolution XPS Cl 2p3/2 peak at 198.03 eV and Br 3p3/2 peak at 182.06 eV. A range of solvents with differing polarities for PMMA pre-treatment have been used and it is proposed that non-complexing solvents result in significant metal adhesion improvement. The Gutmann acceptor number can be used to predict the effectiveness of solvent treatment for noble metal adhesion. A model is proposed in which the bond energy of the C-X bond of the solvent must be sufficiently low so that the C-X bond can be cleaved to form

  8. Chloroform in the hydrologic system--sources, transport, fate, occurrence, and effects on human health and aquatic organisms

    USGS Publications Warehouse

    Ivahnenko, Tamara; Barbash, Jack E.

    2004-01-01

    Chloroform is one of the volatile organic compounds (VOCs) detected most frequently in both ground and surface water. Because it is also one of the four trihalomethanes (THMs) produced in the highest concentrations during the chlorination of drinking water and wastewater, the frequent detection of this compound in ground and surface water of the United States is presumed to be caused primarily by the input of chlorinated water to the hydrologic system. Although anthropogenic sources of the compound are substantial, they are currently estimated to constitute only 10 percent of the total global input to the hydrologic system. Natural sources of the compound include volcanic gases, biomass burning, marine algae, and soil microorganisms. Under most conditions (except in the presence of unusually high bromide concentrations), chloroform is the THM produced in the highest concentrations during chlorination. Furthermore, in most cases where more than one THM is produced from chlorination, the relative concentrations among the different compounds usually decrease with increasing bromination (chloroform > dichlorobromomethane > chlorodibromomethane > bromoform). This phenomenon is presumed to be responsible for the common observation that when more than one THM is detected during investigations of the occurrence of these compounds in the hydrologic system, this same trend is typically observed among their relative concentrations or, for a uniform reporting limit, their relative frequencies of detection. This pattern could provide a valuable means for distinguishing between chlorinated water and other potential sources of chloroform in the environment. Chloroform has been widely detected in national, regional, and local studies of VOCs in ground, surface, source, and drinking waters. Total THM (TTHM) concentrations of the compound, however, were typically less than the Maximum Contaminant Level (MCL) of 80 ?g/L (micrograms per liter) established by the U.S. Environmental

  9. Use of routinely collected data on trihalomethane in drinking water for epidemiological purposes

    PubMed Central

    Keegan, T; Whitaker, H; Nieuwenhuijsen, M; Toledano, M; Elliott, P; Fawell, J; Wilkinson, M; Best, N

    2001-01-01

    OBJECTIVES—To explore the use of routinely collected trihalomethane (THM) measurements for epidemiological studies. Recently there has been interest in the relation between byproducts of disinfection of public drinking water and certain adverse reproductive outcomes, including stillbirth, congenital malformations, and low birth weight.
METHOD—Five years of THM readings (1992-6), collected for compliance with statutory limits, were analysed. One water company in the north west of England, divided into 288 water zones, provided 15 984 observations for statistical analysis. On average each zone was sampled 11.1 times a year. Five year, annual, monthly, and seasonal variation in THMs were examined as well as the variability within and between zones.
RESULTS—Between 1992 and 1996 the total THM (TTHM) annual zone means were less than half the statutory concentration, at approximately 46 µg/l. Differences in annual water zone means were within 7%. Over the study period, the maximum water zone mean fell from 142.2 to 88.1 µg/l. Mean annual concentrations for individual THMs (µg/l) were 36.6, 8.0, and 2.8 for chloroform, bromodichloromethane (BDCM), and dibromochloromethane (DBCM) respectively. Bromoform data were not analysed, because a high proportion of the data were below the detection limit. The correlation between chloroform and TTHM was 0.98, between BDCM and TTHM 0.62, and between DBCM and TTHM −0.09. Between zone variation was larger than within zone variation for chloroform and BDCM, but not for DBCM. There was only little seasonal variation (<3%). Monthly variation was found although there were no consistent trends within years.
CONCLUSION—In an area where the TTHM concentrations were less than half the statutory limit (48 µg/l) chloroform formed a high proportion of TTHM. The results of the correlation analysis suggest that TTHM concentrations provided a good indication of chloroform concentrations, a reasonable indication of

  10. Factorial analysis of the trihalomethane formation in the reaction of colloidal, hydrophobic, and transphilic fractions of DOM with free chlorine.

    PubMed

    Platikanov, Stefan; Tauler, Roma; Rodrigues, Pedro M S M; Antunes, Maria Cristina G; Pereira, Dilson; Esteves da Silva, Joaquim C G

    2010-09-01

    This study focuses on the factors that affect trihalomethane (THMs) formation when dissolved organic matter (DOM) fractions (colloidal, hydrophobic, and transphilic fractions) in aqueous solutions were disinfected with chlorine. DOM fractions were isolated and fractionated from filtered lake water and were characterized by elemental analysis. The investigation involved a screening Placket-Burman factorial analysis design of five factors (DOM concentration, chlorine dose, temperature, pH, and bromide concentration) and a Box-Behnken design for a detailed assessment of the three most important factor effects (DOM concentration, chlorine dose, and temperature). The results showed that colloidal fraction has a relatively low contribution to THM formation; transphilic fraction was responsible for about 50% of the chloroform generation, and the hydrophobic fraction was the most important to the brominated THM formation. When colloidal and hydrophobic fraction solutions were disinfected, the most significant factors were the following: higher DOM fraction concentration led to higher THM concentration, an increase of pH corresponded to higher concentration levels of chloroform and reduced bromoform, higher levels of chlorine dose and temperature produced a rise in the total THM formation, especially of the chlorinated THMs; higher bromide concentration generates higher concentrations of brominated THMs. Moreover, linear models were implemented and response surface plots were obtained for the four THM concentrations and their total sum in the disinfection solution as a function of the DOM concentration, chlorine dose, and temperature. Overall, results indicated that THM formation models were very complex due to individual factor effects and significant interactions among the factors. In order to reduce the concentration of THMs in drinking water, DOM concentrations must be reduced in the water prior to the disinfection. Fractionation of DOM, together with an elemental

  11. Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.

    A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1

  12. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH.

    PubMed

    Mithoo-Singh, Paramjeet Kaur; Keng, Fiona S-L; Phang, Siew-Moi; Leedham Elvidge, Emma C; Sturges, William T; Malin, Gill; Abd Rahman, Noorsaadah

    2017-01-01

    Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr 3 ), dibro-momethane (CH 2 Br 2 ), iodomethane (CH 3 I), diiodomethane (CH 2 I 2 ), bromoiodomethane (CH 2 BrI), bromochlorometh-ane (CH 2 BrCl), bromodichloromethane (CHBrCl 2 ), and dibro-mochloromethane (CHBr 2 Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH 2 I 2 and CH 3 I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis . The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis ( F v ∕ F m ) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum

  13. Halocarbon emissions by selected tropical seaweeds: species-specific and compound-specific responses under changing pH

    PubMed Central

    Leedham Elvidge, Emma C.; Sturges, William T.; Malin, Gill; Abd Rahman, Noorsaadah

    2017-01-01

    Five tropical seaweeds, Kappaphycus alvarezii (Doty) Doty ex P.C. Silva, Padina australis Hauck, Sargassum binderi Sonder ex J. Agardh (syn. S. aquifolium (Turner) C. Agardh), Sargassum siliquosum J. Agardh and Turbinaria conoides (J. Agardh) Kützing, were incubated in seawater of pH 8.0, 7.8 (ambient), 7.6, 7.4 and 7.2, to study the effects of changing seawater pH on halocarbon emissions. Eight halocarbon species known to be emitted by seaweeds were investigated: bromoform (CHBr3), dibro­momethane (CH2Br2), iodomethane (CH3I), diiodomethane (CH2I2), bromoiodomethane (CH2BrI), bromochlorometh­ane (CH2BrCl), bromodichloromethane (CHBrCl2), and dibro­mochloromethane (CHBr2Cl). These very short-lived halocarbon gases are believed to contribute to stratospheric halogen concentrations if released in the tropics. It was observed that the seaweeds emit all eight halocarbons assayed, with the exception of K. alvarezii and S. binderi for CH2I2 and CH3I respectively, which were not measurable at the achievable limit of detection. The effect of pH on halocarbon emission by the seaweeds was shown to be species-specific and compound specific. The highest percentage changes in emissions for the halocarbons of interest were observed at the lower pH levels of 7.2 and 7.4 especially in Padina australis and Sargassum spp., showing that lower seawater pH causes elevated emissions of some halocarbon compounds. In general the seaweed least affected by pH change in terms of types of halocarbon emission, was P. australis. The commercially farmed seaweed K. alvarezii was very sensitive to pH change as shown by the high increases in most of the compounds in all pH levels relative to ambient. In terms of percentage decrease in maximum quantum yield of photosynthesis (Fv∕Fm) prior to and after incubation, there were no significant correlations with the various pH levels tested for all seaweeds. The correlation between percentage decrease in the maximum quantum yield of photosynthesis

  14. Sediment transport mechanisms inferred from heavy mineral assemblages on the 2010 Chilean tsunami deposit

    NASA Astrophysics Data System (ADS)

    Cascalho, João; Costa, Pedro; Lario, Javier

    2017-04-01

    Characterization of heavy mineral (HM) assemblages in tsunami deposits has been applied to infer inundation and backwash phases and to establish sediment sources. In ideal conditions and due to their specific density (>2.9 g/cm3), heavy minerals are the most suitable component of a sediment assemblage that can provide information regarding flow competence. Having these features in consideration, sandy tsunamigenic samples from Arauco and Mataquito areas (central Chile) were retrieved after the 27th of February 2010 tsunami that affected the Chilean coastline. Twenty seven samples (a total of 54 thin sections) tsunamigenic and beach samples were prepared to observe HM under the petrographic microscope. After dividing the samples in 4 fractions (<63 µm, 63- 125 µm, 125-500µm and >500 µm), HM were separated using bromoform and two fractions (63- 125 µm and 125-500µm) were individually mounted using Canada balsam resin on glass slides. About 300 heavy minerals per slide were identified and counted. Both assemblages were mainly composed of magnetite, pyrrhotite, amphiboles, pyroxenes, olivine, micas and zircon (this specie particularly abundant in the finer fraction analyzed). In Arauco (Ar), average HM percentages in the 125-500 µm fraction was 17.9% while in Mataquito (Ma) it was 25.7%. In the 63-125 µm fraction HM average percentages were 36.9% and 56.1%, for Ar and Ma respectively. In the 125-500 µm fraction the percentage of magnetic minerals (the densest of the denser HM) correspond to 13.2% in Ar and 2.7% in Ma. While in the finer fraction these percentages are of 0.24% and 0.1% In Ar it was possible to perceive that the highest concentration in HM and magnetic minerals was observed in the NE sector (Llico) of the embayment, where the highest run-up was observed. In this specific sector an inland decrease of HM and magnetic minerals was detected along a 300m profile, with HM percentages varying from 27% to 9% and magnetic minerals from 16% to 5%, thus

  15. Coastal water source of short-lived halocarbons in New England

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Varner, Ruth K.; Russo, Rachel S.; Wingenter, Oliver W.; Haase, Karl B.; Talbot, Robert; Sive, Barkley C.

    2005-11-01

    Short-lived halocarbon tracers were used to investigate marine influences on air quality in a coastal region of New England. Atmospheric measurements made at the University of New Hampshire's Observing Station at Thompson Farm (TF) in Durham, New Hampshire, indicate that relatively large amounts of halocarbons are emitted from local estuarine and coastal oceanic regions. Bromine-containing halocarbons of interest in this work include bromoform (CHBr3) and dibromomethane (CH2Br2). The mean mixing ratios of CHBr3 and CH2Br2 from 11 January to 5 March 2002 were 2.6 pptv and 1.6 pptv, and from 1 June to 31 August 2002 mean mixing ratios were 5.9 pptv and 1.4 pptv, respectively. The mean mixing ratio of CHBr3 was not only highest during summer, but both CHBr3 and CH2Br2 exhibited large variability in their atmospheric mixing ratios during this season. We attribute the greater variability to increased production combined with faster atmospheric removal rates. Other seasonal characteristics of CHBr3 and CH2Br2 in the atmosphere, as well as the impact of local meteorology on their distributions at this coastal site, are discussed. Tetrachloroethene (C2Cl4) and trichloroethene (C2HCl3) were used to identify time periods influenced by urban emissions. Additionally, measurements of CHBr3, CH2Br2, C2Cl4, methyl iodide (CH3I), and ethyl iodide (C2H5I) were made at TF and five sites throughout the nearby Great Bay estuarine area between 18 and 19 August 2003. These measurements were used to elucidate the effect of the tidal cycle on the distributions of these gases. The mean mixing ratios of CHBr3, CH2Br2, CH3I, and C2H5I were ˜82%, 46%, 14%, and 17% higher, respectively, near the coast compared to inland sites, providing evidence for a marine source of short-lived halocarbons at TF. Correlation between the tidal cycle and atmospheric concentrations of marine tracers on the night of 18 August 2003 showed that the highest values for the brominated species occurred ˜2-3 hours

  16. Delivery of halogenated very short-lived substances from the west Indian Ocean to the stratosphere during the Asian summer monsoon

    NASA Astrophysics Data System (ADS)

    Fiehn, Alina; Quack, Birgit; Hepach, Helmke; Fuhlbrügge, Steffen; Tegtmeier, Susann; Toohey, Matthew; Atlas, Elliot; Krüger, Kirstin

    2017-06-01

    Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. When transported to the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise on RV Sonne in the subtropical and tropical west Indian Ocean in July and August 2014, we measured the VSLSs, methyl iodide (CH3I) and for the first time bromoform (CHBr3) and dibromomethane (CH2Br2), in surface seawater and the marine atmosphere to derive their emission strengths. Using the Lagrangian particle dispersion model FLEXPART with ERA-Interim meteorological fields, we calculated the direct contribution of observed VSLS emissions to the stratospheric halogen burden during the Asian summer monsoon. Furthermore, we compare the in situ calculations with the interannual variability of transport from a larger area of the west Indian Ocean surface to the stratosphere for July 2000-2015. We found that the west Indian Ocean is a strong source for CHBr3 (910 pmol m-2 h-1), very strong source for CH2Br2 (930 pmol m-2 h-1), and an average source for CH3I (460 pmol m-2 h-1). The atmospheric transport from the tropical west Indian Ocean surface to the stratosphere experiences two main pathways. On very short timescales, especially relevant for the shortest-lived compound CH3I (3.5 days lifetime), convection above the Indian Ocean lifts oceanic air masses and VSLSs towards the tropopause. On a longer timescale, the Asian summer monsoon circulation transports oceanic VSLSs towards India and the Bay of Bengal, where they are lifted with the monsoon convection and reach stratospheric levels in the southeastern part of the Asian monsoon anticyclone. This transport pathway is more important for the longer-lived brominated compounds (17 and 150 days lifetime for CHBr3 and CH2Br2). The entrainment of CHBr3 and CH3I from the west Indian Ocean to the stratosphere during the Asian summer monsoon is lower than from previous

  17. Occurrence of selected pharmaceutical and non-pharmaceutical compounds, and stable hydrogen and oxygen isotope ratios, in a riverbank filtration study, Platte River, Nebraska, 2001 to 2003, Volume 1

    USGS Publications Warehouse

    Vogel, J.R.; Verstraeten, Ingrid M.; Coplen, T.B.; Furlong, E.T.; Meyer, M.T.; Barber, L.B.

    2005-01-01

    caffeine. Antibiotics were found in some of the wastewater samples and twice in Salt Creek. Antibiotics were not detected in any samples from the Platte River or the well field. Surface-water samples were analyzed for total organic carbon and ground-water samples were analyzed for dissolved organic carbon. Samples from all sites were analyzed for major ions. Herbicides commonly detected in surface, ground, and drinking water included acetachlor, alachlor, atrazine, and metolachlor as well as degradates of these compounds. Most of the samples from wastewater sites were found to contain predominantly acetamide degradates. High concentrations of several organic wastewater indicator compounds were detected at the wastewater sites and in Salt Creek. Several organic wastewater indicator compounds were detected multiple times in samples from the Platte River. Bromoform, a by-product of disinfection in the treatment plant, was found in samples from the finished drinking water. Stable hydrogen isotope ratios show a range in seasonal variation of -73.6 per mill to -38.1 per mill relative to Vienna Standard Mean Ocean Water (VSMOW) reference water and -69.2 per mill to -46.5 per mill for surface water and ground water, respectively. Oxygen isotope ratios for surface-water samples varied between -9.86 per mill and -5.05 per mill. Stable oxygen isotope ratios of ground waters varied between -9.62 per mill and -5.81 per mill.

  18. A multi-model intercomparison of halogenated very short-lived substances (TransCom-VSLS): linking oceanic emissions and tropospheric transport for a reconciled estimate of the stratospheric source gas injection of bromine

    NASA Astrophysics Data System (ADS)

    Hossaini, R.; Patra, P. K.; Leeson, A. A.; Krysztofiak, G.; Abraham, N. L.; Andrews, S. J.; Archibald, A. T.; Aschmann, J.; Atlas, E. L.; Belikov, D. A.; Bönisch, H.; Carpenter, L. J.; Dhomse, S.; Dorf, M.; Engel, A.; Feng, W.; Fuhlbrügge, S.; Griffiths, P. T.; Harris, N. R. P.; Hommel, R.; Keber, T.; Krüger, K.; Lennartz, S. T.; Maksyutov, S.; Mantle, H.; Mills, G. P.; Miller, B.; Montzka, S. A.; Moore, F.; Navarro, M. A.; Oram, D. E.; Pfeilsticker, K.; Pyle, J. A.; Quack, B.; Robinson, A. D.; Saikawa, E.; Saiz-Lopez, A.; Sala, S.; Sinnhuber, B.-M.; Taguchi, S.; Tegtmeier, S.; Lidster, R. T.; Wilson, C.; Ziska, F.

    2016-07-01

    The first concerted multi-model intercomparison of halogenated very short-lived substances (VSLS) has been performed, within the framework of the ongoing Atmospheric Tracer Transport Model Intercomparison Project (TransCom). Eleven global models or model variants participated (nine chemical transport models and two chemistry-climate models) by simulating the major natural bromine VSLS, bromoform (CHBr3) and dibromomethane (CH2Br2), over a 20-year period (1993-2012). Except for three model simulations, all others were driven offline by (or nudged to) reanalysed meteorology. The overarching goal of TransCom-VSLS was to provide a reconciled model estimate of the stratospheric source gas injection (SGI) of bromine from these gases, to constrain the current measurement-derived range, and to investigate inter-model differences due to emissions and transport processes. Models ran with standardised idealised chemistry, to isolate differences due to transport, and we investigated the sensitivity of results to a range of VSLS emission inventories. Models were tested in their ability to reproduce the observed seasonal and spatial distribution of VSLS at the surface, using measurements from NOAA's long-term global monitoring network, and in the tropical troposphere, using recent aircraft measurements - including high-altitude observations from the NASA Global Hawk platform. The models generally capture the observed seasonal cycle of surface CHBr3 and CH2Br2 well, with a strong model-measurement correlation (r ≥ 0.7) at most sites. In a given model, the absolute model-measurement agreement at the surface is highly sensitive to the choice of emissions. Large inter-model differences are apparent when using the same emission inventory, highlighting the challenges faced in evaluating such inventories at the global scale. Across the ensemble, most consistency is found within the tropics where most of the models (8 out of 11) achieve best agreement to surface CHBr3 observations

  19. Occurrence of Selected Organic Compounds in Groundwater Used for Public Supply in the Plio-Pleistocene Deposits in East-Central Nebraska and the Dawson and Denver Aquifers near Denver, Colorado, 2002-2004

    USGS Publications Warehouse

    Bails, Jeffrey B.; Dietsch, Benjamin J.; Landon, Matthew K.; Paschke, Suzanne S.

    2009-01-01

    ), which were detected in 9 of the 15 wells (60 percent of the samples). The second most frequently detected organic compound was tetrachloroethylene, detected in 4 of the 15 wells (27 percent of the samples), followed by chloroform, trichloroethylene, and 2-hydroxyatrazine (2-hydroxy-4-isopropylamino-6-ethylamino-s-triazine, or OIET), present in 3 of the 15 wells (20 percent of the samples). The pesticide compounds deisopropylatrazine (2-chloro-6-ethylamino-4-amino-s-triazine, or CEAT), metolachlor, and simazine and the volatile organic compound cis-1,2-dichloroethylene were detected in 2 of the 15 wells, and the compounds diuron and 1,2-dichloroethane were detected in only 1 of the 15 wells during the first-year sampling. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. There were few detections of organic compounds during the first year of sampling groundwater wells in the South Platte study area. The compounds atrazine, deethylatrazine, picloram, tetrachloroethylene, methyl-tert-butyl-ether (MTBE), tris(2-butoxyethyl)phosphate, and bromoform were detected only once in all the samples from the 12 wells. Most detections of these compounds were at or near the minimum reporting levels, and none were greater than their regulatory maximum contaminant level. Second-year sampling, which included the addition of paired source- and finished-water samples, was completed at two sites in the High Plains study area. Source-water samples from the second-year sampling had detections of atrazine and deethylatrazine; at one site deisopropylatrazine and chloroform also were detected. The finished-water samples, which represent the source water after blending with water from other wells and treatment, indicated a decrease in the concentrations of the pesticides at one site, whereas concentrations remained nearly constant at a second site. The trihalomethanes (THMs or disinfec

  20. Assessing the vulnerability of public-supply wells to contamination—Edwards aquifer near San Antonio, Texas

    USGS Publications Warehouse

    Jagucki, Martha L.; Musgrove, MaryLynn; Lindgren, Richard J.; Fahlquist, Lynne; Eberts, Sandra M.

    2011-01-01

    This fact sheet highlights findings from the vulnerability study of a public-supply well field in San Antonio, Texas. The well field consists of six production wells that tap the Edwards aquifer. Typically, one or two wells are pumped at a time, yielding an average total of 20-21 million gallons per day. Water samples were collected from public-supply wells in the well field and from monitoring wells installed along general directions of flow to the well field. Samples from the well field contained some constituents of concern for drinking-water quality, including nitrate; the pesticide compounds atrazine, deethylatrazine, and simazine; and the volatile organic compounds tetrachloroethene (also called perchloroethene, or PCE), chloroform, bromoform, and dibromochloromethane. These constituents were detected in untreated water at concentrations much less than established drinking-water standards, where such standards exist. Overall, the study findings point to four primary factors that affect the movement and fate of contaminants and the vulnerability of the public-supply well field in San Antonio, Texas: (1) groundwater age (how long ago water entered, or recharged, the aquifer), (2) fast pathways for flow of groundwater through features formed or enlarged by dissolution of bedrock, (3) recharge characteristics of the aquifer, and (4) natural geochemical processes within the aquifer. A computer-model simulation of groundwater flow and transport was used to estimate the traveltime (or age) of water particles entering public-supply well W4 in the well field. Modeled findings show that almost half of the water reaching the public-supply well is less than 2 years old. Such a large percentage of very young water indicates that (1) contaminants entering the aquifer may be transported rapidly to the well, (2) there is limited time for chemical reactions to occur in the aquifer that may attenuate contaminants, and (3) should recharge water become contaminated with

  1. Processes Affecting the Trihalomethane Concentrations Associated with the Third Injection, Storage, and Recovery Test at Lancaster, Antelope Valley, California, March 1998 through April 1999

    USGS Publications Warehouse

    Fram, Miranda S.; Bergamaschi, Brian A.; Goodwin, Kelly D.; Fujii, Roger; Clark, Jordan F.

    2003-01-01

    The formation and fate of trihalomethanes (THM) during the third injection, storage, and recovery test at Lancaster, Antelope Valley, California, were investigated as part of a program to assess the long-term feasibility of using injection, storage, and recovery as a water-supply method and as a way to reduce water-level declines and land-subsidence in the Antelope Valley. The program was conducted by the U.S. Geological Survey in cooperation with the Los Angeles County Department of Public Works and the Antelope Valley-East Kern Water Agency. The water used for injection, storage, and recovery must be disinfected before injection and thus contains THMs and other disinfection by-products. THMs (chloroform, CHCl3, bromodichloromethane, CHCl2Br, dibromochloromethane, CHClBr2, and bromoform, CHBr3) are formed by reaction between natural dissolved organic carbon that is present in water and chlorine that is added during the disinfection step of the drinking water treatment process. THMs are carcinogenic compounds, and their concentrations in drinking water are regulated by the U.S. Environmental Protection Agency. During previous cycles of the Lancaster program, extracted water still contained measurable concentrations of THMs long after continuous pumping had extracted a greater volume of water than had been injected. This raised concerns about the potential long-term effect of injection, storage, and recovery cycles on ground-water quality in Antelope Valley aquifers. The primary objectives of this investigation were to determine (1) what controlled continued THM formation in the aquifer after injection, (2) what caused of the persistence of THMs in the extracted water, even after long periods of pumping, (3) what controlled the decrease of THM concentrations during the extraction period, and (4) the potential for natural attenuation of THMs in the aquifer. Laboratory experiments on biodegradation of THMs in microcosms of aquifer materials indicate that aquifer

  2. Status and understanding of groundwater quality in the central-eastside San Joaquin Basin, 2006: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Landon, Matthew K.; Belitz, Kenneth; Jurgens, Bryant C.; Kulongoski, Justin T.; Johnson, Tyler D.

    2010-01-01

    were detected frequently (detected in greater than 10 percent of samples): the trihalomethanes chloroform, bromoform, bromodichloromethane, and dibromochloromethane; the solvent PCE; the herbicides atrazine, simazine, and metolachlor, and special-interest constituent perchlorate.An assessment of understanding of the groundwater quality included sampling of understanding wells, some of which were perforated in shallower or deeper portions of the aquifer system than the primary aquifer, and analysis of correlations of groundwater quality with land use, depth, age classification, and other potential explanatory factors.The understanding assessment indicated that the concentrations of many constituents were related to depth and groundwater age. However, concentrations of individual constituents or constituent classes also were sometimes related to geochemical conditions, lateral position in the flow system, or land use.High and moderate relative-concentrations of uranium, nitrate, and total dissolved solids (TDS) were detected in some wells where the tops of perforations are within the upper 200 feet of the aquifer system. In wells with the depth to the top of perforations below this depth, concentrations were low. A similar pattern occurred for the sum of herbicide concentrations. These vertical water-chemistry patterns are consistent with the hydrogeologic setting, in which return flows from agricultural and urban land use are the major source of recharge, and withdrawals for irrigation and urban supply are the major source of discharge, resulting in substantial vertical components of groundwater flow.The decrease in concentrations of many constituents with depth reflects in part that groundwater gets older with depth. Tritium, helium-isotopes, and carbon-14 data were used to classify the predominant age of groundwater samples into three categories: modern (water that has entered the aquifer in the last 50 years), pre-modern (water that entered the aquifer more than 50