Science.gov

Sample records for bronsted acid site

  1. Support Effects on Bronsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains

    SciTech Connect

    Macht, Josef; Baertsch, Chelsey D.; May-Lozano, Marcos; Soled, Stuart L.; Wang, Yong; Iglesia, Enrique

    2005-03-01

    Initial activity and acid site density of several WAl, WSi (MCM41) and one WSn sample were determined. Trans/cis 2-butene selectivity is dependent on the support. Presumably, these differences are due to subtle differences in base strengths. 2-Butanol dehydration rates (per W-atom) reached maximum values at intermediate WOx surface densities on WAl, as reported for 2-butanol dehydration reactions on WZr. Titration results indicate that Bronsted acid sites are required for 2-butanol dehydration on WAl, WSi and WSn. UV-visible studies suggest that WAl is much more difficult to reduce than WZr. The detection of reduced centers on WAl, the number of which correlates to Bronsted acid site density and catalyst activity, as well as the temperature dependence of Bronsted acid site density indicate the in-situ formation of these active sites. We infer that this mechanism is common among all supported WOx samples described in this study. Turnover rates are a function of Bronsted acid site density only. High acid site densities lead to high turnover rates. Higher active site densities may cause stronger conjugate bases, as a higher electron density has to be stabilized, and thus weaker acidity, enabling a faster rate of product desorption. The maximum achievable active site density is dependent on the support. WZr reaches a higher active site density than WAl.

  2. NH3 adsorption on the Lewis and Bronsted acid sites of MoO3 (0 1 0) surface: A cluster DFT study

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Fan, Junyan; Zuo, Zhijun; Li, Zhe; Zhang, Jinshan

    2014-01-01

    The adsorption of NH3 on the Lewis and Bronsted acid sites of MoO3 (0 1 0) surface has been investigated based on the density functional theory (DFT) method using the clusters models. The calculated results indicate that NH3 could strongly adsorb on both the Lewis and Bronsted acid sites in the form of NH3 species and NH4+ respectively, whereas the adsorption on the Lewis acid site is found to be more favorable energetically than that on the Bronsted acid site. For the Lewis acid site Mulliken population analysis shows a donation of lone pairs from NH3 to the surface and activation of N-H bond. The overlaps of N-s, N-p and Mo-d orbitals suggest the strong interaction between N and Mo atoms. For the Bronsted acid site N-H bond is also activated by the formation of NH4+ species. The hybridizations between H and O atoms as well as N and H atoms are the major reasons for strong chemical adsorption of NH3 and the existence of NH4+ species, which partly attributed to the presence of N-H… O hydrogen bonds. Furthermore, the formation of a second Lewis acid site at adjacent or diagonal site results in slight changes of adsorption stability, structural changes and charge redistributions, suggesting its small influence on NH3 adsorption.

  3. The Bronsted-Lowery Acid-Base Concept.

    ERIC Educational Resources Information Center

    Kauffman, George B.

    1988-01-01

    Gives the background history of the simultaneous discovery of acid-base relationships by Johannes Bronsted and Thomas Lowry. Provides a brief biographical sketch of each. Discusses their concept of acids and bases in some detail. (CW)

  4. A quantum chemical study for exploring the inhibitory effect of nitrogen containing species on the adsorption of polynuclear aromatic hydrocarbons over a Bronsted acid site

    NASA Astrophysics Data System (ADS)

    Celis-Cornejo, C. M.; Garnica Mantilla, M. M.; Baldovino-Medrano, V. G.; Ramírez-Caballero, G. E.

    2016-08-01

    The analysis of the inhibitory effect of nitrogenated compounds on the hydroprocessing and hydropurification of oil derived fuels is important to produce cleaner fuels. In this work, density functional theory calculations were performed to investigate the effect of the nitrogen containing molecules on the adsorption of Polynuclear Aromatic Hydrocarbons (PAHs). Mordenite was chosen as a zeolitic structure for simulating a Bronsted acid site. The character of the acid site was confirmed by both a vibrational frequency calculation and a Bader charge analysis. From the adsorption calculations, it was found that the adsorption energy of PAHs increases with the number of aromatic rings in the structure. Also, the nitrogen containing species possibly inhibit more extensively two and three rings PAHs because of their lower adsorption energies. Finally, it was observed that the nitrogen species tend to drag the proton from the mordenite acid site. This explains the inhibitory effect in the adsorption of PAHs and contributes to understanding the dynamics of hydrocarbon hydroprocessing in refineries.

  5. Effects of Zeolite Structure and Si/Al Ratio on Adsorption Thermodynamics and Intrinsic Kinetics of Monomolecular Cracking and Dehydrogenation of Alkanes over Bronsted Acid Sites

    NASA Astrophysics Data System (ADS)

    Janda, Amber Leigh

    It is well known that the efficacy of acidic zeolite catalysts for the cracking of hydrocarbons originates from the shape and size of the zeolite pores. However, the mechanisms by which changes in pore structure influence cracking kinetics are not well understood or exploited. The aim of this dissertation is to use experiments and simulations to shed light on the ways by which zeolite structure and acid site location affect the apparent and intrinsic kinetics of n-alkane monomolecular cracking and dehydrogenation. In the rate-determining step of these processes, C-C or C-H bonds are cleaved catalytically by Bronsted protons. Thus, the kinetics of monomolecular activation reactions are useful for characterizing the influence of active site structural environment on catalysis. In Chapter 2, the effects of active site distribution on n-butane monomolecular activation kinetics are investigated for commercial samples of MFI having a range of the Si/Al ratio. Based on UV-visible spectroscopic analyses of (Co,Na)-MFI, it is inferred that, with increasing Al concentration, the fraction of Co---and, by extension, Bronsted protons in H-MFI---located at channel intersections increases relative to the fraction located at channels. Concurrently, the first-order rate coefficients (kapp) for cracking and dehydrogenation, the selectivity to terminal cracking versus central cracking, and the selectivity to dehydrogenation versus cracking increase. The stronger dependence of the selectivity to dehydrogenation on Al content is attributed to a product-like transition state, the stability of which is more sensitive to confinement than the stabilities of cracking transition states, which occur earlier along the reaction coordinate. For terminal cracking and dehydrogenation, the intrinsic activation entropy (DeltaS‡int ) increases with Al content, consistent with the larger dimensions of intersections relative to channels. Surprisingly, the rate of dehydrogenation is inhibited by

  6. A {sup 13}C NMR study of the condensation chemistry of acetone and acetaldehyde adsorbed at the Bronsted acid sites in H-ZSM-5

    SciTech Connect

    Biaglow, A.I.; Sepa, J.; Gorte, R.J.

    1995-02-01

    Several bimolecular, acid-catalyzed condensation reactions of acetone and acetaldehyde have been examined in H-ZSM-5, along with the adsorption complexes formed by the products, using {sup 13}C NMR. For acetone, the hydrogen-bonded adsorption complex is stable at room temperature and coverages below one molecule per Broensted acid site. Reaction to mesityl oxide occurs only at higher coverages or temperatures, which are necessary to induce site exchange. The adsorption complex exhibits reaction chemistry analogous to that observed in solution phase, forming adsorption complexes of chloroacetone upon exposure to Cl{sub 2} and of imines upon exposure to NH{sub 3} or dimethylamine. The reactions of acetaldehyde to crotonaldehyde and imines are similar, although they occur at a faster rate due to the higher mobility of this molecule. The adsorption complexes formed by acetone, acetaldehyde, and their condensation products can all be described as rigid, hydrogen-bonded complexes at low coverages. Complexes formed from imines and enamines exhibit isotropic chemical shifts nearly identical to those observed in magic acids, indicating that proton transfer is nearly complete for these molecules. The extent of proton transfer for the remaining molecules varies with the proton affinity of the molecule, ranging from close to complete proton transfer for mesityl oxide and crotonaldehyde to almost complete absence of proton transfer for the chloroacetones. The differences and similarities between these reactions in the zeolite and in solution phase are discussed, along with the implications for understanding the primary processes responsible for these reactions in zeolites. 34 refs., 16 figs., 1 tab.

  7. Formation of Gd coordination polymer with 1D chains mediated by Bronsted acidic ionic liquids

    NASA Astrophysics Data System (ADS)

    Luo, Qianqian; Han, Ying; Lin, Hechun; Zhang, Yuanyuan; Duan, Chungang; Peng, Hui

    2017-03-01

    One dimensional coordination polymer Gd[(SO4)(NO3)(C2H6SO)2] (1) is prepared through the mediation of Bronsted acid ionic liquid, which crystallized in the monoclinic space of C2/c. In this polymer, adjacent Gd atoms are linked by two SO42- ions to generate a 1-D chain, and all oxygen atoms in SO42- groups are connected to three nearest Gd atoms in μ3:η1:η1:η2 fashion. Gd, S and N from SO42- and NO3- are precisely coplanar. The planar is coordinated by a pair of DMSO molecules, which is parallel and linked by hydrogen bonding to form a three-dimensional supramolecular network. Magnetic susceptibility measurement of 1 reveals weak antiferromagnetic interactions between the Gd (III) ions. It exhibits relatively large magneto-caloric effect with -ΔSm=28.8 J Kg-1 K-1 for ΔH=7 T.

  8. Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids - A comparative study.

    PubMed

    Parveen, Firdaus; Patra, Tanmoy; Upadhyayula, Sreedevi

    2016-01-01

    Cellulose conversion to platform chemicals is required to meet the demands of increasing population and modernization of the world. Hydrolysis of microcrystalline cellulose was studied with SO3H, COOH and OH functionalized imidazole based ionic liquid using 1-butyl-3-methylimidazolium chloride [BMIM]Cl as a solvent. The influence of temperature, time, acidity of ionic liquids and catalyst loading was studied on hydrolysis reaction. The maximum %TRS yield 85%, was obtained at 100°C and 90min with 0.2g of SO3H functionalized ionic liquid. UV-vis spectroscopy using 4-nitro aniline as an indicator was performed to find out the Hammett function of ionic liquid and acidity trends are as follows: SO3H>COOH>OH. Density functional theory (DFT) calculations were performed to optimize the ionic liquid and their conjugate bases at B3LYP 6-311G++ (d, p) level using Gaussian 09 program. Theoretical findings are in agreement with the experimental results.

  9. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    NASA Astrophysics Data System (ADS)

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-09-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3-4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3-4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse.

  10. Tailoring the Synergistic Bronsted-Lewis acidic effects in Heteropolyacid catalysts: Applied in Esterification and Transesterification Reactions

    PubMed Central

    Tao, Meilin; Xue, Lifang; Sun, Zhong; Wang, Shengtian; Wang, Xiaohong; Shi, Junyou

    2015-01-01

    In order to investigate the influences of Lewis metals on acidic properties and catalytic activities, a series of Keggin heteropolyacid (HPA) catalysts, HnPW11MO39 (M = TiIV, CuII, AlIII, SnIV, FeIII, CrIII, ZrIV and ZnII; for Ti and Zr, the number of oxygen is 40), were prepared and applied in the esterification and transesterification reactions. Only those cations with moderate Lewis acidity had a higher impact. Ti Substituted HPA, H5PW11TiO40, posse lower acid content compared with TixH3−4xPW12O40 (Ti partial exchanged protons in saturated H3PW12O40), which demonstrated that the Lewis metal as an addenda atom (H5PW11TiO40) was less efficient than those as counter cations (TixH3−4xPW12O40). On the other hand, the highest conversion reached 92.2% in transesterification and 97.4% in esterification. Meanwhile, a good result was achieved by H5PW11TiO40 in which the total selectivity of DAG and TGA was 96.7%. In addition, calcination treatment to H5PW11TiO40 make it insoluble in water which resulted in a heterogeneous catalyst feasible for reuse. PMID:26374393

  11. The relationship between the acidity and the hydrocarbon cracking activity of ultrastable H-Y zeolite

    NASA Astrophysics Data System (ADS)

    Kuehne, Mark Andrew

    Changes in the structural, acidic, and catalytic properties of H-USY (acidic ultrastable Y zeolite) that occur during steam dealumination were investigated. This study focused on three factors that previously have been suggested to cause the enhanced activity of H-USY: (1) increased Bronsted acid strength caused by nonframework Al; (2) increased Bronsted acid strength caused by decreased framework Al content; and (3) direct participation of Lewis acid sites in the cracking reaction. Acidity was characterized by microcalorimetry and FTIR of NH3 adsorption. The 2-methylpentane cracking activity of H-USY at 573 K was 35 times higher than that of H-Y that had not been steamed. With further steaming of H-USY, the cracking activity decreased, although the activity per strong Bronsted acid site remained essentially constant. H-USY, with both Bronsted and Lewis acid sites, had a heterogeneous acid strength and many acid sites with heat of NH3 adsorption >130 kJ/mol. In contrast, zeolites containing only Bronsted acid sites had a rather homogeneous acid strength. The heat of NH3 adsorption did not exceed 130 U/mol for (H,NH4)-USY, in which the strongly acidic Lewis acid sites were covered by NH3, but its activity was equal to that of H-USY. Thus, Lewis acid sites are inactive for hydrocarbon cracking. Dealumination by ammonium hexafluorosilicate, which produces very little nonframework Al, resulted in a zeolite with a low heat of NH3 adsorption equal to that of H-Y, and activity only three times higher than that of H-Y. The mechanism of coke deactivation in H-USY was studied. Coke caused a proportionally larger decrease in n-hexane cracking activity than in the number of acid sites, but did not cause pore blockage or reduced n-hexane diffusivity. The evidence is consistent with a site poisoning deactivation model for a diffusion-limited reaction. In conclusion, the enhanced cracking activity of USY is not caused by Lewis acid sites nor by Bronsted acid sites with a very

  12. Mechanism of hydrodenitrogenation (Part 4) infrared spectroscopy of acidic molybdena catalysts

    SciTech Connect

    Miranda, R.

    1990-01-01

    Mo oxide catalysts supported over a complete series of silica-aluminas have been characterized in the oxidic and reduced states, by means of total acidity measurements and by infrared spectroscopy. Ammonia chemisorption was used to titrate the total acidity of the catalysts, and IR absorption of adsorbed pyridine to distinguish Bronsted from Lewis acid sites. The formation of new acidity upon deposition of molybdena on silica-alumina supports was then explained on the basis of a simple surface model. The new acidity is of both Lewis and Bronsted type, the preponderance of one over the other depending on support composition, as well as loading and state of oxidation of Mo. High-alumina supports and low Mo loading favor dispersed Mo species, in particular bidentate and monodentate di-oxo Mo species. The latter is responsible for the new Bronsted acidity. Coordinative unsaturation of polymolybdates is responsible for the new Lewis acidity, which is increased upon reduction of Mo. High-silica supports favor monodentate species (high Bronsted acidity) up to 4 wt % MoO{sub 3}. Beyond that, polymolybdates species and Lewis acidity predominate. 7 refs., 4 figs.

  13. Bronsted-Evans-Polany relationships for C-C bond forming and C-C bond breaking reactions in thiamine-catalyzed decarboxylation of 2-keto acids using density functional theory.

    SciTech Connect

    Assary, R. S.; Broadbelt, L. J.; Curtiss, L. A.

    2012-01-01

    The concept of generalized enzyme reactions suggests that a wide variety of substrates can undergo enzymatic transformations, including those whose biotransformation has not yet been realized. The use of quantum chemistry to evaluate kinetic feasibility is an attractive approach to identify enzymes for the proposed transformation. However, the sheer number of novel transformations that can be generated makes this impractical as a screening approach. Therefore, it is essential to develop structure/activity relationships based on quantities that are more efficient to calculate. In this work, we propose a structure/activity relationship based on the free energy of binding or reaction of non-native substrates to evaluate the catalysis relative to that of native substrates. While Broensted-Evans-Polanyi (BEP) relationships such as that proposed here have found broad application in heterogeneous catalysis, their extension to enzymatic catalysis is limited. We report here on density functional theory (DFT) studies for C-C bond formation and C-C bond cleavage associated with the decarboxylation of six 2-keto acids by a thiamine-containing enzyme (EC 1.2.7.1) and demonstrate a linear relationship between the free energy of reaction and the activation barrier. We then applied this relationship to predict the activation barriers of 17 chemically similar novel reactions. These calculations reveal that there is a clear correlation between the free energy of formation of the transition state and the free energy of the reaction, suggesting that this method can be further extended to predict the kinetics of novel reactions through our computational framework for discovery of novel biochemical transformations.

  14. Investigation of the acidic properties of ZrO{sub 2} modified by SO{sub 4}{sup 2{minus}} anions

    SciTech Connect

    Kustov, L.M.; Kazansky, V.B.; Figueras, F.; Tichit, D.

    1994-11-01

    Zirconium dioxide modified by sulfate anions was investigated using diffuse reflectance IR spectroscopy. It was found that this modification enhanced the strength of both Bronsted acid sites (terminal or bridging ZrOH groups) and Lewis acid sites (low-coordinate Zr ions). However, Bronsted acid sites with enhanced strength appeared to be weaker than bridging OH groups in zeolites. Modification also created protons with a new environment. These protons were assumed to form multicenter bonds with oxygen atoms of SO{sub 4}{sup 2{minus}} anions or with neighboring basic oxygen and to possess acidic properties, comparable to those of protons in zeolites. Low-temperature ethylene and cyclopropane oligomerization and H-D exchange were shown to proceed on sulfated zirconia, presumably with participation of such sites. 25 refs., 11 figs., 1 tab.

  15. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts

    SciTech Connect

    Not Available

    1993-01-01

    The research has involved the characterization of catalyst acidity, [sup 2]D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  16. [Experimental and kinetic modeling of acid/base and redox reactions over oxide catalysts]. Technical progress report

    SciTech Connect

    Not Available

    1993-07-01

    The research has involved the characterization of catalyst acidity, {sup 2}D NMR studies of Bronsted acid sites, and kinetic, calorimetric, and spectroscopic studies of methylamine synthesis and related reactions over acid catalysts. Approach of this work was to explore quantitative correlations between factors that control the generation, type, strength, and catalytic properties of acid sites on zeolite catalysts. Microcalorimetry, thermogravimetric analysis, IR spectroscopy, and NMR spectroscopy have provided information about the nature and strength of acid sites in zeolites. This was vital in understanding the catalytic cycles involved in methylamine synthesis and related reactions over zeolite catalysts.

  17. An Acid Hydrocarbon: A Chemical Paradox

    ERIC Educational Resources Information Center

    Burke, Jeffrey T.

    2004-01-01

    The chemical paradox of cyclopentadiene, a hydrocarbon, producing bubbles like a Bronsted acid is observed. The explanation that it is the comparative thermodynamic constancy of the fragrant cyclopentadienyl anion, which produces the powerful effect, resolves the paradox.

  18. Effect of Bronsted Acids and Bases, and Lewis Acid (Sn(2+)) on the Regiochemistry of the Reaction of Amines with Trifluoromethyl-β-diketones: Reaction of 3-Aminopyrrole to Selectively Produce Regioisomeric 1H-Pyrrolo[3,2-b]pyridines.

    PubMed

    De Rosa, Michael; Arnold, David; Hartline, Douglas; Truong, Linda; Verner, Roman; Wang, Tianwei; Westin, Christian

    2015-12-18

    Reaction of 3-aminopyrrole (as its salt) with trifluoromethyl-β-diketones gave γ-1H-pyrrolo[3,2-b]pyridines via reaction at the less reactive carbonyl group. The trifluoromethyl group increased the electrophilicity of the adjacent carbonyl group and decreased the basicity of the hydroxyl group of the CF3 amino alcohol formed. This amino alcohol was formed faster, but its subsequent dehydration to the β-enaminone was slow resulting in the preferential formation of the γ-regioisomer. Reaction of 4,4,4-trifluoro-1-phenyl-1,3-butadione with 3-aminopyrrole was carried out using a series of 6 amine buffers. Yields of the α-1H-pyrrolo[3,2-b]pyridine increased as the pKa of the amine buffer decreased. Surprisingly the yield went down at higher pKas. There was a change in mechanism as the reaction mixture became more basic. With strong amines trifluoromethyl-β-diketones were present mainly or completely as the enolate. Under reductive conditions (3-nitropyrrole/Sn/AcOH/trifluoromethyl-β-diketone) the α-1H-pyrrolo[3,2-b]pyridine was the major product as a result of Lewis acid catalysis by Sn(2+). Similar α-regiochemistry was observed when the reaction of the 3-aminopyrrole salt with trifluoromethyl-β-diketones was carried out in the presence of base and tin(II) acetate.

  19. Thermodynamic and kinetic aspects of surface acidity

    SciTech Connect

    Dumesic, J.A.

    1992-01-01

    Our research in the general area of acid catalysis involves the characterization of solid acidity and the corresponding assessment of catalytic performance of acidic materials. Acid characterization studies are required to provide essential information about the type of acid site (i.e., Lewis versus Bronsted), the strength of the sites, and the mobility of molecules adsorbed on the acid sites. An accurate measure of acid strength is given by the heat of adsorption of a basic probe molecule on the acid site. A thermodynamic representation of the mobility of adsorbed species on these sites is given by the entropy of adsorption. Important techniques used in these acid site characterization studies include microcalorimetry, thermogravimetric measurements, temperature programmed desorption, infrared spectroscopy and solid state nuclear magnetic resonance. The combination of these acid site characterization studies with reaction kinetics measurements of selected catalytic processes allows the elucidation of possible relationships between surface thermodynamic and kinetic properties of acidic sites. Such relationships are important milestones in formulating effective strategies for the effective utilization of solid acid catalysts. Current work in this direction involves methylamine syntheses over various zeolites, and the basic probe molecules employed include ammonia, methanol, water and mono-, di- and tri-methylamines. 31 refs., 18 figs., 1 tab.

  20. Thermodynamic and kinetic aspects of surface acidity. Progress report

    SciTech Connect

    Dumesic, J.A.

    1992-04-01

    Our research in the general area of acid catalysis involves the characterization of solid acidity and the corresponding assessment of catalytic performance of acidic materials. Acid characterization studies are required to provide essential information about the type of acid site (i.e., Lewis versus Bronsted), the strength of the sites, and the mobility of molecules adsorbed on the acid sites. An accurate measure of acid strength is given by the heat of adsorption of a basic probe molecule on the acid site. A thermodynamic representation of the mobility of adsorbed species on these sites is given by the entropy of adsorption. Important techniques used in these acid site characterization studies include microcalorimetry, thermogravimetric measurements, temperature programmed desorption, infrared spectroscopy and solid state nuclear magnetic resonance. The combination of these acid site characterization studies with reaction kinetics measurements of selected catalytic processes allows the elucidation of possible relationships between surface thermodynamic and kinetic properties of acidic sites. Such relationships are important milestones in formulating effective strategies for the effective utilization of solid acid catalysts. Current work in this direction involves methylamine syntheses over various zeolites, and the basic probe molecules employed include ammonia, methanol, water and mono-, di- and tri-methylamines. 31 refs., 18 figs., 1 tab.

  1. 3-(1-Methyl-3-imidazolio)propanesulfonate: A Precursor to a Bronsted Acid Ionic Liquid

    DTIC Science & Technology

    2010-03-01

    8) allows the positively charged imidazolium head group and the negatively charged sulfonate group to interact with neighboring zwitter- ions...Figure 1. The dominant intermolecular interactions are Cou- lombic in nature and are through the charged centers of the zwitterion: the imidazolium ...ring and the sulfonate group (Fig. 2). The negative charged sulfonate group is surrounded by four imidazolium head groups forming six close contacts

  2. An effective route to fluorine containing asymmetric alpha-aminophosphonates using chiral Bronsted acid catalyst.

    PubMed

    Bhadury, Pinaki S; Zhang, Yuping; Zhang, Sha; Song, Baoan; Yang, Song; Hu, Deyu; Chen, Zhuo; Xue, Wei; Jin, Linhong

    2009-05-01

    Asymmetric addition of dialkyl phosphites (--CH2CH3, --CH2CH2CH3, --CH(CH3)2, --CH2(CH2)3CH3, --CH2CH2OCH3 and --CH2CH2OC2H5) induced by chiral organocatalyst e.g. (R)- and (S)-3,3'-[3,5-bis(trifluoromethyl)phenyl]2-1,1'-binaphthyl phosphate on fluorinated aldimines derived from cinnamaldehyde has been found effective to give new bioactive alpha-aminophosphonates in good yields (58-73%) and high enantiomeric excess (64.6%-90.6%) under mild conditions.

  3. Adverse experiences with nitric acid at the Savannah River Site

    SciTech Connect

    Durant, W.S.; Craig, D.K.; Vitacco, M.J.; McCormick, J.A.

    1991-06-01

    Nitric acid is used routinely at the Savannah River Site (SRS) in many processes. However, the site has experienced a number of adverse situations in handling nitric acid. These have ranged from minor injuries to personnel to significant explosions. This document compiles many of these events and includes discussions of process upsets, fires, injuries, and toxic effects of nitric acid and its decomposition products. The purpose of the publication is to apprise those using the acid that it is a potentially dangerous material and can react in many ways as demonstrated by SRS experience. 10 refs.

  4. Synthesis of Site-Specifically (13)C Labeled Linoleic Acids.

    PubMed

    Offenbacher, Adam R; Zhu, Hui; Klinman, Judith P

    2016-10-12

    Soybean lipoxygenase-1 (SLO-1) catalyzes the C-H abstraction from the reactive carbon (C-11) in linoleic acid as the first and rate-determining step in the formation of alkylhydroperoxides. While previous labeling strategies have focused on deuterium labeling to ascertain the primary and secondary kinetic isotope effects for this reaction, there is an emerging interest and need for selectively enriched (13)C isotopologues. In this report, we present synthetic strategies for site-specific (13)C labeled linoleic acid substrates. We take advantage of a Corey-Fuchs formyl to terminal (13)C-labeled alkyne conversion, using (13)CBr4 as the labeling source, to reduce the number of steps from a previous fatty acid (13)C synthetic labeling approach. The labeled linoleic acid substrates are useful as nuclear tunneling markers and for extracting active site geometries of the enzyme-substrate complex in lipoxygenase.

  5. Site-selective Alkane Dehydrogenation of Fatty Acids

    DTIC Science & Technology

    2011-12-14

    dehydrogenation of fatty acids Contract/Grant#: FA9550-10-1-0532 Final Reporting Period: 15 September 2011 to 14 September 2011...directly incorporate fatty acids into the ligand. The preparation of the acyl phosphines (1-5) was easily accomplished starting from the corresponding...AFOSR Final Report Final Report 
 The proposed research examines the site-selective dehydrogenation of alkanes. The alkanes employed were fatty

  6. Bacterial Diversity at an Acid Mine Drainage Site in Maine

    NASA Astrophysics Data System (ADS)

    Gaynor, J.; Sawyer, T.; Riley, F. E.; Moulton, K. D.; Rothschild, L. J.; Duboise, S. M.

    2010-04-01

    Bacterial diversity in acidic mine drainage at a historic Maine iron mining site was investigated by isolation of environmental DNA, PCR amplification of the V3 region of the 16S rRNA gene, denaturing gradient gel electrophoresis, and DNA sequencing.

  7. Modeling lanthanide series binding sites on humic acid.

    PubMed

    Pourret, Olivier; Martinez, Raul E

    2009-02-01

    Lanthanide (Ln) binding to humic acid (HA) has been investigated by combining ultrafiltration and ICP-MS techniques. A Langmuir-sorption-isotherm metal-complexation model was used in conjunction with a linear programming method (LPM) to fit experimental data representing various experimental conditions both in HA/Ln ratio (varying between 5 and 20) and in pH range (from 2 to 10) with an ionic strength of 10(-3) mol L(-1). The LPM approach, not requiring prior knowledge of surface complexation parameters, was used to solve the existing discrepancies in LnHA binding constants and site densities. The application of the LPM to experimental data revealed the presence of two discrete metal binding sites at low humic acid concentrations (5 mg L(-1)), with log metal complexation constants (logK(S,j)) of 2.65+/-0.05 and 7.00 (depending on Ln). The corresponding site densities were 2.71+/-0.57x10(-8) and 0.58+/-0.32x10(-8) mol of Ln(3+)/mg of HA (depending on Ln). Total site densities of 3.28+/-0.28x10(-8), 4.99+/-0.02x10(-8), and 5.01+/-0.01x10(-8) mol mg(-1) were obtained by LPM for humic acid, for humic acid concentrations of 5, 10, and 20 mg L(-1), respectively. These results confirm that lanthanide binding occurs mainly at weak sites (i.e., ca. 80%) and second at strong sites (i.e., ca. 20%). The first group of discrete metal binding sites may be attributed to carboxylic groups (known to be the main binding sites of Ln in HA), and the second metal binding group to phenolic moieties. Moreover, this study evidences heterogeneity in the distribution of the binding sites among Ln. Eventually, the LPM approach produced feasible and reasonable results, but it was less sensitive to error and did not require an a priori assumption of the number and concentration of binding sites.

  8. Acid precipitation at 3 sites in the Klang Valley, Malaysia

    SciTech Connect

    Philip, E.; Yap, S.K.; Azimi, S.

    1996-12-31

    A study which examined spatial variation, dust and chemical composition factors associated with precipitation pH in the Klang Valley had been conducted. Precipitation samples were collected on a monthly basis at 3 different locations during the periods of 1993-1995. These long term sites were situated at varying distance from the industrial zone of the Klang Valley. Data were collected on a monthly basis and where possible after every rainfall. This included the field pH, electrical conductivity (EC) and analysis of chemical components. To date, the general pH trend at these stations is decreasing towards the acid range. The site furthest from the industrial zone had the highest pH values while site closest to the industrial zone had the lowest pH. There appeared to be a correlation between the precipitation pH and electrical conductivity (EC), the EC readings increased with increased acidity. Variations in precipitation pH was closely associated with the changes in sulfate concentration. The pH of precipitation is determined not only by the anions, but also by the concentration of cations in the atmosphere which neutralized the acidity by forming salts. The main cause for the decrease in the pH values is the significant increase of acidic components and decrease of soil-oriented components (Mg and Ca) in the rain water.

  9. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish

    PubMed Central

    1984-01-01

    Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also

  10. Acidity of edge surface sites of montmorillonite and kaolinite

    NASA Astrophysics Data System (ADS)

    Liu, Xiandong; Lu, Xiancai; Sprik, Michiel; Cheng, Jun; Meijer, Evert Jan; Wang, Rucheng

    2013-09-01

    Acid-base chemistry of clay minerals is central to their interfacial properties, but up to now a quantitative understanding on the surface acidity is still lacking. In this study, with first principles molecular dynamics (FPMD) based vertical energy gap technique, we calculate the acidity constants of surface groups on (0 1 0)-type edges of montmorillonite and kaolinite, which are representatives of 2:1 and 1:1-type clay minerals, respectively. It shows that tbnd Si-OH and tbnd Al-OH2OH groups of kaolinite have pKas of 6.9 and 5.7 and those of montmorillonite have pKas of 7.0 and 8.3, respectively. For each mineral, the calculated pKas are consistent with the experimental ranges derived from fittings of titration curves, indicating that tbnd Si-OH and tbnd Al-OH2OH groups are the major acidic sites responsible to pH-dependent experimental observations. The effect of Mg substitution in montmorillonite is investigated and it is found that Mg substitution increases the pKas of the neighboring tbnd Si-OH and tbnd Si-OH2 groups by 2-3 pKa units. Furthermore, our calculation shows that the pKa of edge tbnd Mg-(OH2)2 is as high as 13.2, indicating the protonated state dominates under common pH. Together with previous adsorption experiments, our derived acidity constants suggest that tbnd Si-O- and tbnd Al-(OH)2 groups are the most probable edge sites for complexing heavy metal cations.

  11. Inorganic Nitrogen Cycling in an Extreme Acid Mine Drainage Site

    NASA Astrophysics Data System (ADS)

    Kalnejais, L. H.; Smith, R. L.; Nordstrom, D. K.; Banfield, J. F.

    2006-12-01

    Weathering of the massive sulfide ore body at Iron Mountain, northern California has generated sulfuric acid solutions with pH values ranging from 0.5 to 1, temperatures up to 50°C and high concentrations of toxic metals. Communities of microorganisms catalyze the oxidation of iron and sulfur that generates this extreme environment. The nitrogen requirements of these organisms and the nitrogen cycling within these waters are not understood. By adapting the chemiluminescence detection method of Baeseman (2004) we have constrained the stability of nitrate and nitrite species in acidic, high ferrous iron solutions and have measured a time series of the nitrate concentrations at sites within Iron Mountain. The half-life of nitrite is less than an hour due to reactions with ferrous ions, while nitrate is found at concentrations of up to 10 μM within the mine. By coupling this information with geochemical and microbial community information at each site together with culture enrichment studies using various nitrogen sources we hope to gain insight into the pathways of nitrogen utilization in this extreme environment. References Baeseman, J.L. (2004) Denitrification in acid-impacted mountain stream sediments. Ph.D. Dissertation, University of Colorado, Department of Civil, Environmental, and Architectural Engineering.

  12. Active site amino acid sequence of human factor D.

    PubMed

    Davis, A E

    1980-08-01

    Factor D was isolated from human plasma by chromatography on CM-Sephadex C50, Sephadex G-75, and hydroxylapatite. Digestion of reduced, S-carboxymethylated factor D with cyanogen bromide resulted in three peptides which were isolated by chromatography on Sephadex G-75 (superfine) equilibrated in 20% formic acid. NH2-Terminal sequences were determined by automated Edman degradation with a Beckman 890C sequencer using a 0.1 M Quadrol program. The smallest peptide (CNBr III) consisted of the NH2-terminal 14 amino acids. The other two peptides had molecular weights of 17,000 (CNBr I) and 7000 (CNBr II). Overlap of the NH2-terminal sequence of factor D with the NH2-terminal sequence of CNBr I established the order of the peptides. The NH2-terminal 53 residues of factor D are somewhat more homologous with the group-specific protease of rat intestine than with other serine proteases. The NH2-terminal sequence of CNBr II revealed the active site serine of factor D. The typical serine protease active site sequence (Gly-Asp-Ser-Gly-Gly-Pro was found at residues 12-17. The region surrounding the active site serine does not appear to be more highly homologous with any one of the other serine proteases. The structural data obtained point out the similarities between factor D and the other proteases. However, complete definition of the degree of relationship between factor D and other proteases will require determination of the remainder of the primary structure.

  13. Binding sites of retinol and retinoic acid with serum albumins.

    PubMed

    Belatik, A; Hotchandani, S; Bariyanga, J; Tajmir-Riahi, H A

    2012-02-01

    Retinoids are effectively transported in the bloodstream via serum albumins. We report the complexation of bovine serum albumin (BSA) with retinol and retinoic acid at physiological conditions, using constant protein concentration and various retinoid contents. FTIR, CD and fluorescence spectroscopic methods and molecular modeling were used to analyze retinoid binding site, the binding constant and the effects of complexation on BSA stability and secondary structure. Structural analysis showed that retinoids bind BSA via hydrophilic and hydrophobic interactions with overall binding constants of K(Ret)(-BSA) = 5.3 (±0.8) × 10(6) M(-1) and K(Retac-BSA) = 2.3 (±0.4) × 10(6) M(-1). The number of bound retinoid molecules (n) was 1.20 (±0.2) for retinol and 1.8 (±0.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in retinoid-BSA complexes stabilized by H-bonding network. The retinoid binding altered BSA conformation with a major reduction of α-helix from 61% (free BSA) to 36% (retinol-BSA) and 26% (retinoic acid-BSA) with an increase in turn and random coil structures indicating a partial protein unfolding. The results indicate that serum albumins are capable of transporting retinoids in vitro and in vivo.

  14. Students' Understanding of Acids/Bases in Organic Chemistry Contexts

    ERIC Educational Resources Information Center

    Cartrette, David P.; Mayo, Provi M.

    2011-01-01

    Understanding key foundational principles is vital to learning chemistry across different contexts. One such foundational principle is the acid/base behavior of molecules. In the general chemistry sequence, the Bronsted-Lowry theory is stressed, because it lends itself well to studying equilibrium and kinetics. However, the Lewis theory of…

  15. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    SciTech Connect

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  16. Carboxylic acid accelerated formation of diesters

    DOEpatents

    Tustin, Gerald Charles; Dickson, Todd Jay

    1998-01-01

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  17. General Acid Catalysis: A Flexible Experiment, Adaptable to Student Ability and Various Teaching Approaches.

    ERIC Educational Resources Information Center

    Bulmer, R. S.; And Others

    1981-01-01

    The acid-catalyzed hydrolysis of N-vinyl pyrrolidone provides a simple spectrophotometric kinetic experiment to introduce general acid catalysis, solvent isotope effects, and other aspects of ionic reactions in solution in advanced courses. The Bronsted equation and concept of linear free-energy changes is also covered. (SK)

  18. A Sialic Acid Binding Site in a Human Picornavirus

    PubMed Central

    Frank, Martin; Hähnlein-Schick, Irmgard; Ekström, Jens-Ola; Arnberg, Niklas; Stehle, Thilo

    2014-01-01

    The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC. PMID:25329320

  19. Nitrous Acid at Concordia (Inland Site) and Dumont d'Urville (Costal Site), East Antarctica

    NASA Astrophysics Data System (ADS)

    Kerbrat, M.; Legrand, M.; Preunkert, S.; Gallée, H.; Kleffman, J.

    2012-04-01

    One of the most recent important finding made in Antarctica after the discovery of the appearance of the Antarctic ozone hole in the early 80's was the discovery of a very oxidizing canopy over the South Pole region in relation with unexpected high levels of NO. There is a strong need however to extend investigations of the oxidation capacity of the lower atmosphere at the scale of the whole Antarctic continent, and in particular, over East Antarctica. That motivated the OPALE (Oxidant Production over Antarctic Land and its Export) project. Indeed the limited data gained by using aircraft sampling during ANTCI 2003 suggest that over the East Antarctic plateau even higher NO emissions persist. Among several not yet resolved questions related to the high level of oxidants over Antarctica is the role of nitrous acid (HONO). During the austral summer 2010/2011 the levels of nitrous acid (HONO) were for the first time investigated at Concordia (75°06'S, 123°33'E) and Dumont D'Urville (66°40'S, 140°01'E), two stations located in East Antarctica. Also for the first time in Antarctica, HONO was measured by deploying a long path absorption photometer (LOPAP). At Concordia, from the end of December 2010 to mid January 2011 HONO mixing ratios at 1 m above the snow surface ranged between 5 and 60 pptv. Diurnal cycles were observed with levels peaking in the morning (06:30 to 07:30) and the evening (19:00 to 20:00). At Dumont d'Urville, background mixing ratios close to 2 pptv were observed in February 2011. No clear diurnal cycles were observed at that site but several events of air masses export from inland Antarctica were encountered with enhanced HONO levels reaching 10 pptv at night. These first HONO data gained in East Antarctica are discussed in terms of sources and sinks along with synoptic weather conditions.

  20. Layered materials with coexisting acidic and basic sites for catalytic one-pot reaction sequences.

    PubMed

    Motokura, Ken; Tada, Mizuki; Iwasawa, Yasuhiro

    2009-06-17

    Acidic montmorillonite-immobilized primary amines (H-mont-NH(2)) were found to be excellent acid-base bifunctional catalysts for one-pot reaction sequences, which are the first materials with coexisting acid and base sites active for acid-base tamdem reactions. For example, tandem deacetalization-Knoevenagel condensation proceeded successfully with the H-mont-NH(2), affording the corresponding condensation product in a quantitative yield. The acidity of the H-mont-NH(2) was strongly influenced by the preparation solvent, and the base-catalyzed reactions were enhanced by interlayer acid sites.

  1. Characterization of the binding sites for dicarboxylic acids on bovine serum albumin.

    PubMed Central

    Tonsgard, J H; Meredith, S C

    1991-01-01

    Dicarboxylic acids are prominent features of several diseases, including Reye's syndrome and inborn errors of mitochondrial and peroxisomal fatty acid oxidation. Moreover, dicarboxylic acids are potentially toxic to cellular processes. Previous studies [Tonsgard, Mendelson & Meredith (1988) J. Clin. Invest. 82, 1567-1573] demonstrated that long-chain dicarboxylic acids have a single high-affinity binding site and between one and three lower-affinity sites on albumin. Medium-chain-length dicarboxylic acids have a single low-affinity site. We further characterized dicarboxylic acid binding to albumin in order to understand the potential effects of drugs and other ligands on dicarboxylic acid binding and toxicity. Progesterone and oleate competitively inhibit octadecanedioic acid binding to the single high-affinity site. Octanoate inhibits binding to the low-affinity sites. Dansylated probes for subdomain 2AB inhibit dodecanedioic acid binding whereas probes for subdomain 3AB do not. In contrast, low concentrations of octadecanedioic acid inhibit the binding of dansylated probes to subdomain 3AB and 2AB. L-Tryptophan, which binds in subdomain 3AB, inhibits hexadecanedioic acid binding but has no effect on dodecanedioic acid. Bilirubin and acetylsalicylic acid, which bind in subdomain 2AB, inhibit the binding of medium-chain and long-chain dicarboxylic acids. Our results suggest that long-chain dicarboxylic acids bind in subdomains 2C, 3AB and 2AB. The single low-affinity binding site for medium-chain dicarboxylic acids is in subdomain 2AB. These studies suggest that dicarboxylic acids are likely to be unbound in disease states and may be potentially toxic. PMID:2064600

  2. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid.

    PubMed

    Dapsens, Pierre Y; Mondelli, Cecilia; Pérez-Ramírez, Javier

    2013-05-01

    Desilication of commercial MFI-type (ZSM-5) zeolites in solutions of alkali metal hydroxides is demonstrated to generate highly selective heterogeneous catalysts for the aqueous-phase isomerization of biobased dihydroxyacetone (DHA) to lactic acid (LA). The best hierarchical ZSM-5 sample attains a LA selectivity exceeding 90 %, which is comparable to that of the state-of-the-art catalyst (i.e., the Sn-beta zeolite); this optimized hierarchical catalyst is recyclable over three runs. The Lewis acid sites, which are created through desilication along with the introduction of mesoporosity, are shown to play a crucial role in the formation of the desired product; these cannot be achieved by using other post-synthetic methods, such as steaming or impregnation of aluminum species. Desilication of other metallosilicates, such as Ga-MFI, also leads to high LA selectivity. In the presence of a soluble aluminum source, such as aluminum nitrate, alkaline-assisted alumination can introduce these unique Lewis acid centers in all-silica MFI zeolites. These findings highlight the potential of zeolites in the field of biomass-to-chemical conversion, and expand the applicability of desilication for the generation of selective catalytic centers.

  3. Mesoporous Nb and Ta Oxides: Synthesis, Characterization and Applications in Heterogeneous Acid Catalysis

    NASA Astrophysics Data System (ADS)

    Rao, Yuxiang Tony

    In this work, a series of mesoporous Niobium and Tantalum oxides with different pore sizes (C6, C12, C18 , ranging from 12A to 30 A) were synthesized using the ligand-assisted templating approach and investigated for their activities in a wide range of catalytic applications including benzylation, alkylation and isomerization. The as-synthesized mesoporous materials were characterized by nitrogen adsorption, powder X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), and solid-state Nuclear magnetic resonance (NMR) techniques. In order to probe into the structural and coordination geometry of mesoporous Nb oxide and in efforts to make meaningful comparisons of mesoporous niobia prepared by the amine-templating method with the corresponding bulk sol-gel prepared Nb2O5 phase, 17O magic-angle-spinning solid-state NMR studies were conducted. The results showed a very high local order in the mesoporous sample. The oxygen atoms are coordinated only as ONb 2 in contrast with bulk phases in which the oxygen atoms are always present in a mixture of ONb2 and ONb3 coordination environments. To enhance their surface acidities and thus improve their performance as solid acid catalysts in the acid-catalyzed reactions mentioned above, pure mesoporous Nb and Ta oxides were further treated with 1M sulfuric acid or phosphoric acid. Their surface acidities before and after acid treatment were measured by Fourier transform infraRed (FT IR), amine titration and temperature programmed desorption of ammonia (NH3-TPD). Results obtained in this study showed that sulfated mesoporous Nb and Ta oxides materials possess relative high surface areas (up to 612 m 2/g) and amorphous wormhole structure. These mesoporous structures are thus quite stable to acid treatment. It was also found that Bronsted (1540 cm-1) and Lewis (1450 cm-1) acid sites coexist in a roughly 50:50 mixture

  4. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-12-06

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  5. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  6. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G [La Jolla, CA; Wang, Lei [San Diego, CA

    2011-03-22

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  7. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2008-10-07

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  8. Site specific incorporation of keto amino acids into proteins

    DOEpatents

    Schultz, Peter G.; Wang, Lei

    2009-04-28

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate keto amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with keto amino acids using these orthogonal pairs.

  9. Teachers' Perceptions of the Teaching of Acids and Bases in Swedish Upper Secondary Schools

    ERIC Educational Resources Information Center

    Drechsler, Michal; Van Driel, Jan

    2009-01-01

    We report in this paper on a study of chemistry teachers' perceptions of their teaching in upper secondary schools in Sweden, regarding models of acids and bases, especially the Bronsted and the Arrhenius model. A questionnaire consisting of a Likert-type scale was developed, which focused on teachers' knowledge of different models, knowledge of…

  10. Chemistry and Electrochemistry in Lewis Acid and Superacid Ionic Liquids

    DTIC Science & Technology

    1994-04-30

    LEWIS ACID AND SUPERACID IONIC LIQUIDS PRINCIPAL INVESTIGATOR: Dr. Robert A. Osteryoung Department of Chemistry North Carolina State University...Spectroscopic Study of Anthracene in a Mixed Lewis-Bronsted Acid Ambient Temperature Molten Salt System", Electrochim. Acta, 37, 2615-2628 (1992...investigated. In acidic melts, electrochemical oxidation of anthracene produces a cation radical which exhibits stability similar to that found in "Msuperdry

  11. Interaction of metal ions with acid sites of biosorbents peat moss and Vaucheria and model substances alginic and humic acids

    SciTech Connect

    Crist, R.H.; Martin, J.R.; Crist, D.R.

    1999-07-01

    The interaction between added metal ions and acid sites of two biosorbents, peat moss and the alga Vaucheria, was studied. Results were interpreted in terms of two model substances, alginic acid, a copolymer of guluronic and mannuronic acids present in marine algae, and humic acid in peat moss. For peat moss and Vaucheria at pH 4--6, two protons were displaced per Cd sorbed, after correction for sorbed metals also displaced by the heavy metal. The frequent neglect of exchange of heavy metals for metals either sorbed on the native material or added for pH adjustment leads to erroneous conclusions about proton displacement stoichiometry. Proton displacement constants K{sub ex}{sup H} decreased logarithmically with pH and had similar slopes for alginic acid and biosorbents. This pH effect was interpreted as an electrostatic effect of increasing anionic charge making proton removal less favorable. The maximum number of exchangeable acid sites (capacity C{sub H}) decreased with pH for alginic acid but increased with pH for biosorbents. Consistent with titration behavior, this difference was explained in terms of more weak acid sites in the biosorbents.

  12. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  13. Instructional Misconceptions in Acid-Base Equilibria: An Analysis from a History and Philosophy of Science Perspective

    ERIC Educational Resources Information Center

    Kousathana, Margarita; Demerouti, Margarita; Tsaparlis, Georgios

    2005-01-01

    The implications of history and philosophy of chemistry are explored in the context of chemical models. Models and modeling provide the context through which epistemological aspects of chemistry can be promoted. In this work, the development of ideas and models about acids and bases (with emphasis on the Arrhenius, the Bronsted-Lowry, and the…

  14. Trimethylamine as a probe molecule to differentiate acid sites in Y-FAU zeolite: FTIR study.

    PubMed

    Sarria, Francisca Romero; Blasin-Aubé, Vanessa; Saussey, Jacques; Marie, Olivier; Daturi, Marco

    2006-07-06

    In heterogeneous catalysis acidity has a very important influence on activity and selectivity: correct determination of acidic properties is a base to improve industrial processes. The aim of this work was to study trimethylamine (TMA) as a probe molecule able to distinguish between the different Brønsted acid sites in zeolitic frameworks. Our work mainly focused on faujasite-type zeolites because the HY zeolite is one of the most used acidic catalysts in industrial processes. In this paper, typical IR bands assigned to TMA-protonated species (formed in supercages) are detected in the HY zeolite. TMA interacting by hydrogen bonding with the acid sites located in the sodalite units is also observed. The wavenumbers of some typical IR bands assigned to TMA-protonated species appear to depend on the acidic strength, and a complementary study with ZSM-5 and X-FAU samples confirms this proposition.

  15. One-dimensional alignment of strong Lewis acid sites in a porous coordination polymer.

    PubMed

    Kajiwara, Takashi; Higuchi, Masakazu; Yuasa, Akihiro; Higashimura, Hideyuki; Kitagawa, Susumu

    2013-11-18

    A new lanthanoid porous coordination polymer, La-BTTc (BTTc = benzene-1,3,5-tris(2-thiophene-5-carboxylate)), was synthesized and structurally characterized to have densely aligned one-dimensional open metal sites, which were found to act as strong Lewis acid sites after the removal of the coordinated solvent.

  16. Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site.

    PubMed

    Sahoo, Prafulla Kumar; Bhattacharyya, Pradip; Tripathy, Subhasish; Equeenuddin, Sk Md; Panigrahi, M K

    2010-07-15

    Assessment of microbial parameters, viz. microbial biomass, fluorescence diacetate, microbial respiration, acid phosphatase, beta-glucosidase and urease with respect to acidity helps in evaluating the quality of soils. This study was conducted to investigate the effects of different forms of acidities on soil microbial parameters in an acid mine drainage contaminated site around coal deposits in Jainta Hills of India. Total potential and exchangeable acidity, extractable and exchangeable aluminium were significantly higher in contaminated soil compared to the baseline (p<0.01). Different forms of acidity were significantly and positively correlated with each other (p<0.05). Further, all microbial properties were positively and significantly correlated with organic carbon and clay (p<0.05). The ratios of microbial parameters with organic carbon were negatively correlated with different forms of acidity. Principal component analysis and cluster analyses showed that the microbial activities are not directly influenced by the total potential acidity and extractable aluminium. Though acid mine drainage affected soils had higher microbial biomass and activities due to higher organic matter content than those of the baseline soils, the ratios of microbial parameters/organic carbon indicated suppression of microbial growth and activities due to acidity stress.

  17. Predicting Protein–Protein Interaction Sites Using Sequence Descriptors and Site Propensity of Neighboring Amino Acids

    PubMed Central

    Kuo, Tzu-Hao; Li, Kuo-Bin

    2016-01-01

    Information about the interface sites of Protein–Protein Interactions (PPIs) is useful for many biological research works. However, despite the advancement of experimental techniques, the identification of PPI sites still remains as a challenging task. Using a statistical learning technique, we proposed a computational tool for predicting PPI interaction sites. As an alternative to similar approaches requiring structural information, the proposed method takes all of the input from protein sequences. In addition to typical sequence features, our method takes into consideration that interaction sites are not randomly distributed over the protein sequence. We characterized this positional preference using protein complexes with known structures, proposed a numerical index to estimate the propensity and then incorporated the index into a learning system. The resulting predictor, without using structural information, yields an area under the ROC curve (AUC) of 0.675, recall of 0.597, precision of 0.311 and accuracy of 0.583 on a ten-fold cross-validation experiment. This performance is comparable to the previous approach in which structural information was used. Upon introducing the B-factor data to our predictor, we demonstrated that the AUC can be further improved to 0.750. The tool is accessible at http://bsaltools.ym.edu.tw/predppis. PMID:27792167

  18. Organic acids in cloud water and rainwater at a mountain site in acid rain areas of South China.

    PubMed

    Sun, Xiao; Wang, Yan; Li, Haiyan; Yang, Xueqiao; Sun, Lei; Wang, Xinfeng; Wang, Tao; Wang, Wenxing

    2016-05-01

    To investigate the chemical characteristics of organic acids and to identify their source, cloud water and rainwater samples were collected at Mount Lu, a mountain site located in the acid rain-affected area of south China, from August to September of 2011 and March to May of 2012. The volume-weighted mean (VWM) concentration of organic acids in cloud water was 38.42 μeq/L, ranging from 7.45 to 111.46 μeq/L, contributing to 2.50 % of acidity. In rainwater samples, organic acid concentrations varied from 12.39 to 68.97 μeq/L (VWM of 33.39 μeq/L). Organic acids contributed significant acidity to rainwater, with a value of 17.66 %. Formic acid, acetic acid, and oxalic acid were the most common organic acids in both cloud water and rainwater. Organic acids had an obviously higher concentration in summer than in spring in cloud water, whereas there was much less discrimination in rainwater between the two seasons. The contribution of organic acids to acidity was lower during summer than during spring in both cloud water (2.20 % in summer vs 2.83 % in spring) and rainwater (12.24 % in summer vs 19.89 % in spring). The formic-to-acetic acid ratio (F/A) showed that organic acids were dominated by primary emissions in 71.31 % of the cloud water samples and whole rainwater samples. Positive matrix factorization (PMF) analysis determined four factors as the sources of organic acids in cloud water, including biogenic emissions (61.8 %), anthropogenic emissions (15.28 %), marine emissions (15.07 %) and soil emissions (7.85 %). The findings from this study imply an indispensable role of organic acids in wet deposition, but organic acids may have a limited capacity to increase ecological risks in local environments.

  19. Characterization of a domoic acid binding site from Pacific razor clam.

    PubMed

    Trainer, Vera L; Bill, Brian D

    2004-08-10

    The Pacific razor clam, Siliqua patula, is known to retain domoic acid, a water-soluble glutamate receptor agonist produced by diatoms of the genus Pseudo-nitzschia. The mechanism by which razor clams tolerate high levels of the toxin, domoic acid, in their tissues while still retaining normal nerve function is unknown. In our study, a domoic acid binding site was solubilized from razor clam siphon using a combination of Triton X-100 and digitonin. In a Scatchard analysis using [3H]kainic acid, the partially-purified membrane showed two distinct receptor sites, a high affinity, low capacity site with a KD (mean +/- S.E.) of 28 +/- 9.4 nM and a maximal binding capacity of 12 +/- 3.8 pmol/mg protein and a low affinity, high capacity site with a mM affinity for radiolabeled kainic acid, the latter site which was lost upon solubilization. Competition experiments showed that the rank order potency for competitive ligands in displacing [3H]kainate binding from the membrane-bound receptors was quisqualate > ibotenate > iodowillardiine = AMPA = fluorowillardiine > domoate > kainate > L-glutamate. At high micromolar concentrations, NBQX, NMDA and ATPA showed little or no ability to displace [3H]kainate. In contrast, Scatchard analysis using [3H]glutamate showed linearity, indicating the presence of a single binding site with a KD and Bmax of 500 +/- 50 nM and 14 +/- 0.8 pmol/mg protein, respectively. These results suggest that razor clam siphon contains both a high and low affinity receptor site for kainic acid and may contain more than one subtype of glutamate receptor, thereby allowing the clam to function normally in a marine environment that often contains high concentrations of domoic acid.

  20. Site specific incorporation of heavy atom-containing unnatural amino acids into proteins for structure determination

    DOEpatents

    Xie, Jianming; Wang, Lei; Wu, Ning; Schultz, Peter G.

    2008-07-15

    Translation systems and other compositions including orthogonal aminoacyl tRNA-synthetases that preferentially charge an orthogonal tRNA with an iodinated or brominated amino acid are provided. Nucleic acids encoding such synthetases are also described, as are methods and kits for producing proteins including heavy atom-containing amino acids, e.g., brominated or iodinated amino acids. Methods of determining the structure of a protein, e.g., a protein into which a heavy atom has been site-specifically incorporated through use of an orthogonal tRNA/aminoacyl tRNA-synthetase pair, are also described.

  1. In situ FTIR spectroscopic assessment of methylbutynol catalytic conversion products in relation to the surface acid-base properties of systematically modified aluminas

    NASA Astrophysics Data System (ADS)

    Mekhemer, Gamal A. H.; Zaki, Mohamed I.

    2016-10-01

    The present investigation was designed to assess the credibility of methylbutynol (MBOH) as an infrared (IR) reactive probe molecule for surface acid-base properties of metal oxides. Accordingly, pure alumina was systematically modified with varied amounts (0.5-10 wt.%) of K+ or SO42 - additives. Then, the influence of nature and amount of the additive on the following alumina properties were examined: (i) bulk composition and structure by X-ray powder diffractometry and ex-situ IR spectroscopy, (ii) surface area and net charge by N2 sorptiometry and pH-metry, respectively, and (iii) nature and strength of exposed surface acid sites by in-situ IR spectroscopy of adsorbed pyridine at ambient and higher temperatures. Results obtained were correlated with IR-identified product distribution of MBOH catalytic decomposition/conversion at 200 °C. It is thereby concluded that MBOH is superior to conventional IR inactive probe molecules in gauging sensitively the prevailing acid or base character, availability of base sites, relative population of Bronsted to Lewis acid sites, and strength and reactivity of the sites exposed on metal oxide surfaces. Hence, all that is needed to get this information is to handle IR spectra taken from the gas phase, a task that is experimentally much more accessible than taking spectra from adsorbed species of irreactive probe molecules.

  2. Atmospheric geochemistry of formic and acetic acids at a mid-latitude temperate site

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Beecher, K. M.; Harriss, R. C.; Cofer, R. W., III

    1988-01-01

    Tropospheric concentrations of formic and acetic acids in the gas, the aerosol, and the rainwater phases were determined in samples collected 1-2 m above ground level at an open field site in eastern Virginia. These acids were found to occur principally (98 percent or above) in the gas phase, with a marked annual seasonality, averaging 1890 ppt for formate and 1310 ppt for acetate during the growing season, as compared to 695 ppt and 700 ppt, respectively, over the nongrowing season. The data support the hypothesis that biogenic emissions from vegatation are important sources of atmospheric formic and acetic acid during the local growing season. The same time trends were observed for precipitation, although with less defined seasonality. The relative increase of the acetic acid/formic acid ratio during the nongrowing season points to the dominance of anthropogenic inputs of acetic acid from motor vehicles and biomass combustion in the wintertime.

  3. Binding of coumarins to site I of human serum albumin. Effect of the fatty acids.

    PubMed

    Zatón, A M; Ferrer, J M; Ruiz de Gordoa, J C; Marquínez, M A

    1995-07-14

    It is known that binding site I on human serum albumin (HSA) consists of a zone of two overlapping regions: the specific binding region represented by warfarin binding and the specific binding region represented by azapropazone and phenylbutazone binding. In this paper binding parameters to defatted HSA and to HSA with fatty acids (molar ratio of fatty acid/HSA = 4) were compared. High-affinity binding sites for warfarin, 4-chromanol, 4-hydroxycoumarin, coumarin, 3-acetylcoumarin and phenylbutazone (759,549 M-1 > Ka > 67,024 M-1) constitute binding site I on HSA. In this binding area defatted HSA can bind two molecules of warfarin, but the presence of fatty acids diminish the binding capacity of warfarin to HSA (2 > n > 1).

  4. A bidentate Lewis acid with a telluronium ion as an anion-binding site

    NASA Astrophysics Data System (ADS)

    Zhao, Haiyan; Gabbaï, François P.

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F --> Te chelate motif supported by a strong lone-pair(F) --> σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  5. A bidentate Lewis acid with a telluronium ion as an anion-binding site.

    PubMed

    Zhao, Haiyan; Gabbaï, François P

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F → Te chelate motif supported by a strong lone-pair(F) → σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  6. Site-specific fatty acid-conjugation to prolong protein half-life in vivo

    PubMed Central

    Lim, Sung In; Mizuta, Yukina; Takasu, Akinori; Hahn, Young S.; Kim, Yong Hwan; Kwon, Inchan

    2015-01-01

    Therapeutic proteins are indispensable in treating numerous human diseases. However, therapeutic proteins often suffer short serum half-life. In order to extend the serum half-life, a natural albumin ligand (a fatty acid) has been conjugated to small therapeutic peptides resulting in a prolonged serum half-life via binding to patients' serum albumin in vivo. However, fatty acid-conjugation has limited applicability due to lack of site-specificity resulting in the heterogeneity of conjugated proteins and a significant loss in pharmaceutical activity. In order to address these issues, we exploited the site-specific fatty acid-conjugation to a permissive site of a protein, using copper-catalyzed alkyne-azide cycloaddition, by linking a fatty acid derivative to p-ethynylphenylalanine incorporated into a protein using an engineered pair of yeast tRNA/aminoacyl tRNA synthetase. As a proof-of-concept, we show that single palmitic acid conjugated to superfolder green fluorescent protein (sfGFP) in a site-specific manner enhanced a protein's albumin-binding in vitro about 20 times and the serum half-life in vivo 5 times when compared to those of the unmodified sfGFP. Furthermore, the fatty acid conjugation did not cause a significant reduction in the fluorescence of sfGFP. Therefore, these results clearly indicate that the site-specific fatty acid-conjugation is a very promising strategy to prolong protein serum half-life in vivo without compromising its folded structure and activity. PMID:23735573

  7. Functional site profiling and electrostatic analysis of cysteines modifiable to cysteine sulfenic acid.

    PubMed

    Salsbury, Freddie R; Knutson, Stacy T; Poole, Leslie B; Fetrow, Jacquelyn S

    2008-02-01

    Cysteine sulfenic acid (Cys-SOH), a reversible modification, is a catalytic intermediate at enzyme active sites, a sensor for oxidative stress, a regulator of some transcription factors, and a redox-signaling intermediate. This post-translational modification is not random: specific features near the cysteine control its reactivity. To identify features responsible for the propensity of cysteines to be modified to sulfenic acid, a list of 47 proteins (containing 49 known Cys-SOH sites) was compiled. Modifiable cysteines are found in proteins from most structural classes and many functional classes, but have no propensity for any one type of protein secondary structure. To identify features affecting cysteine reactivity, these sites were analyzed using both functional site profiling and electrostatic analysis. Overall, the solvent exposure of modifiable cysteines is not different from the average cysteine. The combined sequence, structure, and electrostatic approaches reveal mechanistic determinants not obvious from overall sequence comparison, including: (1) pKaS of some modifiable cysteines are affected by backbone features only; (2) charged residues are underrepresented in the structure near modifiable sites; (3) threonine and other polar residues can exert a large influence on the cysteine pKa; and (4) hydrogen bonding patterns are suggested to be important. This compilation of Cys-SOH modification sites and their features provides a quantitative assessment of previous observations and a basis for further analysis and prediction of these sites. Agreement with known experimental data indicates the utility of this combined approach for identifying mechanistic determinants at protein functional sites.

  8. Effect of sun elevation upon remote sensing of ocean color over an acid waste dump site

    NASA Technical Reports Server (NTRS)

    Bressette, W. E.

    1978-01-01

    Photographic flights were made over an ocean acid waste dump site while dumping was in progress. The flights resulted in wide angle, broadband, spectral radiance film exposure data between the wavelengths of 500 to 900 nanometers for sun elevation angles ranging from 26 to 42 degrees. It is shown from densitometer data that the spectral signature of acid waste discharged into ocean water can be observed photographically, the influence of sun elevation upon remotely sensed apparent color can be normalized by using a single spectral band ratioing technique, and photographic quantification and mapping of acid waste through its suspended iron precipitate appears possible.

  9. In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey.

    PubMed

    Wovkulich, Karen; Stute, Martin; Mailloux, Brian J; Keimowitz, Alison R; Ross, James; Bostick, Benjamin; Sun, Jing; Chillrud, Steven N

    2014-09-25

    Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949-1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m(2)) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale.

  10. In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Mailloux, Brian J.; Keimowitz, Alison R.; Ross, James; Bostick, Benjamin; Sun, Jing; Chillrud, Steven N.

    2015-01-01

    Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949–1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m2) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale. PMID:25598701

  11. Effective and site-specific phosphoramidation reaction for universally labeling nucleic acids.

    PubMed

    Su, Yu-Chih; Chen, Hsing-Yin; Ko, Ni Chien; Hwang, Chi-Ching; Wu, Min Hui; Wang, Li-Fang; Wang, Yun-Ming; Chang, Sheng-Nan; Wang, Eng-Chi; Wang, Tzu-Pin

    2014-03-15

    Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02-1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5'-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro.

  12. Efficient solid acid catalyst containing Lewis and Brønsted Acid sites for the production of furfurals.

    PubMed

    Mazzotta, Michael G; Gupta, Dinesh; Saha, Basudeb; Patra, Astam K; Bhaumik, Asim; Abu-Omar, Mahdi M

    2014-08-01

    Self-assembled nanoparticulates of porous sulfonated carbonaceous TiO2 material that contain Brønsted and Lewis acidic sites were prepared by a one-pot synthesis method. The material was characterized by XRD, FTIR spectroscopy, NH3 temperature-programmed desorption, pyridine FTIR spectroscopy, field-emission scanning electron microscopy, high-resolution transmission electron microscopy, N2 -sorption, atomic absorbance spectroscopy, and inductively coupled plasma optical emission spectroscopy. The carbonaceous heterogeneous catalyst (Glu-TsOH-Ti) with a Brønsted-to-Lewis acid density ratio of 1.2 and more accessible acid sites was effective to produce 5-hydroxymethylfurfural and furfural from biomass-derived mono- and disaccharides and xylose in a biphasic solvent that comprised water and biorenewable methyltetrahydrofuran. The catalyst was recycled in four consecutive cycles with a total loss of only 3 % activity. Thus, Glu-TsOH-Ti, which contains isomerization and dehydration catalytic sites and is based on a cheap and biorenewable carbon support, is a sustainable catalyst for the production of furfurals, platform chemicals for biofuels and chemicals.

  13. Absolute acidity of clay edge sites from ab-initio simulations

    NASA Astrophysics Data System (ADS)

    Tazi, Sami; Rotenberg, Benjamin; Salanne, Mathieu; Sprik, Michiel; Sulpizi, Marialore

    2012-10-01

    We provide a microscopic understanding of the solvation structure and reactivity of the edges of neutral clays. In particular we address the tendency to deprotonation of the different reactive groups on the (0 1 0) face of pyrophyllite. Such information cannot be inferred directly from titration experiments, which do not discriminate between different sites and whose interpretation resorts to macroscopic models. The determination of the corresponding pKa then usually relies on bond valence models, sometimes improved by incorporating some structural information from ab-initio simulations. Here we use density functional theory based molecular dynamics simulations, combined with thermodynamic integration, to compute the free energy of the reactions of water with the different surface groups, leading to a deprotonated site and an aqueous hydronium ion. Our approach consistently describes the clay and water sides of the interface and includes naturally electronic polarization effects. It also allows to investigate the structure and solvation of all sites separately. We find that the most acidic group is SiOH, due to its ability to establish strong hydrogen bonds with adsorbed water, as it also happens on the quartz and amorphous silica surfaces. The acidity constant of AlOH2 is only 1 pKa unit larger. Finally, the pKa of AlOH is outside the possible range in water and this site should not deprotonate in aqueous solution. We show that the solvation of surface sites and hence their acidity is strongly affected by the proximity of other sites, in particular for AlOH and AlOH2 which share the same Al. We discuss the implications of our findings on the applicability of bond valence models to predict the acidity of edge sites of clays.

  14. Effect of acidic amino acids engineered into the active site cleft of Thermopolyspora flexuosa GH11 xylanase.

    PubMed

    Li, He; Turunen, Ossi

    2015-01-01

    Thermopolyspora flexuosa GH11 xylanase (XYN11A) shows optimal activity at pH 6-7 and 75-80 °C. We studied how mutation to aspartic acid (N46D and V48D) in the vicinity of the catalytic acid/base affects the pH activity of highly thermophilic GH11 xylanase. Both mutations shifted the pH activity profile toward acidic pH. In general, the Km values were lower at pH 4-5 than at pH 6, and in line with this, the rate of hydrolysis of xylotetraose was slightly faster at pH 4 than at pH 6. The N46D mutation and also lower pH in XYN11A increased the hydrolysis of xylotriose. The Km value increased remarkably (from 2.5 to 11.6 mg/mL) because of V48D, which indicates the weakening of binding affinity of the substrate to the active site. Xylotetraose functioned well as a substrate for other enzymes, but with lowered reaction rate for V48D. Both N46D and V48D increased the enzyme inactivation by ionic liquid [emim]OAc. In conclusion, the pH activity profile could be shifted to acidic pH due to an effect from two different directions, but the tightly packed GH11 active site can cause steric problems for the mutations.

  15. Are carboxyl groups the most acidic sites in amino acids? Gas-phase acidities, photoelectron spectra, and computations on tyrosine, p-hydroxybenzoic acid, and their conjugate bases.

    PubMed

    Tian, Zhixin; Wang, Xue-Bin; Wang, Lai-Sheng; Kass, Steven R

    2009-01-28

    Deprotonation of tyrosine in the gas phase was found to occur preferentially at the phenolic site, and the conjugate base consists of a 70:30 mixture of phenoxide and carboxylate anions at equilibrium. This result was established by developing a chemical probe for differentiating these two isomers, and the presence of both ions was confirmed by photoelectron spectroscopy. Equilibrium acidity measurements on tyrosine indicated that deltaG(acid)(o) = 332.5 +/- 1.5 kcal mol(-1) and deltaH(acid)(o) = 340.7 +/- 1.5 kcal mol(-1). Photoelectron spectra yielded adiabatic electron detachment energies of 2.70 +/- 0.05 and 3.55 +/- 0.10 eV for the phenoxide and carboxylate anions, respectively. The H/D exchange behavior of deprotonated tyrosine was examined using three different alcohols (CF3CH2OD, C6H5CH2OD, and CH3CH2OD), and incorporation of up to three deuterium atoms was observed. Two pathways are proposed to account for these results, and all of the experimental findings are supplemented with B3LYP/aug-cc-pVDZ and G3B3 calculations. In addition, it was found that electrospray ionization of tyrosine from a 3:1 (v/v) CH3OH/H2O solution using a commercial source produces a deprotonated [M-H]- anion with the gas-phase equilibrium composition rather than the structure of the ion that exists in aqueous media. Electrospray ionization from acetonitrile, however, leads largely to the liquid-phase (carboxylate) structure. A control molecule, p-hydroxybenzoic acid, was found to behave in a similar manner. Thus, the electrospray conditions that are employed for the analysis of a compound can alter the isomeric composition of the resulting anion.

  16. LIME TREATMENT LAGOONS TECHNOLOGY FOR TREATING ACID MINE DRAINAGE FROM TWO MINING SITES

    EPA Science Inventory

    Runoff and drainage from active and inactive mines are someof the most environmentally damaging land uses i the US. Acid Mine drainage (AMD) from mining sites across the country requires treatment because of high metal concentrations that exceed regulatory standards for safe disc...

  17. Positive Darwinian selection at single amino acid sites conferring plant virus resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Explicit evaluation of the accuracy and power of Maximum Likelihood and Bayesian methods for detecting site-specific positive Darwinian selection presents a challenge because selective consequences of single amino acid changes are generally unknown. We exploit extensive molecular and functional cha...

  18. PHYSICAL SOLUTIONS FOR ACID ROCK DRAINAGE AT REMOTE SITES DEMONSTRATION PROJECT

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program, Activity III, Project 42, Physical Solutions for Acid Rock Drainage at Remote Sites, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Department of Energy. A...

  19. Brønsted acid sites based on penta-coordinated aluminum species

    NASA Astrophysics Data System (ADS)

    Wang, Zichun; Jiang, Yijiao; Lafon, Olivier; Trébosc, Julien; Duk Kim, Kyung; Stampfl, Catherine; Baiker, Alfons; Amoureux, Jean-Paul; Huang, Jun

    2016-12-01

    Zeolites and amorphous silica-alumina (ASA), which both provide Brønsted acid sites (BASs), are the most extensively used solid acid catalysts in the chemical industry. It is widely believed that BASs consist only of tetra-coordinated aluminum sites (AlIV) with bridging OH groups in zeolites or nearby silanols on ASA surfaces. Here we report the direct observation in ASA of a new type of BAS based on penta-coordinated aluminum species (AlV) by 27Al-{1H} dipolar-mediated correlation two-dimensional NMR experiments at high magnetic field under magic-angle spinning. Both BAS-AlIV and -AlV show a similar acidity to protonate probe molecular ammonia. The quantitative evaluation of 1H and 27Al sites demonstrates that BAS-AlV co-exists with BAS-AlIV rather than replaces it, which opens new avenues for strongly enhancing the acidity of these popular solid acids.

  20. Brønsted acid sites based on penta-coordinated aluminum species

    PubMed Central

    Wang, Zichun; Jiang, Yijiao; Lafon, Olivier; Trébosc, Julien; Duk Kim, Kyung; Stampfl, Catherine; Baiker, Alfons; Amoureux, Jean-Paul; Huang, Jun

    2016-01-01

    Zeolites and amorphous silica-alumina (ASA), which both provide Brønsted acid sites (BASs), are the most extensively used solid acid catalysts in the chemical industry. It is widely believed that BASs consist only of tetra-coordinated aluminum sites (AlIV) with bridging OH groups in zeolites or nearby silanols on ASA surfaces. Here we report the direct observation in ASA of a new type of BAS based on penta-coordinated aluminum species (AlV) by 27Al-{1H} dipolar-mediated correlation two-dimensional NMR experiments at high magnetic field under magic-angle spinning. Both BAS-AlIV and -AlV show a similar acidity to protonate probe molecular ammonia. The quantitative evaluation of 1H and 27Al sites demonstrates that BAS-AlV co-exists with BAS-AlIV rather than replaces it, which opens new avenues for strongly enhancing the acidity of these popular solid acids. PMID:27976673

  1. Thermodynamic and kinetic aspects of surface acidity. Progress report, July 1, 1994--June 30, 1995

    SciTech Connect

    Dumesic, J.A.

    1995-06-01

    Catalytic cracking of isobutane and 2-methyl-hexane over various USY-zeolite catalysts was studied. A kinetic model was developed for isobutane cracking over calcined and steamed Y-zeolite catalysts. Catalyst steaming leads to decreased Bronsted acidity. The studies of catalyst acid and basic properties were broadened to include alumina-supported metal oxides and a sulfated zirconia catalyst (isomerization of normal butane).

  2. Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid.

    PubMed

    Momiyama, Norie; Tabuse, Hideaki; Noda, Hirofumi; Yamanaka, Masahiro; Fujinami, Takeshi; Yamanishi, Katsunori; Izumiseki, Atsuto; Funayama, Kosuke; Egawa, Fuyuki; Okada, Shino; Adachi, Hiroaki; Terada, Masahiro

    2016-09-07

    A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

  3. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    SciTech Connect

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya; Apicella, Michael A.; Ramaswamy, S.

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  4. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36.

    PubMed

    Tarhda, Zineb; Semlali, Oussama; Kettani, Anas; Moussa, Ahmed; Abumrad, Nada A; Ibrahimi, Azeddine

    2013-01-01

    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127-279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127-279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions.

  5. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36

    PubMed Central

    Tarhda, Zineb; Semlali, Oussama; Kettani, Anas; Moussa, Ahmed; Abumrad, Nada A.; Ibrahimi, Azeddine

    2013-01-01

    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127–279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127–279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions. PMID:24348024

  6. Evidence of sulphur and nitrogen deposition signals at the United Kingdom Acid Waters Monitoring Network sites.

    PubMed

    Cooper, D M

    2005-09-01

    Some recent studies of trends in sulphate in surface waters have alluded to possible lag effects imposed by catchment soils, resulting in discrepancies between trends in deposition and run-off. To assess the extent of these possible effects in the UK, sulphate concentration data from the United Kingdom Acid Waters Monitoring Network (AWMN) sites are compared with estimates of sulphur deposition at each site. From these data, input-output budgets are computed at an annual time scale. The estimated budgets suggest a close association between catchment sulphur inputs and outputs at an annual scale, with well-balanced annual budgets at most sites, indicative of only minor lag effects. A similar analysis of the AWMN site nitrogen budget shows little evidence of an association between nitrogen inputs and outputs at this time scale.

  7. Lipid Classes and Fatty Acids in Ophryotrocha cyclops, a Dorvilleid from Newfoundland Aquaculture Sites.

    PubMed

    Salvo, Flora; Dufour, Suzanne C; Hamoutene, Dounia; Parrish, Christopher C

    2015-01-01

    A new opportunistic annelid (Ophryotrocha cyclops) discovered on benthic substrates underneath finfish aquaculture sites in Newfoundland (NL) may be involved in the remediation of organic wastes. At those aquaculture sites, bacterial mats and O. cyclops often coexist and are used as indicators of organic enrichment. Little is known on the trophic strategies used by these annelids, including whether they might consume bacteria or other aquaculture-derived wastes. We studied the lipid and fatty acid composition of the annelids and their potential food sources (degraded flocculent organic matter, fresh fish pellets and bacterial mats) to investigate feeding relationships in these habitats and compared the lipid and fatty acid composition of annelids before and after starvation. Fish pellets were rich in lipids, mainly terrestrially derived C18 fatty acids (18:1ω9, 18:2ω6, 18:3ω3), while bacterial samples were mainly composed of ω7 fatty acids, and flocculent matter appeared to be a mixture of fresh and degrading fish pellets, feces and bacteria. Ophryotrocha cyclops did not appear to store excessive amounts of lipids (13%) but showed a high concentration of ω3 and ω6 fatty acids, as well as a high proportion of the main fatty acids contained in fresh fish pellets and bacterial mats. The dorvilleids and all potential food sources differed significantly in their lipid and fatty acid composition. Interestingly, while all food sources contained low proportions of 20:5ω3 and 20:2ω6, the annelids showed high concentrations of these two fatty acids, along with 20:4ω6. A starvation period of 13 days did not result in a major decrease in total lipid content; however, microscopic observations revealed that very few visible lipid droplets remained in the gut epithelium after three months of starvation. Ophryotrocha cyclops appears well adapted to extreme environments and may rely on lipid-rich organic matter for survival and dispersal in cold environments.

  8. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  9. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    PubMed

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  10. Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process.

    PubMed

    Scott Alderman, N; N'Guessan, Adeola L; Nyman, Marianne C

    2007-07-31

    Peroxy-organic acids are formed by the chemical reaction between organic acids and hydrogen peroxide. The peroxy-acid process was applied to two Superfund site soils provided by the U.S. Environmental Protection Agency (EPA). Initial small-scale experiments applied ratios of 3:5:7 (v/v/v) or 3:3:9 (v/v/v) hydrogen peroxide:acetic acid:deionized (DI) water solution to 5g of Superfund site soil. The experiment using 3:5:7 (v/v/v) ratio resulted in an almost complete degradation of the 14 EPA regulated polycyclic aromatic hydrocarbons (PAHs) in Bedford LT soil during a 24-h reaction period, while the 3:3:9 (v/v/v) ratio resulted in no applicable degradation in Bedford LT lot 10 soil over the same reaction period. Specific Superfund site soil characteristics (e.g., pH, total organic carbon content and particle size distribution) were found to play an important role in the availability of the PAHs and the efficiency of the transformation during the peroxy-acid process. A scaled-up experiment followed treating 150g of Bedford LT lot 10 soil with and without mixing. The scaled-up processes applied a 3:3:9 (v/v/v) solution resulting in significant decrease in PAH contamination. These findings demonstrate the peroxy-acid process as a viable option for the treatment of PAH contaminated soils. Further work is necessary in order to elucidate the mechanisms of this process.

  11. Site-Specific Characterization of d-Amino Acid Containing Peptide Epimers by Ion Mobility Spectrometry

    PubMed Central

    2013-01-01

    Traditionally, the d-amino acid containing peptide (DAACP) candidate can be discovered by observing the differences of biological activity and chromatographic retention time between the synthetic peptides and naturally occurring peptides. However, it is difficult to determine the exact position of d-amino acid in the DAACP candidates. Herein, we developed a novel site-specific strategy to rapidly and precisely localize d-amino acids in peptides by ion mobility spectrometry (IMS) analysis of mass spectrometry (MS)-generated epimeric fragment ions. Briefly, the d/l-peptide epimers were separated by online reversed-phase liquid chromatography and fragmented by collision-induced dissociation (CID), followed by IMS analysis. The epimeric fragment ions resulting from d/l-peptide epimers exhibit conformational differences, thus showing different mobilities in IMS. The arrival time shift between the epimeric fragment ions was used as criteria to localize the d-amino acid substitution. The utility of this strategy was demonstrated by analysis of peptide epimers with different molecular sizes, [d-Trp]-melanocyte-stimulating hormone, [d-Ala]-deltorphin, [d-Phe]-achatin-I, and their counterparts that contain all-l amino acids. Furthermore, the crustacean hyperglycemia hormones (CHHs, 8.5 kDa) were isolated from the American lobster Homarus americanus and identified by integration of MS-based bottom-up and top-down sequencing approaches. The IMS data acquired using our novel site-specific strategy localized the site of isomerization of l- to d-Phe at the third residue of the CHHs from the N-terminus. Collectively, this study demonstrates a new method for discovery of DAACPs using IMS technique with the ability to localize d-amino acid residues. PMID:24328107

  12. Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles

    PubMed Central

    Rodrigue, Nicolas; Philippe, Hervé; Lartillot, Nicolas

    2010-01-01

    Modeling the interplay between mutation and selection at the molecular level is key to evolutionary studies. To this end, codon-based evolutionary models have been proposed as pertinent means of studying long-range evolutionary patterns and are widely used. However, these approaches have not yet consolidated results from amino acid level phylogenetic studies showing that selection acting on proteins displays strong site-specific effects, which translate into heterogeneous amino acid propensities across the columns of alignments; related codon-level studies have instead focused on either modeling a single selective context for all codon columns, or a separate selective context for each codon column, with the former strategy deemed too simplistic and the latter deemed overparameterized. Here, we integrate recent developments in nonparametric statistical approaches to propose a probabilistic model that accounts for the heterogeneity of amino acid fitness profiles across the coding positions of a gene. We apply the model to a dozen real protein-coding gene alignments and find it to produce biologically plausible inferences, for instance, as pertaining to site-specific amino acid constraints, as well as distributions of scaled selection coefficients. In their account of mutational features as well as the heterogeneous regimes of selection at the amino acid level, the modeling approaches studied here can form a backdrop for several extensions, accounting for other selective features, for variable population size, or for subtleties of mutational features, all with parameterizations couched within population-genetic theory. PMID:20176949

  13. Moleculary imprinted polymers with metalloporphyrin-based molecular recognition sites coassembled with methacrylic acid.

    PubMed

    Takeuchi, T; Mukawa, T; Matsui, J; Higashi, M; Shimizu, K D

    2001-08-15

    A diastereoselective molecularly imprinted polymer (MIP) for (-)-cinchonidine, PPM(CD), was prepared by the combined use of methacrylic acid and vinyl-substituted zinc(II) porphyrin as functional monomers. Compared to MIPs using only methacrylic acid or zinc porphyrin as a functional monomer, PM(CD) and PP(CD), respectively, PPM(CD) showed higher binding ability for (-)-cinchonidine in chromatographic tests using the MIP-packed columns. Scatchard analysis gave a higher association constant of PPM(CD) for (-)-cinchonidine (1.14 x 10(7) M(-1)) than those of PP(CD) (1.45 x 10(6) M(-1)) and PM(CD) (6.78 x 10(6) M(-1)). The affinity distribution of binding sites estimated by affinity spectrum analysis showed a higher percentage of high-affinity sites and a lower percentage of low-affinity sites in PPM(CD). The MIPs containing a zinc(II) porphyrin in the binding sites, PPM(CD) and PP(CD), showed fluorescence quenching according to the binding of (-)-cinchonidine, and the quenching was significant in the low-concentration range, suggesting that the high-affinity binding sites contain the porphyrin residue. The correlation of the relative fluorescence intensity against log of (-)-cinchonidine concentrations showed a linear relationship. These results revealed that the MIP having highly specific binding sites was assembled by the two functional monomers, vinyl-substituted zinc(II) porphyrin and methacrylic acid, and they cooperatively worked to yield the specific binding. In addition, the zinc(II) porphyrin-based MIPs appeared to act as fluorescence sensor selectively responded by binding events of the template molecule.

  14. Generation of Food-Grade Recombinant Lactic Acid Bacterium Strains by Site-Specific Recombination

    PubMed Central

    Martín, M. Cruz; Alonso, Juan C.; Suárez, Juan E.; Alvarez, Miguel A.

    2000-01-01

    The construction of a delivery and clearing system for the generation of food-grade recombinant lactic acid bacterium strains, based on the use of an integrase (Int) and a resolvo-invertase (β-recombinase) and their respective target sites (attP-attB and six, respectively) is reported. The delivery system contains a heterologous replication origin and antibiotic resistance markers surrounded by two directly oriented six sites, a multiple cloning site where passenger DNA could be inserted (e.g., the cI gene of bacteriophage A2), the int gene, and the attP site of phage A2. The clearing system provides a plasmid-borne gene encoding β-recombinase. The nonreplicative vector-borne delivery system was transformed into Lactobacillus casei ATCC 393 and, by site-specific recombination, integrated as a single copy in an orientation- and Int-dependent manner into the attB site present in the genome of the host strain. The transfer of the clearing system into this strain, with the subsequent expression of the β-recombinase, led to site-specific DNA resolution of the non-food-grade DNA. These methods were validated by the construction of a stable food-grade L. casei ATCC 393-derived strain completely immune to phage A2 infection during milk fermentation. PMID:10831443

  15. Novel ionic liquid with both Lewis and Brønsted acid sites for Michael addition.

    PubMed

    Jiang, Xiaoyue; Ye, Weidong; Song, Xiaohua; Ma, Wenxin; Lao, Xuejun; Shen, Runpu

    2011-01-01

    Ionic liquid with both Lewis and Brønsted acid sites has been synthesized and its catalytic activities for Michael addition were carefully studied. The novel ionic liquid was stable to water and could be used in aqueous solution. The molar ratio of the Lewis and Brønsted acid sites could be adjusted to match different reactions. The results showed that the novel ionic liquid was very efficient for Michael addition with good to excellent yields within several min. Operational simplicity, high stability to water and air, small amount used, low cost of the catalyst used, high yields, chemoselectivity, applicability to large-scale reactions and reusability are the key features of this methodology, which indicated that this novel ionic liquid also holds great potential for environmentally friendly processes.

  16. Site-directed spin labeling studies on nucleic acid structure and dynamics

    PubMed Central

    Sowa, Glenna Z.; Qin, Peter Z.

    2009-01-01

    Site-directed spin labeling (SDSL) uses electron paramagnetic resonance (EPR) spectroscopy to monitor the behavior of a stable nitroxide radical attached at specific locations within a macromolecule such as protein, DNA, or RNA. Parameters obtained from EPR measurements, such as internitroxide distances and descriptions of the rotational motion of a nitroxide, provide unique information on features near the labeling site. With recent advances in solid-phase synthesis of nucleic acids and developments in EPR methodologies, particularly pulsed EPR technologies, SDSL has been increasingly used to study the structure and dynamics of DNA and RNA at the level of the individual nucleotides. This chapter summarizes the current SDSL studies on nucleic acids, with discussions focusing on literature from the last decade. PMID:18929141

  17. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  18. Remaining Sites Verification Package for the 120-B-1, 105-B Battery Acid Sump, Waste Site Reclassification Form 2006-057

    SciTech Connect

    L. M. Dittmer

    2006-09-25

    The 120-B-1 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of a concrete battery acid sump that was used from 1944 to 1969 to neutralize the spent sulfuric acid from lead cell batteries of emergency power packs and the emergency lighting system. The battery acid sump was associated with the 105-B Reactor Building and was located adjacent to the building's northwest corner. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  19. Cellular Site in Bacillus subtilis of a Nuclease Which Preferentially Degrades Single-Stranded Nucleic Acids

    PubMed Central

    Birnboim, H. C.

    1966-01-01

    Birnboim, H. C. (Albert Einstein College of Medicine, New York, N.Y.). Cellular site in Bacillus subtilis of a nuclease which preferentially degrades single-stranded nucleic acids. J. Bacteriol. 91:1004–1011. 1966.—A nuclease, identified by a marked preference for single-stranded nucleic acids, has been demonstrated in extracts of Bacillus subtilis. The enzyme was associated with the cell wall-membrane fraction of mechanically disrupted cells and was released from cells which had been converted to protoplasts by lysozyme. The nuclease activity prepared by the latter procedure was found to be activated and solubilized by treatment with trypsin. The enzyme had about 2% activity on native deoxyribonucleic acid (DNA) as compared with denatured DNA. By use of CsCl analytical density gradient ultracentrifugation, this preparation was shown to degrade denatured DNA selectively in mixtures of native and denatured DNA. PMID:4956329

  20. Multiple site-selective insertions of non-canonical amino acids into sequence-repetitive polypeptides

    PubMed Central

    Wu, I-Lin; Patterson, Melissa A.; Carpenter Desai, Holly E.; Mehl, Ryan A.; Giorgi, Gianluca

    2013-01-01

    A simple and efficient method is described for introduction of non-canonical amino acids at multiple, structurally defined sites within recombinant polypeptide sequences. E. coli MRA30, a bacterial host strain with attenuated activity for release factor 1 (RF1), is assessed for its ability to support the incorporation of a diverse range of non-canonical amino acids in response to multiple encoded amber (TAG) codons within genetic templates derived from superfolder GFP and an elastin-mimetic protein polymer. Suppression efficiency and isolated protein yield were observed to depend on the identity of the orthogonal aminoacyl-tRNA synthetase/tRNACUA pair and the non-canonical amino acid substrate. This approach afforded elastin-mimetic protein polymers containing non-canonical amino acid derivatives at up to twenty-two positions within the repeat sequence with high levels of substitution. The identity and position of the variant residues was confirmed by mass spectrometric analysis of the full-length polypeptides and proteolytic cleavage fragments resulting from thermolysin digestion. The accumulated data suggest that this multi-site suppression approach permits the preparation of protein-based materials in which novel chemical functionality can be introduced at precisely defined positions within the polypeptide sequence. PMID:23625817

  1. Fatty acid binding sites of human and bovine albumins: Differences observed by spin probe ESR

    NASA Astrophysics Data System (ADS)

    Muravsky, Vladimir; Gurachevskaya, Tatjana; Berezenko, Stephen; Schnurr, Kerstin; Gurachevsky, Andrey

    2009-09-01

    Bovine and human serum albumins and recombinant human albumin, all non-covalently complexed with 5- and 16-doxyl stearic acids, were investigated by ESR spectroscopy in solution over a range of pH values (5.5-8.0) and temperatures (25-50 °C), with respect to the allocation and mobility of fatty acid (FA) molecules bound to the proteins and conformation of the binding sites. In all proteins bound FA undergo a permanent intra-albumin migration between the binding sites and inter-domain residence. Nature identity of the recombinant human albumin to its serum-derived analog was observed. However, the binding sites of bovine albumin appeared shorter in length and wider in diameter than those of human albumin. Presumably, less tightly folded domains in bovine albumin allow better penetration of water molecules in the interior of the globule that resulted in higher activation energy of FA dissociation from the binding site. Thus, the sensitive technique based on ESR non-covalent spin labeling allowed quantitative analysis and reliable comparison of the fine features of binding proteins.

  2. Remedial action at the Acid/Pueblo Canyon site, Los Alamos, New Mexico. Final report

    SciTech Connect

    1984-10-01

    The Acid/Pueblo Canyon site (TA-45) was designated in 1976 for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). During the period 1943 to 1964 untreated and treated liquid wastes generated by nuclear weapons research activities at the Los Alamos Scientific Laboratory (LASL) were discharged into the two canyons. A survey of the site conducted by LASL in 1976 to 1977 identified two areas where radiological contamination exceeded criteria levels. The selected remedial action was based on extensive radiological characterization and comprehensive engineering assessments and comprised the excavation and disposal of 390 yd/sup 3/ of contaminated soil and rock. This document describes the background to the remedial action, the parties involved in administering and executing it, the chronology of the work, verification of the adequacy of the remedial action, and the cost incurred. 14 references, 5 figures, 5 tables.

  3. Microbial Communities in Biofilms of an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Das Gupta, S.; Fang, J.

    2008-12-01

    Phospholipids were extracted to determine the microbial biomass and community structure of biofims from an acid mine drainage (AMD) at the Green Valley coal mine site (GVS) in western Indiana. The distribution of specific biomarkers indicated the presence of a variety of microorganisms. Phototrophic microeukaryotes, which include Euglena mutabilis, algae, and cyanobacteria were the most dominant organisms, as indicated by the presence of polyunsaturated fatty acids. The presence of terminally methyl branched fatty acids suggests the presence of Gram-positive bacteria, and the mid-methyl branched fatty acids indicates the presence of sulfate-reducing bacteria. Fungi appear to also be an important part of the AMD microbial communities as suggested by the presence of 18:2 fatty acid. The acidophilic microeukaryotes Euglena dominated the biofilm microbial communities. These microorganisms appear to play a prominent role in the formation and preservation of stromatolites and in releasing oxygen to the atmosphere by oxygenic photosynthesis. Thus, the AMD environment comprises a host of microorganisms spreading out within the phylogenetic tree of life. Novel insights on the roles of microbial consortia in the formation and preservation of stromatolites and the production of oxygen through photosynthesis in AMD systems may have significance in the understanding of the interaction of Precambrian microbial communities in environments that produced microbially-mediated sedimentary structures and that caused oxygenation of Earth's atmosphere.

  4. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Chemistry Calculations

    SciTech Connect

    Hu, Jian Z.; Kwak, Ja Hun; Wang, Yong; Hu, Mary Y.; Turcu, Romulus VF; Peden, Charles HF

    2011-10-18

    The acidic sites in dispersed tungsten oxide supported on SBA-15 mesoporous silica were investigated using a combination of pyridine titration, both fast-, and slow-MAS {sup 15}N NMR, static {sup 2}H NMR, and quantum chemistry calculations. It is found that the bridged acidic -OH groups in surface adsorbed tungsten dimers (i.e., W-OH-W) are the Broensted acid sites. The unusually strong acidity of these Broensted acid sites is confirmed by quantum chemistry calculations. In contrast, terminal W-OH sites are very stable and only weakly acidic as are terminal Si-OH sites. Furthermore, molecular interactions between pyridine molecules and the dimer Broensted and terminal W-OH sites for dispersed tungsten oxide species is strong. This results in restricted molecular motion for the interacting pyridine molecules even at room temperature, i.e., a reorientation mainly about the molecular 2-fold axis. This restricted reorientation makes it possible to estimate the relative ratio of the Broensted (tungsten dimer) to the weakly acidic terminal W-OH sites in the catalyst using the slow-MAS {sup 1}H-{sup 15}N CP PASS method.

  5. Fatty acid composition differences between adipose depot sites in dairy and beef steer breeds.

    PubMed

    Liu, T; Lei, Z M; Wu, J P; Brown, M A

    2015-03-01

    The objective of the study was to compare fatty acid composition of longissimus dorsi (LD) and kidney fat (KF) in Holstein steers (HS), Simmental steers (SS) and Chinese LongDong Yellow Cattle steers (CLD). All steers received the same nutrition and management but in different locations. Cattle were harvested at approximately 550 kg and fatty acid composition of longissimus dorsi and kidney fat was analyzed in samples taken after 3 days of aging. There was evidence (P < 0.05) that C18:3n6 was greater in KF than LD in CLD cattle but not in HS or SS cattle. Percentage C18:1n9, C18:2n6, C18:3n3, and n6 fatty acids were greater in LD than KF for all breeds (P < 0.05), but the difference between fat sources for n6 in CLD cattle was smaller than the other two breeds. The LD had greater percentage of polyunsaturated fatty acids (PUFA), monounsaturated fatty acids (MUFA), and a greater ratio of n6:n3 PUFAs compared to the KF in each breed (P < 0.05). The △(9)-desaturase catalytic activity index was greater in LD than in KF in each breed group (P < 0.05). Percentage cis-9, trans-11 CLA was greater in KF than LD in HS (P < 0.05) but not SS or CLD cattle. These results indicate fatty acid percentages generally differed between longissimus dorsi fat and kidney fat. Further, there was some indication that some of these differences between fatty acid deposition sites were not consistent across breed group.

  6. Mutational Studies on Resurrected Ancestral Proteins Reveal Conservation of Site-Specific Amino Acid Preferences throughout Evolutionary History

    PubMed Central

    Risso, Valeria A.; Manssour-Triedo, Fadia; Delgado-Delgado, Asunción; Arco, Rocio; Barroso-delJesus, Alicia; Ingles-Prieto, Alvaro; Godoy-Ruiz, Raquel; Gavira, Jose A.; Gaucher, Eric A.; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2015-01-01

    Local protein interactions (“molecular context” effects) dictate amino acid replacements and can be described in terms of site-specific, energetic preferences for any different amino acid. It has been recently debated whether these preferences remain approximately constant during evolution or whether, due to coevolution of sites, they change strongly. Such research highlights an unresolved and fundamental issue with far-reaching implications for phylogenetic analysis and molecular evolution modeling. Here, we take advantage of the recent availability of phenotypically supported laboratory resurrections of Precambrian thioredoxins and β-lactamases to experimentally address the change of site-specific amino acid preferences over long geological timescales. Extensive mutational analyses support the notion that evolutionary adjustment to a new amino acid may occur, but to a large extent this is insufficient to erase the primitive preference for amino acid replacements. Generally, site-specific amino acid preferences appear to remain conserved throughout evolutionary history despite local sequence divergence. We show such preference conservation to be readily understandable in molecular terms and we provide crystallographic evidence for an intriguing structural-switch mechanism: Energetic preference for an ancestral amino acid in a modern protein can be linked to reorganization upon mutation to the ancestral local structure around the mutated site. Finally, we point out that site-specific preference conservation naturally leads to one plausible evolutionary explanation for the existence of intragenic global suppressor mutations. PMID:25392342

  7. In situ detection of salicylic acid binding sites in plant tissues.

    PubMed

    Liu, Jing-Wen; Deng, Da-Yi; Yu, Ying; Liu, Fang-Fei; Lin, Bi-Xia; Cao, Yu-Juan; Hu, Xiao-Gang; Wu, Jian-Zhong

    2015-02-01

    The determination of hormone-binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA-binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3-mercaptopropionic acid (MPA) to 4-amino-2-hydroxybenzoic acid (PAS), using 1-ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS-CdSe QDs were used to detect SA-binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS-CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS-CdSe QDs on cytosolic Ca(2+) levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS-CdSe QDs had similar effects on the trend in cytosolic-free Ca(2+) concentrations, suggesting that the PAS-CdSe QDs maintained the bioactivity of SA. To summarize, PAS-CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants.

  8. The species- and site-specific acid-base properties of penicillamine and its homodisulfide

    NASA Astrophysics Data System (ADS)

    Mirzahosseini, Arash; Szilvay, András; Noszál, Béla

    2014-08-01

    Penicillamine, penicillamine disulfide and 4 related compounds were studied by 1H NMR-pH titrations and case-tailored evaluation methods. The resulting acid-base properties are quantified in terms of 14 macroscopic and 28 microscopic protonation constants and the concomitant 7 interactivity parameters. The species- and site-specific basicities are interpreted by means of inductive and shielding effects through various intra- and intermolecular comparisons. The thiolate basicities determined this way are key parameters and exclusive means for the prediction of thiolate oxidizabilities and chelate forming properties in order to understand and influence chelation therapy and oxidative stress at the molecular level.

  9. Site Specific Incorporation of Amino Acid Analogues into Proteins In Vivo

    DTIC Science & Technology

    2010-08-11

    Positions in CCR5 ( ) and rhodopsin ( ) subjected to site-specific incorporation of unnatural amino acids are indicated. Figure 15. Expression...of functional CCR5 mutants containing Acp or Bzp at positions 28, 96, or 260. HEK293T cells were transfected with plasmids carrying the genes for... CCR5 -wt or CCR5 mutant with an amber mutation at position I28, F96, or F260. Plasmids encoding Bst-Yam and E. coli TyrRS (AcpRS or BzpRS) were co

  10. REMOVING SLUDGE HEELS FROM SAVANNAH RIVER SITE WASTE TANKS BY OXALIC ACID DISSOLUTION

    SciTech Connect

    Poirier, M; David Herman, D; Fernando Fondeur, F; John Pareizs, J; Michael Hay, M; Bruce Wiersma, B; Kim Crapse, K; Thomas Peters, T; Samuel Fink, S; Donald Thaxton, D

    2009-03-01

    The Savannah River Site (SRS) will remove sludge as part of waste tank closure operations. Typically the bulk sludge is removed by mixing it with supernate to produce a slurry, and transporting the slurry to a downstream tank for processing. Experience shows that a residual heel may remain in the tank that cannot be removed by this conventional technique. In the past, SRS used oxalic acid solutions to disperse or dissolve the sludge heel to complete the waste removal. To better understand the actual conditions of oxalic acid cleaning of waste from carbon steel tanks, the authors developed and conducted an experimental program to determine its effectiveness in dissolving sludge, the hydrogen generation rate, the generation rate of other gases, the carbon steel corrosion rate, the impact of mixing on chemical cleaning, the impact of temperature, and the types of precipitates formed during the neutralization process. The test samples included actual SRS sludge and simulated SRS sludge. The authors performed the simulated waste tests at 25, 50, and 75 C by adding 8 wt % oxalic acid to the sludge over seven days. They conducted the actual waste tests at 50 and 75 C by adding 8 wt % oxalic acid to the sludge as a single batch. Following the testing, SRS conducted chemical cleaning with oxalic acid in two waste tanks. In Tank 5F, the oxalic acid (8 wt %) addition occurred over seven days, followed by inhibited water to ensure the tank contained enough liquid to operate the mixer pumps. The tank temperature during oxalic acid addition and dissolution was approximately 45 C. The authors analyzed samples from the chemical cleaning process and compared it with test data. The conclusions from the work are: (1) Oxalic acid addition proved effective in dissolving sludge heels in the simulant demonstration, the actual waste demonstration, and in SRS Tank 5F. (2) The oxalic acid dissolved {approx} 100% of the uranium, {approx} 100% of the iron, and {approx} 40% of the manganese

  11. The effect of the distance between acidic site and basic site immobilized on mesoporous solid on the activity in catalyzing aldol condensation

    SciTech Connect

    Yu Xiaofang; Yu Xiaobo; Wu Shujie; Liu Bo; Liu Heng; Guan Jingqi; Kan Qiubin

    2011-02-15

    Acid-base bifunctional heterogeneous catalysts containing carboxylic and amine groups, which were immobilized at defined distance from one another on the mesoporous solid were synthesized by immobilizing lysine onto carboxyl-SBA-15. The obtained materials were characterized by X-ray diffraction (XRD), N{sub 2} adsorption, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron micrographs (SEM), transmission electron micrographs (TEM), elemental analysis, and back titration. Proximal-C-A-SBA-15 with a proximal acid-base distance was more active than maximum-C-A-SBA-15 with a maximum acid-base distance in aldol condensation reaction between acetone and various aldehydes. It appears that the distance between acidic site and basic site immobilized on mesoporous solid should be an essential factor for catalysis optimization. -- Graphical abstract: Proximal-C-A-SBA-15 with a proximal acid-base distance and maximum-C-A-SBA-15 with a maximum acid-base distance were synthesized by immobilizing lysine onto carboxyl-SBA-15. Display Omitted Research highlights: {yields} Proximal-C-A-SBA-15 with a proximal acid-base distance. {yields} Maximum-C-A-SBA-15 with a maximum acid-base distance. {yields} Compared to maximum-C-A-SBA-15, proximal-C-A-SBA-15 was more active toward aldol condensation reaction between acetone and various aldehydes.

  12. The Structure and Density of Mo and Acid Sites in Mo-ExchangedH-ZSMZ Catalysts

    SciTech Connect

    Borry III, Richard W.; Kim, Young Ho; Huffsmith, Anne; Reimer,Jeffrey A.; Iglesia, Enrique

    1999-03-01

    Mo/H-ZSM5 (1.0-6.3 wt percent Mo; Mo/Al = 0.11-0.68) catalysts for CH4 aromatization were prepared from physical mixtures of MoO3 and H-ZSM5 (Si/Al= 14.3). X-ray diffraction and elemental analysis of physical mixtures treated in air indicate that MoOx species migrate onto the external ZSM5 surface at about 623 K. Between 773 and 973 K, MoOx species migrate inside zeolite channels via surface and gas phase transport, exchange at acid sites, and react to form H2O. The amount of H2O evolved during exchange and the amount of residual OH groups detected by isotopic equilibration with D2 showed that each Mo atom replaces one H+ during exchange. This stoichiometry and the requirement for charge compensation suggest that exchanged species consist of (Mo2O5)2+ditetrahedral structures interacting with two cation exchange sites. The proposed mechanism may provide a general framework to describe the exchange of multivalent cations onto Al sites in zeolites. As the Mo concentration exceeds that required to form a MoOx monolayer on the external zeolite surface ({approx}4 wt percent Mo for the H-ZSM5 used), Mo species sublime as (MoO3)n oligomers or extract Al from the zeolite framework to form inactive Al2(MoO4)3 domains detectable by 27Al NMR. These (Mo2O5)2+ species reduce to form the active MoCx species during the initial stages of CH4 conversion reactions. Optimum CH4 aromatization rates were obtained on catalysts with intermediate Mo contents ({approx}0.4Mo/Al), because both MoCx and acid sites are required to activate CH4 and to convert the initial C2H4 products into C6+ aromatics favored by thermodynamics.

  13. Characterization of the Adeno-Associated Virus 1 and 6 Sialic Acid Binding Site

    PubMed Central

    Huang, Lin-Ya; Patel, Ami; Ng, Robert; Miller, Edward Blake; Halder, Sujata; McKenna, Robert; Asokan, Aravind

    2016-01-01

    ABSTRACT The adeno-associated viruses (AAVs), which are being developed as gene delivery vectors, display differential cell surface glycan binding and subsequent tissue tropisms. For AAV serotype 1 (AAV1), the first viral vector approved as a gene therapy treatment, and its closely related AAV6, sialic acid (SIA) serves as their primary cellular surface receptor. Toward characterizing the SIA binding site(s), the structure of the AAV1-SIA complex was determined by X-ray crystallography to 3.0 Å. Density consistent with SIA was observed in a pocket located at the base of capsid protrusions surrounding icosahedral 3-fold axes. Site-directed mutagenesis substitution of the amino acids forming this pocket with structurally equivalent residues from AAV2, a heparan sulfate binding serotype, followed by cell binding and transduction assays, further mapped the critical residues conferring SIA binding to AAV1 and AAV6. For both viruses five of the six binding pocket residues mutated (N447S, V473D, N500E, T502S, and W503A) abolished SIA binding, whereas S472R increased binding. All six mutations abolished or decreased transduction by at least 50% in AAV1. Surprisingly, the T502S substitution did not affect transduction efficiency of wild-type AAV6. Furthermore, three of the AAV1 SIA binding site mutants—S472R, V473D, and N500E—escaped recognition by the anti-AAV1 capsid antibody ADK1a. These observations demonstrate that common key capsid surface residues dictate both virus binding and entry processes, as well as antigenic reactivity. This study identifies an important functional capsid surface “hot spot” dictating receptor attachment, transduction efficiency, and antigenicity which could prove useful for vector engineering. IMPORTANCE The adeno-associated virus (AAV) vector gene delivery system has shown promise in several clinical trials and an AAV1-based vector has been approved as the first gene therapy treatment. However, limitations still exist with respect

  14. SAVANNAH RIVER SITE TANK CLEANING: CORROSION RATE FOR ONE VERSUS EIGHT PERCENT OXALIC ACID SOLUTION

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2011-01-20

    Until recently, the use of oxalic acid for chemically cleaning the Savannah River Site (SRS) radioactive waste tanks focused on using concentrated 4 and 8-wt% solutions. Recent testing and research on applicable dissolution mechanisms have concluded that under appropriate conditions, dilute solutions of oxalic acid (i.e., 1-wt%) may be more effective. Based on the need to maximize cleaning effectiveness, coupled with the need to minimize downstream impacts, SRS is now developing plans for using a 1-wt% oxalic acid solution. A technology gap associated with using a 1-wt% oxalic acid solution was a dearth of suitable corrosion data. Assuming oxalic acid's passivation of carbon steel was proportional to the free oxalate concentration, the general corrosion rate (CR) from a 1-wt% solution may not be bound by those from 8-wt%. Therefore, after developing the test strategy and plan, the corrosion testing was performed. Starting with the envisioned process specific baseline solvent, a 1-wt% oxalic acid solution, with sludge (limited to Purex type sludge-simulant for this initial effort) at 75 C and agitated, the corrosion rate (CR) was determined from the measured weight loss of the exposed coupon. Environmental variations tested were: (a) Inclusion of sludge in the test vessel or assuming a pure oxalic acid solution; (b) acid solution temperature maintained at 75 or 45 C; and (c) agitation of the acid solution or stagnant. Application of select electrochemical testing (EC) explored the impact of each variation on the passivation mechanisms and confirmed the CR. The 1-wt% results were then compared to those from the 8-wt%. The immersion coupons showed that the maximum time averaged CR for a 1-wt% solution with sludge was less than 25-mils/yr for all conditions. For an agitated 8-wt% solution with sludge, the maximum time averaged CR was about 30-mils/yr at 50 C, and 86-mils/yr at 75 C. Both the 1-wt% and the 8-wt% testing demonstrated that if the sludge was removed from

  15. Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Kawamura, Kimitaka

    2011-09-01

    In order to investigate water-soluble dicarboxylic acids and related compounds in the aerosol samples under the Asian continent outflow, total suspended particle (TSP) samples ( n = 32) were collected at the Gosan site in Jeju Island over 2-5 days integration during 23 March-1 June 2007 and 16-24 April 2008. The samples were analyzed for water-soluble dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls using a capillary gas chromatography technique. We found elevated concentrations of atmospheric citric acid (range: 20-320 ng m -3) in the TSP samples during mid- to late April of 2007 and 2008. To specify the sources of citric acid, dicarboxylic acids and related compounds were measured in the pollen sample collected at the Gosan site (Pollen_Gosan), authentic pollen samples from Japanese cedar ( Cryptomeria) (Pollen_cedar) and Japanese cypress ( Chamaecyparis obtusa) (Pollen_cypress), and tangerine fruit produced from Jeju Island. Citric acid (2790 ng in unit mg of pollen mass) was found as most abundant species in the Pollen_Gosan, followed by oxalic acid (2390 ng mg -1). Although citric acid was not detected in the Pollen_cedar and Pollen_cypress as major species, it was found as a dominant species in the tangerine juice while malic acid was detected as major species in the tangerine peel, followed by oxalic and citric acids. Since Japanese cedar trees are planted around tangerine farms to prevent strong winds from the Pacific Ocean, citric acid that may be directly emitted from tangerine is likely adsorbed on pollens emitted from Japanese cedar and then transported to the Gosan site. Much lower malic/citric acid ratios obtained under cloudy condition than clear condition suggest that malic acid may rapidly decompose to lower molecular weight compounds such as oxalic and malonic acids (

  16. Hatching success in salamanders and chorus frogs at two sites in Colorado, USA: Effects of acidic deposition and climate

    USGS Publications Warehouse

    Muths, E.; Campbell, D.H.; Corn, P.S.

    2003-01-01

    The snowpack in the vicinity of the Mount Zirkel Wilderness Area is among the most acidic in the western United States. We analyzed water chemistry and examined hatching success in tiger salamanders and chorus frogs at ponds there and at nearby Rabbit Ears Pass (Dumont) to determine whether acid deposition affects amphibians or their breeding habitats at these potentially sensitive locations. We found a wide range of acid neutralizing capacity among ponds within sites; the minimum pH recorded during the experiment was 5.4 at one of 12 ponds with all others at pH ??? 5.7. At Dumont, hatching success for chorus frogs was greater in ponds with low acid neutralizing capacity; however, lowest pHs were >5.8. At current levels of acid deposition, weather and pond characteristics are likely more important than acidity in influencing hatching success in amphibian larvae at these sites.

  17. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu.

    PubMed

    Tran, Thuy T; Mamo, Gashaw; Búxo, Laura; Le, Nhi N; Gaber, Yasser; Mattiasson, Bo; Hatti-Kaul, Rajni

    2011-07-10

    Site-directed mutagenesis of a thermostable alkaline phytase from Bacillus sp. MD2 was performed with an aim to increase its specific activity and activity and stability in an acidic environment. The mutation sites are distributed on the catalytic surface of the enzyme (P257R, E180N, E229V and S283R) and in the active site (K77R, K179R and E227S). Selection of the residues was based on the idea that acid active phytases are more positively charged around their catalytic surfaces. Thus, a decrease in the content of negatively charged residues or an increase in the positive charges in the catalytic region of an alkaline phytase was assumed to influence the enzyme activity and stability at low pH. Moreover, widening of the substrate-binding pocket is expected to improve the hydrolysis of substrates that are not efficiently hydrolysed by wild type alkaline phytase. Analysis of the phytase variants revealed that E229V and S283R mutants increased the specific activity by about 19% and 13%, respectively. Mutation of the active site residues K77R and K179R led to severe reduction in the specific activity of the enzyme. Analysis of the phytase mutant-phytate complexes revealed increase in hydrogen bonding between the enzyme and the substrate, which might retard the release of the product, resulting in decreased activity. On the other hand, the double mutant (K77R-K179R) phytase showed higher stability at low pH (pH 2.6-3.0). The E227S variant was optimally active at pH 5.5 (in contrast to the wild type enzyme that had an optimum pH of 6) and it exhibited higher stability in acidic condition. This mutant phytase, displayed over 80% of its initial activity after 3h incubation at pH 2.6 while the wild type phytase retained only about 40% of its original activity. Moreover, the relative activity of this mutant phytase on calcium phytate, sodium pyrophosphate and p-nitro phenyl phosphate was higher than that of the wild type phytase.

  18. Composite active site of chondroitin lyase ABC accepting both epimers of uronic acid

    SciTech Connect

    Shaya, D.; Hahn, Bum-Soo; Bjerkan, Tonje Marita; Kim, Wan Seok; Park, Nam Young; Sim, Joon-Soo; Kim, Yeong-Shik; Cygler, M.

    2008-03-19

    Enzymes have evolved as catalysts with high degrees of stereospecificity. When both enantiomers are biologically important, enzymes with two different folds usually catalyze reactions with the individual enantiomers. In rare cases a single enzyme can process both enantiomers efficiently, but no molecular basis for such catalysis has been established. The family of bacterial chondroitin lyases ABC comprises such enzymes. They can degrade both chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans at the nonreducing end of either glucuronic acid (CS) or its epimer iduronic acid (DS) by a {beta}-elimination mechanism, which commences with the removal of the C-5 proton from the uronic acid. Two other structural folds evolved to perform these reactions in an epimer-specific fashion: ({alpha}/{alpha}){sub 5} for CS (chondroitin lyases AC) and {beta}-helix for DS (chondroitin lyases B); their catalytic mechanisms have been established at the molecular level. The structure of chondroitinase ABC from Proteus vulgaris showed surprising similarity to chondroitinase AC, including the presence of a Tyr-His-Glu-Arg catalytic tetrad, which provided a possible mechanism for CS degradation but not for DS degradation. We determined the structure of a distantly related Bacteroides thetaiotaomicron chondroitinase ABC to identify additional structurally conserved residues potentially involved in catalysis. We found a conserved cluster located {approx}12 {angstrom} from the catalytic tetrad. We demonstrate that a histidine in this cluster is essential for catalysis of DS but not CS. The enzyme utilizes a single substrate-binding site while having two partially overlapping active sites catalyzing the respective reactions. The spatial separation of the two sets of residues suggests a substrate-induced conformational change that brings all catalytically essential residues close together.

  19. Evaluation Of Sludge Heel Dissolution Efficiency With Oxalic Acid Cleaning At Savannah River Site

    SciTech Connect

    Sudduth, Christie; Vitali, Jason; Keefer, Mark

    2014-01-08

    The chemical cleaning process baseline strategy at the Savannah River Site was revised to improve efficiency during future execution of the process based on lessons learned during previous bulk oxalic acid cleaning activities and to account for operational constraints imposed by safety basis requirements. These improvements were also intended to transcend the difficulties that arise from waste removal in higher rheological yield stress sludge tanks. Tank 12 implemented this improved strategy and the bulk oxalic acid cleaning efforts concluded in July 2013. The Tank 12 radiological removal results were similar to previous bulk oxalic acid cleaning campaigns despite the fact that Tank 12 contained higher rheological yield stress sludge that would make removal more difficult than the sludge treated in previous cleaning campaigns. No appreciable oxalate precipitation occurred during the cleaning process in Tank 12 compared to previous campaigns, which aided in the net volume reduction of 75-80%. Overall, the controls established for Tank 12 provide a template for an improved cleaning process.

  20. Site directed mutagenesis of StSUT1 reveals target amino acids of regulation and stability.

    PubMed

    Krügel, Undine; Wiederhold, Elena; Pustogowa, Jelena; Hackel, Aleksandra; Grimm, Bernhard; Kühn, Christina

    2013-11-01

    Plant sucrose transporters (SUTs) are functional as sucrose-proton-cotransporters with an optimal transport activity in the acidic pH range. Recently, the pH optimum of the Solanum tuberosum sucrose transporter StSUT1 was experimentally determined to range at an unexpectedly low pH of 3 or even below. Various research groups have confirmed these surprising findings independently and in different organisms. Here we provide further experimental evidence for a pH optimum at physiological extrema. Site directed mutagenesis provides information about functional amino acids, which are highly conserved and responsible for this extraordinary increase in transport capacity under extreme pH conditions. Redox-dependent dimerization of the StSUT1 protein was described earlier. Here the ability of StSUT1 to form homodimers was demonstrated by heterologous expression in Lactococcus lactis and Xenopus leavis using Western blots, and in plants by bimolecular fluorescence complementation. Mutagenesis of highly conserved cysteine residues revealed their importance in protein stability. The accessibility of regulatory amino acid residues in the light of StSUT1's compartmentalization in membrane microdomains is discussed.

  1. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.

    PubMed

    Gonzales, Eric B; Kawate, Toshimitsu; Gouaux, Eric

    2009-07-30

    Acid-sensing ion channels are proton-activated, sodium-selective channels composed of three subunits, and are members of the superfamily of epithelial sodium channels, mechanosensitive and FMRF-amide peptide-gated ion channels. These ubiquitous eukaryotic ion channels have essential roles in biological activities as diverse as sodium homeostasis, taste and pain. Despite their crucial roles in biology and their unusual trimeric subunit stoichiometry, there is little knowledge of the structural and chemical principles underlying their ion channel architecture and ion-binding sites. Here we present the structure of a functional acid-sensing ion channel in a desensitized state at 3 A resolution, the location and composition of the approximately 8 A 'thick' desensitization gate, and the trigonal antiprism coordination of caesium ions bound in the extracellular vestibule. Comparison of the acid-sensing ion channel structure with the ATP-gated P2X(4) receptor reveals similarity in pore architecture and aqueous vestibules, suggesting that there are unanticipated yet common structural and mechanistic principles.

  2. Characteristics of fluoride in pore-water at accidental hydrofluoric acid spillage site, Gumi, Korea

    NASA Astrophysics Data System (ADS)

    Kwon, E. H.; Lee, H. A.; Lee, J.; Kim, D.; Lee, S.; Yoon, H. O.

    2015-12-01

    A leakage accident of hydrofluoric acid (HF) occurred in Gumi, South Korea at Sep. 2012. The study site is located in the borderline between a large-scale industrial complex and a rural area. The HF plume was made immediately, and moved toward the rural area through air. After the accident, 212 ha of farm land were influenced and most of crops were withered. To recover the soil, CaO was applied after six months. Although several studies have done to estimate the extension and movement of HF plume in the air and to assess the impact on human health or plant after the incident, the long-term fate of fluoride (F) in the affected soils is not identified clearly. Thus, this study aimed to understand the behavior of F in the soil after HF releasing from accident site through chemical analysis and geochemical modeling. Within the radius of 1 km of accident site, 16 pore-water and soil samples were collected. The semi-quantitative soil composition (i.e., Al, Ca, Fe, K, Mg, Mn, Na, P, Si, Ti), total F, total P, OM contents in soil, and soil pH have already been measured, and pore-water compositions are also identified. From these experimental and modeling data, we could be evaluate if impact of accident exists until now, and also could be select and identify existing form of fluoride in soil and pore-water.

  3. Role of Criegee Intermediates in Formation of Sulfuric Acid at BVOCs-rich Cape Corsica Site

    NASA Astrophysics Data System (ADS)

    Kukui, A.; Dusanter, S.; Sauvage, S.; Gros, V.; Bourrianne, T.; Sellegri, K.; Wang, J.; Colomb, A.; Pichon, J. M.; Chen, H.; Kalogridis, C.; Zannoni, N.; Bonsang, B.; Michoud, V.; Locoge, N.; Leonardis, T.

    2015-12-01

    Oxidation of SO2 in reactions with stabilised Criegee Intermediates (sCI) was suggested as an additional source of gaseous sulfuric acid (H2SO4) in the atmosphere, complementary to the conventional H2SO4 formation in reaction of SO2 with OH radicals. Evaluation of the importance of this additional source is complicated due to large uncertainty in the mechanism and rate constants for the reactions of different sCI with SO2, water vapor and other atmospheric species. Here we present an evaluation of the role of sCI in H2SO4 production at remote site on Cape Corsica near the North tip of Corsica Island (Ersa station, Western Mediterranean). In July 2013 comprehensive field observations including gas phase (OH and RO2 radicals, H2SO4, VOCs, NOx, SO2, others) and aerosol measurements were conducted at this site in the frame of ChArMEx project. During the field campaign the site was strongly influenced by local emissions of biogenic volatile compounds (BVOCs), including isoprene and terpenes, forming different sCI in reactions with ozone and, hence, presenting additional source of H2SO4 via sCI+SO2. However, this additional source of H2SO4 at the Ersa site was found to be insignificant. The observed concentrations of H2SO4 were found to be in good agreement with those estimated from the H2SO4 condensation sink and the production of H2SO4 only in the reaction of OH with SO2, without accounting for any additional H2SO4 source. Using the BVOCs observations we present estimation of the upper limit for the rate constants of H2SO4 production via reactions of different sCI with SO2.

  4. Putative binding sites for arachidonic acid on the human cardiac Kv1.5 channel

    PubMed Central

    Bai, Jia‐Yu; Ding, Wei‐Guang; Kojima, Akiko; Seto, Tomoyoshi

    2015-01-01

    Background and Purpose In human heart, the Kv1.5 channel contributes to repolarization of atrial action potentials. This study examined the electrophysiological and molecular mechanisms underlying arachidonic acid (AA)‐induced inhibition of the human Kv1.5 (hKv1.5) channel. Experimental Approach Site‐directed mutagenesis was conducted to mutate amino acids that reside within the pore domain of the hKv1.5 channel. Whole‐cell patch‐clamp method was used to record membrane currents through wild type and mutant hKv1.5 channels heterologously expressed in CHO cells. Computer docking simulation was conducted to predict the putative binding site(s) of AA in an open‐state model of the Kv1.5 channel. Key Results The hKv1.5 current was minimally affected at the onset of depolarization but was progressively reduced during depolarization by the presence of AA, suggesting that AA acts as an open‐channel blocker. AA itself affected the channel at extracellular sites independently of its metabolites and signalling pathways. The blocking effect of AA was attenuated at pH 8.0 but not at pH 6.4. The blocking action of AA developed rather rapidly by co‐expression of Kvβ1.3. The AA‐induced block was significantly attenuated in H463C, T480A, R487V, I502A, I508A, V512A and V516A, but not in T462C, A501V and L510A mutants of the hKv1.5 channel. Docking simulation predicted that H463, T480, R487, I508, V512 and V516 are potentially accessible for interaction with AA. Conclusions and Implications AA itself interacts with multiple amino acids located in the pore domain of the hKv1.5 channel. These findings may provide useful information for future development of selective blockers of hKv1.5 channels. PMID:26292661

  5. Fabrication of hydrophobic polymer foams with double acid sites on surface of macropore for conversion of carbohydrate.

    PubMed

    Pan, Jianming; Mao, Yanli; Gao, Heping; Xiong, Qingang; Qiu, Fengxian; Zhang, Tao; Niu, Xiangheng

    2016-06-05

    Herein we reported a simple and novel synthetic strategy for the fabrication of two kinds of hydrophobic polymer foam catalysts (i.e. Cr(3+)-HPFs-1-H(+) and HPFs-1-H(+)) with hierarchical porous structure, inhomogeneous acidic composition and Lewis-Brønsted double acid sites distributed on the surface, which was used to one-pot conversion of carbohydrate (such as cellulose, glucose and fructose) to a key chemical platform (i.e. 5-hydroxymethylfurfural, HMF). The water-in-oil (W/O) high internal phase emulsions (HIPEs), stabilized by both Span 80 and acidic prepolymers as analogous particles offered the acidic actives, were used as the template for simultaneous polymerization of oil phase in the presence of divinylbenzene (DVB) and styrene (St). After subsequent ion-exchange process, Lewis and Brønsted acid sites derived from exchanged Cr(3+) and H(+) ion were both fixed on the surface of cell of the catalysts. The HPFs-1-H(+) and Cr(3+)-HPFs-1-H(+) had similar hierarchical porous, hydrophobic surface and acid sites (HPFs-1-H(+) with macropores ranging from 0.1 μm to 20 μm, uniform mesopores in 14.4 nm, water contact angle of 122° and 0.614 mmolg(-1) of Brønsted acid sites, as well as Cr(3+)-HPFs-1-H(+) with macropores ranging from 0.1 μm to 20 μm, uniform mesopores in 13.3 nm, water contact angle of 136° and 0.638 mmolg(-1) of Lewis-Brønsted acid sites). It was confirmed that Lewis acid sites of catalyst had a slight influence on the HMF yield of fructose came from the function of Brønsted acid sites, and Lewis acid sites were in favor of improving the HMF yield from cellulose and glucose. This work opens up a simple and novel route to synthesize multifunctional polymeric catalysts for efficient one-pot conversion of carbohydrate to HMF.

  6. Methane to acetic acid over Cu-exchanged zeolites: mechanistic insights from a site-specific carbonylation reaction.

    PubMed

    Narsimhan, Karthik; Michaelis, Vladimir K; Mathies, Guinevere; Gunther, William R; Griffin, Robert G; Román-Leshkov, Yuriy

    2015-02-11

    The selective low temperature oxidation of methane is an attractive yet challenging pathway to convert abundant natural gas into value added chemicals. Copper-exchanged ZSM-5 and mordenite (MOR) zeolites have received attention due to their ability to oxidize methane into methanol using molecular oxygen. In this work, the conversion of methane into acetic acid is demonstrated using Cu-MOR by coupling oxidation with carbonylation reactions. The carbonylation reaction, known to occur predominantly in the 8-membered ring (8MR) pockets of MOR, is used as a site-specific probe to gain insight into important mechanistic differences existing between Cu-MOR and Cu-ZSM-5 during methane oxidation. For the tandem reaction sequence, Cu-MOR generated drastically higher amounts of acetic acid when compared to Cu-ZSM-5 (22 vs 4 μmol/g). Preferential titration with sodium showed a direct correlation between the number of acid sites in the 8MR pockets in MOR and acetic acid yield, indicating that methoxy species present in the MOR side pockets undergo carbonylation. Coupled spectroscopic and reactivity measurements were used to identify the genesis of the oxidation sites and to validate the migration of methoxy species from the oxidation site to the carbonylation site. Our results indicate that the Cu(II)-O-Cu(II) sites previously associated with methane oxidation in both Cu-MOR and Cu-ZSM-5 are oxidation active but carbonylation inactive. In turn, combined UV-vis and EPR spectroscopic studies showed that a novel Cu(2+) site is formed at Cu/Al <0.2 in MOR. These sites oxidize methane and promote the migration of the product to a Brønsted acid site in the 8MR to undergo carbonylation.

  7. 36C1 measurements and the hydrology of an acid injection site

    USGS Publications Warehouse

    Vourvopoulos, G.; Brahana, J.V.; Nolte, E.; Korschinek, G.; Priller, A.; Dockhorn, B.

    1990-01-01

    In an area in western Tennessee (United States), an industrial firm is injecting acidic (pH = 0.1) iron chloride into permeable zones of carbonate rocks at depths ranging from 1000 to 2200 m below land surface. Overlying the injection zone at a depth of approximately 500 m below land surface is a regional fresh-water aquifer, the Knox aquifer. A study is currently underway to investigate whether the injection wells are hydraulically isolated from the fresh-water aquifer. Drilling of a test well that will reach a total depth of 2700 m has been initiated. The 36Cl content of 15 samples from the Knox aquifer, from monitor wells in the vicinity of the injection site, and from the test well have been analyzed. ?? 1990.

  8. BTX abatement using Chilean natural zeolite: the role of Brønsted acid sites.

    PubMed

    Alejandro, S; Valdés, H; Manero, M-H; Zaror, C A

    2012-01-01

    In wastewater treatment facilities, air quality is not only affected by conventional unpleasant odour compounds; toxic volatile organic compounds (VOCs) are also found. In this study, the adsorptive capacity of Chilean natural zeolite toward VOC removal was evaluated. Moreover, the influence of zeolite chemical surface properties on VOC elimination was also investigated. Three modified zeolite samples were prepared from a natural Chilean zeolite (53% clinoptilolite, 40% mordenite and 7% quartz). Natural and modified zeolite samples were characterised by nitrogen adsorption at 77 K, elemental analyses and X-ray fluorescence (XRF). Chemical modifications of natural zeolite showed the important role of Brønsted acid sites on the abatement of VOCs. The presence of humidity has a negative effect on zeolite adsorption capacity. Natural zeolites could be an interesting option for benzene, toluene and xylene vapour emission abatement.

  9. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    PubMed Central

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  10. Structure-acidity correlation of supported tungsten(VI)-oxo-species: FT-IR and TPD studies of adsorbed pyridine and catalytic decomposition of 2-propanol

    NASA Astrophysics Data System (ADS)

    Zaki, M. I.; Mekhemer, G. A. H.; Fouad, N. E.; Rabee, A. I. M.

    2014-07-01

    The amount of 10 wt%-WO3 was supported on alumina, titania or silica by impregnation with aqueous solution of ammonium paratungstate and subsequent calcination at 500 °C for 10 h. Tungstate-related chemical and physical changes in the calcination products were resolved by ex-situ infrared (IR) spectroscopy. Nature of exposed surface acid sites were probed by in-situ IR spectroscopy of adsorbed pyridine (Py) molecules at room temperature (RT). The relative strength of the acid sites thus probed was gauged by combining results of temperature-programmed desorption (TPD) measurements of the RT-adsorbed Py with those communicated by in-situ IR spectra of residual Py on the surface after a brief thermoevacuation at high temperatures (100-300 °C). Reactivity of the surface acid sites was tested toward 2-propanal catalytic decomposition, and observed by in-situ IR gas phase spectra. Results obtained were correlated with predominant structures assumed by the supported tungstate species. Accordingly, polymerization of the supported tungstate into 2-/3-dimensional structures, was found to be relatively most advanced on favorable locations of titania surfaces as compared to the case on alumina or silica surfaces. Consequently, the Lewis acidity was strengthened, and strong Bronsted acidity was evolved, leading to a 2-propanol dehydration catalyst (tungstate/titania) of optimal activity and selectivity. Strong tungstate/support interfacial interactions were found to hamper the formation of the strongly acidic and catalytically active polymeric structures of the supported tungstate (i.e., the case on alumina or silica).

  11. Characterization of lysosomal acid lipase by site-directed mutagenesis and heterologous expression.

    PubMed

    Sheriff, S; Du, H; Grabowski, G A

    1995-11-17

    Lysosomal acid lipase (LAL) is essential for the hydrolysis of cholesterol esters and triglycerides that are delivered to the lysosomes via the low density lipoprotein receptor system. The deficiency of LAL is associated with cholesteryl ester storage disease (CESD) and Wolman's disease (WD). We cloned the human LAL cDNA and expressed the active enzyme in the baculovirus system. Two molecular forms (M(r) approximately 41,000 and approximately 46,000) with different glycosylation were found intracellularly, and approximately 24% of the M(r) approximately 46,000 form was secreted into the medium. Tunicamycin treatment produced only an inactive M(r) approximately 41,000 form. This result implicates glycosylation occupancy in the proper folding for active-site function. Catalytic activity was greater toward cis- than trans-unsaturated fatty acid esters of 4-methylumbelliferone and toward esters with 7-carbon length acyl chains. LAL cleaved cholesterol esters and mono-, tri-, and diglycerides. Heparin had a biphasic effect on enzymatic activity with initial activation followed by inhibition. Inhibition of LAL activity by tetrahydrolipstatin and diethyl p-nitrophenyl phosphate suggested the presence of active serines in binding/catalytic domain(s) of the protein. Site-directed mutagenesis at two putative active centers, GXSXG, showed that Ser153 was important to catalytic activity, whereas Ser99 was not and neither was the catalytic nucleophile. Three reported mutations (L179P, L336P, and delta AG302 deletion) from CESD patients were created and expressed in the Sf9 cell system. None cleaved cholesterol esters, and L179P and L336P cleaved only triolein at approximately 4% of wild-type levels. These results suggest that mechanisms, in addition to LAL defects, may operate in the selective accumulation of cholesterol esters or triglycerides in CESD and WD patients.

  12. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.

    PubMed Central

    Stoughton, D M; Zapata, G; Picone, R; Vann, W F

    1999-01-01

    Escherichia coli K1 CMP-sialic acid synthetase catalyses the synthesis of CMP-sialic acid from CTP and sialic acid. The active site of the 418 amino acid E. coli enzyme was localized to its N-terminal half. The bacterial CMP-sialic acid synthetase enzymes have a conserved motif, IAIIPARXXSKGLXXKN, at their N-termini. Several basic residues have been identified at or near the active site of the E. coli enzyme by chemical modification and site-directed mutagenesis. Only one of the lysines in the N-terminal motif, Lys-21, appears to be essential for activity. Mutation of Lys-21 in the N-terminal motif results in an inactive enzyme. Furthermore, Arg-12 of the N-terminal motif appears to be an active-site residue, based on the following evidence. Substituting Arg-12 with glycine or alanine resulted in inactive enzymes, indicating that this residue is required for enzymic activity. The Arg-12-->Lys mutant was partially active, demonstrating that a positive charge is required at this site. Steady-state kinetic analysis reveals changes in k(cat), K(m) and K(s) for CTP, which implicates Arg-12 in catalysis and substrate binding. PMID:10510306

  13. Site-specific acid-base properties of pholcodine and related compounds.

    PubMed

    Kovács, Z; Hosztafi, S; Noszál, B

    2006-11-01

    The acid-base properties of pholcodine, a cough-depressant agent, and related compounds including metabolites were studied by 1H NMR-pH titrations, and are characterised in terms of macroscopic and microscopic protonation constants. New N-methylated derivatives were also synthesized in order to quantitate site- and nucleus-specific protonation shifts and to unravel microscopic acid-base equilibria. The piperidine nitrogen was found to be 38 and 400 times more basic than its morpholine counterpart in pholcodine and norpholcodine, respectively. The protonation data show that the molecule of pholcodine bears an average of positive charge of 1.07 at physiological pH, preventing it from entering the central nervous system, a plausible reason for its lack of analgesic or addictive properties. The protonation constants of pholcodine and its derivatives are interpreted by comparing with related molecules of pharmaceutical interest. The pH-dependent relative concentrations of the variously protonated forms of pholcodine and morphine are depicted in distribution diagrams.

  14. Purification, enzymatic properties, and active site environment of a novel manganese(III)-containing acid phosphatase.

    PubMed

    Sugiura, Y; Kawabe, H; Tanaka, H; Fujimoto, S; Ohara, A

    1981-10-25

    A new manganese-containing acid phosphatase has been isolated and crystallized from sweet potato tubers. The pure enzyme contains one atom of manganese per Mr = 110,000 polypeptide and shows phosphatase activity toward various phosphate substrates. The pH optimum of the enzyme was 5.8 and the enzyme activity was inhibited by Cu2+, Zn2+, Hg2+, AsO43-, and MoO42-. This stable metalloenzyme is red-violet in color with an intense absorption band at 515 nm (epsilon - 2460). Our electronic, circular dichroism, and electron spin resonance findings strongly indicate that the Mn-valence state of the native enzyme is trivalent. When the Mn-enzyme is excited by the 5145 A line of Ar+ laser, prominent Raman lines at 1230, 1298, 1508, and 1620 cm-1 were detected. This Raman spectrum can probably be interpreted in terms of internal vibration of a coordinated tyrosine phenolate anion. The tryptophan-modified enzyme showed a positive Raman band at 370 cm-1, which is preferentially assigned to a Mn(III)-S streching mode. The modification of the Mn-enzyme by N-bromosuccinimide led to a large decrease in the fluorescence intensity of 335 nm which was dominated by its tryptophan residues within a considerable hydrophobic environment. The acid phosphatase activity was significantly decreased by the tryptophan modification. With respect to the active site donor sets, the Mn(III)-containing acid phosphatase is distinctly different from the Zn(II)-containing alkaline phosphatase. Of interest is also the appreciable similarity of some enzymatic and spectroscopic properties between the present enzyme and uteroferrin.

  15. Dual mechanism of activation of plant plasma membrane Ca2+-ATPase by acidic phospholipids: evidence for a phospholipid binding site which overlaps the calmodulin-binding site.

    PubMed

    Meneghelli, Silvia; Fusca, Tiziana; Luoni, Laura; De Michelis, Maria Ida

    2008-09-01

    The effect of phospholipids on the activity of isoform ACA8 of Arabidopsis thaliana plasma membrane (PM) Ca2+-ATPase was evaluated in membranes isolated from Saccharomyces cerevisiae strain K616 expressing wild type or mutated ACA8 cDNA. Acidic phospholipids stimulated the basal Ca2+-ATPase activity in the following order of efficiency: phosphatidylinositol 4-monophosphate > phosphatidylserine > phosphatidylcholine approximately = phosphatidylethanolamine approximately = 0. Acidic phospholipids increased V(max-Ca2+) and lowered the value of K(0.5-Ca2+) below the value measured in the presence of calmodulin (CaM). In the presence of CaM acidic phospholipids activated ACA8 by further decreasing its K(0.5-Ca2+) value. Phosphatidylinositol 4-monophosphate and, with lower efficiency, phosphatidylserine bound peptides reproducing ACA8 N-terminus (aa 1-116). Single point mutation of three residues (A56, R59 and Y62) within the sequence A56-T63 lowered the apparent affinity of ACA8 for phosphatidylinositol 4-monophosphate by two to three fold, indicating that this region contains a binding site for acidic phospholipids. However, the N-deleted mutant Delta74-ACA8 was also activated by acidic phospholipids, indicating that acidic phospholipids activate ACA8 through a complex mechanism, involving interaction with different sites. The striking similarity between the response to acidic phospholipids of ACA8 and animal plasma membrane Ca2+-ATPase provides new evidence that type 2B Ca2+-ATPases share common regulatory properties independently of structural differences such as the localization of the terminal regulatory region at the N- or C-terminal end of the protein.

  16. A class frequency mixture model that adjusts for site-specific amino acid frequencies and improves inference of protein phylogeny

    PubMed Central

    2008-01-01

    Background Widely used substitution models for proteins, such as the Jones-Taylor-Thornton (JTT) or Whelan and Goldman (WAG) models, are based on empirical amino acid interchange matrices estimated from databases of protein alignments that incorporate the average amino acid frequencies of the data set under examination (e.g JTT + F). Variation in the evolutionary process between sites is typically modelled by a rates-across-sites distribution such as the gamma (Γ) distribution. However, sites in proteins also vary in the kinds of amino acid interchanges that are favoured, a feature that is ignored by standard empirical substitution matrices. Here we examine the degree to which the pattern of evolution at sites differs from that expected based on empirical amino acid substitution models and evaluate the impact of these deviations on phylogenetic estimation. Results We analyzed 21 large protein alignments with two statistical tests designed to detect deviation of site-specific amino acid distributions from data simulated under the standard empirical substitution model: JTT+ F + Γ. We found that the number of states at a given site is, on average, smaller and the frequencies of these states are less uniform than expected based on a JTT + F + Γ substitution model. With a four-taxon example, we show that phylogenetic estimation under the JTT + F + Γ model is seriously biased by a long-branch attraction artefact if the data are simulated under a model utilizing the observed site-specific amino acid frequencies from an alignment. Principal components analyses indicate the existence of at least four major site-specific frequency classes in these 21 protein alignments. Using a mixture model with these four separate classes of site-specific state frequencies plus a fifth class of global frequencies (the JTT + cF + Γ model), significant improvements in model fit for real data sets can be achieved. This simple mixture model also reduces the long-branch attraction problem

  17. Chemical characteristics and sources of organic acids in precipitation at a semi-urban site in Southwest China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. L.; Lee, X. Q.; Cao, F.

    2011-01-01

    In order to investigate the chemical characteristics and sources of organic acids in precipitation in Southwest China, 105 rainwater samples were collected at a semi-urban site in Anshun from June 2007 to June 2008. Organic acids and major anions were analyzed along with pH and electrical conductivity. The pH values varied from 3.57 to 7.09 for all the rainfall events sampled, with an average of 4.67 which was typical acidic value. Formic, acetic and oxalic acids were found to be the predominant carboxylic acids and their volume weighted average (VWA) concentrations were 8.77, 6.93 and 2.84 μmol l -1, respectively. These organic acids were estimated to account for 8.1% to the total free acidity (TFA) in precipitation. The concentrations of the majority organic acids at studied site had a clear seasonal pattern, reaching higher levels during the non-growing season than those in growing season, which was attributed to dilution effect of heavy rainfall during the growing season. The seasonal variation of wet deposition flux of these organic acids confirmed higher source strength of biogenic emissions from vegetation during the growing season. Formic-to-acetic acids ratio (F/A), an indicator of primary versus secondary sources of these organic acids, suggested that primary sources from vehicular emission, biomass burning, soil and vegetation emissions were dominant sources. In addition, the lowest concentrations of organic acids were found under type S, when air masses originated from the marine (South China Sea) during Southern Asian Monsoon period. And the highest concentrations were observed in precipitation events from Northeast China (type NE), prevailing mostly during winter with the lowest rainfall.

  18. A decade of monitoring at Swiss Long-Term Forest Ecosystem Research (LWF) sites: can we observe trends in atmospheric acid deposition and in soil solution acidity?

    PubMed

    Pannatier, Elisabeth Graf; Thimonier, Anne; Schmitt, Maria; Walthert, Lorenz; Waldner, Peter

    2011-03-01

    Trends in atmospheric acid deposition and in soil solution acidity from 1995 or later until 2007 were investigated at several forest sites throughout Switzerland to assess the effects of air pollution abatements on deposition and the response of the soil solution chemistry. Deposition of the major elements was estimated from throughfall and bulk deposition measurements at nine sites of the Swiss Long-Term Forest Ecosystem Research network (LWF) since 1995 or later. Soil solution was measured at seven plots at four soil depths since 1998 or later. Trends in the molar ratio of base cations to aluminum (BC/Al) in soil solutions and in concentrations and fluxes of inorganic N (NO(3)-N + NH(4)-N), sulfate (SO(4)-S), and base cations (BC) were used to detect changes in soil solution chemistry. Acid deposition significantly decreased at three out of the nine study sites due to a decrease in total N deposition. Total SO(4)-S deposition decreased at the nine sites, but due to the relatively low amount of SO(4)-S load compared to N deposition, it did not contribute to decrease acid deposition significantly. No trend in total BC deposition was detected. In the soil solution, no trend in concentrations and fluxes of BC, SO(4)-S, and inorganic N were found at most soil depths at five out of the seven sites. This suggests that the soil solution reacted very little to the changes in atmospheric deposition. A stronger reduction in base cations compared to aluminum was detected at two sites, which might indicate that acidification of the soil solution was proceeding faster at these sites.

  19. Carboxylic acids in gas and PM2.5 particulate phase at a rural mountain site in northeastern United States

    NASA Astrophysics Data System (ADS)

    Hussain, M. M.; Khan, A. R.; Khwaja, H. A.

    2009-12-01

    Low molecular weight carboxylic acids are important constituents of the organic fraction of atmospheric particulate matter in rural and polluted regions. The knowledge on their source is sparse, however, and organic aerosols in general need to better characterized. Atmospheric gas- and particle-phase carboxylic acids (formic, acetic, pyruvic, glyoxalic, benzoaic, adipic, succinic, malonic, and oxalic) and related compounds were measured during August 2002 at a rural site, Whiteface Mountain, NY. Formic and acetic acids were present in the PM2.5 fraction and in the gas phase. Other seven carboxylic acids were below the detection limit in all samples. Formic and acetic acid were present in the atmosphere mostly in the gaseous form with less than 10% in the PM2.5 fraction. Concentrations of formic acid and acetic acid were in the 0.5 - 2.4 ppbv and 0.6 - 1.9 ppbv ranges, respectively. Formic-to-acetic acid ratios less than one (0.88) were recorded, likely due to an increase in acetic acid contribution from direct emissions. In the fine particulate mode (PM2.5 ) the concentrations for acetic acid and formic acid were 120 - 400 and 10 - 180 ng/m3 , respectively. Backward trajectory data indicate that air mass originated at midwestern region on August 5th and gradually moved towards north on August 9th. Correlation of formic acid with sulfate was investigated to interpret their possible secondary formation pathways. A strong correlation (0.73) was observed between formic acid and sulfate in PM2.5 particulates. Since the source of sulfate found at Whiteface Mountain widely accepted as anthropogenic, its association with formic acid indicated that the later might have anthropogenic source.

  20. Atmospheric oxalic acid and related secondary organic aerosols in Qinghai Lake, a continental background site in Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji

    2013-11-01

    Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and α-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and α-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and α-dicarbonyls at this background site.

  1. Isotope geochemistry of waters affected by acid mine drainage in old labour sites (SE, Spain).

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez-Sanchez, Maria Jose; Garcia-Lorenzo, Maria Luz; Agudo, Ines; Hernandez-Cordoba, Manuel; Recio, Clemente

    2015-04-01

    The ore deposits of this zone have iron, lead and zinc as the main metal components. Iron is present in oxides, hydroxides, sulfides, sulfates, carbonates, and silicates; lead and zinc occur in sulfides (galena and sphalerite, respectively), carbonates, sulfates, and lead or zinc-bearing (manganese, iron) oxides. Mining started with the Romans and activity peaked in the second half of the 19th century and throughout the 20th century until the 1980's. From 1940 to 1957, mineral concentration was made by froth flotation and, prior to this, by gravimetric techniques. The mining wastes, or tailings, with a very fine particle size were deposited inland (tailings dams) and, since 1957, huge releases were made in directly the sea coast. The objective of this work was to evaluate processes affecting waters from abandoned mine sites by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. Several common chemical and physical processes, such as evaporation, water-rock interaction and mixing could alter water isotopic composition. Evaporation, which causes an enrichment in δD and δ18O in the residual water, is an important process in semiarid areas. The results obtained indicate that, for sites near the coast, waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by A. ferrooxidans, while at depth, sulfate reduction occurred.

  2. Trans-gamma-hydroxycrotonic acid binding sites in brain: evidence for a subpopulation of gamma-hydroxybutyrate sites.

    PubMed

    Hechler, V; Schmitt, M; Bourguignon, J J; Maitre, M

    1990-03-02

    Trans-gamma-hydroxycrotonate (THCA), a compound naturally present in rat brain, possesses high-affinity binding sites with a heterogeneous distribution which are superimposable with those for gamma-hydroxybutyrate (GHB). Binding studies of THCA on rat brain membranes revealed two binding components, one of high affinity (Kd1, 7 nM, Bmax1 42 fmol/mg protein) and the other of low affinity (Kd2, 2 microM, Bmax2 13 pmol/mg protein). Displacement curves of [3H]THCA by THCA and GHB or of [3H]GHB by THCA are in favour of the existence of a specific high affinity site for THCA. Quantitative autoradiography with image analysis of [3H]THCA binding in rat brain slices indicated that [3H]THCA high affinity binding was displaced at a lower potency by GHB. THCA showed also some selectivity in displacing [3H]GHB from its high affinity binding site (Kd = 95 nM). This mutual overlap favours a subpopulation of GHB receptors, which have THCA as a natural ligand, showing partial agonistic properties compared to GHB. The functional significance of this result remains unknown.

  3. Iodine 125-lysergic acid diethylamide binds to a novel serotonergic site on rat choroid plexus epithelial cells

    SciTech Connect

    Yagaloff, K.A.; Hartig, P.R.

    1985-12-01

    /sup 125/I-Lysergic acid diethylamide (/sup 125/I-LSD) binds with high affinity to serotonergic sites on rat choroid plexus. These sites were localized to choroid plexus epithelial cells by use of a novel high resolution stripping film technique for light microscopic autoradiography. In membrane preparations from rat choroid plexus, the serotonergic site density was 3100 fmol/mg of protein, which is 10-fold higher than the density of any other serotonergic site in brain homogenates. The choroid plexus site exhibits a novel pharmacology that does not match the properties of 5-hydroxytryptamine-1a (5-HT1a), 5-HT1b, or 5-HT2 serotonergic sites. /sup 125/I-LSD binding to the choroid plexus site is potently inhibited by mianserin, serotonin, and (+)-LSD. Other serotonergic, dopaminergic, and adrenergic agonists and antagonists exhibit moderate to weak affinities for this site. The rat choroid plexus /sup 125/I-LSD binding site appears to represent a new type of serotonergic site which is located on non-neuronal cells in this tissue.

  4. Elucidating the structure of surface acid sites on {gamma}-Al{sub 2}O{sub 3}.

    SciTech Connect

    Chupas, P. J.; Chapman, K. W.; Halder, G. J.

    2011-05-12

    Differential pair distribution function analysis was applied to resolve, with crystallographic detail, the structure of catalytic sites on the surface of nanoscale {gamma}-Al{sup 2}O{sub 3}. The structure was determined for a basic probe molecule, monomethylamine (MMA), bound at the minority Lewis acid sites. These active sites were found to be five-coordinate, forming distorted octahedra upon MMA binding. This approach could be applied to study the interaction of molecules at surfaces in dye-sensitized solar cells, nanoparticles, sensors, materials for waste remediation, and catalysts.

  5. CHARACTERIZATION OF INDIVIDUAL CHEMICAL REACTIONS CONSUMING ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136B

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J.; Stone, M.

    2009-09-02

    Conversion of legacy radioactive high-level waste at the Savannah River Site into a stable glass waste form involves a chemical pretreatment process to prepare the waste for vitrification. Waste slurry is treated with nitric and formic acids to achieve certain goals. The total quantity of acid added to a batch of waste slurry is constrained by the catalytic activity of trace noble metal fission products in the waste that can convert formic acid into hydrogen gas at many hundreds of times the radiolytic hydrogen generation rate. A large block of experimental process simulations were performed to characterize the chemical reactions that consume acid prior to hydrogen generation. The analysis led to a new equation for predicting the quantity of acid required to process a given volume of waste slurry.

  6. Vitamin B12, folic acid, ferritin and haematological variables among Thai construction site workers in urban Bangkok.

    PubMed

    Tungtrongchitr, R; Pongpaew, P; Phonrat, B; Chanjanakitskul, S; Paksanont, S; Migasena, P; Schelp, F P

    1995-01-01

    Serum vitamin B12, folic acid, ferritin and haematological variables were investigated in eighty-seven male and nineteen female construction site workers in Bangkok. Haemoglobin concentration, haematocrit and MCHC were found to be higher in male than in female workers. Serum ferritin was slightly higher in males than in females. Serum B12 was found to be higher in male than in female workers and serum folic acid level were significantly higher in female than in male workers. Vitamin B12 deficiency was found in 2.3 per cent and folic acid deficiency in 6.9 per cent of the male workers. Serum vitamin B12 and folic acid levels were normal for female workers. The adequate serum levels of vitamin B12 and folic acid might be the result of the habit of the workers to consume tonic drinks which contain glucose, caffeine, and vitamins especially vitamins B6, and B12.

  7. High-Temperature Decomposition of Brønsted Acid Sites in Gallium-Substituted Zeolites

    SciTech Connect

    K Al-majnouni; N Hould; W Lonergan; D Vlachos; R Lobo

    2011-12-31

    The dehydroxylation of Broensted acid sites (BAS) in Ga-substituted zeolites was investigated at temperatures up to 850 C using X-ray absorption spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry-temperature programmed desorption (MS-TPD). X-ray absorption near-edge spectroscopy (XANES) revealed that the majority of gallium has tetrahedral coordination even after complete dehydroxylation. The interatomic gallium-oxygen distance and gallium coordination number determined by extended X-ray absorption fine structure (EXAFS) are consistent with gallium in tetrahedral coordination at low T (< 550 C). Upon heating Ga-Beta and Ga-ZSM5 to 850 C, analysis of the EXAFS showed that 70 and 80% of the gallium was still in tetrahedral coordination. The remainder of the gallium was found to be in octahedral coordination. No trigonal Ga atoms were observed. FTIR measurements carried out at similar temperatures show that the intensity of the OH vibration due to BAS has been eliminated. MS-TPD revealed that hydrogen in addition to water evolved from the samples during dehydroxylation. This shows that dehydrogenation in addition to dehydration is a mechanism that contributes to BAS decomposition. Dehydrogenation was further confirmed by exposing the sample to hydrogen to regenerate some of the BAS as monitored by FTIR and MS-TPD.

  8. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids

    PubMed Central

    Amiram, Miriam; Haimovich, Adrian D; Fan, Chenguang; Wang, Yane-Shih; Aerni, Hans-Rudolf; Ntai, Ioanna; Moonan, Daniel W; Ma, Natalie J; Rovner, Alexis J; Hong, Seok Hoon; Kelleher, Neil L; Goodman, Andrew L; Jewett, Michael C; Söll, Dieter; Rinehart, Jesse; Isaacs, Farren J

    2016-01-01

    Expansion of the genetic code with nonstandard amino acids (nsAAs) has enabled biosynthesis of proteins with diverse new chemistries. However, this technology has been largely restricted to proteins containing a single or few nsAA instances. Here we describe an in vivo evolution approach in a genomically recoded Escherichia coli strain for the selection of orthogonal translation systems capable of multi-site nsAA incorporation. We evolved chromosomal aminoacyl-tRNA synthetases (aaRSs) with up to 25-fold increased protein production for p-acetyl-L-phenylalanine and p-azido-L-phenylalanine (pAzF). We also evolved aaRSs with tunable specificities for 14 nsAAs, including an enzyme that efficiently charges pAzF while excluding 237 other nsAAs. These variants enabled production of elastin-like-polypeptides with 30 nsAA residues at high yields (~50 mg/L) and high accuracy of incorporation (>95%). This approach to aaRS evolution should accelerate and expand our ability to produce functionalized proteins and sequence-defined polymers with diverse chemistries. PMID:26571098

  9. Site-specific dynamics of amyloid formation and fibrillar configuration of Aβ(1-23) using an unnatural amino acid.

    PubMed

    Liu, Haiyang; Lantz, Richard; Cosme, Patrick; Rivera, Nelson; Andino, Carlos; Gonzalez, Walter G; Terentis, Andrew C; Wojcikiewicz, Ewa P; Oyola, Rolando; Miksovska, Jaroslava; Du, Deguo

    2015-04-25

    We identify distinct site-specific dynamics over the time course of Aβ1-23 amyloid formation by using an unnatural amino acid, p-cyanophenylalanine, as a sensitive fluorescent and Raman probe. Our results also suggest the key role of an edge-to-face aromatic interaction in the conformational conversion to form and stabilize β-sheet structure.

  10. Forced Ambiguity of the Leucine Codons for Multiple-Site-Specific Incorporation of a Noncanonical Amino Acid

    PubMed Central

    Kwon, Inchan; Choi, Eun Sil

    2016-01-01

    Multiple-site-specific incorporation of a noncanonical amino acid into a recombinant protein would be a very useful technique to generate multiple chemical handles for bioconjugation and multivalent binding sites for the enhanced interaction. Previously combination of a mutant yeast phenylalanyl-tRNA synthetase variant and the yeast phenylalanyl-tRNA containing the AAA anticodon was used to incorporate a noncanonical amino acid into multiple UUU phenylalanine (Phe) codons in a site-specific manner. However, due to the less selective codon recognition of the AAA anticodon, there was significant misincorporation of a noncanonical amino acid into unwanted UUC Phe codons. To enhance codon selectivity, we explored degenerate leucine (Leu) codons instead of Phe degenerate codons. Combined use of the mutant yeast phenylalanyl-tRNA containing the CAA anticodon and the yPheRS_naph variant allowed incorporation of a phenylalanine analog, 2-naphthylalanine, into murine dihydrofolate reductase in response to multiple UUG Leu codons, but not to other Leu codon sites. Despite the moderate UUG codon occupancy by 2-naphthylalaine, these results successfully demonstrated that the concept of forced ambiguity of the genetic code can be achieved for the Leu codons, available for multiple-site-specific incorporation. PMID:27028506

  11. Dynamic HypA zinc site is essential for acid viability and proper urease maturation in Helicobacter pylori

    PubMed Central

    Johnson, Ryan C.; Hu, Heidi Q.; Merrell, D. Scott; Maroney, Michael J.

    2015-01-01

    Helicobacter pylori requires urease activity in order to survive in the acid environment of the human stomach. Urease is regulated in part by nickelation, a process that requires the HypA protein, which is a putative nickel metallochaperone that is generally associated with hydrogenase maturation. However, in H. pylori, HypA plays a dual role. In addition to an N-terminal nickel binding site, HypA proteins also contain a structural zinc site that is coordinated by two rigorously conserved CXXC sequences, which in H. pylori are flanked by His residues. These structural Zn sites are known to be dynamic, converting from Zn(Cys)4 centers at pH 7.2 to Zn(Cys)2(His)2 centers at pH 6.3 in the presence of Ni(II) ions. In this study, mutant strains of H. pylori that express zinc site variants of the HypA protein are used to show that the structural changes in the zinc site are important for the acid viability of the bacterium, and that a reduction in acid viability in these variants can be traced in large measure to deficient urease activity. This in turn leads to a model that connects the Zn(Cys)4 coordination to urease maturation. PMID:25608738

  12. The amino acid sequence around the active-site cysteine and histidine residues, and the buried cysteine residue in ficin.

    PubMed

    Husain, S S; Lowe, G

    1970-04-01

    Ficin that had been prepared from the latex of Ficus glabrata by salt fractionation and chromatography on carboxymethylcellulose was completely and irreversibly inhibited with 1,3-dibromo[2-(14)C]acetone and then treated with N-(4-dimethylamino-3,5-dinitrophenyl)maleimide in 6m-guanidinium chloride. After reduction and carboxymethylation of the labelled protein, it was digested with trypsin and alpha-chymotrypsin. Two radioactive peptides and two coloured peptides were isolated chromatographically and their sequences determined. The radioactive peptides revealed the amino acid sequences around the active-site cysteine and histidine residues and showed a high degree of homology with the omino acid sequence around the active-site cysteine and histidine residues in papain. The coloured peptides allowed the amino acid sequence around the buried cysteine residue in ficin to be determined.

  13. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue

    PubMed Central

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males’ subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  14. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    SciTech Connect

    Lummis, S.C.R.; Johnston, G.A.R. ); Nicoletti, G. ); Holan, G. )

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.

  15. Retinoic acid signalling centres in the avian embryo identified by sites of expression of synthesising and catabolising enzymes.

    PubMed

    Blentic, Aida; Gale, Emily; Maden, Malcolm

    2003-05-01

    Retinoic acid is an important signalling molecule in the developing embryo, but its precise distribution throughout development is very difficult to determine by available techniques. Examining the distribution of the enzymes by which it is synthesised by using in situ hybridisation is an alternative strategy. Here, we describe the distribution of three retinoic acid synthesising enzymes and one retinoic acid catabolic enzyme during the early stages of chick embryogenesis with the intention of identifying localized retinoic acid signalling regions. The enzymes involved are Raldh1, Raldh2, Raldh3, and Cyp26A1. Although some of these distributions have been described before, here we assemble them all in one species and several novel sites of enzyme expression are identified, including Hensen's node, the cardiac endoderm, the presumptive pancreatic endoderm, and the dorsal lens. This study emphasizes the dynamic pattern of expression of the enzymes that control the availability of retinoic acid as well as the role that retinoic acid plays in the development of many regions of the embryo throughout embryogenesis. This strategy provides a basis for understanding the phenotypes of retinoic acid teratology and retinoic acid-deficiency syndromes.

  16. Contrasting microbial functional genes in two distinct saline-alkali and slightly acidic oil-contaminated sites.

    PubMed

    Liang, Yuting; Zhao, Huihui; Zhang, Xu; Zhou, Jizhong; Li, Guanghe

    2014-07-15

    To compare the functional gene structure and diversity of microbial communities in saline-alkali and slightly acidic oil-contaminated sites, 40 soil samples were collected from two typical oil exploration sites in North and South China and analyzed with a comprehensive functional gene array (GeoChip 3.0). The overall microbial pattern was significantly different between the two sites, and a more divergent pattern was observed in slightly acidic soils. Response ratio was calculated to compare the microbial functional genes involved in organic contaminant degradation and carbon, nitrogen, phosphorus, and sulfur cycling. The results indicated a significantly low abundance of most genes involved in organic contaminant degradation and in the cycling of nitrogen and phosphorus in saline-alkali soils. By contrast, most carbon degradation genes and all carbon fixation genes had similar abundance at both sites. Based on the relationship between the environmental variables and microbial functional structure, pH was the major factor influencing the microbial distribution pattern in the two sites. This study demonstrated that microbial functional diversity and heterogeneity in oil-contaminated environments can vary significantly in relation to local environmental conditions. The limitation of nitrogen and phosphorus and the low degradation capacity of organic contaminant should be carefully considered, particularly in most oil-exploration sites with saline-alkali soils.

  17. Effects of acidic recharge on groundwater at the St. Kevin Gulch site, Leadville, Colorado

    USGS Publications Warehouse

    Paschke, S.S.; Harrison, W.J.; Walton-Day, K.

    2001-01-01

    The acid rock drainage-affected stream of St. Kevin Gulch recharges the Quaternary sand and gravel aquifer of Tennessee Park, near Leadville, Colorado, lowering pH and contributing iron, cadmium, copper, zinc and sulphate to the ground-water system. Dissolved metal mobility is controlled by the seasonal spring runoff as well as oxidation/reduction (redox) reactions in the aquifer. Oxidizing conditions occur in the unconfined portions of the aquifer whilst sulphate-reducing conditions are found down gradient where semi-confined groundwater flow occurs beneath a natural wetland. Iron-reducing conditions occur in the transition from unconfined to semi-confined groundwater flow. Dissolved iron concentrations are low to not detectable in the alluvial fan recharge zone and increase in a down gradient direction. The effects of low-pH, metal-rich recharge are pronounced during low-flow in the fall when there is a defined area of low pH groundwater with elevated concentrations of dissolved zinc, cadmium, copper and sulphate adjacent to St. Kevin Gulch. Dissolved metal and sulphate concentrations in the recharge zone are diluted during spring runoff, although the maximum concentrations of dissolved zinc, cadmium, copper and sulphate occur at selected down gradient locations during high flow. Dissolved zinc, cadmium and copper concentrations are low to not detectable, whereas dissolved iron concentrations are greatest, in groundwater samples from the sulphate-reducing zone. Attenuation of zinc, cadmium and copper beneath the wetland suggests sulphide mineral precipitation is occurring in the semi-confined aquifer, in agreement with previous site investigations and saturation index calculations. Adsorption of dissolved zinc, cadmium and copper onto iron hydroxides is a minor attenuation process due to the low pH of the groundwater system.

  18. Acid-Sulfate-Weathering Activity in Shergottite Sites on Mars Recorded in Grim Glasses

    NASA Technical Reports Server (NTRS)

    Rao, M. N.; Nyquist, L. E.; Ross, K.; Sutton, S. R.; Schwandt, C. S.

    2011-01-01

    Based on mass spectrometric studies of sulfur species in Shergotty and EET79001, [1] and [2] showed that sulfates and sulfides occur in different proportions in shergottites. Sulfur speciation studies in gas-rich impact-melt (GRIM) glasses in EET79001 by the XANES method [3] showed that S K-XANES spectra in GRIM glasses from Lith A indicate that S is associated with Ca and Al presumably as sulfides/sulfates whereas the XANES spectra of amorphous sulfide globules in GRIM glasses from Lith B indicate that S is associated with Fe as FeS. In these amorphous iron sulfide globules, [4] found no Ni using FE-SEM and suggested that the globules resulting from immiscible sulfide melt may not be related to the igneous iron sulfides having approximately 1-3% Ni. Furthermore, in the amorphous iron sulfides from 507 GRIM glass, [5] determined delta(sup 34)S values ranging from +3.5%o to -3.1%o using Nano-SIMS. These values plot between the delta(sup 34)S value of +5.25%o determined in the sulfate fraction in Shergotty [6] at one extreme and the value of -1.7%o obtained for igneous sulfides in EET79001 and Shergotty [7] at the other. These results suggest that the amorphous Fe-S globules likely originated by shock reduction of secondary iron sulfate phases occurring in the regolith precursor materials during impact [7]. Sulfates in the regolith materials near the basaltic shergottite sites on Mars owe their origin to surficial acid-sulfate interactions. We examine the nature of these reactions by studying the composition of the end products in altered regolith materials. For the parent material composition, we use that of the host shergottite material in which the impact glasses are situated.

  19. Trace metal biogeochemistry in mangrove ecosystems: a comparative assessment of acidified (by acid sulfate soils) and non-acidified sites.

    PubMed

    Nath, Bibhash; Birch, Gavin; Chaudhuri, Punarbasu

    2013-10-01

    The generation of acidity and subsequent mobilization of toxic metals induced by acid sulfate soils (ASSs) are known to cause severe environmental damage to many coastal wetlands and estuaries of Australia and worldwide. Mangrove ecosystems serve to protect coastal environments, but are increasingly threatened from such ASS-induced acidification due to variable hydrological conditions (i.e., inundation-desiccation cycles). However, the impact of such behaviors on trace metal distribution, bio-availability and accumulation in mangrove tissues, i.e., leaves and pneumatophores, are largely unknown. In this study, we examined how ASS-induced acidifications controlled trace metal distribution and bio-availability in gray mangrove (Avicennia marina) soils and in tissues in the Kooragang wetland, New South Wales, Australia. We collected mangrove soils, leaves and pneumatophores from a part of the wetland acidified from ASS (i.e., an affected site) for detailed biogeochemical studies. The results were compared with samples collected from a natural intertidal mangrove forest (i.e., a control site) located within the same wetland. Soil pH (mean: 5.90) indicated acidic conditions in the affected site, whereas pH was near-neutral (mean: 7.17) in the control site. The results did not show statistically significant differences in near-total and bio-available metal concentrations, except for Fe and Mn, between affected and control sites. Iron concentrations were significantly (p values≤0.001) greater in the affected site, whereas Mn concentrations were significantly (p values≤0.001) greater in the control site. However, large proportions of near-total metals were potentially bio-available in control sites. Concentrations of Fe and Ni were significantly (p values≤0.001) greater in leaves and pneumatophores of the affected sites, whereas Mn, Cu, Pb and Zn were greater in control sites. The degree of metal bio-accumulation in leaves and pneumatophores suggest contrasting

  20. Selective synthesis and characterization of single-site HY zeolite-supported rhodium complexes and their use as catalysts for ethylene hydrogenation and dimerization

    NASA Astrophysics Data System (ADS)

    Khivantsev, Konstantin

    Single-site Rh(CO)2, Rh(C2H4)2 and Rh(NO)2 complexes anchored on various dealuminated HY zeolites can be used as precursors for the selective surface mediated synthesis of well-defined site-isolated Rh(CO)(H)x complexes. DFT calculations and D 2 isotope exchange experiments provide strong evidence for the formation of a family of site isolated mononuclear rhodium carbonyl hydride complexes (including the first examples of RhH complexes with undissociated H2 ligands): Rh(CO)(H2), Rh(CO)(H)2, and Rh(CO)(H). The fraction of each individual complex formed varies significantly with the Si/Al ratio of the zeolite and the nature of the precursor used. HY zeolite-supported mononuclear Rh(CO)2 complexes are very active in ethylene hydrogenation and ethylene dimerization under ambient conditions. There is strong evidence for the cooperation mechanism between mononuclear rhodium complexes and Bronsted acid sites of the zeolite support in C-C bond formation process, as well as ethane formation. Finally, it is shown that the dimerization pathway selectivity can be progressively tuned (and completely switched off) by modifying the number of Bronsted acid sites on the zeolite surface. HY zeolite-supported mononuclear Rh(NO)2 complexes can be selectively formed upon exposure of Rh(CO)2/HY to the gas phase NO/He. They are structurally similar to Rh(CO)2/HY with Rh(I) retaining square planar geometry and nitrosyl ligands adopting a linear configuration. Rh(NO)2/HY30 is active in ethylene hydrogenation and ethylene dimerization under ambient conditions. This is the first unprecedented example of a supported transition-metal nitrosyl complex capable of performing a catalytic reaction. Moreover, this is the first example of a site-isolated Rh complex with ligands other than ethylene or carbonyl, which can catalyze both ethylene hydrogenation and dimerization. Unlike its dicarbonyl counterpart, dinitrosyl rhodium complex has a uniquely different reactivity towards ethylene and hydrogen

  1. A Mutational Analysis of the Active Site Loop Residues in cis-3-Chloroacrylic Acid Dehalogenase

    PubMed Central

    Schroeder, Gottfried K.; Huddleston, Jamison P.; Johnson, William H.; Whitman, Christian P.

    2013-01-01

    cis -3-Chloroacrylic acid dehalogenase (cis-CaaD) from Pseudomonas pavonaceae 170 and a homologue from Corynebacterium glutamicum designated Cg10062 share 34% sequence identity (54% similarity). The former catalyzes a key step in a bacterial catabolic pathway for the nematocide 1,3-dichloropropene, whereas the latter has no known biological activity. Although Cg10062 has the six active site residues (Pro-1, His-28, Arg-70, Arg-73, Tyr-103, Glu-114) that are critical for cis-CaaD activity, it shows only a low level cis-CaaD activity and lacks the specificity of cis-CaaD: Cg10062 processes both isomers of 3-chloroacrylate with a preference for the cis-isomer. Although the basis for these differences is unknown, a comparison of the crystal structures of the enzymes covalently modified by an adduct resulting from their incubation with the same inhibitor offers a possible explanation. A 6-residue active site loop in cis-CaaD shows a strikingly different conformation from that observed in Cg10062: the loop closes down on the active site of cis-CaaD, but not on that of Cg10062. In order to examine what this loop might contribute to cis-CaaD catalysis and specificity, the residues were changed individually to those found in Cg10062. Subsequent kinetic and mechanistic analysis suggests that the T34A mutant of cis-CaaD is more Cg10062-like. The mutant enzyme shows a 4-fold increase in Km (using cis-3-bromoacrylate), but not to the degree observed for Cg10062 (687-fold). The mutation also causes a 4-fold decrease in the burst rate (compared to the wild type cis-CaaD), whereas Cg10062 shows no burst rate. More telling is the reaction of the T34A mutant of cis-CaaD with the alternate substrate, 2,3-butadienoate. In the presence of NaBH4 and the allene, cis-CaaD is completely inactivated after one turnover due to the covalent modification of Pro-1. The same experiment with Cg10062 does not result in the covalent modification of Pro-1. The different outcomes are attributed to

  2. Amino acid sequence around the active-site serine residue in the acyltransferase domain of goat mammary fatty acid synthetase.

    PubMed Central

    Mikkelsen, J; Højrup, P; Rasmussen, M M; Roepstorff, P; Knudsen, J

    1985-01-01

    Goat mammary fatty acid synthetase was labelled in the acyltransferase domain by formation of O-ester intermediates by incubation with [1-14C]acetyl-CoA and [2-14C]malonyl-CoA. Tryptic-digest and CNBr-cleavage peptides were isolated and purified by high-performance reverse-phase and ion-exchange liquid chromatography. The sequences of the malonyl- and acetyl-labelled peptides were shown to be identical. The results confirm the hypothesis that both acetyl and malonyl groups are transferred to the mammalian fatty acid synthetase complex by the same transferase. The sequence is compared with those of other fatty acid synthetase transferases. PMID:3922356

  3. Distribution and integrated assessment of lead in an abandoned lead-acid battery site in Southwest China before redevelopment.

    PubMed

    Wang, Mei; Zhang, Chao; Zhang, Zhuo; Li, Fasheng; Guo, Guanlin

    2016-06-01

    Lead-acid battery sites have contributed enormous amounts of lead to the environment, significantly affecting its global biogeochemical cycle and leaving the potential risks to human health. An abandoned lead-acid battery site prepared for redevelopment was selected in order to study the distribution of lead in soils, plants, rhizosphere soils and soil solutions. In total, 197 samples from 77 boreholes were collected and analyzed. Single extractions by acetic acid (HOAc) were conducted to assess the bioavailability and speciation of lead in soils for comparison with the parts of the plants that are aboveground. Health risks for future residential development were evaluated by the integrated exposure uptake biokinetic (IEUBK) model. The results indicated that lead concentrations in 83% of the soil samples exceeded the Chinese Environmental Quality Standard for soil (350 mg/kg for Pb) and mainly occurred at depths between 0 and 1.5 m while accumulating at the surface of demolished construction waste and miscellaneous fill. Lead concentrations in soil solutions and HOAc extraction leachates were linked closely to the contents of aboveground Broussonetia papyrifera and Artemisia annua, two main types of local plants that were found at the site. The probability density of lead in blood (PbB) in excess of 10 µg/dL could overtake the 99% mark in the residential scenario. The findings provided a relatively integrated method to illustrate the onsite investigations and assessment for similar sites before remediation and future development from more comprehensive aspects.

  4. Quantitative assessment of the preferences for the amino acid residues flanking archaeal N-linked glycosylation sites.

    PubMed

    Igura, Mayumi; Kohda, Daisuke

    2011-05-01

    Oligosaccharyltransferase (OST) catalyzes the transfer of an oligosaccharide to an asparagine residue in polypeptide chains. Using positional scanning peptide libraries, we assessed the effects of amino acid variations on the in vitro glycosylation efficiency within and adjacent to an N-glycosylation consensus, Asn-X-Ser/Thr, with an archaeal OST from Pyrococcus furiosus. The amino acid variations at the X(-2), X(-1) and X(+1) positions in the sequence X(-2)-X(-1)-Asn-X-Ser/Thr-X(+1) strongly influenced the glycosylation efficiency to a similar extent at position X. The rank orders of the amino acid preferences were unique at each site. We experimentally confirmed that the archaeal OST does not require an acidic residue at the -2 position, unlike the eubacterial OSTs. Pro was disfavored at the -1 and +1 positions, although the exclusion was not as strict as that at X, whereas Pro was the most favored amino acid residue among those studied at the -2 position. The overall amino acid preferences are correlated with a conformational propensity to extend around the sequon. The results of the library experiments revealed that the optimal acceptor sequence was PYNVTK, with a K(m) of 10 µM. The heat-stable, single-subunit OST of P. furiosus is a potential candidate enzyme for the production of recombinant glycoproteins in bacterial cells. Quantitative assessment of the amino acid preferences of the OST enzyme will facilitate the proper design of a production system.

  5. A comparison of copper and acid site zeolites for the production of nitric oxide for biomedical applications.

    PubMed

    Russell, Samantha E; González Carballo, Juan María; Orellana-Tavra, Claudia; Fairen-Jimenez, David; Morris, Russell E

    2017-03-21

    Copper-exchanged and acidic zeolites are shown to produce nitric oxide (NO) from a nitrite source in biologically active (nanomolar) concentrations. Four zeolites were studied; mordenite, ferrierite, ZSM-5 and SSZ-13, which had varying pore size, channel systems and Si/Al ratios. ZSM-5 and SSZ-13 produced the highest amounts of NO in both the copper and acid form. The high activity and regeneration of the copper active sites makes them good candidates for long-term NO production. Initial cytotoxicity tests have shown at least one of the copper zeolites (Cu-SSZ-13) to be biocompatible, highlighting the potential usage within biomedical applications.

  6. Mapping of colicin E2 and colicin E3 plasmid deoxyribonucleic acid EcoR-1-sensitive sites.

    PubMed

    Inselburg, J; Johns, V

    1975-01-01

    Colicin plasmids E2 and E3 (Col E2 and Col E3) deoxyribonucleic acid (DNA) has been shown to contain, respectively, two and three EcoR1 restriction endonuclease-sensitive sites. This was determined by measuring the DNA fragments generated after EcoR1 endonuclease treatment by agarose gel electrophoresis and electron microscopy. The structure of heteroduplex Col E2-col E3 DNA molecules formed from EcoR1-generated fragments permitted a localization of the EcoR1-sensitive sites on the plasmid chromosomes.

  7. Synthesis, characterization, and reactivity studies of heterodinuclear complexes modeling active sites in purple acid phospatases.

    PubMed

    Jarenmark, Martin; Haukka, Matti; Demeshko, Serhiy; Tuczek, Felix; Zuppiroli, Luca; Meyer, Franc; Nordlander, Ebbe

    2011-05-02

    To model the heterodinuclear active sites in plant purple acid phosphatases, a mononuclear synthon, [Fe(III)(H(2)IPCPMP)(Cl(2))][PF(6)] (1), has been generated in situ from the ligand 2-(N-isopropyl-N-((2-pyridyl)methyl)aminomethyl)-6-(N-(carboxylmethyl)-N-((2-pyridyl)methyl)amino methyl)-4-methylphenol (IPCPMP) and used to synthesize heterodinuclear complexes of the formulas [Fe(III)M(II)(IPCPMP)(OAc)(2)(CH(3)OH)][PF(6)] (M = Zn (2), Co (3), Ni (4), Mn (5)), [Fe(III)Zn(II)(IPCPMP)(mpdp)][PF(6)] (6) (mpdp = meta-phenylene-dipropionate), and [Fe(III)Cu(II)(IPCPMP) (OAc)}(2)(μ-O)][PF(6)] (7). Complexes 2-4, 6, and 7 have been crystallographically characterized. The structure of 6 is a solid state coordination polymer with heterodinuclear monomeric units, and 7 is a tetranuclear complex consisting of two heterodinuclear phenolate-bridged Fe(III)Cu(II) units bridged through a μ-oxido group between the two Fe(III) ions. Mössbauer spectra confirm the presence of high spin Fe(III) in an octahedral environment for 1, 3, and 5 while 2 and 4 display relaxation effects. Magnetic susceptibility measurements indicate weak antiferromagnetic coupling for 3, 4, and 5 and confirm the assignment of the metal centers in 2-5 as high spin Fe(III)-M(II) (M = Zn, Co (high spin), Ni (high spin), Mn (high spin)). Complexes 2-5 are intact in acetonitrile solution as indicated by IR spectroscopy (for 2-4) and electrospray ionization mass spectrometry (ESI-MS) but partly dissociate to hydroxide species and a mononuclear complex in water/acetonitrile solutions. UV-vis spectroscopy reveal pH-dependent behavior, and species that form upon increasing the pH have been assigned to μ-hydroxido-bridged Fe(III)M(II) complexes for 2-5 although 2 and 3 is further transformed into what is propsed to be a μ-oxido-bridged tetranuclear complex similar to 7. Complexes 2-5 enhance phosphodiester cleavage of 2-hydroxy-propyl-p-nitrophenyl phosphate (HPNP) and bis(2,4-dinitrophenyl)phosphate (BDNPP), but

  8. Highly efficient one-step conversion of cyclohexane to adipic acid using single-site heterogeneous catalysts.

    PubMed

    Raja, Robert; Thomas, John Meurig; Xu, Mingcan; Harris, Kenneth D M; Greenhill-Hooper, Michael; Quill, Kieran

    2006-01-28

    A solid source of 'active' oxygen (acetylperoxyborate, APB), when dissolved in aqueous solution in the presence of a single-site microporous catalyst containing redox centres (Fe(III)AlPO-31, Mn(III)AlPO-5, Fe(III)AlPO-5), converts cyclohexane with high efficiency (ca. 88%) and exceptionally high selectivity (ca. 81%) to adipic acid at 383 K; this procedure is also effective in converting styrene to styrene oxide and -pinene and (+)-limonene to their corresponding epoxides.

  9. Identification of protein SUMOylation sites by mass spectrometry using combined microwave-assisted aspartic acid cleavage and tryptic digestion

    PubMed Central

    Osula, Omoruyi; Swatkoski, Stephen; Cotter, Robert J.

    2012-01-01

    SUMO (Small-Ubiquitin-like MOdifier) is a post-translational modifier of protein substrates at lysine residues that conjugates to proteins in response to various changes in the cell. As a result of SUMO modification, marked changes in transcription regulation, DNA repair, subcellular localization, and mitosis, among other cellular processes, are known to occur. However, while the identification of ubiquitylation sites by mass spectrometry is aided in part by the presence of a small di-amino acid GlyGly “tag” that remains on lysine residues following tryptic digestion, SUMOylation poses a particular challenge as the absence of a basic residue near to the SUMO C-terminus results in a significant 27 or 32 amino acid sequence branch conjugated to the substrate peptide. MS/MS analyses of these branch peptides generally reveal abundant fragment ions resulting from cleavage of the SUMO tail, but which obscure those needed for characterizing the target peptide sequence. Other approaches for identifying SUMO substrates exist and include overexpression of the SUMO isoforms using an N-terminal histidine tag, as well as site-directed mutagenesis of the C-terminal end of the SUMO sequence. Here, we employ combined enzymatic/chemical approaches which serve to shorten the SUMO tag, and thus help to simplify SUMO spectra, making interpretation of mass spectra and location of the SUMOylation site easier. As described in this report, we demonstrate a method for identifying SUMOylation sites using three commercially available SUMO- modified isoforms, and by employing acid-only and acid/trypsin cleavage strategies. These approaches were carried out using MALDI-TOF and LC/MS instrumentation, along with CID and ETD fragmentation. PMID:22576878

  10. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta; Lital , Schultz; Peter G. , Zhang; Zhiwen

    2010-10-12

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  11. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2011-08-30

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  12. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital [San Diego, CA; Schultz, Peter G [La Jolla, CA; Zhang, Zhiwen [San Diego, CA

    2012-02-14

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  13. Site-specific incorporation of redox active amino acids into proteins

    DOEpatents

    Alfonta, Lital; Schultz, Peter G.; Zhang, Zhiwen

    2009-02-24

    Compositions and methods of producing components of protein biosynthetic machinery that include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, and orthogonal pairs of tRNAs/synthetases, which incorporate redox active amino acids into proteins are provided. Methods for identifying these orthogonal pairs are also provided along with methods of producing proteins with redox active amino acids using these orthogonal pairs.

  14. Extending the Diffuse Layer Model of Surface Acidity Behavior: III. Estimating Bound Site Activity Coefficients

    EPA Science Inventory

    Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...

  15. Fluorescent amino acid undergoing excited state intramolecular proton transfer for site-specific probing and imaging of peptide interactions.

    PubMed

    Sholokh, Marianna; Zamotaiev, Oleksandr M; Das, Ranjan; Postupalenko, Viktoriia Y; Richert, Ludovic; Dujardin, Denis; Zaporozhets, Olga A; Pivovarenko, Vasyl G; Klymchenko, Andrey S; Mély, Yves

    2015-02-12

    Fluorescent amino acids bearing environment-sensitive fluorophores are highly valuable tools for site-selective probing of peptide/ligand interactions. Herein, we synthesized a fluorescent l-amino acid bearing the 4'-methoxy-3-hydroxyflavone fluorophore (M3HFaa) that shows dual emission, as a result of an excited state intramolecular proton transfer (ESIPT). The dual emission of M3HFaa was found to be substantially more sensitive to hydration as compared to previous analogues. By replacing the Ala30 and Trp37 residues of a HIV-1 nucleocapsid peptide, M3HFaa was observed to preserve the peptide structure and functions. Interaction of the labeled peptides with nucleic acids and lipid vesicles produced a strong switch in their dual emission, favoring the emission of the ESIPT product. This switch was associated with the appearance of long-lived fluorescence lifetimes for the ESIPT product, as a consequence of the rigid environment in the complexes that restricted the relative motions of the M3HFaa aromatic moieties. The strongest restriction and thus the longest fluorescence lifetimes were observed at position 37 in complexes with nucleic acids, where the probe likely stacks with the nucleobases. Based on the dependence of the lifetime values on the nature of the ligand and the labeled position, two-photon fluorescence lifetime imaging was used to identify the binding partners of the labeled peptides microinjected into living cells. Thus, M3HFaa appears as a sensitive tool for monitoring site selectively peptide interactions in solution and living cells.

  16. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    SciTech Connect

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla; Serne, R. Jeffrey

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at a substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.

  17. In situ fluorescence labelling of jasmonic acid binding sites in plant tissues with cadmium-free quantum dots.

    PubMed

    Liao, Qiumei; Yu, Ying; Cao, Yujuan; Lin, Bixia; Wei, Jingjing

    2015-02-01

    The fluorescence labelling of plant hormone binding sites is an important analytical technique in research on the molecular mechanisms of plant hormone activities. The authors synthesised a jasmonic acid (JA)-conjugated ZnS:Mn quantum dot (QD) probe, with a cubic structure and average hydrodynamic sizes of about 17.0 nm. The maximum fluorescence emission of the probe was recorded at about 585 nm. The probe was used for fluorescence labelling of JA binding sites in mung bean seedling tissues. Analysis revealed that the probe exhibited high selectivity to JA binding sites and good performance in eliminating interference from background fluorescence in plant tissues. In addition, the probe did not exhibit any apparent biotoxicity, and is much more suitable than probes constructed from CdTe QDs for the analysis of biological samples.

  18. The active site sulfenic acid ligand in nitrile hydratases can function as a nucleophile.

    PubMed

    Martinez, Salette; Wu, Rui; Sanishvili, Ruslan; Liu, Dali; Holz, Richard

    2014-01-29

    Nitrile hydratase (NHase) catalyzes the hydration of nitriles to their corresponding commercially valuable amides at ambient temperatures and physiological pH. Several reaction mechanisms have been proposed for NHase enzymes; however, the source of the nucleophile remains a mystery. Boronic acids have been shown to be potent inhibitors of numerous hydrolytic enzymes due to the open shell of boron, which allows it to expand from a trigonal planar (sp(2)) form to a tetrahedral form (sp(3)). Therefore, we examined the inhibition of the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) by boronic acids via kinetics and X-ray crystallography. Both 1-butaneboronic acid (BuBA) and phenylboronic acid (PBA) function as potent competitive inhibitors of PtNHase. X-ray crystal structures for BuBA and PBA complexed to PtNHase were solved and refined at 1.5, 1.6, and 1.2 Å resolution. The resulting PtNHase-boronic acid complexes represent a "snapshot" of reaction intermediates and implicate the cysteine-sulfenic acid ligand as the catalytic nucleophile, a heretofore unknown role for the αCys(113)-OH sulfenic acid ligand. Based on these data, a new mechanism of action for the hydration of nitriles by NHase is presented.

  19. Complete amino acid sequence of branched-chain amino acid aminotransferase (transaminase B) of Salmonella typhimurium, identification of the coenzyme-binding site and sequence comparison analysis

    SciTech Connect

    Feild, M.J.

    1988-01-01

    The complete amino acid sequence of the subunit of branched-chain amino acid aminotransferase of Salmonella typhimurium was determined by automated Edman degradation of peptide fragments generated by chemical and enzymatic digestion of S-carboxymethylated and S-pyridylethylated transaminase B. Peptide fragments of transaminase B were generated by treatment of the enzyme with trypsin, Staphylococcus aureus V8 protease, endoproteinase Lys-C, and cyanogen bromide. Protocols were developed for separation of the peptide fragments by reverse-phase high performance liquid chromatography (HPLC), ion-exchange HPLC, and SDS-urea gel electrophoresis. The enzyme subunit contains 308 amino acid residues and has a molecular weight of 33,920 daltons. The coenzyme-binding site was determined by treatment of the enzyme, containing bound pyridoxal 5-phosphate, with tritiated sodium borohydride prior to trypsin digestion. Monitoring radioactivity incorporation and peptide map comparisons with an apoenzyme tryptic digest, allowed identification of the pyridoxylated-peptide which was isolated by reverse-phase HPLC and sequenced. The coenzyme-binding site is a lysyl residue at position 159. Some peptides were further characterized by fast atom bombardment mass spectrometry.

  20. Modular organization of residue-level contacts shape the selection pressure on individual amino acid sites of ribosomal proteins.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2017-02-22

    Understanding the molecular evolution of macromolecular complexes in the light of their structure, assembly and stability is of central importance. Here we address how the modular organization of native molecular contacts shapes the selection pressure on individual residue sites of ribosomal complexes. The bacterial ribosomal complex is represented as a residue contact network where nodes represent amino acid/nucleotide residues and edges represent their van der Waals interactions. We find statistically overrepresented native amino acid-nucleotide contacts (OaantC, one amino acid contacts one or multiple nucleotides, inter-nucleotide contacts are disregarded). Contact number is defined as the number of nucleotides contacted. Involvement of individual amino acids in OaantCs with smaller contact numbers is more random, while only a few amino acids significantly contribute to OaantCs with higher contact numbers. An investigation of structure, stability and assembly of bacterial ribosome depicts the involvement of these OaantCs in diverse biophysical interactions stabilizing the complex, including high-affinity protein-RNA contacts, inter-protein cooperativity, inter-subunit bridge, packing of multiple ribosomal RNA domains etc. Amino acid-nucleotide constituents of OaantCs with higher contact numbers are generally associated with significantly slower substitution rates compared to that of OaantCs with smaller contact numbers. This evolutionary rate heterogeneity emerges from the strong purifying selection pressure that conserves the respective amino acid physicochemical properties relevant to the stabilizing interaction with OaantC nucleotides. An analysis of relative molecular orientations of OaantC residues and their interaction energetics provides the biophysical ground of purifying selection conserving OaantC amino acid physicochemical properties.

  1. Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites.

    PubMed Central

    Jiang, H; Parales, R E; Lynch, N A; Gibson, D T

    1996-01-01

    The terminal oxygenase component of toluene dioxygenase from Pseudomonas putida F1 is an iron-sulfur protein (ISP(TOL)) that requires mononuclear iron for enzyme activity. Alignment of all available predicted amino acid sequences for the large (alpha) subunits of terminal oxygenases showed a conserved cluster of potential mononuclear iron-binding residues. These were between amino acids 210 and 230 in the alpha subunit (TodC1) of ISP(TOL). The conserved amino acids, Glu-214, Asp-219, Tyr-221, His-222, and His-228, were each independently replaced with an alanine residue by site-directed mutagenesis. Tyr-266 in TodC1, which has been suggested as an iron ligand, was treated in an identical manner. To assay toluene dioxygenase activity in the presence of TodC1 and its mutant forms, conditions for the reconstitution of wild-type ISP(TOL) activity from TodC1 and purified TodC2 (beta subunit) were developed and optimized. A mutation at Glu-214, Asp-219, His-222, or His-228 completely abolished toluene dioxygenase activity. TodC1 with an alanine substitution at either Tyr-221 or Tyr-266 retained partial enzyme activity (42 and 12%, respectively). In experiments with [14C]toluene, the two Tyr-->Ala mutations caused a reduction in the amount of Cis-[14C]-toluene dihydrodiol formed, whereas a mutation at Glu-214, Asp-219, His-222, or His-228 eliminated cis-toluene dihydrodiol formation. The expression level of all of the mutated TWO proteins was equivalent to that of wild-type TodC1 as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot (immunoblot) analyses. These results, in conjunction with the predicted amino acid sequences of 22 oxygenase components, suggest that the conserved motif Glu-X3-4,-Asp-X2-His-X4-5-His is critical for catalytic function and the glutamate, aspartate, and histidine residues may act as mononuclear iron ligands at the site of oxygen activation. PMID:8655491

  2. [Identification of rat and human hemoglobin acetilation sites after its interaction with acetylsalicylic acid].

    PubMed

    Shreĭner, E V; Murashko, E A; Dubrovskiĭ, Ia D; Krasnov, N V; Podol'skaia, E P; Babakov, V N

    2012-01-01

    The possibility of interaction of 0.1 mg/mL acetylsalicylic acid with purified human and rat globin in vitro during 24 h at 37 degrees C was investigated. The rat globin can be modified with acetylsalicylic acid on aminoacid residues K-17, K-57, K-91, K-140 in alpha subunit as well as on K-18, K-77 in beta subunit. The human globin can be modified with acetylsalicylic acid on aminoacid residues K-17, K-41, K-57 and K-91 in alpha subunit as well as on K-18, K-96 and K- 133 in beta subunit. We identified of acetetylated lysines K-17 and K-57 in alpha subunit of human hemoglobin after incubation whole blood with 0.1 mg/mL acetylsalicylic acid during 3 h.

  3. The impact of acid treatment on soilwater chemistry at the Humex site

    SciTech Connect

    Vogt, R.D.; Ranneklev, S.B.; Mykkelbost, T.C. )

    1994-01-01

    The effects of acid treatment on soil water dissolved organic carbon (DOC) and inorganic chemistry are being monitored at the Humic Lake Acidification Experiment (HUMEX) in western Norway. The HUMEX project involves artificial acidification of half of a dystrophic lake and the corresponding drainage basin. Soil water chemistry data were collected from 30 monitoring lysimeters and 130 grid lysimeters. The samples from the monitoring lysimeters were collected before and, for a period of two years, after the onset of acid treatment. Operationally-defined functional fractions of DOC showed that hydrophilic (HPI) and hydrophobic (HPO) acids account for 60% to 90% of the DOC. In soils rich in DOC, the HPO acids were dominant, whereas in mineral soil horizons low in DOC, the HPI acid fractions were highest. The amount of DOC relative to labile aluminum and iron may determine the HPO/HPI acid ratio. The sulphate concentration has increased more in the treated than in the reference side. Coincident decreases in DOC and organically complexes aluminum (Al[sub 0]) concentrations were observed for surface histosol locations. The temporal and spatial variations in c(Al[sub 0]) were mainly explained by variation in c(DOC). 26 refs., 5 figs., 3 tabs.

  4. New amino acid changes in drug resistance sites and HBsAg in hepatitis B virus genotype H.

    PubMed

    Fernández-Galindo, D A; Sánchez-Ávila, F; Bobadilla-Morales, L; Gómez-Quiróz, P; Bueno-Topete, M; Armendáriz-Borunda, J; Sánchez-Orozco, L V

    2015-06-01

    Long-term treatment with retrotranscriptase (RT) inhibitors eventually leads to the development of drug resistance. Drug-related mutations occur naturally and these can be found in hepatitis B virus (HBV) carriers who have never received antiviral therapy. HBsAg are overlapped with RT domain, thus nucleot(s)ide analogues (NAs) resistance mutations and naturally-occurring mutations can cause amino acid changes in the HBsAg. Twenty-two patients with chronic hepatitis B were enrolled; three of them were previously treated with NAs and 19 were NAs-naïve treated. HBV reverse transcriptase region was sequenced; genotyping and analysis of missense mutations were performed in both RT domain and HBsAg. There was predominance of genotype H. Drug mutations were present in 18.2% of patients. Classical lamivudine resistance mutations (rtM204V/rtL180M) were present in one naïve-treatment patient infected with genotype G. New amino acid changes were identified in drug resistance sites in HBV strains from patients infected with genotype H; rtQ215E was present in two naïve-NAs treatment patients and rtI169M was identified in a patient previously treated with lamivudine. Mutations at sites rt169, rt204, and rt215 resulted in the Y161C, I195M, and C206W mutations at HBsAg. Also, new amino acid changes were identified in B-cell and T-cell epitopes and were more frequent in HBsAg compared to RT domain. In conclusion, new amino acid changes at antiviral resistance sites, B-cell and T-cell epitopes in HBV genotype H were identified in Mexican patients.

  5. Extent of the Acidification by N7-Coordinated cis-Diammine-Platinum(II) on the Acidic Sites of Guanine Derivatives

    PubMed Central

    Song, Bin; Oswald, Gerda; Bastian, Matthias

    1996-01-01

    Coordination of two monoprotonated 2'-deoxyguanosine 5'-monophosphate species, H(dGMP)−, via N7 to cis-(NH2)2Pt2+ gives the complex cis-(NH2)2Pt(H·dGMP)2 which is a four-protonic acid. The corresponding acidity constants were measured by potentiometric pH titrations (25℃; I = 0.1 M, NaNO3). The first two protons are released from the two -P(O)2(OH)− groups (PKa/1= 5.57; PKa/2 = 6.29) and the next two protons are from the H(N1) sites of the guanine residues (PKa/3 = 8.73; PKa/4 = 9.48). The micro acidity constants of the various sites are also evaluated. Comparison of these data with those determined for the three-protonic H2(dGMP)± (PKa/1 = 2.69 for the H+(N7) site; PKa/2 = 6.29 for -P(O)2(OH)− ;PKa/3 = 9.56 for H(N1)) shows that on average the N-7-coordinated Pt2+ acidifies the phosphate protons by Δ pKa = 0.36 and the H(N1) sites by Δ pKa = 0.46. These results are further compared with those obtained previously for cis-(NH2)2Pt(L)2, where L = 9-ethylguanine or monoprotonated 2'-deoxycytidine 5'-monophosphate. Conclusions regarding platinated DNA are also presented. PMID:18472808

  6. A study of the source-receptor relationships influencing the acidity of precipitation collected at a rural site in France

    NASA Astrophysics Data System (ADS)

    Charron, Aurélie; Plaisance, Hervé; Sauvage, Stéphane; Coddeville, Patrice; Galloo, Jean-Claude; Guillermo, René

    In order to examine the qualitative and quantitative source-receptor relationships responsible for acid rains at a background site in France, a receptor-oriented model was applied to the precipitation data collected from 1992 to 1995. Origins of acidic and alkaline species in precipitations have been investigated. The methodology combines precipitation chemical data with air parcel backward trajectories to establish concentration field maps of likely contributing sources. Highest acidities and concentrations of sulfate and nitrate in precipitation were associated with transport from the high emission areas of central Europe. Alkaline events were associated with air masses originating from Mediterranean basin or northern Africa. The quantitative relationships between the maps of potential sources and the European emissions of SO 2 and NO x were examined performing a correlation analysis. Good correlations were found between computed concentrations of acidic species and emissions of SO 2 and NO x. Substantial seasonal variations of acidic species were revealed. The highest concentrations occurred during the warm season. These seasonal variations are the effect of change of meteorological conditions and of the strength atmospheric processes according to the season.

  7. Modeling of recognition sites of nucleic acid bases aaand amide side chains of amino acids. Combination of experimental and theoretical approaches

    NASA Astrophysics Data System (ADS)

    Shelkovsky, V. S.; Stepanian, S. G.; Galetich, I. K.; Kosevich, M. V.; Adamowicz, L.

    2002-09-01

    A combined experimental-theoretical approach to modeling of building blocks of recognition complexes formed by nucleic acid bases and the amino-acids side-chain amino group is reviewed. The approach includes the temperature dependent field-ionization mass spectrometry and ab initio quantum chemical calculations. The mass spectrometric technique allows determination of interaction enthalpies of biomolecules in the gas phase, and the results it produces are directly comparable to the results obtained through theoretical modeling. In our works we have analyzed both thermodynamic and structural aspects of the recognition complexes of four canonical nucleic acid bases and acrylamide, which models the side chain of asparagine and glutamine. It has been shown that all bases can interact with amide group of the amino acids via their Watson-Crick sites when being incorporated into a single strand DNA or RNA. Stability of the complexes studied, expressed as -Δ H (kJ mole^{-1}) decreases as: m^9Gua (-59.5) > m^1Cyt (-57.0) > m^9Ade (-52.0) gg m^1Ura (-40.6). We have determined that in the double stranded DNA only purine bases can be recognized.

  8. Computational Identification of Protein Pupylation Sites by Using Profile-Based Composition of k-Spaced Amino Acid Pairs.

    PubMed

    Hasan, Md Mehedi; Zhou, Yuan; Lu, Xiaotian; Li, Jinyan; Song, Jiangning; Zhang, Ziding

    2015-01-01

    Prokaryotic proteins are regulated by pupylation, a type of post-translational modification that contributes to cellular function in bacterial organisms. In pupylation process, the prokaryotic ubiquitin-like protein (Pup) tagging is functionally analogous to ubiquitination in order to tag target proteins for proteasomal degradation. To date, several experimental methods have been developed to identify pupylated proteins and their pupylation sites, but these experimental methods are generally laborious and costly. Therefore, computational methods that can accurately predict potential pupylation sites based on protein sequence information are highly desirable. In this paper, a novel predictor termed as pbPUP has been developed for accurate prediction of pupylation sites. In particular, a sophisticated sequence encoding scheme [i.e. the profile-based composition of k-spaced amino acid pairs (pbCKSAAP)] is used to represent the sequence patterns and evolutionary information of the sequence fragments surrounding pupylation sites. Then, a Support Vector Machine (SVM) classifier is trained using the pbCKSAAP encoding scheme. The final pbPUP predictor achieves an AUC value of 0.849 in 10-fold cross-validation tests and outperforms other existing predictors on a comprehensive independent test dataset. The proposed method is anticipated to be a helpful computational resource for the prediction of pupylation sites. The web server and curated datasets in this study are freely available at http://protein.cau.edu.cn/pbPUP/.

  9. Interaction of P-aminobenzoic acid with normal and sickel erythrocyte membrane: photoaffinity labelling of the binding sites

    SciTech Connect

    Premachandra, B.R.

    1986-03-05

    Electron microscopic studies revealed that P-Amino benzoic acid (PABA) could prevent eichinocytosis of red cells in vitro. Equilibrium binding studies with right side out membrane vesicles (ROV) revealed a similar number of binding sites (1.2-1.4 ..mu..mol/mg) and Kd (1.4-1.6 mM) values for both normal and sickle cell membranes. /sup 14/C-Azide analogue of PABA was synthesized as a photoaffinity label to probe its sites of interaction on the erythrocyte membranes. Competitive binding studies of PABA with its azide indicated that both the compounds share common binding sites on the membrane surface since a 20 fold excess of azide inhibited PABA binding in a linear fashion. The azide was covalently incorporated into the membrane components only upon irradiation (52-35% of the label found in the proteins and the rest in lipids). Electrophoretic analysis of photolabelled ROV revealed that the azide interacts chiefly with Band 3 protein. PABA inhibited both high and low affinity calcium (Ca) binding sites situated on either surface of the membrane in a non-competitive manner; however, Ca binding stimulated by Mg-ATP was not affected. Ca transport into inside out vesicles was inhibited by PABA; but it did not affect the calcium ATP-ase activity. The authors studies suggest that the mechanism of action of PABA is mediated by its interaction with Band 3 protein (anion channel), calcium channel and calcium binding sites of erythrocyte membrane.

  10. MtPAN(3): site-class specific amino acid replacement matrices for mitochondrial proteins of Pancrustacea and Collembola.

    PubMed

    Nardi, Francesco; Liò, Pietro; Carapelli, Antonio; Frati, Francesco

    2014-06-01

    Phylogenetic analyses of Pancrustacea have generally relied on empirical models of amino acid substitution estimated from large reference datasets and applied to the entire alignment. More recently, following the observation that different sites, or groups of sites, may evolve under different evolutionary constraints, methods have been developed to deal with site or site-class specific models. A set of three matrices has been here developed based on an alignment of complete mitochondrial pancrustacean genomes partitioned using an unsupervised clustering procedure acting over per-site physiochemical properties. The performance of the proposed matrix set - named MtPAN(3) - was compared to relevant single matrix models (MtZOA, MtART, MtPAN) under ML and BI. While the application of the new model does not solve some of the topological problems frequently encountered with pancrustacean mitogenomic phylogenetic analyses, MtPAN(3) largely outperforms its competitors based on AIC and Bayes factors, indicating a significantly improved fit to the empirical data. The applicability of the new model, as well as of multiple matrix models in general, is discussed and an R/BioPerl script that implements the procedure is provided.

  11. Counting Active Sites on Titanium Oxide-Silica Catalysts for Hydrogen Peroxide Activation through In Situ Poisoning with Phenylphosphonic Acid

    SciTech Connect

    Eaton, Todd R.; Boston, Andrew M.; Thompson, Anthony B.; Gray, Kimberly A.; Notestein, Justin M.

    2015-06-04

    Quantifying specific active sites in supported catalysts improves our understanding and assists in rational design. Supported oxides can undergo significant structural changes as surface densities increase from site-isolated cations to monolayers and crystallites, which changes the number of kinetically relevant sites. Herein, TiOx domains are titrated on TiOx–SiO2 selectively with phenylphosphonic acid (PPA). An ex situ method quantifies all fluid-accessible TiOx, whereas an in situ titration during cis-cyclooctene epoxidation provides previously unavailable values for the number of tetrahedral Ti sites on which H2O2 activation occurs. We use this method to determine the active site densities of 22 different catalysts with different synthesis methods, loadings, and characteristic spectra and find a single intrinsic turnover frequency for cis-cyclooctene epoxidation of (40±7) h-1. This simple method gives molecular-level insight into catalyst structure that is otherwise hidden when bulk techniques are used.

  12. Self-catalyzed syntheses, structural characterization, DPPH radical scavenging-, cytotoxicity-, and DFT studies of phenoxyaliphatic acids of 1,8-dioxo-octahydroxanthene derivatives

    NASA Astrophysics Data System (ADS)

    Suresh Kumar, G. S.; Antony Muthu Prabhu, A.; Seethalashmi, P. G.; Bhuvanesh, N.; Kumaresan, S.

    2014-02-01

    One-pot, in-water syntheses of phenoxyaliphatic acids of 1,8-dioxo-octahydroxanthene derived from dimedone and formylphenoxyaliphatic acids are reported. Geometries of compounds 2b, 2c, and 5a have been examined crystallographically. The synthesized compounds showed better DPPH radical scavenging activity and cytotoxicity against A431 cancer cell line. The molecular properties of all synthesized xanthenes have been investigated using single crystal XRD and DFT method. Self-catalyzed Bronsted-Lowry acid catalytic behavior was also investigated by both experimental and theoretical methods.

  13. CD44 Binding to Hyaluronic Acid Is Redox Regulated by a Labile Disulfide Bond in the Hyaluronic Acid Binding Site

    PubMed Central

    Kellett-Clarke, Helena; Stegmann, Monika; Barclay, A. Neil; Metcalfe, Clive

    2015-01-01

    CD44 is the primary leukocyte cell surface receptor for hyaluronic acid (HA), a component of the extracellular matrix. Enzymatic post translational cleavage of labile disulfide bonds is a mechanism by which proteins are structurally regulated by imparting an allosteric change and altering activity. We have identified one such disulfide bond in CD44 formed by Cys77 and Cys97 that stabilises the HA binding groove. This bond is labile on the surface of leukocytes treated with chemical and enzymatic reducing agents. Analysis of CD44 crystal structures reveal the disulfide bond to be solvent accessible and in the–LH hook configuration characteristic of labile disulfide bonds. Kinetic trapping and binding experiments on CD44-Fc chimeric proteins show the bond is preferentially reduced over the other disulfide bonds in CD44 and reduction inhibits the CD44-HA interaction. Furthermore cells transfected with CD44 no longer adhere to HA coated surfaces after pre-treatment with reducing agents. The implications of CD44 redox regulation are discussed in the context of immune function, disease and therapeutic strategies. PMID:26379032

  14. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.

    PubMed

    Anguizola, Jeanethe; Debolt, Erin; Suresh, D; Hage, David S

    2016-05-15

    The primary endogenous ligands of human serum albumin (HSA) are non-esterified fatty acids, with 0.1-2mol of fatty acids normally being bound to HSA. In type II diabetes, fatty acid levels in serum are often elevated, and the presence of high glucose results in an increase in the non-enzymatic glycation of HSA. High-performance affinity chromatography (HPAC) was used to examine the combined effects of glycation and the presence of long chain fatty acids on the binding of HSA with R-warfarin and l-tryptophan (i.e., probes for Sudlow sites I and II, the major sites for drugs on this protein). Zonal elution competition studies were used to examine the interactions of myristic acid, palmitic acid and stearic acid with these probes on HSA. It was found that all these fatty acids had direct competition with R-warfarin at Sudlow site I of normal HSA and glycated HSA, with the glycated HSA typically having stronger binding for the fatty acids at this site. At Sudlow site II, direct competition was observed for all the fatty acids with l-tryptophan when using normal HSA, while glycated HSA gave no competition or positive allosteric interactions between these fatty acids and l-tryptophan. These data indicated that glycation can alter the interactions of drugs and fatty acids at specific binding sites on HSA. The results of this study should lead to a better understanding of how these interactions may change during diabetes and demonstrate how HPAC can be used to examine drug/solute-protein interactions in complex systems.

  15. Organic/inorganic hybrid amine and sulfonic acid tethered silica materials: Synthesis, characterization and application

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Christopher

    The major goals of this thesis were to: (1) create a site-isolated aminosilica material with higher amine loadings than previously reported isolation methods, (2) use spectroscopic, reactivity, and catalytic (olefin polymerization precatalysts) probes to determine isolation of amine groups on these organic/inorganic hybrid materials, (3) synthesize an organic/inorganic hybrid material capable of activating Group 4 olefin polymerization precatalysts, and (4) synthesize a high amine loaded organic/inorganic hybrid material capable of reversibly capturing CO2 in a simulated flue gas stream. The underlying motivation of this research involved the synthesis and design of novel amine and sulfonic acid materials. Traditional routes to synthesize aminosilicas have led to the formation of a high loading of multiple types of amine sites on the silica surface. Part of this research involved the creation of a new aminosilica material via a protection/deprotection method designed to prevent multiple sites, while maintaining a relatively high loading. As a characterization technique, fluorescence spectroscopy of pyrene-based fluorophores loaded on traditional aminosilicas and site-isolated aminosilicas was used to probe the degree of site-isolation obtained with these methods. Also, this protection/deprotection method was compared to other reported isolation techniques with heterogeneous Group 4 constrained-geometry inspired catalysts (CGCs). It was determined that the degree of separation of the amine sites could be controlled with protection/deprotection methods. Furthermore, an increase in the reactivity of the amines and the catalytic activity of CGCs built off of the amines was determined for aminosilicas synthesized by a protection/deprotection method. The second part of this work involved developing organic/inorganic hybrid materials as heterogeneous Bronsted acidic cocatalysts for activation of olefin polymerization precatalysts. This was the first reported organic

  16. Subnucleosomes and their relationships to the arrangement of histone binding sites along nucleosome deoxyribonucleic acid

    SciTech Connect

    Nelson, D.A.; Mencke, A.J.; Chambers, S.A.; Oosterhof, D.K.; Rill, R.L.

    1982-01-01

    Micrococcal nuclease cleaves within nucleosomes at sites spaced about 10.4 base pairs (bp) apart. Cleavages at sites equivalent to 30-35 bp from the ends of 146-bp cores cause spontaneous loss of an H2a-H2b pair associated with 30-40 bp length DNA. Cleavages at certain other sites do not affect the nucleosome integrity unless a solvent perturbant such as urea is added. Chromatin moderately digested with micrococcal nuclease, when fractionated by sedimentation or electrophoresis in the presence of 3 M urea, yielded four previously unobserved subnucleosomes with the following histone/DNA compositions: (H3)/sub 2/(H4)/sub 2/(H2a)(H2b)/95-115 bp; (H3)(H4)/70-80 bp DNA; (H2a)(H2b)/50-60 bp DNA; and (H1)/60-70 bp DNA. All but the latter subnucleosome were also obtained upon DNase I digestion of purified nucleosome cores labeled on the 5' ends with /sup 32/P. Only subnucleosomes that retained H2a and H2b also retained labeled ends. These results show that H2a and H2b are paired on the terminal 30-40 bp of core DNA, as suggested from analyses of histone-DNA cross-link products by Mirzabekov and coworkers. Considerations of the orgins and compositions of subnucleosomes and of cross-linking data suggest an expanded model for the locations of histone binding sites along nucleosome core DNA. The principal features of this model are (i) strong electrostatic binding sites of H2a and H2b occur at positions approximately 20-30 bp from the core ends, (ii) strong electrostatic binding sites of H3 and H4 occur primarily on the central 40 bp of core DNA, (iii) strong nonelectrostatic, urea-sensitive binding sites of H3 and H4 occur at positions approximately 30-50 bp from the core ends, and (iv) urea-sensitive binding sites of H2a or H2b may occur on the terminal 10-20 bp of core DNA.

  17. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.

    PubMed

    Xu, Yan; Wang, Xiaobo; Wang, Yongcui; Tian, Yingjie; Shao, Xiaojian; Wu, Ling-Yun; Deng, Naiyang

    2014-03-07

    Post-translational modification (PTM) is the chemical modification of a protein after its translation and one of the later steps in protein biosynthesis for many proteins. It plays an important role which modifies the end product of gene expression and contributes to biological processes and diseased conditions. However, the experimental methods for identifying PTM sites are both costly and time-consuming. Hence computational methods are highly desired. In this work, a novel encoding method PSPM (position-specific propensity matrices) is developed. Then a support vector machine (SVM) with the kernel matrix computed by PSPM is applied to predict the PTM sites. The experimental results indicate that the performance of new method is better or comparable with the existing methods. Therefore, the new method is a useful computational resource for the identification of PTM sites. A unified standalone software PTMPred is developed. It can be used to predict all types of PTM sites if the user provides the training datasets. The software can be freely downloaded from http://www.aporc.org/doc/wiki/PTMPred.

  18. Technology development for phosphoric acid fuel cell powerplant (phase 2). [on site integrated energy systems

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    Progress is reported in the development of material, cell components, and reformers for on site integrated energy systems. Internal resistance and contact resistance were improved. Dissolved gases (O2, N2, and CO2) were found to have no effect on the electrochemical corrosion of phenolic composites. Stack performance was increased by 100 mV over the average 1979 level.

  19. Experimental and Mechanistic Understanding of Aldehyde Hydrogenation Using Au25 Nanoclusters with Lewis Acids: Unique Sites for Catalytic Reactions.

    PubMed

    Li, Gao; Abroshan, Hadi; Chen, Yuxiang; Jin, Rongchao; Kim, Hyung J

    2015-11-18

    The catalytic activity of Au25(SR)18 nanoclusters (R = C2H4Ph) for the aldehyde hydrogenation reaction in the presence of a base, e.g., ammonia or pyridine, and transition-metal ions M(z+), such as Cu(+), Cu(2+), Ni(2+) and Co(2+), as a Lewis acid is studied. The addition of a Lewis acid is found to significantly promote the catalytic activity of Au25(SR)18/CeO2 in the hydrogenation of benzaldehyde and a number of its derivatives. Matrix-assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry in conjunction with UV-vis spectroscopy confirm the generation of new species, Au25-n(SR)18-n (n = 1-4), in the presence of a Lewis acid. The pathways for the speciation of Au24(SR)17 from its parent Au25(SR)18 nanocluster as well as its structure are investigated via the density functional theory (DFT) method. The adsorption of M(z+) onto a thiolate ligand "-SR-" of Au25(SR)18, followed by a stepwise detachment of "-SR-" and a gold atom bonded to "-SR-" (thus an "Au-SR" unit) is found to be the most likely mechanism for the Au24(SR)17 generation. This in turn exposes the Au13-core of Au24(SR)17 to reactants, providing an active site for the catalytic hydrogenation. DFT calculations indicate that M(z+) is also capable of adsorbing onto the Au13-core surface, producing a possible active metal site of a different kind to catalyze the aldehyde hydrogenation reaction. This study suggests, for the first time, that species with an open metal site like adducts [nanoparticle-M]((z-1)+) or fragments Au25-n(SR)18-n function as the catalysts rather than the intact Au25(SR)18.

  20. Hydrogenation of biofuels with formic acid over a palladium-based ternary catalyst with two types of active sites.

    PubMed

    Wang, Liang; Zhang, Bingsen; Meng, Xiangju; Su, Dang Sheng; Xiao, Feng-Shou

    2014-06-01

    A composite catalyst including palladium nanoparticles on titania (TiO2) and on nitrogen-modified porous carbon (Pd/TiO2@N-C) is synthesized from palladium salts, tetrabutyl titanate, and chitosan. N2 sorption isotherms show that the catalyst has a high BET surface area (229 m(2)  g(-1)) and large porosity. XPS and TEM characterization of the catalyst shows that palladium species with different chemical states are well dispersed across the TiO2 and nitrogen-modified porous carbon, respectively. The Pd/TiO2@N-C catalyst is very active and shows excellent stability towards hydrogenation of vanillin to 2-methoxy-4-methylphenol using formic acid as hydrogen source. This activity can be attributed to a synergistic effect between the Pd/TiO2 (a catalyst for dehydrogenation of formic acid) and Pd/N-C (a catalyst for hydrogenation of vanillin) sites.

  1. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor

    PubMed Central

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K.; Gorska, Magdalena; Tuszynski, Jack A.; Wozniak, Michal

    2016-01-01

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding. PMID:26735581

  2. Chicoric acid binds to two sites and decreases the activity of the YopH bacterial virulence factor.

    PubMed

    Kuban-Jankowska, Alicja; Sahu, Kamlesh K; Gorska, Magdalena; Tuszynski, Jack A; Wozniak, Michal

    2016-01-19

    Chicoric acid (CA) is a phenolic compound present in dietary supplements with a large spectrum of biological properties reported ranging from antioxidant, to antiviral, to immunostimulatory properties. Due to the fact that chicoric acid promotes phagocytic activity and was reported as an allosteric inhibitor of the PTP1B phosphatase, we examined the effect of CA on YopH phosphatase from pathogenic bacteria, which block phagocytic processes of a host cell. We performed computational studies of chicoric acid binding to YopH as well as validation experiments with recombinant enzymes. In addition, we performed similar studies for caffeic and chlorogenic acids to compare the results. Docking experiments demonstrated that, from the tested compounds, only CA binds to both catalytic and secondary binding sites of YopH. Our experimental results showed that CA reduces activity of recombinant YopH phosphatase from Yersinia enterocolitica and human CD45 phosphatase. The inhibition caused by CA was irreversible and did not induce oxidation of catalytic cysteine. We proposed that inactivation of YopH induced by CA is involved with allosteric inhibition by interacting with essential regions responsible for ligand binding.

  3. Design of protease-resistant myelin basic protein-derived peptides by cleavage site directed amino acid substitutions.

    PubMed

    Burster, Timo; Marin-Esteban, Viviana; Boehm, Bernhard O; Dunn, Shannon; Rotzschke, Olaf; Falk, Kirsten; Weber, Ekkehard; Verhelst, Steven H L; Kalbacher, Hubert; Driessen, Christoph

    2007-11-15

    Multiple Sclerosis (MS) is considered to be a T cell-mediated autoimmune disease. An attractive strategy to prevent activation of autoaggressive T cells in MS, is the use of altered peptide ligands (APL), which bind to major histocompatibility complex class II (MHC II) molecules. To be of clinical use, APL must be capable of resisting hostile environments including the proteolytic machinery of antigen presenting cells (APC). The current design of APL relies on cost- and labour-intensive strategies. To overcome these major drawbacks, we used a deductive approach which involved modifying proteolytic cleavage sites in APL. Cleavage site-directed amino acid substitution of the autoantigen myelin basic protein (MBP) resulted in lysosomal protease-resistant, high-affinity binding peptides. In addition, these peptides mitigated T cell activation in a similar fashion as conventional APL. The strategy outlined allows the development of protease-resistant APL and provides a universal design strategy to improve peptide-based immunotherapeutics.

  4. Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 2: Peptide Tags and Unnatural Amino Acids

    PubMed Central

    Adumeau, Pierre; Sharma, Sai Kiran; Brent, Colleen; Zeglis, Brian M.

    2016-01-01

    Molecular imaging using radioisotope- or fluorophore-labeled antibodies is increasingly becoming a critical component of modern precision medicine. Yet despite this promise, the vast majority of these immunoconjugates are synthesized via the random coupling of amine-reactive bifunctional probes to lysines within the antibody, a process that can result in heterogeneous and poorly defined constructs with suboptimal pharmacological properties. In an effort to circumvent these issues, the last 5 years have played witness to a great deal of research focused on the creation of effective strategies for the site-specific attachment of payloads to antibodies. These chemoselective modification methods yield immunoconjugates that are more homogenous and better defined than constructs created using traditional synthetic approaches. Moreover, site-specifically labeled immunoconjugates have also been shown to exhibit superior in vivo behavior compared to their randomly modified cousins. The over-arching goal of this two-part review is to provide a broad yet detailed account of the various site-specific bioconjugation approaches that have been used to create immunoconjugates for positron emission tomography (PET), single photon emission computed tomography (SPECT), and fluorescence imaging. In Part 1, we covered site-specific bioconjugation techniques based on the modification of cysteine residues and the chemoenzymatic manipulation of glycans. In Part 2, we will detail two families of bioconjugation approaches that leverage biochemical tools to achieve site-specificity. First, we will discuss modification methods that employ peptide tags either as sites for enzyme-catalyzed ligations or as radiometal coordination architectures. And second, we will examine bioconjugation strategies predicated on the incorporation of unnatural or non-canonical amino acids into antibodies via genetic engineering. Finally, we will compare the advantages and disadvantages of the modification

  5. Using Unnatural Amino Acids to Probe the Energetics of Oxyanion Hole Hydrogen Bonds in the Ketosteroid Isomerase Active Site

    PubMed Central

    2015-01-01

    Hydrogen bonds are ubiquitous in enzyme active sites, providing binding interactions and stabilizing charge rearrangements on substrate groups over the course of a reaction. But understanding the origin and magnitude of their catalytic contributions relative to hydrogen bonds made in aqueous solution remains difficult, in part because of complexities encountered in energetic interpretation of traditional site-directed mutagenesis experiments. It has been proposed for ketosteroid isomerase and other enzymes that active site hydrogen bonding groups provide energetic stabilization via “short, strong” or “low-barrier” hydrogen bonds that are formed due to matching of their pKa or proton affinity to that of the transition state. It has also been proposed that the ketosteroid isomerase and other enzyme active sites provide electrostatic environments that result in larger energetic responses (i.e., greater “sensitivity”) to ground-state to transition-state charge rearrangement, relative to aqueous solution, thereby providing catalysis relative to the corresponding reaction in water. To test these models, we substituted tyrosine with fluorotyrosines (F-Tyr’s) in the ketosteroid isomerase (KSI) oxyanion hole to systematically vary the proton affinity of an active site hydrogen bond donor while minimizing steric or structural effects. We found that a 40-fold increase in intrinsic F-Tyr acidity caused no significant change in activity for reactions with three different substrates. F-Tyr substitution did not change the solvent or primary kinetic isotope effect for proton abstraction, consistent with no change in mechanism arising from these substitutions. The observed shallow dependence of activity on the pKa of the substituted Tyr residues suggests that the KSI oxyanion hole does not provide catalysis by forming an energetically exceptional pKa-matched hydrogen bond. In addition, the shallow dependence provides no indication of an active site electrostatic

  6. Introduction of lewis acidic and redox-active sites into a porous framework for ammonia capture with visual color response.

    PubMed

    Tan, Bin; Chen, Cheng; Cai, Li-Xuan; Zhang, Ya-Jun; Huang, Xiao-Ying; Zhang, Jie

    2015-04-06

    Based on the Lewis acidic site and redox ability of bipyridinium ligand, a porous framework with an adsorption advantage for ammonia over water and color response ability has been constructed. The compound is highly stable and flexible to external stimuli, exhibiting reversible single-crystal-to-single-crystal transformations, in response to temperature change and NH3 capture. More attractively, the title compound shows obvious color change from yellow to dark blue when exposed to ammonia vapor within just a few seconds, indicating a strong ability to function as a visual colorimetric absorbent for ammonia.

  7. Two amino acid sequences direct Aspergillus nidulans protein kinase C (PkcA) localization to hyphal apices and septation sites.

    PubMed

    Jackson-Hayes, Loretta; Hill, Terry W; Loprete, Darlene M; DelBove, Claire E; Shapiro, Justin A; Henley, Jordan L; Dawodu, Omolola O

    2015-01-01

    The Aspergillus nidulans ortholog of protein kinase C (pkcA) is involved in the organism's putative cell wall integrity (CWI) pathway, and PkcA also is highly localized at growing tips and forming septa. In the present work we identify the regions within PkcA that are responsible for its localization to hyphal tips and septation sites. To this end, we used serially truncated pkcA constructs and expressed them as green fluorescent protein (GFP) chimeras and identified two regions that direct PkcA localization. The first region is a 10 amino-acid sequence near the carboxyl end of the C2 domain that is required for localization to hyphal tips. Proteins containing this sequence also localize to septation sites. A second region between C2 and C1B (encompassing C1A) is sufficient for localization to septation sites but not to hyphal tips. We also report that localization to hyphal tips and septation sites alone is not sufficient for truncated constructs to complement hypersensitivity to the cell wall compromising agent calcofluor white in a strain bearing a mutation in the pkcA gene. Taken together, these results suggest that localization and stress response might be independent.

  8. Structure and Mutagenesis of Neural Cell Adhesion Molecule Domains Evidence for Flexibility in the Placement of Polysialic Acid Attachment Sites

    SciTech Connect

    Foley, Deirdre A.; Swartzentruber, Kristin G.; Lavie, Arnon; Colley, Karen J.

    2010-11-09

    The addition of {alpha}2,8-polysialic acid to the N-glycans of the neural cell adhesion molecule, NCAM, is critical for brain development and plays roles in synaptic plasticity, learning and memory, neuronal regeneration, and the growth and invasiveness of cancer cells. Our previous work indicates that the polysialylation of two N-glycans located on the fifth immunoglobulin domain (Ig5) of NCAM requires the presence of specific sequences in the adjacent fibronectin type III repeat (FN1). To understand the relationship of these two domains, we have solved the crystal structure of the NCAM Ig5-FN1 tandem. Unexpectedly, the structure reveals that the sites of Ig5 polysialylation are on the opposite face from the FN1 residues previously found to be critical for N-glycan polysialylation, suggesting that the Ig5-FN1 domain relationship may be flexible and/or that there is flexibility in the placement of Ig5 glycosylation sites for polysialylation. To test the latter possibility, new Ig5 glycosylation sites were engineered and their polysialylation tested. We observed some flexibility in glycosylation site location for polysialylation and demonstrate that the lack of polysialylation of a glycan attached to Asn-423 may be in part related to a lack of terminal processing. The data also suggest that, although the polysialyltransferases do not require the Ig5 domain for NCAM recognition, their ability to engage with this domain is necessary for polysialylation to occur on Ig5 N-glycans.

  9. Remediation of acid mine drainage at the friendship hill national historic site with a pulsed limestone bed process

    USGS Publications Warehouse

    Sibrell, P.L.; Watten, B.; Boone, T.; ,

    2003-01-01

    A new process utilizing pulsed fluidized limestone beds was tested for the remediation of acid mine drainage at the Friendship Hill National Historic Site, in southwestern Pennsylvania. A 230 liter-per-minute treatment system was constructed and operated over a fourteen-month period from June 2000 through September 2001. Over this period of time, 50,000 metric tons of limestone were used to treat 50 million liters of water. The influent water pH was 2.5 and acidity was 1000 mg/L as CaCO3. Despite the high potential for armoring at the site, effluent pH during normal plant operation ranged from 5.7 to 7.8 and averaged 6.8. As a result of the high influent acidity, sufficient CO2 was generated and recycled to provide a net alkaline discharge with about 50 mg/L as CaCO3 alkalinity. Additions of commercial CO2 increased effluent alkalinity to as high as 300 mg/L, and could be a useful process management tool for transient high flows or acidities. Metal removal rates were 95% for aluminum (60 mg/L in influent), 50 to 90% for iron (Fe), depending on the ratio of ferrous to ferric iron, which varied seasonally (200 mg/L in influent), and <10% of manganese (Mn) (10 mg/L in influent). Ferrous iron and Mn removal was incomplete because of the high pH required for precipitation of these species. Iron removal could be improved by increased aeration following neutralization, and Mn removal could be effected by a post treatment passive settling/oxidation pond. Metal hydroxide sludges were settled in settling tanks, and then hauled from the site for aesthetic purposes. Over 450 metric tons of sludge were removed from the water over the life of the project. The dried sludge was tested by the Toxicity Characteristics Leaching Protocol (TCLP) and was found to be non-hazardous. Treatment costs were $43,000 per year and $1.08 per m 3, but could be decreased to $22,000 and $0.51 per m3 by decreasing labor use and by onsite sludge handling. These results confirm the utility of the new

  10. Amino acid substitutions in the poliovirus maturation cleavage site affect assembly and result in accumulation of provirions.

    PubMed Central

    Ansardi, D C; Morrow, C D

    1995-01-01

    The assembly of infectious poliovirus virions requires a proteolytic cleavage between an asparagine-serine amino acid pair (the maturation cleavage site) in VP0 after encapsidation of the genomic RNA. In this study, we have investigated the effects that mutations in the maturation cleavage site have on P1 polyprotein processing, assembly of subviral intermediates, and encapsidation of the viral genomic RNA. We have made mutations in the maturation cleavage site which change the asparagine-serine amino acid pair to either glutamine-glycine or threonine-serine. The mutations were created by site-directed mutagenesis of P1 cDNAs which were recombined into wild-type vaccinia virus to generate recombinant vaccinia viruses. The P1 polyproteins expressed from the recombinant vaccinia viruses were analyzed for proteolytic processing and assembly defects in cells coinfected with a recombinant vaccinia virus (VV-P3) that expresses the poliovirus 3CD protease. A trans complementation system using a defective poliovirus genome was utilized to assess the capacity of the mutant P1 proteins to encapsidate genomic RNA (D. C. Ansardi, D. C. Porter, and C. D. Morrow, J. Virol. 67:3684-3690, 1993). The mutant P1 proteins containing the glutamine-glycine amino acid pair (VP4-QG) and the threonine-serine pair (VP4-TS) were processed by 3CD provided in trans from VV-P3. The processed capsid proteins VP0, VP3, and VP1 derived from the mutant precursor VP4-QG were unstable and failed to assemble into subviral structures in cells coinfected with VV-P3. However, the capsid proteins derived from VP4-QG did assemble into empty-capsid-like structures in the presence of the defective poliovirus genome. In contrast, the capsid proteins derived from processing of the VP4-TS mutant assembled into subviral intermediates both in the presence and in the absence of the defective genome RNA. By a sedimentation analysis, we determined that the capsid proteins derived from the VP4-TS precursor

  11. Characterization of epoxyeicosatrienoic acid binding site in U937 membranes using a novel radiolabeled agonist, 20-125i-14,15-epoxyeicosa-8(Z)-enoic acid.

    PubMed

    Yang, Wenqi; Tuniki, Venugopal Raju; Anjaiah, Siddam; Falck, J R; Hillard, Cecilia J; Campbell, William B

    2008-03-01

    Epoxyeicosatrienoic acids (EETs) are important regulators of vascular tone and homeostasis. Whether they initiate signaling through membrane receptors is unclear. We developed 20-iodo-14,15-epoxyeicosa-8(Z)-enoic acid (20-I-14,15-EE8ZE), a radiolabeled EET agonist, to characterize EET binding to membranes of U937 cells. 20-I-14,15-EE8ZE stimulated cAMP production in U937 cells with similar potency, but it decreased efficacy compared with 11,12-EET. Maximum cAMP production increased 4.2-fold, with an EC(50) value of 9 muM. Like 14,15-EET, 20-I-14,15-EE8ZE relaxed bovine coronary arteries, with a similar EC(50) value. Both 20-I-14,15-EE8ZE agonist activities were blocked by the EET antagonist 14,15-epoxyeicosa-5(Z)enoic acid (14,15-EE5ZE). Specific 20-(125)I-14,15-EE8ZE binding to U937 membranes reached equilibrium within 10 min and remained unchanged for 30 min at 4 degrees C. The binding was saturable, reversible, and exhibited K(D) and B(max) values of 11.8 +/- 1.1 nM and 5.8 +/- 0.2 pmol/mg protein, respectively. Pretreatment of the membranes with guanosine 5'-O-(3-thio)triphosphate reduced the B(max) in a concentration-related manner. 20-(125)I-14,15-EE8ZE binding was inhibited by eicosanoids with potency order of 11,12-EET >14,15-EE5ZE approximately 14,15-EET > 15-hydroxyeicosatetraenoic acid > 14,15-EET-thiirane >14,15-dihydroxyeicosatrienoic acid. This order is in agreement with the efficacy and potency of cAMP production. In summary, 20-(125)I-14,15-EE8ZE is a radiolabeled EET agonist that is useful to study binding and metabolism. Using this radioligand, we have identified a specific high-affinity and high-abundance EET binding site in U937 cell membranes. This binding site could represent a specific EET receptor, which is probably a G protein-coupled receptor.

  12. Capture and Recycling of Sortase A through Site-Specific Labeling with Lithocholic Acid.

    PubMed

    Rosen, Christian B; Kwant, Richard L; MacDonald, James I; Rao, Meera; Francis, Matthew B

    2016-07-18

    Enzyme-mediated protein modification often requires large amounts of biocatalyst, adding significant costs to the process and limiting industrial applications. Herein, we demonstrate a scalable and straightforward strategy for the efficient capture and recycling of enzymes using a small-molecule affinity tag. A proline variant of an evolved sortase A (SrtA 7M) was N-terminally labeled with lithocholic acid (LA)-an inexpensive bile acid that exhibits strong binding to β-cyclodextrin (βCD). Capture and recycling of the LA-Pro-SrtA 7M conjugate was achieved using βCD-modified sepharose resin. The LA-Pro-SrtA 7M conjugate retained full enzymatic activity, even after multiple rounds of recycling.

  13. Treatment of Acid Mine Drainage By A Semipassive Barrier System, The Kristineberg Mine Site, Northern Sweden.

    NASA Astrophysics Data System (ADS)

    Morales, T. A.; Herbert, R.; Hallberg, R.

    The production of acidic mine waters containing high concentrations of sulphate and metals are of great environmental concern. One method for removing metals from leachate waters is by stimulating sulphate reduction in a treatment system, thereby producing alkalinity and hydrogen sulphide. Dissolved metals and hydrogen sulphide may then precipitate as metal sulphides. Laboratory and field studies have been con- ducted for the evaluation of the removal processes in a groundwater treatment system, in which both inorganic and organic materials have been used to neutralize acidity and to promote the growth of sulphate reducing bacteria (SRB). Dissolution of olivine and dolomite was found to be successful in neutralizing acidity, since a continuous pH buffering was obtained from pH 2-3 to pH 5-6. Column studies with olivine indi- cate higher dissolution rates obtained with higher flow rates, where Mg is released at a higher rate than Si. The rate of dolomite dissolution also shows a correlation with acid- ity flux at lower fluxes. At higher acidity fluxes, the Ca release rate appears to reach a constant level, suggesting that there are factors limiting the removal of Ca from the dolomite surface. Electron microscopy studies suggest that gypsum has formed in the columns. Field sampling during two years and laboratory results indicate that at most a limited development of sulphate reducing bacteria is obtained in the organic leaf com- post. The SRB are probably present at near neutral pH that is measured in the system, but they are not very active. One main reason for this may be the complexity of the organic substrate used. In the column studies using unamended compost, sulphate and iron removal is obtained in the organic matter at a range of flow rates, initially due to adsorption and precipitation. After the addition of an easily degradable organic carbon source, a full development of SRB was obtained with an effective removal of both iron and sulphate. Iron sulphide

  14. Metal ion blockage of tritium incorporation into gamma-carboxyglutamic acid of prothrombin. Stoichiometry of gamma-carboxyglutamic acid to Gd3+ for the high affinity sites

    SciTech Connect

    Bajaj, S.P.; Saini, R.; Katz, A.; Cai, G.Z.; Maki, S.L.; Brodsky, G.L.

    1988-07-15

    Prothrombin possesses two high affinity and four low affinity gamma-carboxyglutamic acid (Gla)-dependent gadolinium binding sites. Earlier work has shown that tritium can be specifically incorporated at the gamma-carbon of Gla in proteins at pH 5. In the present work we show that inclusion of saturating concentrations of Ca2+ in nondenaturing buffer systems ranging from pH 5.5 to 8.5 prevents the exchange of tritium into all 10 Gla residues of prothrombin. Similarly, saturating concentrations of Gd3+ prevent tritium incorporation into Gla at pH 5.5. Positive cooperativity was observed for the binding of Gd3+ to human prothrombin (at pH 5.5) for the two high affinity sites (Kd congruent to 35 nM). The four low affinity sites bind Gd3+ with a Kd congruent to 5 microM. Incubation of prothrombin ranging in concentrations from 10 to 40 microM with 2 eq of Gd3+ at pH 5.5 prevents 5.7 (average of seven determinations) Gla residues from tritium incorporation. Sedimentation velocity experiments conducted at pH 5.5 indicate that prothrombin in the presence of saturating concentrations of Gd3+ polymerizes, most likely, to a trimer. Further, in the presence of 2 eq of Gd3+, calculated percent weight average concentration of monomer prothrombin is congruent to 100% at 10 microM, approximately equal to 95% at 20 microM, and congruento to 80% at 40 microM protein concentration. Thus, it appears that under conditions in which prothrombin primarily exists as a monomer, occupancy of the initial two metal binding sites by Gd3+ involves six Gla residues.

  15. Impact of acid mine drainages on surficial waters of an abandoned mining site.

    PubMed

    García-Lorenzo, M L; Marimón, J; Navarro-Hervás, M C; Pérez-Sirvent, C; Martínez-Sánchez, M J; Molina-Ruiz, José

    2016-04-01

    Weathering of sulphide minerals produces a great variety of efflorescences of soluble sulphate salts. These minerals play an important role for environmental pollution, since they can be either a sink or a source for acidity and trace elements. This paper aims to characterise surface waters affected by mining activities in the Sierra Minera of Cartagena-La Union (SE, Spain). Water samples were analysed for trace metals (Zn, Cd, Pb, Cu, As and Fe), major ions (Na(+), K(+), Ca(2+) and Mg(2+)) and anions (F(-), Cl(-), NO3 (-), CO3 (2-), SO4 (2-)) concentrations and were submitted to an "evaporation-precipitation" experiment that consisted in identifying the salts resulting from the evaporation of the water aliquots sampled onsite. Mineralogy of the salts was studied using X-ray diffraction and compared with the results of calculations using VISUAL MINTEQ. The study area is heavily polluted as a result of historical mining and processing activities that has produced large amount of wastes characterised by a high trace elements content, acidic pH and containing minerals resulting from the supergene alteration of the raw materials. The mineralogical study of the efflorescences obtained from waters shows that magnesium, zinc, iron and aluminium sulphates predominate in the acid mine drainage precipitates. Minerals of the hexahydrite group have been quantified together with minerals of the rozenite group, alunogen and other phases such as coquimbite and copiapite. Calcium sulphates correspond exclusively to gypsum. In a semiarid climate, such as that of the study area, these minerals contribute to understand the response of the system to episodic rainfall events. MINTEQ model could be used for the analysis of waters affected by mining activities but simulation of evaporation gives more realistic results considering that MINTEQ does not consider soluble hydrated salts.

  16. Genetic Incorporation of the Unnatural Amino Acid p-Acetyl Phenylalanine into Proteins for Site-Directed Spin Labeling

    PubMed Central

    Evans, Eric G.B.; Millhauser, Glenn L.

    2016-01-01

    Site-directed spin labeling (SDSL) is a powerful tool for the characterization of protein structure and dynamics; however, its application in many systems is hampered by the reliance on unique and benign cysteine substitutions for the site-specific attachment of the spin label. An elegant solution to this problem involves the use of genetically encoded unnatural amino acids (UAAs) containing reactive functional groups that are chemically orthogonal to those of the 20 amino acids found naturally in proteins. These unique functional groups can then be selectively reacted with an appropriately functionalized spin probe. In this chapter, we detail the genetic incorporation of the ketone-bearing amino acid p-acetyl phenylalanine (pAcPhe) into recombinant proteins expressed in E. coli. Incorporation of pAcPhe is followed by chemoselective reaction of the ketone side chain with a hydroxylamine-functionalized nitroxide to afford the spin-labeled side chain “K1,” and we present two protocols for successful K1 labeling of proteins bearing site-specific pAcPhe. We outline the basic requirements for pAcPhe incorporation and labeling, with an emphasis on practical aspects that must be considered by the researcher if high yields of UAA incorporation and efficient labeling reactions are to be achieved. To this end, we highlight recent advances that have led to increased yields of pAcPhe incorporation, and discuss the use of aniline-based catalysts allowing for facile conjugation of the hydroxylamine spin label under mild reaction conditions. To illustrate the utility of K1 labeling in proteins where traditional cysteine-based SDSL methods are problematic, we site-specifically K1 label the cellular prion protein at two positions in the C-terminal domain and determine the interspin distance using double electron–electron resonance EPR. Recent advances in UAA incorporation and ketone-based bioconjugation, in combination with the commercial availability of all requisite

  17. Interaction of aspartic acid-104 and proline-287 with the active site of m-calpain.

    PubMed Central

    Arthur, J S; Elce, J S

    1996-01-01

    In an ongoing study of the mechanisms of calpain catalysis and Ca(2+)-induced activation, the effects of Asp-104-->Ser and Pro-287-->Ser large subunit mutations on m-calpain activity, the pH-activity profile, Ca(2+)-sensitivity, and autolysis were measured. The importance of these positions was suggested by sequence comparisons between the calpain and papain families of cysteine proteinases. Asp-104 is adjacent to the active-site Cys-105, and Pro-287 is adjacent to the active-site Asn-286 and probably to the active-site His-262; both Asp-104 and Pro-287 are absolutely conserved in the known calpains, but are replaced by highly conserved serine residues in the papains. The single mutants had approx. 10-15% of wild-type activity, due mainly to a decrease in kcat, since Km was only slightly increased. The Pro-287-->Ser mutation appeared to cause a local perturbation of the catalytic Cys-105/His-262 catalytic ion pair, reducing its efficiency without major effect on the conformation and stability of the enzyme. The Asp-104-->Ser mutation caused a marked narrowing of the pH-activity curve, a 9-fold increase in Ca2+ requirement, and an acceleration of autolysis, when compared with the wild-type enzyme. The results indicated that Asp-104 alters the nature of its interaction with the catalytic ion pair during Ca(2+)-induced conformational change in calpain. This interaction may be direct or indirect, but is important in activation of the enzyme. PMID:8912692

  18. Fungal variegatic acid and extracellular polysaccharides promote the site-specific generation of reactive oxygen species.

    PubMed

    Zhu, Yuan; Mahaney, James; Jellison, Jody; Cao, Jinzhen; Gressler, Julia; Hoffmeister, Dirk; Goodell, Barry

    2017-03-01

    This study aims to clarify the role of variegatic acid (VA) in fungal attack by Serpula lacrymans, and also the generation and scavenging of reactive oxygen species (ROS) by the fungus. VA promotes a mediated Fenton reaction to generated ROS after oxalate solubilizes oxidized forms of iron. The fungal extracellular matrix (ECM) β-glucan scavenged ROS, and we propose this as a mechanism to protect the fungal hyphae while ROS generation is promoted to deconstruct the lignocellulose cell wall. A relatively high pH (4.4) also favored Fe(III) transfer from oxalate to VA as opposed to a lower pH (2.2) conditions, suggesting a pH-dependent Fe(III) transfer to VA employed by S. lacrymans. This permits ROS generation within the higher pH of the cell wall, while limiting ROS production near the fungal hyphae, while β-glucan from the fungal ECM scavenges ROS in the more acidic environments surrounding the fungal hyphae.

  19. Characterization of the S1 binding site of the glutamic acid-specific protease from Streptomyces griseus.

    PubMed Central

    Stennicke, H. R.; Birktoft, J. J.; Breddam, K.

    1996-01-01

    The glutamic acid-specific protease from Streptomyces griseus (SGPE) is an 18.4-kDa serine protease with a distinct preference for Glu in the P1 position. Other enzymes characterized by a strong preference for negatively charged residues in the P1 position, e.g., interleukin-1 beta converting enzyme (ICE), use Arg or Lys residues as counterions within the S1 binding site. However, in SGPE, this function is contributed by a His residue (His 213) and two Ser residues (Ser 192 and S216). It is demonstrated that proSGPE is activated autocatalytically and dependent on the presence of a Glu residue in the -1 position. Based on this observation, the importance of the individual S1 residues is evaluated considering that enzymes unable to recognize a Glu in the P1 position will not be activated. Among the residues constituting the S1 binding site, it is demonstrated that His 213 and Ser 192 are essential for recognition of Glu in the P1 position, whereas Ser 216 is less important for catalysis out has an influence on stabilization of the ground state. From the three-dimensional structure, it appears that His 213 is linked to two other His residues (His 199 and His 228), forming a His triad extending from the S1 binding site to the back of the enzyme. This hypothesis has been tested by substitution of His 199 and His 228 with other amino acid residues. The catalytic parameters obtained with the mutant enzymes, as well as the pH dependence, do not support this theory; rather, it appears that His 199 is responsible for orienting His 213 and that His 228 has no function associated with the recognition of Glu in P1. PMID:8931145

  20. Dephosphorylation of microtubule-binding sites at the neurofilament-H tail domain by alkaline, acid, and protein phosphatases.

    PubMed

    Hisanaga, S; Yasugawa, S; Yamakawa, T; Miyamoto, E; Ikebe, M; Uchiyama, M; Kishimoto, T

    1993-06-01

    The dephosphorylation-induced interaction of neurofilaments (NFs) with microtubules (MTs) was investigated by using several phosphatases. Escherichia coli alkaline and wheat germ acid phosphatases increased the electrophoretic mobility of NF-H and NF-M by dephosphorylation, and induced the binding of NF-H to MTs. The binding of NFs to MTs was observed only after the electrophoretic mobility of NF-H approached the exhaustively dephosphorylated level when alkaline phosphatase was used. The number of phosphate remaining when NF-H began to bind to MTs was estimated by measuring phosphate bound to NF-H. NF-H did not bind to MTs even when about 40 phosphates from the total of 51 had been removed by alkaline phosphatase. The removal of 6 further phosphates finally resulted in the association of NF-H with MTs. A similar finding, that the restricted phosphorylation sites in the NF-H tail domain, but not the total amount of phosphates, were important for binding to MTs, was also obtained with acid phosphatases. In contrast to alkaline and acid phosphatases, four classes of protein phosphatases (protein phosphatases 1, 2A, 2B, and 2C) were ineffective for shifting the electrophoretic mobility of NF proteins and for inducing the association of NFs to MTs.

  1. p-Coumaric acid decarboxylase from Lactobacillus plantarum: structural insights into the active site and decarboxylation catalytic mechanism.

    PubMed

    Rodríguez, Héctor; Angulo, Iván; de Las Rivas, Blanca; Campillo, Nuria; Páez, Juan A; Muñoz, Rosario; Mancheño, José M

    2010-05-15

    p-Coumaric acid decarboxylases (PDCs) catalyze the nonoxidative decarboxylation of hydroxycinnamic acids to generate the corresponding vinyl derivatives. Despite the biotechnological relevance of PDCs in food industry, their catalytic mechanism remains largely unknown. Here, we report insights into the structural basis of catalysis for the homodimeric PDC from Lactobacillus plantarum (LpPDC). The global fold of LpPDC is based on a flattened beta-barrel surrounding an internal cavity. Crystallographic and functional analyses of single-point mutants of residues located within this cavity have permitted identifying a potential substrate-binding pocket and also to provide structural evidences for rearrangements of surface loops so that they can modulate the accessibility to the active site. Finally, combination of the structural and functional data with in silico results enables us to propose a two-step catalytic mechanism for decarboxylation of p-coumaric acid by PDCs where Glu71 is involved in proton transfer, and Tyr18 and Tyr20 are involved in the proper substrate orientation and in the release of the CO(2) product.

  2. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives.

    PubMed

    Zhang, Chun; Yang, Xiao-lan; Yuan, Yong-hua; Pu, Jun; Liao, Fei

    2012-08-01

    Modification of accessible amino acid residues with poly(ethylene glycol) [PEG] is a widely used technique for formulating therapeutic proteins. In practice, site-specific PEGylation of all selected/engineered accessible nonessential reactive residues of therapeutic proteins with common activated PEG derivatives is a promising strategy to concomitantly improve pharmacokinetics, allow retention of activity, alleviate immunogenicity, and avoid modification isomers. Specifically, through molecular engineering of a therapeutic protein, accessible essential residues reactive to an activated PEG derivative are substituted with unreactive residues provided that protein activity is retained, and a limited number of accessible nonessential reactive residues with optimized distributions are selected/introduced. Subsequently, all accessible nonessential reactive residues are completely PEGylated with the activated PEG derivative in great excess. Branched PEG derivatives containing new PEG chains with negligible metabolic toxicity are more desirable for site-specific PEGylation. Accordingly, for the successful formulation of therapeutic proteins, optimization of the number and distributions of accessible nonessential reactive residues via molecular engineering can be integrated with the design of large-sized PEG derivatives to achieve site-specific PEGylation of all selected/engineered accessible reactive residues.

  3. Isolation and properties of the acid site-specific endonuclease from mature eggs of the sea urchin Strongylocentrotus intermedius

    SciTech Connect

    Sibirtsev, Yu.T.; Konechnyi, A.A.; Rasskazov, V.A.

    1986-01-10

    An acid site-specific endonuclease has been detected in mature sea urchin eggs and cells of embryos at early stages of differentiation. Fractionation with ammonium sulfate, followed by chromatography on columns with DEAE, phosphocellulose, and hydroxyapatite resulted in an 18,000-fold purification. The molecular weight of the enzyme was determined at approx. 29,000, the optimum pH 5.5. The activity of the enzyme does not depend on divalent metal ions, EDTA, ATP, and tRNA, but it is modulated to a substantial degree by NaCl. The maximum rate of cleavage of the DNA supercoil (form I) is observed at 100 mM NaCl. Increasing the NaCl concentration to 350 mM only slightly lowers the rate of cleavage of form I, yielding form II, but entirely suppresses the accumulation of form III. Restriction analysis of the products of enzymatic hydrolysis of Co1E1 and pBR322 DNA showed that at the early stages of hydrolysis the enzyme exhibits pronounced specificity for definite sites, the number of which is 12 for Co1 E1 DNA and 8 sites for pBR322 DNA.

  4. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    PubMed Central

    Mingo, Janire; Erramuzpe, Asier; Luna, Sandra; Aurtenetxe, Olaia; Amo, Laura; Diez, Ibai; Schepens, Jan T. G.; Hendriks, Wiljan J. A. J.; Cortés, Jesús M.; Pulido, Rafael

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates comprehensive collections of amino acid substitution variants, including scanning- and single site-multiple mutations. The approach combines unified mutagenic primer design with the mixing of multiple distinct primer pairs and/or plasmid templates to increase the yield of a single inverse-PCR mutagenesis reaction. Also, a user-friendly program for automatic design of standardized primers for Ala-scanning mutagenesis is made available. Experimental results were compared with a modeling approach together with stochastic simulation data. For single site-multiple mutagenesis purposes and for simultaneous mutagenesis in different plasmid backgrounds, combination of primer sets and/or plasmid templates in a single reaction tube yielded the distinct mutations in a stochastic fashion. For scanning mutagenesis, we found that a combination of overlapping primer sets in a single PCR reaction allowed the yield of different individual mutations, although this yield did not necessarily follow a stochastic trend. Double mutants were generated when the overlap of primer pairs was below 60%. Our results illustrate that one-tube-only SDM effectively reduces the number of reactions required in large-scale mutagenesis strategies, facilitating the generation of comprehensive collections of protein variants suitable for functional analysis. PMID:27548698

  5. Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid

    SciTech Connect

    Jia, Qingying; Ramaswamy, Nagappan; Tylus, Urszula; Strickland, Kara; Li, Jingkun; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen; Anibal, Jacob; Gumeci, Cenk; Barton, Scott Calabrese; Sougrati, Moulay-Tahar; Jaouen, Frederic; Halevi, Barr; Mukerjee, Sanjeev

    2016-11-01

    Developing efficient and inexpensive catalysts for the sluggish oxygen reduction reaction (ORR) constitutes one of the grand challenges in the fabrication of commercially viable fuel cell devices and metal–air batteries for future energy applications. Despite recent achievements in designing advanced Pt-based and Pt-free catalysts, current progress primarily involves an empirical approach of trial-and-error combination of precursors and synthesis conditions, which limits further progress. Rational design of catalyst materials requires proper understanding of the mechanistic origin of the ORR and the underlying surface properties under operating conditions that govern catalytic activity. Herein, several different groups of iron-based catalysts synthesized via different methods and/or precursors were systematically studied by combining multiple spectroscopic techniques under ex situ and in situ conditions in an effort to obtain a comprehensive understanding of the synthesis-products correlations, nature of active sites, and the reaction mechanisms. These catalysts include original macrocycles, macrocycle-pyrolyzed catalysts, and Fe-N–C catalysts synthesized from individual Fe, N, and C precursors including polymer-based catalysts, metal organic framework (MOF)-based catalysts, and sacrificial support method (SSM)-based catalysts. The latter group of catalysts is most promising as not only they exhibit exceptional ORR activity and/or durability, but also the final products are controllable. We show that the high activity observed for most pyrolyzed Fe-based catalysts can mainly be attributed to a single active site: non-planar Fe–N4 moiety embedded in distorted carbon matrix characterized by a high potential for the Fe2+/3+ redox transition in acidic electrolyte/environment. The high intrinsic ORR activity, or turnover frequency (TOF), of this site is shown to be accounted for by redox catalysis mechanism that highlights the dominant role

  6. Concentrations of nitrous acid, nitric acid, nitrite and nitrate in the gas and aerosol phase at a site in the emission zone during ESCOMPTE 2001 experiment

    NASA Astrophysics Data System (ADS)

    Acker, K.; Möller, D.; Auel, R.; Wieprecht, W.; Kalaß, D.

    2005-03-01

    Ground-based measurements were performed at the "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d`Emissions" (ESCOMPTE) field site E3 (Realtor) about 30 km north of the urban environment of Marseille and east of the industrial centre Berre pond to investigate the formation of nitrous and nitric acid and to detect the distribution of reactive N-species between the gas and particle phase during photochemical pollution events. A wet denuder sampling for gases followed by a steam jet collection for aerosols was both coupled to anion chromatographic analysis. The analytical system provided data continuously with 30-min time resolution between June 13 and July 13, 2001. Indications for heterogeneous formation of nitrous acid during nighttime and daytime on ground and aerosol surfaces were found, the average HNO 2/NO 2 ratio was 6%. Highest concentrations were observed during two episodes of strong pollution accumulation when sea breeze transported industrial, traffic and urban pollution land-inwards. After nocturnal heterogeneous formation (about 0.1 ppb v h -1 were estimated corresponding to increasing HNO 2/NO 2 ratios) and accumulation processes up to 1.2 ppb v HNO 2 were observed. Their photolysis produces up to 5-9×10 6 OH cm -3 s -1 and will contribute significantly to initiation of the daily photochemistry in the lowest part of the troposphere. For the key tropospheric species, HNO 3 daily peaks up to 4 ppb v were detected.

  7. Effects of jasmonic acid signalling on the wheat microbiome differ between body sites

    PubMed Central

    Liu, Hongwei; Carvalhais, Lilia C.; Schenk, Peer M.; Dennis, Paul G.

    2017-01-01

    Jasmonic acid (JA) signalling helps plants to defend themselves against necrotrophic pathogens and herbivorous insects and has been shown to influence the root microbiome of Arabidopsis thaliana. In this study, we determined whether JA signalling influences the diversity and functioning of the wheat (Triticum aestivum) microbiome and whether these effects are specific to particular parts of the plant. Activation of the JA pathway was achieved via exogenous application of methyl jasmonate and was confirmed by significant increases in the abundance of 10 JA-signalling-related gene transcripts. Phylogenetic marker gene sequencing revealed that JA signalling reduced the diversity and changed the composition of root endophytic but not shoot endophytic or rhizosphere bacterial communities. The total enzymatic activity and substrate utilisation profiles of rhizosphere bacterial communities were not affected by JA signalling. Our findings indicate that the effects of JA signalling on the wheat microbiome are specific to individual plant compartments. PMID:28134326

  8. Synthesis and Site-Specific Incorporation of Red-Shifted Azobenzene Amino Acids into Proteins.

    PubMed

    John, Alford A; Ramil, Carlo P; Tian, Yulin; Cheng, Gang; Lin, Qing

    2015-12-18

    A series of red-shifted azobenzene amino acids were synthesized in moderate-to-excellent yields via a two-step procedure in which tyrosine derivatives were first oxidized to the corresponding quinonoidal spirolactones followed by ceric ammonium nitrate-catalyzed azo formation with the substituted phenylhydrazines. The resulting azobenzene-alanine derivatives exhibited efficient trans/cis photoswitching upon irradiation with a blue (448 nm) or green (530 nm) LED light. Moreover, nine superfolder green fluorescent protein (sfGFP) mutants carrying the azobenzene-alanine analogues were expressed in E. coli in good yields via amber codon suppression with an orthogonal tRNA/PylRS pair, and one of the mutants showed durable photoswitching with the LED light.

  9. Magic-angle-spinning NMR studies of acid sites in zeolite H-ZSM-5

    SciTech Connect

    Brunner, E.; Ernst, H.; Freude, D.; Froehlich, T.; Hunger, M.; Pfeifer, H. )

    1991-01-01

    {sup 1}H, {sup 13}C, {sup 27}Al, and {sup 29}Si magic-angle-spinning (MAS) NMR was used to elucidate the nature of the catalytic activity of zeolite H-ZSM-5. {sup 1}H MAS NMR of sealed samples after mild hydrothermal dealumination shows that the enhanced activity for n-hexane cracking is not due to an enhanced Bronstead acidity. The concentrations of the various OH groups and aluminous species suggest that the reason for the enhanced catalytic activity is the interaction of the n-hexane molecule with a bridging hydroxyl group and with extra-framework aluminium species, which give rise to the enhanced activity, cannot be easily removed from their positions, and are therefore immobilized by the zeolitic framework.

  10. Site-Selective Binding of Nanoparticles to Double-Stranded DNA via Peptide Nucleic Acid "Invasion"

    SciTech Connect

    Stadler, A.L.; van der Lelie, D.; Sun, D.; Maye, M. M.; Gang, O.

    2011-04-01

    We demonstrate a novel method for by-design placement of nano-objects along double-stranded (ds) DNA. A molecular intercalator, designed as a peptide nucleic acid (PNA)-DNA chimera, is able to invade dsDNA at the PNA-side due to the hybridization specificity between PNA and one of the duplex strands. At the same time, the single-stranded (ss) DNA tail of the chimera, allows for anchoring of nano-objects that have been functionalized with complementary ssDNA. The developed method is applied for interparticle attachment and for the fabrication of particle clusters using a dsDNA template. This method significantly broadens the molecular toolbox for constructing nanoscale systems by including the most conventional not yet utilized DNA motif, double helix DNA.

  11. Lysophosphatidic acid directly activates TRPV1 through a C-terminal binding site.

    PubMed

    Nieto-Posadas, Andrés; Picazo-Juárez, Giovanni; Llorente, Itzel; Jara-Oseguera, Andrés; Morales-Lázaro, Sara; Escalante-Alcalde, Diana; Islas, León D; Rosenbaum, Tamara

    2011-11-20

    Since 1992, there has been growing evidence that the bioactive phospholipid lysophosphatidic acid (LPA), whose amounts are increased upon tissue injury, activates primary nociceptors resulting in neuropathic pain. The TRPV1 ion channel is expressed in primary afferent nociceptors and is activated by physical and chemical stimuli. Here we show that in control mice LPA produces acute pain-like behaviors, which are substantially reduced in Trpv1-null animals. Our data also demonstrate that LPA activates TRPV1 through a unique mechanism that is independent of G protein-coupled receptors, contrary to what has been widely shown for other ion channels, by directly interacting with the C terminus of the channel. We conclude that TRPV1 is a direct molecular target of the pain-producing molecule LPA and that this constitutes, to our knowledge, the first example of LPA binding directly to an ion channel to acutely regulate its function.

  12. Application of geophysics to acid mine drainage investigations. Volume 2. Site investigations

    SciTech Connect

    Custis, K.

    1994-09-01

    The report describes geophysical field investigations undertaken to evaluate the utility of surface geophysical techniques in detecting and monitoring groundwater pollution from mine waste in the Western United States. The document addresses results of investigations at Spenceville Copper Mine, Leviathan Sulfur Mine, Iron Mountain Copper Mine, and Walker Copper Mine. Methods used in the field investigations included conventional D.C. resistivity, electromagnetic, self potential, and magnetic. It was found that the source and extent of acid mine drainage can be identified, known groundwater flow paths correlate well with geophysical anomalies, subsurface layering of mine waste piles can be mapped with some geophysical methods, and leakage from waste impoundments is detectable by some surface geophysical methods. The document includes maps, charts, and tables.

  13. Neurologic syndrome associated with homozygous mutation at MAG sialic acid binding site.

    PubMed

    Roda, Ricardo H; FitzGibbon, Edmond J; Boucekkine, Houda; Schindler, Alice B; Blackstone, Craig

    2016-08-01

    The MAG gene encodes myelin-associated glycoprotein (MAG), an abundant protein involved in axon-glial interactions and myelination during nerve regeneration. Several members of a consanguineous family with a clinical syndrome reminiscent of Pelizaeus-Merzbacher disease and demyelinating leukodystrophy on brain MRI were recently found to harbor a homozygous missense p.Ser133Arg MAG mutation. Here, we report two brothers from a nonconsanguineous family afflicted with progressive cognitive impairment, neuropathy, ataxia, nystagmus, and gait disorder. Exome sequencing revealed the homozygous missense mutation p.Arg118His in MAG. This Arg118 residue in immunoglobulin domain 1 is critical for sialic acid binding, providing a compelling mechanistic basis for disease pathogenesis.

  14. Complete amino acid sequence of Mytilus anterior byssus retractor paramyosin and its putative phosphorylation site.

    PubMed

    Watabe, S; Iwasaki, K; Funabara, D; Hirayama, Y; Nakaya, M; Kikuchi, K

    2000-01-01

    A cDNA encoding the full-length paramyosin molecule was cloned from the mussel Mytilus galloprovincialis, a species closely related to Mytilus edulis. It contained 3,497 nucleotides (nt), with 79 and 826 nt for the 5' and 3' non-coding regions, respectively. The coding region was composed of 2,592 nt for 864 amino acid residues, a size typical of paramyosin. While genomic DNA digests with either HindIII or PstI exhibited a single band when hybridized with a SacI fragment of paramyosin cDNA, the digests with either EcoRV or EcoRI showed two bands, suggesting that the mussel has at least two genes encoding paramyosin. The mRNAs encoding paramyosin were most abundant in muscle tissues from byssus retractor and adductor muscles. Only traces of paramyosin transcripts were found in the tissue of foot, gill, inner mantle, and outer mantle. The same phosphorylatable peptide previously reported for paramyosin from the bivalve Mercenaria mercenaria, Ser-Arg-Ser-Met-Ser(P)-Val-Ser-Arg (Watabe et al. 1989. Comp Biochem Physiol 94B:813-821) was found in the C-terminal non-helical part of this Mytilus paramyosin. We predict that this particular paramyosin has a coiled-coil structure composed of two alpha-helices that show the heptad repeats (a-b-c-d-e-f-g) with further 28-amino acid repeat zones, where a and d tend to be occupied by nonpolar residues.

  15. Characterization of an intracellular hyaluronic acid binding site in isolated rat hepatocytes

    SciTech Connect

    Frost, S.J.; Raja, R.H.; Weigel, P.H. )

    1990-11-13

    125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4{degrees}C increased greater than 10-fold at pH 5.0 as compared to pH 7.

  16. A Wood-Waste Cover Prevents Sulphide Oxidation and Treats Acid Effluents at the East-Sullivan Mine Site

    NASA Astrophysics Data System (ADS)

    Germain, D.; Tassé, N.; Cyr, J.

    2004-05-01

    At the East Sullivan site, wood wastes covering the abandoned mine tailings impoundment prevent sulphide oxidation by creating an anoxic environment. The addition of coarse ligneous wastes favours infiltration, resulting in a water table rise. This maintains most tailings saturated and thus provides an additional protection against sulphide oxidation. Moreover, high infiltration allows a more rapid flushing of acid prone groundwater generated prior to the cover placement. Finally, the pore-waters under the cover are characterized by a strong reducing potential and high alkalinity. These conditions favour sulphate reduction and base metal precipitation as sulphides and carbonates. The restoration strategy capitalized on the alkaline and reductive properties of the waters underlying the wood-waste cover. An original treatment of acid effluents, based on the recirculation of water discharging around the impoundment through the organic cover, was implemented in 1998. In 2003, the total volume of water treated was 725 000 m3. Data gathered near the dispersal zone show that despite dispersing acid water, the groundwater pH decreases by only one unit from 7 to 6, during the recirculation period: May to October. However, alkalinity decreases from 800 to 100 mg/L-CaCO3. But it is back up to 800 mg/L the following spring, thanks to sulphate reduction. Fe2+ concentrations near the dispersal zone are maintained below 2 mg/L. Evolution of the iron mass in the surface waters suggests that the contaminated groundwater flush is completed in the north and west sectors of the impoundment; the east and south ones are expected to be recovered within 3 to 4 years. A wood-waste cover, besides limiting sulphide oxidation, can fill the role of alkaline reducing barrier for the treatment of these acidogenic waters, until a balance between acidity and alkalinity in the effluent is reached.

  17. Conversion of citrate synthase into citryl-CoA lyase as a result of mutation of the active-site aspartic acid residue to glutamic acid.

    PubMed Central

    Man, W J; Li, Y; O'Connor, C D; Wilton, D C

    1991-01-01

    The active-site aspartic acid residue, Asp-362, of Escherichia coli citrate synthase was changed by site-directed mutagenesis to Glu-362, Asn-362 or Gly-362. Only very low catalytic activity could be detected with the Asp----Asn and Asp----Gly mutations. The Asp----Glu mutation produced an enzyme that expressed about 0.8% of the overall catalytic rate, and the hydrolysis step in the reaction, monitored as citryl-CoA hydrolysis, was inhibited to a similar extent. However, the condensation reaction, measured in the reverse direction as citryl-CoA cleavage to oxaloacetate and acetyl-CoA, was not affected by the mutation, and this citryl-CoA lyase activity was the major catalytic activity of the mutant enzyme. This high condensation activity in an enzyme in which the subsequent hydrolysis step was about 98% inhibited permitted considerable exchange of the methyl protons of acetyl-CoA during catalysis by the mutant enzyme. The Km for oxaloacetate was not significantly altered in the D362E mutant enzyme, whereas the Km for acetyl-CoA was about 5 times lower. A mechanism is proposed in which Asp-362 is involved in the hydrolysis reaction of this enzyme, and not as a base in the deprotonation of acetyl-CoA as recently suggested by others. [Karpusas, Branchaud & Remington (1990) Biochemistry 29, 2213-2219; Alter, Casazza, Zhi, Nemeth, Srere & Evans, (1990) Biochemistry 29, 7557-7563]. PMID:1684105

  18. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene.

  19. Acid mine drainage risks - A modeling approach to siting mine facilities in Northern Minnesota USA

    NASA Astrophysics Data System (ADS)

    Myers, Tom

    2016-02-01

    Most watershed-scale planning for mine-caused contamination concerns remediation of past problems while future planning relies heavily on engineering controls. As an alternative, a watershed scale groundwater fate and transport model for the Rainy Headwaters, a northeastern Minnesota watershed, has been developed to examine the risks of leaks or spills to a pristine downstream watershed. The model shows that the risk depends on the location and whether the source of the leak is on the surface or from deeper underground facilities. Underground sources cause loads that last longer but arrive at rivers after a longer travel time and have lower concentrations due to dilution and attenuation. Surface contaminant sources could cause much more short-term damage to the resource. Because groundwater dominates baseflow, mine contaminant seepage would cause the most damage during low flow periods. Groundwater flow and transport modeling is a useful tool for decreasing the risk to downgradient sources by aiding in the placement of mine facilities. Although mines are located based on the minerals, advance planning and analysis could avoid siting mine facilities where failure or leaks would cause too much natural resource damage. Watershed scale transport modeling could help locate the facilities or decide in advance that the mine should not be constructed due to the risk to downstream resources.

  20. Identification of sites responsible for the potentiating effect of niflumic acid on ClC-Ka kidney chloride channels

    PubMed Central

    Zifarelli, G; Liantonio, A; Gradogna, A; Picollo, A; Gramegna, G; De Bellis, M; Murgia, AR; Babini, E; Conte Camerino, D; Pusch, M

    2010-01-01

    Background and purpose: ClC-K kidney Cl− channels are important for renal and inner ear transepithelial Cl− transport, and are potentially interesting pharmacological targets. They are modulated by niflumic acid (NFA), a non-steroidal anti-inflammatory drug, in a biphasic way: NFA activates ClC-Ka at low concentrations, but blocks the channel above ∼1 mM. We attempted to identify the amino acids involved in the activation of ClC-Ka by NFA. Experimental approach: We used site-directed mutagenesis and two-electrode voltage clamp analysis of wild-type and mutant channels expressed in Xenopus oocytes. Guided by the crystal structure of a bacterial CLC homolog, we screened 97 ClC-Ka mutations for alterations of NFA effects. Key results: Mutations of five residues significantly reduced the potentiating effect of NFA. Two of these (G167A and F213A) drastically altered general gating properties and are unlikely to be involved in NFA binding. The three remaining mutants (L155A, G345S and A349E) severely impaired or abolished NFA potentiation. Conclusions and implications: The three key residues identified (L155, G345, A349) are localized in two different protein regions that, based on the crystal structure of bacterial CLC homologs, are expected to be exposed to the extracellular side of the channel, relatively close to each other, and are thus good candidates for being part of the potentiating NFA binding site. Alternatively, the protein region identified mediates conformational changes following NFA binding. Our results are an important step towards the development of ClC-Ka activators for treating Bartter syndrome types III and IV with residual channel activity. PMID:20649569

  1. Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Hu, Fang Q.; Burden, David S.

    2001-11-01

    Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH) 3(a), and Fe(OH) 3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO 42- transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.

  2. Multi-component reactive transport modeling of natural attenuation of an acid groundwater plume at a uranium mill tailings site.

    PubMed

    Zhu, C; Hu, F Q; Burden, D S

    2001-11-01

    Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH)3(a), and Fe(OH)3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO4(2-) transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.

  3. Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity

    SciTech Connect

    Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.; Nash, Connor; Steirer, K. Xerxes; Clark, Jared; Robichaud, David J.; Ruddy, Daniel A.

    2016-01-21

    Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo2C) for the deoxygenation of acetic acid, an abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.

  4. Experimental and computational investigation of acetic acid deoxygenation over oxophilic molybdenum carbide: Surface chemistry and active site identity

    DOE PAGES

    Schaidle, Joshua A.; Blackburn, Jeffrey; Farberow, Carrie A.; ...

    2016-01-21

    Ex situ catalytic fast pyrolysis (CFP) is a promising route for producing fungible biofuels; however, this process requires bifunctional catalysts that favor C–O bond cleavage, activate hydrogen at near atmospheric pressure and high temperature (350–500 °C), and are stable under high-steam, low hydrogen-to-carbon environments. Recently, early transition-metal carbides have been reported to selectively cleave C–O bonds of alcohols, aldehydes, and oxygenated aromatics, yet there is limited understanding of the metal carbide surface chemistry under reaction conditions and the identity of the active sites for deoxygenation. In this study, we evaluated molybdenum carbide (Mo2C) for the deoxygenation of acetic acid, anmore » abundant component of biomass pyrolysis vapors, under ex situ CFP conditions, and we probed the Mo2C surface chemistry, identity of the active sites, and deoxygenation pathways using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations.« less

  5. Multiplex detection of functional G protein-coupled receptors harboring site-specifically modified unnatural amino acids.

    PubMed

    Naganathan, Saranga; Ray-Saha, Sarmistha; Park, Minyoung; Tian, He; Sakmar, Thomas P; Huber, Thomas

    2015-01-27

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide-alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism.

  6. Multiplex Detection of Functional G Protein-Coupled Receptors Harboring Site-Specifically Modified Unnatural Amino Acids

    PubMed Central

    2015-01-01

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide–alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism. PMID:25524496

  7. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1 • Nup98).

    PubMed

    Quan, Beili; Seo, Hyuk-Soo; Blobel, Günter; Ren, Yi

    2014-06-24

    mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.

  8. Vesiculoviral matrix (M) protein occupies nucleic acid binding site at nucleoporin pair (Rae1∙Nup98)

    SciTech Connect

    Quan, Beili; Seo, Hyuk-Soo; Blobel, Günter; Ren, Yi

    2014-07-01

    mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the β-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.

  9. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    NASA Astrophysics Data System (ADS)

    Goel, Sarika

    The selective encapsulation of metal clusters within zeolites can be used to prepare clusters that are uniform in diameter and to protect them against sintering and contact with feed impurities, while concurrently allowing active sites to select reactants based on their molecular size, thus conferring enzyme-like specificity to chemical catalysis. The apertures in small and medium-pore zeolites preclude the use of post-synthetic protocols to encapsulate the relevant metal precursors because cationic or anionic precursors with their charge-balancing double layer and gaseous complexes cannot diffuse through their windows or channels. We have developed general strategies to encapsulate metal clusters within small-pore zeolites by using metal precursors stabilized by ammonia or organic amine ligands, which stabilize metal precursors against their premature precipitation at the high temperature and pH conditions required for the hydrothermal synthesis of the target zeolite structures and favor interactions between metal precursors and incipient aluminosilicate nuclei during the self-assembly of microporous frameworks. When synthesis temperatures were higher than 400 K, available ligands were unable to prevent the premature precipitation of the metal precursors. In such cases, encapsulation was achieved instead via interzeolite transformations after successfully encapsulating metal precursors or clusters via post-synthesis exchange or ligand protection into parent zeolites and subsequently converting them into the target structures while retaining the encapsulated clusters or precursors. Such strategies led to the successful selective encapsulation of a wide range of metal clusters (Pt, Pd, Ru, Rh, Ir, Re, and Ag) within small-pore (SOD (sodalite), LTA (Linde type A (zeolite A)), GIS (gismondine), and ANA (analcime)) and medium-pore (MFI (ZSM-5)) zeolites. These protocols provide novel and diverse mechanism-based strategies for the design of catalysts with protected

  10. Determination of the positions of aluminum atoms introduced into SSZ-35 and the catalytic properties of the generated Brønsted acid sites.

    PubMed

    Miyaji, Akimitsu; Kimura, Nobuhiro; Shiga, Akinobu; Hayashi, Yoshihiro; Nishitoba, Toshiki; Motokura, Ken; Baba, Toshihide

    2017-03-01

    The positions of aluminum (Al) atoms in SSZ-35 together with the characteristics of the generated protons were investigated by (27)Al multiple quantum magic-angle spinning (MQ-MAS), (29)Si MAS, and (1)H MAS NMR data analyses accompanied by a variable temperature (1)H MAS NMR analysis. The origin of the acidic -OH groups (Brønsted acid sites) generated by introducing Al atoms into the T sites was investigated and the T sites introduced into the Al atoms were revealed. To further determine the catalytic properties of the acidic protons generated in SSZ-35, the influence of the concentration of the Al atoms on the catalytic activity and selectivity during the transformation of toluene was examined.

  11. Hydrogeology and ground-water quality of the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Thomas, C.L.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation, in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was certified closed in 1989 and the Texas Natural Resources Conservation Commission issued Permit Number HW-50296 (U.S. Environmental Protection Agency Permit Number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in evaluating hydrogeologic conditions and ground- water quality at the site. One upgradient and two downgradient ground-water monitoring wells were installed adjacent to the chromic acid pit by a private contractor. Quarterly ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The Chromic Acid Pit site is situated in the Hueco Bolson intermontane valley. The Hueco Bolson is a primary source of ground water in the El Paso area. City of El Paso and U.S. Army water-supply wells are located on all sides of the study area and are completed 600 to more than 1,200 feet below land surface. The ground-water level in the area of the Chromic Acid Pit site has declined about 25 feet from 1982 to 1993. Depth to water at the Chromic Acid Pit site in September 1994 was about 284 feet below land surface; ground-water flow is to the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site contained dissolved-solids concentrations of 442 to 564 milligrams per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.7 milligrams per liter; nitrite plus nitrate as nitrogen

  12. Impact of ursodeoxycholic acid on a CCK1R cholesterol-binding site may contribute to its positive effects in digestive function

    PubMed Central

    Desai, Aditya J.; Dong, Maoqing; Harikumar, Kaleeckal G.

    2015-01-01

    Dysfunction of the type 1 cholecystokinin (CCK) receptor (CCK1R) as a result of increased gallbladder muscularis membrane cholesterol has been implicated in the pathogenesis of cholesterol gallstones. Administration of ursodeoxycholic acid, which is structurally related to cholesterol, has been shown to have beneficial effects on gallstone formation. Our aims were to explore the possible direct effects and mechanism of action of bile acids on CCK receptor function. We studied the effects of structurally related hydrophobic chenodeoxycholic acid and hydrophilic ursodeoxycholic acid in vitro on CCK receptor function in the setting of normal and elevated membrane cholesterol. We also examined their effects on a cholesterol-insensitive CCK1R mutant (Y140A) disrupting a key site of cholesterol action. The results show that, similar to the impact of cholesterol on CCK receptors, bile acid effects were limited to CCK1R, with no effects on CCK2R. Chenodeoxycholic acid had a negative impact on CCK1R function, while ursodeoxycholic acid had no effect on CCK1R function in normal membranes but was protective against the negative impact of elevated cholesterol on this receptor. The cholesterol-insensitive CCK1R mutant Y140A was resistant to effects of both bile acids. These data suggest that bile acids compete with the action of cholesterol on CCK1R, probably by interacting at the same site, although the conformational impact of each bile acid appears to be different, with ursodeoxycholic acid capable of correcting the abnormal conformation of CCK1R in a high-cholesterol environment. This mechanism may contribute to the beneficial effect of ursodeoxycholic acid in reducing cholesterol gallstone formation. PMID:26138469

  13. The role of outer surface/inner bulk Brønsted acidic sites in the adsorption of a large basic molecule (simazine) on H-Y zeolite.

    PubMed

    Sannino, Filomena; Pansini, Michele; Marocco, Antonello; Bonelli, Barbara; Garrone, Edoardo; Esposito, Serena

    2015-11-21

    The simple means adopted for investigating H-Y zeolite acidity in water is the pH-dependence of the amount of a basic molecule adsorbed under isochoric conditions, a technique capable of yielding, under equilibrium conditions, an estimate of the pKa value of the involved acidic centres: the behaviour with temperature of adsorbed amounts yields instead some information on thermodynamics. Simazine (Sim, 2-chloro-4,6-bis(ethylamino)-s-triazine) was chosen as an adsorbate because its transverse dimension (7.5 Å) is close to the opening of the supercage in the faujasite structure of H-Y (7.4 Å). In short term measurements, Sim adsorption at 25 °C occurs only at the outer surface of H-Y particles. Two types of mildly acidic centres are present (with pKaca. 7 and ca. 8, respectively) and no strong one is observed. Previous adsorption of ammonia from the gas phase discriminates between the two. The former survives, and shows features common with the silanols of amorphous silica. The latter is suppressed: because of this and other features distinguishing this site from silanol species (e.g. the formation of dimeric Sim2H(+) species, favoured by coverage and unfavoured by temperatures of adsorption higher than ambient temperature) a candidate is an Al based site. We propose a Lewis centre coordinating a water molecule, exhibiting acidic properties. This acidic water molecule can be replaced by the stronger base ammonia, also depleting inner strong Brønsted sites. A mechanism for the generation of the two sites from surface Brønsted species is proposed. Long term adsorption measurements at 25 °C already show the onset of the interaction with inner strongly acidic Brønsted sites: because of its size, activation is required for Sim to pass the supercage openings and reach inner acidic sites. When adsorption is run at 40-50 °C, uptake is much larger and increases with temperature. Isochoric measurements suggest a pKa value of ca. 3 compatible with its marked acidic

  14. Number and strength of surface acidic sites on porous aluminosilicates of the MCM-41 type inferred from a combined microcalorimetric and adsorption study

    SciTech Connect

    Meziani, M.J.; Zajac, J.; Jones, D.J.; Partyka, S.; Roziere, J.

    2000-03-07

    A combined microcalorimetry and adsorption study has been used to characterize the surface acidity of two series of MCM-41 aluminosilicates (referred to as SiAlxCn, where x is the mole Si:Al ration and n the chain length of the surfactant template). {sup 29}Si magic angle spinning NMR spectra of a selected sample (SiAl32C16) indicates the presence of siloxane groups, Si(OSi){sub 4}, and three types of silanol groups, that is, single (SiO){sub 3}-Si-OH, hydrogen-bonded (SiO){sub 3}-SiOH{hor{underscore}ellipsis}HO-Si-(SiO){sub 3}, and germinal (SiO){sub 2}-Si(OH){sub 2}. It is also possible to detect the contributions from Si(3Si, 1Al) and Si(2Si,2Al) sites. The volumetric and calorimetric measurements of gas ammonia adsorption at 353 K were used to determine the number and strength of surface acidic sites. With the exception of H{sup +}-SiAl32C14 and SiAl8C14, all samples have low surface acidity. Following the pyridine-TPD study on SiAl9C14 sample, Lewis acid sites producing surface pyridine complexes constitute the strongest acidic site.

  15. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    PubMed Central

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea

    2015-01-01

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. This study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin. PMID:25724962

  16. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; ...

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  17. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    SciTech Connect

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; Parks, Jerry M.; Elias, Dwayne A.; Hurt, Richard A.; Brown, Steven D.; Podar, Mircea; Wall, Judy D.

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential for mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.

  18. Rational Design of Fatty Acid Amide Hydrolase Inhibitors that Act by Covalently Bonding to Two Active Site Residues

    PubMed Central

    Otrubova, Katerina; Brown, Monica; McCormick, Michael S.; Han, Gye W.; O’Neal, Scott T.; Cravatt, Benjamin F.; Stevens, Raymond C.; Lichtman, Aron H.; Boger, Dale L.

    2013-01-01

    The design and characterization of α-ketoheterocycle fatty acid amide hydrolase (FAAH) inhibitors are disclosed that additionally and irreversibly target a cysteine (Cys269) found in the enzyme cytosolic port while maintaining the reversible covalent Ser241 attachment responsible for their rapid and initially reversible enzyme inhibition. Two α-ketooxazoles (3 and 4) containing strategically placed electrophiles at the C5 position of the pyridyl substituent of 2 (OL-135) were prepared and examined as inhibitors of FAAH. Consistent with the observed time-dependent non-competitive inhibition, the co-crystal X-ray structure of 3 bound to a humanized variant of rat FAAH revealed that 3 was not only covalently bound to the active site catalytic nucleophile Ser241 as a deprotonated hemiketal, but also to Cys269 through the pyridyl C5-substituent, thus providing an inhibitor with dual covalent attachment in the enzyme active site. In vivo characterization of the prototypical inhibitors in mice demonstrate that they raise endogenous brain levels of FAAH substrates to a greater extent and for a much longer duration (>6 h) than the reversible inhibitor 2, indicating that the inhibitors accumulate and persist in the brain to completely inhibit FAAH for a prolonged period. Consistent with this behavior and the targeted irreversible enzyme inhibition, 3 reversed cold allodynia in the chronic constriction injury model of neuropathic pain in mice for a sustained period (>6 h) beyond that observed with the reversible inhibitor 2, providing effects that were unchanged over the 1–6 h time course monitored. PMID:23581831

  19. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    PubMed

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro.

  20. In Silico Structure Prediction of Human Fatty Acid Synthase–Dehydratase: A Plausible Model for Understanding Active Site Interactions

    PubMed Central

    John, Arun; Umashankar, Vetrivel; Samdani, A.; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate–active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro. PMID:27559295

  1. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    SciTech Connect

    Hata, Kuniki; Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari; Katsumura, Yosuke

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  2. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    PubMed Central

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo. PMID:28045057

  3. "Opening" the ferritin pore for iron release by mutation of conserved amino acids at interhelix and loop sites.

    PubMed

    Jin, W; Takagi, H; Pancorbo, B; Theil, E C

    2001-06-26

    Ferritin concentrates, stores, and detoxifies iron in most organisms. The iron is a solid, ferric oxide mineral (< or =4500 Fe) inside the protein shell. Eight pores are formed by subunit trimers of the 24 subunit protein. A role for the protein in controlling reduction and dissolution of the iron mineral was suggested in preliminary experiments [Takagi et al. (1998) J. Biol. Chem. 273, 18685-18688] with a proline/leucine substitution near the pore. Localized pore disorder in frog L134P crystals coincided with enhanced iron exit, triggered by reduction. In this report, nine additional substitutions of conserved amino acids near L134 were studied for effects on iron release. Alterations of a conserved hydrophobic pair, a conserved ion pair, and a loop at the ferritin pores all increased iron exit (3-30-fold). Protein assembly was unchanged, except for a slight decrease in volume (measured by gel filtration); ferroxidase activity was still in the millisecond range, but a small decrease indicates slight alteration of the channel from the pore to the oxidation site. The sensitivity of reductive iron exit rates to changes in conserved residues near the ferritin pores, associated with localized unfolding, suggests that the structure around the ferritin pores is a target for regulated protein unfolding and iron release.

  4. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study.

    PubMed

    Ma, Ting Ting; Teng, Ying; Luo, Yong Ming; Christie, Peter

    2013-01-01

    A field experiment was conducted to study the phytoremediation of phthalic acid esters (PAEs) by legume (alfalfa, Medicago sativa L.)-grass (perennial ryegrass, Lolium perenne L. and tall fescue, Festuca arundinacea) intercropping in contaminated agricultural soil at one of the largest e-waste recycling sites in China. Two compounds, DEHP and DnBP, were present in the soil and in the shoots of the test plants at much higher concentrations than the other target PAEs studied. Over 80% of 'total' (i.e., all six) PAEs were removed from the soil across all treatments by the end of the experiment. Alfalfa in monoculture removed over 90% of PAEs and alfalfa in the intercrop of the three plant species contained the highest shoot concentration of total PAEs of about 4.7 mg kg(-1) DW (dry weight). Calculation of phytoextraction efficiency indicated that the most effective plant combinations in eliminating soil PAEs were the three-species intercrop (1.78%) and the alfalfa monocrop (1.41%). Phytoremediation with alfalfa was effective in both monoculture and intercropping. High bioconcentration factors (BCFs) indicated the occurrence of significant extraction of PAEs by plants from soil, suggesting that phytoremediation may have potential for the removal of PAEs from contaminated soils.

  5. Conformational transition of FGFR kinase activation revealed by site-specific unnatural amino acid reporter and single molecule FRET

    NASA Astrophysics Data System (ADS)

    Perdios, Louis; Lowe, Alan R.; Saladino, Giorgio; Bunney, Tom D.; Thiyagarajan, Nethaji; Alexandrov, Yuriy; Dunsby, Christopher; French, Paul M. W.; Chin, Jason W.; Gervasio, Francesco Luigi; Tate, Edward W.; Katan, Matilda

    2017-01-01

    Protein kinases share significant structural similarity; however, structural features alone are insufficient to explain their diverse functions. Thus, bridging the gap between static structure and function requires a more detailed understanding of their dynamic properties. For example, kinase activation may occur via a switch-like mechanism or by shifting a dynamic equilibrium between inactive and active states. Here, we utilize a combination of FRET and molecular dynamics (MD) simulations to probe the activation mechanism of the kinase domain of Fibroblast Growth Factor Receptor (FGFR). Using genetically-encoded, site-specific incorporation of unnatural amino acids in regions essential for activation, followed by specific labeling with fluorescent moieties, we generated a novel class of FRET-based reporter to monitor conformational differences corresponding to states sampled by non phosphorylated/inactive and phosphorylated/active forms of the kinase. Single molecule FRET analysis in vitro, combined with MD simulations, shows that for FGFR kinase, there are populations of inactive and active states separated by a high free energy barrier resulting in switch-like activation. Compared to recent studies, these findings support diversity in features of kinases that impact on their activation mechanisms. The properties of these FRET-based constructs will also allow further studies of kinase dynamics as well as applications in vivo.

  6. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.

    PubMed

    Liu, Xianglei; Lin, Jun; Hu, Haifeng; Zhou, Bin; Zhu, Baoquan

    2016-01-01

    As the key starting material for the chemical synthesis of Oseltamivir, shikimic acid (SA) has captured worldwide attention. Many researchers have tried to improve SA production by metabolic engineering, yet expression plasmids were used generally. In recent years, site-specific integration of key genes into chromosome to increase the yield of metabolites showed considerable advantages. The genes could maintain stably and express constitutively without induction. Herein, crucial genes aroG, aroB, tktA, aroE (encoding 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase, dehydroquinate synthase, transketolase and shikimate dehydrogenase, respectively) of SA pathway and glk, galP (encoding glucokinase and galactose permease) were integrated into the locus of ptsHIcrr (phosphoenolpyruvate: carbohydrate phosphotransferase system operon) in a shikimate kinase genetic defect strain Escherichia coli BW25113 (ΔaroL/aroK, DE3). Furthermore, another key gene ppsA (encoding phosphoenolpyruvate synthase) was integrated into tyrR (encoding Tyr regulator protein). As a result, SA production of the recombinant (SA5/pGBAE) reached to 4.14 g/L in shake flask and 27.41 g/L in a 5-L bioreactor. These data suggested that integration of key genes increased SA yields effectively. This strategy is environmentally friendly for no antibiotic is added, simple to handle without induction, and suitable for industrial production.

  7. Comparative analysis of amino acid composition in the active site of nirk gene encoding copper-containing nitrite reductase (CuNiR) in bacterial spp.

    PubMed

    Adhikari, Utpal Kumar; Rahman, M Mizanur

    2017-04-01

    The nirk gene encoding the copper-containing nitrite reductase (CuNiR), a key catalytic enzyme in the environmental denitrification process that helps to produce nitric oxide from nitrite. The molecular mechanism of denitrification process is definitely complex and in this case a theoretical investigation has been conducted to know the sequence information and amino acid composition of the active site of CuNiR enzyme using various Bioinformatics tools. 10 Fasta formatted sequences were retrieved from the NCBI database and the domain and disordered regions identification and phylogenetic analyses were done on these sequences. The comparative modeling of protein was performed through Modeller 9v14 program and visualized by PyMOL tools. Validated protein models were deposited in the Protein Model Database (PMDB) (PMDB id: PM0080150 to PM0080159). Active sites of nirk encoding CuNiR enzyme were identified by Castp server. The PROCHECK showed significant scores for four protein models in the most favored regions of the Ramachandran plot. Active sites and cavities prediction exhibited that the amino acid, namely Glycine, Alanine, Histidine, Aspartic acid, Glutamic acid, Threonine, and Glutamine were common in four predicted protein models. The present in silico study anticipates that active site analyses result will pave the way for further research on the complex denitrification mechanism of the selected species in the experimental laboratory.

  8. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites

    PubMed Central

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  9. The cooperative effect between active site ionized groups and water desolvation controls the alteration of acid/base catalysis in serine proteases.

    PubMed

    Shokhen, Michael; Khazanov, Netaly; Albeck, Amnon

    2007-08-13

    What is the driving force that alters the catalytic function of His57 in serine proteases between general base and general acid in each step along the enzymatic reaction? The stable tetrahedral complexes (TC) of chymotrypsin with trifluoromethyl ketone transition state analogue inhibitors are topologically similar to the catalytic transition state. Therefore, they can serve as a good model to study the enzyme catalytic reaction. We used DFT quantum mechanical calculations to analyze the effect of solvation and of polar factors in the active site of chymotrypsin on the pKa of the catalytic histidine in FE (the free enzyme), EI (the noncovalent enzyme inhibitor complex), and TC. We demonstrated that the acid/base alteration is controlled by the charged groups in the active site--the catalytic Asp102 carboxylate and the oxyanion. The effect of these groups on the catalytic His is modulated by water solvation of the active site.

  10. Enhancement of the catalytic activity of ferulic acid decarboxylase from Enterobacter sp. Px6-4 through random and site-directed mutagenesis.

    PubMed

    Lee, Hyunji; Park, Jiyoung; Jung, Chaewon; Han, Dongfei; Seo, Jiyoung; Ahn, Joong-Hoon; Chong, Youhoon; Hur, Hor-Gil

    2015-11-01

    The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.

  11. Effects of folic acid on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50 000 individuals

    PubMed Central

    Vollset, Stein Emil; Clarke, Robert; Lewington, Sarah; Ebbing, Marta; Halsey, Jim; Lonn, Eva; Armitage, Jane; Manson, JoAnn E; Hankey, Graeme J; Spence, J David; Galan, Pilar; Bønaa, Kaare H; Jamison, Rex; Gaziano, J Michael; Guarino, Peter; Baron, John A; Logan, Richard FA; Giovannucci, Edward L; den Heijer, Martin; Ueland, Per M; Bennett, Derrick; Collins, Rory; Peto, Richard

    2013-01-01

    Summary Background Some countries fortify flour with folic acid to prevent neural tube defects but others do not, partly because of concerns about cancer risks. We aimed to assess the effects of folic acid supplementation on site-specific cancer rates in the randomised trials. Methods Meta-analyses of data on each individual in all placebo-controlled trials of folic acid for prevention of cardiovascular disease (10 trials, n=46,969) or colorectal adenoma (3 trials, n=2652) that recorded cancer incidence and recruited >500 participants. All trials were evenly randomised. Risk ratios (RRs) compare those allocated folic acid vs those allocated placebo, giving cancer incidence rate ratios (among those still free of cancer) during, but not after the scheduled treatment period. Findings During a weighted mean follow-up duration of 5.5 years, allocation to folic acid quadrupled plasma folate, but had no statistically significant effect on overall cancer incidence (1904 vs 1809 cancers, RR=1.06 [95%CI 0.99–1.13], p=0.10; trend with duration of treatment p=0.46). There was no significant heterogeneity between the results of individual trials (p=0.23), or between the cadiovascular prevention trials and the adenoma prevention trials (p=0.13). Moreover, there was no significant effect of folic acid supplementation on the incidence of cancer of the large intestine, prostate, lung, breast or any other specific site. Interpretation Folic acid supplementation does not substantially increase or decrease site-specific cancer incidence during the first 5 years of treatment. Funding British Heart Foundation, Medical Research Council, Cancer Research UK, Food Standards Agency. PMID:23352552

  12. Fatty acid-binding site environments of serum vitamin D-binding protein and albumin are different

    PubMed Central

    Swamy, Narasimha; Ray, Rahul

    2008-01-01

    Vitamin D-binding protein (DBP) and albumin (ALB) are abundant serum proteins and both possess high-affinity binding for saturated and unsaturated fatty acids. However, certain differences exist. We surmised that in cases where serum albumin level is low, DBP presumably can act as a transporter of fatty acids. To explore this possibility we synthesized several alkylating derivatives of 14C-palmitic acid to probe the fatty acid binding pockets of DBP and ALB. We observed that N-ethyl-5-phenylisooxazolium-3′-sulfonate-ester (WRK ester) of 14C-palmitic acid specifically labeled DBP; but p-nitrophenyl- and N-hydroxysuccinimidyl-esters failed to do so. However, p-nitrophenyl ester of 14C-palmitic acid specifically labeled bovine ALB, indicating that the micro-environment of the fatty acid-binding domains of DBP and ALB may be different; and DBP may not replace ALB as a transporter of fatty acids. PMID:18374965

  13. Evaluation of Fe(II) oxidation at an acid mine drainage site using laboratory-scale reactors

    NASA Astrophysics Data System (ADS)

    Brown, Juliana; Burgos, William

    2010-05-01

    Acid mine drainage (AMD) is a severe environmental threat to the Appalachian region of the Eastern United States. The Susquehanna and Potomac River basins of Pennsylvania drain to the Chesapeake Bay, which is heavily polluted by acidity and metals from AMD. This study attempted to unravel the complex relationships between AMD geochemistry, microbial communities, hydrodynamic conditions, and the mineral precipitates for low-pH Fe mounds formed downstream of deep mine discharges, such as Lower Red Eyes in Somerset County, PA, USA. This site is contaminated with high concentrations of Fe (550 mg/L), Mn (115 mg/L), and other trace metals. At the site 95% of dissolved Fe(II) and 56% of total dissolved Fe is removed without treatment, across the mound, but there is no change in the concentration of trace metals. Fe(III) oxides were collected across the Red Eyes Fe mound and precipitates were analyzed by X-ray diffraction, electron microscopy and elemental analysis. Schwertmannite was the dominant mineral phase with traces of goethite. The precipitates also contained minor amounts of Al2O3, MgO,and P2O5. Laboratory flow-through reactors were constructed to quantify Fe(II) oxidation and Fe removal over time at terrace and pool depositional facies. Conditions such as residence time, number of reactors in sequence and water column height were varied to determine optimal conditions for Fe removal. Reactors with sediments collected from an upstream terrace oxidized more than 50% of dissolved Fe(II) at a ten hour residence time, while upstream pool sediments only oxidized 40% of dissolved Fe(II). Downstream terrace and pool sediments were only capable of oxidizing 25% and 20% of Fe(II), respectively. Fe(II) oxidation rates measured in the reactors were determined to be between 3.99 x 10-8and 1.94 x 10-7mol L-1s-1. The sediments were not as efficient for total dissolved Fe removal and only 25% was removed under optimal conditions. The removal efficiency for all sediments

  14. Covalent modification of Lys19 in the CTP binding site of cytidine 5'-monophosphate N-acetylneuraminic acid synthetase.

    PubMed Central

    Tullius, M. V.; Vann, W. F.; Gibson, B. W.

    1999-01-01

    Periodate oxidized CTP (oCTP) was used to investigate the importance of lysine residues in the CTP binding site of the cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuAc) synthetase (EC 2.7.7.43) from Haemophilus ducreyi. The reaction of oCTP with the enzyme follows pseudo-first-order saturation kinetics, giving a maximum rate of inactivation of 0.6 min(-1) and a K(I) of 6.0 mM at pH 7.1. Mass spectrometric analysis of the modified enzyme provided data that was consistent with beta-elimination of triphosphate after the reaction of oCTP with the enzyme. A fully reduced enzyme-oCTP conjugate, retaining the triphosphate moiety, was obtained by inclusion of NaBH3CN in the reaction solution. The beta-elimination product of oCTP reacted several times more rapidly with the enzyme compared to equivalent concentrations of oCTP. This compound also formed a stable reduced morpholino adduct with CMP-NeuAc synthetase when the reaction was conducted in the presence of NaBH3CN, and was found to be a useful lysine modifying reagent. The substrate CTP was capable of protecting the enzyme to a large degree from inactivation by oCTP and its beta-elimination product. Lys19, a residue conserved in CMP-NeuAc synthetases, was identified as being labeled with the beta-elimination product of oCTP. PMID:10091669

  15. A cluster DFT study of NH3 and NO adsorption on the (MoO2)2+/HZSM-5 surface: Lewis versus Brønsted acid sites

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Zuo, Zhijun; Li, Zhe; Zhang, Jinshan

    2014-12-01

    A systematic DFT study was carried out to investigate NH3 and NO adsorption on both Lewis and Brønsted acid sites of (MoO2)2+/HZSM-5 catalyst by using cluster models. The adsorption energy results indicate that NH3 could strongly adsorb on both Lewis and Brønsted acid sites in the form of coordinated NH3 and NH4+, respectively, whereas NO represents poorer adsorption ability. It is also found that Lewis and Brønsted acid sites are competitive energetically for NH3 adsorption. According to the difference in the proposed mechanisms for NH3 adsorption on different acid sites, particular attention has been focused on the first dissociation of coordinated NH3 for Lewis acid site and the effect of Mo site on the introduction of NO for Brønsted acid site. For the coordinated NH3 on Lewis acid site, the more electron donation from NH3 is, the greater its adsorption stability is and the higher active its H atoms are. In addition, DOS results show that stability of the H atoms is enhanced by interacting with framework oxygen and especially the H atoms chemical-bonded with framework oxygen. For the NH4+ on Brønsted acid site, reduced-state Mo5+ holds stronger reducibility and oxidizability than terminal oxygen, which is suggested to play a key role in adsorption and activation of NOx together with the adsorbed NH4+.

  16. Guest dynamics in solid acetone-d/sub 6/-DOCA and acetone-d/sub 6/-APA inclusion compounds: correlation between the symmetry of the motion and the site symmetry. [Deoxycholic acid; Apocholic acid

    SciTech Connect

    Meirovitch, E.

    1986-10-23

    The molecular motion of acetone-d/sub 6/ acting as guest in deoxycholic acid and apocholic acid host lattices in the solid state is interpreted in light of a broader concept assessing that very often the motion of the guest proceeds through discrete jumps rather than diffusively and its symmetry is congenial with the site symmetry of the host lattice. In particular, the acetone molecules are engaged in threefold jumps about a unique axis, compatible with the 32 site symmetry of the host lattice. The entire dynamic range of this process is investigated in terms of spectral consequences brought about by variations in jump rates, in the relative population of the three symmetry related sites, and in instrumental parameters such as the time interval between the two 90/sup 0/ pulses in the quadrupole echo sequence and the length of the 90/sup 0/ pulses.

  17. Adsorption of Carbon Dioxide on Unsaturated Metal Sites in M2 (dobpdc) Frameworks with Exceptional Structural Stability and Relation between Lewis Acidity and Adsorption Enthalpy.

    PubMed

    Yoo, Ga Young; Lee, Woo Ram; Jo, Hyuna; Park, Joonho; Song, Jeong Hwa; Lim, Kwang Soo; Moon, Dohyun; Jung, Hyun; Lim, Juhyung; Han, Sang Soo; Jung, Yousung; Hong, Chang Seop

    2016-05-23

    A series of metal-organic frameworks (MOFs) M2 (dobpdc) (M=Mn, Co, Ni, Zn; H4 dobpdc=4,4'-dihydroxy-1,1'-biphenyl-3,3'-dicarboxylic acid), with a highly dense arrangement of open metal sites along hexagonal channels were prepared by microwave-assisted or simple solvothermal reactions. The activated materials were structurally expanded when guest molecules including CO2 were introduced into the pores. The Lewis acidity of the open metal sites varied in the order MnZn, as confirmed by C=O stretching bands in the IR spectra, which are related to the CO2 adsorption enthalpy. DFT calculations revealed that the high CO2 binding affinity of transition-metal-based M2 (dobpdc) is primarily attributable to the favorable charge transfer from CO2 (oxygen lone pair acting as a Lewis base) to the open metal sites (Lewis acid), while electrostatic effects, the underlying factor responsible for the particular order of binding strength observed across different transition metals, also play a role. The framework stability against water coincides with the order of Lewis acidity. In this series of MOFs, the structural stability of Ni2 (dobpdc) is exceptional; it endured in water vapor, liquid water, and in refluxing water for one month, and the solid remained intact on exposure to solutions of pH 2-13. The DFT calculations also support the experimental finding that Ni2 (dobpdc) has higher chemical stability than the other frameworks.

  18. Characterization of the N-Acetyl-5-neuraminic Acid-binding Site of the Extracytoplasmic Solute Receptor (SiaP) of Nontypeable Haemophilus influenzae Strain 2019

    SciTech Connect

    Johnston, Jason W.; Coussens, Nathan P.; Allen, Simon; Houtman, Jon C.D.; Turner, Keith H.; Zaleski, Anthony; Ramaswamy, S.; Gibson, Bradford W.; Apicella, Michael A.

    2012-11-14

    Nontypeable Haemophilus influenzae is an opportunistic human pathogen causing otitis media in children and chronic bronchitis and pneumonia in patients with chronic obstructive pulmonary disease. The outer membrane of nontypeable H. influenzae is dominated by lipooligosaccharides (LOS), many of which incorporate sialic acid as a terminal nonreducing sugar. Sialic acid has been demonstrated to be an important factor in the survival of the bacteria within the host environment. H. influenzae is incapable of synthesizing sialic acid and is dependent on scavenging free sialic acid from the host environment. To achieve this, H. influenzae utilizes a tripartite ATP-independent periplasmic transporter. In this study, we characterize the binding site of the extracytoplasmic solute receptor (SiaP) from nontypeable H. influenzae strain 2019. A crystal structure of N-acetyl-5-neuraminic acid (Neu5Ac)-bound SiaP was determined to 1.4 {angstrom} resolution. Thermodynamic characterization of Neu5Ac binding shows this interaction is enthalpically driven with a substantial unfavorable contribution from entropy. This is expected because the binding of SiaP to Neu5Ac is mediated by numerous hydrogen bonds and has several buried water molecules. Point mutations targeting specific amino acids were introduced in the putative binding site. Complementation with the mutated siaP constructs resulted either in full, partial, or no complementation, depending on the role of specific residues. Mass spectrometry analysis of the O-deacylated LOS of the R127K point mutation confirmed the observation of reduced incorporation of Neu5Ac into the LOS. The decreased ability of H. influenzae to import sialic acid had negative effects on resistance to complement-mediated killing and viability of biofilms in vitro, confirming the importance of sialic acid transport to the bacterium.

  19. A comparative IR characterization of acidic sites on HY zeolite by pyridine and CO probes with silica-alumina and γ-alumina references.

    PubMed

    Kondo, Junko N; Nishitani, Ryoko; Yoda, Eisuke; Yokoi, Toshiyuki; Tatsumi, Takashi; Domen, Kazunari

    2010-10-07

    Using IR spectroscopy, three different surface states of HY zeolite were probed by successive adsorption of CO at 143 K followed by evacuation and pyridine adsorption at 523 K: HY zeolite [1] without strong Lewis acid sites (LAS); [2] after high temperature (873 K) evacuation to convert Brønsted acid sites (BAS) to strong LAS; and [3] after water re-adsorption on HY zeolite [2] to recover BAS from LAS. The original surface of HY zeolite [1] seemed to be recovered on HY zeolite [3] after high temperature evacuation and water treatment by CO adsorption, while a part of generated LAS on HY zeolite [2] seemed irreversible on HY zeolite [3] to HY zeolite [1] by pyridine adsorption. To clarify this discrepancy, re-examination of the IR spectra of adsorbed CO and pyridine on γ-alumina and silica-alumina after similar treatments to those on HY zeolite was conducted. Based on the results of CO adsorption on γ-alumina and silica-alumina, the presence of extra-framework aluminium sites on HY zeolite [1] was confirmed. High temperature evacuation of HY zeolite [1] formed very strong LAS, a part of which was irreversible to BAS by water re-adsorption at room temperature. The irreversible sites on HY zeolite [3] were assigned to non-acidic OH groups attributed to silica-alumina. The non-acidic OH groups on HY zeolite [3], which were BAS on HY zeolite [1], hydrogen-bonded to pyridine to show IR spectra similar to those adsorbed on LAS. Thus, LAS on HY zeolite [3] seemed irreversible by pyridine adsorption after water re-adsorption. On the other hand, CO adsorbed on non-acidic OH groups showed a band at only slightly lower frequency (2160 cm(-1)) than that of BAS (2178 cm(-1)), resulting in overlapps and ignoring their presence. Thus, CO adsorption seemed to show that complete recovery of LAS to BAS occurred.

  20. Active site inhibitors of HCV NS5B polymerase. The development and pharmacophore of 2-thienyl-5,6-dihydroxypyrimidine-4-carboxylic acid.

    PubMed

    Stansfield, Ian; Avolio, Salvatore; Colarusso, Stefania; Gennari, Nadia; Narjes, Frank; Pacini, Barbara; Ponzi, Simona; Harper, Steven

    2004-10-18

    5,6-Dihydroxypyrimidine-4-carboxylic acids are a promising series of hepatitis C virus (HCV) NS5B polymerase inhibitors that bind at the active site of the enzyme. Here we report a simple 2-thienyl substituted analogue that shows 10-fold improved activity over the original lead, and which allowed us to further delineate the key elements of the pharmacophore of this class of inhibitor. This work led to the identification of a trifluoromethyl acylsulfonamide group as a viable replacement for the C4 carboxylic acid in this series.

  1. Long-range atmospheric transport of volatile monocarboxylic acids with Asian dust over a high mountain snow site, central Japan

    NASA Astrophysics Data System (ADS)

    Mochizuki, Tomoki; Kawamura, Kimitaka; Aoki, Kazuma; Sugimoto, Nobuo

    2016-11-01

    To understand the long-range transport of monocarboxylic acids from the Asian continent to the Japanese islands, we collected snowpack samples from a pit sequence (depth ca. 6 m) at the Murodo-Daira snowfield near the summit of Mt. Tateyama, central Japan, in 2009 and 2011. Snow samples (n = 16) were analyzed for normal (C1-C10), branched chain (iC4-iC6), aromatic (benzoic and toluic acid isomers), and hydroxyl (glycolic and lactic) monocarboxylic acids, together with inorganic ions and dissolved organic carbon (DOC). Acetic acid (C2) was found to be a dominant species (average 125 ng g-1), followed by formic acid (C1) (85.7 ng g-1) and isopentanoic acid (iC5) (20.0 ng g-1). We found a strong correlation (r = 0.88) between formic plus acetic acids and non-sea-salt Ca2+ that is a proxy of Asian dust. Contributions of total monocarboxylic acids to DOC in 2009 (21.2 ± 11.6 %) were higher than that in 2011 (3.75 ± 2.62 %), being consistent with higher intensity of Asian dust in 2009 than in 2011. Formic plus acetic acids also showed a positive correlation (r = 0.90) with benzoic acid that is a tracer of automobile exhaust, indicating that monocarboxylic acids and their precursors are largely emitted from anthropogenic sources in China and/or secondarily produced in the atmosphere by photochemical processing. In addition, the ratio of formic plus acetic acids to nss-Ca2+ (0.27) was significantly higher than those (0.00036-0.0018) obtained for reference dust materials of Chinese loess deposits from the Tengger and Gobi deserts. This result suggests that volatile and semi-volatile organic acids are adsorbed on the alkaline dust particles during long-range atmospheric transport. Entrainment of organic acids by dusts is supported by a good correlation (r = 0.87) between formic plus acetic acids and pH of melt snow samples. Our study suggests that Asian alkaline dusts may be a carrier of volatile monocarboxylic acids.

  2. Developing palaeolimnological records of organic content (DOC and POC) using the UK Acid Water Monitoring Network sites

    NASA Astrophysics Data System (ADS)

    Russell, Fiona; Chiverrell, Richard; Boyle, John

    2016-04-01

    Monitoring programmes have shown increases in concentrations of dissolved organic matter (DOM) in the surface waters of northern and central Europe (Monteith et al. 2007), and negative impacts of the browning of river waters have been reported for fish populations (Jonsson et al. 2012; Ranaker et al. 2012) and for ecosystem services such as water treatment (Tuvendal and Elmqvist 2011). Still the exact causes of the recent browning remain uncertain, the main contenders being climate change (Evans et al. 2005) and reduced ionic strength in surface water resulting from declines in anthropogenic sulphur and sea salt deposition (Monteith et al. 2007). There is a need to better understand the pattern, drivers and trajectory of these increases in DOC and POC in both recent and longer-term (Holocene) contexts to improve the understanding of carbon cycling within lakes and their catchments. In Britain there are some ideal sites for testing whether these trends are preserved and developing methods for reconstructing organic fluxes from lake sedimentary archives. There is a suite of lakes distributed across the country, the UK Acid Waters Monitoring Network (UKAWMN) sites, which have been monitored monthly for dissolved organic carbon and other aqueous species since 1988. These 12 lakes have well studied recent and in some case whole Holocene sediment records. Here four of those lakes (Grannoch, Chon, Scoat Tarn and Cwm Mynach) are revisited, with sampling focused on the sediment-water interface and very recent sediments (approx.150 years). At Scoat Tarn (approx. 1000 years) and Llyn Mynach (11.5k years) longer records have been obtained to assess equivalent patterns through the Holocene. Analyses of the gravity cores have focused on measuring and characterising the organic content for comparison with recorded surface water DOC measurements (UKAWMN). Data from pyrolysis measurements (TGA/DSC) in an N atmosphere show that the mass loss between 330-415°C correlates well with

  3. Distribution bias analysis of germline and somatic single-nucleotide variations that impact protein functional site and neighboring amino acids

    PubMed Central

    Pan, Yang; Yan, Cheng; Hu, Yu; Fan, Yu; Pan, Qing; Wan, Quan; Torcivia-Rodriguez, John; Mazumder, Raja

    2017-01-01

    Single nucleotide variations (SNVs) can result in loss or gain of protein functional sites. We analyzed the effects of SNVs on enzyme active sites, ligand binding sites, and various types of post translational modification (PTM) sites. We found that, for most types of protein functional sites, the SNV pattern differs between germline and somatic mutations as well as between synonymous and non-synonymous mutations. From a total of 51,138 protein functional site affecting SNVs (pfsSNVs), a pan-cancer analysis revealed 142 somatic pfsSNVs in five or more cancer types. By leveraging patient information for somatic pfsSNVs, we identified 17 loss of functional site SNVs and 60 gain of functional site SNVs which are significantly enriched in patients with specific cancer types. Of the key pfsSNVs identified in our analysis above, we highlight 132 key pfsSNVs within 17 genes that are found in well-established cancer associated gene lists. For illustrating how key pfsSNVs can be prioritized further, we provide a use case where we performed survival analysis showing that a loss of phosphorylation site pfsSNV at position 105 in MEF2A is significantly associated with decreased pancreatic cancer patient survival rate. These 132 pfsSNVs can be used in developing genetic testing pipelines. PMID:28176830

  4. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites.

    PubMed

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong; Yao, Bin

    2015-12-04

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed.

  5. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites

    PubMed Central

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong

    2015-01-01

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed. PMID:26637601

  6. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  7. Low molecular weight (C1-C10) monocarboxylic acids, dissolved organic carbon and major inorganic ions in alpine snow pit sequence from a high mountain site, central Japan

    NASA Astrophysics Data System (ADS)

    Kawamura, Kimitaka; Matsumoto, Kohei; Tachibana, Eri; Aoki, Kazuma

    2012-12-01

    Snowpack samples were collected from a snow pit sequence (6 m in depth) at the Murodo-Daira site near the summit of Mt. Tateyama, central Japan, an outflow region of Asian dusts. The snow samples were analyzed for a homologous series of low molecular weight normal (C1-C10) and branched (iC4-iC6) monocarboxylic acids as well as aromatic (benzoic) and hydroxy (glycolic and lactic) acids, together with major inorganic ions and dissolved organic carbon (DOC). The molecular distributions of organic acids were characterized by a predominance of acetic (range 7.8-76.4 ng g-1-snow, av. 34.8 ng g-1) or formic acid (2.6-48.1 ng g-1, 27.7 ng g-1), followed by propionic acid (0.6-5.2 ng g-1, 2.8 ng g-1). Concentrations of normal organic acids generally decreased with an increase in carbon chain length, although nonanoic acid (C9) showed a maximum in the range of C5-C10. Higher concentrations were found in the snowpack samples containing dust layer. Benzoic acid (0.18-4.1 ng g-1, 1.4 ng g-1) showed positive correlation with nitrate (r = 0.70), sulfate (0.67), Na+ (0.78), Ca2+ (0.86) and Mg+ (0.75), suggesting that this aromatic acid is involved with anthropogenic sources and Asian dusts. Higher concentrations of Ca2+ and SO42- were found in the dusty snow samples. We found a weak positive correlation (r = 0.43) between formic acid and Ca2+, suggesting that gaseous formic acid may react with Asian dusts in the atmosphere during long-range transport. However, acetic acid did not show any positive correlations with major inorganic ions. Hydroxyacids (0.03-5.7 ng g-1, 1.5 ng g-1) were more abundant in the granular and dusty snow. Total monocarboxylic acids (16-130 ng g-1, 74 ng g-1) were found to account for 1-6% of DOC (270-1500 ng g-1, 630 ng g-1) in the snow samples.

  8. The reaction mechanism for the SCR process on monomer V(5+) sites and the effect of modified Brønsted acidity.

    PubMed

    Arnarson, Logi; Falsig, Hanne; Rasmussen, Søren B; Lauritsen, Jeppe V; Moses, Poul Georg

    2016-06-22

    The energetics, structures and activity of a monomeric VO3H/TiO2(001) catalyst are investigated for the selective catalytic reduction (SCR) reaction by the use of density functional theory (DFT). Furthermore we study the influences of a dopant substitute in the TiO2 support and its effects on the known properties of the SCR system such as Brønsted acidity and reducibility of vanadium. We find for the reduction part of the SCR mechanism that it involves two Ti-O-V oxygen sites. One is a hydroxyl possessing Brønsted acidity which contributes to the formation of NH4(+), while the other accepts a proton which charge stabilizes the reduced active site. In the reduction the proton is donated to the latter due to a reaction between NH3 and NO that forms a H2NNO molecule which decomposes into N2(g) and H2O(g). A dopant substitution of 10 different dopants: Si, Ge, Se, Zr, Sn, Te, Hf, V, Mo and W at each of the sites, which participate in the reaction, modifies the energetics and therefore the SCR activity. We find that Brønsted acidity is a descriptor for the SCR activity at low temperatures. Based on this descriptor we find that Zr, Hf and Sn have a positive effect as they decrease the activation energy for the SCR reaction.

  9. Microbial Community Structure and Physiological Status of Different Types of Biofilms in an Acid Mine Drainage Site Determined by Phospholipid Analysis

    NASA Astrophysics Data System (ADS)

    Fang, J.

    2009-12-01

    A unique aspect of the acid mine drainage (AMD) system at the Green Valley coal mine site (GVS) in western Indiana is the abundance of biofims and biolaminates - stromatolites. Three major types of biofilms have been observed from the AMD site: bright green biofilm dominated by the acidophilic, oxygenic photosynthetic protozoan Euglena mutabilis, olive green biofilm of photosynthetic diatom belonging to the genus Nitzschia, and an olive-green to brownish-green filamentous algae-dominated community. These biofilms are either attached to hard substrata of the effluent channel, or floating at the surface of the effluent with abundant oxygen bubbles, with or without encrusted Fe precipitates. We analyzed lipids (hydrocarbons, wax esters, phospholipids, glycolipids, and neutral lipids) to determine the microbial biomass, community structure and physiological status of biofims collected from the GVS site. Distinctive lipid compositions were observed. The attached, red-crusted biofilms were characterized by abundant wax esters, monounsaturated fatty acids, whereas the floating biofilms by phytadienes, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids. The accumulation of abundant wax esters probably reflects the readily available carbon and limitation of nutrients to the biofilm. Alternatively, the wax esters may be the biochemical relics of the anaerobic past of the Earth and the detection of these compounds has important implications for the evolution of eukaryotes and the paleo-environmental conditions on early Earth. This type of biochemical machine may have allowed early eukaryotes to survive recurrent anoxic conditions on early Earth.

  10. Aspartic Acid 397 in Subunit B of the Na+-pumping NADH:Quinone Oxidoreductase from Vibrio cholerae Forms Part of a Sodium-binding Site, Is Involved in Cation Selectivity, and Affects Cation-binding Site Cooperativity

    PubMed Central

    Shea, Michael E.; Juárez, Oscar; Cho, Jonathan; Barquera, Blanca

    2013-01-01

    The Na+-pumping NADH:quinone complex is found in Vibrio cholerae and other marine and pathogenic bacteria. NADH:ubiquinone oxidoreductase oxidizes NADH and reduces ubiquinone, using the free energy released by this reaction to pump sodium ions across the cell membrane. In a previous report, a conserved aspartic acid residue in the NqrB subunit at position 397, located in the cytosolic face of this protein, was proposed to be involved in the capture of sodium. Here, we studied the role of this residue through the characterization of mutant enzymes in which this aspartic acid was substituted by other residues that change charge and size, such as arginine, serine, lysine, glutamic acid, and cysteine. Our results indicate that NqrB-Asp-397 forms part of one of the at least two sodium-binding sites and that both size and charge at this position are critical for the function of the enzyme. Moreover, we demonstrate that this residue is involved in cation selectivity, has a critical role in the communication between sodium-binding sites, by promoting cooperativity, and controls the electron transfer step involved in sodium uptake (2Fe-2S → FMNC). PMID:24030824

  11. Exploring the role of putative active site amino acids and pro-region motif of recombinant falcipain-2: a principal hemoglobinase of Plasmodium falciparum.

    PubMed

    Kumar, Amit; Dasaradhi, P V N; Chauhan, Virander S; Malhotra, Pawan

    2004-04-23

    Falcipain-2 is one of the principal hemoglobinases of Plasmodium falciparum, a human malaria parasite. It has a typical papain family cysteine protease structural organization, a large pro-domain, a mature domain with conserved active site amino acids. Pro-domain of falcipain-2 also contains two important conserved motifs, "GNFD" and "ERFNIN." The "GNFD" motif has been shown to be responsible for correct folding and stability in case of many papain family proteases. In the present study, we carried out site-directed mutagenesis to assess the roles of active site residues and pro-domain residues for the activity of falcipain-2. Our results showed that substitutions of putative active site residues; Q36, C42, H174, and N204 resulted in complete loss of falcipain-2 activity, while W206 and D155 mutants retained partial/complete activity in comparison to the wild type falcipain-2. Homology modeling data also corroborate the results of mutagenesis; Q36, C42, H174, N204, and W206 residues form the active site loop of the enzyme and D155 lie outside the active pocket. Substitutions in the pro-region did not affect the activity of falcipain-2. This implies that falcipain-2 shares active site residues with other members of papain family, however pro-region of falcipain-2 does not play any role in the activity of enzyme.

  12. Molecular distribution, seasonal variation, chemical transformation and sources of dicarboxylic acids and related compounds in atmospheric aerosols at remote marine Gosan site, Jeju Island

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Kawamura, K.; Lee, M.

    2009-12-01

    : A homologous series of C2-C12 α, ω-dicarboxylic acids, ω-oxocarboxylic acids (C2-C9), pyruvic acid and α-dicarbonyls (C2-C3) were detected in atmospheric aerosols collected between April 2003 and April 2004 from remote marine Gosan site (33°29‧ N, 126°16‧ E) located in Jeju Island, South Korea. They were determined using a GC-FID and GC/MS. Total diacid concentration ranged from 130 to 1911 ng m-3 (av. 642 ng m-3), whereas total oxoacid concentration ranged from 7 to 155 ng m-3 (av. 43 ng m-3), and pyruvic acid and α-dicarbonyls ranged from 0.5 to 15 ng m-3 (av. 5 ng m-3) and 2-108 ng m-3 (av. 17.3 ng m-3), respectively. Oxalic (C2) acid was the most abundant in all seasons followed by malonic (C3) or succinic (C4) acid, and phthalic (Ph) acid. The concentration of diacids decreased with an increase in carbon number except for azelaic (C9) acid, which was more abundant than suberic (C8) acid. Glyoxylic acid was predominant ω-oxoacid contributing to 92% of total ω-oxoacid. Total diacids, oxoacids and dicarbonyls showed maximum concentrations in spring and occasionally in winter, while minimum concentrations were observed in summer. Air mass trajectory analysis suggests that either spring or winter maxima can be explained by strong continental outflow associated with cold front passages, while summer minima are associated with warm southerly flows, which transport clean marine air from low latitudes to Jeju Island. The comparison between total diacid concentration level of this study and other study results of urban and remote sites of East Asia reveals that Gosan site is more heavily influenced by the continental outflow from China. The seasonal variation of malonic/succinic (C3/C4), malic/succinic (hC4/C4), fumaric/maleic (F/M), oxalic/pyruvic (C2/Py) and oxalic/Glyoxal (C2/Gly) ratios showed maxima in summer due to an enhanced photo-production and degradation of diacids and related compounds. Throughout all seasons C3/C4 ratio at Gosan site, located

  13. Respiratory syncytial virus fusion glycoprotein: nucleotide sequence of mRNA, identification of cleavage activation site and amino acid sequence of N-terminus of F1 subunit.

    PubMed Central

    Elango, N; Satake, M; Coligan, J E; Norrby, E; Camargo, E; Venkatesan, S

    1985-01-01

    The amino acid sequence of respiratory syncytial virus fusion protein (Fo) was deduced from the sequence of a partial cDNA clone of mRNA and from the 5' mRNA sequence obtained by primer extension and dideoxysequencing. The encoded protein of 574 amino acids is extremely hydrophobic and has a molecular weight of 63371 daltons. The site of proteolytic cleavage within this protein was accurately mapped by determining a partial amino acid sequence of the N-terminus of the larger subunit (F1) purified by radioimmunoprecipitation using monoclonal antibodies. Alignment of the N-terminus of the F1 subunit within the deduced amino acid sequence of Fo permitted us to identify a sequence of lys-lys-arg-lys-arg-arg at the C-terminus of the smaller N-terminal F2 subunit that appears to represent the cleavage/activation domain. Five potential sites of glycosylation, four within the F2 subunit, were also identified. Three extremely hydrophobic domains are present in the protein; a) the N-terminal signal sequence, b) the N-terminus of the F1 subunit that is analogous to the N-terminus of the paramyxovirus F1 subunit and the HA2 subunit of influenza virus hemagglutinin, and c) the putative membrane anchorage domain near the C-terminus of F1. Images PMID:2987829

  14. Conserved amino acid motifs from the novel Piv/MooV family of transposases and site-specific recombinases are required for catalysis of DNA inversion by Piv.

    PubMed

    Tobiason, D M; Buchner, J M; Thiel, W H; Gernert, K M; Karls, A C

    2001-02-01

    Piv, a site-specific invertase from Moraxella lacunata, exhibits amino acid homology with the transposases of the IS110/IS492 family of insertion elements. The functions of conserved amino acid motifs that define this novel family of both transposases and site-specific recombinases (Piv/MooV family) were examined by mutagenesis of fully conserved amino acids within each motif in Piv. All Piv mutants altered in conserved residues were defective for in vivo inversion of the M. lacunata invertible DNA segment, but competent for in vivo binding to Piv DNA recognition sequences. Although the primary amino acid sequences of the Piv/MooV recombinases do not contain a conserved DDE motif, which defines the retroviral integrase/transposase (IN/Tnps) family, the predicted secondary structural elements of Piv align well with those of the IN/Tnps for which crystal structures have been determined. Molecular modelling of Piv based on these alignments predicts that E59, conserved as either E or D in the Piv/MooV family, forms a catalytic pocket with the conserved D9 and D101 residues. Analysis of Piv E59G confirms a role for E59 in catalysis of inversion. These results suggest that Piv and the related IS110/IS492 transposases mediate DNA recombination by a common mechanism involving a catalytic DED or DDD motif.

  15. Identification of Active and Spectator Sn Sites in Sn-β Following Solid-State Stannation, and Consequences for Lewis Acid Catalysis

    PubMed Central

    Hammond, Ceri; Padovan, Daniele; Al-Nayili, Abbas; Wells, Peter P; Gibson, Emma K; Dimitratos, Nikolaos

    2015-01-01

    Lewis acidic zeolites are rapidly emerging liquid-phase Lewis acid catalysts. Nevertheless, their inefficient synthesis procedure currently prohibits greater utilization and exploitation of these promising materials. Herein, we demonstrate that SnIV-containing zeolite beta can readily be prepared both selectively and extremely rapidly by solid-state incorporation (SSI) method. Through a combination of spectroscopic (XRD, UV/Vis, X-ray absorption, magic-angle spinning NMR, and diffuse reflectance infrared Fourier transform spectroscopy) studies, we unambiguously demonstrate that site-isolated, isomorphously substituted SnIV sites dominate the Sn population up to a loading of 5 wt % Sn. These sites are identical to those found in conventionally prepared Sn-beta, and result in our SSI material exhibiting identical levels of intrinsic activity (that is, turnover frequency) despite the threefold increase in Sn loading, and the extremely rapid and benign nature of our preparation methodology. We also identify the presence of spectator sites, in the form of SnIV oligomers, at higher levels of Sn loading. The consequences of this mixed population with regards to catalysis (Meerwein–Pondorf–Verley reaction and glucose isomerization) are also identified. PMID:26583051

  16. Import of amber and ochre suppressor tRNAs into mammalian cells: A general approach to site-specific insertion of amino acid analogues into proteins

    PubMed Central

    Köhrer, Caroline; Xie, Liang; Kellerer, Susanne; Varshney, Umesh; RajBhandary, Uttam L.

    2001-01-01

    A general approach to site-specific insertion of amino acid analogues into proteins in vivo would be the import into cells of a suppressor tRNA aminoacylated with the analogue of choice. The analogue would be inserted at any site in the protein specified by a stop codon in the mRNA. The only requirement is that the suppressor tRNA must not be a substrate for any of the cellular aminoacyl–tRNA synthetases. Here, we describe conditions for the import of amber and ochre suppressor tRNAs derived from Escherichia coli initiator tRNA into mammalian COS1 cells, and we present evidence for their activity in the specific suppression of amber (UAG) and ochre (UAA) codons, respectively. We show that an aminoacylated amber suppressor tRNA (supF) derived from the E. coli tyrosine tRNA can be imported into COS1 cells and acts as a suppressor of amber codons, whereas the same suppressor tRNA imported without prior aminoacylation does not, suggesting that the supF tRNA is not a substrate for any mammalian aminoacyl–tRNA synthetase. These results open the possibility of using the supF tRNA aminoacylated with an amino acid analogue as a general approach for the site-specific insertion of amino acid analogues into proteins in mammalian cells. We discuss the possibility further of importing a mixture of amber and ochre suppressor tRNAs for the insertion of two different amino acid analogues into a protein and the potential use of suppressor tRNA import for treatment of some of the human genetic diseases caused by nonsense mutations. PMID:11717406

  17. Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions.

    PubMed

    Wang, Yehong; Wang, Feng; Song, Qi; Xin, Qin; Xu, Shutao; Xu, Jie

    2013-01-30

    The use of a heterogeneous Lewis acid catalyst, which is insoluble and easily separable during the reaction, is a promising option for hydrolysis reactions from both environmental and practical viewpoints. In this study, ceria showed excellent catalytic activity in the hydrolysis of 4-methyl-1,3-dioxane to 1,3-butanediol in 95% yield and in the one-pot synthesis of 1,3-butanediol from propylene and formaldehyde via Prins condensation and hydrolysis reactions in an overall yield of 60%. In-depth investigations revealed that ceria is a water-tolerant Lewis acid catalyst, which has seldom been reported previously. The ceria catalysts showed rather unusual high activity in hydrolysis, with a turnover number (TON) of 260, which is rather high for bulk oxide catalysts, whose TONs are usually less than 100. Our conclusion that ceria functions as a Lewis acid catalyst in hydrolysis reactions is firmly supported by thorough characterizations with IR and Raman spectroscopy, acidity measurements with IR and (31)P magic-angle-spinning NMR spectroscopy, Na(+)/H(+) exchange tests, analyses using the in situ active-site capping method, and isotope-labeling studies. A relationship between surface vacancy sites and catalytic activity has been established. CeO(2)(111) has been confirmed to be the catalytically active crystalline facet for hydrolysis. Water has been found to be associatively adsorbed on oxygen vacancy sites with medium strength, which does not lead to water dissociation to form stable hydroxides. This explains why the ceria catalyst is water-tolerant.

  18. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site

    PubMed Central

    Alreshidi, Mousa M.; Dunstan, R. Hugh; Gottfries, Johan; Macdonald, Margaret M.; Crompton, Marcus J.; Ang, Ching-Seng; Williamson, Nicholas A.; Roberts, Tim K.

    2016-01-01

    Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35–37°C, and additional 0–5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P< 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis. PMID:27442022

  19. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and {sup 19}F nuclear magnetic resonance

    SciTech Connect

    Shi, Pan; Li, Dong; Chen, Hongwei; Xiong, Ying; Tian, Changlin

    2011-10-22

    Highlights: {yields} Solvent isotope shift analysis of {sup 19}F-tfmF in different H{sub 2}O/D{sub 2}O molar ratio. {yields} Correlation between solvent isotope shift of {sup 19}F-spins and solvent exposure analysis. {yields} Solvent exposure analysis of membrane proteins. -- Abstract: Membrane proteins play an essential role in cellular metabolism, transportation and signal transduction across cell membranes. The scarcity of membrane protein structures has thus far prevented a full understanding of their molecular mechanisms. Preliminary topology studies and residue solvent exposure analysis have the potential to provide valuable information on membrane proteins of unknown structure. Here, a {sup 19}F-containing unnatural amino acid (trimethylfluoro-phenylalanine, tfmF) was applied to accomplish site-specific {sup 19}F spin incorporation at different sites in diacylglycerol kinase (DAGK, an Escherichia coli membrane protein) for site-specific solvent exposure analysis. Due to isotope effect on {sup 19}F spins, a standard curve for {sup 19}F-tfmF chemical shifts was drawn for varying solvent H{sub 2}O/D{sub 2}O ratios. Further site-specific {sup 19}F solvent isotope shift analysis was conducted for DAGK to distinguish residues in water-soluble loops, interfacial areas or hydrophobic membrane regions. This site-specific solvent exposure analysis method could be applied for further topological analysis of other membrane proteins.

  20. Genetic correlations among fatty acid compositions in different sites of fat tissues, meat production, and meat quality traits in Duroc pigs.

    PubMed

    Suzuki, K; Ishida, M; Kadowaki, H; Shibata, T; Uchida, H; Nishida, A

    2006-08-01

    This study estimated genetic parameters for fatty acids of different sites of fat tissue, meat production, and meat quality traits of Duroc pigs selected during 7 generations for ADG, LM area, backfat thickness (BF), and intramuscular fat (IMF). For this study, 394 barrows and 153 gilts were slaughtered at 105 kg of BW. High heritabilities for C18:0 of outer and inner subcutaneous fat tissue were estimated, respectively, as 0.54 and 0.51; those of intermuscular and intramuscular fat were 0.40 and 0.51, respectively. Genetic and phenotypic correlations of ADG and BF with saturated fatty acids of outer and inner subcutaneous fat were positive, but those with C16:1 and C18:2 were negative, and those with C18:1 were nearly zero. Genetic and phenotypic correlations between LM area and respective fatty acids showed opposite results. Respective genetic and phenotypic correlations of melting points with C18:0 and C18:1 were positive and high, and negative and high, respectively. Genetic correlations between cooking loss and SFA (C14:0, C16:0, and C18:0) of IMF were positive and moderate: 0.56, 0.47, and 0.47, respectively. On the other hand, monosaturated fatty acid of C18:1 was highly and negatively correlated with cooking loss (-0.61). Moreover, high genetic correlation between meat color (pork color standard and lightness) and fatty acid compositions of IMF suggest that the SFA (C14:0, C16:0, and C18:0) were correlated genetically with meat lightness and that unsaturated fatty acid compositions (C18:1 and C18:2) were correlated with meat darkness. Results of this study suggest that the fatty acid composition of adipose tissue is correlated genetically with meat production and meat quality traits.

  1. Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent

    PubMed Central

    Han, Sang-Woo; Park, Eul-Soo; Dong, Joo-Young

    2015-01-01

    ω-Transaminase (ω-TA) is a promising enzyme for use in the production of unnatural amino acids from keto acids using cheap amino donors such as isopropylamine. The small substrate-binding pocket of most ω-TAs permits entry of substituents no larger than an ethyl group, which presents a significant challenge to the preparation of structurally diverse unnatural amino acids. Here we report on the engineering of an (S)-selective ω-TA from Ochrobactrum anthropi (OATA) to reduce the steric constraint and thereby allow the small pocket to readily accept bulky substituents. On the basis of a docking model in which l-alanine was used as a ligand, nine active-site residues were selected for alanine scanning mutagenesis. Among the resulting variants, an L57A variant showed dramatic activity improvements in activity for α-keto acids and α-amino acids carrying substituents whose bulk is up to that of an n-butyl substituent (e.g., 48- and 56-fold increases in activity for 2-oxopentanoic acid and l-norvaline, respectively). An L57G mutation also relieved the steric constraint but did so much less than the L57A mutation did. In contrast, an L57V substitution failed to induce the improvements in activity for bulky substrates. Molecular modeling suggested that the alanine substitution of L57, located in a large pocket, induces an altered binding orientation of an α-carboxyl group and thereby provides more room to the small pocket. The synthetic utility of the L57A variant was demonstrated by carrying out the production of optically pure l- and d-norvaline (i.e., enantiomeric excess [ee] > 99%) by asymmetric amination of 2-oxopantanoic acid and kinetic resolution of racemic norvaline, respectively. PMID:26231640

  2. Amino acids outside of the loops that define the agonist binding site are important for ligand binding to insect nicotinic acetylcholine receptors.

    PubMed

    Liu, Zewen; Han, Zhaojun; Liu, Shuhua; Zhang, Yixi; Song, Feng; Yao, Xiangmei; Gu, Jianhua

    2008-07-01

    Nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several kinds of insecticides. Based on the mutagenesis studies of Torpedo californica nAChRs and solved structure of a molluscan, glial-derived soluble ACh-binding protein, a model of the agonist site was constructed with contributing amino acids from three distinct loops (A, B, and C) of the alpha subunits and another three loops (D, E, and F) of the non-alpha subunits. According to this model, most insect nAChR subunits can form the functional heteromeric or homomeric receptors. Actually, insect subunits themselves did not form any functional receptor at various combinations as yet, and only part of them can form the functional receptors with vertebrate non-alpha subunits. These findings suggested that the agonist binding for insect nAChRs was not only contributed by those key amino acids in six loops, but also some unidentified amino acids from other regions. In our previous studies on nAChRs for Nilaparvata lugens, a target-site mutation (Y151S) was found within two alpha subunits (Nlalpha1 and Nlalpha3). In Drosophila S2 cells and Xenopus oocytes, Nlalpha1 can form functional receptors with rat beta2 subunit. However, the same thing was not observed in Nlalpha3. In the present paper, by exchanging the corresponding regions between Nlalpha1 and Nlalpha3 to generate different chimeras, amino acid residues or residue clusters in the regions outside the six loops were found to play essential roles in agonist binding, especially for the amino acid clusters between loop B and C. This result indicated that the residues in the six loops could be necessary, but not enough for the activity of agonist binding.

  3. Mutation of Arg-115 of human class III alcohol dehydrogenase: a binding site required for formaldehyde dehydrogenase activity and fatty acid activation.

    PubMed Central

    Engeland, K; Höög, J O; Holmquist, B; Estonius, M; Jörnvall, H; Vallee, B L

    1993-01-01

    The origin of the fatty acid activation and formaldehyde dehydrogenase activity that distinguishes human class III alcohol dehydrogenase (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) from all other alcohol dehydrogenases has been examined by site-directed mutagenesis of its Arg-115 residue. The Ala- and Asp-115 mutant proteins were expressed in Escherichia coli and purified by affinity chromatography and ion-exchange HPLC. The activities of the recombinant native and mutant enzymes toward ethanol are essentially identical, but mutagenesis greatly decreases the kcat/Km values for glutathione-dependent formaldehyde oxidation. The catalytic efficiency for the Asp variant is < 0.1% that of the unmutated enzyme, due to both a higher Km and a lower kcat value. As with the native enzyme, neither mutant can oxidize methanol, be saturated by ethanol, or be inhibited by 4-methylpyrazole; i.e., they retain these class III characteristics. In contrast, however, their activation by fatty acids, another characteristic unique to class III alcohol dehydrogenase, is markedly attenuated. The Ala mutant is activated only slightly, but the Asp mutant is not activated at all. The results strongly indicate that Arg-115 in class III alcohol dehydrogenase is a component of the binding site for activating fatty acids and is critical for the binding of S-hydroxymethylglutathione in glutathione-dependent formaldehyde dehydrogenase activity. PMID:8460164

  4. Accurate Three States Model for Amino Acids with Two Chemically Coupled Titrating Sites in Explicit Solvent Atomistic Constant pH Simulations and pKa Calculations.

    PubMed

    Dobrev, Plamen; Donnini, Serena; Groenhof, Gerrit; Grubmüller, Helmut

    2017-01-10

    Correct protonation of titratable groups in biomolecules is crucial for their accurate description by molecular dynamics simulations. In the context of constant pH simulations, an additional protonation degree of freedom is introduced for each titratable site, allowing the protonation state to change dynamically with changing structure or electrostatics. Here, we extend previous approaches for an accurate description of chemically coupled titrating sites. A second reaction coordinate is used to switch between two tautomeric states of an amino acid with chemically coupled titratable sites, such as aspartate (Asp), glutamate (Glu), and histidine (His). To this aim, we test a scheme involving three protonation states. To facilitate charge neutrality as required for periodic boundary conditions and Particle Mesh Ewald (PME) electrostatics, titration of each respective amino acid is coupled to a "water" molecule that is charged in the opposite direction. Additionally, a force field modification for Amber99sb is introduced and tested for the description of carboxyl group protonation. Our three states model is tested by titration simulations of Asp, Glu, and His, yielding a good agreement, reproducing the correct geometry of the groups in their different protonation forms. We further show that the ion concentration change due to the neutralizing "water" molecules does not significantly affect the protonation free energies of the titratable groups, suggesting that the three states model provides a good description of biomolecular dynamics at constant pH.

  5. In vivo biotinylation and incorporation of a photo-inducible unnatural amino acid to an antibody-binding domain improve site-specific labeling of antibodies.

    PubMed

    Kanje, Sara; Hober, Sophia

    2015-04-01

    Antibodies are important molecules in many research fields, where they play a key role in various assays. Antibody labeling is therefore of great importance. Currently, most labeling techniques take advantage of certain amino acid side chains that commonly appear throughout proteins. This makes it hard to control the position and exact degree of labeling of each antibody. Hence, labeling of the antibody may affect the antibody-binding site. This paper presents a novel protein domain based on the IgG-binding domain C2 of streptococcal protein G, containing the unnatural amino acid BPA, that can cross-link other molecules. This novel domain can, with improved efficiency compared to previously reported similar domains, site-specifically cross-link to IgG at the Fc region. An efficient method for simultaneous in vivo incorporation of BPA and specific biotinylation in a flask cultivation of Escherichia coli is described. In comparison to a traditionally labeled antibody sample, the C2-labeled counterpart proved to have a higher proportion of functional antibodies when immobilized on a solid surface and the same limit of detection in an ELISA. This method of labeling is, due to its efficiency and simplicity, of high interest for all antibody-based assays where it is important that labeling does not interfere with the antibody-binding site.

  6. Specificity of the photoreaction of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen with ribonucleic acid. Identificaton of reactive sites in Escherichia coli phenylalanine-accepting transfer ribonucleic acid

    SciTech Connect

    Bachellerie, J.P.; Hearst, J.E.

    1982-03-16

    In order to test the potential of psoralen photo-addition for the probing of RNA conformation at sequence resolution, the specificity of the reaction of 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) with Escherichia coli tRNA/sup Phe/ was analyzed. The sites of HMT covalent addition have been identified by a combination of analytical techniques involving chemical cleavage of the tRNA/sup Phe/ molecule at the m/sup 7/G site and gel electrophoresis of RNase T/sub 1/ digests together with paper electrophoretic characterization of HMT-modified nucleotides and oligonucleotides. HMT photoaddition shows a very high preference for uracil residues. However, important differences in HMT photoreactivity are observed for various U sites of the tRNA/sup Phe/ molecule. Reactivity of specific bases has been correlated with partial melting of the molecule. Data available so far indicate a strong preference of the photo-reactive probe for a ''loose'' helical conformation as compared with a tight helix, whereas a random coil appears poorly reactive. (JMT)

  7. Influence of surface defects and local structure on acid/base properties and oxidation pathways over metal oxide surfaces. Final report, June 1990--January 1997

    SciTech Connect

    Cox, D.F.

    1997-12-31

    This final report covers work done during project period one and project period two. All the work in project period one was focused on the selective oxidation of oxygenated hydrocarbons over the SnO{sub 2}(110) single crystal surface. In project period two, the emphasis was on the acid/base properties of SnO{sub 2}(110) as well as two different Cu{sub 2}O single crystal surfaces. Prior to the summary of results, a description of these different surfaces is given as background information. Results are described for the dissociation and reaction of Bronsted acids (methanol, formic acid, water, formaldehyde, acetone, propene, acetic acid, and carbon monoxide). Results from project period two include: ammonia adsorption, CO{sub 2} adsorption, propene adsorption and oxidation, with tin oxides; complimentary work with copper oxides; and STM investigations.

  8. Multivariate analysis of properties of amino acid residues in proteins from a viewpoint of functional site prediction

    NASA Astrophysics Data System (ADS)

    Du, Shiqiao; Sakurai, Minoru

    2010-03-01

    For the prediction of a protein's function from its 3D-structure alone, it is of importance to elucidate by which properties functional site residues in a protein are discriminated from other residues. Here, we calculated five kinds of geometrical or physical properties of each residue in a protein. Those properties were integrated with techniques of multivariate analysis such as principal component analysis (PCA) or kernel PCA. Consequently, functional residues were found to show some distinct distributions in the scatter plot of those integrated data, which led to the proposal of a method for functional site prediction with a good performance.

  9. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site

    PubMed Central

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S. P.; Rey, Felisa; Coimbra, Manuel A.; Rosário Domingues, M.; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-01-01

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers’ interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas. PMID:26084395

  10. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain.

    PubMed

    Shaoping, Hu; Xincai, Chen; Jiyan, Shi; Yingxu, Chen; Qi, Lin

    2008-05-01

    The role of acid rain in affecting Pb and As transport from mine tailings was investigated by pumping simulated acid rain at a infiltration rate of 10.2 cm/h through soil columns. Simulated acid rain with pH of 3.0, 4.5 and 5.6 were used as leaching solutions. Results showed that 86.9-95.9% of Pb and 90-91.8% of As eluted from the columns were adsorbed by particles in the leachates. Scanning electron microscopy (SEM) analysis showed that particles released from the columns were mainly composed of flocculated aggregates and plate or rod shaped discrete grains. Transmission electron microscopy (TEM) coupled with energy dispersive X-ray analysis (EDX) showed that these particles were predominantly silicate minerals. Results from our experiments demonstrated that when rapid infiltration conditions or a rainstorm exist, particle-facilitated transport of contaminants is likely to the dominant metal transport pathway influenced by acid rain.

  11. Potential use of fatty acid profiles of the adductor muscle of cockles (Cerastoderma edule) for traceability of collection site.

    PubMed

    Ricardo, Fernando; Pimentel, Tânia; Moreira, Ana S P; Rey, Felisa; Coimbra, Manuel A; Rosário Domingues, M; Domingues, Pedro; Costa Leal, Miguel; Calado, Ricardo

    2015-06-18

    Geographic traceability of seafood is key for controlling its quality and safeguarding consumers' interest. The present study assessed if the fatty acid (FA) profile of the adductor muscle (AM) of fresh cockles (Cerastoderma edule) can be used to discriminate the origin of specimens collected in different bivalve capture/production areas legally defined within a coastal lagoon. Results suggest that this biochemical approach holds the potential to trace sampling locations with a spatial resolution <10 Km, even for areas with identical classification for bivalve production. Cockles further away from the inlet, i.e. in areas exposed to a higher saline variation, exhibited lower levels of saturated fatty acids, which are key for stabilizing the bilayer structure of cell membranes, and a higher percentage of polyunsaturated fatty acids, which enhance bilayer fluidity. Results suggest that the structural nature of the lipids present in the AM provides a stable fatty acid signature and holds potential for tracing the origin of bivalves to their capture/production areas.

  12. Convenient and Precise Strategy for Mapping N-Glycosylation Sites Using Microwave-Assisted Acid Hydrolysis and Characteristic Ions Recognition.

    PubMed

    Ma, Cheng; Qu, Jingyao; Meisner, Jeffrey; Zhao, Xinyuan; Li, Xu; Wu, Zhigang; Zhu, Hailiang; Yu, Zaikuan; Li, Lei; Guo, Yuxi; Song, Jing; Wang, Peng George

    2015-08-04

    N-glycosylation is one of the most prevalence protein post-translational modifications (PTM) which is involved in several biological processes. Alternation of N-glycosylation is associated with cellular malfunction and development of disease. Thus, investigation of protein N-glycosylation is crucial for diagnosis and treatment of disease. Currently, deglycosylation with peptide N-glycosidase F is the most commonly used technique in N-glycosylation analysis. Additionally, a common error in N-glycosylation site identification, resulting from protein chemical deamidation, has largely been ignored. In this study, we developed a convenient and precise approach for mapping N-glycosylation sites utilizing with optimized TFA hydrolysis, ZIC-HILIC enrichment, and characteristic ions of N-acetylglucosamine (GlcNAc) from higher-energy collisional dissociation (HCD) fragmentation. Using this method, we identified a total of 257 N-glycosylation sites and 144 N-glycoproteins from healthy human serum. Compared to deglycosylation with endoglycosidase, this strategy is more convenient and efficient for large scale N-glycosylation sites identification and provides an important alternative approach for the study of N-glycoprotein function.

  13. Non-coding nucleotides and amino acids near the active site regulate peptide deformylase expression and inhibitor susceptibility in Chlamydia trachomatis

    PubMed Central

    Bao, Xiaofeng; Pachikara, Niseema D.; Oey, Christopher B.; Balakrishnan, Amit; Westblade, Lars F.; Tan, Ming; Chase, Theodore; Nickels, Bryce E.

    2011-01-01

    Chlamydia trachomatis, an obligate intracellular bacterium, is a highly prevalent human pathogen. Hydroxamic-acid-based matrix metalloprotease inhibitors can effectively inhibit the pathogen both in vitro and in vivo, and have exhibited therapeutic potential. Here, we provide genome sequencing data indicating that peptide deformylase (PDF) is the sole target of the inhibitors in this organism. We further report molecular mechanisms that control chlamydial PDF (cPDF) expression and inhibition efficiency. In particular, we identify the σ66-dependent promoter that controls cPDF gene expression and demonstrate that point mutations in this promoter lead to resistance by increasing cPDF transcription. Furthermore, we show that substitution of two amino acids near the active site of the enzyme alters enzyme kinetics and protein stability. PMID:21719536

  14. MERCURY-NITRITE-RHODIUM-RUTHENIUM INTERACTIONS IN NOBLE METAL CATALYZED HYDROGEN GENERATION FROM FORMIC ACID DURING NUCLEAR WASTE PROCESSING AT THE SAVANNAH RIVER SITE - 136C

    SciTech Connect

    Koopman, D.; Pickenheim, B.; Lambert, D.; Newell, J; Stone, M.

    2009-09-02

    Chemical pre-treatment of radioactive waste at the Savannah River Site is performed to prepare the waste for vitrification into a stable waste glass form. During pre-treatment, compounds in the waste become catalytically active. Mercury, rhodium, and palladium become active for nitrite destruction by formic acid, while rhodium and ruthenium become active for catalytic conversion of formic acid into hydrogen and carbon dioxide. Nitrite ion is present during the maximum activity of rhodium, but is consumed prior to the activation of ruthenium. Catalytic hydrogen generation during pre-treatment can exceed radiolytic hydrogen generation by several orders of magnitude. Palladium and mercury impact the maximum catalytic hydrogen generation rates of rhodium and ruthenium by altering the kinetics of nitrite ion decomposition. New data are presented that illustrate the interactions of these various species.

  15. [Distribution characteristics of phthalic acid esters in soils and plants at e-waste recycling sites in Taizhou of Zhejiang, China].

    PubMed

    Liu, Wen-Li; Zhang, Zhen; Zhu, Lian-Qiu; Shen, Chao-Feng; Wang, Jiang

    2010-02-01

    In recent years, great attention has being paid on the consequences of improper electric and electronic waste (e-waste) disposal. In this paper, soil and plant samples were collected from the e-waste recycling sites in Taizhou City of Zhejiang Province, China, with five kinds of phthalic acid esters (PAEs) analyzed. In the soil samples, the total PAEs concentration was 12.566-46.669 mg x kg(-1) soil, among which, di-(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DBP), and diethyl phthalate (DEP) were the major phthalates, accounting for more than 94% of the total. In the plant samples, the PAEs concentration was obviously higher in Vicia faba L. than in other plants. No significant correlations were observed in the PAEs concentration between soils and various plants (P > 0.05). Comparing with the soil cleanup guidelines in USA, the soils at test sites were severely contaminated by PAEs.

  16. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs{sup +}-selective binding site

    SciTech Connect

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu; Adachi, Motoyasu; Tamada, Taro; Kawamoto, Masahide; Tokunaga, Hiroko; Ishibashi, Matsujiro; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2015-03-01

    The tertiary structure of a β-lactamase derived from the halobacterium Chromohalobacter sp. 560 (HaBLA) was determined by X-ray crystallography. Three unique Sr{sup 2+}-binding sites and one Cs{sup +}-binding site were discovered in the HaBLA molecule. Environmentally friendly absorbents are needed for Sr{sup 2+} and Cs{sup +}, as the removal of the radioactive Sr{sup 2+} and Cs{sup +} that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs{sup +} or Sr{sup 2+}. The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P3{sub 1} using X-ray crystallography. Moreover, the locations of bound Sr{sup 2+} and Cs{sup +} ions were identified by anomalous X-ray diffraction. The location of one Cs{sup +}-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na{sup +} (90 mM Na{sup +}/10 mM Cs{sup +}). From an activity assay using isothermal titration calorimetry, the bound Sr{sup 2+} and Cs{sup +} ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs{sup +}-binding site provides important information that is useful for the design of artificial Cs{sup +}-binding sites that may be useful in the bioremediation of radioactive isotopes.

  17. Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite-Experiments and DFT study

    NASA Astrophysics Data System (ADS)

    Sarvaramini, A.; Azizi, D.; Larachi, F.

    2016-11-01

    Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH)2+ and Ce(OH)2+ and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA)x(H2O)y]2-x (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH)2(HHA)x(H2O)y]1-x (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.

  18. Purification to homogeneity and partial amino acid sequence of a fragment which includes the methyl acceptor site of the human DNA repair protein for O6-methylguanine.

    PubMed

    Major, G N; Gardner, E J; Carne, A F; Lawley, P D

    1990-03-25

    DNA repair by O6-methylguanine-DNA methyltransferase (O6-MT) is accomplished by removal by the enzyme of the methyl group from premutagenic O6-methylguanine-DNA, thereby restoring native guanine in DNA. The methyl group is transferred to an acceptor site cysteine thiol group in the enzyme, which causes the irreversible inactivation of O6-MT. We detected a variety of different forms of the methylated, inactivated enzyme in crude extracts of human spleen of molecular weights higher and lower than the usually observed 21-24kDa for the human O6-MT. Several apparent fragments of the methylated form of the protein were purified to homogeneity following reaction of partially-purified extract enzyme with O6-[3H-CH3]methylguanine-DNA substrate. One of these fragments yielded amino acid sequence information spanning fifteen residues, which was identified as probably belonging to human methyltransferase by virtue of both its significant sequence homology to three procaryote forms of O6-MT encoded by the ada, ogt (both from E. coli) and dat (B. subtilis) genes, and sequence position of the radiolabelled methyl group which matched the position of the conserved procaryote methyl acceptor site cysteine residue. Statistical prediction of secondary structure indicated good homologies between the human fragment and corresponding regions of the constitutive form of O6-MT in procaryotes (ogt and dat gene products), but not with the inducible ada protein, indicating the possibility that we had obtained partial amino acid sequence for a non-inducible form of the human enzyme. The identity of the fragment sequence as belonging to human methyltransferase was more recently confirmed by comparison with cDNA-derived amino acid sequence from the cloned human O6-MT gene from HeLa cells (1). The two sequences compared well, with only three out of fifteen amino acids being different (and two of them by only one nucleotide in each codon).

  19. Adsorptive denitrogenation of model fuels with porous metal-organic framework (MOF) MIL-101 impregnated with phosphotungstic acid: effect of acid site inclusion.

    PubMed

    Ahmed, Imteaz; Khan, Nazmul Abedin; Hasan, Zubair; Jhung, Sung Hwa

    2013-04-15

    A metal-organic framework (MOF) MIL-101 was impregnated with phosphotungstic acid (PWA) and used as an adsorbent in liquid phase adsorption of nitrogen-containing compounds (NCCs) from a model fuel. The model fuel contained one sulfur-containing compound (SCC), benzothiophene (BT); one basic NCC, quinoline (QUI); and one neutral NCC, indole (IND). In both MIL-101 and PWA-impregnated MIL-101s, NCC adsorption selectivity was very high compared to the SCC selectivity. Additionally, the adsorption capacity of basic QUI increased by 20% with only 1% PWA impregnation in MIL-101. The adsorption of a neutral compound, IND, was slightly reduced with PWA impregnation in the MOF. The adsorption capacity/selectivity can be remarkably improved by a slight modification of MOFs, for example, to impart acidity. The MOF impregnated with PWA may be very interesting in commercial denitrogenation, especially for coal-derived fuels which contain mainly basic NCCs, by adsorption since the selectivity for NCCs (compared to SCCs) over the adsorbent is very high and the adsorbent can be reused many times.

  20. Characterization of Site-Specific N-Glycopeptide Isoforms of α-1-Acid Glycoprotein from an Interlaboratory Study Using LC-MS/MS.

    PubMed

    Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Gun Wook; Hwang, Heeyoun; Jeong, Hoi Keun; Yun, Ki Na; Ji, Eun Sun; Kim, Kwang Hoe; Kim, Jun Seok; Kim, Jong Won; Yun, Sung Ho; Choi, Chi-Won; Kim, Seung Il; Lim, Jong-Sun; Jeong, Seul-Ki; Paik, Young-Ki; Lee, Soo-Youn; Park, Jisook; Kim, Su Yeon; Choi, Young-Jin; Kim, Yong-In; Seo, Jawon; Cho, Je-Yoel; Oh, Myoung Jin; Seo, Nari; An, Hyun Joo; Kim, Jin Young; Yoo, Jong Shin

    2016-12-02

    Glycoprotein conformations are complex and heterogeneous. Currently, site-specific characterization of glycopeptides is a challenge. We sought to establish an efficient method of N-glycoprotein characterization using mass spectrometry (MS). Using alpha-1-acid glycoprotein (AGP) as a model N-glycoprotein, we identified its tryptic N-glycopeptides and examined the data reproducibility in seven laboratories running different LC-MS/MS platforms. We used three test samples and one blind sample to evaluate instrument performance with entire sample preparation workflow. 165 site-specific N-glycopeptides representative of all N-glycosylation sites were identified from AGP 1 and AGP 2 isoforms. The glycopeptide fragmentations by collision-induced dissociation or higher-energy collisional dissociation (HCD) varied based on the MS analyzer. Orbitrap Elite identified the greatest number of AGP N-glycopeptides, followed by Triple TOF and Q-Exactive Plus. Reproducible generation of oxonium ions, glycan-cleaved glycopeptide fragment ions, and peptide backbone fragment ions was essential for successful identification. Laboratory proficiency affected the number of identified N-glycopeptides. The relative quantities of the 10 major N-glycopeptide isoforms of AGP detected in four laboratories were compared to assess reproducibility. Quantitative analysis showed that the coefficient of variation was <25% for all test samples. Our analytical protocol yielded identification and quantification of site-specific N-glycopeptide isoforms of AGP from control and disease plasma sample.

  1. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs(+)-selective binding site.

    PubMed

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo; Matsumoto, Fumiko; Shibazaki, Chie; Shimizu, Rumi; Yamada, Mitsugu; Adachi, Motoyasu; Tamada, Taro; Kawamoto, Masahide; Tokunaga, Hiroko; Ishibashi, Matsujiro; Blaber, Michael; Tokunaga, Masao; Kuroki, Ryota

    2015-03-01

    Environmentally friendly absorbents are needed for Sr(2+) and Cs(+), as the removal of the radioactive Sr(2+) and Cs(+) that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs(+) or Sr(2+). The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P31 using X-ray crystallography. Moreover, the locations of bound Sr(2+) and Cs(+) ions were identified by anomalous X-ray diffraction. The location of one Cs(+)-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na(+) (90 mM Na(+)/10 mM Cs(+)). From an activity assay using isothermal titration calorimetry, the bound Sr(2+) and Cs(+) ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs(+)-binding site provides important information that is useful for the design of artificial Cs(+)-binding sites that may be useful in the bioremediation of radioactive isotopes.

  2. Site-specific protein adducts of 4-hydroxy-2(E)-nonenal in human THP-1 monocytic cells: Protein carbonylation is diminished by ascorbic acid

    PubMed Central

    Chavez, Juan; Chung, Woon-Gye; Miranda, Cristobal L.; Singhal, Mudita; Stevens, Jan F.; Maier, Claudia S.

    2010-01-01

    The protein targets and sites of modification by 4-hydroxy-2(E)-nonenal (HNE) in human monocytic THP-1 cells after exogenous exposure to HNE were examined using a multi-pronged proteomic approach involving electrophoretic, immunoblotting and mass spectrometric methods. Immunoblot analysis using monoclonal anti-HNE antibodies showed several proteins as targets of HNE adduction. Pretreatment of THP-1 cells with ascorbic acid resulted in reduced levels of HNE-protein adducts. Biotinylation of Michael-type HNE adducts using an aldehyde-reactive hydroxylamine-functionalized probe (aldehyde-reactive probe, ARP) and subsequent enrichment facilitated the identification and site-specific assignment of the modifications by LC-MS/MS analysis. Sixteen proteins were unequivocally identified as targets of HNE adduction and eighteen sites of HNE modification at Cys and His residues were assigned. HNE exposure of THP-1 cells resulted in the modification of proteins involved in cytoskeleton organization and regulation, proteins associated with stress responses and enzymes of the glycolytic and other metabolic pathways. This study yielded the first evidence of site-specific adduction of HNE to Cys-295 in tubulin α-1B chain, Cys-351 and Cys-499 in α-actinin-4, Cys-328 in vimentin, Cys-369 in D-3-phosphoglycerate dehydrogenase and His-246 in aldolase A. PMID:20043646

  3. Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts

    NASA Astrophysics Data System (ADS)

    Kristensen, Kasper; Bilde, Merete; Aalto, Pasi P.; Petäjä, Tuukka; Glasius, Marianne

    2016-04-01

    Carboxylic acids and organosulfates comprise an important fraction of atmospheric secondary organic aerosols formed from both anthropogenic and biogenic precursors. The partitioning of these compounds between the gas and particle phase is still unclear and further research is warranted to better understand the abundance and effect of organic acids and organosulfates on the formation and properties of atmospheric aerosols. This work compares atmospheric aerosols collected at an urban and a boreal forest site using two side-by-side sampling systems; a high volume sampler (HVS) and a low volume (LVS) denuder/filter sampling system allowing for separate collection of gas- and particle-phase organics. All particle filters and denuder samples were collected at H.C. Andersen Boulevard (HCAB), Copenhagen, Denmark in the summer of 2010, and at the remote boreal forest site at Hyytiälä forestry field station in Finland in the summer of 2012. The chemical composition of gas- and particle-phase secondary organic aerosol was investigated by ultra-high performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC/ESI-Q-TOFMS), with a focus on carboxylic acids and organosulfates. Results show gas-phase concentrations higher than those observed in the particle phase by a factor of 5-6 in HCAB 2010 and 50-80 in Hyytiälä 2012. Although abundant in the particle phase, no organosulfates were detected in the gas phase at either site. Through a comparison of samples collected by the HVS and the LVS denuder/filter sampling system we evaluate the potential artifacts associated with sampling of atmospheric aerosols. Such comparison shows that particle phase concentrations of semi-volatile organic acids obtained from the filters collected by HVS are more than two times higher than concentrations obtained from filters collected using LVS denuder/filter system. In most cases, higher concentrations of organosulfates are observed in particles

  4. Dual Mode Fluorophore-Doped Nickel Nitrilotriacetic Acid-Modified Silica Nanoparticles Combine Histidine-Tagged Protein Purification with Site-Specific Fluorophore Labeling

    PubMed Central

    Kim, Sung Hoon; Jeyakumar, M.; Katzenellenbogen, John A.

    2008-01-01

    We present the first example of a fluorophore-doped nickel chelate surface- modified silica nanoparticle that functions in a dual mode, combining histidine-tagged protein purification with site-specific fluorophore labeling. Tetramethylrhodamine (TMR)-doped silica nanoparticles, estimated to contain 700–900 TMRs per ca. 23-nm particle, were surface modified with nitrilotriacetic acid (NTA), producing TMR-SiO2-NTA-Ni+2. Silica-embedded TMR retains very high quantum yield, is resistant to quenching by buffer components and is modestly quenched and only to a certain depth (ca. 2 nm) by surface-attached Ni+2. When exposed to a bacterial lysate containing estrogen receptor α ligand binding domain (ERα) as a minor component, these beads showed very high specificity binding, enabling protein purification in one step. The capacity and specificity of these beads for binding a his-tagged protein were characterized by electrophoresis, radiometric counting, and MALDI-TOF MS. ERα, bound to TMR-SiO2-NTA-Ni++ beads in a site-specific manner, exhibited good activity for ligand binding and for ligand-induced binding to coactivators in solution FRET experiments and protein microarray fluorometric and FRET assays. This dual-mode type TMR-SiO2-NTA-Ni++ system represents a powerful combination of one-step histidine-tagged protein purification and site-specific labeling with multiple fluorophore species. BRIEFS Tetramethylrhodamine-doped silica nanoparticles surface modified with nitrilotriacetic acid are dual-mode agents that can be used to purify and site-specifically fluorophore label his-tagged proteins in one step for fluorometric and FRET experiments. PMID:17910454

  5. Mutational analysis of the three cysteines and active-site aspartic acid 103 of ketosteroid isomerase from Pseudomonas putida biotype B.

    PubMed Central

    Kim, S W; Joo, S; Choi, G; Cho, H S; Oh, B H; Choi, K Y

    1997-01-01

    In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate. PMID:9401033

  6. Associations of n-6 and n-3 polyunsaturated fatty acids and tocopherols with proxies of membrane stability and subcutaneous fat sites in male elite swimmers.

    PubMed

    Ney, Jacqueline G; Koury, Josely C; Azeredo, Vilma B; Casimiro-Lopes, Gustavo; Trugo, Nadia M F; Torres, Alexandre G

    2009-09-01

    We hypothesize that membrane stability of elite swimmers adapted to chronic intense training is dependent on polyunsaturated fatty acids (PUFAs) and tocopherols in blood pools and that the composition of PUFA in plasma nonesterified fatty acids (NEFAs) might be associated with specific subcutaneous fat sites. Our aims were to investigate in male elite swimmers the associations of n-6 and n-3 PUFA and alpha- and gamma-tocopherols with proxies of membrane stability (phase angle and erythrocyte osmotic fragility) and of PUFA in plasma NEFA with specific skinfolds. Brazilian male elite swimmers (n = 20) under regular training for an average of 4.1 h/d and 6.1 d/wk took part in the study. Blood samples were obtained once after 18-hour rest and an overnight fast. Fatty acids were determined in plasma NEFA and erythrocytes by gas chromatolography and tocopherols were determined in plasma and erythrocytes by high-performance liquid chromatography. The status of PUFA was assessed as mean melting point, PUFA index [(Sigman-6 + Sigman-3) / (Sigman-7 + Sigman-9)] and docosahexaenoic acid indices (22:5n-6/22:4n-6 and 22:6n-3/22:5n-6 ratios) calculated from erythrocyte fatty acids. Phase angle was associated with an index of docosahexaenoic acid inadequacy (22:5n-6/22:4n-6; r = -0.53, P = .019) and with 22:5n-3 in erythrocytes (r = 0.51, P = .024), and erythrocyte osmotic fragility was associated with plasma alpha-tocopherol (r = -0.51, P = .05), which is a biomarker of vitamin E status. Plasma NEFAs 18:3n-3 and 20:4n-6 were positively associated with skinfolds of the trunk and arms (r = 0.49-0.59, P = .011-.043). The data presented indicate that n-3 PUFA and vitamin E states possibly improve membrane stability in elite swimmers and that the extent of specific anatomic sites of subcutaneous adipose tissue in the upper body might contribute to the composition of NEFA in the resting state.

  7. Lambda bacteriophage-mediated transduction of ColE1 deoxyribonucleic acid having a lambda bacteriophage-cohesive end site: selection of packageable-length deoxyribonucleic acid.

    PubMed Central

    Umene, K; Shimada, K; Tsuzuki, T; Mori, R; Takagi, Y

    1979-01-01

    An in vitro recombinant ColE1-cos lambda deoxyribonucleic acid (DNA) molecule, pKY96, has 70% of the length of lambda phage DNA. The process of lambda phage-mediated transduction of pKY96 generated a small amount of transducing phage particles containing ColE1-cos lambda DNA molecules of 80 or 101% of the length of lambda phage DNA, in addition to those containing original pKY96 DNA molecules. The newly isolated larger plasmid DNAs were transduced 100 times more efficiently than pKY96 DNA. Their structures were compared with that of a prototype pKY96 DNA, and the mechanism of the formation of these molecules is discussed. Images PMID:158007

  8. Solubilization sites and acid-base forms of dibucaine-hydrochloride in neutral and charged micellar solutions.

    PubMed

    Mertz, C J; Lin, C T

    1991-03-01

    Steady-state and time-resolved emission spectroscopic techniques have been employed to characterize the drug species of dibucaine and to identify its location in micellar Triton X-100 (neutral), hexadecyltrimethyl ammonium bromide (cationic) and lithium dodecyl sulfate (anionic) solutions at 77 K. Under physiological conditions, the dibucaine is shown to exist in the free base form (D) while solubilized in the hydrocarbon core of neutral micelles. In cationic micellar solution, dibucaine exists as the monocation species (DH+) where the anesthetic is solubilized in the extramicellar aqueous solution and D is solubilized in the hydrophobic region with close proximity to the micellar interface. In the anionic micelles, interfacial solubilization is most consistent with a site in which the tertiary amino group of the monocation dibucaine (DH+) is anchored at the micellar interface with its quinoline analog penetrating the hydrophobic region. The distinct properties observed for the drug species (i.e. D and DH+) and their solubilization sites in micelles are consistent with a balance between hydrophobic forces, surface polarity and the interfacial electrostatic potential present in the micellar solubilization sites. These observations could lend insight into the molecular basis of pharmacological action, in particular the mechanism of local anesthetic drug transport across membranes.

  9. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis.

    PubMed

    Neshat, Armin; Mentz, Almut; Rückert, Christian; Kalinowski, Jörn

    2014-11-20

    The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts.

  10. Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bergen, Anton; Heinritzi, Martin; Leiminger, Markus; Lorenz, Verena; Piel, Felix; Simon, Mario; Sitals, Robert; Wagner, Andrea C.; Curtius, Joachim

    2016-10-01

    The exact mechanisms for new particle formation (NPF) under different boundary layer conditions are not known yet. One important question is whether amines and sulfuric acid lead to efficient NPF in the atmosphere. Furthermore, it is not clear to what extent highly oxidized organic molecules (HOMs) are involved in NPF. We conducted field measurements at a rural site in central Germany in the proximity of three larger dairy farms to investigate whether there is a connection between NPF and the presence of amines and/or ammonia due to the local emissions from the farms. Comprehensive measurements using a nitrate chemical ionization-atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometer, a proton-transfer-reaction mass spectrometer (PTR-MS), particle counters and differential mobility analyzers (DMAs), as well as measurements of trace gases and meteorological parameters, were performed. We demonstrate here that the nitrate CI-APi-TOF is suitable for sensitive measurements of sulfuric acid, amines, a nitrosamine, ammonia, iodic acid and HOMs. NPF was found to correlate with sulfuric acid, while an anti-correlation with RH, amines and ammonia is observed. The anti-correlation between NPF and amines could be due to the efficient uptake of these compounds by nucleating clusters and small particles. Much higher HOM dimer (C19/C20 compounds) concentrations during the night than during the day indicate that these HOMs do not efficiently self-nucleate as no nighttime NPF is observed. Observed iodic acid probably originates from an iodine-containing reservoir substance, but the iodine signals are very likely too low to have a significant effect on NPF.

  11. Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling

    PubMed Central

    Choi, Yun-Ho; Lee, Ye-Na; Park, Young-Jun; Yoon, Sung-Jin; Lee, Hee-Bong

    2016-01-01

    The archaeon Sulfolobus solfataricus P1 carboxylesterase is a thermostable enzyme with a molecular mass of 33.5 kDa belonging to the mammalian hormone-sensitive lipase (HSL) family. In our previous study, we purified the enzyme and suggested the expected amino acids related to its catalysis by chemical modification and a sequence homology search. For further validating these amino acids in this study, we modified them using site-directed mutagenesis and examined the activity of the mutant enzymes using spectrophotometric analysis and then estimated by homology modeling and fluorescence analysis. As a result, it was identified that Ser151, Asp244, and His274 consist of a catalytic triad, and Gly80, Gly81, and Ala152 compose an oxyanion hole of the enzyme. In addition, it was also determined that the cysteine residues are located near the active site or at the positions inducing any conformational changes of the enzyme by their replacement with serine residues. [BMB Reports 2016; 49(6): 349-354] PMID:27222124

  12. On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production

    PubMed Central

    Khokhar, Zia-ullah; Syed, Qurat-ul-Ain; Wu, Jing; Athar, Muhammad Amin

    2014-01-01

    Bioethanol production from lignocellulosic raw materials involves process steps like pre-treatment, enzymatic hydrolysis, fermentation and distillation. In this study, wheat straw was explored as feedstock for on-site cellulase production by T. reesei 3EMS35 mutant, and as a substrate for second generation bioethanol production from baker yeast. Scanning electron microscopy (SEM) and X-ray diffractography (XRD) of untreated wheat straw (UWS) and acid treated wheat straw (TWS) were done to understand the structural organization and changes in the cellulase accessibility and reactivity. The effect of delignification and structural modification for on-site cellulase enzyme production was comparably studied. The efficiency of crude cellulase enzyme for digestion of UWS and TWS and then production of ethanol from TWS was studied using same-vessel saccharification and fermentation (SVSF) technique, both in shaking flasks as well as in fermenters. Two different methods of operation were tested, i.e. the UWSEnz method, where UWS was used for on-site enzyme production, and TWSEnz method where TWS was applied as substrate for cellullase production. Results obtained showed structural modifications in cellulose of TWS due to delignification, removal of wax and change of crystallinity. UWS was better substrate than TWS for cellulase production due to the fact that lignin did not hinder the enzyme production by fungus but acted as a booster. On-site cellulase enzyme produced by T. reesei 3EMS35 mutant hydrolyzed most of cellulose (91 %) in TWS within first 24 hrs. Shake flasks experiments showed that ethanol titers and yields with UWSEnz were 2.9 times higher compared to those obtained with TWSEnz method respectively. Comparatively, titer of ethanol in shake flask experiments was 10 % higher than this obtained in 3 L fermenter with UWSEnz. Outcomes from this investigation clearly demonstrated the potential of on-site cellulase enzyme production and SVSF for ethanol production

  13. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system.

    PubMed

    Zimmerman, Erik S; Heibeck, Tyler H; Gill, Avinash; Li, Xiaofan; Murray, Christopher J; Madlansacay, Mary Rose; Tran, Cuong; Uter, Nathan T; Yin, Gang; Rivers, Patrick J; Yam, Alice Y; Wang, Willie D; Steiner, Alexander R; Bajad, Sunil U; Penta, Kalyani; Yang, Wenjin; Hallam, Trevor J; Thanos, Christopher D; Sato, Aaron K

    2014-02-19

    Antibody-drug conjugates (ADCs) are a targeted chemotherapeutic currently at the cutting edge of oncology medicine. These hybrid molecules consist of a tumor antigen-specific antibody coupled to a chemotherapeutic small molecule. Through targeted delivery of potent cytotoxins, ADCs exhibit improved therapeutic index and enhanced efficacy relative to traditional chemotherapies and monoclonal antibody therapies. The currently FDA-approved ADCs, Kadcyla (Immunogen/Roche) and Adcetris (Seattle Genetics), are produced by conjugation to surface-exposed lysines, or partial disulfide reduction and conjugation to free cysteines, respectively. These stochastic modes of conjugation lead to heterogeneous drug products with varied numbers of drugs conjugated across several possible sites. As a consequence, the field has limited understanding of the relationships between the site and extent of drug loading and ADC attributes such as efficacy, safety, pharmacokinetics, and immunogenicity. A robust platform for rapid production of ADCs with defined and uniform sites of drug conjugation would enable such studies. We have established a cell-free protein expression system for production of antibody drug conjugates through site-specific incorporation of the optimized non-natural amino acid, para-azidomethyl-l-phenylalanine (pAMF). By using our cell-free protein synthesis platform to directly screen a library of aaRS variants, we have discovered a novel variant of the Methanococcus jannaschii tyrosyl tRNA synthetase (TyrRS), with a high activity and specificity toward pAMF. We demonstrate that site-specific incorporation of pAMF facilitates near complete conjugation of a DBCO-PEG-monomethyl auristatin (DBCO-PEG-MMAF) drug to the tumor-specific, Her2-binding IgG Trastuzumab using strain-promoted azide-alkyne cycloaddition (SPAAC) copper-free click chemistry. The resultant ADCs proved highly potent in in vitro cell cytotoxicity assays.

  14. On-site cellulase production by Trichoderma reesei 3EMS35 mutant and same vessel saccharification and fermentation of acid treated wheat straw for ethanol production.

    PubMed

    Khokhar, Zia-Ullah; Syed, Qurat-Ul-Ain; Wu, Jing; Athar, Muhammad Amin

    2014-01-01

    Bioethanol production from lignocellulosic raw materials involves process steps like pre-treatment, enzymatic hydrolysis, fermentation and distillation. In this study, wheat straw was explored as feedstock for on-site cellulase production by T. reesei 3EMS35 mutant, and as a substrate for second generation bioethanol production from baker yeast. Scanning electron microscopy (SEM) and X-ray diffractography (XRD) of untreated wheat straw (UWS) and acid treated wheat straw (TWS) were done to understand the structural organization and changes in the cellulase accessibility and reactivity. The effect of delignification and structural modification for on-site cellulase enzyme production was comparably studied. The efficiency of crude cellulase enzyme for digestion of UWS and TWS and then production of ethanol from TWS was studied using same-vessel saccharification and fermentation (SVSF) technique, both in shaking flasks as well as in fermenters. Two different methods of operation were tested, i.e. the UWSEnz method, where UWS was used for on-site enzyme production, and TWSEnz method where TWS was applied as substrate for cellullase production. Results obtained showed structural modifications in cellulose of TWS due to delignification, removal of wax and change of crystallinity. UWS was better substrate than TWS for cellulase production due to the fact that lignin did not hinder the enzyme production by fungus but acted as a booster. On-site cellulase enzyme produced by T. reesei 3EMS35 mutant hydrolyzed most of cellulose (91 %) in TWS within first 24 hrs. Shake flasks experiments showed that ethanol titers and yields with UWSEnz were 2.9 times higher compared to those obtained with TWSEnz method respectively. Comparatively, titer of ethanol in shake flask experiments was 10 % higher than this obtained in 3 L fermenter with UWSEnz. Outcomes from this investigation clearly demonstrated the potential of on-site cellulase enzyme production and SVSF for ethanol production

  15. The role of a basic amino acid cluster in target site selection and non-specific binding of bZIP peptides to DNA.

    PubMed Central

    Metallo, S J; Paolella, D N; Schepartz, A

    1997-01-01

    The ability of a transcription factor to locate and bind its cognate DNA site in the presence of closely related sites and a vast array of non-specific DNA is crucial for cell survival. The CREB/ATF family of transcription factors is an important group of basic region leucine zipper (bZIP) proteins that display high affinity for the CRE site and low affinity for the closely related AP-1 site. Members of the CREB/ATF family share in common a cluster of basic amino acids at the N-terminus of their bZIP element. This basic cluster is necessary and sufficient to cause the CRE site to bend upon binding of a CREB/ATF protein. The possibility that DNA bending and CRE/AP-1 specificity were linked in CREB/ATF proteins was investigated using chimeric peptides derived from human CRE-BP1 (a member of the CREB/ATF family) and yeast GCN4, which lacks both a basic cluster and CRE/AP-1 specificity. Gain of function and loss of function experiments demonstrated that the basic cluster was not responsible for the CRE/AP-1 specificity displayed by all characterized CREB/ATF proteins. The basic cluster was, however, responsible for inducing very high affinity for non- specific DNA. It was further shown that basic cluster-containing peptides bind non-specific DNA in a random coil conformation. We postulate that the high non- specific DNA affinities of basic cluster-containing peptides result from cooperative electrostatic interactions with the phosphate backbone that do not require peptide organization. PMID:9224594

  16. Relationship between acidity and ionic composition of wet precipitation: A two years study at an urban site, Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Anatolaki, Ch.; Tsitouridou, R.

    2009-03-01

    Wet precipitation samples were collected in the city center of Thessaloniki, northern Greece, for two years with different rainfall amount (April 2002-March 2004). All samples were analyzed for major anions and cations (Cl -, NO 3-, SO 42-, NH 4+, Na +, K +, Ca 2+ and Mg 2+). HCO 3- concentrations were calculated through pH measurements. Arithmetic mean pH values of 6.06 and 6.57 were found for the two periods. 10.5% of the first year rain events (April 2002-March 2003) and 2.5% of the second (April 2003-March 2004) exhibited pH ≤ 4.5. The quite typical, for Mediterranean areas, trend Ca 2+ > SO 42- > NH 4+ > Cl - > NO 3- was observed in the majority of the samples. The study of the relationship between the ionic concentrations and the precipitation amount gave information about the scavenging mechanism of ions (below or in-cloud). 67% of the rain acidity was found to be due to sulfuric acid and the rest 33% to nitric acid. The calculation of Neutralization Factors (NF) and the application of Multiple Linear Regression Analysis (MLR), showed the higher Ca 2+ contribution to the neutralization process. The impact of maritime sources was extracted from the SSF of Cl - and Mg 2+, while the anthropogenic origin of SO 42- was supported by the high NSSF (~ 98%). The local calcareous soil dust and possible long-range transport are the main sources of Ca 2+ in the area. A case study by using trajectory analysis to predict a long-range transport of pollutants from Etnean volcano, Italy, to the study area, is described.

  17. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.

    PubMed

    Bea, Sergio A; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S; Denham, Miles E

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H(+) adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates

  18. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Bea, Sergio A.; Wainwright, Haruko; Spycher, Nicolas; Faybishenko, Boris; Hubbard, Susan S.; Denham, Miles E.

    2013-08-01

    Acidic low-level waste radioactive waste solutions were discharged to three unlined seepage basins at the F-Area of the Department of Energy (DOE) Savannah River Site (SRS), South Carolina, USA, from 1955 through 1989. Despite many years of active remediation, the groundwater remains acidic and contaminated with significant levels of U(VI) and other radionuclides. Monitored Natural Attenuation (MNA) is a desired closure strategy for the site, based on the premise that regional flow of clean background groundwater will eventually neutralize the groundwater acidity, immobilizing U(VI) through adsorption. An in situ treatment system is currently in place to accelerate this in the downgradient portion of the plume and similar measures could be taken upgradient if necessary. Understanding the long-term pH and U(VI) adsorption behavior at the site is critical to assess feasibility of MNA along with the in-situ remediation treatments. This paper presents a reactive transport (RT) model and uncertainty quantification (UQ) analyses to explore key controls on the U(VI)-plume evolution and long-term mobility at this site. Two-dimensional numerical RT simulations are run including the saturated and unsaturated (vadose) zones, U(VI) and H+ adsorption (surface complexation) onto sediments, dissolution and precipitation of Al and Fe minerals, and key hydrodynamic processes are considered. UQ techniques are applied using a new open-source tool that is part of the developing ASCEM reactive transport modeling and analysis framework to: (1) identify the complex physical and geochemical processes that control the U(VI) plume migration in the pH range where the plume is highly mobile, (2) evaluate those physical and geochemical parameters that are most controlling, and (3) predict the future plume evolution constrained by historical, chemical and hydrological data. The RT simulation results show a good agreement with the observed historical pH and concentrations of U(VI), nitrates and

  19. Comparison of methods for acid quantification: impact of resist components on acid-generating efficiency

    NASA Astrophysics Data System (ADS)

    Cameron, James F.; Fradkin, Leslie; Moore, Kathryn; Pohlers, Gerd

    2000-06-01

    Chemically amplified deep UV (CA-DUV) positive resists are the enabling materials for manufacture of devices at and below 0.18 micrometer design rules in the semiconductor industry. CA-DUV resists are typically based on a combination of an acid labile polymer and a photoacid generator (PAG). Upon UV exposure, a catalytic amount of a strong Bronsted acid is released and is subsequently used in a post-exposure bake step to deprotect the acid labile polymer. Deprotection transforms the acid labile polymer into a base soluble polymer and ultimately enables positive tone image development in dilute aqueous base. As CA-DUV resist systems continue to mature and are used in increasingly demanding situations, it is critical to develop a fundamental understanding of how robust these materials are. One of the most important factors to quantify is how much acid is photogenerated in these systems at key exposure doses. For the purpose of quantifying photoacid generation several methods have been devised. These include spectrophotometric methods, ion conductivity methods and most recently an acid-base type titration similar to the standard addition method. This paper compares many of these techniques. First, comparisons between the most commonly used acid sensitive dye, tetrabromophenol blue sodium salt (TBPB) and a less common acid sensitive dye, Rhodamine B base (RB) are made in several resist systems. Second, the novel acid-base type titration based on the standard addition method is compared to the spectrophotometric titration method. During these studies, the make up of the resist system is probed as follows: the photoacid generator and resist additives are varied to understand the impact of each of these resist components on the acid generation process.

  20. In vivo reshaping the catalytic site of nucleoside 2'-deoxyribosyltransferase for dideoxy- and didehydronucleosides via a single amino acid substitution.

    PubMed

    Kaminski, Pierre Alexandre; Dacher, Priscilla; Dugué, Laurence; Pochet, Sylvie

    2008-07-18

    Nucleoside 2'-deoxyribosyltransferases catalyze the transfer of 2-deoxyribose between bases and have been widely used as biocatalysts to synthesize a variety of nucleoside analogs. The genes encoding nucleoside 2'-deoxyribosyltransferase (ndt) from Lactobacillus leichmannii and Lactobacillus fermentum underwent random mutagenesis to select variants specialized for the synthesis of 2',3'-dideoxynucleosides. An Escherichia coli strain, auxotrophic for uracil and unable to use 2',3'-dideoxyuridine, cytosine, and 2',3'-dideoxycytidine as a source of uracil was constructed. Randomly mutated lactobacilli ndt libraries from two species, L. leichmannii and L. fermentum, were screened for the production of uracil with 2',3'-dideoxyuridine as a source of uracil. Several mutants suitable for the synthesis of 2',3'-dideoxynucleosides were isolated. The nucleotide sequence of the corresponding genes revealed a single mutation (G --> A transition) leading to the substitution of a small aliphatic amino acid by a nucleophilic one, A15T (L. fermentum) or G9S (L. leichmannii), respectively. We concluded that the "adaptation" of the nucleoside 2'-deoxyribosyltransferase activity to 2,3-dideoxyribosyl transfer requires an additional hydroxyl group on a key amino acid side chain of the protein to overcome the absence of such a group in the corresponding substrate. The evolved proteins also display significantly improved nucleoside 2',3'-didehydro-2',3'-dideoxyribosyltransferase activity.

  1. Site-directed and global incorporation of orthogonal and isostructural noncanonical amino acids into the ribosomal lasso peptide capistruin.

    PubMed

    Al Toma, Rashed S; Kuthning, Anja; Exner, Matthias P; Denisiuk, Alexander; Ziegler, Juliane; Budisa, Nediljko; Süssmuth, Roderich D

    2015-02-09

    Expansion of the structural diversity of peptide antibiotics was performed through two different methods. Supplementation-based incorporation (SPI) and stop-codon suppression (SCS) approaches were used for co-translational incorporation of isostructural and orthogonal noncanonical amino acids (ncAAs) into the lasso peptide capistruin. Two ncAAs were employed for the SPI method and five for the SCS method; each of them probing the incorporation of ncAAs in strategic positions of the molecule. Evaluation of the assembly by HR-ESI-MS proved more successful for the SCS method. Bio-orthogonal chemistry was used for post-biosynthetic modification of capistruin congener Cap_Alk10 containing the ncAA Alk (Nε-Alloc-L-lysine) instead of Ala. A second-generation Hoveyda-Grubbs catalyst was used for an in vitro metathesis reaction with Cap_Alk10 and an allyl alcohol, which offers options for post-biosynthetic modifications. The use of synthetic biology allows for the in vivo production of new peptide-based antibiotics from an expanded amino acid repertoire.

  2. Limited proteolysis and sequence analysis of the 2-oxo acid dehydrogenase complexes from Escherichia coli. Cleavage sites and domains in the dihydrolipoamide acyltransferase components.

    PubMed Central

    Packman, L C; Perham, R N

    1987-01-01

    The structures of the dihydrolipoamide acyltransferase (E2) components of the 2-oxo acid dehydrogenase complexes from Escherichia coli were investigated by limited proteolysis. Trypsin and Staphylococcus aureus V8 proteinase were used to excise the three lipoyl domains from the E2p component of the pyruvate dehydrogenase complex and the single lipoyl domain from the E2o component of the 2-oxoglutarate dehydrogenase complex. The principal sites of action of these enzymes on each E2 chain were determined by sequence analysis of the isolated lipoyl fragments and of the truncated E2p and E2o chains. Each of the numerous cleavage sites (12 in E2p, six in E2o) fell within similar segments of the E2 chains, namely stretches of polypeptide rich in alanine, proline and/or charged amino acids. These regions are clearly accessible to proteinases of Mr 24,000-28,000 and, on the basis of n.m.r. spectroscopy, some of them have previously been implicated in facilitating domain movements by virtue of their conformational flexibility. The limited proteolysis data suggest that E2p and E2o possess closer architectural similarities than would be predicted from inspection of their amino acid sequences. As a result of this work, an error was detected in the sequence of E2o inferred from the previously published sequence of the encoding gene, sucB. The relevant peptides from E2o were purified and sequenced by direct means; an amended sequence is presented. Images Fig. 1. Fig. 2. PMID:3297046

  3. ETMB-RBF: Discrimination of Metal-Binding Sites in Electron Transporters Based on RBF Networks with PSSM Profiles and Significant Amino Acid Pairs

    PubMed Central

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Background Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. Methods We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. Results We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. Conclusions We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins

  4. Single-chain site-specific mutations of fluorescein-amino acid contact residues in high affinity monoclonal antibody 4-4-20.

    PubMed

    Denzin, L K; Whitlow, M; Voss, E W

    1991-07-25

    Previous crystallographic studies of high affinity anti-fluorescein monoclonal antibody 4-4-20 (Ka = 1.7 x 10(10) M-1) complexed with fluorescyl ligand resolved active site contact residues involved in binding. For better definition of the relative roles of three light chain antigen contact residues (L27dhis, L32tyr and L34arg), four site-specific mutations (L27dhis to L27lys, L32tyr to L32phe, and L34arg to L34lys and L34his) were generated and expressed in single-chain antigen binding derivatives of monoclonal antibody 4-4-20 containing two different polypeptide linkers (SCA 4-4-20/205c, 25 amino acids and SCA 4-4-20/212, 14 amino acids). Results showed that L27dhis and L32tyr were necessary for wild type binding affinities, however, were not required for near-wild type Qmax values (where Qmax is the maximum fluoroscein fluorescence quenching expressed as percent). Tyrosine L32 which hydrogen bonds with ligand was also characterized at the haptenic level through the use of 9-hydroxyphenylfluoron which lacks the carboxyl group to which L32 tyrosine forms a hydrogen bond. Results demonstrated that wild type SCA and mutant L32phe possessed similar HPF binding characteristics. Active site contact residue L34arg was important for fluorescein quenching maxima and binding affinity (L34his mutant), however, substitution of lysine for arginine at L34 did not have a significant effect on observed Qmax value. In addition, substitutions had no effect on structural and topological characteristics, since all mutants retained similar idiotypic and metatypic properties. Finally, two linkers were comparatively examined to determine relative contributions to mutant binding properties and stability. No linker effects were observed. Collectively, these results verified the importance of these light chain fluorescein contact residues in the binding pocket of monoclonal antibody 4-4-20.

  5. Exploration of the labeling of [11C]Tubastatin A at the hydroxamic acid site with [11C]carbon monoxide

    PubMed Central

    Lu, Shuiyu; Zhang, Yi; Kalin, Jay; Cai, Lisheng; Kozikowski, Alan P.; Pike, Victor W.

    2015-01-01

    We aimed to label tubastatin A (1) with carbon-11 (t1/2 = 20.4 min) in the hydroxamic acid site to provide a potential radiotracer for imaging histone deacetylase 6 (HDAC6) in vivo with positron emission tomography (PET). Initial attempts at a one-pot Pd-mediated insertion of [11C]carbon monoxide between the aryl iodide (2) and hydroxylamine gave low radiochemical yields (< 5%) of [11C]1. Labeling was achieved in useful radiochemical yields (16.1 ± 5.6%, n = 4) through a two-step process based on Pd-mediated insertion of [11C]carbon monoxide between the aryl iodide (2) and p-nitrophenol to give the [11C]p-nitrophenyl ester ([11C]5), followed by ultrasound-assisted hydroxyaminolysis of the activated ester with excess hydroxylamine in DMSO/THF mixture in the presence of a strong phosphazene base P1-t-Bu. However, the success in labeling the hydroxamic acid group of [11C]tubastatin A was not transferable to the labeling of three other model hydroxamic acids. PMID:26647018

  6. Periodic DFT study of acidic trace atmospheric gas molecule adsorption on Ca- and Fe-doped MgO(001) surface basic sites.

    PubMed

    Baltrusaitis, Jonas; Hatch, Courtney; Orlando, Roberto

    2012-08-02

    The electronic properties of undoped and Ca- or Fe-doped MgO(001) surfaces, as well as their propensity toward atmospheric acidic gas (CO2, SO2, and NO2) uptake was investigated with an emphasis on gas adsorption on the basic MgO oxygen surface sites, O(surf), using periodic density functional theory (DFT) calculations. Adsorption energy calculations show that MgO doping will provide stronger interactions of the adsorbate with the O(surf) sites than the undoped MgO for a given adsorbate molecule. Charge transfer from the iron atom in Fe-doped MgO(001) to NO2 was shown to increase the binding interaction between adsorbate by an order of magnitude, when compared to that of undoped and Ca-doped MgO(001) surfaces. Secondary binding interactions of adsorbate oxygen atoms were observed with surface magnesium sites at distances close to those of the Mg-O bond within the crystal. These interactions may serve as a preliminary step for adsorption and facilitate further adsorbate transformations into other binding configurations. Impacts on global atmospheric chemistry are discussed as these adsorption phenomena can affect atmospheric gas budgets via altered partitioning and retention on mineral aerosol surfaces.

  7. Enhancement of bacterial iron and sulfate respiration for in situ bioremediation of acid mine drainage sites: a case study

    SciTech Connect

    Bilgin, A.A.; Harrington, J.M.; Silverstein, J.

    2007-08-15

    The prevention of acid mine drainage (AMD) in situ is more attractive than down-gradient treatment alternatives that do not involve source control. AMD source control can be achieved by shifting the microbial activity in the sulfidic rock from pyrite oxidation to anaerobic heterotrophic activity. This is achieved by adding biodegradable organic carbon amendments to the sulfidic rock. This technique was applied to an abandoned coal mine pool in Pennsylvania. The pool had a pH of 3.0 to 3.5. Following treatment, near-neutral pH and decreased effluent heavy metal concentrations were achieved. In situ bioremediation by the enhancement of bacterial iron and sulfate reduction is a promising technology for AMD prevention.

  8. Modeling the Distribution of Acidity within Nuclear Fuel (UO{sub 2}) Corrosion Product Deposits and Porous Sites

    SciTech Connect

    Cheong, W.J.; Keech, P.G.; Wren, J.C.; Shoesmith, D.W.; Qin, Z.

    2007-07-01

    A model for acidity within pores within corrosion products on anodically-dissolving UO{sub 2} was developed using Comsol Multiphysics 3.2 to complement ongoing electrochemical measurements. It was determined that a depression of pH within pores can be maintained if: electrochemically measured dissolution currents used in the calculations are attenuated to reflect very localized pores; corrosion potentials exceed -250 mV (vs. SCE); and pore depths are >1 {mu}m for 300 mV or >100 {mu}m for -50 mV (vs. SCE). Mixed diffusional-chemical equilibria control is suggested through deviations in the shapes between pH-potential and pH-pore depth plots. (authors)

  9. Properties of a recombinant human hemoglobin with aspartic acid 99(beta), an important intersubunit contact site, substituted by lysine.

    PubMed Central

    Yanase, H.; Cahill, S.; Martin de Llano, J. J.; Manning, L. R.; Schneider, K.; Chait, B. T.; Vandegriff, K. D.; Winslow, R. M.; Manning, J. M.

    1994-01-01

    Site-directed mutagenesis of an important subunit contact site, Asp-99(beta), by a Lys residue (D99K(beta)) was proven by sequencing the entire beta-globin gene and the mutant tryptic peptide. Oxygen equilibrium curves of the mutant hemoglobin (Hb) (2-15 mM in heme) indicated that it had an increased oxygen affinity and a lowered but significant amount of cooperativity compared to native HbA. However, in contrast to normal HbA, oxygen binding of the recombinant mutant Hb was only marginally affected by the allosteric regulators 2,3-diphosphoglycerate or inositol hexaphosphate and was not at all responsive to chloride. The efficiency of oxygen binding by HbA in the presence of allosteric regulators was limited by the mutant Hb. At concentrations of 0.2 mM or lower in heme, the mutant D99K(beta) Hb was predominantly a dimer as demonstrated by gel filtration, haptoglobin binding, fluorescence quenching, and light scattering. The purified dimeric recombinant Hb mutant exists in 2 forms that are separable on isoelectric focusing by about 0.1 pH unit, in contrast to tetrameric hemoglobin, which shows 1 band. These mutant forms, which were present in a ratio of 60:40, had the same masses for their heme and globin moieties as determined by mass spectrometry. The elution positions of the alpha- and beta-globin subunits on HPLC were identical. Circular dichroism studies showed that one form of the mutant Hb had a negative ellipticity at 410 nm and the other had positive ellipticity at this wavelength. The findings suggest that the 2 D99K(beta) recombinant mutant forms have differences in their heme-protein environments. PMID:7987216

  10. Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid.

    PubMed

    Maierhofer, Tobias; Diekmann, Marion; Offenborn, Jan Niklas; Lind, Christof; Bauer, Hubert; Hashimoto, Kenji; S Al-Rasheid, Khaled A; Luan, Sheng; Kudla, Jörg; Geiger, Dietmar; Hedrich, Rainer

    2014-09-09

    Under drought stress, abscisic acid (ABA) triggers closure of leaf cell pores called stomata, which are formed by two specialized cells called guard cells in plant epidermis. Two pathways downstream of ABA stimulate phosphorylation of the S-type anion channels SLAC1 (slow anion channel associated 1) and SLAH3 (SLAC1 homolog 3), which causes these channels to open, reducing guard cell volume and triggering stomatal closure. One branch involves OST1 (open stomata 1), a calcium-independent SnRK2-type kinase, and the other branch involves calcium-dependent protein kinases of the CPK (calcium-dependent protein kinase) family. We used coexpression analyses in Xenopus oocytes to show that the calcineurin B-like (CBL) calcium sensors CBL1 and CBL9 and their interacting protein kinase CIPK23 also triggered SLAC1 and SLAH3 opening. We analyzed whether regulation of SLAC1 opening by these different families of kinases involved the same or different sites on SLAC1 by measuring channel conductance of SLAC1 with mutations in the putative phosphorylation sites in the amino or carboxyl termini coexpressed with specific kinases in Xenopus oocytes. SLAC1 mutants lacking the OST1-phosphorylated site were still activated by CPK or by CBL/CIPK complexes. Phosphorylation and activation of SLAC1 by any of the kinases were inhibited by the phosphatase ABI1 (ABA insensitive 1), which is inactivated in response to ABA signaling. These findings identified CBL/CIPK complexes as potential regulators of stomatal aperture through S-type anion channels and indicated that phosphorylation at distinct sites enables SLAC1 activation by both calcium-dependent and calcium-independent pathways downstream of ABA.

  11. Cl-/Ca2+-dependent L-glutamate binding sites do not correspond to 2-amino-4-phosphonobutanoate-sensitive excitatory amino acid receptors.

    PubMed Central

    Fagg, G. E.; Lanthorn, T. H.

    1985-01-01

    A series of phosphono and phosphino analogues of glutamate were used to compare the pharmacological properties of (a) Cl-/Ca2+-dependent, 2-amino-4-phosphonobutanoate (AP4)-sensitive L-[3H]-glutamate binding sites in rat brain synaptic plasma membranes (SPMs) and (b) AP4-sensitive excitatory synaptic responses by use of electrophysiological techniques. In the presence of Cl- and Ca2+, L-[3H]-glutamate bound to SPMs with Kd 804 nM and Bmax 53 pmol mg-1 protein. The AP4-sensitive (Ki 7.3 microM) population of binding sites represented 61% of L-glutamate specifically bound. omega-Substituted analogues of AP4 were potent inhibitors of L-[3H]-glutamate binding (Ki values 2.4-38 microM), whereas N-substituted compounds or propionic acid derivatives were inactive. Experiments with AP4 alone and in combination with other analogues demonstrated that the primary target of all substances was the AP4-sensitive population of L-glutamate binding sites. In the hippocampal slice in vitro, AP4 antagonized lateral perforant path-evoked field potentials with an IC50 of 2.7 microM. In contrast to their actions at AP4-sensitive L-glutamate binding sites, all other compounds (except for the omega-carboxymethylphosphino analogue, IC50 19 microM) were weak or inactive as antagonists of this synaptic response (IC50 values greater than 100 microM). Inactive compounds which exhibited activity in the binding assay did not reverse the synaptic depressant effects of AP4, indicating that they were neither agonists nor antagonists at AP4-sensitive synapses.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2998527

  12. Bioaccumulation of metals in reeds collected from an acid mine drainage contaminated site in winter and spring.

    PubMed

    Guo, Lin; Cutright, Teresa J

    2016-01-01

    Wetland plants such as Phragmites australis has been used to treat acid mine drainage (AMD) contaminated soil which is a serious environmental issue worldwide. This project investigated metal plaque content(s) and metal uptake in reeds grown in an AMD field in winter and spring. The results indicated that the level of Fe plaque was much higher than Mn and Al plaque as the soil contained more Fe than Al and Mn. The amounts of Mn and Al plaque formed on reeds in spring were not significantly different from that in winter (p > .05). However, more Fe plaque was formed on reeds collected in spring. The concentrations of metals in underground organs were positively related to the metal levels in soils. More Mn and Al transferred to the aboveground tissues of reeds during the spring while the Fe levels in reeds did not significantly vary with seasons. Roots and rhizomes were the main organs for Fe sequestration (16.3 ± 4.15 mg/g in roots in spring) while most Al was sequestered in the shoots of reeds (2.05 ± 0.09 mg/g in shoots in spring). Further research may be needed to enhance the translocation of metals in reeds and increase the phytoremediation efficiency.

  13. First site-specific incorporation of a noncanonical amino acid into the photosynthetic oxygen-evolving complex.

    PubMed

    Offenbacher, Adam R; Pagba, Cynthia V; Polander, Brandon C; Brahmachari, Udita; Barry, Bridgette A

    2014-04-18

    In photosystem II (PSII), water is oxidized at the oxygen-evolving complex. This process occurs through a light-induced cycle that produces oxygen and protons. While coupled proton and electron transfer reactions play an important role in PSII and other proteins, direct detection of internal proton transfer reactions is challenging. Here, we demonstrate that the unnatural amino acid, 7-azatryptophan (7AW), has unique, pH-sensitive vibrational frequencies, which are sensitive markers of proton transfer. The intrinsically disordered, PSII subunit, PsbO, which contains a single W residue (Trp241), was engineered to contain 7AW at position 241. Fluorescence shows that 7AW-241 is buried in a hydrophobic environment. Reconstitution of 7AW(241)PsbO to PSII had no significant impact on oxygen evolution activity or flash-dependent protein dynamics. We conclude that directed substitution of 7AW into other structural domains is likely to provide a nonperturbative spectroscopic probe, which can be used to define internal proton pathways in PsbO.

  14. Near-UV Photodissociation of Tryptic Peptide Cation Radicals. Scope and Effects of Amino Acid Residues and Radical Sites

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Tureček, František

    2017-02-01

    Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO-NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second (B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions.

  15. Quercetin inhibits acid-sensing ion channels through a putative binding site in the central vestibular region.

    PubMed

    Mukhopadhyay, Mohona; Singh, Anurag; Sachchidanand, S; Bera, Amal Kanti

    2017-02-22

    Acid-sensing ion channels (ASICs) are associated with many pathophysiological processes, such as neuronal death during ischemic stroke, epileptic seizure and nociception. However, there is a dearth of ASIC-specific therapeutic blockers. Here we report that quercetin, a plant flavonoid, which is known for its neuroprotective effect, reversibly inhibits homomeric rat ASIC1a, ASIC2a and ASIC3 with an IC50 of about 2µM. Also, quercetin prevents low pH-induced intracellular calcium rise and cell death in HEK-293 cells, which have endogenous expression of ASIC1a and 2a. The inhibitory effect of quercetin on ASICs is not due to membrane perturbation, as it did not have any effect on other channels, like NMDA receptor, GABAA receptor and P2X4 receptor. Unlike quercetin, another flavonoid resveratrol had no effect on ASIC1a. Computational analysis revealed that quercetin binds to the channel in a cavity at the central vestibule, lined by several charged residues like Q276, R369, E373 and E416 in ASIC1a. Mutation of Arg369 to Ala or Glu416 to Gln abolished the inhibitory effect of quercetin on rat ASIC1a completely, while Glu373 to Gln showed reduced sensitivity. Our results raise the possibility of using quercetin for targeting ASICs in vivo.

  16. Identification of antisense nucleic acid hybridization sites in mRNA molecules with self-quenching fluorescent reporter molecules.

    PubMed

    Gifford, Lida K; Opalinska, Joanna B; Jordan, David; Pattanayak, Vikram; Greenham, Paul; Kalota, Anna; Robbins, Michelle; Vernovsky, Kathy; Rodriguez, Lesbeth C; Do, Bao T; Lu, Ponzy; Gewirtz, Alan M

    2005-02-17

    We describe a physical mRNA mapping strategy employing fluorescent self-quenching reporter molecules (SQRMs) that facilitates the identification of mRNA sequence accessible for hybridization with antisense nucleic acids in vitro and in vivo, real time. SQRMs are 20-30 base oligodeoxynucleotides with 5-6 bp complementary ends to which a 5' fluorophore and 3' quenching group are attached. Alone, the SQRM complementary ends form a stem that holds the fluorophore and quencher in contact. When the SQRM forms base pairs with its target, the structure separates the fluorophore from the quencher. This event can be reported by fluorescence emission when the fluorophore is excited. The stem-loop of the SQRM suggests that SQRM be made to target natural stem-loop structures formed during mRNA synthesis. The general utility of this method is demonstrated by SQRM identification of targetable sequence within c-myb and bcl-6 mRNA. Corresponding antisense oligonucleotides reduce these gene products in cells.

  17. Biomonitoring study of a constructed wetland site treating acid mine drainage. Research report, July 1990-June 1992

    SciTech Connect

    Ramey, B.A.; Halverson, H.G.; Taylor, L.A.

    1992-01-01

    Acid Mine Drainage (AMD) from an underground coal mine in the Jones Branch watershed in McCreary County, KY, substantially reduced water quality in Jones Branch. Downstream from the mine seeps, the pH was routinely below 4.5 and concentrations of most heavy metals, especially iron, were elevated. A cattail wetland (1,022 m2) was constructed on Jones Branch in 1989 to obviate the effects of the AMD. Monthly chemical monitoring was performed on the water from above, from below, and from the 26 cells within the wetland. Based on chemical monitoring, the wetland initially improved water quality, increasing the pH and removing substantial amounts of heavy metals. Beginning in the spring of 1991, water quality at the wetland outfall began to decline, and has not improved to date. To augment the chemical monitoring, a biomonitoring study was initiated in the spring of 1990. Acute 48-hr. static tests were conducted with newly hatched fathead minnows (Pimephales promelas). Median lethal concentration (LC50) values determined monthly reflects the decline in water quality at the outfall over time.

  18. Acid neutralizing capacity and leachate results for igneous rocks, with associated carbon contents of derived soils, Animas River AML site, Silverton, Colorado

    USGS Publications Warehouse

    Yager, Douglas B.; Stanton, Mark R.; Choate, LaDonna M.; Burchell,

    2009-01-01

    Mine planning efforts have historically overlooked the possible acid neutralizing capacity (ANC) that local igneous rocks can provide to help neutralize acidmine drainage. As a result, limestone has been traditionally hauled to mine sites for use in neutralizing acid drainage. Local igneous rocks, when used as part of mine life-cycle planning and acid mitigation strategy, may reduce the need to transport limestone to mine sites because these rocks can contain acid neutralizing minerals. Igneous hydrothermal events often introduce moderately altered mineral assemblages peripheral to more intensely altered rocks that host metal-bearing veins and ore bodies. These less altered rocks can contain ANC minerals (calcite-chlorite-epidote) and are referred to as a propylitic assemblage. In addition, the carbon contents of soils in areas of new mining or those areas undergoing restoration have been historically unknown. Soil organic carbon is an important constituent to characterize as a soil recovery benchmark that can be referred to during mine cycle planning and restoration.
    This study addresses the mineralogy, ANC, and leachate chemistry of propylitic volcanic rocks that host polymetallic mineralization in the Animas River watershed near the historical Silverton, Colorado, mining area. Acid titration tests on volcanic rocks containing calcite (2 – 20 wt %) and chlorite (6 – 25 wt %), have ANC ranging from 4 – 146 kg/ton CaCO3 equivalence. Results from a 6-month duration, kinetic reaction vessel test containing layered pyritic mine waste and underlying ANC volcanic rock (saturated with deionized water) indicate that acid generating mine waste (pH 2.4) has not overwhelmed the ANC of propylitic volcanic rocks (pH 5.8). Sequential leachate laboratory experiments evaluated the concentration of metals liberated during leaching. Leachate concentrations of Cu-Zn-As-Pb for ANC volcanic rock are one-to-three orders of magnitude lower when compared to leached

  19. A smart sealed nucleic acid biosensor based on endogenous reference gene detection to screen and identify mammals on site

    PubMed Central

    Xu, Yuancong; Xiang, Wenjin; Wang, Qin; Cheng, Nan; Zhang, Li; Huang, Kunlun; Xu, Wentao

    2017-01-01

    The identification of meat adulteration is a hotspot for food research worldwide. In this paper, a smart and sealed biosensor that combines loop-mediated isothermal amplification (LAMP) with a lateral flow device (LFD) was developed, resulting in the universal mammalian assessment on site. First, the highly specific chromosomal Glucagon gene (Gcg) was chosen as the endogenous reference gene, and the LAMP approach provided double-labeled duplex DNA products using FITC- and BIO- modified primers. Then, an LFD strategy was used for specific signal recognition through an immunoassay. Meanwhile, LFD-LAMP was compared to LAMP and real-time LAMP, the results showed consistent high specificity and sensitivity but in a more convenient and easy-to-use system. In addition, the detection limit was as low as 10 pg, which was equivalent to 3~5 copies in mammals. All of the reactions were performed in a sealed system regardless of the amplification process or products recognized. Therefore, the smart design demonstrated significantly high specificity and the ability to detect trace amounts of DNA in complex and processed foods with mammalian meat. As a universal and specific platform for the detection of mammalian DNA, this smart biosensor is an excellent prospect for species identification and meat adulteration. PMID:28233849

  20. A smart sealed nucleic acid biosensor based on endogenous reference gene detection to screen and identify mammals on site.

    PubMed

    Xu, Yuancong; Xiang, Wenjin; Wang, Qin; Cheng, Nan; Zhang, Li; Huang, Kunlun; Xu, Wentao

    2017-02-24

    The identification of meat adulteration is a hotspot for food research worldwide. In this paper, a smart and sealed biosensor that combines loop-mediated isothermal amplification (LAMP) with a lateral flow device (LFD) was developed, resulting in the universal mammalian assessment on site. First, the highly specific chromosomal Glucagon gene (Gcg) was chosen as the endogenous reference gene, and the LAMP approach provided double-labeled duplex DNA products using FITC- and BIO- modified primers. Then, an LFD strategy was used for specific signal recognition through an immunoassay. Meanwhile, LFD-LAMP was compared to LAMP and real-time LAMP, the results showed consistent high specificity and sensitivity but in a more convenient and easy-to-use system. In addition, the detection limit was as low as 10 pg, which was equivalent to 3~5 copies in mammals. All of the reactions were performed in a sealed system regardless of the amplification process or products recognized. Therefore, the smart design demonstrated significantly high specificity and the ability to detect trace amounts of DNA in complex and processed foods with mammalian meat. As a universal and specific platform for the detection of mammalian DNA, this smart biosensor is an excellent prospect for species identification and meat adulteration.

  1. Engineering D-Amino Acid Containing Collagen Like Peptide at the Cleavage Site of Clostridium histolyticum Collagenase for Its Inhibition

    PubMed Central

    Velmurugan, Punitha; Jonnalagadda, Raghava Rao; Unni Nair, Balachandran

    2015-01-01

    Collagenase is an important enzyme which plays an important role in degradation of collagen in wound healing, cancer metastasis and even in embryonic development. However, the mechanism of this degradation has not yet been completely understood. In the field of biomedical and protein engineering, the design and development of new peptide based materials is of main concern. In the present work an attempt has been made to study the effect of DAla in collagen like peptide (imino-poor region of type I collagen) on the structure and stability of peptide against enzyme hydrolysis. Effect of replacement of DAla in the collagen like peptide has been studied using circular dichroic spectroscopy (CD). Our findings suggest that, DAla substitution leads to conformational changes in the secondary structure and favours the formation of polyproline II conformation than its L-counterpart in the imino-poor region of collagen like peptides. Change in the chirality of alanine at the cleavage site of collagenase in the imino-poor region inhibits collagenolytic activity. This may find application in design of peptides and peptidomimics for enzyme-substrate interaction, specifically with reference to collagen and other extra cellular matrix proteins. PMID:25973613

  2. Uncoupled hydrogen and volatile fatty acids generation in a two-step biotechnological anaerobic process fed with actual site wastewater.

    PubMed

    Monti, Matilde; Scoma, Alberto; Martinez, Gonzalo; Bertin, Lorenzo; Fava, Fabio

    2015-05-25

    Among agro-wastes, olive mill wastewater (OMW) truly qualifies as a high impact organic residue due to its biochemical-rich composition and high annual production. In the present investigation, dephenolized OMW (OMWdeph) was employed as the feedstock for a biotechnological two-stage anaerobic process dedicated to the production of biohydrogen and volatile fatty acids (VFAs), respectively. To this end, two identically configured packed-bed biofilm reactors were operated sequentially. In the first, the hydraulic retention time was set to 1 day, whereas in the second it was equal to 5 days. The rationale was to decouple the hydrolysis of the organic macronutrients held by the OMWdeph, so as to quantitatively generate a biogas enriched in H2 (first stage aim), for the acidogenesis of the residual components left after hydrolysis, to then produce a highly concentrated mixture of VFAs (second stage aim). Results showed that the generation of H2 and VFAs was effectively split, with carbohydrates and lipids, respectively, being the main substrates of the two processes. About 250 ml H2 L(-1) day(-1) was produced, corresponding to a yield of 0.36 mol mol(-1) of consumed carbohydrates (expressed as glucose equivalents). The overall concentration of VFAs in the acidogenic process was 13.80 g COD L(-1), so that 2.76 g COD L(-1) day(-1) was obtained. Second generation biorefineries use a selected fraction of an organic waste to conduct a microbiologically-driven pathway towards the generation of one target molecule. With the proposed approach, a greater value of the waste was attained, since the multi-purpose two-stage process did not entail competition for substrates between the first and the second steps.

  3. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Trebs, I.; Meixner, F. X.; Slanina, J.; Otjes, R.; Jongejan, P.; Andreae, M. O.

    2004-02-01

    We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2) and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl-) and sulfate (SO42-), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia Smoke Aerosols, Clouds, Rainfall and Climate). Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity), through the transition period to the wet season (background conditions). Measurements were made continuously using a wet-annular denuder in combination with a Steam-Jet Aerosol Collector (SJAC) followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD) was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition) were ≤0.015 ppb for acidic trace gases and aerosol anions and ≤0.118 ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong relative humidity and temperature variations between day and night as well as to

  4. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Trebs, I.; Meixner, F. X.; Slanina, J.; Otjes, R.; Jongejan, P.; Andreae, M. O.

    2004-06-01

    We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2 and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3-), nitrite (NO2-), chloride (Cl- and sulfate (SO42-), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity), through the transition period to the wet season (background conditions). Measurements were made continuously using a wet-annular denuder (WAD) in combination with a Steam-Jet Aerosol Collector (SJAC) followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD) was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition) were ≤0.015ppb for acidic trace gases and aerosol anions and ≤0.118ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong relative

  5. Probing the Active Site of MIO-dependent Aminomutases, Key Catalysts in the Biosynthesis of amino Acids Incorporated in Secondary Metabolites

    SciTech Connect

    Cooke, H.; Bruner, S

    2010-01-01

    The tyrosine aminomutase SgTAM produces (S)-{beta}-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form {alpha},{beta}-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the {alpha},{beta}-unsaturated intermediates to form {beta}-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis.

  6. A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells.

    PubMed Central

    Partanen, Sanna; Storch, Stephan; Löffler, Hans-Gerhard; Hasilik, Andrej; Tyynelä, Jaana; Braulke, Thomas

    2003-01-01

    The substitution of an active-site aspartic acid residue by asparagine in the lysosomal protease cathepsin D (CTSD) results in a loss of enzyme activity and severe cerebrocortical atrophy in a novel form of neuronal ceroid lipofuscinosis in sheep [Tyynelä, Sohar, Sleat, Gin, Donnelly, Baumann, Haltia and Lobel (2000) EMBO J. 19, 2786-2792]. In the present study we have introduced the corresponding mutation by replacing aspartic acid residue 293 with asparagine (D293N) into the mouse CTSD cDNA to analyse its effect on synthesis, transport and stability in transfected HEK-293 cells. The complete inactivation of mutant D293N mouse CTSD was confirmed by a newly developed fluorimetric quantification system. Moreover, in the heterologous overexpression systems used, mutant D293N mouse CTSD was apparently unstable and proteolytically modified during early steps of the secretory pathway, resulting in a loss of mass by about 1 kDa. In the affected sheep, the endogenous mutant enzyme was stable but also showed the shift in its molecular mass. In HEK-293 cells, the transport of the mutant D293N mouse CTSD to the lysosome was delayed and associated with a low secretion rate compared with wild-type CTSD. These data suggest that the mutation may result in a conformational change which affects stability, processing and transport of the enzyme. PMID:12350228

  7. An evaluation of the regional acid deposition model surface module for ozone uptake at three sites in the San Joaquin Valley of California

    NASA Technical Reports Server (NTRS)

    Massman, W. J.; Pederson, J.; Delany, A.; Grantz, D.; Hertog, G. Den; Neumann, H. H.; Oncley, S. P.; Pearson, R., Jr.; Shaw, R. H.

    1994-01-01

    Plants and soils act as major sinks for the destruction of tropospheric ozone, especially during daylight hours when plant stomata open and are thought to provide the dominant pathway for the uptake of ozone. The present study, part of the California Ozone Deposition Experiment, compares predictions of the regional acid deposition model ozone surface conductance module with surface conductance data derived from eddy covariance measurements of ozone flux taken at a grape, a cotton, and a grassland site in the San Joaquin Valley of California during the summer of 1991. Results indicate that the model (which was developed to provide long-term large-area estimates for the eastern United States) significantly overpredicts the surface conductance at all times of the day for at least two important types of plant cover of the San Joaquin Valley and that it incorrectly partitions the ozone flux between transpiring and nontranspiring components of the surface at the third site. Consequently, the model either overpredicts or inaccurately represents the observed deposition velocities. Other results indicate that the presence of dew does not reduce the rate of ozone deposition, contradicting to model assumptions, and that model assumptions involving the dependency of stomata upon environmental temperature are unnecessary. The effects of measurement errors and biases, arising from the presence of the roughness sublayer and possible photochemical reactions, are also discussed. A simpler model for ozone surface deposition (at least for the San Joaquin Valley) is proposed and evaluated.

  8. Improvement of Alcaligenes faecalis nitrilase by gene site saturation mutagenesis and its application in stereospecific biosynthesis of (R)-(-)-mandelic acid.

    PubMed

    Liu, Zhi-Qiang; Zhang, Xin-Hong; Xue, Ya-Ping; Xu, Ming; Zheng, Yu-Guo

    2014-05-21

    Nitrilases have recently received considerable attention as the biocatalysts for stereospecific production of carboxylic acids. To improve the activity, the nitrilase from Alcaligenes faecalis was selected for further modification by the gene site saturation mutagenesis method (GSSM), based on homology modeling and previous reports about mutations. After mutagenesis, the positive mutants were selected using a convenient two-step high-throughput screening method based on product formation and pH indicator combined with the HPLC method. After three rounds of GSSM, Mut3 (Gln196Ser/Ala284Ile) with the highest activity and ability of tolerance to the substrate was selected. As compared to the wild-type A. faecalis nitrilase, Mut3 showed 154% higher specific activity. Mut3 could retain 91.6% of its residual activity after incubation at pH 6.5 for 6 h. In a fed-batch reaction with 800 mM mandelonitrile as the substrate, the cumulative production of (R)-(-)-mandelic acid after 7.5 h of conversion reached 693 mM with an enantiomeric excess of 99%, and the space-time productivity of Mut3 was 21.50-fold higher than that of wild-type nitrilase. The Km, Vmax, and k(cat) of wild-type and Mut3 for mandelonitrile were 20.64 mM, 33.74 μmol mg(-1) min(-1), 24.45 s(-1), and 9.24 mM, 47.68 μmol mg(-1) min(-1), and 34.55 s(-1), respectively. A homology modeling and molecular docking study showed that the diameter of the catalytic tunnel of Mut3 became longer and that the tunnel volume was smaller. These structural changes are proposed to improve the hydrolytic activity and pH stability of Mut3. Mut3 has the potential for industrial applications in the upscale production of (R)-(-)-mandelic acid.

  9. A single site in human β-hexosaminidase A binds both 6-sulfate-groups on hexosamines and the sialic acid moiety of GM2 ganglioside

    PubMed Central

    Sharma, Rohita; Bukovac, Scott; Callahan, John; Mahuran, Don

    2010-01-01

    Human β-hexosaminidase A (Hex A) (αβ) is composed of two subunits whose primary structures are ~60% identical. Deficiency of either subunit results in severe neurological disease due to the storage of GM2 ganglioside; Tay–Sachs disease, α deficiency, and Sandhoff disease, β deficiency. Whereas both subunits contain active sites only the α-site can efficiently bind negatively charged 6-sulfated hexosamine substrates and GM2 ganglioside. We have recently identified the αArg424 as playing a critical role in the binding of 6-sulfate-containing substrates, and βAsp452 as actively inhibiting their binding. To determine if these same residues affect the binding of the sialic acid moiety of GM2 ganglioside, an αArg424Gln form of Hex A was expressed and its kinetics analyzed using the GM2 activator protein:[3H]-GM2 ganglioside complex as a substrate. The mutant showed a ~3-fold increase in its Km for the complex. Next a form of Hex B (ββ) containing a double mutation, βAspLeu453 AsnArg (duplicating the α-aligning sequences), was expressed. As compared to the wild type (WT), the mutant exhibited a >30-fold increase in its ability to hydrolyze a 6-sulfated substrate and was now able to hydrolyze GM2 ganglioside when the GM2 activator protein was replaced by sodium taurocholate. Thus, this α-site is critical for binding both types of negatively charge substrates. PMID:12527415

  10. Binding of 3,4,5,6-Tetrahydroxyazepanes to the Acid-[beta]-glucosidase Active Site: Implications for Pharmacological Chaperone Design for Gaucher Disease

    SciTech Connect

    Orwig, Susan D.; Tan, Yun Lei; Grimster, Neil P.; Yu, Zhanqian; Powers, Evan T.; Kelly, Jeffery W.; Lieberman, Raquel L.

    2013-03-07

    Pharmacologic chaperoning is a therapeutic strategy being developed to improve the cellular folding and trafficking defects associated with Gaucher disease, a lysosomal storage disorder caused by point mutations in the gene encoding acid-{beta}-glucosidase (GCase). In this approach, small molecules bind to and stabilize mutant folded or nearly folded GCase in the endoplasmic reticulum (ER), increasing the concentration of folded, functional GCase trafficked to the lysosome where the mutant enzyme can hydrolyze the accumulated substrate. To date, the pharmacologic chaperone (PC) candidates that have been investigated largely have been active site-directed inhibitors of GCase, usually containing five- or six-membered rings, such as modified azasugars. Here we show that a seven-membered, nitrogen-containing heterocycle (3,4,5,6-tetrahydroxyazepane) scaffold is also promising for generating PCs for GCase. Crystal structures reveal that the core azepane stabilizes GCase in a variation of its proposed active conformation, whereas binding of an analogue with an N-linked hydroxyethyl tail stabilizes GCase in a conformation in which the active site is covered, also utilizing a loop conformation not seen previously. Although both compounds preferentially stabilize GCase to thermal denaturation at pH 7.4, reflective of the pH in the ER, only the core azepane, which is a mid-micromolar competitive inhibitor, elicits a modest increase in enzyme activity for the neuronopathic G202R and the non-neuronopathic N370S mutant GCase in an intact cell assay. Our results emphasize the importance of the conformational variability of the GCase active site in the design of competitive inhibitors as PCs for Gaucher disease.

  11. Probing catalysis by Escherichia coli dTDP-glucose-4,6-dehydratase: identification and preliminary characterization of functional amino acid residues at the active site.

    PubMed

    Hegeman, A D; Gross, J W; Frey, P A

    2001-06-05

    A model of the Escherichia coli dTDP-glucose-4,6-dehydratase (4,6-dehydratase) active site has been generated by combining amino acid sequence alignment information with the 3-dimensional structure of UDP-galactose-4-epimerase. The active site configuration is consistent with the partially refined 3-dimensional structure of 4,6-dehydratase, which lacks substrate-nucleotide but contains NAD(+) (PDB file ). From the model, two groups of active site residues were identified. The first group consists of Asp135(DEH), Glu136(DEH), Glu198(DEH), Lys199(DEH), and Tyr301(DEH). These residues are near the substrate-pyranose binding pocket in the model, they are completely conserved in 4,6-dehydratase, and they differ from the corresponding equally well-conserved residues in 4-epimerase. The second group of residues is Cys187(DEH), Asn190(DEH), and His232(DEH), which form a motif on the re face of the cofactor nicotinamide binding pocket that resembles the catalytic triad of cysteine-proteases. The importance of both groups of residues was tested by mutagenesis and steady-state kinetic analysis. In all but one case, a decrease in catalytic efficiency of approximately 2 orders of magnitude below wild-type activity was observed. Mutagenesis of each of these residues, with the exception of Cys187(DEH), which showed near-wild-type activity, clearly has important negative consequences for catalysis. The allocation of specific functions to these residues and the absolute magnitude of these effects are obscured by the complex chemistry in this multistep mechanism. Tools will be needed to characterize each chemical step individually in order to assign loss of catalytic efficiency to specific residue functions. To this end, the effects of each of these variants on the initial dehydrogenation step were evaluated using a the substrate analogue dTDP-xylose. Additional steady-state techniques were employed in an attempt to further limit the assignment of rate limitation. The results are

  12. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.

    PubMed

    Azurmendi, Hugo F; Wang, Susan C; Massiah, Michael A; Poelarends, Gerrit J; Whitman, Christian P; Mildvan, Albert S

    2004-04-13

    trans-3-Chloroacrylic acid dehalogenase (CaaD) converts trans-3-chloroacrylic acid to malonate semialdehyde by the addition of H(2)O to the C-2, C-3 double bond, followed by the loss of HCl from the C-3 position. Sequence similarity between CaaD, an (alphabeta)(3) heterohexamer (molecular weight 47,547), and 4-oxalocrotonate tautomerase (4-OT), an (alpha)(6) homohexamer, distinguishes CaaD from those hydrolytic dehalogenases that form alkyl-enzyme intermediates. The recently solved X-ray structure of CaaD demonstrates that betaPro-1 (i.e., Pro-1 of the beta subunit), alphaArg-8, alphaArg-11, and alphaGlu-52 are at or near the active site, and the >or=10(3.4)-fold decreases in k(cat) on mutating these residues implicate them as mechanistically important. The effect of pH on k(cat)/K(m) indicates a catalytic base with a pK(a) of 7.6 and an acid with a pK(a) of 9.2. NMR titration of (15)N-labeled wild-type CaaD yielded pK(a) values of 9.3 and 11.1 for the N-terminal prolines, while the fully active but unstable alphaP1A mutant showed a pK(a) of 9.7 (for the betaPro-1), implicating betaPro-1 as the acid catalyst, which may protonate C-2 of the substrate. These results provide the first evidence for an amino-terminal proline, conserved in all known tautomerase superfamily members, functioning as a general acid, rather than as a general base as in 4-OT. Hence, a reasonable candidate for the general base in CaaD is the active site residue alphaGlu-52. CaaD has 10 arginine residues, six in the alpha-subunit (Arg-8, Arg-11, Arg-17, Arg-25, Arg-35, and Arg-43), and four in the beta-subunit (Arg-15, Arg-21, Arg-55, and Arg-65). (1)H-(15)N-heteronuclear single quantum coherence (HSQC) spectra of CaaD showed seven to nine Arg-NepsilonH resonances (denoted R(A) to R(I)) depending on the protein concentration and pH. One of these signals (R(D)) disappeared in the spectrum of the largely inactive alphaR11A mutant (deltaH = 7.11 ppm, deltaN = 89.5 ppm), and another one (R

  13. Mechanism of hydrodenitrogenation. Final report, September 1, 1989--August 31, 1992

    SciTech Connect

    Miranda, R.

    1992-11-30

    In this project it was proposed that the selectivity of the HDN reaction can be affected by an alteration of the catalyst acidity since it is possible that an acidic Hofmann-like deamination C--N--C bonds. Such a possibility was verified in this work by studying the denitrogenation of piperidine over acidic catalysts, and it was demonstrated that Bronsted acid sites are active for the denitrogenation of N-heterocycles, whereas Lewis sites are not. To better understand the role of acidic sites in the presence of hydrogenation and hydrogenolysis sites, molybdena was supposed on a series of acidic aluminas, and the resulting new acidity and molybdic phases were characterized. The oxidized catalysts supported on silica-aluninas showed increases from 3 to 150% of weak, medium and strong acid sites, which were produced by the molybdena phases. The new acidity was both of Lewis and Bronsted type, the predominance of one over the other depending upon support composition, as well as on loading and state of oxidation of Mo. High-alumina supports and low Mo loading favor dispersed Mo species, in particular bidentate and monodentate di-oxo Mo species. The latter is responsible for the new Bronsted acidity. Coordinative unsaturation of polymolybdates is responsible for the new Lewis acidity, which is increased upon reduction of Mo. High-silica supports favor monodentate species (high Bronsted acidity) up to 4 wt % MoO{sub 3}. Beyond that, polymolybdate species and Lewis acidity predominate. The nature of the reduced molybdena phases is obviously affected by support composition. The HDN reaction of pyridine was utilized to assess the variation in activity and selectivity produced by the nature of the support.

  14. Mechanism of hydrodenitrogenation

    SciTech Connect

    Miranda, R.

    1992-11-30

    In this project it was proposed that the selectivity of the HDN reaction can be affected by an alteration of the catalyst acidity since it is possible that an acidic Hofmann-like deamination C--N--C bonds. Such a possibility was verified in this work by studying the denitrogenation of piperidine over acidic catalysts, and it was demonstrated that Bronsted acid sites are active for the denitrogenation of N-heterocycles, whereas Lewis sites are not. To better understand the role of acidic sites in the presence of hydrogenation and hydrogenolysis sites, molybdena was supposed on a series of acidic aluminas, and the resulting new acidity and molybdic phases were characterized. The oxidized catalysts supported on silica-aluninas showed increases from 3 to 150% of weak, medium and strong acid sites, which were produced by the molybdena phases. The new acidity was both of Lewis and Bronsted type, the predominance of one over the other depending upon support composition, as well as on loading and state of oxidation of Mo. High-alumina supports and low Mo loading favor dispersed Mo species, in particular bidentate and monodentate di-oxo Mo species. The latter is responsible for the new Bronsted acidity. Coordinative unsaturation of polymolybdates is responsible for the new Lewis acidity, which is increased upon reduction of Mo. High-silica supports favor monodentate species (high Bronsted acidity) up to 4 wt % MoO[sub 3]. Beyond that, polymolybdate species and Lewis acidity predominate. The nature of the reduced molybdena phases is obviously affected by support composition. The HDN reaction of pyridine was utilized to assess the variation in activity and selectivity produced by the nature of the support.

  15. Active site directed irreversible inactivation of brewers' yeast pyruvate decarboxylase by the conjugated substrate analogue (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid: development of a suicide substrate.

    PubMed

    Kuo, D J; Jordan, F

    1983-08-02

    (E)-4-(4-Chlorophenyl)-2-oxo-3-butenoic acid (CPB) was found to irreversibly inactivate brewers' yeast pyruvate decarboxylase (PDC, EC 4.1.1.1) in a biphasic, sigmoidal manner, as is found for the kinetic behavior of substrate. An expression was derived for two-site irreversible inhibition of allosteric enzymes, and the kinetic behavior of CPB fit the expression for two-site binding. The calculated Ki's of 0.7 mM and 0.3 mM for CPB were assigned to the catalytic site and the regulatory site, respectively. The presence of pyruvic acid at high concentrations protected PDC from inactivation, whereas low concentrations of pyruvic acid accelerated inactivation by CPB. Pyruvamide, a known allosteric activator of PDC, was found to enhance inactivation by CPB. The results can be explained if pyruvamide binds only to a regulatory site, but CPB and pyruvic acid compete for both the regulatory and the catalytic centers. [1-14C]CPB was found to lose 14CO2 concurrently with the inactivation of the enzyme. Therefore, CPB was being turned over by PDC, in addition to inactivating it. CPB can be labeled a suicide-type inactivator for PDC.

  16. Site-specific protonation kinetics of acidic side chains in proteins determined by pH-dependent carboxyl (13)C NMR relaxation.

    PubMed

    Wallerstein, Johan; Weininger, Ulrich; Khan, M Ashhar I; Linse, Sara; Akke, Mikael

    2015-03-04

    Proton-transfer dynamics plays a critical role in many biochemical processes, such as proton pumping across membranes and enzyme catalysis. The large majority of enzymes utilize acid-base catalysis and proton-transfer mechanisms, where the rates of proton transfer can be rate limiting for the overall reaction. However, measurement of proton-exchange kinetics for individual side-chain carboxyl groups in proteins has been achieved in only a handful of cases, which typically have involved comparative analysis of mutant proteins in the context of reaction network modeling. Here we describe an approach to determine site-specific protonation and deprotonation rate constants (kon and koff, respectively) of carboxyl side chains, based on (13)C NMR relaxation measurements as a function of pH. We validated the method using an extensively studied model system, the B1 domain of protein G, for which we measured rate constants koff in the range (0.1-3) × 10(6) s(-1) and kon in the range (0.6-300) × 10(9) M(-1) s(-1), which correspond to acid-base equilibrium dissociation constants (Ka) in excellent agreement with previous results determined by chemical shift titrations. Our results further reveal a linear free-energy relationship between log kon and pKa, which provides information on the free-energy landscape of the protonation reaction, showing that the variability among residues in these parameters arises primarily from the extent of charge stabilization of the deprotonated state by the protein environment. We find that side-chain carboxyls with extreme values of koff or kon are involved in hydrogen bonding, thus providing a mechanistic explanation for the observed stabilization of the protonated or deprotonated state.

  17. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species.

    PubMed

    Rivera Casado, Noemí Araceli; Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio; Calva Calva, Graciano

    2015-01-01

    The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process.

  18. The Fatty Acid Profile Analysis of Cyperus laxus Used for Phytoremediation of Soils from Aged Oil Spill-Impacted Sites Revealed That This Is a C18:3 Plant Species

    PubMed Central

    Montes Horcasitas, María del Carmen; Rodríguez Vázquez, Refugio; Esparza García, Fernando José; Pérez Vargas, Josefina; Ariza Castolo, Armando; Ferrera-Cerrato, Ronald; Gómez Guzmán, Octavio

    2015-01-01

    The effect of recalcitrant hydrocarbons on the fatty acid profile from leaf, basal corm, and roots of Cyperus laxus plants cultivated in greenhouse phytoremediation systems of soils from aged oil spill-impacted sites containing from 16 to 340 g/Kg total hydrocarbons (THC) was assessed to investigate if this is a C18:3 species and if the hydrocarbon removal during the phytoremediation process has a relationship with the fatty acid profile of this plant. The fatty acid profile was specific to each vegetative organ and was strongly affected by the hydrocarbons level in the impacted sites. Leaf extracts of plants from uncontaminated soil produced palmitic acid (C16), octadecanoic acid (C18:0), unsaturated oleic acids (C18:1-C18:3), and unsaturated eichosanoic (C20:2-C20:3) acids with a noticeable absence of the unsaturated hexadecatrienoic acid (C16:3); this finding demonstrates, for the first time, that C. laxus is a C18:3 plant. In plants from the phytoremediation systems, the total fatty acid contents in the leaf and the corm were negatively affected by the hydrocarbons presence; however, the effect was positive in root. Interestingly, under contaminated conditions, unusual fatty acids such as odd numbered carbons (C15, C17, C21, and C23) and uncommon unsaturated chains (C20:3n6 and C20:4) were produced together with a remarkable quantity of C22:2 and C24:0 chains in the corm and the leaf. These results demonstrate that weathered hydrocarbons may drastically affect the lipidic composition of C. laxus at the fatty acid level, suggesting that this species adjusts the cover lipid composition in its vegetative organs, mainly in roots, in response to the weathered hydrocarbon presence and uptake during the phytoremediation process. PMID:26473488

  19. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation.

  20. A periodic DFT study of ammonia adsorption on the V2O5 (001), V2O5 (010) and V2O5 (100) surfaces: Lewis versus Brönsted acid sites

    NASA Astrophysics Data System (ADS)

    Yao, Huichao; Chen, Yu; Wei, Yuechang; Zhao, Zhen; Liu, Zhichang; Xu, Chunming

    2012-11-01

    The adsorption of ammonia at Brönsted and Lewis acid sites on three low-index (001), (010) and (100) surfaces of V2O5 catalyst was investigated using density functional theory (DFT) method. Three levels of surface relaxation periodic models including top single layer relaxation (S-model), moderately deeper relaxation (M-model) and full relaxation model (F-model) were applied to examine the effect of the surface relaxation on the binding structures and adsorption energies. The results of calculations showed that on the saturated basal plane V2O5 (001), ammonia adsorption at the Brönsted acid sites (VOH) is energetically more favorable. On unsaturated (010) and (100) surfaces, ammonia is adsorbed strongly on both Brönsted (VOH) and Lewis acid sites (V). Surface relaxations have no influence on ammonia adsorption on saturated (001) surface, while a strong dependence on the relaxation models is observed for NH3-adsorption energies on (010) and (100) surfaces, especially at the Lewis acid sites of both side planes. When complete relaxation considered (F-model), ammonia adsorption on the Lewis acid sites (V) dominates for side planes (010) and (100). In the presence of VOH as neighbor, the ammonia adsorption at V sites is however weakened significantly due to steric hindrance. Hydrogen bonds may play a role, although not determining one, in the respect of the adsorption of ammonia on (010) and (100) surfaces. Moderate relaxation and full relaxation are absolutely necessary for the description of both H and NH3 adsorption on unsaturated (100) and (010) surfaces, respectively.

  1. Acidic pH-induced membrane insertion of colicin A into E. coli natural lipids probed by site-directed spin labeling.

    PubMed

    Pulagam, Lakshmi Padmavathi; Steinhoff, Heinz-Jürgen

    2013-05-27

    Colicin A is a pore-forming toxin that forms a voltage-gated channel in the inner membrane of the target bacteria. The structures of the closed and open channel states of membrane-bound colicin A are not resolved. In the present site-directed spin-labeling study, the insertion-competent state of colicin A is provoked by an acidic pH jump prior to the insertion into liposomes prepared from Escherichia coli natural lipids. The membrane-bound colicin A is able to open a voltage-dependent channel as demonstrated by the efflux of tempophosphate spin label from the lumen of liposomes. The EPR spectra of spin-labeled colicin A variants in the membrane-bound closed channel state reveal a conformational equilibrium with resolved interhelical tertiary contacts. The spin label accessibility and polarity profiles suggest the amphipathic helices (H1-H7 and H10) to be located in the membrane close to the membrane-water interface and the hydrophobic hairpin (H8 and H9) to be immersed more deeply in the membrane.

  2. Transport and release of transition elements during early diagenesis: Sequential leaching of sediments from MANOP Sites M and H. Part I. pH 5 acetic acid leach

    NASA Astrophysics Data System (ADS)

    Lyle, Mitchell; Heath, G. Ross; Robbins, James M.

    1984-09-01

    Sediments from MANOP sites M and H in the eastern tropical Pacific Ocean can be partitioned into operationally defined phases by means of a sequential leach procedure. This paper reports the results of the first leach in the sequence, an acetic acid solution buffered as p H 5 with sodium acetate. This leach is designed to remove carbonate-bound and sorbed cations. The only cation bound in a consistent ratio to calcium in the carbonate is strontium. The molar ratio is 2 × 10 -3. In contrast, transition metals are sorbed onto the surfaces of other sedimentary particles. The proportions sorbed range from 2 to 10% of the total manganese, about 10% of the total nickel and copper, and less than 1% of the total iron. The pool of sorbed metals in surface sediments is sufficiently large and the rate of biological stirring is sufficiently rapid for this metal reservoir potentially to dominate the porewater reservoir in supplying metals to ferromanganese nodules. A simple model for nodule growth based upon transfer of metals through this reservoir suggests that only 1% of the sedimentary sorbed metals within a radius of 2 to 9 cm is required to support typical nodule growth rates.

  3. Optical investigation of the intergrowth structure and accessibility of Brønsted acid sites in etched SSZ-13 zeolite crystals by confocal fluorescence microscopy.

    PubMed

    Sommer, Linn; Svelle, Stian; Lillerud, Karl Petter; Stöcker, Michael; Weckhuysen, Bert M; Olsbye, Unni

    2010-11-02

    Template decomposition followed by confocal fluorescence microscopy reveals a tetragonal-pyramidal intergrowth of subunits in micrometer-sized nearly cubic SSZ-13 zeolite crystals. In order to accentuate intergrowth boundaries and defect-rich areas within the individual large zeolite crystals, a treatment with an etching NaOH solution is applied. The defective areas are visualized by monitoring the spatial distribution of fluorescent tracer molecules within the individual SSZ-13 crystals by confocal fluorescence microscopy. These fluorescent tracer molecules are formed at the inner and outer crystal surfaces by utilizing the catalytic activity of the zeolite in the oligomerization reaction of styrene derivatives. This approach reveals various types of etching patterns that are an indication for the defectiveness of the studied crystals. We can show that specially one type of crystals, denoted as core-shell type, is highly accessible to the styrene molecules after etching. Despite the large crystal dimensions, the whole core-shell type SSZ-13 crystal is utilized for catalytic reaction. Furthermore, the confocal fluorescence microscopy measurements indicate a nonuniform distribution of the catalytically important Brønsted acid sites underlining the importance of space-resolved measurements.

  4. Analysis of an invariant cofactor-protein interaction in thiamin diphosphate-dependent enzymes by site-directed mutagenesis. Glutamic acid 418 in transketolase is essential for catalysis.

    PubMed

    Wikner, C; Meshalkina, L; Nilsson, U; Nikkola, M; Lindqvist, Y; Sundström, M; Schneider, G

    1994-12-23

    A homologous expression system and a purification protocol for pure, highly active recombinant yeast transketolase have been developed. The invariant transketolase residue Glu418, which forms a hydrogen bond to the N-1' nitrogen atom of the pyrimidine ring of the cofactor thiamin diphosphate has been replaced by glutamine and alanine. Crystallographic analyses of the mutants show that these amino acid substitutions do not induce structural changes beyond the site of mutation. In both cases, the cofactor binds in a manner identical to the wild-type enzyme. Significant differences in the CD spectra of the mutant transketolases compared with the spectrum of wild-type enzyme indicate differences in the electron distribution of the aminopyrimidine ring of the cofactor. The E418Q mutant shows 2% and the E418A mutant shows about 0.1% of the catalytic activity of wild-type enzyme. The affinities of the mutant enzymes for thiamin diphosphate are comparable with wild-type transketolase. The hydrogen bond between the coenzyme and the side chain of Glu418 is thus not required for coenzyme binding but essential for catalytic activity. The results demonstrate the functional importance of this interaction and support the molecular model for cofactor deprotonation, the first step in enzymatic thiamin catalysis.

  5. Inhibition of fatty-acid amide hydrolase enhances cannabinoid stress-induced analgesia: sites of action in the dorsolateral periaqueductal gray and rostral ventromedial medulla.

    PubMed

    Suplita, Richard L; Farthing, Jesse N; Gutierrez, Tannia; Hohmann, Andrea G

    2005-12-01

    Recent research in our laboratory has demonstrated that stress activates an endogenous cannabinoid mechanism that suppresses sensitivity to pain [Nature 435 (2005) 1108]. In this work, CB(1) antagonists administered systemically blocked stress-induced analgesia induced by brief, continuous foot-shock. The present studies were conducted to examine the role of cannabinoid CB(1) receptors in the brainstem rostral ventromedial medulla (RVM) and midbrain dorsolateral periaqueductal gray (PAG) in cannabinoid stress-induced analgesia (SIA). Pharmacological blockade of vanilloid TRPV1 receptors with capsazepine, administered systemically, did not alter cannabinoid SIA, suggesting that cannabinoid SIA was not dependent upon TRPV1. Microinjection of the competitive CB(1) antagonist rimonabant (SR141716A) into either the RVM or dorsolateral PAG suppressed stress antinociception in this model. Rimonabant was maximally effective following microinjection into the dorsolateral PAG. The fatty-acid amide hydrolase (FAAH) inhibitor arachidonoyl serotonin (AA-5-HT) was subsequently used to block hydrolysis of endocannabinoids and enhance SIA. Systemic and site-specific injections of AA-5-HT into either the dorsolateral PAG or RVM induced CB(1)-mediated enhancements of SIA. Palmitoyltrifluoromethylketone, a potent inhibitor of FAAH and phospholipase A2 activity, administered systemically, exerted similar effects. In all conditions, the antinociceptive effects of each FAAH inhibitor were completely blocked by coadministration of the CB(1) antagonist rimonabant. The present results provide evidence that a descending cannabinergic neural system is activated by environmental stressors to modulate pain sensitivity in a CB(1)-dependent manner.

  6. Acid-site characterization of water-oxidized alumina films by near-edge x-ray absorption and soft x-ray photoemission

    SciTech Connect

    O`Hagan, P.J.; Merrill, R.P.; Rhodin, T.N.; Woronick, S.W.; Shinn, N.D.; Woolery, G.L.; Chester, A.W.

    1994-12-01

    Hydroxylated alumina films have been synthesized by water oxidation of single crystal Al(110) surfaces. Thermal dehydroxylation results in anion vacancies which produce an Al(3s) defect state 3.5 eV below the conduction band edge. A maximum in the defect-DOS occurs for oxides heated to 350 to 400C, which is where the materials exhibit maximum Lewis acidity with respect to C{sub 2}H{sub 4}. Adsorbed C{sub 2}H{sub 4} produces thermally active C{sub 2} species which interact covalently with the defect-DOS and nonbonding O(2p) from the top of the valence band. C(1s) binding energies suggest significant charge transfer which is consistent with a carbenium ion. Ni evaporated onto the surface, however, transfers charge directly to Al species and does not interact with O atoms at the defect site. The defect-DOS is regenerated when the C{sub 2} species decomposes or when Ni migrates thermally through the oxide layer.

  7. Ground-water quality, water year 1995, and statistical analysis of ground-water-quality data, water years 1994-95, at the Chromic Acid Pit site, US Army Air Defense Artillery Center and Fort Bliss, El Paso, Texas

    USGS Publications Warehouse

    Abeyta, Cynthia G.; Roybal, R.G.

    1996-01-01

    The Chromic Acid Pit site is an inactive waste disposal site that is regulated by the Resource Conservation and Recovery Act of 1976. The 2.2-cubic-yard cement-lined pit was operated from 1980 to 1983 by a contractor to the U.S. Army Air Defense Artillery Center and Fort Bliss. The pit, located on the Fort Bliss military reservation in El Paso, Texas, was used for disposal and evaporation of chromic acid waste generated from chrome plating operations. The site was closed in 1989, and the Texas Natural Resources Conservation Commission issued permit number HW-50296 (U.S. Environmental Protection Agency number TX4213720101), which approved and implemented post-closure care for the Chromic Acid Pit site. In accordance with an approved post-closure plan, the U.S. Geological Survey is cooperating with the U.S. Army in monitoring and evaluating ground-water quality at the site. One upgradient ground-water monitoring well (MW1) and two downgradient ground-water monitoring wells (MW2 and MW3), installed adjacent to the chromic acid pit, are monitored on a quarterly basis. Ground-water sampling of these wells by the U.S. Geological Survey began in December 1993. The ground-water level, measured in a production well located approximately 1,700 feet southeast of the Chromic Acid Pit site, has declined about 29.43 feet from 1982 to 1995. Depth to water at the Chromic Acid Pit site in September 1995 was 284.2 to 286.5 feet below land surface; ground-water flow at the water table is assumed to be toward the southeast. Ground-water samples collected from monitoring wells at the Chromic Acid Pit site during water year 1995 contained dissolved- solids concentrations of 481 to 516 milligrams per liter. Total chromium concentrations detected above the laboratory reporting limit ranged from 0.0061 to 0.030 milligram per liter; dissolved chromium concentrations ranged from 0.0040 to 0.010 milligram per liter. Nitrate as nitrogen concentrations ranged from 2.1 to 2.8 milligrams per

  8. Acid Rain

    MedlinePlus

    ... EPA Is Doing Acid Rain Program Cross-State Air Pollution Rule Progress Reports Educational Resources Kid's Site for ... Monitoring National Atmospheric Deposition Program (NADP) Exit Interstate Air Pollution Transport Contact Us to ask a question, provide ...

  9. Protons and Psalmotoxin-1 reveal nonproton ligand stimulatory sites in chicken acid-sensing ion channel: Implication for simultaneous modulation in ASICs.

    PubMed

    Smith, Rachel N; Gonzales, Eric B

    2014-01-01

    Acid-sensing ion channels (ASICs) are proton-sensitive, sodium-selective channels expressed in the nervous system that sense changes in extracellular pH. These ion channels are sensitive to an increasing number of nonproton ligands that include natural venom peptides and guanidine compounds. In the case of chicken ASIC1, the spider toxin Psalmotoxin-1 (PcTx1) activates the channel, resulting in an inward current. Furthermore, a growing class of ligands containing a guanidine group has been identified that stimulate peripheral ASICs (ASIC3), but exert subtle influence on other ASIC subtypes. The effects of the guanidine compounds on cASIC1 have not been the focus of previous study. Here, we investigated the interaction of the guanidine compound 2-guanidine-4-methylquinazoline (GMQ) on cASIC1 proton activation and PcTx1 stimulation. Exposure of expressed cASIC1 to PcTx1 resulted in biphasic currents consisting of a transient peak followed by an irreversible cASIC1 PcTx1 persistent current. This cASIC1 PcTx1 persistent current may be the result of locking the cASIC1 protein into a desensitized transition state. The guanidine compound GMQ increased the apparent affinity of protons on cASIC1 and decreased the half-maximal constant of the cASIC1 steady-state desensitization profile. Furthermore, GMQ stimulated the cASIC1 PcTx1 persistent current in a concentration-dependent manner, which resulted in a non-desensitizing inward current. Our data suggests that GMQ may have multiple sites within cASIC1 and may act as a "molecular wedge" that forces the PcTx1-desensitized ASIC into an open state. Our findings indicate that guanidine compounds, such as GMQ, may alter acid-sensing ion channel activity in combination with other stimuli, and that additional ASIC subtypes (along with ASIC3) may serve to sense and mediate signals from multiple stimuli.

  10. Isotopic Systematics (U, nitrate and Sr) of the F-Area Acidic Contamination Plume at the Savannah River Site: Clues to Contaminant History and Mobility

    NASA Astrophysics Data System (ADS)

    Christensen, J. N.; Conrad, M. E.; Bill, M.; Denham, M.; Wan, J.; Rakshit, S.; Stringfellow, W. T.; Spycher, N.

    2010-12-01

    Seepage basins in the F-Area of the Savannah River Site were used from 1955 to 1989 for the disposal of low-level radioactive acidic (ave. pH ˜2.9) waste solutions from site operations involving irradiated uranium billets and other materials used in the production of radionuclides. These disposal activities resulted in a persistent acidic groundwater plume (pH as low as 3.2) beneath the F-Area including contaminants such as tritium, nitrate, 90Sr, 129I and uranium and that has impinged on surface water (Four Mile Branch) about 600 m from the basins. After cessation of disposal in 1989, the basins were capped in 1991. Since that time, remediation has consisted of a pump-and-treat system that has recently been replaced with in situ treatment using a funnel-and-gate system with injection of alkaline solutions in the gates to neutralize pH. In order to delineate the history of contamination and the current mobility and fate of contaminants in F-Area groundwater, we have undertaken a study of variations in the isotopic compositions of U (234U/238U, 235U/238U, 236U/238U), Sr (87Sr/86Sr) and nitrate (δ15N, δ18O) within the contaminant plume. This data can be used to trace U transport within the plume, evaluate chemical changes of nitrate, and potentially track plume/sediment chemical interaction and trace the migration of 90Sr. We have analyzed a suite of groundwater samples from monitoring wells, as well as pore-water samples extracted from aquifer sediment cores to map out the isotopic variation within the plume. The isotopic compositions of U from well samples and porewater samples are all consistent with the variable burn-up of depleted U. The variation in U isotopic composition requires at least three different endmembers, without any significant influence of background natural U. The δ15N and δ18O of nitrate from F-Area plume groundwater are distinct both from natural and unaltered synthetic nitrate, and likely represents fractionation due to waste volume

  11. Minodronic acid induces morphological changes in osteoclasts at bone resorption sites and reaches a level required for antagonism of purinergic P2X2/3 receptors.

    PubMed

    Tanaka, Makoto; Hosoya, Akihiro; Mori, Hiroshi; Kayasuga, Ryoji; Nakamura, Hiroaki; Ozawa, Hidehiro

    2017-02-27

    Minodronic acid is an aminobisphosphonate that is an antagonist of purinergic P2X2/3 receptors involved in pain. The aim of this study was to investigate the action and distribution of minodronic acid and the potential for P2X2/3 receptor antagonism based on the estimated concentration of minodronic acid. Microlocalization of radiolabeled minodronic acid was examined in the femur of neonatal rats. The bone-binding characteristics of minodronic acid and morphological changes in osteoclasts were analyzed in vitro. The minodronic acid concentration around bone resorption lacunae was predicted based on bone binding and the shape of lacunae. In microautoradiography, radioactive silver grains were abundant in bone-attached osteoclasts and were detected in calcified and ossification zones and in the cytoplasm of osteoclasts but not in the hypertrophic cartilage zone. In an osteoclast culture with 1 µM minodronic acid, 65% of minodronic acid was bound to bone, and C-terminal cross-linking telopeptide release was inhibited by 96%. Cultured osteoclasts without minodronic acid treatment formed ruffled borders and bone resorption lacunae and had rich cytoplasm, whereas those treated with 1 µM minodronic acid were not multinucleated, stained densely with toluidine blue, and were detached from the bone surface. In the 1 µM culture, the estimated minodronic acid concentration in resorption lacunae was 880 µM, which is higher than the IC50 for minodronic acid antagonism of P2X2/3 receptors. Thus, inhibition of P2X2/3 receptors around osteoclasts may contribute to the analgesic effect of minodronic acid.

  12. Conjugate Acid-Base Pairs, Free Energy, and the Equilibrium Constant

    ERIC Educational Resources Information Center

    Beach, Darrell H.

    1969-01-01

    Describes a method of calculating the equilibrium constant from free energy data. Values of the equilibrium constants of six Bronsted-Lowry reactions calculated by the author's method and by a conventional textbook method are compared. (LC)

  13. PHOTOCHEMICAL ALTERATION OF DISSOLVED ORGANIC MATTER: EFFECTS ON THE CONCENTRATION AND ACIDITIES OF IONIZABLE SITES IN DISSOLVED ORGANIC MATTER IN THE SATILLA RIVER OF GEORGIA, USA

    EPA Science Inventory

    The acid-base properties of humic substances, the major component of dissolved organic matter (DOM), area major control on the alkalinity, or acid neutralizing capacity of freshwater systems. Alkalinity is one of the fundamental parameters measured in aquatic sciences, and is an ...

  14. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    SciTech Connect

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  15. Identification and characterization of the soybean IPK1 ortholog of a low phytic acid mutant reveals an exon-excluding splice-site mutation.

    PubMed

    Yuan, Feng-Jie; Zhu, Dan-Hua; Tan, Yuan-Yuan; Dong, De-Kun; Fu, Xu-Jun; Zhu, Shen-Long; Li, Bai-Quan; Shu, Qing-Yao

    2012-11-01

    Phytic acid (myo-inositol 1, 2, 3, 4, 5, 6 hexakisphosphate) is an important constituent of soybean meal. Since phytic acid and its mineral salts (phytates) are almost indigestible for monogastrics, their abundance in grain food/feed causes nutritional and environmental problems; interest in breeding low phytic acid has therefore increased considerably. Based on gene mapping and the characteristics of inositol polyphosphates profile in the seeds of a soybean mutant line Gm-lpa-ZC-2, the soybean ortholog of inositol 1,3,4,5,6 pentakisphosphate (InsP(5)) 2-kinase (IPK1), which transforms InsP(5) into phytic acid, was first hypothesized as the candidate gene responsible for the low phytic acid alteration in Gm-lpa-ZC-2. One IPK1 ortholog (Glyma14g07880, GmIPK1) was then identified in the mapped region on chromosome 14. Sequencing revealed a G → A point mutation in the genomic DNA sequence and the exclusion of the entire fifth exon in the cDNA sequence of GmIPK1 in Gm-lpa-ZC-2 compared with its wild-type progenitor Zhechun No. 3. The excluded exon encodes 37 amino acids that spread across two conserved IPK1 motifs. Furthermore, complete co-segregation of low phytic acid phenotype with the G → A mutation was observed in the F(2) population of ZC-lpa x Zhexiandou No. 4 (a wild-type cultivar). Put together, the G → A point mutation affected the pre-mRNA splicing and resulted in the exclusion of the fifth exon of GmIPK1 which is expected to disrupt the GmIPK1 functionality, leading to low phytic acid level in Gm-lpa-ZC-2. Gm-lpa-ZC-2, would be a good germplasm source in low phytic acid soybean breeding.

  16. Using in situ GC-MS for analysis of C2-C7 volatile organic acids in ambient air of a boreal forest site

    NASA Astrophysics Data System (ADS)

    Hellén, Heidi; Schallhart, Simon; Praplan, Arnaud P.; Petäjä, Tuukka; Hakola, Hannele

    2017-01-01

    An in situ method for studying gas-phase C2-C7 monocarboxylic volatile organic acids (VOAs) in ambient air was developed and evaluated. Samples were collected directly into the cold trap of the thermal desorption unit (TD) and analysed in situ using a gas chromatograph (GC) coupled to a mass spectrometer (MS). A polyethylene glycol column was used for separating the acids. The method was validated in the laboratory and tested on the ambient air of a boreal forest in June 2015. Recoveries of VOAs from fluorinated ethylene propylene (FEP) and heated stainless steel inlets ranged from 83 to 123 %. Different VOAs were fully desorbed from the cold trap and well separated in the chromatograms. Detection limits varied between 1 and 130 pptv and total uncertainty of the method at mean ambient mixing ratios was between 16 and 76 %. All straight chain VOAs except heptanoic acid in the ambient air measurements were found with mixing ratios above the detection limits. The highest mixing ratios were found for acetic acid and the highest relative variations for hexanoic acid. In addition, mixing ratios of acetic and propanoic acids measured by the novel GC-MS method were compared with proton-mass-transfer time-of-flight mass spectrometer (PTR-TOFMS) data. Both instruments showed similar variations, but differences in the mixing ratio levels were significant.

  17. Positive and Negative Allosteric Modulation of an α1β3γ2 γ-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the γ+-β− Interface*

    PubMed Central

    Jayakar, Selwyn S.; Zhou, Xiaojuan; Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma; Bruzik, Karol S.; Miller, Keith W.; Cohen, Jonathan B.

    2015-01-01

    In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+-β− subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+-α− subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+-β− site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators. PMID:26229099

  18. Surface structure of crystalline and amorphous chromia catalysts for the selective catalytic reduction of nitric oxide. 3. Diffuse reflectance FTIR study of ammonia desorption from Broensted and Lewis acid sites

    SciTech Connect

    Schraml-Marth, M.; Wokaun, A. ); Curry-Hyde, H.E.; Baiker, A. )

    1992-02-01

    Two types of NH{sub 3} molecules bound to Broensted acidic sites on the surface of the chromia catalysts, as well as two species bound to Lewis sites, are identified from the IR spectra. The oxidized surface of {alpha}-Cr{sub 2}O{sub 3} is characterized by a high surface coverage of strongly Lewis-bound ammonia molecules, which desorb at temperatures above 400 K. In contrast, weakly bound NH{sub 3} prevails on the oxidized surface of amorphous chromia. The desorption of the latter species starts at 380 K and is completed around 480 K. A reductive pretreatment of the chromia surfaces by hydrogen (10% in Ar) decreases the number of surface hydroxyl groups and devoids the surface of adsorbed oxygen., As a consequence, the number of Broensted acidic sites is reduced both on the crystalline and the amorphous catalyst. On the reduced surface of {alpha}-Cr{sub 2}O{sub 3}, strongly bound ammonia coordinated to Lewis acidic sites is observed to persist to temperatures beyond 560 K. In contrast, weakly Lewis-bound NH{sub 3} prevails on reduced amorphous chromia, which is quantitatively desorbed at temperatures below 410 K. The formation of NH{sub 3} oxidation products on {alpha}-Cr{sub 2}O{sub 3} is manifested by the observation of two characteristic surface species, an N{sub 2}O{sub 2} dimer and an NO{sub 2} chelate surface complex. Corresponding signals are not observed on the surface of amorphous chromia.

  19. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    PubMed

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  20. Dissociative attachment reactions of electrons with strong acid molecules

    SciTech Connect

    Adams, N.G.; Smith, D.; Viggiano, A.A.; Paulson, J.F.; Henchman, M.J.

    1986-06-15

    Using the flowing afterglow/Langmuir probe (FALP) technique, we have determined (at variously 300 and 570 K) the dissociative attachment coefficients ..beta.. for the reactions of electrons with the common acids HNO/sub 3/ (producing NO/sup -//sub 2/) and H/sub 2/SO/sub 4/ (HSO/sup -//sub 4/), the superacids FSO/sub 3/H (FSO/sup -//sub 3/), CF/sub 3/SO/sub 3/H (CF/sub 3/SO/sup -//sub 3/), ClSO/sub 3/H (ClSO/sup -//sub 3/,Cl/sup -/), the acid anhydride (CF/sub 3/SO/sub 2/)/sub 2/O (CF/sub 3/SO/sup -//sub 3/), and the halogen halides HBr (Br/sup -/) and HI (I/sup -/). The anions formed in the reactions are those given in the parentheses. The reactions with HF and HCl were investigated, but did not occur at a measurable rate since they are very endothermic. Dissociative attachment is rapid for the common acids, the superacids, and the anhydride, the measured ..beta.. being appreciable fractions of the theoretical maximum ..beta.. for such reactions, ..beta../sub max/. The HI reaction is very fast ( ..beta..approx...beta../sub max/) but the HBr reaction occurs much more slowly because it is significantly endothermic. The data indicate that the extreme acidity of the (Bronsted-type) superacids has its equivalence in the very efficient gas-phase dissociative attachment which these species undergo when reacting with free electrons. The anions of the superacids generated in these reactions, notably FSO/sup -//sub 3/ and CF/sub 3/SO/sup -//sub 3/, are very stable (unreactive) implying exceptionally large electron affinities for the FSO/sub 3/ and CF/sub 3/SO/sub 3/ radicals.

  1. Site-Directed Mutagenesis and Structural Studies Suggest that the Germination Protease, GPR, in Spores of Bacillus Species Is an Atypical Aspartic Acid Protease

    PubMed Central

    Carroll, Thomas M.; Setlow, Peter

    2005-01-01

    Germination protease (GPR) initiates the degradation of small, acid-soluble spore proteins (SASP) during germination of spores of Bacillus and Clostridium species. The GPR amino acid sequence is not homologous to members of the major protease families, and previous work has not identified residues involved in GPR catalysis. The current work has focused on identifying catalytically essential amino acids by mutagenesis of Bacillus megaterium gpr. A residue was selected for alteration if it (i) was conserved among spore-forming bacteria, (ii) was a potential nucleophile, and (iii) had not been ruled out as inessential for catalysis. GPR variants were overexpressed in Escherichia coli, and the active form (P41) was assayed for activity against SASP and the zymogen form (P46) was assayed for the ability to autoprocess to P41. Variants inactive against SASP and unable to autoprocess were analyzed by circular dichroism spectroscopy and multiangle laser light scattering to determine whether the variant's inactivity was due to loss of secondary or quaternary structure, respectively. Variation of D127 and D193, but no other residues, resulted in inactive P46 and P41, while variants of each form were well structured and tetrameric, suggesting that D127 and D193 are essential for activity and autoprocessing. Mapping these two aspartate residues and a highly conserved lysine onto the B. megaterium P46 crystal structure revealed a striking similarity to the catalytic residues and propeptide lysine of aspartic acid proteases. These data indicate that GPR is an atypical aspartic acid protease. PMID:16199582

  2. Piracetam Defines a New Binding Site for Allosteric Modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors§

    PubMed Central

    Ahmed, Ahmed H.; Oswald, Robert E.

    2010-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115

  3. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    PubMed

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  4. PM2.5 acidity at a background site in the Pearl River Delta region in fall-winter of 2007-2012.

    PubMed

    Fu, Xiaoxin; Guo, Hai; Wang, Xinming; Ding, Xiang; He, Quanfu; Liu, Tengyu; Zhang, Zhou

    2015-04-09

    Based on field observations and thermodynamic model simulation, the annual trend of PM2.5 acidity and its characteristics on non-hazy and hazy days in fall-winter of 2007-2012 in the Pearl River Delta region were investigated. Total acidity ([H(+)](total)) and in-situ acidity ([H(+)](in-situ)) of PM2.5 significantly decreased (F-test, p < 0.05) at a rate of -32 ± 1.5 nmol m(-3)year(-1) and -9 ± 1.7 nmol m(-3) year(-1), respectively. The variation of acidity was mainly caused by the change of the PM2.5 component, i.e., the decreasing rates of [H(+)](total) and [H(+)](in-situ) due to the decrease of sulfate (SO4(2-)) exceeded the increasing rate caused by the growth of nitrate (NO3(-)). [H(+)](total), [H(+)](in-situ) and liquid water content on hazy days were 0.9-2.2, 1.2-3.5 and 2.0-3.0 times those on non-hazy days, respectively. On hazy days, the concentration of organic matter (OM) showed significant enhancement when [H(+)](in-situ) increased (t-test, p < 0.05), while this was not observed on non-hazy days. Moreover, when the acidity was low (i.e., R = [NH4(+)]/(2 × [SO4(2-)]+[NO3(-)])>0.6), NH4NO3 was most likely formed via homogenous reaction. When the acidity was high (R ≤ 0.6), the gas-phase formation of NH4NO3 was inhibited, and the proportion of NO3(-) produced via heterogeneous reaction of N2O5 became significant.

  5. Amino Acids in Hemagglutinin Antigenic Site B Determine Antigenic and Receptor Binding Differences between A(H3N2)v and Ancestral Seasonal H3N2 Influenza Viruses.

    PubMed

    Wang, Xiaoquan; Ilyushina, Natalia A; Lugovtsev, Vladimir Y; Bovin, Nicolai V; Couzens, Laura K; Gao, Jin; Donnelly, Raymond P; Eichelberger, Maryna C; Wan, Hongquan

    2017-01-15

    Influenza A H3N2 variant [A(H3N2)v] viruses, which have caused human infections in the United States in recent years, originated from human seasonal H3N2 viruses that were introduced into North American swine in the mid-1990s, but they are antigenically distinct from both the ancestral and current circulating H3N2 strains. A reference A(H3N2)v virus, A/Minnesota/11/2010 (MN/10), and a seasonal H3N2 strain, A/Beijing/32/1992 (BJ/92), were chosen to determine the molecular basis for the antigenic difference between A(H3N2)v and the ancestral viruses. Viruses containing wild-type and mutant MN/10 or BJ/92 hemagglutinins (HAs) were constructed and probed for reactivity with ferret antisera against MN/10 and BJ/92 in hemagglutination inhibition assays. Among the amino acids that differ between the MN/10 and BJ/92 HAs, those in antigenic site A had little impact on the antigenic phenotype. Within antigenic site B, mutations at residues 156, 158, 189, and 193 of MN/10 HA to those in BJ/92 switched the MN/10 antigenic phenotype to that of BJ/92. Mutations at residues 156, 157, 158, 189, and 193 of BJ/92 HA to amino acids present in MN/10 were necessary for BJ/92 to become antigenically similar to MN/10. The HA amino acid substitutions responsible for switching the antigenic phenotype also impacted HA binding to sialyl receptors that are usually present in the human respiratory tract. Our study demonstrates that antigenic site B residues play a critical role in determining both the unique antigenic phenotype and receptor specificity of A(H3N2)v viruses, a finding that may facilitate future surveillance and risk assessment of novel influenza viruses.

  6. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    SciTech Connect

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  7. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.

    PubMed

    Battistuzzi, G; Dietrich, M; Löcke, R; Witzel, H

    1997-05-01

    The di-iron core of mammalian purple acid phosphatases has been reproduced in the plant enzyme from kidney bean (Mr 111000) upon insertion of an Fe(II) ion in place of the native zinc(II) in the dinuclear Fe(III)Zn(II) core. The shortening of the electronic relaxation time of the metal centre allows detection of hyperfine-shifted 1H NMR resonances, although severe broadening due to Curie relaxation prevents independent signal assignment. Nevertheless, comparison of the spectral features of the structurally characterized plant enzyme with those of the mammalian species, which were previously extensively assigned, is consistent with a close similarity of the metal-binding sites, also suggested by previous sequence-alignment studies. Some differences appear to be mainly localized at the M(II) site. Spectral comparison was also carried out on the Fe(III)Co(II) derivatives.

  8. Action at a distance: amino acid substitutions that affect binding of the phosphorylated CheY response regulator and catalysis of dephosphorylation can be far from the CheZ phosphatase active site.

    PubMed

    Freeman, Ashalla M; Mole, Beth M; Silversmith, Ruth E; Bourret, Robert B

    2011-09-01

    Two-component regulatory systems, in which phosphorylation controls the activity of a response regulator protein, provide signal transduction in bacteria. For example, the phosphorylated CheY response regulator (CheYp) controls swimming behavior. In Escherichia coli, the chemotaxis phosphatase CheZ stimulates the dephosphorylation of CheYp. CheYp apparently binds first to the C terminus of CheZ and then binds to the active site where dephosphorylation occurs. The phosphatase activity of the CheZ(2) dimer exhibits a positively cooperative dependence on CheYp concentration, apparently because the binding of the first CheYp to CheZ(2) is inhibited compared to the binding of the second CheYp. Thus, CheZ phosphatase activity is reduced at low CheYp concentrations. The CheZ21IT gain-of-function substitution, located far from either the CheZ active site or C-terminal CheY binding site, enhances CheYp binding and abolishes cooperativity. To further explore mechanisms regulating CheZ activity, we isolated 10 intragenic suppressor mutations of cheZ21IT that restored chemotaxis. The suppressor substitutions were located along the central portion of CheZ and were not allele specific. Five suppressor mutants tested biochemically diminished the binding of CheYp and/or the catalysis of dephosphorylation, even when the suppressor substitutions were distant from the active site. One suppressor mutant also restored cooperativity to CheZ21IT. Consideration of results from this and previous studies suggests that the binding of CheYp to the CheZ active site (not to the C terminus) is rate limiting and leads to cooperative phosphatase activity. Furthermore, amino acid substitutions distant from the active site can affect CheZ catalytic activity and CheYp binding, perhaps via the propagation of structural or dynamic perturbations through a helical bundle.

  9. Crystal structures of the apo form and a complex of human LMW-PTP with a phosphonic acid provide new evidence of a secondary site potentially related to the anchorage of natural substrates.

    PubMed

    Fonseca, Emanuella M B; Trivella, Daniela B B; Scorsato, Valéria; Dias, Mariana P; Bazzo, Natália L; Mandapati, Kishore R; de Oliveira, Fábio L; Ferreira-Halder, Carmen V; Pilli, Ronaldo A; Miranda, Paulo C M L; Aparicio, Ricardo

    2015-08-01

    Low molecular weight protein tyrosine phosphatases (LMW-PTP, EC 3.1.3.48) are a family of single-domain enzymes with molecular weight up to 18 kDa, expressed in different tissues and considered attractive pharmacological targets for cancer chemotherapy. Despite this, few LMW-PTP inhibitors have been described to date, and the structural information on LMW-PTP druggable binding sites is scarce. In this study, a small series of phosphonic acids were designed based on a new crystallographic structure of LMW-PTP complexed with benzylsulfonic acid, determined at 2.1Å. In silico docking was used as a tool to interpret the structural and enzyme kinetics data, as well as to design new analogs. From the synthesized series, two compounds were found to act as competitive inhibitors, with inhibition constants of 0.124 and 0.047 mM. We also report the 2.4Å structure of another complex in which LMW-PTP is bound to benzylphosphonic acid, and a structure of apo LMW-PTP determined at 2.3Å resolution. Although no appreciable conformation changes were observed, in the latter structures, amino acid residues from an expression tag were found bound to a hydrophobic region at the protein surface. This regions is neighbored by positively charged residues, adjacent to the active site pocket, suggesting that this region might be not a mere artefact of crystal contacts but an indication of a possible anchoring region for the natural substrate-which is a phosphorylated protein.

  10. The effects of para-chloromercuribenzoic acid and different oxidative and sulfhydryl agents on a novel, non-AT1, non-AT2 angiotensin binding site identified as neurolysin

    PubMed Central

    Santos, Kira L.; Vento, Megan A; Wright, John W.; Speth, Robert C.

    2013-01-01

    A novel, non-AT1, non-AT2 brain binding site for angiotensin peptides that is unmasked by p-chloromercuribenzoate (PCMB) has been identified as a membrane associated variant of neurolysin. The ability of different organic and inorganic oxidative and sulfhydryl reactive agents to unmask or inhibit 125I-Sar1Ile8 angiotensin II (SI-Ang II) binding to this site was presently examined. In tissue membranes from homogenates of rat brain and testis incubated in assay buffer containing losartan (10 μM) and PD123319 (10 μM) plus 100 μM PCMB, 5 of the 39 compounds tested inhibited 125I-SI Ang II binding in brain and testis. Mersalyl acid, mercuric chloride (HgCl2) and silver nitrate (AgNO3) most potently inhibited 125I-SI Ang II binding with IC50’s ~1–20 μM This HgCl2 inhibition was independent of any interaction of HgCl2 with angiotensin II (Ang II) based on the lack of effect of HgCl2 on the dipsogenic effects of intracerebroventricularly administered Ang II and 125I-SI Ang II binding to AT1 receptors in the liver. Among sulfhydryl reagents, cysteamine and reduced glutathione (GSH), but not oxidized glutathione (GSSG) up to 1 mM, inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis. Thimerosal and 4-hydroxymercuribenzoate moderately inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis at 100 μM; however, they also unmasked non-AT1, non-AT2 binding independent of PCMB. 4-hydroxybenzoic acid did not promote 125 I-SI Ang II binding to this binding site indicating that only specific organomercurial compounds can unmask the binding site. The common denominator for all of these interacting substances is the ability to bind to protein cysteine sulfur. Comparison of cysteines between neurolysin and the closely related enzyme thimet oligopeptidase revealed an unconserved cysteine (cys650, based on the full length variant) in the proposed ligand binding channel (Brown et al., 2001) [1] near the active site of neurolysin. It is proposed that the

  11. The effects of para-chloromercuribenzoic acid and different oxidative and sulfhydryl agents on a novel, non-AT1, non-AT2 angiotensin binding site identified as neurolysin.

    PubMed

    Santos, Kira L; Vento, Megan A; Wright, John W; Speth, Robert C

    2013-06-10

    A novel, non-AT1, non-AT2 brain binding site for angiotensin peptides that is unmasked by p-chloromercuribenzoate (PCMB) has been identified as a membrane associated variant of neurolysin. The ability of different organic and inorganic oxidative and sulfhydryl reactive agents to unmask or inhibit 125I-Sar1Ile8 angiotensin II (SI-Ang II) binding to this site was presently examined. In tissue membranes from homogenates of rat brain and testis incubated in assay buffer containing losartan (10 μM) and PD123319 (10 μM) plus 100 μM PCMB, 5 of the 39 compounds tested inhibited 125I-SI Ang II binding in brain and testis. Mersalyl acid, mercuric chloride (HgCl2) and silver nitrate (AgNO3) most potently inhibited 125I-SI Ang II binding with IC50s ~1-20 μM. This HgCl2 inhibition was independent of any interaction of HgCl2 with angiotensin II (Ang II) based on the lack of effect of HgCl2 on the dipsogenic effects of intracerebroventricularly administered Ang II and 125I-SI Ang II binding to AT1 receptors in the liver. Among sulfhydryl reagents, cysteamine and reduced glutathione (GSH), but not oxidized glutathione (GSSG) up to 1mM, inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis. Thimerosal and 4-hydroxymercuribenzoate moderately inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis at 100 μM; however, they also unmasked non-AT1, non-AT2 binding independent of PCMB. 4-Hydroxybenzoic acid did not promote 125 I-SI Ang II binding to this binding site indicating that only specific organomercurial compounds can unmask the binding site. The common denominator for all of these interacting substances is the ability to bind to protein cysteine sulfur. Comparison of cysteines between neurolysin and the closely related enzyme thimet oligopeptidase revealed an unconserved cysteine (cys650, based on the full length variant) in the proposed ligand binding channel (Brown et al., 2001) [45] near the active site of neurolysin. It is proposed that the

  12. Polymer-pendant ligand chemistry. 1. Reactions of organoarsonic acids and arsenic acid with catechol ligands bonded to polystryene-divinylbenzene and regeneration of the ligand site by a simple hydrolysis procedure

    SciTech Connect

    Fish, R.H.; Tannous, R.S.

    1985-12-18

    A novel method is reported for reactions of organoarsonic acids and arsenic acid, known to be present in oil shale and its pyrolysis products, with catechol ligands bonded to either 2% or 20% cross-linked methylated polystyrene-divinylbenzene (PS-DVB) resins. A previous study with catechol-bonded ligands on PS-DVB resins dealt with their reactions with metal ions in aqueous solution and showed a selectivity toward Hg/sup 2 +/ ions. As far as we have been able to determine, reactions of this polymer-supported ligand with organometallic compounds or inorganic anions have not been reported. 9 references, 2 figures, 1 table.

  13. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    SciTech Connect

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2008-12-01

    A water network stabilizes the structure of cellular retionic acid binding protein II. The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the α2 helix at its entrance. This chain of interactions acts as a ‘pillar’ that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the α2 helix adopting an altered conformation compared with wild-type CRABPII.

  14. Characterization of limestone reacted with acid-mine drainage in a pulsed limestone bed treatment system at the Friendship Hill National Historical Site, Pennsylvania, USA

    USGS Publications Warehouse

    Hammarstrom, J.M.; Sibrell, P.L.; Belkin, H.E.

    2003-01-01

    Armoring of limestone is a common cause of failure in limestone-based acid-mine drainage (AMD) treatment systems. Limestone is the least expensive material available for acid neutralization, but is not typically recommended for highly acidic, Fe-rich waters due to armoring with Fe(III) oxyhydroxide coatings. A new AMD treatment technology that uses CO2 in a pulsed limestone bed reactor minimizes armor formation and enhances limestone reaction with AMD. Limestone was characterized before and after treatment with constant flow and with the new pulsed limestone bed process using AMD from an inactive coal mine in Pennsylvania (pH = 2.9, Fe = 150 mg/l, acidity = 1000 mg/l CaCO3). In constant flow experiments, limestone is completely armored with reddish-colored ochre within 48 h of contact in a fluidized bed reactor. Effluent pH initially increased from the inflow pH of 2.9 to over 7, but then decreased to 6 during operation. Limestone removed from a pulsed bed pilot plant is a mixture of unarmored, rounded and etched limestone grains and partially armored limestone and refractory mineral grains (dolomite, pyrite). The ???30% of the residual grains in the pulsed flow reactor that are armored have thicker (50- to 100-??m), more aluminous coatings and lack the gypsum rind that develops in the constant flow experiment. Aluminium-rich zones developed in the interior parts of armor rims in both the constant flow and pulsed limestone bed experiments in response to pH changes at the solid/solution interface. ?? 2003 Elsevier Ltd. All rights reserved.

  15. Active Sites of Reduced Epidermal Fluorescence1 (REF1) Isoforms Contain Amino Acid Substitutions That Are Different between Monocots and Dicots

    PubMed Central

    Missihoun, Tagnon D.; Kotchoni, Simeon O.; Bartels, Dorothea

    2016-01-01

    Plant aldehyde dehydrogenases (ALDHs) play important roles in cell wall biosynthesis, growth, development, and tolerance to biotic and abiotic stresses. The Reduced Epidermal Fluorescence1 is encoded by the subfamily 2C of ALDHs and was shown to oxidise coniferaldehyde and sinapaldehyde to ferulic acid and sinapic acid in the phenylpropanoid pathway, respectively. This knowledge has been gained from works in the dicotyledon model species Arabidopsis thaliana then used to functionally annotate ALDH2C isoforms in other species, based on the orthology principle. However, the extent to which the ALDH isoforms differ between monocotyledons and dicotyledons has rarely been accessed side-by-side. In this study, we used a phylogenetic approach to address this question. We have analysed the ALDH genes in Brachypodium distachyon, alongside those of other sequenced monocotyledon and dicotyledon species to examine traits supporting either a convergent or divergent evolution of the ALDH2C/REF1-type proteins. We found that B. distachyon, like other grasses, contains more ALDH2C/REF1 isoforms than A. thaliana and other dicotyledon species. Some amino acid residues in ALDH2C/REF1 isoforms were found as being conserved in dicotyledons but substituted by non-equivalent residues in monocotyledons. One example of those substitutions concerns a conserved phenylalanine and a conserved tyrosine in monocotyledons and dicotyledons, respectively. Protein structure modelling suggests that the presence of tyrosine would widen the substrate-binding pocket in the dicotyledons, and thereby influence substrate specificity. We discussed the importance of these findings as new hints to investigate why ferulic acid contents and cell wall digestibility differ between the dicotyledon and monocotyledon species. PMID:27798665

  16. Implementation of an ex situ stabilization technique at the Sand Springs superfund site to solidify and stabilize acid tar sludges involving a quick-lime based stabilization process and innovative equipment design

    SciTech Connect

    McManus, R.W.; Grajczak, P.; Wilcoxson, J.C.; Webster, S.D.

    1997-12-31

    An old refinery site was safely remediated a year before schedule and for 25% less than final engineering estimates for the stabilization remedy thanks to energetic project management and innovative design involving ex situ stabilization/solidification of acid tar sludges. A quicklime based process, Dispersion by Chemical Reaction (DCR{trademark}), was employed to solidify and stabilize (SS) over 103,000 cubic meters (135,000 cubic yards) of petroleum waste, mostly acidic tarry sludge. The SS process was selected over competing methods because it afforded minimal volume increase, could readily achieve Record of Decision (ROD) specified physical and chemical treatment goals, could be implemented with treatment equipment that minimized emissions, and could be performed with low reagent usage and at low cost. To ensure treatment goals were achieved and an accelerated schedule met, a custom designed and fabricated transportable treatment unit (TTU) was employed to implement the process. The treated material was visually soil-like in character, it was left in stockpiles for periods of time, and it was placed and compacted in the on site landfill using standard earth-moving equipment.

  17. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    SciTech Connect

    Taguchi, J.; Kuriyama, K. )

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  18. Site and extent of digestion, duodenal flow, and intestinal disappearance of total and esterified fatty acids in sheep fed a high-concentrate diet supplemented with high-linoleate safflower oil.

    PubMed

    Atkinson, R L; Scholljegerdes, E J; Lake, S L; Nayigihugu, V; Hess, B W; Rule, D C

    2006-02-01

    Our objective was to determine duodenal and ileal flows of total and esterified fatty acids and to determine ruminal fermentation characteristics and site and extent of nutrient digestion in sheep fed an 80% concentrate diet supplemented with high-linoleate (77%) safflower oil at 0, 3, 6, and 9% of DM. Oil was infused intraruminally along with an isonitrogenous basal diet (fed at 2% of BW) that contained bromegrass hay, cracked corn, corn gluten meal, urea, and limestone. Four crossbred wethers (BW = 44.3 +/- 15.7 kg) fitted with ruminal, duodenal, and ileal cannulas were used in a 4 x 4 Latin square experiment, in which 14 d of dietary adaptation were followed by 4 d of duodenal, ileal, and ruminal sampling. Fatty acid intake increased (linear, P = 0.004 to 0.001) with increased dietary safflower oil. Digestibilities of OM, NDF, and N were not affected (P = 0.09 to 0.65) by increased dietary safflower oil. For total fatty acids (free plus esterified) and esterified fatty acids, duodenal flow of most fatty acids, including 18:2c-9,c-12, increased (P = 0.006 to 0.05) with increased dietary oil. Within each treatment, duodenal flow of total and esterified 18:2c-9,c-12 was similar (P = 0.32), indicating that duodenal flow of this fatty acid occurred because most of it remained esterified. Duodenal flow of esterified 18:1t-11 increased (P = 0.08) with increased dietary safflower oil, indicating that reesterification of ruminal fatty acids occurred. Apparent small intestinal disappearance of most fatty acids was not affected (P = 0.19 to 0.98) by increased dietary safflower oil, but increased (P = 0.05) for 18:2c-9,c-12, which ranged from 87.0 to 97.4%, and for 18:2c-9,t-11 (P = 0.03), which ranged from 37.9% with no added oil to 99.2% with supplemental oil. For esterified fatty acids, apparent small intestinal disappearance was from 80% for 18:3c-9,c-12,c-15 at the greatest level of dietary oil up to 100% for 18:1t-11 and 18:1c-12 with 0% oil. We concluded that

  19. The site of net absorption of Ca from the intestinal tract of growing pigs and effect of phytic acid, Ca level and Ca source on Ca digestibility.

    PubMed

    González-Vega, J Caroline; Walk, Carrie L; Liu, Yanhong; Stein, Hans H

    2014-01-01

    An experiment was conducted to test the hypothesis that the standardised digestibility of Ca in calcium carbonate and Lithothamnium calcareum Ca is not different regardless of the level of dietary Ca, and that phytic acid affects the digestibility of Ca in these two ingredients to the same degree. The objectives were to determine where in the intestinal tract Ca absorption takes place and if there are measurable quantities of basal endogenous Ca fluxes in the stomach, small intestine or large intestine. Diets contained calcium carbonate or L. calcareum Ca as the sole source of Ca, 0% or 1% phytic acid and 0.4% or 0.8% Ca. A Ca-free diet was also formulated and used to measure endogenous fluxes and losses of Ca. Nine growing pigs (initial body weight 23.8 ± 1.3 kg) were cannulated in the duodenum and in the distal ileum, and faecal, ileal and duodenal samples were collected. Duodenal endogenous fluxes of Ca were greater (p < 0.05) than ileal endogenous fluxes and total tract endogenous losses of Ca, but ileal endogenous fluxes were less (p < 0.05) than total tract endogenous losses. Standardised digestibility of Ca was not affected by the level of phytic acid, but decreased (p < 0.05) as Ca level increased in L. calcareum Ca diets, but that was not the case if calcium carbonate was the source of Ca (interaction, p < 0.05). The standardised duodenal digestibility (SDD), standardised ileal digestibility (SID) and standardised total tract digestibility (STTD) of Ca were not different if calcium carbonate was the source of dietary Ca. However, the STTD of Ca in L. calcareum Ca was greater (p < 0.05) than the SID and SDD of Ca. The SDD, SID and STTD of Ca in calcium carbonate were greater (p < 0.05) than those of L. calcareum Ca. In conclusion, under the conditions of this experiment, standardised digestibility of Ca is not affected by the level of phytic acid, but may be affected by dietary Ca level depending on the Ca source. Calcium from calcium carbonate is mostly

  20. Active Site Dynamical Effects in the Hydrogen Transfer Rate-limiting Step in the Catalysis of Linoleic Acid by Soybean Lipoxygenase-1 (SLO-1): Primary and Secondary Isotope Contributions.

    PubMed

    Phatak, Prasad; Venderley, Jordan; Debrota, John; Li, Junjie; Iyengar, Srinivasan S

    2015-07-30

    Using ab initio molecular dynamics (AIMD) simulations that facilitate the treatment of rare events, we probe the active site participation in the rate-determining hydrogen transfer step in the catalytic oxidation of linoleic acid by soybean lipoxygenase-1 (SLO-1). The role of two different active site components is probed. (a) On the hydrogen atom acceptor side of the active site, the hydrogen bonding propensity between the acceptor side hydroxyl group, which is bound to the iron cofactor, and the backbone carboxyl group of isoleucine (residue number 839) is studied toward its role in promoting the hydrogen transfer event. Primary and secondary (H/D) isotope effects are also probed and a definite correlation with subtle secondary H/D isotope effects is found. With increasing average nuclear kinetic energy, the increase in transfer probability is enhanced due to the presence of the hydrogen bond between the backbone carbonyl of I839 and the acceptor oxygen. Further increase in average nuclear kinetic energy reduces the strength of this secondary hydrogen bond which leads to a deterioration in hydrogen transfer rates and finally embrances an Arrhenius-like behavior. (b) On the hydrogen atom donor side, the coupling between vibrational modes predominantly localized on the donor-side linoleic acid group and the reactive mode is probed. There appears to be a qualitative difference in the coupling between modes that belong to linoleic acid and the hydrogen transfer mode, for hydrogen and deuterium transfer. For example, the donor side secondary hydrogen atom is much more labile (by nearly a factor of 5) during deuterium transfer as compared to the case for hydrogen transfer. This appears to indicate a greater coupling between the modes belonging to the linoleic acid scaffold and the deuterium transfer mode and also provides a new rationalization for the abnormal (nonclassical) secondary isotope effect results obtained by Knapp, Rickert, and Klinman in J. Am. Chem. Soc

  1. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

    PubMed Central

    Milichovský, Jan; Bárta, František; Schmeiser, Heinz H.; Arlt, Volker M.; Frei, Eva; Stiborová, Marie; Martínek, Václav

    2016-01-01

    Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H:quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using 32P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast

  2. Evolution of lactate dehydrogenase-A homologs of barracuda fishes (genus Sphyraena) from different thermal environments: differences in kinetic properties and thermal stability are due to amino acid substitutions outside the active site.

    PubMed

    Holland, L Z; McFall-Ngai, M; Somero, G N

    1997-03-18

    Orthologous homologs of lactate dehydrogenase-A (LDH-A) (EC 1.1.1.27; NAD+:lactate oxidoreductase) of six barracuda species (genus Sphyraena) display differences in Michaelis-Menten constants (apparent Km) for substrate (pyruvate) and cofactor (NADH) that reflect evolution at different habitat temperatures. Significant increases in Km with increasing measurement temperature occur for all homologs, yet Km at normal body temperatures is similar among species because of the inverse relationship between adaptation temperature and Km. Thermal stabilities of the homologs also differ. To determine the amino acid substitutions responsible for differences in Km and thermal stability, peptide mapping of the LDH-As of all six species was first performed. Then, the amino acid sequences of the three homologs having the most similar peptide maps, those of the north temperate species, S. argentea, the subtropical species, S. lucasana, and the south temperate species, S. idiastes, were deduced from the respective cDNA sequences. At most, there were four amino acid substitutions between any pair of species, none of which occurred in the loop or substrate binding sites of the enzymes. The sequence of LDH-A from S. lucasana differs from that of S. idiastes only at position 8. The homolog of S. argentea differs from the other two sequences at positions 8, 61, 68, and 223. We used a full-length cDNA clone of LDH-A of S. lucasana to test, by site-directed mutagenesis, the importance of these sequence changes in establishing the observed differences in kinetics and thermal stability. Differences in sequence at sites 61 and/or 68 appear to account for the differences in Km between the LDH-As of S. argentea and S. lucasana. Differences at position 8 appear to account for the difference in thermal stability between the homologs of S. argentea and S. lucasana. Evolutionary adaptation of proteins to temperature thus may be achieved by minor changes in sequence at locations outside of active

  3. Identification of critical amino acid residues of Saccharomyces cerevisiae carbamoyl-phosphate synthetase: definition of the ATP site involved in carboxy-phosphate formation.

    PubMed

    Zheng, W; Lim, A L; Powers-Lee, S G

    1997-08-15

    Carbamoyl-phosphate synthetases (CPSases) utilize two molecules of ATP at two homologous domains, B and C, with ATP(B) used to form the enzyme-bound intermediate carboxy-phosphate and ATP(C) used to phosphorylate the carbamate intermediate. To further define the role of one CPSase peptide suggested by affinity labeling studies to be near the ATP(B) site, we have carried out site-directed mutagenic analysis of peptide 234-242 of the Saccharomyces cerevisiae arginine-specific CPSase. Mutants E234A, E234D, E236A, E236D and E238A were unable to complement the CPSase-deficient yeast strain LPL26 whereas mutants Y237A, E238D, R241K, R241E and R241P supported LPL26 growth as well as wild-type CPSase. Kinetic analysis of E234A and Y237A indicated impaired utilization of ATP(B) but not of ATP(C). D242A, a temperature-sensitive mutant, retained no detectable activity when assayed in vitro. These findings, together with the affinity labeling data and primary sequence analysis, strongly suggest that the yeast CPSase peptide 234-242 is located at the ATP(B) site and that some of its residues are important for functioning of the enzyme. D242 appears to occupy a critical structural position and E234, E236 and E238 appear to be critical for function, with the spatial arrangement of the carboxyl side chain also critical for E234 and E236.

  4. Highly Luminescent Microporous Organic Polymer with Lewis Acidic Boron Sites on the Pore Surface: Ratiometric Sensing and Capture of F(-) Ions.

    PubMed

    Suresh, Venkata M; Bandyopadhyay, Arkamita; Roy, Syamantak; Pati, Swapan K; Maji, Tapas Kumar

    2015-07-20

    Reversible and selective capture/detection of F(-) ions in water is of the utmost importance, as excess intake leads to adverse effects on human health. Highly robust Lewis acidic luminescent porous organic materials have potential for efficient sequestration and detection of F(-) ions. Herein, the rational design and synthesis of a boron-based, Lewis acidic microporous organic polymer (BMOP) derived from tris(4-bromo-2,3,5,6-tetramethylphenyl)boron nodes and diethynylbiphenyl linkers with a pore size of 1.08 nm for selective turn-on sensing and capture of F(-) ion are reported. The presence of a vacant pπ orbital on the boron center of BMOP results in intramolecular charge transfer (ICT) from the linker to boron. BMOP shows selective turn-on blue emission for F(-) ions in aqueous mixtures with a detection limit of 2.6 μM. Strong B-F interactions facilitate rapid sequestration of F(-) by BMOP. The ICT emission of BMOP can be reversibly regenerated by addition of an excess of water, and the polymer can be reused several times.

  5. Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a.

    PubMed

    Salinas, Miguel; Besson, Thomas; Delettre, Quentin; Diochot, Sylvie; Boulakirba, Sonia; Douguet, Dominique; Lingueglia, Eric

    2014-05-09

    Acid-sensing ion channels (ASICs) are neuronal proton-gated cation channels associated with nociception, fear, depression, seizure, and neuronal degeneration, suggesting roles in pain and neurological and psychiatric disorders. We have recently discovered black mamba venom peptides called mambalgin-1 and mambalgin-2, which are new three-finger toxins that specifically inhibit with the same pharmacological profile ASIC channels to exert strong analgesic effects in vivo. We now combined bioinformatics and functional approaches to uncover the molecular mechanism of channel inhibition by the mambalgin-2 pain-relieving peptide. Mambalgin-2 binds mainly in a region of ASIC1a involving the upper part of the thumb domain (residues Asp-349 and Phe-350), the palm domain of an adjacent subunit, and the β-ball domain (residues Arg-190, Asp-258, and Gln-259). This region overlaps with the acidic pocket (pH sensor) of the channel. The peptide exerts both stimulatory and inhibitory effects on ASIC1a, and we propose a model where mambalgin-2 traps the channel in a closed conformation by precluding the conformational change of the palm and β-ball domains that follows proton activation. These data help to understand inhibition by mambalgins and provide clues for the development of new optimized blockers of ASIC channels.

  6. Characterization of anthropogenic and natural sources of acid rock drainage at the Cinnamon Gulch abandoned mine land inventory site, Summit County, Colorado

    USGS Publications Warehouse

    Bird, D.A.

    2003-01-01

    Colorado's Cinnamon Gulch releases acid rock drainage (ARD) from anthropogenic and natural sources. In 2001, the total discharge from Cinnamon Gulch was measured at 1.02 cfs (29 L/s) at base flow and 4.3 cfs (122 L/s) at high flow (spring runoff). At base flow, natural sources account for 98% of the discharge from the watershed, and about 96% of the chemical loading. At high flow, natural sources contribute 96% of discharge and 92 to 95% of chemical loading. The pH is acidic throughout the Cinnamon Gulch watershed, ranging from 2.9 to 5.4. At baseflow, nearly all of the trace metals analyzed in the 18 samples exceeded state hardness-dependent water quality standards for aquatic life. Maximum dissolved concentrations of selected constituents included 16 mg/ L aluminum, 15 mg/L manganese, 40 mg/L iron, 2 mg/L copper, 560 ??g/L lead, 8.4 mg/L zinc, and 300 mg/L sulfate. Average dissolved concentrations of selected metals at baseflow were 5.5 mg/L aluminum, 5.5 mg/L manganese, 14 ??g/L cadmium, 260 ??g/L copper, 82 ??g/L lead, and 2.8 mg/L zinc.

  7. Site-dependent modulating effects of conjugated fatty acids from safflower oil in a rat two-stage carcinogenesis model in female Sprague-Dawley rats.

    PubMed

    Kimoto, N; Hirose, M; Futakuchi, M; Iwata, T; Kasai, M; Shirai, T

    2001-07-10

    Modifying effects of dietary administration of conjugated fatty acids from safflower oil (CFA-S), rich in conjugated linoleic acid, on major organs were examined in the post-initiation stage of a two-stage carcinogenesis model in female rats. Groups of 21 or 22 F344 female rats were treated sequentially with 2,2'-dihydroxy-di-n-propylnitosamine (intragastrically, i.g.), 7,12-dimethylbenz[a]anthracene (i.g.), 1,2-dimethylhydrazine (subcutaneously) and N-butyl-N-(4-hydroxybutyl)nitrosamine (in drinking water) during the first 3 weeks for initiation, and then administered diet containing 1 or 0.1% CFA-S for 33 weeks. Further groups of animals were treated with carcinogens or 1% CFA-S alone, or maintained as non-treated controls. All surviving animals were killed at week 36, and major organs were examined histopathologically for development of pre-neoplastic and neoplastic lesions. The 1 and 0.1% CFA-S treatment significantly decreased the incidence and multiplicity of mammary carcinomas, though a clear dose response was not observed. In the urinary bladder, the incidence of papillary or nodular hyperplasia but not tumors was significantly increased in the 1% CFA-S-treated group. The results indicate that low dose CFA-S may find application as a potent chemopreventor of mammary carcinogenesis.

  8. Distinct oxidative cleavage and modification of bovine [Cu- Zn]-SOD by an ascorbic acid/Cu(II) system: Identification of novel copper binding site on SOD molecule.

    PubMed

    Uehara, Hiroshi; Luo, Shen; Aryal, Baikuntha; Levine, Rodney L; Rao, V Ashutosh

    2016-05-01

    We investigated the combined effect of ascorbate and copper [Asc/Cu(II)] on the integrity of bovine [Cu-Zn]-superoxide dismutase (bSOD1) as a model system to study the metal catalyzed oxidation (MCO) and fragmentation of proteins. We found Asc/Cu(II) mediates specific cleavage of bSOD1 and generates 12.5 and 3.2kDa fragments in addition to oxidation/carbonylation of the protein. The effect of other tested transition metals, a metal chelator, and hydrogen peroxide on the cleavage and oxidation indicated that binding of copper to a previously unknown site on SOD1 is responsible for the Asc/Cu(II) specific cleavage and oxidation. We utilized tandem mass spectrometry to identify the specific cleavage sites of Asc/Cu(II)-treated bSOD1. Analyses of tryptic- and AspN-peptides have demonstrated the cleavage to occur at Gly31 with peptide bond breakage with Thr30 and Ser32 through diamide and α-amidation pathways, respectively. The three-dimensional structure of bSOD1 reveals the imidazole ring of His19 localized within 5Å from the α-carbon of Gly31 providing a structural basis that copper ion, most likely coordinated by His19, catalyzes the specific cleavage reaction.

  9. Using radial basis function on the general form of Chou's pseudo amino acid composition and PSSM to predict subcellular locations of proteins with both single and multiple sites.

    PubMed

    Huang, Chao; Yuan, Jingqi

    2013-07-01

    Prediction of protein subcellular location is a meaningful task which attracted much attention in recent years. A lot of protein subcellular location predictors which can only deal with the single-location proteins were developed. However, some proteins may belong to two or even more subcellular locations. It is important to develop predictors which will be able to deal with multiplex proteins, because these proteins have extremely useful implication in both basic biological research and drug discovery. Considering the circumstance that the number of methods dealing with multiplex proteins is limited, it is meaningful to explore some new methods which can predict subcellular location of proteins with both single and multiple sites. Different methods of feature extraction and different models of predict algorithms using on different benchmark datasets may receive some general results. In this paper, two different feature extraction methods and two different models of neural networks were performed on three benchmark datasets of different kinds of proteins, i.e. datasets constructed specially for Gram-positive bacterial proteins, plant proteins and virus proteins. These benchmark datasets have different number of location sites. The application result shows that RBF neural network has apparently superiorities against BP neural network on these datasets no matter which type of feature extraction is chosen.

  10. Kinetic analysis of Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase, wild type and mutants, reveals roles of active site amino acids.

    PubMed

    Richard, Stéphane B; Lillo, Antonietta M; Tetzlaff, Charles N; Bowman, Marianne E; Noel, Joseph P; Cane, David E

    2004-09-28

    Escherichia coli 2-C-methyl-D-erythritol-4-phosphate cytidyltransferase (YgbP or IspD) catalyzes the conversion of 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytidine triphosphate (CTP) to 4-diphosphocytidyl-2-C-methylerythritol (CDPME). Pulse chase experiments established that the reaction involves an ordered sequential mechanism with mandatory initial binding of CTP. On the basis of analysis of the previously reported crystal structures of apo-YgbP as well as YgbP complexed with both CTP.Mg(2+) and CDPME.Mg(2+) [Richard, S. B., Bowman, M. E., Kwiatkowski, W., Kang, I., Chow, C., Lillo, A. M., Cane, D. E., and Noel, J. P. (2001) Nat. Struct. Biol. 8, 641-648], a group of active site residues were selected for site-directed mutagenesis and steady-state kinetic analysis. Both Lys27 and Lys213 were shown to be essential to catalytic activity, consistent with their proposed role in stabilization of a pentacoordinate phosphate transition state resulting from in-line attack of the MEP phosphate on the alpha-phosphate of CTP. In addition, Thr140, Arg109, Asp106, and Thr165 were all shown to play critical roles in the binding and proper orientation of the MEP substrate.

  11. Improving maltodextrin specificity for enzymatic synthesis of 2-O-d-glucopyranosyl-l-ascorbic acid by site-saturation engineering of subsite-3 in cyclodextrin glycosyltransferase from Paenibacillus macerans.

    PubMed

    Liu, Long; Xu, Qiaoyan; Han, Ruizhi; Shin, Hyun-dong; Chen, Rachel R; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-07-20

    In this work, the subsite-3 of cyclodextrin glycosyltransferase (CGTase) from Paenibacillus macerans was engineered to improve maltodextrin specificity for 2-O-d-glucopyranosyl-l-ascorbic acid (AA-2G) synthesis. Specifically, the site-saturation mutagenesis of tyrosine 89, asparagine 94, aspartic acid 196, and aspartic acid 372 in subsite-3 was separately performed, and three mutants Y89F (tyrosine→phenylalanine), N94P (asparagine→proline), and D196Y (aspartic acid→tyrosine) produced higher AA-2G titer than the wild-type and the other mutants. Previously, we found the mutant K47L (lysine→leucine) also had a higher maltodextrin specificity. Therefore, the four mutants K47L, Y89F, N94P, and D196Y were further used to construct the double, triple, and quadruple mutations. Among the 11 combinational mutants, the quadruple mutant K47L/Y89F/N94P/D196Y produced the highest AA-2G titer of 2.23g/L, which was increased by 85.8% compared to that produced by the wild-type CGTase. The reaction kinetics of all the mutants were modeled, and the pH and thermal stabilities of all the mutants were analyzed. The structure modeling indicated that the enhanced maltodextrin specificity may be related with the changes of hydrogen bonding interactions between the side chain of residue at the four positions (47, 89, 94, and 196) and the substrate sugars.

  12. Binding of [(3)H]lysergic acid diethylamide to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites in platelets from healthy children, adolescents and adults.

    PubMed

    Sigurdh, J; Spigset, O; Allard, P; Mjörndal, T; Hägglöf, B

    1999-11-01

    Possible age effects on binding of [(3)H]lysergic acid diethylamide ([(3)H]LSD) to serotonin 5-HT(2A) receptors and of [(3)H]paroxetine to serotonin uptake sites were studied in platelets from healthy children (11-12 years of age), adolescents (16-17 years of age) and adults. Significant overall age effects were found both for the number of binding sites (B(max)) for [(3)H]LSD binding (p < 0.001), the affinity constant (K(d)) for [(3)H]LSD binding (p < 0.001), B(max) for [(3)H]paroxetine binding (p < 0.001) and K(d) for [(3)H] paroxetine binding (p = 0.006). In general, there was a decrease in B(max) with increasing age, which predominantly occurred between the ages 11-12 years and 16-17 years for the 5-HT(2A) receptor, and after 16-17 years of age for the serotonin uptake site. These developmental changes might have an impact on the effect of treatment with serotonergic drugs in children and adolescents. When the platelet serotonin variables investigated are employed in studies in children or adolescents, age matching or, alternatively, introduction of age control in the statistical analysis should be performed.

  13. Determination of the Substrate Binding Mode to the Active Site Iron of (S)-2-Hydroxypropylphosphonic Acid Epoxidase Using 17O-Enriched Substrates and Substrate Analogues†

    PubMed Central

    Yan, Feng; Moon, Sung-Ju; Liu, Pinghua; Zhao, Zongbao; Lipscomb, John D.; Liu, Aimin; Liu, Hung-wen

    2009-01-01

    (S)-2-hydroxypropylphosphonic acid epoxidase (HppE) is an O2-dependent, nonheme Fe(II)-containing oxidase that converts (S)-2-hydroxypropylphosphonic acid ((S)-HPP) to the regio-and enantiomerically specific epoxide, fosfomycin. Use of (R)-2-hydroxypropylphosphonic acid ((R)-HPP) yields the 2-keto-adduct rather than the epoxide. Here we report the chemical synthesis of a range of HPP analogs designed to probe the basis for this specificity. In past studies, NO has been used as an O2 surrogate to provide an EPR probe of the Fe(II) environment. These studies suggest that O2 binds to the iron, and substrates bind in a single orientation that strongly perturbs the iron environment. Recently, the X-ray crystal structure showed direct binding of the substrate to the iron, but both monodentate (via the phosphonate) and chelated (via the hydroxyl and phosphonate) orientations were observed. In the current study, hyperfine broadening of the homogeneous S = 3/2 EPR spectrum of the HppE-NO-HPP complex was observed when either the hydroxyl or the phosphonate group of HPP was enriched with 17O (I = 5/2). These results indicate that both functional groups of HPP bind to Fe(II) ion at the same time as NO, suggesting that the chelated substrate binding mode dominates in solution. (R)- and (S)-analog compounds that maintained the core structure of HPP but added bulky terminal groups were turned over to give products analogous to those from (R)- and (S)-HPP, respectively. In contrast, substrate analogs lacking either the phosphonate or hydroxyl group were not turned over. Elongation of the carbon chain between the hydroxyl and phosphonate allowed binding to the iron in a variety of orientations to give keto and diol products at positions determined by the hydroxyl substituent, but no stable epoxide was formed. These studies show the importance of the Fe(II)-substrate chelate structure to active antibiotic formation. This fixed orientation may align the substrate next to the iron

  14. Synthesis of a specific monolithic column with artificial recognition sites for L-glutamic acid via cryo-crosslinking of imprinted nanoparticles.

    PubMed

    Göktürk, Ilgım; Üzek, Recep; Uzun, Lokman; Denizli, Adil

    2016-06-01

    In this study, a new molecular imprinting (MIP)-based monolithic cryogel column was prepared using chemically crosslinked molecularly imprinted nanoparticles, to achieve a simplified chromatographic separation (SPE) for a model compound, L-glutamic acid (L-Glu). Cryogelation through crosslinking of imprinted nanoparticles forms stable monolithic cryogel columns. This technique reduces the leakage of nanoparticles and increases the surface area, while protecting the structural features of the cryogel for stable and efficient recognition of the template molecule. A non-imprinted monolithic cryogel column (NIP) was also prepared, using non-imprinted nanoparticles produced without the addition of L-Glu during polymerization. The molecularly imprinted monolithic cryogel column (MIP) indicates apparent recognition selectivity and a good adsorption capacity compared to the NIP. Also, we have achieved a significant increase in the adsorption capacity, using the advantage of high surface area of the nanoparticles.

  15. Development of an enzyme-linked immunosorbent assay to determine the numbers of chemolithotrophic bacteria at acid-mine-drainage sites. Technical report (Final)

    SciTech Connect

    Blake, R.C.; Revis, N.W.; Holdsworth, G.

    1990-09-01

    Thiobacillus ferrooxidans is a prominent member of a group of chemo-lithotrophic bacteria that bear principal responsibility for the formation of acid mine drainage. A prototype enzyme-linked immunosorbent assay (ELISA) for enumerating and qualifying T. ferrooxidans was assembled and characterized. The immunoassay protocol consisted of sequential incubations of the sample with (i) the primary antibody, (ii) the enzyme-labeled secondary antibody, and (iii) a chromogenic substrate specific for the enzyme lable. The necessary reagents comprised primary polyclonal rabbit antibodies directed against T. ferrooxidans ATCC 23270, alkaline phosphatase-copled goat anti-rabbit polyclonal antibodies, and phenolphrhalein monophosphate. The ELISA developed herein correctly identified whether iron-oxidizing bacteria were present in each of 4 samples supplied and analyzed by an independent laboratory. Sufficient preliminary data was obtained to warrant further research and development activities.

  16. Characterization of Lewis acid sites on the (100) surface of {beta}-AlF{sub 3}: Ab initio calculations of NH{sub 3} adsorption

    SciTech Connect

    Bailey, C. L.; Wander, A.; Searle, B. G.; Mukhopadhyay, S.; Harrison, N. M.

    2008-06-14

    The current study employs hybrid-exchange density functional theory to show that the Lewis base, NH{sub 3}, binds to the {beta}-AlF{sub 3} (100) surface with a binding energy (BE) of up to -1.96 eV per molecule. This is characteristic of a strong Lewis acid. The binding of NH{sub 3} to the surface is predominately due to electrostatic interactions. There is only a small charge transfer from the NH{sub 3} molecule to the surface. The BE as a function of coverage is computed and used to develop a lattice Monte Carlo model which is used to predict the temperature programed desorption (TPD) spectrum. Comparison with experimental TPD studies of NH{sub 3} from {beta}-AlF{sub 3} strongly suggests that these structural models and binding mechanisms are good approximations to those that occur on real AlF{sub 3} surfaces.

  17. Characterization of Lewis acid sites on the (100) surface of β-AlF3: Ab initio calculations of NH3 adsorption

    NASA Astrophysics Data System (ADS)

    Bailey, C. L.; Wander, A.; Mukhopadhyay, S.; Searle, B. G.; Harrison, N. M.

    2008-06-01

    The current study employs hybrid-exchange density functional theory to show that the Lewis base, NH3, binds to the β-AlF3 (100) surface with a binding energy (BE) of up to -1.96 eV per molecule. This is characteristic of a strong Lewis acid. The binding of NH3 to the surface is predominately due to electrostatic interactions. There is only a small charge transfer from the NH3 molecule to the surface. The BE as a function of coverage is computed and used to develop a lattice Monte Carlo model which is used to predict the temperature programed desorption (TPD) spectrum. Comparison with experimental TPD studies of NH3 from β-AlF3 strongly suggests that these structural models and binding mechanisms are good approximations to those that occur on real AlF3 surfaces.

  18. Förster energy-transfer studies between Trp residues of alpha1-acid glycoprotein (orosomucoid) and the glycosylation site of the protein.

    PubMed

    Albani, Jihad R

    2003-10-10

    Energy-transfer studies between Trp residues of alpha(1)-acid glycoprotein and the fluorescent probe Calcofluor White were performed. Calcofluor White interacts with carbohydrate residues of the protein, while the three Trp residues are located at the surface (Trp-160) and in hydrophobic domains of the protein (Trp-25 and Trp-122). Binding of Calcofluor to the protein induces a decrease in the fluorescence intensity of the Trp residues accompanied by an increase of that of Calcofluor White. Efficiency (E) of Trp fluorescence quenching was determined to be equal to 45%, and the Förster distance R(o), at which the efficiency of energy transfer is 50%, was calculated to be 18.13 A. This low distance and the value of the efficiency clearly indicate that energy transfer between Trp residues and Calcofluor White is weak.

  19. Structural analysis of site-directed mutants of cellular retinoic acid-binding protein II addresses the relationship between structural integrity and ligand binding

    SciTech Connect

    Vaezeslami, Soheila; Jia, Xiaofei; Vasileiou, Chrysoula; Borhan, Babak; Geiger, James H.

    2009-09-02

    The structural integrity of cellular retinoic acid-binding protein II (CRABPII) has been investigated using the crystal structures of CRABPII mutants. The overall fold was well maintained by these CRABPII mutants, each of which carried multiple different mutations. A water-mediated network is found to be present across the large binding cavity, extending from Arg111 deep inside the cavity to the {alpha} 2 helix at its entrance. This chain of interactions acts as a 'pillar' that maintains the integrity of the protein. The disruption of the water network upon loss of Arg111 leads to decreased structural integrity of the protein. A water-mediated network can be re-established by introducing the hydrophilic Glu121 inside the cavity, which results in a rigid protein with the {alpha}2 helix adopting an altered conformation compared with wild-type CRABPII.

  20. Diversity in the structures and ligand-binding sites of nematode fatty acid and retinol-binding proteins revealed by Na-FAR-1 from Necator americanus

    PubMed Central

    Rey-Burusco, M. Florencia; Ibáñez-Shimabukuro, Marina; Gabrielsen, Mads; Franchini, Gisela R.; Roe, Andrew J.; Griffiths, Kate; Zhan, Bin; Cooper, Alan; Kennedy, Malcolm W.; Córsico, Betina; Smith, Brian O.

    2015-01-01

    Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein–ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male. PMID:26318523

  1. Weak-acid sites catalyze the hydrolysis of crystalline cellulose to glucose in water: importance of post-synthetic functionalization of the carbon surface.

    PubMed

    To, Anh The; Chung, Po-Wen; Katz, Alexander

    2015-09-14

    The direct hydrolysis of crystalline cellulose to glucose in water without prior pretreatment enables the transformation of biomass into fuels and chemicals. To understand which features of a solid catalyst are most important for this transformation, the nanoporous carbon material MSC-30 was post-synthetically functionalized by oxidation. The most active catalyst depolymerized crystalline cellulose without prior pretreatment in water, providing glucose in an unprecedented 70 % yield. In comparison, virtually no reaction was observed with MSC-30, even when the reaction was conducted in aqueous solution at pH 2. As no direct correlations between the activity of this solid-solid reaction and internal-site characteristics, such as the β-glu adsorption capacity and the rate of catalytic hydrolysis of adsorbed β-glu strands, were observed, contacts of the external surface with the cellulose crystal are thought to be key for the overall efficiency.

  2. A regional-scale survey and analysis of forest growth and mortality as affected by site and stand factors and acidic deposition

    SciTech Connect

    Brooks, R.T. )

    1994-08-01

    Regression analyses were used to identify factors most closely related to species growth and mortality on continuous forest survey plots in Pennsylvania. In 1985, 200 plots with two prior measurements (in the 1960s and 1970s) were selected and measured for a third time to determine periodic forest growth and mortality rates. Growth and mortality were analyzed for temporal change and for relationship to site, stand, defoliation, and climatic factors and to wet atmospheric deposition. While basal area growth increased over the two intersurvey periods, growth rates declined and mortality rates increased from the first to the second intersurvey period. Growth and mortality patterns were most frequently related to stocking, defoliation by insects, and drought. Neither sulfate nor nitrate deposition for the years 1982-1985 was determined to be a major influence on tree growth or mortality.

  3. Use of H2S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media

    SciTech Connect

    Singh, Deepika; Mamtani, Kuldeep; Bruening, Christopher R.; Miller, Jeffrey T.; Ozkan, Umit S.

    2014-10-01

    H2S has been used as a probe molecule both in an “in situ” poisoning experiment and in intermediate-temperature heat-treatment steps during and after the preparation of FeNC catalysts in an attempt to analyze its effect on their ORR activity. The heat treatments were employed either on the ball-milled precursor of FeNC or after the Ar-NH3 high temperature heat treatments. ORR activity of the H2S-treated catalysts was seen to be significantly lower than the sulfur-free catalysts, whether the sulfur exposure was during a half-cell testing, or as an intermediate-temperature exposure to H2S. The incorporation of sulfur species and interaction of Fe with sulfur were confirmed by characterization using XPS, EXAFS, TPO, and TPD. This study provides crucial evidence regarding differences in active sites in FeNC versus nitrogen-containing carbon nanostructured (CNx) catalysts.

  4. His-65 in the proton–sucrose symporter is an essential amino acid whose modification with site-directed mutagenesis increases transport activity

    PubMed Central

    Lu, Jade M.-Y.; Bush, Daniel R.

    1998-01-01

    The proton–sucrose symporter that mediates phloem loading is a key component of assimilate partitioning in many higher plants. Previous biochemical investigations showed that a diethyl pyrocarbonate-sensitive histidine residue is at or near the substrate-binding site of the symporter. Among the proton–sucrose symporters cloned to date, only the histidine residue at position 65 of AtSUC1 from Arabidopsis thaliana is conserved across species. To test whether His-65 is involved in the transport reaction, we have used site-directed mutagenesis and functional expression in yeast to determine the significance of this residue in the reaction mechanism. Symporters with mutations at His-65 exhibited a range of activities; for example, the H65C mutant resulted in the complete loss of transport capacity, whereas H65Q was almost as active as wild type. Surprisingly, the H65K and H65R symporters transport sucrose at significantly higher rates (increased Vmax) than the wild-type symporter, suggesting His-65 may be associated with a rate-limiting step in the transport reaction. RNA gel blot and protein blot analyses showed that, with the exception of H65C, the variation in transport activity was not because of alterations in steady-state levels of mRNA or symporter protein. Significantly, those symporters with substitutions of His-65 that remained transport competent were no longer sensitive to inactivation by diethyl pyrocarbonate, demonstrating that this is the inhibitor-sensitive histidine residue. Taken together with our previous results, these data show that His-65 is involved in sucrose binding, and increased rates of transport implicate this region of the protein in the transport reaction. PMID:9671798

  5. Extended amino acid sequences around the active-site lysine residue of class-I fructose 1,6-bisphosphate aldolases from rabbit muscle, sturgeon muscle, trout muscle and ox liver.

    PubMed Central

    Benfield, P A; Forcina, B G; Gibbons, I; Perham, R N

    1979-01-01

    1. Amino acid sequences covering the region between residues 173 and 248 [adopting the numbering system proposed by Lai, Nakai & Chang (1974) Science 183, 1204-1206] were derived for trout (Salmo trutta) muscle aldolase and for ox liver aldolase. A comparable sequence was derived for residues 180-248 of sturgeon (Acipenser transmontanus) muscle aldolase. The close homology with the rabbit muscle enzyme was used to align the peptides of the other aldolases from which the sequences were derived. The results also allowed a partial sequence for the N-terminal 39 residues for the ox liver enzyme to be deduced. 2. In the light of the strong homology evinced for these enzymes, a re-investigation of the amino acid sequence of rabbit muscle aldolase between residues 181 and 185 was undertaken. This indicated the presence of a hitherto unsuspected -Ile-Val-sequence between residues 181 and 182 and the need to invert the sequence -Glu-Val- to -Val-Glx- at positions 184 and 185. 3. Comparison of the available amino acid sequences of these enzymes suggested an early evolutionary divergence of the genes for muscle and liver aldolases. It was also consistent with other evidence that the central region of the primary structure of these enzymes (which includes the active-site lysine-227) forms part of a conserved folding domain in the protein subunit. 4. Detailed evidence for the amino acid sequences proposed has been deposited as Suy Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1978) 169, 5. PMID:534504

  6. The effect of condensed tannins on the site of digestion of amino acids and other nutrients in sheep fed on Lotus corniculatus L.

    PubMed

    Waghorn, G C; Ulyatt, M J; John, A; Fisher, M T

    1987-01-01

    Sheep were used to evaluate the nutritional consequences of a low condensed-tannin concentration (22 g/kg dry matter (DM)) in lotus (Lotus corniculatus L.) (control group) compared with lotus given to sheep receiving intraruminal polyethylene glycol (PEG) infusion (PEG group). PEG selectively binds to tannins and prevents tannins from binding proteins. DM intakes (1430 (SE 28) g/d) and digestibility of energy (663 (SE 4.5) kJ/MJ intake) were similar for both groups but the apparent digestion of nitrogen was lower in the control sheep (0.70) than in the PEG sheep (0.78; P less than 0.001). The proportion of N apparently digested before the abomasum (i.e. in the rumen) was lower (P less than 0.05) in control sheep (0.12) than in PEG sheep (0.21; P less than 0.05). Rumen ammonia concentrations were lower (P less than 0.001) in control sheep than in PEG sheep. The proportion of neutral-detergent fibre (NDF) digested in the rumen was similar for both groups (0.48 (SE 0.012)) but less energy was digested in the rumen of the control (0.42) than of the PEG sheep (0.47; P less than 0.05). The flux of essential amino acids (EAA) through the abomasum of control sheep was 50% greater than that in PEG sheep; flux of non-essential amino acids (NEAA) was 14% higher in control than in PEG sheep. Apparent digestibility of EAA in the small intestine was similar for both treatments (0.67), but NEAA were less well digested in the control (0.55) than in the PEG sheep (0.69). The presence of tannins in the control group increased net apparent absorption of threonine (57%), valine (89%), isoleucine (94%), leucine (30%), tyrosine (41%), phenylalanine (93%), histidine (90%) and lysine (59%), and reduced NEAA absorption by 10%, compared with PEG sheep.

  7. Chromate reduction on humic acid derived from a peat soil--exploration of the activated sites on HAs for chromate removal.

    PubMed

    Huang, S W; Chiang, P N; Liu, J C; Hung, J T; Kuan, W H; Tzou, Y M; Wang, S L; Huang, J H; Chen, C C; Wang, M K; Loeppert, R H

    2012-05-01

    Humic substances are a major component of soil organic matter that influence the behavior and fate of heavy metals such as Cr(VI), a toxic and carcinogenic element. In the study, a repetitive extraction technique was used to fractionate humic acids (HAs) from a peat soil into three fractions (denoted as F1, F2, and F3), and the relative importance of O-containing aromatic and aliphatic domains in humic substances for scavenging Cr(VI) was addressed at pH 1. Spectroscopic analyses indicated that the concentrations of aromatic C and O-containing functional groups decreased with a progressive extraction as follows: F1>F2>F3. Cr(VI) removal by HA proceeded slowly, but it was enhanced when light was applied due to the production of efficient reductants, such as superoxide radical and H(2)O(2), for Cr(VI). Higher aromatic- and O-containing F1 fraction exhibited a greater efficiency for Cr(VI) reduction (with a removal rate of ca. 2.89 mmol g(-1) HA under illumination for 3 h). (13)C NMR and FTIR spectra further demonstrated that the carboxyl groups were primarily responsible for Cr(VI) reduction. This study implied the mobility and fate of Cr(VI) would be greatly inhibited in the environments containing such organic groups.

  8. Interactions between Sindbis virus RNAs and a 68 amino acid derivative of the viral capsid protein further defines the capsid binding site.

    PubMed Central

    Weiss, B; Geigenmüller-Gnirke, U; Schlesinger, S

    1994-01-01

    In previous studies of encapsidation of Sindbis virus RNA, we identified a 570nt fragment (nt 684-1253) from the 12 kb genome that binds to the viral capsid protein with specificity and is required for packaging of Sindbis virus defective interfering RNAs. We now show that the capsid binding activity resides in a highly structured 132nt fragment (nt 945-1076). We had also demonstrated that a 68 amino acid peptide derived from the capsid protein retained most of the binding activity of the original protein and have now developed an RNA mobility shift assay with this peptide fused to glutathione-S-transferase. We have used this assay in conjunction with the original assay in which the intact capsid protein was immobilized on nitrocellulose to analyze more extensive deletions in the 132-mer. All of the deletions led to a reduction in binding, but the binding of a 5' 67-mer was enhanced by the addition of nonspecific flanking sequences. This result suggests that the stability of a particular structure within the 132nt sequence may be important for capsid recognition. Images PMID:8139918

  9. Chitosan shifts the fermentation site toward the distal colon and increases the fecal short-chain fatty acids concentrations in rats.

    PubMed

    Yao, Hsien-Tsung; Chiang, Meng-Tsan

    2006-03-01

    Chitosan has been shown to have lipid-lowering effects, but little is known about the effect of chitosan on colonic pH value and short-chain fatty acid (SFCA) concentration. This study was designed to investigate the effect of chitosan on colonic bacterial fermentation and fecal bacterial enzyme activity in rats fed a diet enriched in cholesterol. Male Sprague-Dawley rats were fed a diet containing 5% cellulose (CE) or 5% chitosan (CS) for 15 days. Significantly increased fecal cholesterol and triacylglycerols contents were observed in rats fed the chitosan diet. In addition, lower cecal acetate and butyrate concentrations and higher fecal acetate, propionate, and butyrate concentrations were observed in rats fed the CS diet when compared to those fed the CE diet. Although rats fed with the CS diet exhibited an elevated cecal (cecum with contents) weight and higher pH value, no significant difference in fecal pH value was observed between the CE group and the CS group. Chitosan significantly decreased fecal mucinase and beta-glucuronidase activities. Results from this study show that chitosan may alter fecal bacterial enzyme activities and SCFA concentrations and the beneficial effects of chitosan on the colonic environment may occur in the distal colon in rats.

  10. Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO

    NASA Astrophysics Data System (ADS)

    Meusel, Hannah; Kuhn, Uwe; Reiffs, Andreas; Mallik, Chinmay; Harder, Hartwig; Martinez, Monica; Schuladen, Jan; Bohn, Birger; Parchatka, Uwe; Crowley, John N.; Fischer, Horst; Tomsche, Laura; Novelli, Anna; Hoffmann, Thorsten; Janssen, Ruud H. H.; Hartogensis, Oscar; Pikridas, Michael; Vrekoussis, Mihalis; Bourtsoukidis, Efstratios; Weber, Bettina; Lelieveld, Jos; Williams, Jonathan; Pöschl, Ulrich; Cheng, Yafang; Su, Hang

    2016-11-01

    Characterization of daytime sources of nitrous acid (HONO) is crucial to understand atmospheric oxidation and radical cycling in the planetary boundary layer. HONO and numerous other atmospheric trace constituents were measured on the Mediterranean island of Cyprus during the CYPHEX (CYprus PHotochemical EXperiment) campaign in summer 2014. Average volume mixing ratios of HONO were 35 pptv (±25 pptv) with a HONO / NOx ratio of 0.33, which was considerably higher than reported for most other rural and urban regions. Diel profiles of HONO showed peak values in the late morning (60 ± 28 pptv around 09:00 local time) and persistently high mixing ratios during daytime (45 ± 18 pptv), indicating that the photolytic loss of HONO is compensated by a strong daytime source. Budget analyses revealed unidentified sources producing up to 3.4 × 106 molecules cm-3 s-1 of HONO and up to 2.0 × 107 molecules cm-3 s-1 NO. Under humid conditions (relative humidity > 70 %), the source strengths of HONO and NO exhibited a close linear correlation (R2 = 0.72), suggesting a common source that may be attributable to emissions from microbial communities on soil surfaces.

  11. Identification of second arginine-glycine-aspartic acid motif of ovine vitronectin as the complement C9 binding site and its implication in bacterial infection.

    PubMed

    T, Prasada Rao; T, Lakshmi Prasanth; R, Parvathy; S, Murugavel; Devi, Karuna; Joshi, Paritosh

    2017-02-02

    Vitronectin (Vn), a multifunctional protein of blood and extracellular matrix interacts with complement C9. This interaction may modulate innate immunity. Details of Vn-C9 interaction are limited. An assessment of Vn-C9 interaction was made employing goat homologous system. Vn binding to C9 was observed in three different assays. Using recombinant fragments, the C9 binding was mapped to the N-terminus of Vn. Site directed mutagenesis was performed to alter the second RGD sequence (RGD-2) of Vn. Change of R to G or D to A in RGD-2 caused significant decrease in Vn binding to C9 whereas change of R to G in the first RGD motif (RGD-1) had no effect on Vn binding to C9. These results imply that the RGD-2 of goat Vn is involved in C9 binding. In competitive binding assay, the presence of soluble RGD peptide inhibited Vn binding to C9 whereas heparin had no effect. Vn binding to C9 in terms of bacterial pathogenesis was also evaluated. Serum dependent inhibition of E. coli growth was significantly reverted when Vn or its N-fragment were included in the assay. The C-fragment, which did not support C9 binding, also partly nullified serum dependent inhibition of bacterial growth probably through other serum component(s).

  12. On-site Rapid Detection of Trace Non-volatile Inorganic Explosives by Stand-alone Ion Mobility Spectrometry via Acid-enhanced Evaporization

    PubMed Central

    Peng, Liying; Hua, Lei; Wang, Weiguo; Zhou, Qinghua; Li, Haiyang

    2014-01-01

    New techniques for the field detection of inorganic improvised explosive devices (IEDs) are urgently developed. Although ion mobility spectrometry (IMS) has been proved to be the most effective method for screening organic explosives, it still faces a major challenge to detect inorganic explosives owing to their low volatilities. Herein, we proposed a strategy for detecting trace inorganic explosives by thermal desorption ion mobility spectrometry (TD-IMS) with sample-to-sample analysis time less than 5 s based on in-situ acidification on the sampling swabs. The responses for typical oxidizers in inorganic explosives, such as KNO3, KClO3 and KClO4 were at least enhanced by a factor of 3000 and their limits of detection were found to be subnanogram. The common organic