Broth Microdilution In Vitro Screening: An Easy and Fast Method to Detect New Antifungal Compounds.
de-Souza-Silva, Calliandra Maria; Guilhelmelli, Fernanda; Zamith-Miranda, Daniel; de Oliveira, Marco Antônio; Nosanchuk, Joshua Daniel; Silva-Pereira, Ildinete; Albuquerque, Patrícia
2018-02-14
Fungal infections have become an important medical condition in the last decades, but the number of available antifungal drugs is limited. In this scenario, the search for new antifungal drugs is necessary. The protocol reported here details a method to screen peptides for their antifungal properties. It is based on the broth microdilution susceptibility test from the Clinical and Laboratory Standards Institute (CLSI) M27-A3 guidelines with modifications to suit the research of antimicrobial peptides as potential new antifungals. This protocol describes a functional assay to evaluate the activity of antifungal compounds and may be easily modified to suit any particular class of molecules under investigation. Since the assays are performed in 96-well plates using small volumes, a large-scale screening can be completed in a short amount of time, especially if carried out in an automation setting. This procedure illustrates how a standardized and adjustable clinical protocol can help the bench-work pursuit of new molecules to improve the therapy of fungal diseases.
Leong, Cheryl; Buttafuoco, Antonino; Glatz, Martin; Bosshard, Philipp P
2017-06-01
Malassezia is a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays for Malassezia spp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing of Malassezia that is based on the CLSI and EUCAST assays for Candida and other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of all Malassezia spp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13 Malassezia species to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC 90 values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. All Malassezia spp. were resistant to echinocandins and griseofulvin. Some Malassezia spp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treat Malassezia skin infections. In summary, our assay enables the fast and reliable susceptibility testing of Malassezia spp. with a large panel of different antifungals. Copyright © 2017 American Society for Microbiology.
Leong, Cheryl; Buttafuoco, Antonino
2017-01-01
ABSTRACT Malassezia is a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays for Malassezia spp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing of Malassezia that is based on the CLSI and EUCAST assays for Candida and other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of all Malassezia spp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13 Malassezia species to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC90 values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. All Malassezia spp. were resistant to echinocandins and griseofulvin. Some Malassezia spp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treat Malassezia skin infections. In summary, our assay enables the fast and reliable susceptibility testing of Malassezia spp. with a large panel of different antifungals. PMID:28381607
Waites, Ken B; Duffy, Lynn B; Bébéar, Cécile M; Matlow, Anne; Talkington, Deborah F; Kenny, George E; Totten, Patricia A; Bade, Donald J; Zheng, Xiaotian; Davidson, Maureen K; Shortridge, Virginia D; Watts, Jeffrey L; Brown, Steven D
2012-11-01
An international multilaboratory collaborative study was conducted to develop standard media and consensus methods for the performance and quality control of antimicrobial susceptibility testing of Mycoplasma pneumoniae, Mycoplasma hominis, and Ureaplasma urealyticum using broth microdilution and agar dilution techniques. A reference strain from the American Type Culture Collection was designated for each species, which was to be used for quality control purposes. Repeat testing of replicate samples of each reference strain by participating laboratories utilizing both methods and different lots of media enabled a 3- to 4-dilution MIC range to be established for drugs in several different classes, including tetracyclines, macrolides, ketolides, lincosamides, and fluoroquinolones. This represents the first multilaboratory collaboration to standardize susceptibility testing methods and to designate quality control parameters to ensure accurate and reliable assay results for mycoplasmas and ureaplasmas that infect humans.
Okamoto, Kazuaki; Ikeda, Fumiaki; Kanayama, Shoji; Nakajima, Akiko; Matsumoto, Tatsumi; Ishii, Ritsuko; Umehara, Masatoshi; Gotoh, Naomasa; Hayashi, Naoki; Iyoda, Takako; Matsuzaki, Kaoru; Matsumoto, Satoru; Kawashima, Makoto
2016-06-01
Benzoyl peroxide (BPO), a therapeutic agent for acne vulgaris, was assessed for in vitro antimicrobial activity against Propionibacterium acnes using a novel broth microdilution testing that improved BPO solubility. We searched for a suitable culture medium to measure the minimum inhibitory concentration (MIC) of BPO against P. acnes and finally found the Gifu anaerobic medium (GAM) broth supplemented with 0.1(v/v)% glycerol and 2(v/v)% Tween 80, in which BPO dissolved up to 1250 μg/mL and P. acnes grew well. The MICs and minimum bactericidal concentrations (MBCs) of BPO against 44 clinical isolates of P. acnes collected from Japanese patients with acne vulgaris were determined by our testing method using the supplemented GAM broth. The MICs of BPO were 128 or 256 μg/mL against all isolates of P. acnes regardless of susceptibility to nadifloxacin or clindamycin. The MBCs of BPO were also 128 or 256 μg/mL against the same isolates. Moreover, BPO at the MIC showed a rapid bactericidal activity against P. acnes ATCC11827 in time-kill assay. In conclusion, we could develop a novel assay for the MIC and MBC determinations of BPO against P. acnes, which is reliable and reproducible as a broth microdilution testing and the present results suggest that BPO has a potent bactericidal activity against P. acnes. Copyright © 2016 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Sewell, D L; Pfaller, M A; Barry, A L
1994-01-01
A comparison of the E test, the broth microdilution test, and the reference broth macrodilution susceptibility test of the National Committee for Clinical Laboratory Standards for fluconazole susceptibility testing was performed with 238 clinical isolates of Candida species and Torulopsis (Candida) glabrata. An 80% inhibition endpoint MIC was determined by the reference broth macrodilution method after 48 h of incubation. The MICs obtained by the two study methods were read after 24 and 48 h of incubation. Overall, excellent agreement within 2 doubling dilutions was obtained between the broth microdilution and the broth macrodilution methods for the combined results for all species at both 24 h (93%) and 48 h (94%). The correlation of 24-h MIC endpoints between the E test and the broth macrodilution methods was 37% for T. glabrata, 56% for Candida tropicalis, 93% for Candida albicans, and 90% for other Candida species. The percent agreement at 48 h ranged from 34% for T. glabrata to 97% for Candida species other than C. albicans and C. tropicalis. These initial results support the further evaluation of the E test as an alternative method for fluconazole susceptibility testing of Candida species. PMID:7814531
USDA-ARS?s Scientific Manuscript database
A multi-laboratory broth microdilution method trial was performed to standardize the specialized test conditions required for fish pathogens Flavobacterium columnare and F. pyschrophilum. Nine laboratories tested the quality control (QC) strains Escherichia coli ATCC 25922 and Aeromonas salmonicid...
Akselband, Y; Cabral, C; Shapiro, D S; McGrath, P
2005-08-01
Control of multi-drug-resistant tuberculosis has been hampered by the lack of simple, rapid and sensitive methods for assessing bacterial growth and antimicrobial susceptibility. Due to the increasing incidence and high frequency of mutations, it is unlikely that culture methods will disappear in the foreseeable future. Therefore, the need to modernize methods for rapid detection of viable clinical isolates, at a minimum as a gold standard, will persist. Previously, we confirmed the feasibility of using the Gel Microdrop (GMD) Growth Assay for identifying sub-populations of resistant Mycobacteria by testing different laboratory strains. Briefly, this assay format relies on encapsulating single bacterium in agarose microspheres and identifying clonogenic growth using flow cytometry and fluorescent staining. In this study, we modified the GMD Growth Assay to make it suitable for clinical applications. We demonstrated the effectiveness and safety of this novel approach for detecting drug susceptibility in clinically relevant laboratory strains as well as clinical isolates of Mycobacterium tuberculosis. Correlation between results using the GMD Growth Assay format and results using two well characterized methods (Broth Microdilution MIC and BACTEC 460TB) was 87.5% and 90%, respectively. However, due to the inherent sensitivity of flow cytometry and the ability to detect small (<1%) sub-populations of resistant mycobacteria, the GMD Growth Assay identified more cases of drug resistance. Using 4 clinically relevant mycobacterial strains, we assessed susceptibility to primary anti-tuberculosis drugs using both the Broth Microdilution MIC method and the GMD Growth Assay. We performed 24 tests on isoniazid-resistant BCG, Mycobacterium tuberculosis H37Ra and Mycobacterium avium strains. The Broth Microdilution MIC method identified 7 cases (29.1%) of resistance to INH and EMB compared to the GMD Growth Assay which identified resistance in 10 cases (41.6%); in 3 cases (12.5%), resistance to INH and EMB was detected only with the GMD Growth Assay. In addition, using 20 Mycobacterium tuberculosis clinical isolates, we compared results using BACTEC 460TB method performed by collaborators and the GMD Growth Assay. Eight of 20 (40%) clinical isolates, which were not identified as drug-resistant using the conventional BACTEC 460TB method, were resistant to 1, 2, or 3 different concentrations of drugs using the GMD Growth Assay (13 cases of 140 experiments). In one case (isolate 1879), resistance to 10.0 microg/ml of STR detected using BACTEC 460TB method was not confirmed by the GMD Growth Assay. Thus, the overall agreement between these methods was 90% (14 discrepant results of 140 experiments). These data demonstrate that the GMD Growth Assay is an accurate and sensitive method for rapid susceptibility testing of Mycobacterium tuberculosis for use in clinical reference laboratory settings.
Boorn, K L; Khor, Y-Y; Sweetman, E; Tan, F; Heard, T A; Hammer, K A
2010-05-01
The aim of this study was to determine the spectrum of antimicrobial activity of 11 samples of stingless bee honey compared to medicinal, table and artificial honeys. Activity was assessed by agar diffusion, agar dilution, broth microdilution and time-kill viability assays. By agar dilution, minimum inhibitory concentration (MIC) ranges were 4% to >10% (w/v) for Gram-positive bacteria, 6% to >16% (w/v) for Gram-negative bacteria and 6% to >10% (w/v) for Candida spp. By broth microdilution, all organisms with the exception of Candida albicans and Candida glabrata were inhibited at
Rechenchoski, Daniele Zendrini; Dambrozio, Angélica Marim Lopes; Vivan, Ana Carolina Polano; Schuroff, Paulo Alfonso; Burgos, Tatiane das Neves; Pelisson, Marsileni; Perugini, Marcia Regina Eches; Vespero, Eliana Carolina
The production of KPC (Klebsiella pneumoniae carbapenemase) is the major mechanism of resistance to carbapenem agents in enterobacterias. In this context, forty KPC-producing Enterobacter spp. clinical isolates were studied. It was evaluated the activity of antimicrobial agents: polymyxin B, tigecycline, ertapenem, imipenem and meropenem, and was performed a comparison of the methodologies used to determine the susceptibility: broth microdilution, Etest ® (bioMérieux), Vitek 2 ® automated system (bioMérieux) and disc diffusion. It was calculated the minimum inhibitory concentration (MIC) for each antimicrobial and polymyxin B showed the lowest concentrations for broth microdilution. Errors also were calculated among the techniques, tigecycline and ertapenem were the antibiotics with the largest and the lower number of discrepancies, respectively. Moreover, Vitek 2 ® automated system was the method most similar compared to the broth microdilution. Therefore, is important to evaluate the performance of new methods in comparison to the reference method, broth microdilution. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Proposed quality control guidelines for antimicrobial susceptibility tests using tilmicosin.
Shryock, T R; White, D W; Werner, C S; Staples, J M
1995-01-01
Quality control guidelines for tilmicosin, a novel veterinary-use-only macrolide, were developed in a multi-laboratory study according to established National Committee for Clinical Laboratory Standards (NCCLS) procedures (M23-T2). Tilmicosin was incorporated into Sensititre plates for broth microdilution endpoint testing and into two lots of 15-micrograms disks for Kirby-Bauer agar disk diffusion testing. One common lot and five unique lots of Mueller-Hinton media were used. (Broth was cation adjusted, and agar was supplemented with 5% defibrinated sheep blood.) Bacteria used for reference strains included Pasteurella haemolytica 128K, Pasteurella multocida ATCC 43137, and Staphylococcus aureus ATCC 29213 (microdilution) and ATCC 25923 (disk). Replicate tests were conducted. Disk diffusion and broth microdilution quality control ranges are proposed. PMID:7714188
Arhin, Francis F.; Sarmiento, Ingrid; Belley, Adam; McKay, Geoffrey A.; Draghi, Deborah C.; Grover, Parveen; Sahm, Daniel F.; Parr, Thomas R.; Moeck, Gregory
2008-01-01
Oritavancin, a semisynthetic lipoglycopeptide with activity against gram-positive bacteria, has multiple mechanisms of action, including the inhibition of cell wall synthesis and the perturbation of the membrane potential. Approved guidelines for broth microdilution MIC assays with dalbavancin, another lipoglycopeptide, require inclusion of 0.002% polysorbate 80. To investigate the potential impact of polysorbate 80 on oritavancin susceptibility assays, we quantified the recovery of [14C]oritavancin from susceptibility assay plates with and without polysorbate 80 and examined the effect of the presence of polysorbate 80 on the oritavancin MICs for 301 clinical isolates from the genera Staphylococcus, Enterococcus, and Streptococcus. In the absence of polysorbate 80, [14C]oritavancin was rapidly lost from solution in susceptibility assay test plates: 9% of the input drug was recovered in broth at 1 h when [14C]oritavancin was tested at 1 μg/ml. Furthermore, proportionately greater losses were observed at lower oritavancin concentrations, suggesting saturable binding of oritavancin to surfaces. The inclusion of 0.002% polysorbate 80 or 2% lysed horse blood permitted the recovery of 80 to 100% [14C]oritavancin at 24 h for all drug concentrations tested. Concordantly, oritavancin MIC90s for streptococcal isolates, as determined in medium containing 2% lysed horse blood, were identical with and without polysorbate 80. In stark contrast, polysorbate 80 reduced the oritavancin MIC90s by 16- to 32-fold for clinical isolates of enterococci and staphylococci, which are typically cultured without blood. The results presented here provide evidence that the MIC data for oritavancin in the current literature significantly underestimate the potency of oritavancin in vitro. Moreover, the combination of data from MIC and [14C]oritavancin recovery studies supports the revision of the oritavancin broth microdilution method to include polysorbate 80 throughout the assay. PMID:18299406
Chalker, Victoria J.; Jones, Lucy C.; Maxwell, Nicola C.; Spiller, O. Brad
2015-01-01
Ureaplasma spp. are associated with numerous clinical sequelae with treatment options being limited due to patient and pathogen factors. This report examines the prevalence and mechanisms of antibiotic resistance among clinical strains isolated from 95 neonates, 32 women attending a sexual health clinic, and 3 patients under investigation for immunological disorders, between 2007 and 2013 in England and Wales. MICs were determined by using broth microdilution assays, and a subset of isolates were compared using the broth microdilution method and the Mycoplasma IST2 assay. The underlying molecular mechanisms for resistance were determined for all resistant isolates. Three isolates carried the tet(M) tetracycline resistance gene (2.3%; confidence interval [CI], 0.49 to 6.86%); two isolates were ciprofloxacin resistant (1.5%; CI, 0.07 to 5.79%) but sensitive to levofloxacin and moxifloxacin, while no resistance was seen to any macrolides tested. The MIC values for chloramphenicol were universally low (2 μg/ml), while inherently high-level MIC values for gentamicin were seen (44 to 66 μg/ml). The Mycoplasma IST2 assay identified a number of false positives for ciprofloxacin resistance, as the method does not conform to international testing guidelines. While antibiotic resistance among Ureaplasma isolates remains low, continued surveillance is essential to monitor trends and threats from importation of resistant clones. PMID:26459899
Beeton, Michael L; Chalker, Victoria J; Jones, Lucy C; Maxwell, Nicola C; Spiller, O Brad
2016-01-01
Ureaplasma spp. are associated with numerous clinical sequelae with treatment options being limited due to patient and pathogen factors. This report examines the prevalence and mechanisms of antibiotic resistance among clinical strains isolated from 95 neonates, 32 women attending a sexual health clinic, and 3 patients under investigation for immunological disorders, between 2007 and 2013 in England and Wales. MICs were determined by using broth microdilution assays, and a subset of isolates were compared using the broth microdilution method and the Mycoplasma IST2 assay. The underlying molecular mechanisms for resistance were determined for all resistant isolates. Three isolates carried the tet(M) tetracycline resistance gene (2.3%; confidence interval [CI], 0.49 to 6.86%); two isolates were ciprofloxacin resistant (1.5%; CI, 0.07 to 5.79%) but sensitive to levofloxacin and moxifloxacin, while no resistance was seen to any macrolides tested. The MIC values for chloramphenicol were universally low (2 μg/ml), while inherently high-level MIC values for gentamicin were seen (44 to 66 μg/ml). The Mycoplasma IST2 assay identified a number of false positives for ciprofloxacin resistance, as the method does not conform to international testing guidelines. While antibiotic resistance among Ureaplasma isolates remains low, continued surveillance is essential to monitor trends and threats from importation of resistant clones. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Heine, Henry S.; England, Marilyn J.; Waag, David M.; Byrne, W. Russell
2001-01-01
In vitro susceptibilities to 28 antibiotics were determined for 11 strains of Burkholderia mallei by the broth microdilution method. The B. mallei strains demonstrated susceptibility to aminoglycosides, macrolides, quinolones, doxycycline, piperacillin, ceftazidime, and imipenem. For comparison and evaluation, 17 antibiotic susceptibilities were also determined by the E-test. E-test values were always lower than the broth dilution values. Establishing and comparing antibiotic susceptibilities of specific B. mallei strains will provide reference information for assessing new antibiotic agents. PMID:11408233
Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali
2013-09-01
Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries.
Bulik, Catharine C.; Fauntleroy, Kathy A.; Jenkins, Stephen G.; Abuali, Mayssa; LaBombardi, Vincent J.; Nicolau, David P.; Kuti, Joseph L.
2010-01-01
We describe the levels of agreement between broth microdilution, Etest, Vitek 2, Sensititre, and MicroScan methods to accurately define the meropenem MIC and categorical interpretation of susceptibility against carbapenemase-producing Klebsiella pneumoniae (KPC). A total of 46 clinical K. pneumoniae isolates with KPC genotypes, all modified Hodge test and blaKPC positive, collected from two hospitals in NY were included. Results obtained by each method were compared with those from broth microdilution (the reference method), and agreement was assessed based on MICs and Clinical Laboratory Standards Institute (CLSI) interpretative criteria using 2010 susceptibility breakpoints. Based on broth microdilution, 0%, 2.2%, and 97.8% of the KPC isolates were classified as susceptible, intermediate, and resistant to meropenem, respectively. Results from MicroScan demonstrated the most agreement with those from broth microdilution, with 95.6% agreement based on the MIC and 2.2% classified as minor errors, and no major or very major errors. Etest demonstrated 82.6% agreement with broth microdilution MICs, a very major error rate of 2.2%, and a minor error rate of 2.2%. Vitek 2 MIC agreement was 30.4%, with a 23.9% very major error rate and a 39.1% minor error rate. Sensititre demonstrated MIC agreement for 26.1% of isolates, with a 3% very major error rate and a 26.1% minor error rate. Application of FDA breakpoints had little effect on minor error rates but increased very major error rates to 58.7% for Vitek 2 and Sensititre. Meropenem MIC results and categorical interpretations for carbapenemase-producing K. pneumoniae differ by methodology. Confirmation of testing results is encouraged when an accurate MIC is required for antibiotic dosing optimization. PMID:20484603
Aggarwal, P; Kashyap, B
2017-06-01
Rampant use of fluconazole in Candida infections has led to predominance of less susceptible non-albicans Candida over Candida albicans. The aim of the study was to determine if zone diameters around fluconazole disk can be used to estimate the minimum inhibitory concentration (MIC) for clinical isolates of Candida species and vice versa. Categorical agreement between the Clinical & Laboratory Standards Institute (CLSI) recommended disk diffusion and CLSI broth microdilution method was sought for. Antifungal susceptibility testing by disk diffusion and Broth microdilution was done as per CLSI document M44-S3 and CLSI document M27-S4 for Candida isolates respectively. Regression analysis correlating zone diameters to MIC value was done. Pearson's correlation coefficient was calculated to determine correlation between disk zone diameters and MICs. Candida albicans (33.3%) was clearly outnumbered by other non-albicans species predominantly Candida tropicalis (42.5%) and Candida glabrata (18.4%). Ten percent of the strains were resistant to fluconazole by disk diffusion and 13% by broth microdilution. MIC range for Candida albicans and Candida tropicalis ranged from≤0.25-64μg/ml while that of Candida glabrata ranged from≤0.25-128μg/ml. Categorical agreement between disk diffusion and broth microdilution was 86.8%. Pearson's coefficient of correlation was -0.5975 indicating moderate negative correlation between the two variables. Zone sizes can be used to estimate the MIC values, although with limited accuracy. There should be a constant effort to upgrade the guidelines in view of new clinical data, and laboratories should make an active effort to incorporate them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Smith, Kenneth P; Kirby, James E
2016-09-01
With rapid emergence of multidrug-resistant bacteria, there is often a need to perform susceptibility testing for less commonly used or newer antimicrobial agents. Such testing can often be performed only by using labor-intensive, manual dilution methods and lies outside the capacity of most clinical labs, necessitating reference laboratory testing and thereby delaying the availability of susceptibility data. To address the compelling clinical need for microbiology laboratories to perform such testing in-house, we explored a novel, automated, at-will broth microdilution-based susceptibility testing platform. Specifically, we used the modified inkjet printer technology in the HP D300 digital dispensing system to dispense, directly from stock solutions into a 384-well plate, the 2-fold serial dilution series required for broth microdilution testing. This technology was combined with automated absorbance readings and data analysis to determine MICs. Performance was verified by testing members of the Enterobacteriaceae for susceptibility to ampicillin, cefazolin, ciprofloxacin, colistin, gentamicin, meropenem, and tetracycline in comparison to the results obtained with a broth microdilution reference standard. In precision studies, essential and categorical agreement levels were 96.8% and 98.3%, respectively. Furthermore, significantly fewer D300-based measurements were outside ±1 dilution from the modal MIC, suggesting enhanced reproducibility. In accuracy studies performed using a panel of 80 curated clinical isolates, rates of essential and categorical agreement and very major, major, and minor errors were 94%, 96.6%, 0%, 0%, and 3.4%, respectively. Based on these promising initial results, it is anticipated that the D300-based methodology will enable hospital-based clinical microbiology laboratories to perform at-will broth microdilution testing of antimicrobials and to address a critical testing gap. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Susceptibility of Oral Bacteria to an Antimicrobial Decapeptide
2003-01-01
coccus mitis ATCC 15913, Streptococcus oralis ATCC 35037T, Lactoba- cillus salivarius ATCC 29602, Lactobacillus acidophilus ATCC 43571 and...exhibited an ED99 (the dose at which 99% killing was observed after 15 min at 37 8C) of 6.25 gml1 against selected strains of Lactobacillus salivarius...broth microdilution assay. Growth of the cariogenic bacteria S.mutansATCC 25175T, S. sobrinus and L. acidophilus was also inhibited effectively by Fig
Maurer, Elisabeth; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia
2014-01-01
The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. PMID:25451049
Lima, Luciana Alves Rodrigues dos Santos; Johann, Susana; Cisalpino, Patrícia Silva; Pimenta, Lúcia Pinheiro Santos; Boaventura, Maria Amélia Diamantino
2011-01-01
Fatty acids are abundant in vegetable oils. They are known to have antibacterial and antifungal properties. Antifungal susceptibility was evaluated by broth microdilution assay following CLSI (formerly the NCCLS) guidelines against 16 fungal strains of clinical interest. In this work, fatty acid methyl esters (FAME) was able to inhibit 12 clinical strains of the pathogenic fungus Paracoccidioides brasiliensis and were also active in the bioautographic assay against Cladosporium sphaerospermum. FAME was a more potent antifungal than trimethoprim-sulfamethoxazole against P. brasiliensis under the experimental conditions tested.
Moradian, Hamid; Bazargani, Abdollah; Rafiee, Azade; Nazarialam, Ali
2013-01-01
Background and objectives Dental caries is still remained as a major health problem. This problem has created a new interest to search for new antimicrobial agents from various sources including medicinal plants. Since limited data is available so far regarding the antibacterial effect of Coriandrum sativum seed and Dentol Drop against Streptococcus mutans, this study aims to assess this activity. Materials and Methods This experimental study was conducted in Shiraz University of Medical Sciences. In vitro comparison of antimicrobial activity of aqueous decoction of Coriandrum sativum seed and Dentol drop with chlorhexidine against Streptococcus mutans was evaluated using disk diffusion and broth microdilution assays. Positive and negative controls were considered. The data was statistically analyzed by applying Kruskal-Wallis and Tukey post-hoc test to compare the groups using SPSS software (version 17). Results Dentol drop showed a remarkable antibacterial activity, in comparison with chlorhexidine, against S. mutans in the disk diffusion (p value = 0.005), and broth microdilution assays (p value = 0.0001). Based on the results of this study, Coriandrum sativum seed did not posses any antibacterial property. Conclusion Coriandrum sativum seed showed no anti-Streptococcus mutans activity. Dentol drop exhibited a remarkable antibacterial activity against S. mutans when tested in vitro. Dentol drop can be further studied as a preventive measure for dental caries. PMID:24475330
Milici, Maria Eleonora; Maida, Carmelo Massimo; Spreghini, Elisabetta; Ravazzolo, Barbara; Oliveri, Salvatore; Scalise, Giorgio; Barchiesi, Francesco
2007-01-01
We compared the caspofungin (CAS) susceptibility testing results generated by the disk diffusion (DD) assay with the results of the Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BD) reference method for 106 yeast isolates. The isolates represented 11 different fungal species, including Candida albicans (n = 50), C. parapsilosis (n = 10), C. glabrata (n = 10), C. tropicalis (n = 10), C. guillermondii (n = 6), C. rugosa (n = 5), C. krusei (n = 5), C. kefyr (n = 2), C. pelliculosa (n = 2), Saccharomyces cerevisiae (n = 3), and Geotrichum candidum (n = 3). The DD assay was performed in supplemented Mueller-Hinton agar with CAS, which was tested at concentrations of 2, 10, and 25 μg per disk. MICs and inhibition zone diameters were evaluated at 24 and 48 h. In general, the results obtained by the DD assay correlated well with those obtained by the BD method. In particular, a significant correlation between methods was observed when CAS was used at concentration of 2 μg/disk at a reading time of either 24 or 48 h. PMID:17728477
Simar, Shelby; Sibley, Diane; Ashcraft, Deborah; Pankey, George
2017-10-01
Polymyxin resistance is an increasing problem worldwide. Currently, determining susceptibility to polymyxins is problematic and lengthy. Polymyxins diffuse poorly into agar, potentially giving inaccurate disk diffusion and Etest results. A rapid screening test (2 h) for the detection of polymyxin resistance in Enterobacteriaceae , developed by P. Nordmann and L. Poirel (rapid polymyxin NP test) in 2016, detects glucose metabolization in the presence of polymyxin E (PE) and PB via pH-induced color change. The sensitivity and specificity were 99.3 and 95.4%, respectively, with results obtained in ≤2 h. Our goal was to evaluate this test using PB against larger numbers of Enterobacter A total of 143 nonduplicate Enterobacter isolates (102 E. cloacae complex, 41 E. aerogenes ) were tested, including 136 collected from Ochsner Health System patients from March to May 2016 and 7 previously determined PB-resistant E. cloacae isolates from JMI Laboratories. MICs were determined via broth microdilution. For the rapid polymyxin NP test, a color change from orange to yellow is positive; a weak/no color change is deemed negative after 4 h. Of 143 Enterobacter isolates, 25 were determined to be PB resistant by broth microdilution (MIC > 2 μg/ml), including all 7 JMI isolates. Of these 25, 7 were positive by the rapid polymyxin NP test (included 3/7 JMI isolates). All 118 isolates determined to be PB susceptible by broth microdilution were NP test negative. The sensitivity and specificity for the rapid polymyxin NP test were 25 and 100%, respectively, compared to broth microdilution. Although the rapid polymyxin NP test is a much faster method (2 to 4 h) for polymyxin resistance determination compared to broth microdilution (16 to 20 h), our study indicates that it may be subject to limitations when testing Enterobacter . Copyright © 2017 American Society for Microbiology.
Maurer, Elisabeth; Binder, Ulrike; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia
2015-02-01
The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Holliday, Nicole M.; Rhomberg, Paul R.
2014-01-01
Tedizolid, a novel oxazolidinone antibacterial with potent activity against a wide range of Gram-positive pathogens, was recently approved by regulatory authorities for the treatment of acute bacterial skin and skin structure infections. A commercial broth microdilution device (Sensititre; Thermo Fisher Scientific) was validated using 285 selected Gram-positive isolates, and the device was documented to have 100.0% essential and categorical agreement with reference MIC results and excellent MIC endpoint reproducibility. PMID:25411167
Brown-Elliott, Barbara A.; Killingley, Jessica; Vasireddy, Sruthi; Bridge, Linda
2016-01-01
We compared the activities of the carbapenems ertapenem, meropenem, and imipenem against 180 isolates of rapidly growing mycobacteria (RGM) and 170 isolates of Nocardia using the Clinical and Laboratory Standards Institute (CLSI) guidelines. A subset of isolates was tested using the Etest. The rate of susceptibility to ertapenem and meropenem was limited and less than that to imipenem for the RGM. Analysis of major and minor discrepancies revealed that >90% of the isolates of Nocardia had higher MICs by the broth microdilution method than by Etest, in contrast to the lower broth microdilution MICs seen for >80% of the RGM. Imipenem remains the most active carbapenem against RGM, including Mycobacterium abscessus subsp. abscessus. For Nocardia, imipenem was significantly more active only against Nocardia farcinica. Although there may be utility in testing the activities of the newer carbapenems against Nocardia, their activities against the RGM should not be routinely tested. Testing by Etest is not recommended by the CLSI. PMID:27053677
Antifungal susceptibility testing of Malassezia yeast: comparison of two different methodologies.
Rojas, Florencia D; Córdoba, Susana B; de Los Ángeles Sosa, María; Zalazar, Laura C; Fernández, Mariana S; Cattana, María E; Alegre, Liliana R; Carrillo-Muñoz, Alfonso J; Giusiano, Gustavo E
2017-02-01
All Malassezia species are lipophilic; thus, modifications are required in susceptibility testing methods to ensure their growth. Antifungal susceptibility of Malassezia species using agar and broth dilution methods has been studied. Currently, few tests using disc diffusion methods are being performed. The aim was to evaluate the in vitro susceptibility of Malassezia yeast against antifungal agents using broth microdilution and disc diffusion methods, then to compare both methodologies. Fifty Malassezia isolates were studied. Microdilution method was performed as described in reference document and agar diffusion test was performed using antifungal tablets and discs. To support growth, culture media were supplemented. To correlate methods, linear regression analysis and categorical agreement was determined. The strongest linear association was observed for fluconazole and miconazole. The highest agreement between both methods was observed for itraconazole and voriconazole and the lowest for amphotericin B and fluconazole. Although modifications made to disc diffusion method allowed to obtain susceptibility data for Malassezia yeast, variables cannot be associated through a linear correlation model, indicating that inhibition zone values cannot predict MIC value. According to the results, disc diffusion assay may not represent an alternative to determine antifungal susceptibility of Malassezia yeast. © 2016 Blackwell Verlag GmbH.
Pillar, C M; Stoneburner, A; Shinabarger, D L; Abbeloos, E; Goby, L; Bradley, Andrew J
2014-10-01
Dry cow therapy is an important part of mastitis control. This therapy typically consists of an antibiotic or antibiotics administered at a single dose by intramammary infusion at dry off to treat or prevent infection by prevalent mastitis pathogens. A combination dry cow therapy consisting of the active components penicillin and framycetin is currently used in several countries. Despite its use, standardized methods for the susceptibility testing of this combination against mastitis pathogens have not been established. In this study, which used Clinical and Laboratory Standards Institute methodology, preliminary interpretive criteria for the broth microdilution minimum inhibitory concentration (MIC) testing of mastitis pathogens to penicillin combined with framycetin (2:1 wt/wt) were established based on the amount of drug achieved and maintained postadministration in the udder. Based on resulting MIC distributions of recent veterinary field isolates and a subset of isolates preselected for resistance to β-lactams or aminoglycosides and concentrations achieved postadministration, criteria for broth microdilution testing of the combination (susceptible, intermediate, resistant in micrograms per milliliter) were set as follows: Escherichia coli ≤8/4, 16/8, ≥32/16; Staphylococcus spp. ≤2/1, 4/2-8/4, >16/8; Streptococcus uberis and Streptococcus dysgalactiae <0.25/0.12, 0.5/0.25-2/1, >4/2. A disk diffusion test using disks containing 100 μg of framycetin and 10 IU of penicillin was also developed, and preliminary interpretive criteria (susceptible, intermediate, resistant in millimeters) were set based on correlation to broth MIC values and the minimization of interpretive errors between isolates tested concurrently by broth microdilution and disk diffusion as follows: E. coli ≥18, 16-17, ≤15; Staphylococcus spp. ≥21, 18-20, ≤17; Strep. uberis and Strep. dysgalactiae ≥21, 19-20, ≤18. In addition, ranges for the quality control of the testing of this combination by both broth microdilution and disk diffusion are provided. Based on these criteria and recent veterinary mastitis isolates, 96.0/96.8% of E. coli, 93.7/89.1% of Staph. aureus, 94.6/96.4% coagulase-negative staphylococci, 94.5/97.0% of Strep. uberis, and 96.7/100.0% Strep. dysgalactiae were susceptible to the combination by broth microdilution or disk diffusion, respectively. The availability of these methods will allow for the susceptibility testing of clinical isolates in the field and will also provide a way to monitor for resistance development as this combination is used going forward. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Jones, Ronald N; Holliday, Nicole M; Rhomberg, Paul R
2015-02-01
Tedizolid, a novel oxazolidinone antibacterial with potent activity against a wide range of Gram-positive pathogens, was recently approved by regulatory authorities for the treatment of acute bacterial skin and skin structure infections. A commercial broth microdilution device (Sensititre; Thermo Fisher Scientific) was validated using 285 selected Gram-positive isolates, and the device was documented to have 100.0% essential and categorical agreement with reference MIC results and excellent MIC endpoint reproducibility. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Turnbull, L.; Brosnikoff, C.; Cloke, J.
2012-01-01
The M.I.C. Evaluator strip (Thermo Fisher Scientific, Basingstoke, United Kingdom) uses a methodology similar to that of Etest. In this first assessment of the M.I.C. Evaluator device, 409 strains of aerobic Gram-positive bacteria (staphylococci, streptococci, and enterococci) and 325 strains of Enterobacteriaceae, Pseudomonas species, and Acinetobacter species were tested by M.I.C. Evaluator strip, Etest, and broth microdilution as a reference standard. The Gram-positive bacteria included staphylococci (methicillin-resistant Staphylococcus aureus, methicillin-susceptible S. aureus, and coagulase-negative staphylococci), Streptococcus pneumoniae, beta-hemolytic streptococci and viridians group strains, vancomycin-resistant enterococci, and other enterococci. The Gram-negative bacteria included 250 strains of 60 Enterobacteriaceae species plus 50 Pseudomonas and 25 Acinetobacter species. A total of 14 antimicrobial agents (depending on the species) were included. The same methodology and reading format were used for M.I.C. Evaluator strips and Etest. Broth microdilution methodology was performed according to CLSI document M07-A8. For the clinical strains, >95% of results were plus or minus one doubling dilution for all species. There were fewer than 5% minor errors, fewer than 3% major errors, and fewer than 1% very major errors. M.I.C. Evaluator strips and Etest often reported higher MICs than the reference broth microdilution method. The M.I.C. Evaluator strips provided results comparable to those of the predicate Etest device and are of value for the accurate testing of MICs for these important pathogens. PMID:22238441
Brown-Elliott, Barbara A; Killingley, Jessica; Vasireddy, Sruthi; Bridge, Linda; Wallace, Richard J
2016-06-01
We compared the activities of the carbapenems ertapenem, meropenem, and imipenem against 180 isolates of rapidly growing mycobacteria (RGM) and 170 isolates of Nocardia using the Clinical and Laboratory Standards Institute (CLSI) guidelines. A subset of isolates was tested using the Etest. The rate of susceptibility to ertapenem and meropenem was limited and less than that to imipenem for the RGM. Analysis of major and minor discrepancies revealed that >90% of the isolates of Nocardia had higher MICs by the broth microdilution method than by Etest, in contrast to the lower broth microdilution MICs seen for >80% of the RGM. Imipenem remains the most active carbapenem against RGM, including Mycobacterium abscessus subsp. abscessus For Nocardia, imipenem was significantly more active only against Nocardia farcinica Although there may be utility in testing the activities of the newer carbapenems against Nocardia, their activities against the RGM should not be routinely tested. Testing by Etest is not recommended by the CLSI. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Tanner, A C; Erickson, B Z; Ross, R F
1993-09-01
A broth microdilution technique is described for determining the antimicrobial susceptibility of Mycoplasma hyopneumoniae, using commercially prepared Sensititre plates. Twenty-five field isolates and two reference strains (J & 232), were tested against seven antimicrobials. Field isolates were tested in duplicate and reference strains, four times to estimate reproducibility. Ninety-seven percent of the duplicate MIC results for the field isolates were in agreement, or within one log2 dilution. Similar results were obtained with the reference strains. The isolates were susceptible to lincomycin-spectinomycin, tylosin and oxytetracycline or resistant to amoxycillin, apramycin and erythromycin. Susceptibility to furaltadone varied. This method retains the accuracy and reproducibility of broth MIC determinations, while avoiding the lengthy preparation of antimicrobial dilutions normally associated with more traditional methods.
Conville, Patricia S; Brown-Elliott, Barbara A; Wallace, Richard J; Witebsky, Frank G; Koziol, Deloris; Hall, Geraldine S; Killian, Scott B; Knapp, Cindy C; Warshauer, David; Van, Tam; Wengenack, Nancy L; Deml, Sharon; Woods, Gail L
2012-04-01
Antimicrobial susceptibility testing (AST) of clinical isolates of Nocardia is recommended to detect resistance to commonly used antimicrobial agents; such testing is complicated by difficulties in inoculum preparation and test interpretation. In this study, six laboratories performed repetitive broth microdilution testing on single strains of Nocardia brasiliensis, Nocardia cyriacigeorgica, Nocardia farcinica, Nocardia nova, and Nocardia wallacei. For each isolate, a total of 30 microdilution panels from three different lots were tested at most sites. The goal of the study was to determine the inter- and intralaboratory reproducibility of susceptibility testing of this group of isolates. Acceptable agreement (>90% agreement at ±1 dilution of the MIC mode) was found for amikacin, ciprofloxacin, clarithromycin, and moxifloxacin. After eliminating MIC values from single laboratories whose results showed the greatest deviation from those of the remaining laboratories, acceptable agreement was also found for amoxicillin-clavulanic acid, linezolid, minocycline, and tobramycin. Results showed unsatisfactory reproducibility of broth microdilution testing of ceftriaxone with N. cyriacigeorgica and N. wallacei, tigecycline with N. brasiliensis and N. cyriacigeorgica, and sulfonamides with N. farcinica and N. wallacei. N. nova ATCC BAA-2227 is proposed as a quality control organism for AST of Nocardia sp., and the use of a disk diffusion test for sulfisoxazole is proposed as a check of the adequacy of the inoculum and to confirm sulfonamide MIC results.
Validation of EUCAST zone diameter breakpoints against reference broth microdilution.
Bengtsson, S; Bjelkenbrant, C; Kahlmeter, G
2014-06-01
The European Committee on Antimicrobial Susceptibility Testing (EUCAST) began harmonizing clinical breakpoints in Europe 2002. In 2009, work to develop a disc diffusion method began and the first disc diffusion breakpoints calibrated to EUCAST clinical MIC breakpoints were published in December 2009. In this study we validated EUCAST clinical zone diameter breakpoints against the International Standard Organization (ISO) reference broth microdilution. A collection of 544 isolates (238 Gram-negative and 306 Gram-positive) were tested against a panel of antimicrobial agents. Antimicrobial susceptibility testing was performed with broth microdilution as described by ISO and disc diffusion in accordance with EUCAST methodology. Inhibition zone diameters and MIC values were interpreted and categorized (S, I and R) according to EUCAST clinical breakpoint table version 2.0. Categorical agreement (CA) as well as minor (mD), major (MD) and very major (VMD) discrepancies were determined. There was in general good correlation between susceptibility test results obtained with disc diffusion and broth microdilution. Overall CA was 97.3% for all combinations of organisms and antimicrobial agents (n = 5231) and the overall discrepancy rates were 110 (2.1%) mD, 24 (0.5%) MD and 7 (0.1%) VMD. The overall CA for Gram-positive and Gram-negative organisms were 98.7% (2346 tests) and 96.2% (2942 tests), respectively. Seven VMD were observed, five for Gram-positive organisms (coagulase negative staphylococci (n = 2) and Staphylococcus aureus (n = 3)) and two for Gram-negative organisms (Pseudomonas aeruginosa). Minor discrepancies were mainly observed in Gram-negatives and were related to different antimicrobial agents and species. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.
Fritsche, T R; Moet, G J; Jones, R N
2004-09-01
NVP PDF-713 (LBM 415) is a peptide deformylase inhibitor being progressed into clinical trials. Dry-form broth microdilution panels of NVP PDF-713 were compared to reference MIC panels of 552 recent clinical isolates. Most (99.2%) dry-form MIC results were within +/- 1 log(2) dilution of the reference panel MICs. Of the bacteria tested, Streptococcus pneumoniae and Haemophilus influenzae showed a bias towards higher and lower MICs, respectively. Same-day and between-day reproducibility tests showed that 98.9% and 96.7% of MIC values, respectively, were within +/- 1 log(2) dilution step, thereby demonstrating a high degree of reliability of the dry-form MIC product for clinical studies.
Lam, Clare S. K.; Ngan, Antonio H. Y.; Wu, Alan K. L.; Tsang, Dominic N. C.; Tse, Cindy W. S.; Que, Tak-Lun; Tang, Bone S. F.
2016-01-01
ABSTRACT We determined the susceptibilities of 57 Talaromyces marneffei strains to anidulafungin, itraconazole, voriconazole, and posaconazole with MICs of 2 to 8, 0.002 to 0.004, 0.016 to 0.063, and 0.001 to 0.002 μg/ml by broth microdilution and >32, ≤0.002 to 0.008, ≤0.002 to 0.008, and ≤0.002 μg/ml by Etest, respectively, at yeast phase; MICs at mycelial phase for anidulafungin and posaconazole were 1 to 2 and 0.004 to 0.063 μg/ml, respectively. The results suggest promising activities of posaconazole. Etest can be used for testing of azoles against T. marneffei. PMID:28031205
Screening Togolese medicinal plants for few pharmacological properties
Karou, Simplice D.; Tchacondo, Tchadjobo; Tchibozo, Micheline Agassounon Djikpo; Anani, Kokou; Ouattara, Lassina; Simpore, Jacques; de Souza, Comlan
2012-01-01
Background: Terminalia macroptera Guill. et Perr. (Combretaceae), Sida alba L. (Malvaceae), Prosopis africana Guill et Perr. Taub. (Mimosaceae), Bridelia ferruginea Benth. (Euphorbiaceae), and Vetiveria nigritana Stapf. (Asteraceae) are traditionally used in Togolese folk medicine to treat several diseases including microbial infections. Objective: This study aimed to investigate the antimicrobial, antioxidant, and hemolytic properties of the crude extracts of the above-mentioned plants. Materials and Methods: The antimicrobial and the antioxidant activities were assayed using the NCCLS microdilution method and the DPPH free radical scavenging, respectively. Human A+ red blood cells were used to perform the hemolytic assay. Phenolics were further quantified in the extracts using spectrophotometric methods. Results: Minimal inhibitory concentrations in the range of 230-1800 μg/ml were recorded in the NCCLS broth microdilution for both bacterial and fungal strains with methanol extracts. The DPPH radical scavenging assay yielded interesting antioxidant activities of the extracts of P. africana and T. macroptera (IC50 values of 0.003 ± 0.00 μg/ml and 0.05 ± 0.03 μg/ml, respectively). These activities were positively correlated with the total phenolic contents and negatively correlated with the proanthocyanidin content of the extracts. The hemolytic assay revealed that great hemolysis occurred with the methanol extracts of T. macroptera, S. longepedunculata, and B. ferruginea. Conclusion: These results support in part the use of the selected plants in the treatment of microbial infections. In addition, the plant showed an interesting antioxidant activity that could be useful in the management of oxidative stress. PMID:22518084
Screening Togolese medicinal plants for few pharmacological properties.
Karou, Simplice D; Tchacondo, Tchadjobo; Tchibozo, Micheline Agassounon Djikpo; Anani, Kokou; Ouattara, Lassina; Simpore, Jacques; de Souza, Comlan
2012-04-01
Terminalia macroptera Guill. et Perr. (Combretaceae), Sida alba L. (Malvaceae), Prosopis africana Guill et Perr. Taub. (Mimosaceae), Bridelia ferruginea Benth. (Euphorbiaceae), and Vetiveria nigritana Stapf. (Asteraceae) are traditionally used in Togolese folk medicine to treat several diseases including microbial infections. This study aimed to investigate the antimicrobial, antioxidant, and hemolytic properties of the crude extracts of the above-mentioned plants. The antimicrobial and the antioxidant activities were assayed using the NCCLS microdilution method and the DPPH free radical scavenging, respectively. Human A+ red blood cells were used to perform the hemolytic assay. Phenolics were further quantified in the extracts using spectrophotometric methods. Minimal inhibitory concentrations in the range of 230-1800 μg/ml were recorded in the NCCLS broth microdilution for both bacterial and fungal strains with methanol extracts. The DPPH radical scavenging assay yielded interesting antioxidant activities of the extracts of P. africana and T. macroptera (IC(50) values of 0.003 ± 0.00 μg/ml and 0.05 ± 0.03 μg/ml, respectively). These activities were positively correlated with the total phenolic contents and negatively correlated with the proanthocyanidin content of the extracts. The hemolytic assay revealed that great hemolysis occurred with the methanol extracts of T. macroptera, S. longepedunculata, and B. ferruginea. These results support in part the use of the selected plants in the treatment of microbial infections. In addition, the plant showed an interesting antioxidant activity that could be useful in the management of oxidative stress.
Cermehol, Julman R; Alvarado, Primavera; Mendoza, Mireya; Herndndez, Isabel; Cuestal, De
2015-09-01
Broth microdilution, the reference method recommended by the Clinical Laboratory Standards Institute (CLSI), is not available for use with dimorphic fungi, such as those of the Paracoccidioides genus. In this work, in vitro susceptibility of the Paracoccidioides complex (n=19) to systemic antifungals: amphotericin B, 5-flucytosine, ketoconazole, itraconazole, fluconazole, voriconazole and caspofungin, was evaluated using the microdilution method (Document M27-A3, M27-S3), with some modifications such as: culture time in Sabouraud dextrose agar (7-10 days), RPMI 1640 medium supplemented with 2% glucose and the incubation time (7, 8 and 18 days). The sensitivity in vitro was variable; the majority of Paracoccidioides isolates was susceptible to ketoconazol (73.7%), followed by voriconazole (68.4%), itraconazole (63.1%), amphotericin B (52.6%), fluconazole (47.4%), 5-flucytosine (42.1%) and caspofungin (5%). The overall resistance was mainly to caspofungin (94.7%), followed by 5-flucytosine (52.6%) and amphotericin B (47.4%). Fifty-three percent of the isolates were susceptible-dose dependent to fluconazole followed by itraconazole (15.7%) and 5-fluorocytosine (5.3%). Amphotericin B, itraconazole and voriconazole were the most potent antifungal drugs against Paracoccidioides spp (CMI: 0.03-1 microg/mL). Based on these results, we tentatively propose a microdilution assay protocol for susceptibility testing of Paracoccidioides spp to antifungal drugs. This method may be clinically useful to predict resistance, even though further studies are needed.
H Moreno, Paulo Roberto; da Costa-Issa, Fabiana Inácio; Rajca-Ferreira, Agnieszka K; Pereira, Marcos A A; Kaneko, Telma M
2013-01-01
The growing incidences of drug-resistant pathogens have increased the attention on several medicinal plants and their metabolites for antimicrobial properties. These pathogens are the main cause of nosocomial infections which led to an increasing mortality among hospitalized patients. Taking into consideration those factors, this paper reviews the state-of-the-art of the research on antibacterial agents from native Brazilian plant species related to nosocomial infections as well as the current methods used in the investigations of the antimicrobial activity and points out the differences in techniques employed by the authors. The antimicrobial assays most frequently used were broth microdilution, agar diffusion, agar dilution and bioautography. The broth microdilution method should be the method of choice for testing new antimicrobial agents from plant extracts or isolated compounds due to its advantages. At the moment, only a small part of the rich Brazilian flora has been investigated for antimicrobial activity, mostly with unfractionated extracts presenting a weak or moderate antibacterial activity. The combination of crude extract with conventional antibiotics represents a largely unexploited new form of chemotherapy with novel and multiple mechanisms of action that can overcome microbial resistance that needs to be further investigated. The antibacterial activity of essential oil vapours might also be an interesting alternative treatment of hospital environment due to their ability in preventing biofilm formation. However, in both alternatives more studies should be done on their mode of action and toxicological effects in order to optimize their use.
Cirillo, Daniela M.; Hoffner, Sven; Ismail, Nazir A.; Kaur, Devinder; Lounis, Nacer; Metchock, Beverly; Pfyffer, Gaby E.; Venter, Amour
2016-01-01
The aim of this study was to establish standardized drug susceptibility testing (DST) methodologies and reference MIC quality control (QC) ranges for bedaquiline, a diarylquinoline antimycobacterial, used in the treatment of adults with multidrug-resistant tuberculosis. Two tier-2 QC reproducibility studies of bedaquiline DST were conducted in eight laboratories using Clinical Laboratory and Standards Institute (CLSI) guidelines. Agar dilution and broth microdilution methods were evaluated. Mycobacterium tuberculosis H37Rv was used as the QC reference strain. Bedaquiline MIC frequency, mode, and geometric mean were calculated. When resulting data occurred outside predefined CLSI criteria, the entire laboratory data set was excluded. For the agar dilution MIC, a 4-dilution QC range (0.015 to 0.12 μg/ml) centered around the geometric mean included 95.8% (7H10 agar dilution; 204/213 observations with one data set excluded) or 95.9% (7H11 agar dilution; 232/242) of bedaquiline MICs. For the 7H9 broth microdilution MIC, a 3-dilution QC range (0.015 to 0.06 μg/ml) centered around the mode included 98.1% (207/211, with one data set excluded) of bedaquiline MICs. Microbiological equivalence was demonstrated for bedaquiline MICs determined using 7H10 agar and 7H11 agar but not for bedaquiline MICs determined using 7H9 broth and 7H10 agar or 7H9 broth and 7H11 agar. Bedaquiline DST methodologies and MIC QC ranges against the H37Rv M. tuberculosis reference strain have been established: 0.015 to 0.12 μg/ml for the 7H10 and 7H11 agar dilution MICs and 0.015 to 0.06 μg/ml for the 7H9 broth microdilution MIC. These methodologies and QC ranges will be submitted to CLSI and EUCAST to inform future research and provide guidance for routine clinical bedaquiline DST in laboratories worldwide. PMID:27654337
Qiu, Jiazhang; Li, Hongen; Su, Hongwei; Dong, Jing; Luo, Mingjing; Wang, Jianfeng; Leng, Bingfeng; Deng, Yanhong; Liu, Juxiong; Deng, Xuming
2012-04-01
In this study, fennel oil was isolated by hydrodistillation, and the chemical composition was determined by gas chromatography/mass spectral analysis. The antimicrobial activity of fennel oil against Staphylococcus aureus was evaluated by broth microdilution. A haemolysis assay, tumour necrosis factor (TNF) release assay, western blot, and real-time reverse transcription (RT)-PCR were applied to investigate the influence of fennel oil on the production of S. aureus virulence-related exoproteins. The data show that fennel oil, which contains a high level of trans-anethole, was active against S. aureus, with MICs ranging from 64 to 256 μg/ml. Furthermore, fennel oil, when used at subinhibitory concentrations, could dose-dependently decrease the expression of S. aureus exotoxins, including α-toxin, Staphylococcal enterotoxins (SEs) and toxic shock syndrome toxin 1 (TSST-1).
Steward, Christine D.; Stocker, Sheila A.; Swenson, Jana M.; O’Hara, Caroline M.; Edwards, Jonathan R.; Gaynes, Robert P.; McGowan, John E.; Tenover, Fred C.
1999-01-01
Fluoroquinolone resistance appears to be increasing in many species of bacteria, particularly in those causing nosocomial infections. However, the accuracy of some antimicrobial susceptibility testing methods for detecting fluoroquinolone resistance remains uncertain. Therefore, we compared the accuracy of the results of agar dilution, disk diffusion, MicroScan Walk Away Neg Combo 15 conventional panels, and Vitek GNS-F7 cards to the accuracy of the results of the broth microdilution reference method for detection of ciprofloxacin and ofloxacin resistance in 195 clinical isolates of the family Enterobacteriaceae collected from six U.S. hospitals for a national surveillance project (Project ICARE [Intensive Care Antimicrobial Resistance Epidemiology]). For ciprofloxacin, very major error rates were 0% (disk diffusion and MicroScan), 0.9% (agar dilution), and 2.7% (Vitek), while major error rates ranged from 0% (agar dilution) to 3.7% (MicroScan and Vitek). Minor error rates ranged from 12.3% (agar dilution) to 20.5% (MicroScan). For ofloxacin, no very major errors were observed, and major errors were noted only with MicroScan (3.7% major error rate). Minor error rates ranged from 8.2% (agar dilution) to 18.5% (Vitek). Minor errors for all methods were substantially reduced when results with MICs within ±1 dilution of the broth microdilution reference MIC were excluded from analysis. However, the high number of minor errors by all test systems remains a concern. PMID:9986809
Kashoma, Isaac P.; Kassem, Issmat I.; John, Julius; Kessy, Beda M.; Gebreyes, Wondwossen; Kazwala, Rudovick R.
2016-01-01
Campylobacter species are commonly transmitted to humans through consumption of contaminated foods such as milk and meat. The aim of this study was to investigate the prevalence, antimicrobial resistance, and genetic determinants of resistance of Campylobacter isolated from raw milk and beef carcasses in Tanzania. The antimicrobial resistance genes tested included blaOXA-61 (ampicillin), aph-3-1 (aminoglycoside), tet(O) (tetracycline), and cmeB (multi-drug efflux pump). The prevalence of Campylobacter was 9.5% in beef carcasses and 13.4% in raw milk, respectively. Using multiplex-polymerase chain reaction (PCR), we identified 58.1% of the isolates as Campylobacter jejuni, 30.7% as Campylobacter coli, and 9.7% as other Campylobacter spp. One isolate (1.6%) was positive for both C. jejuni and C. coli specific PCR. Antimicrobial susceptibility testing using the disk diffusion assay and the broth microdilution method showed resistance to: ampicillin (63% and 94.1%), ciprofloxacin (9.3% and 11.8%), erythromycin (53.7% and 70.6%), gentamicin (0% and 15.7%), streptomycin (35.2% and 84.3%), and tetracycline (18.5% and 17.7%), respectively. Resistance to azithromycin (42.6%), nalidixic acid (64.8%), and chloramphenicol (13%) was determined using the disk diffusion assay only, while resistance to tylosin (90.2%) was quantified using the broth microdilution method. The blaOXA-61 (52.6% and 28.1%), cmeB (26.3% and 31.3%), tet(O) (26.3% and 31.3%), and aph-3-1 (5.3% and 3.0%) were detected in C. coli and C. jejuni. These findings highlight the extent of antimicrobial resistance in Campylobacter occurring in important foods in Tanzania. The potential risks to consumers emphasize the need for adequate control approaches, including the prudent use of antimicrobials to minimize the spread of antimicrobial-resistant Campylobacter. PMID:26153978
Kashoma, Isaac P; Kassem, Issmat I; John, Julius; Kessy, Beda M; Gebreyes, Wondwossen; Kazwala, Rudovick R; Rajashekara, Gireesh
2016-01-01
Campylobacter species are commonly transmitted to humans through consumption of contaminated foods such as milk and meat. The aim of this study was to investigate the prevalence, antimicrobial resistance, and genetic determinants of resistance of Campylobacter isolated from raw milk and beef carcasses in Tanzania. The antimicrobial resistance genes tested included blaOXA-61 (ampicillin), aph-3-1 (aminoglycoside), tet(O) (tetracycline), and cmeB (multi-drug efflux pump). The prevalence of Campylobacter was 9.5% in beef carcasses and 13.4% in raw milk, respectively. Using multiplex-polymerase chain reaction (PCR), we identified 58.1% of the isolates as Campylobacter jejuni, 30.7% as Campylobacter coli, and 9.7% as other Campylobacter spp. One isolate (1.6%) was positive for both C. jejuni and C. coli specific PCR. Antimicrobial susceptibility testing using the disk diffusion assay and the broth microdilution method showed resistance to: ampicillin (63% and 94.1%), ciprofloxacin (9.3% and 11.8%), erythromycin (53.7% and 70.6%), gentamicin (0% and 15.7%), streptomycin (35.2% and 84.3%), and tetracycline (18.5% and 17.7%), respectively. Resistance to azithromycin (42.6%), nalidixic acid (64.8%), and chloramphenicol (13%) was determined using the disk diffusion assay only, while resistance to tylosin (90.2%) was quantified using the broth microdilution method. The blaOXA-61 (52.6% and 28.1%), cmeB (26.3% and 31.3%), tet(O) (26.3% and 31.3%), and aph-3-1 (5.3% and 3.0%) were detected in C. coli and C. jejuni. These findings highlight the extent of antimicrobial resistance in Campylobacter occurring in important foods in Tanzania. The potential risks to consumers emphasize the need for adequate control approaches, including the prudent use of antimicrobials to minimize the spread of antimicrobial-resistant Campylobacter.
Anti-Candida albicans effectiveness of citral and investigation of mode of action.
Lima, Igara Oliveira; de Medeiros Nóbrega, Fernanda; de Oliveira, Wylly Araújo; de Oliveira Lima, Edeltrudes; Albuquerque Menezes, Everardo; Cunha, Francisco Afrânio; Formiga Melo Diniz, Margareth de Fátima
2012-12-01
Candidiasis is a mycosis caused by Candida species, which is of clinical importance due to the increase in resistant yeasts. Candida infection has been a serious health problem due to the inappropriate use of antibiotics. Therefore, it is necessary to study molecules with an antifungal action. Citral is a monoterpene with known pharmacological properties, including antimicrobial action. The aim of this work was to determine the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of citral and the probable mode of action. The MIC of citral was determined by the broth microdilution method using Sabouraud dextrose medium. Additionally, the interference of citral in cell wall (sorbitol assay) and the binding of citral to ergosterol and cholesterol were studied, carried out by broth microdilution method. The MIC and MFC of citral were 512 and 1024 µg/mL, respectively. The MIC of amphotericin B was 1 µg/mL. The mechanism of action did not involve either the cell wall or ergosterol. However, the presence of cholesterol increased the MIC of citral to 1024 µg/mL, indicating there is some interaction between citral and cholesterol. Amphotericin B was used as the positive control, and it showed a high MIC in the presence of ergosterol (32 µg/mL), while in the presence of cholesterol MIC increased to 4 µg/mL. Citral inhibits the growth of C. albicans. The probable mechanism of action did not involve the cell wall or ergosterol. Citral is able to interact with cholesterol. More studies are necessary to describe their effects completely.
Jones, Ronald N; Holliday, Nicole M; Krause, Kevin M
2015-08-01
Ceftazidime-avibactam is a broad-spectrum-β-lactamase inhibitor combination in late-stage clinical development for the treatment of serious infections. In preparation for clinical microbiology laboratory use, a validation experiment was initiated to evaluate a commercial broth microdilution product (Sensititre dried MIC susceptibility system) compared to reference panels using 525 recent clinical isolates. Among 11 pathogen groups, all had Sensititre MIC/reference MIC ratios predominantly at 1 (47.5% to 97.5%), and automated and manual endpoint results did not differ. Enterobacteriaceae MIC comparisons showed a modest skewing of Sensititre MIC results toward an elevated MIC (33.9%), but the essential agreement was 98.9% with 100.0% reproducibility. In conclusion, Sensititre panels produced accurate ceftazidime-avibactam MIC results, allowing quality MIC guidance for therapy following regulatory approvals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Holliday, Nicole M.; Krause, Kevin M.
2015-01-01
Ceftazidime-avibactam is a broad-spectrum-β-lactamase inhibitor combination in late-stage clinical development for the treatment of serious infections. In preparation for clinical microbiology laboratory use, a validation experiment was initiated to evaluate a commercial broth microdilution product (Sensititre dried MIC susceptibility system) compared to reference panels using 525 recent clinical isolates. Among 11 pathogen groups, all had Sensititre MIC/reference MIC ratios predominantly at 1 (47.5% to 97.5%), and automated and manual endpoint results did not differ. Enterobacteriaceae MIC comparisons showed a modest skewing of Sensititre MIC results toward an elevated MIC (33.9%), but the essential agreement was 98.9% with 100.0% reproducibility. In conclusion, Sensititre panels produced accurate ceftazidime-avibactam MIC results, allowing quality MIC guidance for therapy following regulatory approvals. PMID:26014937
Jones, Ronald N; Holliday, Nicole M; Critchley, Ian A
2015-04-01
Ceftaroline, the active metabolite of the ceftaroline fosamil pro-drug, was the first advanced-spectrum cephalosporin with potent activity against methicillin-resistant Staphylococcus aureus to be approved by the US Food and Drug Administration for acute bacterial skin and skin structure infections. After 4 years of clinical use, few ceftaroline commercial susceptibility testing devices other than agar diffusion methods (disks and stable gradient) are available. Here, we validate a broth microdilution product (Sensititre™; Thermo Fisher Scientific, Cleveland, OH, USA) that achieved 99.2% essential agreement (manual and automated reading) and 95.3-100.0% categorical agreement, with high reproducibility (98.0-100.0%). Sensititre™ MIC values for ceftaroline, however, were slightly skewed toward an elevated value (0.5 × log2 dilution step), greatest when testing for streptococci and Enterobacteriaceae. Copyright © 2015 Elsevier Inc. All rights reserved.
Digital antimicrobial susceptibility testing using the MilliDrop technology.
Jiang, L; Boitard, L; Broyer, P; Chareire, A-C; Bourne-Branchu, P; Mahé, P; Tournoud, M; Franceschi, C; Zambardi, G; Baudry, J; Bibette, J
2016-03-01
We present the MilliDrop Analyzer (MDA), a droplet-based millifluidic system for digital antimicrobial susceptibility testing (D-AST), which enables us to determine minimum inhibitory concentrations (MICs) precisely and accurately. The MilliDrop technology was validated by using resazurin for fluorescence readout, for comparison with standard methodology, and for conducting reproducibility studies. In this first assessment, the susceptibility of a reference Gram-negative strain Escherichia coli ATCC 25922 to gentamicin, chloramphenicol, and nalidixic acid were tested by the MDA, VITEK®2, and broth microdilution as a reference standard. We measured the susceptibility of clinically relevant Gram-positive strains of Staphylococcus aureus to vancomycin, including vancomycin-intermediate S. aureus (VISA), heterogeneous vancomycin-intermediate S. aureus (hVISA), and vancomycin-susceptible S. aureus (VSSA) strains. The MDA provided results which were much more accurate than those of VITEK®2 and standard broth microdilution. The enhanced accuracy enabled us to reliably discriminate between VSSA and hVISA strains.
Batista, Nínive; Fernández, M Paula; Lara, Magdalena; Laich, Federico; Méndez, Sebastián
2009-03-01
Staphylococcus lugdunensis is a coagulase-negative staphylococcus associated with a variety of clinical infections. In this paper we present the results of a comparative study using 4 methods to determine antimicrobial susceptibility to oxacillin and penicillin in 60 S. lugdunensis isolates. We studied 60 S. lugdunensis isolates obtained from clinical specimens sent to our laboratory over an 8-year period. All isolates were free coagulase-negative and DNase-negative, and biochemically identified by API ID 32 STAPH (bioMérieux). Presence of mecA and ss-lactamase production were studied in all cases. Antimicrobial susceptibility was determined by the Vitek 2 System (bioMérieux) and broth microdilution (Wider) (Soria Melguizo) for penicillin and oxacillin, and the E-test (AB Biodisk) and cefoxitin disk diffusion test (BD BBLTM) for oxacillin. All isolates lacked the mecA gene and were susceptible to oxacillin by broth microdilution, E-test, and cefoxitin disk diffusion test. Only two isolates were oxacillin-resistant by the Vitek 2 System. Twenty-four isolates (40%) were ss-lactamase-positive, 4 after induction. Susceptibility testing to penicillin determined that 48 isolates showed concordance between the results obtained by broth microdilution and Vitek 2, but 12 isolates (20%), showed divergent results. We detected no resistance to oxacillin in S. lugdunensis. All the methods evaluated were adequate for determining oxacillin resistance. The Vitek 2 System is useful for detecting penicillin resistance, but the ss-lactamase test should be applied to isolates with a MIC=0.25microg/ml to avoid the interpretation of false resistance to this antibiotic.
Wang, Peng; Bowler, Sarah L; Kantz, Serena F; Mettus, Roberta T; Guo, Yan; McElheny, Christi L; Doi, Yohei
2016-12-01
Treatment options for infections due to carbapenem-resistant Acinetobacter baumannii are extremely limited. Minocycline is a semisynthetic tetracycline derivative with activity against this pathogen. This study compared susceptibility testing methods that are used in clinical microbiology laboratories (Etest, disk diffusion, and Sensititre broth microdilution methods) for testing of minocycline, tigecycline, and doxycycline against 107 carbapenem-resistant A. baumannii clinical isolates. Susceptibility rates determined with the standard broth microdilution method using cation-adjusted Mueller-Hinton (MH) broth were 77.6% for minocycline and 29% for doxycycline, and 92.5% of isolates had tigecycline MICs of ≤2 μg/ml. Using MH agar from BD and Oxoid, susceptibility rates determined with the Etest method were 67.3% and 52.3% for minocycline, 21.5% and 18.7% for doxycycline, and 71% and 29.9% for tigecycline, respectively. With the disk diffusion method using MH agar from BD and Oxoid, susceptibility rates were 82.2% and 72.9% for minocycline and 34.6% and 34.6% for doxycycline, respectively, and rates of MICs of ≤2 μg/ml were 46.7% and 23.4% for tigecycline. In comparison with the standard broth microdilution results, very major rates were low (∼2.8%) for all three drugs across the methods, but major error rates were higher (∼5.6%), especially with the Etest method. For minocycline, minor error rates ranged from 14% to 37.4%. For tigecycline, minor error rates ranged from 6.5% to 69.2%. The majority of minor errors were due to susceptible results being reported as intermediate. For minocycline susceptibility testing of carbapenem-resistant A. baumannii strains, very major errors are rare, but major and minor errors overcalling strains as intermediate or resistant occur frequently with susceptibility testing methods that are feasible in clinical laboratories. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi
2016-01-01
Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine.
Antimicrobial, Anti-inflammatory and Antioxidant Activities of Jatropha multifida L. (Euphorbiaceae)
Anani, Kokou; Adjrah, Yao; Améyapoh, Yaovi; Karou, Simplice Damintoti; Agbonon, Amegnona; de Souza, Comlan; Gbeassor, Messanvi
2016-01-01
Background: Jatropha multifida is used in Togolease folk medicine for the healing of chronic wounds. Objective: This study aims to investigate antibacterial, anti-inflammatory and antioxidant activities of the leaves ethanolic extract. Materials and Methods: The antimicrobial activity was assayed by National Committee for Clinical Laboratory Standards broth microdilution method on strains of Staphylococcus aureus and Pseudomoas aeruginosa isolated from wounds, whereas the anti-inflammatory activity was performed by carrageenan and histamine induced paw edema method in rat modele. The 2, 2-diphenyl-1picrylhydrazyl (DPPH) free radical scavenging and ferric reducing antioxidant power (FRAP) were used for the antioxidant activity. Results: The antibacterial assay showed an in vitro growth inhibition of P. aeruginosa and S. aureus in dose-dependent manner, with minimum inhibitory concentration values ranging from 2.5 to 3.12 mg/mL for S. aureus and from 6.25 to 12.5 mg/mL for P. aeruginosa. The maximum paw anti-inflammatory effect occurred after 3 and 5 h administration of histamine and carrageenan, respectively. The DPPH radical scavenging and the FRAP assays yielded weak antioxidant activity. Conclusion: J. multifida possesses antibacterial and anti-inflammatory activities that could justify the use of the plant for the treatment of wounds in the folk medicine. SUMMARY Antibacterial on germs isolated from wound, anti-inflammatory and antioxidant activities of Jatropha multifida were assayed by NCCLS broth method, carrageenan and histamine, DPPH and FRAP respectively. The results indicated that Jatropha multifida possesses antibacterial and anti-inflammatory and weak antioxidant activities that could justify its use for the treatment of wounds in the folk medicine. PMID:27034606
Gieseker, Charles M; Crosby, Tina C; Mayer, Tamara D; Bodeis, Sonya M; Stine, Cynthia B
2016-03-01
Flavobacterium columnare and F. psychrophilum are major fish pathogens that cause diseases that may require antimicrobial therapy. Choice of appropriate treatment is dependent upon determining the antimicrobial susceptibility of isolates. Therefore we optimized methods for broth microdilution testing of F. columnare and F. psychrophilum to facilitate standardizing an antimicrobial susceptibility test. We developed adaptations to make reproducible broth inoculums and confirmed the proper incubation time and media composition. We tested the stability of potential quality-control bacteria and compared test results between different operators. Log phase occurred at 48 h for F. columnare and 72-96 h for F. psychrophilum, confirming the test should be incubated at 28°C for approximately 48 h and at 18°C for approximately 96 h, respectively. The most consistent susceptibility results were achieved with plain, 4-g/L, dilute Mueller-Hinton broth supplemented with dilute calcium and magnesium. Supplementing the broth with horse serum did not improve growth. The quality-control strains, Escherichia coli ATCC 25922 and Aeromonas salmonicida subsp. salmonicida ATCC 33658, yielded stable minimal inhibitory concentrations (MIC) against all seven antimicrobials tested after 30 passes at 28°C and 15 passes at 18°C. In comparison tests, most MICs of the isolates agreed 100% within one drug dilution for ampicillin, florfenicol, and oxytetracycline. The agreement was lower with the ormetoprim-sulfdimethoxine combination, but there was at least 75% agreement for all but one isolate. These experiments have provided methods to help standardize antimicrobial susceptibility testing of these nutritionally fastidious aquatic bacteria. Received June 24, 2015; accepted October 2, 2015.
Liu, Jien-Wei; Ko, Wen-Chien; Huang, Cheng-Hua; Liao, Chun-Hsing; Lu, Chin-Te; Chuang, Yin-Ching; Tsao, Shih-Ming; Chen, Yao-Shen; Liu, Yung-Ching; Chen, Wei-Yu; Jang, Tsrang-Neng; Lin, Hsiu-Chen; Chen, Chih-Ming; Shi, Zhi-Yuan; Pan, Sung-Ching; Yang, Jia-Ling; Kung, Hsiang-Chi; Liu, Chun-Eng; Cheng, Yu-Jen; Chen, Yen-Hsu; Lu, Po-Liang; Sun, Wu; Wang, Lih-Shinn; Yu, Kwok-Woon; Chiang, Ping-Cherng; Lee, Ming-Hsun; Lee, Chun-Ming; Hsu, Gwo-Jong
2012-01-01
The Tigecycline In Vitro Surveillance in Taiwan (TIST) study, initiated in 2006, is a nationwide surveillance program designed to longitudinally monitor the in vitro activity of tigecycline against commonly encountered drug-resistant bacteria. This study compared the in vitro activity of tigecycline against 3,014 isolates of clinically important drug-resistant bacteria using the standard broth microdilution and disk diffusion methods. Species studied included methicillin-resistant Staphylococcus aureus (MRSA; n = 759), vancomycin-resistant Enterococcus faecium (VRE; n = 191), extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (n = 602), ESBL-producing Klebsiella pneumoniae (n = 736), and Acinetobacter baumannii (n = 726) that had been collected from patients treated between 2008 and 2010 at 20 hospitals in Taiwan. MICs and inhibition zone diameters were interpreted according to the currently recommended U.S. Food and Drug Administration (FDA) criteria and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. The MIC90 values of tigecycline against MRSA, VRE, ESBL-producing E. coli, ESBL-producing K. pneumoniae, and A. baumannii were 0.5, 0.125, 0.5, 2, and 8 μg/ml, respectively. The total error rates between the two methods using the FDA criteria were high: 38.4% for ESBL-producing K. pneumoniae and 33.8% for A. baumannii. Using the EUCAST criteria, the total error rate was also high (54.6%) for A. baumannii isolates. The total error rates between these two methods were <5% for MRSA, VRE, and ESBL-producing E. coli. For routine susceptibility testing of ESBL-producing K. pneumoniae and A. baumannii against tigecycline, the broth microdilution method should be used because of the poor correlation of results between these two methods. PMID:22155819
Chovanová, Romana; Vaverková, Štefánia
2013-01-01
The crude extracts of plants from Asteraceae and Lamiaceae family and essential oils from Salvia officinalis and Salvia sclarea were studied for their antibacterial as well as antibiotic resistance modifying activity. Using disc diffusion and broth microdilution assays we determined higher antibacterial effect of three Salvia spp. and by evaluating the leakage of 260 nm absorbing material we detected effect of extracts and, namely, of essential oils on the disruption of cytoplasmic membrane. The evaluation of in vitro interactions between plant extracts and oxacillin described in terms of fractional inhibitory concentration (FIC) indices revealed synergistic or additive effects of plant extracts and clearly synergistic effects of essential oil from Salvia officinalis with oxacillin in methicillin-resistant Staphylococcus epidermidis. PMID:24222768
Pujol, I; Guarro, J; Llop, C; Soler, L; Fernández-Ballart, J
1996-09-01
An evaluation of broth dilution antifungal susceptibility tests was performed by determining both the micro- and macrodilution MICs of amphotericin B, fluconazole, ketoconazole, 5-fluorocytosine, miconazole, and itraconazole against representative species of opportunistic hyphomycetes (Fusarium spp. and Cladosporium [Cladophialophora] spp.) and ascomycetes (Chaetomium spp.). A total of 78 strains were tested, the majority of them twice and some three times on different days. Both methods were performed according to the recommendations of the National Committee for Clinical Laboratory Standards (Document M27-P), with the exception of the temperature of incubation, which was 25 degrees C in our case. A spectrophotometric method for inoculum preparation, RPMI 1640 medium buffered with morpholinepropanesulfonic acid (pH 7.0), and an additive drug dilution procedure were used. The MICs obtained by the two methods were read after 48, 72, and 96 h of incubation for Fusarium spp. and after 72, 96, and 120 h for the remaining isolates. The kappa test was used to calculate the degree of agreement. Considering the three fungal groups together, a good agreement between the results of both tests was observed with almost all the drugs at the different incubation times. There were no cases of poor agreement. The highest level (kappa index = 1) was observed with ketoconazole at the second-day reading. These results support the further evaluation of the broth microdilution test as an alternative to the reference broth macrodilution susceptibility test.
Pujol, I; Guarro, J; Llop, C; Soler, L; Fernández-Ballart, J
1996-01-01
An evaluation of broth dilution antifungal susceptibility tests was performed by determining both the micro- and macrodilution MICs of amphotericin B, fluconazole, ketoconazole, 5-fluorocytosine, miconazole, and itraconazole against representative species of opportunistic hyphomycetes (Fusarium spp. and Cladosporium [Cladophialophora] spp.) and ascomycetes (Chaetomium spp.). A total of 78 strains were tested, the majority of them twice and some three times on different days. Both methods were performed according to the recommendations of the National Committee for Clinical Laboratory Standards (Document M27-P), with the exception of the temperature of incubation, which was 25 degrees C in our case. A spectrophotometric method for inoculum preparation, RPMI 1640 medium buffered with morpholinepropanesulfonic acid (pH 7.0), and an additive drug dilution procedure were used. The MICs obtained by the two methods were read after 48, 72, and 96 h of incubation for Fusarium spp. and after 72, 96, and 120 h for the remaining isolates. The kappa test was used to calculate the degree of agreement. Considering the three fungal groups together, a good agreement between the results of both tests was observed with almost all the drugs at the different incubation times. There were no cases of poor agreement. The highest level (kappa index = 1) was observed with ketoconazole at the second-day reading. These results support the further evaluation of the broth microdilution test as an alternative to the reference broth macrodilution susceptibility test. PMID:8878589
Mirzaei-Najafgholi, Hossein; Tarighi, Saeed; Golmohammadi, Morteza; Taheri, Parissa
2017-04-14
Citrus bacterial canker (CBC) caused by Xanthomonas citri subsp. citri ( Xcc ), is the most devastating of the citrus diseases worldwide. During our study, we found that Essential oils (EOs) of some citrus cultivars are effective on Xcc . Therefore, it prompted us to determine the plant metabolites responsible for the antibacterial properties. We obtained EOs from some locally cultivated citrus by using a Clevenger apparatus and their major constituents were identified by gas chromatography/mass spectrometry (GC-MS). The effect of Citrus aurantium , C. aurantifolia , Fortunella sp. EOs and their major constituents were evaluated against Xcc -KVXCC1 using a disk diffusion assay. Minimal inhibitory and bactericidal concentration of the EOs and their constituents were determined using the broth microdilution method. C. aurantium , C. aurantifolia Eos, and their major constituents including citral, linalool, citronellal, geraniol, α-terpineol, and linalyl acetate indicated antibacterial effects against Xcc . The C. aurantifolia EO and citral showed the highest antibacterial activity among the tested EOs and constituents with inhibition zones of 15 ± 0.33 mm and 16.67 ± 0.88 mm, respectively. Synergistic effects of the constituents were observed between α-terpineol-citral, citral-citronellal, citral-geraniol, and citronellal-geraniol by using a microdilution checkerboard assay. Transmission electron microscopy revealed that exposure of Xcc cells to citral caused cell wall damage and altered cytoplasmic density. We introduced C. aurantifolia and C. aurantium EOs, and their constituents citral, α-terpineol, citronellal, geraniol, and linalool as possible control agents for CBC.
Zuo, Guo-Ying; Han, Zong-Qi; Han, Jun; Hao, Xiao-Yan; Tang, Hua-Shu; Wang, Gen-Chun
2015-10-01
This study aims to investigate antimicrobial ingredients from Sappan Lignum and to evaluate their synergy on methicillin-resistant Staphylococcus aureus strains with antibiotics. Bioactivity-guided phytochemical procedures were used to screen the active compounds. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were assayed by broth microdilution. The synergy was evaluated through checkerboard microdilution and loss of viability assays. Protosappanins A (PsA) and B (PsB) were identified from Sappan Lignum extracts. They showed active against both S. aureus and MRSA with MIC or MIC50 at 64 (PsA) and 128 (PsB) mg/L alone. When they were used in combination with antibiotics, they showed best synergy with amikacin and gentamicin with MIC50 (mg/L) of amikacin reduced more significantly from 32 to four (with PsA) and eight (with PsB), and the fractional inhibitory concentration index (FICI) ranged between 0.078 and 0.500 (FICI50 = 0.375). Moreover, the resistance of MRSA towards amikacin and gentamicin could be reversed by the Clinical and Laboratory Standards Institute criteria. The combined bactericidal mode could as well be synergy. PsA and PsB showed very low cytotoxicity in comparison with their promising activity against MRSA. Protosappanins A and B showed both alone activities and resistance reversal effects of amikacin and gentamicin against MRSA, which warrant further investigations for potential combinatory therapy of MRSA infection. © 2015 Royal Pharmaceutical Society.
Lee, Chih-Chen; Chiou, Li-Yu; Wang, Jheng-Yang; Chou, Sin-You; Lan, John Chi-Wei; Huang, Tsi-Shu; Huang, Kuo-Chuan
2013-01-01
Supercritical fluid carbon dioxide extraction technology was developed to gain the active components from a Taiwan native plant, Zingiber officinale (ginger). We studied the biological effects of ginger extracts via multiple assays and demonstrated the biofunctions in each platform. Investigations of ginger extracts indicated antioxidative properties in dose-dependant manners on radical scavenging activities, reducing powers and metal chelating powers. We found that ginger extracts processed moderate scavenging values, middle metal chelating levels, and slight ferric reducing powers. The antibacterial susceptibility of ginger extracts on Staphylococcus aureus, Streptococcus sobrinus, S. mutans, and Escherichia coli was determined with the broth microdilution method technique. The ginger extracts had operative antimicroorganism potentials against both Gram-positive and Gram-negative bacteria. We further discovered the strong inhibitions of ginger extracts on lethal carcinogenic melanoma through in vivo xenograft model. To sum up, the data confirmed the possible applications as medical cosmetology agents, pharmaceutical antibiotics, and food supplements. PMID:23983624
Durnaś, Bonita; Piktel, Ewelina; Wątek, Marzena; Wollny, Tomasz; Góźdź, Stanisław; Smok-Kalwat, Jolanta; Niemirowicz, Katarzyna; Savage, Paul B; Bucki, Robert
2017-07-26
Cationic antibacterial peptides (CAPs) and synthetic molecules mimicking the amphiphilic structure of CAPs, such as ceragenins, are promising compounds for the development of new antimicrobials. We tested the in vitro activity of ceragenins CSA-13 and CSA-131 against several anaerobic bacteria including Bacteroides spp. and Clostridium difficile. We compared results to the activity of cathelicidin LL-37, metronidazole and nanosystems developed by attachment of CSA-13 and CSA-131 to magnetic nanoparticles (MNPs). The antibacterial effect was tested using killing assay and modified CLSI broth microdilution assay. Ceragenins CSA-13 and CSA-131 displayed stronger bactericidal activity than LL-37 or metronidazole against all of the tested bacterial strains. Additionally CSA-131 revealed an enhanced ability to prevent the formation of Bacteroides fragilis and Propionibacterium acnes biofilms. These data confirmed that ceragenins display antimicrobial activity against a broad range of microorganisms including anaerobic bacteria and deserve further investigations as compounds serving to develop new treatment against anaerobic and mixed infections.
Susceptibility of Acinetobacter Strains Isolated from Deployed U.S. Military Personnel▿
Hawley, Joshua S.; Murray, Clinton K.; Griffith, Matthew E.; McElmeel, M. Leticia; Fulcher, Letitia C.; Hospenthal, Duane R.; Jorgensen, James H.
2007-01-01
The susceptibilities of 142 Acinetobacter baumannii-calcoaceticus complex isolates (95 from wounded U.S. soldiers deployed overseas) to 13 antimicrobial agents were determined by broth microdilution. The most active antimicrobial agents (≥95% of isolates susceptible) were colistin, polymyxin B, and minocycline. PMID:17043112
Shawar, R; Paetznick, V; Witte, Z; Ensign, L G; Anaissie, E; LaRocco, M
1992-01-01
A study was performed in two laboratories to evaluate the effect of growth medium and test methodology on inter- and intralaboratory variations in the MICs of amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITRA), and the triazole Sch 39304 (SCH) against 14 isolates of Candida albicans. Testing was performed by broth microdilution and semisolid agar dilution with the following media, buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS): buffered yeast nitrogen base (BYNB), Eagle's minimal essential medium (EMEM), RPMI 1640 medium (RPMI), and synthetic amino acid medium for fungi (SAAMF). Inocula were standardized spectrophotometrically, and endpoints were defined by the complete absence of growth for AMB and by no more than 25% of the growth in the drug-free control for all other agents. Comparative analyses of median MICs, as determined by each test method, were made for all drug-medium combinations. Both methods yielded similar (+/- 1 twofold dilution) median MICs for AMB in EMEM and RPMI, 5FC in all media, and FLU in EMEM, RPMI, and SAAMF. In contrast, substantial between-method variations in median MICs were seen for AMB in BYNB and SAAMF, FLU In BYNB, and ITRA and SCH in all media. Interlaboratory concordance of median MICs was good for AMB, 5FC, and FLU but poor for ITRA and SCH in all media. Endpoint determinations were analyzed by use of kappa statistical analyses for evaluating the strength of observer agreement. Moderate to almost perfect interlaboratory agreement occurred with AMB and 5FC in all media and with FLU in EMEM, RPMI, and SAAMF, irrespective of the test method. Slight to almost perfect interlaboratory agreement occurred with ITRA and SCH in EMEM, RPMI, and SAAMF when tested by semisolid agar dilution but not broth microdilution. Kappa values assessing intralaboratory agreement between methods were high for 5FC in all media, for AMB in BYNB, ENEM, and RPMI, and for FLU in EMEM, RPMI, and SAAMF. One laboratory, but not the other, reported substantial to almost perfect agreement between methods for ITRA, and SCH in EMEM, RPMI, and SAAMF. Both laboratories reported poor agreement between methods for the azoles in BYNB. Discrepancies noted in azole-BYNB combinations were largely due to the greater inhibitory effect of these agents in BYNB than in other media. These results indicate that the semisolid agar dilution and broth microdilution methods with EMEM or RPMI yield equivalent and reproducible MICs for AMB, 5FC, and FLU but not ITRA and SCH. PMID:1500502
Shawar, R; Paetznick, V; Witte, Z; Ensign, L G; Anaissie, E; LaRocco, M
1992-08-01
A study was performed in two laboratories to evaluate the effect of growth medium and test methodology on inter- and intralaboratory variations in the MICs of amphotericin B (AMB), flucytosine (5FC), fluconazole (FLU), itraconazole (ITRA), and the triazole Sch 39304 (SCH) against 14 isolates of Candida albicans. Testing was performed by broth microdilution and semisolid agar dilution with the following media, buffered to pH 7.0 with morpholinepropanesulfonic acid (MOPS): buffered yeast nitrogen base (BYNB), Eagle's minimal essential medium (EMEM), RPMI 1640 medium (RPMI), and synthetic amino acid medium for fungi (SAAMF). Inocula were standardized spectrophotometrically, and endpoints were defined by the complete absence of growth for AMB and by no more than 25% of the growth in the drug-free control for all other agents. Comparative analyses of median MICs, as determined by each test method, were made for all drug-medium combinations. Both methods yielded similar (+/- 1 twofold dilution) median MICs for AMB in EMEM and RPMI, 5FC in all media, and FLU in EMEM, RPMI, and SAAMF. In contrast, substantial between-method variations in median MICs were seen for AMB in BYNB and SAAMF, FLU In BYNB, and ITRA and SCH in all media. Interlaboratory concordance of median MICs was good for AMB, 5FC, and FLU but poor for ITRA and SCH in all media. Endpoint determinations were analyzed by use of kappa statistical analyses for evaluating the strength of observer agreement. Moderate to almost perfect interlaboratory agreement occurred with AMB and 5FC in all media and with FLU in EMEM, RPMI, and SAAMF, irrespective of the test method. Slight to almost perfect interlaboratory agreement occurred with ITRA and SCH in EMEM, RPMI, and SAAMF when tested by semisolid agar dilution but not broth microdilution. Kappa values assessing intralaboratory agreement between methods were high for 5FC in all media, for AMB in BYNB, ENEM, and RPMI, and for FLU in EMEM, RPMI, and SAAMF. One laboratory, but not the other, reported substantial to almost perfect agreement between methods for ITRA, and SCH in EMEM, RPMI, and SAAMF. Both laboratories reported poor agreement between methods for the azoles in BYNB. Discrepancies noted in azole-BYNB combinations were largely due to the greater inhibitory effect of these agents in BYNB than in other media. These results indicate that the semisolid agar dilution and broth microdilution methods with EMEM or RPMI yield equivalent and reproducible MICs for AMB, 5FC, and FLU but not ITRA and SCH.
Brudzynski, Katrina; Lannigan, Robert
2012-01-01
It has been recently reported that honey hydrogen peroxide in conjunction with unknown honey components produced cytotoxic effects resulting in bacterial growth inhibition and DNA degradation. The objective of this study was twofold: (a) to investigate whether the coupling chemistry involving hydrogen peroxide is responsible for a generation of hydroxyl radicals and (b) whether •OH generation affects growth of multi-drug resistant clinical isolates. The susceptibility of five different strains of methicillin-resistant Staphylococcus aureus (MRSA) and four strains of vancomycin-resistant Enterococcus faecium (VRE) isolates from infected wounds to several honeys was evaluated using broth microdilution assay. Isolates were identified to genus and species and their susceptibility to antibiotics was confirmed using an automated system (Vitek®, Biomérieux®). The presence of the mec(A) gene, nuc gene and van(A) and (B) genes were confirmed by polymerase chain reaction. Results showed that no clinical isolate was resistant to selected active honeys. The median difference in honeys MICs against these strains ranged between 12.5 and 6.25% v/v and was not different from the MIC against standard Escherichia coli and Bacillus subtilis. Generation of •OH during bacteria incubation with honeys was analyzed using 3′-(p-aminophenyl) fluorescein (APF) as the •OH trap. The •OH participation in growth inhibition was monitored directly by including APF in broth microdilution assay. The growth of MRSA and VRE was inhibited by •OH generation in a dose-dependent manner. Exposure of MRSA and VRE to honeys supplemented with Cu(II) augmented production of •OH by 30-fold and increased honey bacteriostatic potency from MIC90 6.25 to MIC90< 0.78% v/v. Pretreatment of honeys with catalase prior to their supplementation with Cu ions fully restored bacterial growth indicating that hydroxyl radicals were produced from H2O2 via the Fenton-type reaction. In conclusion, we have demonstrated for the first time that bacteriostatic effect of honeys on MRSA and VRE was dose-dependently related to generation of •OH from honey H2O2. PMID:22347223
Brudzynski, Katrina; Lannigan, Robert
2012-01-01
It has been recently reported that honey hydrogen peroxide in conjunction with unknown honey components produced cytotoxic effects resulting in bacterial growth inhibition and DNA degradation. The objective of this study was twofold: (a) to investigate whether the coupling chemistry involving hydrogen peroxide is responsible for a generation of hydroxyl radicals and (b) whether (•)OH generation affects growth of multi-drug resistant clinical isolates. The susceptibility of five different strains of methicillin-resistant Staphylococcus aureus (MRSA) and four strains of vancomycin-resistant Enterococcus faecium (VRE) isolates from infected wounds to several honeys was evaluated using broth microdilution assay. Isolates were identified to genus and species and their susceptibility to antibiotics was confirmed using an automated system (Vitek(®), Biomérieux(®)). The presence of the mec(A) gene, nuc gene and van(A) and (B) genes were confirmed by polymerase chain reaction. Results showed that no clinical isolate was resistant to selected active honeys. The median difference in honeys MICs against these strains ranged between 12.5 and 6.25% v/v and was not different from the MIC against standard Escherichia coli and Bacillus subtilis. Generation of (•)OH during bacteria incubation with honeys was analyzed using 3'-(p-aminophenyl) fluorescein (APF) as the (•)OH trap. The (•)OH participation in growth inhibition was monitored directly by including APF in broth microdilution assay. The growth of MRSA and VRE was inhibited by (•)OH generation in a dose-dependent manner. Exposure of MRSA and VRE to honeys supplemented with Cu(II) augmented production of (•)OH by 30-fold and increased honey bacteriostatic potency from MIC(90) 6.25 to MIC(90)< 0.78% v/v. Pretreatment of honeys with catalase prior to their supplementation with Cu ions fully restored bacterial growth indicating that hydroxyl radicals were produced from H(2)O(2) via the Fenton-type reaction. In conclusion, we have demonstrated for the first time that bacteriostatic effect of honeys on MRSA and VRE was dose-dependently related to generation of (•)OH from honey H(2)O(2).
In Vitro Susceptibilities of Mycoplasma hyopneumoniae Field Isolates
Vicca, J.; Stakenborg, T.; Maes, D.; Butaye, P.; Peeters, J.; de Kruif, A.; Haesebrouck, F.
2004-01-01
The in vitro susceptibilities of 21 Mycoplasma hyopneumoniae field isolates were determined using a broth microdilution technique. One isolate showed acquired resistance to lincomycin, tilmicosin, and tylosin, while five isolates were resistant to flumequine and enrofloxacin. Acquired resistance against these antimicrobials in M. hyopneumoniae field isolates was not reported previously. PMID:15504886
Quantifying Antimicrobial Resistance at Veal Calf Farms
Bosman, Angela B.; Wagenaar, Jaap; Stegeman, Arjan; Vernooij, Hans; Mevius, Dik
2012-01-01
This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s) by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution) and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p≤0.05). Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which 90 isolates are tested for their susceptibility by replica plating. PMID:22970313
NASA Astrophysics Data System (ADS)
Nisa, K.; Nurhayati, S.; Apriyana, W.; Indrianingsih, A. W.
2017-12-01
Baeckea frutescens L. is a medicinal plant endemic to the tropical area and it has been used by locals for topical and oral ailments. This study investigated total phenolic and flavonoid contents and also evaluated in vitro antimicrobial and antioxidant activities of of Baeckea frutescens crude extracts. These extracts were assessed for their antibacterial activities against strains of Escherichia coli, Staphylococcus aureus, Salmonella thypii, and Pseudomonas aureginosa by the broth micro-dilution methods using a modified tetrazolium-based colorimetric assay (3-(4, 5-dimethylthiazol)-2, 5-diphenyl tetrazolium bromide (MTT) assay). Baeckea frutescens crude extracts were also tested against the stable DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) free-radical. The results indicated that Baeckea frutescens water and ethanol extracts possesed remarkable antibacterial activity with the minimum inhibitory concentration less than 100 μg/ml against Escherichia coli and Salmonella thypi. On the evaluation of the antioxidant activity via DPPH assay, Baeckea frutescens ethanol extracts exhibited a good antioxidant activity with IC50 less than 50 μg/ml and Baeckea frutescens water extracts showed a moderate antioxidant activity with IC50 less than 100 μg/ml.
Weiss, K; Laverdière, M; Rivest, R
1996-01-01
Corynebacterium species are increasingly being implicated in foreign-body infections and in immunocompromised-host infections. However, there are no specific recommendations on the method or the criteria to use in order to determine the in vitro activities of the antibiotics commonly used to treat Corynebacterium infections. The first aim of our study was to compare the susceptibilities of various species of Corynebacterium to vancomycin, erythromycin, and penicillin by using a broth microdilution method and a disk diffusion method. Second, the activity of penicillin against our isolates was assessed by using the interpretative criteria recommended by the National Committee for Clinical Laboratory Standards for the determination of the susceptibility of streptococci and Listeria monocytogenes to penicillin. Overall, 100% of the isolates were susceptible to vancomycin, while considerable variations in the activities of erythromycin and penicillin were noted for the different species tested, including the non-Corynebacterium jeikeium species. A good correlation in the susceptibilities of vancomycin and erythromycin between the disk diffusion and the microdilution methods was observed. However, a 5% rate of major or very major errors was detected with the Listeria criteria, while a high rate of minor errors (18%) was noted when the streptococcus criteria were used. Our findings indicate considerable variations in the activities of erythromycin and penicillin against the various species of Corynebacterium. Because of the absence of definite recommendations, important discrepancies were observed between the methods and the interpretations of the penicillin activity. PMID:8849254
Subbiya, Arunajatesan; Mahalakshmi, Krishnan; Pushpangadan, Sivan; Padmavathy, Kesavaram; Vivekanandan, Paramasivam; Sukumaran, Vridhachalam Ganapathy
2013-01-01
Introduction: The Enterococcus faecalis biofilm in the root canal makes it difficult to be eradicated by the conventional irrigants with no toxicity to the tissues. Hence, plant products with least side effects are explored for their use as irrigants in the root canal therapy. Aim: To evaluate and compare the antibacterial efficacy of Mangifera indica L. kernel (mango kernel) and Ocimum sanctum L. leaves (tulsi) extracts with conventional irrigants (5% sodium hypochlorite (NaOCl) and 2% chlorhexidine) against E. faecalis dentinal biofilm. Materials and Methods: Agar diffusion and broth microdilution assay was performed with the herbal extracts and conventional irrigants (2% chlorhexidine and 5% NaOCl) against E. faecalis planktonic cells. The assay was extended onto 3 week E. faecalis dentinal biofilm. Results: Significant reduction of colony forming units (CFU)/mL was observed for the herbal groups and the antibacterial activity of the herbal groups was at par with 5% NaOCl. Conclusions: The antibacterial activity of these herbal extracts is found to be comparable with that of conventional irrigants both on the biofilm and planktonic counterparts. PMID:24082577
Oporto, Beatriz; Juste, Ramón A.; Hurtado, Ana
2009-01-01
Minimum inhibitory concentrations (MIC) of 13 antimicrobial agents were determined by broth microdilution for 72 Campylobacter jejuni strains from livestock. Twenty-three (31.9%) isolates were fully susceptible; all isolates were susceptible to erythromycin, chloramphenicol, streptomycin, gentamicin, sulfamethoxazole, and meropenem, and all but one to kanamycin. Resistance to quinolones was highest (52.8%), reaching similar values among poultry, dairy cattle, and sheep, but lower in beef cattle. Resistance to tetracyclines (48.6%) was mainly associated to dairy cattle and β-lactams (26.4%) to poultry. Multidrug resistance was mainly detected in dairy cattle (28.6%) and poultry (21.0%), whereas beef cattle had the highest percentage of fully susceptible isolates. Two real-time PCR assays to detect point mutations associated to quinolone (C257T in the gyrA gene) and macrolide (A2075G in the 23S rRNA genes) resistance were developed and validated on these strains. The analysis of a further set of 88 isolates by real-time PCR confirmed the absence of macrolide resistance and demonstrated the reproducibility and processability of the assay. PMID:20224816
Politeo, Olivera; Skocibusic, Mirjana; Maravic, Ana; Ruscic, Mirko; Milos, Mladen
2011-03-01
The chemical composition and the antimicrobial activity of the essential oil isolated from the needles of endemic Dalmatian black pine (Pinus nigra ssp. dalmatica) from Croatia were investigated. The chemical composition of the essential oil was determined by GC and GC/MS analyses, and the main compounds identified were α-pinene, β-pinene, germacrene D, and β-caryophyllene. Disc-diffusion and broth-microdilution assays were used for the in vitro antimicrobial screening. The Dalmatian black pine essential oil exhibited a great potential of antibacterial activity against Gram-positive bacteria (MIC=0.03-0.50% (v/v)) and a less pronounced activity against Gram-negative bacteria (MIC=0.12-3.2% (v/v)). The volatile compounds also inhibited the growth of all fungi tested, including yeast. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.
Tenfen, Adrielli; Siebert, Diogo Alexandre; Yamanaka, Celina Noriko; Mendes de Córdova, Caio Maurício; Scharf, Dilamara Riva; Simionatto, Edésio Luiz; Alberton, Michele Debiasi
2016-09-01
This study describes the qualitative and quantitative chemical composition and evaluates the antibacterial activity of essential oil from Eugenia platysema leaves. Analysis by GC-FID and GC-MS allowed the identification of 22 compounds. Different from the other species of the Eugenia genus, the major compound found in the essential oil was the diterpene phytol (66.05%), being this the first report of the presence of this compound in the essential oils from Eugenia genus. The sesquiterpene elixene was the second most concentrated compound in the studied essential oil (9.16%). The essential oil from E. platysema was tested for its antibacterial activity against cell-walled bacteria and mollicute strains of clinical interest using the microdilution broth assay. The results showed that the essential oil of E. platysema was inactive until 1000 μg mL(-1) against tested bacteria.
Patel, Kunal D; Scarano, Frank J; Kondo, Miwako; Hurta, Robert A R; Neto, Catherine C
2011-12-28
Cranberry ( Vaccinium macrocarpon ) has been shown in clinical studies to reduce infections caused by Escherichia coli and other bacteria, and proanthocyanidins are believed to play a role. The ability of cranberry to inhibit the growth of opportunistic human fungal pathogens that cause oral, skin, respiratory, and systemic infections has not been well-studied. Fractions from whole cranberry fruit were screened for inhibition of five Candida species and Cryptococcus neoformans , a causative agent of fungal meningitis. Candida glabrata , Candida lusitaniae , Candida krusei , and Cryptococcus neoformans showed significant susceptibility to treatment with cranberry proanthocyanidin fractions in a broth microdilution assay, with minimum inhibitory concentrations as low as 1 μg/mL. MALDI-TOF MS analysis of subfractions detected epicatechin oligomers of up to 12 degrees of polymerization. Those containing larger oligomers caused the strongest inhibition. This study suggests that cranberry has potential as an antifungal agent.
Tan, Joash Ban Lee; Yap, Wei Jin; Tan, Shen Yeng; Lim, Yau Yan; Lee, Sui Mae
2014-01-01
Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5–10 mg/mL based on the broth microdilution method. PMID:26785239
Kačániová, Miroslava; Vukovič, Nenad; Horská, Elena; Salamon, Ivan; Bobková, Alica; Hleba, Lukáš; Fiskelová, Martina; Vatľák, Alexander; Petrová, Jana; Bobko, Marek
2014-01-01
In the present study, the antimicrobial and antiradical activities of 15 essential oils were investigated. The antimicrobial activities were determined by using agar disc diffusion and broth microdilution methods against Clostridium genus and antioxidant properties of essential oils by testing their scavenging effect on DPPH radicals activities. We determined the antibacterial activity of Clostridium butyricum, Clostridium hystoliticum, Clostridium intestinale, Clostridium perfringens and Clostridium ramosum. We obtained the original commercial essential oils samples of Lavandula angustifolia, Carum carvi, Pinus montana, Mentha piperita, Foeniculum vulgare Mill., Pinus sylvestris, Satureia montana, Origanum vulgare L. (2 samples), Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abies alba Mill., Chamomilla recutita L. Rausch and Thymus vulgaris L. produced in Slovakia (Calendula a.s., Nova Lubovna, Slovakia). The results of the disk diffusion method showed very high essential oils activity against all tested strains of microorganisms. The best antimicrobial activity against C. butyricum was found at Pimpinella anisum, against C. hystoliticum was found at Pinus sylvestris, against C. intestinale was found at Satureia hortensis L., against C. perfringens was found at Origanum vulgare L. and against C. ramosum was found at Pinus sylvestris. The results of broth microdilution assay showed that none of the essential oils was active against C. hystoliticum. The best antimicrobial activity against C. butyricum was found at Abies alba Mill., against C. intestinale was found at Abies alba Mill., against C. perfringens was found at Satureia montana and against C. ramosum was found at Abius alba and Carum carvi. Antioxidant DPPH radical scavenging activity was determined at several solutions of oil samples (50 μL.mL(-1)-0.39 μL.mL(-1)) and the best scavenging effect for the highest concentration (50 μL.mL(-1)) was observed. The antioxidant properties were different in particular plant species. The highest% of inhibition after 30 min. of reaction was observed at Origanum vulgare (93%), Satureia montana (90.66%) and Lavandula augustifolia (90.22%).
McCarty, Todd P; Lockhart, Shawn R; Moser, Stephen A; Whiddon, Jennifer; Zurko, Joanna; Pham, Cau D; Pappas, Peter G
2018-02-28
To identify the frequency of micafungin resistance among clinically significant isolates of Candida stored at our institution from 2005 to 2015. Chart review of patients with resistant isolates then informed the clinical setting and outcomes associated with these infections. Clinical Candida isolates had been stored at -80°C in Brucella broth with 20% glycerol from 2005. Isolates were tested using broth microdilution to determine micafungin MICs. All Candida glabrata isolates and all isolates demonstrating decreased susceptibility to micafungin were screened for FKS mutations using a Luminex assay. In total, 3876 Candida isolates were tested for micafungin resistance, including 832 C. glabrata isolates. Of those, 33 isolates from 31 patients were found to have either decreased susceptibility to micafungin and/or an FKS mutation. C. glabrata accounted for the majority of these isolates. While bloodstream infections were found to have a very high mortality rate, isolates from other sites were uncommonly associated with 30-day mortality. Overall resistance rates were very low. Echinocandin resistance in C. glabrata has been increasingly reported but rates at our institution remain very low. We hypothesize that a focus on antifungal stewardship may have led to these observations. Knowledge of local resistance patterns is key to appropriate empirical treatment strategies.
Clinical Trichophyton rubrum Strain Exhibiting Primary Resistance to Terbinafine
Mukherjee, Pranab K.; Leidich, Steven D.; Isham, Nancy; Leitner, Ingrid; Ryder, Neil S.; Ghannoum, Mahmoud A.
2003-01-01
The in vitro antifungal susceptibilities of six clinical Trichophyton rubrum isolates obtained sequentially from a single onychomycosis patient who failed oral terbinafine therapy (250 mg/day for 24 weeks) were determined by broth microdilution and macrodilution methodologies. Strain relatedness was examined by random amplified polymorphic DNA (RAPD) analyses. Data obtained from both broth micro- and macrodilution assays were in agreement and revealed that the six clinical isolates had greatly reduced susceptibilities to terbinafine. The MICs of terbinafine for these strains were >4 μg/ml, whereas they were <0.0002 μg/ml for the susceptible reference strains. Consistent with these findings, the minimum fungicidal concentrations (MFCs) of terbinafine for all six strains were >128 μg/ml, whereas they were 0.0002 μg/ml for the reference strain. The MIC of terbinafine for the baseline strain (cultured at the initial screening visit and before therapy was started) was already 4,000-fold higher than normal, suggesting that this is a case of primary resistance to terbinafine. The results obtained by the broth macrodilution procedure revealed that the terbinafine MICs and MFCs for sequential isolates apparently increased during the course of therapy. RAPD analyses did not reveal any differences between the isolates. The terbinafine-resistant isolates exhibited normal susceptibilities to clinically available antimycotics including itraconazole, fluconazole, and griseofulvin. However, these isolates were fully cross resistant to several other known squalene epoxidase inhibitors, including naftifine, butenafine, tolnaftate, and tolciclate, suggesting a target-specific mechanism of resistance. This is the first confirmed report of terbinafine resistance in dermatophytes. PMID:12499173
Li, Guanghui; Qiao, Mingyu; Guo, Yan; Wang, Xin; Xu, Yunfeng; Xia, Xiaodong
2014-09-01
Chlorogenic acid (CA) has been reported to inhibit several pathogens, but the influence of subinhibitory concentrations of CA on virulence expression of pathogens has not been fully elucidated. The aim of this study was to explore the effect of CA on the virulence factor production of Staphylococcus aureus. The minimum inhibitory concentration (MIC) of CA against S. aureus was determined using a broth microdilution method. Hemolysin assays, coagulase titer assays, adherence to solid-phase fibrinogen assays, Western blot, and real-time reverse transcriptase-polymerase chain reaction were performed to evaluate the effect of subinhibitory concentrations of CA on the virulence factors of S. aureus. MIC of CA against S. aureus ATCC29213 was found to be 2.56 mg/mL. At subinhibitory concentrations, CA significantly inhibited the hemolysis and dose-dependently decreased coagulase titer. Reduced binding to fibrinogen and decreased production of SEA were observed with treatment of CA at concentrations ranging from 1/16MIC to 1/2MIC. CA markedly inhibited the expression of hla, sea, and agr genes in S. aureus. These data demonstrate that the virulence expression of S. aureus could be reduced by CA and suggest that CA could be potentially developed as a supplemental strategy to control S. aureus infection and to prevent staphylococcal food poisoning.
La, My-Van; Lin, Raymond T. P.
2017-01-01
ABSTRACT Colistin and polymyxin B remain part of the last line of antibiotics for multidrug-resistant Gram-negative bacteria, such as carbapenem-resistant Enterobacteriaceae. Current joint EUCAST-CLSI recommendations are for broth microdilution (BMD) to be performed for MIC testing of colistin. Commercial susceptibility testing methods were evaluated and compared against the reference BMD, using a susceptibility breakpoint of ≤2 mg/liter for both colistin and polymyxin B. Seventy-six Enterobacteriaceae were included, of which 21 were mcr-1 positive (18 Escherichia coli isolates, 2 Klebsiella pneumoniae isolates, and 1 Enterobacter aerogenes isolate). Rates of essential agreement (EA) of colistin test results between BMD and Vitek 2, Sensititre, and Etest were 93.4%, 89.5%, and 75.0%, respectively. Rates of EA of polymyxin B test results between BMD and Vitek 2, Sensititre, and Etest were 96.1%, 96.1%, and 48.7%, respectively. A positive MIC correlation with a categorical agreement of >90% was achieved for Sensititre (colistin Spearman's ρ = 0.863, and polymyxin B Spearman's ρ = 0.877) and Vitek 2 (polymyxin B [only] Spearman's ρ = 0.8917). Although a positive MIC correlation (Spearman's ρ = 0.873) with the reference method was achieved for colistin testing with Vitek 2, categorical agreement was <90%, with very major error rates of 36%. Correlation with the Etest MIC was lower, with very major error rates of 12% (colistin) and 26.1% (polymyxin B). MicroScan (colistin) categorical agreement was 88.2%, with a very major error rate of 4%. Colistin MICs for 15 of the 21 mcr-1-positive isolates were >2 mg/liter, and polymyxin MICs for 17 of them were >2 mg/liter by broth microdilution. The use of a lower breakpoint of ≤1 mg/liter further improves detection of mcr-1 for all testing methods. However, further data on the correlation between MICs and clinical outcome are required to determine the most suitable breakpoint to guide clinical management. PMID:28592552
Carreira, Alexandra; Ferreira, João Boavida; Pereira, Iliana; Ferreira, João; Filipe, Paulo; Ferreira, Ricardo Boavida; Monteiro, Sara
2018-02-01
The lack of novel antifungal drugs and the increasing incidence and severity of fungal infections are major concerns worldwide. Herein, we tested the activity of the Blad-containing oligomer (BCO), a new antifungal molecule already in use for agriculture, on Malassezia spp. and dermatophytes, the causal agents of human tinea versicolor and tinea pedis. Given the lack of a standard method for Malassezia susceptibility testing and the plethora of published methods, we also developed an improved method for this genus. The efficacy of BCO was assessed in vitro and compared to that of the drugs currently utilized in the treatment of tinea versicolor (fluconazole and itraconazole) and tinea pedis (itraconazole and terbinafine). For dermatophytes, the standard microdilution broth-based method was used, with small adjustments, and several broth formulations and inocula sizes were tested to develop an improved susceptibility method for Malassezia spp. We successfully developed a microdilution broth-based method with considerable advantages over other available methods, and used it for all in vitro susceptibility tests of Malassezia spp. isolates. We report that, on a molar basis, BCO was more effective than fluconazole or itraconazole on most strains of Malassezia spp. isolated from clinical samples (n=29). By contrast, BCO was less effective than itraconazole or terbinafine on the common dermatophytes Trichophyton rubrum and Trichophyton interdigitale. These data place BCO as a promising drug for the treatment of Malassezia-associated skin diseases. Further in vivo studies are now required to ascertain its applicability in the clinical setting.
Potential application of Northern Argentine propolis to control some phytopathogenic bacteria.
Ordóñez, R M; Zampini, I C; Moreno, M I Nieva; Isla, M I
2011-10-20
The antimicrobial activity of samples of Northern Argentine propolis (Tucumán, Santiago del Estero and Chaco) against phytopathogenic bacteria was assessed and the most active samples were identified. Minimal inhibitory concentration (MIC) values were determined by agar macrodilution and broth microdilution assays. Strong antibacterial activity was detected against Erwinia carotovora spp carotovora CECT 225, Pseudomonas syringae pvar tomato CECT 126, Pseudomonas corrugata CECT 124 and Xanthomonas campestris pvar vesicatoria CECT 792. The most active propolis extract (Tucumán, T1) was selected to bioguide isolation and identified for antimicrobial compound (2',4'-dihydroxychalcone). The antibacterial chalcone was more active than the propolis ethanolic extract (MIC values of 0.5-1 μg ml(-1) and 9.5-15 μg ml(-1), respectively). Phytotoxicity assays were realized and the propolis extracts did not retard germination of lettuce seeds or the growth of onion roots. Propolis solutions applied as sprays on tomato fruits infected with P. syringae reduced the severity of disease. Application of the Argentine propolis extracts diluted with water may be promising for the management of post harvest diseases of fruits. Copyright © 2010 Elsevier GmbH. All rights reserved.
Chromosomally Encoded mcr-5 in Colistin non-susceptible Pseudomonas aeruginosa.
Snesrud, Erik; Maybank, Rosslyn; Kwak, Yoon I; Jones, Anthony R; Hinkle, Mary K; Mc Gann, Patrick
2018-05-29
Whole genome sequencing (WGS) of historical Pseudomonas aeruginosa clinical isolates identified a chromosomal copy of mcr-5 within a Tn 3 -like transposon in P. aeruginosa MRSN 12280. The isolate was non-susceptible to colistin by broth microdilution and genome analysis revealed no mutations known to confer colistin resistance. To the best of our knowledge, this is the first report of mcr in colistin non-susceptible P. aeruginosa .
Dudiuk, Catiana; Fernández, Mariana; Rojas, Florencia; Alegre, Liliana; Córdoba, Susana; Garcia-Effron, Guillermo; Giusiano, Gustavo
2017-01-01
ABSTRACT A total of 59 Candida parapsilosis sensu stricto and 1 Candida orthopsilosis recovered from catheters and blood cultures of pediatric patients from the northeastern region of Argentina were studied. Susceptibility to azoles, amphotericin B, and echinocandins was tested by the broth microdilution method. According to CLSI clinical breakpoints, >91% of the strains were azole susceptible, whereas 15% showed high amphotericin B MICs. PMID:28483957
2009-01-01
elements and tend to carry resis- tance determinants in addition to mecA. In addition to varying antimicrobial resistance, the presence of certain...Antimicrobial susceptibility testing BMD testing was performed using CLSI criteria to determine antimicrobial susceptibility, broth microdilution performed...minocycline, trimethoprim –sul- famethoxazole, ciprofloxacin, rifampin, tigecycline and gen- tamicin. Wells containing daptomycin were supplemented with 50 mg
2010-07-01
analyzed. Antimicrobial resistance testing was determined by broth microdilution and the BD Phoenix Automated Microbiology System. The genotypic pattern was... trimethoprim -sulfamethoxazole (94%), and clindamy- cin (94%). Of agents not typically recommended as monotherapy, 98% of isolates were susceptible to rifampin...was van- comycin (Table 1). The most active oral antistaphylococcal agents were tetracycline (95.2% of isolates susceptible) and trimethoprim
Gitman, Melissa R.; McTaggart, Lisa; Spinato, Joanna; Poopalarajah, Rahgavi; Lister, Erin; Husain, Shahid
2017-01-01
ABSTRACT Aspergillus spp. cause serious invasive lung infections, and Aspergillus fumigatus is the most commonly encountered clinically significant species. Voriconazole is considered to be the drug of choice for treating A. fumigatus infections; however, rising resistance rates have been reported. We evaluated a matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS)-based method for the differentiation between wild-type and non-wild-type isolates of 20 Aspergillus spp. (including 2 isolates of Aspergillus ustus and 1 of Aspergillus calidoustus that were used as controls due their intrinsic low azole susceptibility with respect to the in vitro response to voriconazole). At 30 and 48 h of incubation, there was complete agreement between Cyp51A sequence analysis, broth microdilution, and MALDI-TOF MS classification of isolates as wild type or non-wild type. In this proof-of-concept study, we demonstrated that MALDI-TOF MS can be used to accurately detect A. fumigatus strains with reduced voriconazole susceptibility. However, rather than proving to be a rapid and simple method for antifungal susceptibility testing, this particular MS-based method showed no benefit over conventional testing methods. PMID:28404678
Gitman, Melissa R; McTaggart, Lisa; Spinato, Joanna; Poopalarajah, Rahgavi; Lister, Erin; Husain, Shahid; Kus, Julianne V
2017-07-01
Aspergillus spp. cause serious invasive lung infections, and Aspergillus fumigatus is the most commonly encountered clinically significant species. Voriconazole is considered to be the drug of choice for treating A. fumigatus infections; however, rising resistance rates have been reported. We evaluated a matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-based method for the differentiation between wild-type and non-wild-type isolates of 20 Aspergillus spp. (including 2 isolates of Aspergillus ustus and 1 of Aspergillus calidoustus that were used as controls due their intrinsic low azole susceptibility with respect to the in vitro response to voriconazole). At 30 and 48 h of incubation, there was complete agreement between Cyp51A sequence analysis, broth microdilution, and MALDI-TOF MS classification of isolates as wild type or non-wild type. In this proof-of-concept study, we demonstrated that MALDI-TOF MS can be used to accurately detect A. fumigatus strains with reduced voriconazole susceptibility. However, rather than proving to be a rapid and simple method for antifungal susceptibility testing, this particular MS-based method showed no benefit over conventional testing methods. © Crown copyright 2017.
Espinel-Ingroff, A.; Fothergill, A.; Fuller, J.; Johnson, E.; Pelaez, T.; Turnidge, J.
2011-01-01
Clinical breakpoints have not been established for mold testing. Epidemiologic cutoff values (ECVs) are available for six Aspergillus spp. and the triazoles, but not for caspofungin. Wild-type (WT) minimal effective concentration (MEC) distributions (organisms in a species-drug combination with no acquired resistance mechanisms) were defined in order to establish ECVs for six Aspergillus spp. and caspofungin. The number of available isolates was as follows: 1,691 A. fumigatus, 432 A. flavus, 192 A. nidulans, 440 A. niger, 385 A. terreus, and 75 A. versicolor isolates. CLSI broth microdilution MEC data gathered in five independent laboratories in Canada, Europe, and the United States were aggregated for the analyses. ECVs expressed in μg/ml that captured 95% and 99% of the modeled wild-type population were for A. fumigatus 0.5 and 1, A. flavus 0.25 and 0.5, A. nidulans 0.5 and 0.5, A. niger 0.25 and 0.25, A. terreus 0.25 and 0.5, and A. versicolor 0.25 and 0.5. Although caspofungin ECVs are not designed to predict the outcome of therapy, they may aid in the detection of strains with reduced antifungal susceptibility to this agent and acquired resistance mechanisms. PMID:21422219
Tabanca, Nurhayat; Demirci, Betul; Crockett, Sara L; Başer, Kemal Hüsnü Can; Wedge, David E
2007-10-17
Essential oils from three different Asteraceae obtained by hydrodistillation of aerial parts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Main compounds obtained from each taxon were found as follows: Arnica longifolia carvacrol 37.3%, alpha-bisabolol 8.2%; Aster hesperius hexadecanoic acid 29.6%, carvacrol 15.2%; and Chrysothamnus nauseosus var. nauseosus beta-phellandrene 22.8% and beta-pinene 19.8%. Essential oils were also evaluated for their antimalarial and antimicrobial activity against human pathogens, and antifungal activities against plant pathogens. No antimalarial and antimicrobial activities against human pathogens were observed. Direct bioautography demonstrated antifungal activity of the essential oils obtained from three Asteraceae taxa and two pure compounds, carvacrol and beta-bisabolol, to the plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Subsequent evaluation of antifungal compounds using a 96-well micro-dilution broth assay indicated that alpha-bisabolol showed weak growth inhibition of the plant pathogen Botrytis cinerea after 72 h.
The effect of clary sage oil on staphylococci responsible for wound infections.
Sienkiewicz, Monika; Głowacka, Anna; Poznańska-Kurowska, Katarzyna; Kaszuba, Andrzej; Urbaniak, Anna; Kowalczyk, Edward
2015-02-01
The spreading of bacterial antibiotic resistance among clinical strains of pathogenic bacteria has made investigators to search for other active antibacterial agents which could provide a valuable complement to the existing therapies. To determine the antibacterial activity of clary sage oil (Salvia sclarea L.) against Staphylococcus clinical strains which were isolated from patients with wound infections. A comprehensive evaluation of Staphylococcus clinical strain resistance to antibiotics was performed. The constituents of clary sage oil were assayed by GC-FID-MS analysis. The minimal inhibitory concentration (MIC) of the tested essential oil against staphylococci by the micro-dilution broth method was determined. The clary sage oil was active against Staphylococcus aureus, S. epidermidis and S. xylosus with MIC values ranging from 3.75 to 7.00 µl/ml. The results of the in vitro tests encourage to use formulations containing sage oil as the active natural antimicrobial agent. Because of its antimicrobial properties clary sage oil may be applied to treat wounds and skin infections.
Mothana, Ramzi; Alsaid, Mansour; Khaled, Jamal M; Alharbi, Naiyf S; Alatar, Abdulrahman; Raish, Mohammad; Al-Yahya, Mohammed; Rafatullah, Syed; Parvez, Mohammad Khalid; Ahamad, Syed Rizwan
2016-03-01
This study was designed to investigate the possible antiniciceptive, antipyretic and antimicrobial activities of the essential oil obtained from the fruits of Piper Cubeba (L.). To assess the antinociceptive and antipyretic activities, three doses (150, 300 and 600 mg/kg, i.p.) were tested in acetic acid-induced abdominal writhing, tail flick reaction and hot-plate and Brewer's yeast-induced hyperpyrexia test models in animals. Moreover, the antimicrobial activity was examined using agar diffusion method and broth micro-dilution assay for minimum inhibitory concentrations (MIC). The Piper Cubeba essential oil (PCEO) showed a marked antinociception (17, 30 and 54%) and an increase in reaction time in mice in the flick tailed and hot-plate tests. The brewer's yeast induced hyperpyrexia was decreased in a dose dependent manner. PCEO also exhibited a strong antimicrobial potential. These findings confirm the traditional analgesic indications of P. cubeba oil and provide persuasive evidence and support its use in Arab traditional medicine.
López-García, B; Hernández, M; Segundo, B S
2012-07-01
This study aimed to evaluate the effect of bromelain, a cysteine protease isolated from pineapple (Ananas comosus), on growth of several agronomically important fungal pathogens. Purification of bromelain from pineapple stems was carried out by chromatography techniques, and its antimicrobial activity was tested against the fungal pathogens Fusarium verticillioides, Fusarium oxysporum and Fusarium proliferatum by broth microdilution assay. A concentration of 0.3 μmol l(-1) of bromelain was sufficient for 90% growth inhibition of F. verticillioides. The capability of bromelain to inhibit fungal growth is related to its proteolytic activity. The study demonstrates that stem bromelain exhibits a potent antifungal activity against phytopathogens and suggests its potential use as an effective agent for crop protection. The results support the use of a natural protease that accumulates at high levels in pineapple stems as alternative to the use of chemical fungicides for crop protection. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.
Celaya, Liliana S; Alabrudzińska, Marta H; Molina, Ana C; Viturro, Carmen I; Moreno, Silvia
2014-01-01
Schinus areira L. is a native plant from South America used for centuries in traditional medicine. Here, we investigate the antimicrobial activity of four essential oils extracted from leaves and fruits of S. areira exhibiting different chemical profiles. The antibacterial activity against the human pathogenic bacteria Staphylococcus aureus susceptible as well as methicillin resistant strain was assessed by the broth microdilution assay. The results showed that the limonene-rich oil extracted from the leaves and fruits have potent antibacterial effect on S. aureus ATCC 25923, while the α-phellandrene-rich fruit oil having a lower content of limonene showed the lowest antibacterial efficacy. In this work, for the first time, we demonstrated the bactericidal activity of essential oils isolated from fruits and leaves of S. areira against susceptible and methicillin resistant S. aureus strains. All results point out the potential use of the S. areira oils as antimicrobial agents to be used, at least against Staphylococcal infections.
Mafioleti, Luciano; da Silva Junior, Iberê Ferreira; Colodel, Edson Moleta; Flach, Adriana; Martins, Domingos Tabajara de Oliveira
2013-11-25
Arrabidaea chica (Bignoniaceae) is a vine native to the Amazon Rainforest, popularly known as "crajiru" and whose infusion and decoction of the leaves are used to treat diseases such as gastric ulcers, inflammations, infections, anemia, herpes, jaundice among others. It is also used as a natural dye. This work aimed to evaluate the in vitro and in vivo toxicity, antimicrobial activity including analysis of chemical constitution of the hydroethanolic extract of the leaves of Arrabidaea chica (HEAc). Acute and subchronic toxicity of HEAc was evaluated in mice and rats, respectively, and by Alamar blue (cytotoxicity assay) using CHO-K1 cells. Antimicrobial activity of HEAc was tested by broth microdilution method using a panel of bacteria and yeast of clinical interest. The preliminary phytochemical analysis of HEAc was performed by electrospray ionization mass spectrometry [ESI(+)-MS]. Secondary metabolites were quantified by colorimetric methods. When administered in vivo at doses up to 3000 mg/kg v.o., HEAc did not cause any signs and symptoms of acute toxicity in mice and no cytotoxicity in CHO-K1 cells. Administration for 30 days caused leukocytosis (200 mg/kg) and reversible reductions in non-dose dependent of body weight, total weight gain and feed intake in rats given 200mg/kg and 500 mg/kg of HEAc, but were not accompanied by behavioral and clinical changes (laboratory and histopathological) that may have demonstrated evidences of subchronic toxicity HEAc demonstrated a pronounced activity against Helicobacter pylori (MIC=12.5 μg/mL) and moderate activity against Enterococcus faecalis (MIC=100 μg/mL) in broth microdilution. Preliminary phytochemical analysis of HEAc by colorimetric methods revealed that mainly the presence of phenolic compounds (16.6%), especially flavones and flavonols (4.02%). [ESI(+)-MS] fingerprint analyses of HEAc revealed the presence of 3-deoxyanthocyanidins and kaempferol. Our data provide evidence that HEAc is safe and can be useful in infections related to Helicobacter pylori and Enterococcus faecalis. Phytochemical analysis revealed the predominant presence of flavones and flavonols, possibly involved in the antimicrobial action of HEAc. © 2013 Elsevier Ireland Ltd. All rights reserved.
Kulengowski, B; Ribes, J A; Burgess, D S
2018-04-16
Polymyxins have been revitalized to combat carbapenem-resistant Enterobacteriaceae (CRE). However, evaluating the activity of these agents by traditional broth dilution methods is not practical for busy clinical laboratories. We compared polymyxin B activity using two quantitative susceptibility testing methods, Etest ® and broth microdilution (BMD), against CRE isolates from patients at an academic medical centre. Polymyxin B activity against 70 CRE clinical isolates was determined by Etest ® according to the manufacturer and by BMD according to CLSI guidelines. Pseudomonas aeruginosa ATCC ® 27853 and Escherichia coli NCTC 13846 served as quality control strains. The EUCAST colistin susceptibility breakpoint of Enterobacteriaceae (≤2 mg/L) was used. Essential agreement was isolates with an MIC within 1 log 2 dilution over total isolates. Categorical agreement was number of isolates in the same susceptibility category (susceptible or resistant) over total isolates. Major and very major error rates were calculated using number of susceptible and number of resistant isolates, respectively, as the denominator. McNemar's test was used for determining a difference in susceptibility between methods. The CRE isolates were primarily Klebsiella spp. (49%) and Enterobacter spp. (36%). Polymyxin B susceptibility was significantly higher by Etest ® compared with BMD (97% versus 77%; p 0.0001). Categorical agreement was 80%, but essential agreement was low (10%). False non-susceptibility was never observed by Etest ® (BMD reference), but the very major errors were high (88%). Etest ® reporting of false susceptibility may result in inappropriate antibiotic use and treatment failure clinically. We do not recommend using Etest ® for polymyxin B susceptibility testing for routine patient care. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Cattana, Maria Emilia; Dudiuk, Catiana; Fernández, Mariana; Rojas, Florencia; Alegre, Liliana; Córdoba, Susana; Garcia-Effron, Guillermo; Giusiano, Gustavo
2017-07-01
A total of 59 Candida parapsilosis sensu stricto and 1 Candida orthopsilosis recovered from catheters and blood cultures of pediatric patients from the northeastern region of Argentina were studied. Susceptibility to azoles, amphotericin B, and echinocandins was tested by the broth microdilution method. According to CLSI clinical breakpoints, >91% of the strains were azole susceptible, whereas 15% showed high amphotericin B MICs. Copyright © 2017 American Society for Microbiology.
Mothana, Ramzi A.; Al-Said, Mansour S.; Al-Yahya, Mohammed A.; Al-Rehaily, Adnan J.; Khaled, Jamal M.
2013-01-01
Leucas virgata Balf.f. (Lamiaceae) was collected from the Island Soqotra (Yemen) and its essential oil was obtained by hydrodistillation. The chemical composition of the oil was investigated by GC and GC-MS. Moreover, the essential oil was evaluated for its antimicrobial activity against two Gram-positive bacteria, two Gram-negative bacteria, and one yeast species by using broth micro-dilution assay for minimum inhibitory concentrations (MIC) and antioxidant activity by measuring the scavenging activity of the DPPH radical. The investigation led to the identification of 43 constituents, representing 93.9% of the total oil. The essential oil of L. virgata was characterized by a high content of oxygenated monoterpenes (50.8%). Camphor (20.5%) exo-fenchol (3.4%), fenchon (5.4%), and borneol (3.1%) were identified as the main components. Oxygenated sesquiterpenes were found as the second major group of compounds (21.0%). β-Eudesmol (6.1%) and caryophyllene oxide (5.1%) were the major compounds among oxygenated sesquiterpenes. The results of the antimicrobial assay showed that the oil exhibited a great antibacterial activity against the tested S. aureus, B. subtilis, and E. coli. No activity was found against P. aeruginosa and C. albicans. Moreover, the DPPH-radical scavenging assay exhibited only a moderate antioxidant activity (31%) for the oil at the highest concentration tested (1 mg/mL). PMID:24284402
Antimicrobial activity of Willowherb (Epilobium angustifolium L.) leaves and flowers.
Kosalec, Ivan; Kopjar, Nevenka; Kremer, Dario
2013-08-01
Since the aetiology of benign prostatic hyperplasia (BHP) is still unknown, the use of medicinal herb extracts and products prepared thereof are recommended due to their antimicrobial activity, especially during early stages of BHP. A comparison was performed of the in vitro antimicrobial activity (using broth microdilution assay) of flowers and leaves of willowherb (Epilobium angustifolium L., Onagraceae) from Mt. Velebit (Croatia). The strains (standard ATCC and clinical isolates) of Staphylococcus aureus (including MRSA), Bacillus subtilis, Escherichia coli (including p-fimbriae positive strain), Pseudomonas aeruginosa, Proteus mirabilis, Candida albicans, C. tropicalis, C. dubliniensis and Saccharomyces cerevisiae were susceptible with MIC values between 4.6±0.2 and 18.2±0.8 mg/mL. The results of in vitro studies showed that no differences were found in the antimicrobial activity between the ethanol extracts of leaves and flowers of E. angustifolium. Using the quantitative fluorescent assay with ethidium bromide and acridine orange, the viability of C. albicans ATCC 10231 was assessed after in vitro exposure to E. angustifolium leaf and flower ethanol extracts. Apoptosis of C. albicans blastospores dominated over necrosis in all treated samples after short-term exposure with 6 to 12 mg/mL of extracts. In addition to the valuable biological activity of E. angustifolium extracts, the data obtained from the in vitro diffusion, the dilution assay and antifungal viability fluorescent assay suggest that leaf and flower ethanol extracts of E. angustifolium L. are a promising complementary herbal therapy of conditions such as BHP.
Hazırolan, Gülşen; Sarıbaş, Zeynep; Arıkan Akdağlı, Sevtap
2016-07-01
Candida albicans is the most frequently isolated species as the causative agent of Candida infections. However, in recent years, the isolation rate of non-albicans Candida species have increased. In many centers, Candida glabrata is one of the commonly isolated non-albicans species of C.glabrata infections which are difficult-to-treat due to decreased susceptibility to fluconazole and cross-resistance to other azoles. The aims of this study were to determine the in vitro susceptibility profiles of clinical C.glabrata isolates against fluconazole and voriconazole by microdilution and disk diffusion methods and to evaluate the results with both the previous (CLSI) and current species-specific CLSI (Clinical and Laboratory Standards Institute) clinical breakpoints. A total of 70 C.glabrata strains isolated from clinical samples were included in the study. The identification of the isolates was performed by morphologic examination on cornmeal Tween 80 agar and assimilation profiles obtained by using ID32C (BioMérieux, France). Broth microdilution and disk diffusion methods were performed according to CLSI M27-A3 and CLSI M44-A2 documents, respectively. The results were evaluated according to CLSI M27-A3 and M44-A2 documents and new vs. species-specific CLSI breakpoints. By using both previous and new CLSI breakpoints, broth microdilution test results showed that voriconazole has greater in vitro activity than fluconazole against C.glabrata isolates. For the two drugs tested, very major error was not observed with disk diffusion method when microdilution method was considered as the reference method. Since "susceptible" category no more exists for fluconazole vs. C.glabrata, the isolates that were interpreted as susceptible by previous breakpoints were evaluated as susceptible-dose dependent by current CLSI breakpoints. Since species-specific breakpoints remain yet undetermined for voriconazole, comparative analysis was not possible for this agent. The results obtained at 24 hours by disk diffusion method were evaluated by using both previous and current CLSI breakpoints and the agreement rates for fluconazole and voriconazole were 80% and 92.8% with previous CLSI breakpoint, 87.1% and 94.2% with new breakpoints, respectively. The high agreement rates between the two methods obtained by the new breakpoints in particular suggest that disk diffusion appears as a reliable alternative method in general for in vitro susceptibility testing of fluconazole and voriconazole against C.glabrata isolates.
Rifaximin disc diffusion test for in vitro susceptibility testing of Clostridium difficile
Huhulescu, Steliana; Sagel, Ulrich; Fiedler, Anita; Pecavar, Verena; Blaschitz, Marion; Wewalka, Guenther; Allerberger, Franz
2011-01-01
Rifaximin is a rifampicin derivative, poorly absorbed by the gastro-intestinal tract. We studied the in vitro susceptibility to rifamixin of 1082 Clostridium difficile isolates; among these,184 isolates from a strain collection were tested by an in-house rifaximin disc (40 µg) diffusion test, by an in-house rifaximin broth microdilution test, by rifampicin Etest and by rpoB gene sequencing. In the absence of respective CLSI or EUCAST MIC breakpoints for rifaximin and rifampicin against C. difficile we chose MIC ≥32 µg ml−1 as criterion for reduced in vitro susceptibility. To further validate the disc diffusion test 898 consecutive clinical isolates were analysed using the disc diffusion test, the Etest and rpoB gene sequence analysis for all resistant strains. Rifaximin broth microdilution tests of the 184 reference strains yielded rifaximin MICs ranging from 0.001 (n = 1) to ≥1024 µg ml−1 (n = 61); 62 isolates showed a reduced susceptibility (MIC ≥32 µg ml−1). All of these 62 strains showed rpoB gene mutations producing amino acid substitutions; the rifampicin- and rifaximin-susceptible strains showed either a wild-type sequence or silent amino acid substitutions (19 strains). For 11 arbitrarily chosen isolates with rifaximin MICs of >1024 µg ml−1, rifaximin end-point MICs were determined by broth dilution: 4096 µg ml−1 (n = 2), 8192 µg ml−1 (n = 6), 16 384 µg ml−1 (n = 2) and 32 678 µg ml−1 (n = 1). Rifampicin Etests on the 184 C. difficile reference strains yielded MICs ranging from ≤0.002 (n = 117) to ≥32 µg ml−1 (n = 59). Using a 38 mm inhibition zone as breakpoint for reduced susceptibility the use of rifaximin disc diffusion yielded 59 results correlating with those obtained by use of rifaximin broth microdilution in 98.4 % of the 184 strains tested. Rifampicin Etests performed on the 898 clinical isolates revealed that 67 isolates had MICs of ≥32 µg ml−1. There were no discordant results observed among these isolates with reduced susceptibility using an MIC of ≥32 µg ml−1 as breakpoint for reduced rifampicin susceptibility and a <38 mm inhibition zone as breakpoint for reduced rifaximin susceptibility. The prevalence of reduced susceptibility was 7.5 % for all isolates tested. However, for PCR ribotype 027 the prevalence of reduced susceptibility was 26 %. Susceptibility testing in the microbiology laboratory therefore could have an impact on the care and outcome of patients with infection. Our results show that rifaximin – despite its water-insolubility – may be a suitable candidate for disc diffusion testing. PMID:21292853
Luo, Jiao-Yang; Yan, Dan; Yang, Mei-Hua
2014-05-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacterium that causes both hospital- and community-acquired infections, and for which single-drug treatments are becoming less efficient. Rhizoma coptidis has been used for more than two thousand years in China to treat diarrhea, fever, and jaundice. In this study, the anti-MRSA activity of Rhizoma coptidis is examined and its effective components sought. The mecA and norA genes were determined by PCR amplification and sequencing. Drug susceptibility of Staphylococcus aureus ATCC43300 was performed using the VITEK2 compact system. The chemical fingerprint of Rhizoma coptidis was investigated using HPLC and preparative liquid chromatography, and the anti-MRSA activity was determined using an improved broth microdilution method. The drug susceptibility test revealed that the penicillin-binding protein phenotype of the strain changed in comparison to penicillin-sensitive Staphylococcus aureus. Ten batches of Rhizoma coptidis showed anti-MRSA activity on the norA-negative Staphylococcus aureus strain, as well as the strain that contained a norA gene. The spectrum-effect relationship revealed that the berberine alkaloids were the effective components, within which berberine, coptisine, palmatine, epiberberine, and jatrorrhizine were the major components. This study lays a foundation for in vivo studies of Rhizoma coptidis and for the development of multi-component drugs. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Pirš, Tina; Avberšek, Jana; Zdovc, Irena; Krt, Brane; Andlovic, Alenka; Lejko-Zupanc, Tatjana; Rupnik, Maja; Ocepek, Matjaž
2013-09-01
A total of 188 human (n = 92) and animal (n = 96) isolates of Clostridium difficile of different PCR ribotypes were screened for susceptibility to 30 antimicrobials using broth microdilution. When comparing the prevalence of antimicrobial resistance, the isolates of animal origin were significantly more often resistant to oxacillin, gentamicin and trimethoprim/sulfamethoxazole (P<0.01). The most significant difference between the animal and human populations (P = 0.0006) was found in the level of imipenem resistance, with a prevalence of 53.3 % in isolates of human origin and 28.1 % in isolates of animal origin. Overall, the results show similar MICs for the majority of tested antimicrobials for isolates from human and animal sources, which were collected from the same geographical region and in the same time interval. This supports the hypothesis that C. difficile could be transmissible between human and animal hosts. Resistant isolates have been found in all animal species tested, including food and companion animals, and also among non-toxigenic isolates. The isolates of the most prevalent PCR ribotype 014/020 had low resistance rates for moxifloxacin, erythromycin, rifampicin and daptomycin, but a high resistance rate for imipenem. Multiresistant strains were found in animals and humans, belonging to PCR ribotypes 012, 017, 027, 045, 046, 078 and 150, and also to non-toxigenic strains of PCR ribotypes 010 and SLO 080.
Drago, Lorenzo; Boot, Willemijn; Dimas, Kostantinos; Malizos, Kostantinos; Hänsch, Gertrud M; Stuyck, Jos; Gawlitta, Debby; Romanò, Carlo L
2014-11-01
Implant-related infections represent one of the most severe complications in orthopaedics. A fast-resorbable, antibacterial-loaded hydrogel may reduce or prevent bacterial colonization and biofilm formation of implanted biomaterials. We asked: (1) Is a fast-resorbable hydrogel able to deliver antibacterial compounds in vitro? (2) Can a hydrogel (alone or antibacterial-loaded) coating on implants reduce bacterial colonization? And (3) is intraoperative coating feasible and resistant to press-fit implant insertion? We tested the ability of Disposable Antibacterial Coating (DAC) hydrogel (Novagenit Srl, Mezzolombardo, Italy) to deliver antibacterial agents using spectrophotometry and a microbiologic assay. Antibacterial and antibiofilm activity were determined by broth microdilution and a crystal violet assay, respectively. Coating resistance to press-fit insertion was tested in rabbit tibias and human femurs. Complete release of all tested antibacterial compounds was observed in less than 96 hours. Bactericidal and antibiofilm effect of DAC hydrogel in combination with various antibacterials was shown in vitro. Approximately 80% of the hydrogel coating was retrieved on the implant after press-fit insertion. Implant coating with an antibacterial-loaded hydrogel reduces bacterial colonization and biofilm formation in vitro. A fast-resorbable, antibacterial-loaded hydrogel coating may help prevent implant-related infections in orthopaedics. However, further validation in animal models and properly controlled human studies is required.
Polatoğlu, Kaan; Demirci, Fatih; Demirci, Betül; Gören, Nezhun; Başer, Kemal Hüsnü Can
2010-01-01
Water-distilled essential oils from aerial parts of Tanacetum argenteum ssp. argenteum and T. densum ssp. amani from Turkey were analyzed by GC and GC/MS. The essential oil of T. argenteum ssp. argenteum was characterized with alpha-pinene 36.7%, beta-pinene 27.5% and 1,8-cineole 9.8%. T. densum ssp. amani was characterized with beta-pinene 27.2%, 1,8-cineole 13.1%, alpha-pinene 9.7% and p-cymene 8.9%. Antibacterial activity of the oils were evaluated for five Gram-positive and five Gram-negative bacteria by using a broth microdilution assay. The highest inhibitory activity was observed against Bacillus cereus for T. argenteum ssp. argenteum oil (125 microg/mL) when compared with positive control chloramphenicol it showed the same inhibition potency. However, the same oil showed lower inhibitory activity against B. subtilis when compared. The oil of T. densum ssp. amani did not show significant activity against the tested microorganisms. DPPH radical scavenging activity of the T. argenteum ssp. argenteum oil was investigated for 15 and 10 mg/mL concentrations. However, the oil did not show significant activity when compared to positive control alpha-tocopherol. Both oils showed toxicity to Vibrio fischeri in the TLC-bioluminescence assay.
Mothana, Ramzi A; Noman, Omar M; Al-Sheddi, Ebtesam S; Khaled, Jamal M; Al-Said, Mansour S; Al-Rehaily, Adnan J
2017-02-27
The essential oil of Leucas inflata Balf.f. (Lamiaceae), collected in Yemen, was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. Forty-three components were recognized, representing 89.2% of the total oil. The L. inflata volatile oil was found to contain a high percentage of aliphatic acids (51.1%). Hexadecanoic acid (32.8%) and n-dodecanoic acid (7.8%) were identified as the major compounds. Oxygenated monoterpenes were distinguished as the second significant group of constituents (16.0%). Camphor (6.1%) and linalool (3.2%) were found to be the main components among the oxygenated monoterpenes. In addition, the volatile oil was assessed for its antimicrobial activity against four bacterial strains and one yeast species using broth micro-dilution assay for minimum inhibitory concentrations (MIC). In addition, antioxidant activity was measured utilizing the anti-radical activity of the sable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-Carotene-linoleic acid assays. The oil of L. inflata showed an excellent antibacterial activity against only the tested Gram-positive bacteria with a MIC-value of 0.81 mg/mL. Furthermore, the oil demonstrated, at a concentration of 1 mg/mL, a weak to moderate antiradical and antioxidant activity of 38% and 32%, respectively.
Lamola, Stella Makgabo; Dzoyem, Jean Paul; Botha, Francien; van Wyk, Candice
2017-09-01
Bacterial infections of the gastrointestinal tract (GIT) cause vomiting, diarrhoea and even systemic disease. There is a need for the development of natural products into alternative and safer medicines. This study evaluated the anti-microbial activity of extracts prepared from berries, leaves, bark and roots of the edible plant Grewia flava . The anti-bacterial activity was evaluated by the broth microdilution method. Anti-oxidant activity of the most active extracts was performed by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. The cytotoxicity of the extracts was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The acetone extracts of the leaves and roots showed the best activity with MIC values as low as 0.03 mg/mL against Staphylococcus aureus and Salmonella typhimurium and 0.07 mg/mL against Bacillus cereus, Escherichia coli and Staphylococcus aureus . Quantitative analysis of the scavenging ability showed that acetone extracts exhibited good free radical scavenging activity in a dose-dependent manner. The berries extract had the highest LC 50 (lowest toxicity) of 551.68 68 µg/mL. Acetone extract of leaves and roots of Grewia flava contain anti-microbial and anti-oxidant compounds and could therefore be used as a natural product with little toxicity to host cells.
Yang, Youjun; English, Donald J
The present study reports the effects of adding L-glutamic acid to a new enrichment broth designated as R-TATP broth, to promote the growth of slow-growing mold microorganisms such as Aspergillus brasiliensis and Aspergillus oryzae , without interfering in the growth of other types of microorganisms. This L-glutamic acid containing enrichment broth would be particularly valuable in a rapid microbial detection assay such as an adenosine triphosphate (ATP) bioluminescence assay. By using this new enrichment broth, the amount of ATP (represented as relative light unit ratio after normalized with the negative test control) from mold growth was significantly increased by reducing the time of detection of microbial contamination in a raw ingredient or personal care product formulation from an incubation period of 48-18 h. By using L-glutamic acid in this enrichment broth, the lag phase of the mold growth cycle was shortened. In response to various concentrations of L-glutamic acid in R-TATP broth, there was an increased amount of ATP that had been produced by mold metabolism in an ATP bioluminescence assay. By using L-glutamic acid in R-TATP broth in an ATP bioluminescence assay, the presence of mold could be detected in 18 h as well as other types of microorganisms that may or may not be present in a test sample. By detecting the presence or absence of microbial contamination in 18 h, it is superior in comparison to a 48-96 h incubation period by using either a standard or rapid detection method.
2011-10-01
Phoenix, and Vitek 2 systems). Discordant results were categorized as very major errors (VME), major errors (ME), and minor errors (mE). DNA sequences...01 OCT 2011 2 . REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Carbapenem Susceptibility Testing Errors Using Three Automated...FDA standards required for device approval (11). The Vitek 2 method was the only automated susceptibility method in our study that satisfied FDA
Etest Cannot Be Recommended for In Vitro Susceptibility Testing of Mucorales
Caramalho, Rita; Maurer, Elisabeth; Binder, Ulrike; Araújo, Ricardo; Dolatabadi, Somayeh; Lass-Flörl, Cornelia
2015-01-01
Amphotericin B and posaconazole susceptibility patterns were determined for the most prevalent Mucorales, following EUCAST (European Committee on Antimicrobial Susceptibility Testing) broth microdilution guidelines. In parallel, Etest was performed and evaluated against EUCAST. The overall agreement of MICs gained with Etest and EUCAST was 75.1%; therefore, Etest cannot be recommended for antifungal susceptibility testing of Mucorales. Amphotericin B was the most active drug against Mucorales species in vitro, while the activities of posaconazole were more restricted. PMID:25845881
Raymond Chia, Teck Wah; Dykes, Gary A
2010-07-01
The epicarp and seed of Persea Americana Mill. var. Hass (Lauraceae), Persea Americana Mill. var. Shepard, and Persea americana Mill. var Fuerte cultivars of mature avocados (n = 3) were ground separately and extracted with both absolute ethanol and distilled water. Extracts were analyzed for antimicrobial activity using the microtiter broth microdilution assay against four Gram-positive bacteria, six Gram-negative bacteria, and one yeast. Antimicrobial activity against two molds was determined by the hole plate method. The ethanol extracts showed antimicrobial activity (104.2-416.7 microg/mL) toward both Gram-positive and Gram-negative bacteria (except Escherichia coli), while inhibition of the water extracts was only observed for Listeria monocytogenes (93.8-375.0 microg/mL) and Staphylococcus epidermidis (354.2 microg/mL). The minimum concentration required to inhibit Zygosaccharomyces bailii was 500 microg/mL for the ethanol extracts, while no inhibition was observed for the water extracts. No inhibition by either ethanol or water extracts was observed against Penicillium spp. and Aspergillus flavus.
Lin, Lianzhu; Zhu, Dashuai; Zou, Linwu; Yang, Bao; Zhao, Mouming
2013-08-15
The objective of this work was to conduct an activity-guided isolation of antibacterial compounds from Rabdosia serra. The ethanol extracts of R. serra leaf and stem were partitioned sequentially into petroleum ether, ethyl acetate, butanol and water fractions, respectively. The ethanol extract of leaf evidenced broad-spectrum antibacterial activity against gram-positive bacterial, including Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Listeria monocytogenes. The ethyl acetate fractions of leaf and stem exhibited strong inhibition against gram-positive bacteria, and were then purified further. On the basis of antibacterial assay-guided purification, three phenolic compounds (rosmarinic acid, methyl rosmarinate and pedalitin) and four C-20 oxygenated ent-kauranes (effusanin E, lasiodin, rabdosichuanin D and a new compound namely effusanin F) were obtained, whose contents were determined by HPLC analysis. The broth microdilution method confirmed the important inhibition potential of C-20 oxygenated ent-kauranes with low minimum inhibitory concentration (MIC) values. Effusanin E, lasiodin and effusanin F could be useful for the development of new antibacterial agents. Copyright © 2013 Elsevier Ltd. All rights reserved.
ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES
BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie
2016-01-01
Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561
ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.
Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie
2016-01-01
Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.
Brito, Erika H S; Fontenelle, Raquel O S; Brilhante, Raimunda S N; Cordeiro, Rossana A; Monteiro, André J; Sidrim, José J C; Rocha, Marcos F G
2009-11-01
The aim of this work was to identify the predominant yeast species present at different anatomical sites in healthy dogs and to determine their in vitro antimicrobial susceptibility using a broth microdilution assay. Samples were collected from the preputial, vaginal, oral and perianal mucosae and the isolates cultured were identified according to their morphological characteristics and biochemical profile. Malassezia pachydermatis was the most commonly isolated yeast, followed by Candida parapsilosis, Candida tropicalis, Candida albicans, Saccharomyces cerevisiae and Rhodotorula spp. Minimum inhibitory concentrations of the azole derivatives ketoconazole, itraconazole and fluconazole against Candida spp. were 0.03-16 microg/mL, 0.06 to >16 microg/mL and 0.5-64 microg/mL, respectively and Candida isolates were sensitive to caspofungin and amphotericin B. Although all isolates of M. pachydermatis were sensitive to itraconazole, fluconazole, ketoconazole and amphotericin B, they were found to be resistant to caspofungin. The study has highlighted that Candida spp., M. pachydermatis, S. cerevisiae and Rhodotorula spp. are part of the normal canine surface microbiota and some of these organisms exhibit in vitro resistance to commonly used antimicrobials.
Tuned apatitic materials: Synthesis, characterization and potential antimicrobial applications
NASA Astrophysics Data System (ADS)
Fierascu, Irina; Fierascu, Radu Claudiu; Somoghi, Raluca; Ion, Rodica Mariana; Moanta, Adriana; Avramescu, Sorin Marius; Damian, Celina Maria; Ditu, Lia Mara
2018-04-01
Inorganic antimicrobial materials can be viable for multiple applications (related to its use for new buildings with special requirements related to microbiological loading, such as hospital buildings and for consolidation of cultural heritage constructions); also the use of substituted hydroxyapatites for protection of stone artefacts against environmental factors (acidic rain) and biodeterioration it's an option to no longer use of toxic substances. This paper presents methods of synthesis and characterization of the material from the point of view of the obtained structures and final applications. The materials were characterized in terms of composition and morphology (using X-ray Diffraction, X-ray Fluorescence, Inductively coupled plasma-atomic emission spectrometry, Fourier Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy, Surface area and pore size determination). Antimicrobial activity was tested against filamentous fungi strains and pathogenic bacteria strains, using both spot on lawn qualitative method (on agar medium) and serial microdilution quantitative method (in broth medium). Further, it was evaluated the anti-biofilm activity of the tested samples toward the most important microbial strains implicated in biofilm development, using crystal violet stained biofilms microtiter assay, followed by spectrophotometric quantitative evaluation.
Pang, Hui; Li, Guilian; Wan, Li; Jiang, Yi; Liu, Haican; Zhao, Xiuqin; Zhao, Zhongfu; Wan, Kanglin
2015-01-01
Rapidly growing mycobacteria (RGM) are human pathogens that are relatively easily identified by acid-fast staining but are proving difficult to treat in the clinic. In this study, we performed susceptibility testing of 40 international reference RGM species against 20 antimicrobial agents using the cation-adjusted Mueller-Hinton (CAMH) broth microdilution based on the minimum inhibitory concentration (MIC) assay recommended by the guidelines of the Clinical and Laboratory Standards Institute (CLSI). The results demonstrated that RGM organisms were resistant to the majority of first-line antituberculous agents but not to second-line fluoroquinolones or aminoglycosides. Three drugs (amikacin, tigecycline and linezolid) displayed potent antimycobacterial activity against all tested strains. Capreomycin, levofloxacin and moxifloxacin emerged as promising candidates for the treatment of RGM infections, and cefoxitin and meropenem were active against most strains. Mycobacterium chelonae (M. chelonae), M. abscessus, M. bolletii, M. fortuitum, M. boenickei, M. conceptionense, M. pseudoshottsii, M. septicum and M. setense were the most resistant RGM species. These results provide significant insight into the treatment of RGM species and will assist optimization of clinical criteria. PMID:26629031
Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis
NASA Astrophysics Data System (ADS)
Oyama, Linda B.; Crochet, Jean-Adrien; Edwards, Joan E.; Girdwood, Susan E.; Cookson, Alan R.; Fernandez-Fuentes, Narcis; Hilpert, Kai; Golyshin, Peter N.; Golyshina, Olga V.; Privé, Florence; Hess, Matthias; Mantovani, Hilario C.; Creevey, Christopher J.; Huws, Sharon A.
2017-07-01
Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.
Antileishmanial activity study and theoretical calculations for 4-amino-1,2,4-triazole derivatives
NASA Astrophysics Data System (ADS)
Süleymanoğlu, Nevin; Ünver, Yasemin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Gökhan
2017-09-01
4-amino-1,2,4-triazole derivatives; 4-amino-1-((5-mercapto-1,3,4-oxadiazole-2-yl)methyl)-3-(thiophene-2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (1) and 4-amino-1-((4-amino-5 mercapto-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-1H-1,2,4-triazole-5(4H)-one (2) were studied theoretically by Density Functional Theory (DFT) method with 6-311++G(d,p) basis set, structural and some spectroscopic parameters were determined. Significant differences between the experimental and calculated values of vibrational frequencies and chemical shifts were explained by the presence of intermolecular (Ssbnd H⋯O and Ssbnd H⋯N type) hydrogen bonds in structures. The Molecular Electrostatic Potential (MEP) maps obtained at B3LYP/6-311G++(d,p) support the existence of hydrogen bonds. Compounds were tested against to Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. Antileishmanial activity of 4-amino-1,2,4-triazole derivative (2) is remarkable.
In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci.
Pospisilova, Sarka; Michnova, Hana; Kauerova, Tereza; Pauk, Karel; Kollar, Peter; Vinsova, Jarmila; Imramovsky, Ales; Cizek, Alois; Jampilek, Josef
2018-07-01
A series of 13 salicylamide derivatives was assessed for antibacterial activity against three isolates of vancomycin-resistant Enterococcus faecalis (VRE) and Enterococcus faecalis ATCC 29212 as a quality standard. The minimum inhibitory concentration was determined by the broth microdilution method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The growth kinetics was established by the time-kill assay. Ampicillin, ciprofloxacin, tetracycline and vancomycin were used as the reference antibacterial drugs. Three of the investigated compounds showed strong bacteriostatic activity against VRE (0.199-25 µM) comparable to or more potent than ampicillin and ciprofloxacin. In addition, these compounds were tested for synergistic effect with vancomycin, ciprofloxacin and tetracycline, while 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide showed the highest potency as well as synergistic activity with vancomycin against VRE 368. Screening of the cytotoxicity of the most effective compounds was performed using human monocytic leukemia THP-1 cells, and based on LD 50 values, it can be stated that the compounds have insignificant toxicity against human cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
The effect of clary sage oil on staphylococci responsible for wound infections
Głowacka, Anna; Poznańska-Kurowska, Katarzyna; Kaszuba, Andrzej; Urbaniak, Anna; Kowalczyk, Edward
2015-01-01
Introduction The spreading of bacterial antibiotic resistance among clinical strains of pathogenic bacteria has made investigators to search for other active antibacterial agents which could provide a valuable complement to the existing therapies. Aim To determine the antibacterial activity of clary sage oil (Salvia sclarea L.) against Staphylococcus clinical strains which were isolated from patients with wound infections. Material and methods A comprehensive evaluation of Staphylococcus clinical strain resistance to antibiotics was performed. The constituents of clary sage oil were assayed by GC-FID-MS analysis. The minimal inhibitory concentration (MIC) of the tested essential oil against staphylococci by the micro-dilution broth method was determined. Results The clary sage oil was active against Staphylococcus aureus, S. epidermidis and S. xylosus with MIC values ranging from 3.75 to 7.00 µl/ml. Conclusions The results of the in vitro tests encourage to use formulations containing sage oil as the active natural antimicrobial agent. Because of its antimicrobial properties clary sage oil may be applied to treat wounds and skin infections. PMID:25821423
da SILVA, Juliana Paola Corrêa; de CASTILHO, Adriana Lígia; SARACENI, Cíntia Helena Couri; DÍAZ, Ingrit Elida Collantes; PACIÊNCIA, Mateus Luís Barradas; SUFFREDINI, Ivana Barbosa
2014-01-01
Caries is a global public health problem, whose control requires the introduction of low-cost treatments, such as strong prevention strategies, minimally invasive techniques and chemical prevention agents. Nature plays an important role as a source of new antibacterial substances that can be used in the prevention of caries, and Brazil is the richest country in terms of biodiversity. Objective In this study, the disk diffusion method (DDM) was used to screen over 2,000 Brazilian Amazon plant extracts against Streptococcus mutans. Material and Methods Seventeen active plant extracts were identified and fractionated. Extracts and their fractions, obtained by liquid-liquid partition, were tested in the DDM assay and in the microdilution broth assay (MBA) to determine their minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs). The extracts were also subjected to antioxidant analysis by thin layer chromatography. Results EB271, obtained from Casearia spruceana, showed significant activity against the bacterium in the DDM assay (20.67±0.52 mm), as did EB1129, obtained from Psychotria sp. (Rubiaceae) (15.04±2.29 mm). EB1493, obtained from Ipomoea alba, was the only extract to show strong activity against Streptococcus mutans (0.08 mg/mL
Stone, Nimalie D.; O'Hara, Caroline M.; Williams, Portia P.; McGowan, John E.; Tenover, Fred C.
2007-01-01
We compared the antimicrobial susceptibility testing results generated by disk diffusion and the VITEK 2 automated system with the results of the Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) reference method for 61 isolates of unusual species of Enterobacteriaceae. The isolates represented 15 genera and 26 different species, including Buttiauxella, Cedecea, Kluyvera, Leminorella, and Yokenella. Antimicrobial agents included aminoglycosides, carbapenems, cephalosporins, fluoroquinolones, penicillins, and trimethoprim-sulfamethoxazole. CLSI interpretative criteria for Enterobacteriaceae were used. Of the 12 drugs tested by BMD and disk diffusion, 10 showed >95% categorical agreement (CA). CA was lower for ampicillin (80.3%) and cefazolin (77.0%). There were 3 very major errors (all with cefazolin), 1 major error (also with cefazolin), and 26 minor errors. Of the 40 isolates (representing 12 species) that could be identified with the VITEK 2 database, 36 were identified correctly to species level, 1 was identified to genus level only, and 3 were reported as unidentified. VITEK 2 generated MIC results for 42 (68.8%) of 61 isolates, but categorical interpretations (susceptible, intermediate, and resistant) were provided for only 22. For the 17 drugs tested by both BMD and VITEK 2, essential agreement ranged from 80.9 to 100% and CA ranged from 68.2% (ampicillin) to 100%; thirteen drugs exhibited 100% CA. In summary, disk diffusion provides a reliable alternative to BMD for testing of unusual Enterobacteriaceae, some of which cannot be tested, or produce incorrect results, by automated methods. PMID:17135429
Rojas, Florencia D; Sosa, María de los A; Fernández, Mariana S; Cattana, María E; Córdoba, Susana B; Giusiano, Gustavo E
2014-08-01
We studied the in vitro activity of fluconazole (FCZ), ketoconazole (KTZ), miconazole (MCZ), voriconazole (VCZ), itraconazole (ITZ) and amphotericin B (AMB) against the three major pathogenic Malassezia species, M. globosa, M. sympodialis, and M. furfur. Antifungal susceptibilities were determined using the broth microdilution method in accordance with Clinical and Laboratory Standards Institute reference document M27-A3. To support lipid-dependent yeast development, glucose, peptone, ox bile, malt extract, glycerol, and Tween supplements were added to Roswell Park Memorial Institute RPMI 1640 medium. The supplemented medium allowed good growth of all three species studied. The minimal inhibitory concentrations (MICs) were recorded after 72 h of incubation at 32ºC. The three species showed different susceptibility profiles for the drugs tested. Malassezia sympodialis was the most susceptible and M. furfur the least susceptible species. KTZ, ITZ, and VCZ were the most active drugs, showing low variability among isolates of the same species. FCZ, MCZ, and AMB showed high MICs and wide MIC ranges. Differences observed emphasize the need to accurately identify and evaluate antifungal susceptibility of Malassezia species. Further investigations and collaborative studies are essential for correlating in vitro results with clinical outcomes since the existing limited data do not allow definitive conclusions. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Stobbs, L. W.
1990-01-01
In this paper, plans are given for the construction of an inexpensive enzyme-linked immunosorbent assay plate washer from readily available materials. The wash unit uses an intermittent wash cycle based on a wash manifold cycling over the microdilution plates for a predetermined time. Laboratory tests showed that the unit provided reliable, rapid washing of plates with tap water, with no detectable contamination between wells. Substrate absorbance values for test samples from machine-washed plates were equal to or greater than absorbance values for corresponding samples from plates washed manually by an accepted protocol, by using either enzyme-linked immunosorbent assay wash buffer or tap water. Images PMID:16348216
Chen, Chien-Chia; Yan, Sui-Hing; Yen, Muh-Yong; Wu, Pei-Fang; Liao, Wei-Ting; Huang, Tsi-Shu; Wen, Zhi-Hong; David Wang, Hui-Min
2016-02-01
Diseases caused by infectious and inflammatory microorganisms are among the most common and most severe nosocomial diseases worldwide. Therefore, developing effective agents for treating these illnesses is critical. In this study, essential oils from two tea tree species, kanuka (Kunzea ericoides) and manuka (Leptospermum scoparium), were evaluated for use in treating diseases and inflammation caused by microorganism infection. Isolates of clinically common bacteria and fungi were obtained from American Type Culture Collection and from Kaohsiung Veterans General Hospital. Minimum inhibitory concentrations for Trichosporon mucoides, Malassezia furfur, Candida albicans, and Candida tropicalis were determined by the broth microdilution method with Sabouraud dextrose broth. The antibacterial susceptibility of Staphylococcus aureus, Streptococcus sobrinus, Streptococcus mutans, and Escherichia coli were determined by the broth microdilution method. A human acute monocytic leukemia cell line (THP-1) was cultured to test the effects of the essential oils on the release of the two inflammatory cytokines, tumor necrosis factor-α and interleukin-4. Multiple analyses of microorganism growth confirmed that both essential oils significantly inhibited four fungi and the four bacteria. The potent fungicidal properties of the oils were confirmed by minimum inhibitory concentrations ranging from 0.78% to 3.13%. The oils also showed excellent bactericidal qualities with 100% inhibition of the examined bacteria. In THP-1 cells, both oils lowered tumor necrosis factor-α released after lipopolysaccharide stimulation. Finally, the antimicrobial and anti-inflammatory effects of the oils were obtained without adversely affecting the immune system. These results indicate that the potent antimicroorganism and anti-inflammation properties of kanuka and manuka essential oils make them strong candidates for use in treating infections and immune-related disease. The data confirm the potential use of kanuka and manuka extracts as pharmaceutical antibiotics, medical cosmetology agents, and food supplements. Copyright © 2014. Published by Elsevier B.V.
Knezevic, Petar; Aleksic Sabo, Verica; Simin, Natasa; Lesjak, Marija; Mimica-Dukic, Neda
2018-04-15
Helicobacter pylori is a major infective etiological agent of the upper gastrointestinal tract diseases. The bacterium exhibits resistance to various conventional antibiotics, being usually challenging for eradication. Since there is an urge to consider alternative therapeutic strategies, the aim of the study was to examine selected essential oils of plants belonging to families Cupressaceae (Juniperus communis) and Lamiaceae (Hyssopus officinalis, Salvia officinalis, Melissa officinalis, Lavandula angustifolia, Ocimum basilicum and Thymus serpyllum) against H. pylori, using an improved microdilution broth method. The oils were examined in concentration range from 0.03 to 4 μL/mL. The method comprises Brain-heart infusion broth supplemented with yeast extract, horse serum and IsoVitaleX. After 3 day incubation, an equal volume of double strengthen Christensen's urea was added into each well and incubated for additional 4 h. In wells with present H. pylori, the medium changed color from yellow to purple, allowing MIC determination even without a microtitre plate reader. The microtitre format method is convenient as it is less expensive, easier to perform and requires less amount of an anti-H. pylori agent. The improved method enhances specificity to H. pylori, as fast urease activity is almost an exclusive property of this bacterium. The application of the second step incubation with Christensen's urea decreases the possibility of false positive/negative results due to contaminant growth or commonly poor H. pylori growth. Among the examined oils, J. communis, H. officinalis and O. basilicum were not active with the highest applied concentrations, while the most active was T. serpyllum, with MIC 2.0-4.0 μL/mL. This is the first report on essential oils activity of T. serpyllum and H. officinalis against H. pylori. Copyright © 2018 Elsevier B.V. All rights reserved.
Etest cannot be recommended for in vitro susceptibility testing of mucorales.
Caramalho, Rita; Maurer, Elisabeth; Binder, Ulrike; Araújo, Ricardo; Dolatabadi, Somayeh; Lass-Flörl, Cornelia; Lackner, Michaela
2015-01-01
Amphotericin B and posaconazole susceptibility patterns were determined for the most prevalent Mucorales, following EUCAST (European Committee on Antimicrobial Susceptibility Testing) broth microdilution guidelines. In parallel, Etest was performed and evaluated against EUCAST. The overall agreement of MICs gained with Etest and EUCAST was 75.1%; therefore, Etest cannot be recommended for antifungal susceptibility testing of Mucorales. Amphotericin B was the most active drug against Mucorales species in vitro, while the activities of posaconazole were more restricted. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, Camila Alencar; Brilhante, Raimunda Sâmia Nogueira; Castelo-Branco, Débora de Souza Collares Maia; Neto, Manoel Paiva de Araújo; Cordeiro, Rossana de Aguiar; Rodrigues, Terezinha de Jesus Santos; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa
2013-11-01
This study aimed at investigating the in vitro activities of amoxicillin-clavulanate, doxycycline, ceftazidime, imipenem, and trimethoprim-sulfamethoxazole against Burkholderia pseudomallei in planktonic and biofilm forms, through broth microdilution and resazurin-based viability staining, respectively. In planktonic growth, the strains were susceptible to the drugs, while in biofilm growth, significantly higher antimicrobial concentrations were required, especially for ceftazidime and imipenem, surpassing the resistance breakpoints. These results highlight the importance of the routine evaluation of biofilm antimicrobial susceptibility.
Chaimanee, V; Thongtue, U; Sornmai, N; Songsri, S; Pettis, J S
2017-11-01
To explore alternative nonchemical control measures against two honeybee pathogens, Paenibacillus larvae and Ascosphaera apis, 37 plant species were screened for antimicrobial activity. The activity of selected plant extracts was screened using an in vitro disc diffusion assay and the minimal inhibitory concentration (MIC) was determined by the broth microdilution method. The results showed that 36 plant extracts had some antibacterial activity on P. larvae by disc diffusion assay. Chromolaena odorata showed the greatest antibacterial activity against P. larvae (MIC 16-64 μg ml -1 ). Of the 37 tested plants, only seven species, Amomum krervanh, Allium sativum, Cinnamomum sp., Piper betle, Piper ribesioides, Piper sarmentosum and Syzygium aromaticum had inhibitory effects on A. apis (MICs of 32-64 μg ml -1 ). The results demonstrated that promising plant extracts were not toxic to adult bees at the concentrations used in this study. The results demonstrate the potential antimicrobial activity of natural products against honeybee diseases caused by P. larvae and A. apis. Chromolaena odorata in particular showed high bioactivity against P. larvae. Further study is recommended to develop these nonchemical treatments against American foulbrood and chalkbrood in honeybees. This work proposes new natural products for the control of American foulbrood and chalkbrood in honeybees. © 2017 The Society for Applied Microbiology.
Wijesundara, Niluni M; Rupasinghe, H P Vasantha
2018-04-01
In the present study, essential oils (EOs) extracted from oregano, sage, cloves, and ginger were evaluated for the phytochemical profile, antibacterial, and anti-biofilm activities against Streptococcus pyogenes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of EOs. The minimum biofilm inhibitory concentrations (MBICs) were determined using MTT assay and fixed biofilms were observed through scan electron microscopy. The oregano and sage EOs showed the lowest MIC as well as MBC of 0.25-0.5 mg/mL. Time kill assay results showed that oregano and sage EOs exhibited bactericidal effects within 5 min and 4 h, respectively. Both oregano and sage extracts acts as a potent anti-biofilm agent with dual actions, preventing and eradicating the biofilm. The microscopic visualization of biofilms treated with EOs have shown morphological and density changes compared to the untreated control. Oregano EO was constituted predominantly carvacrol (91.6%) and in sage EO, higher levels of α-thujone (28.5%) and camphor (16.6%) were revealed. EOs of oregano and sage inhibit the growth and biofilm formation of S. pyogenes. Effective concentrations of oregano and sage EOs and their phytochemicals can be used in developing potential plant-derived antimicrobial agents in the management of streptococcal pharyngitis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Aliahmadi, Atousa; Mirzajani, Fateme; Ghassempour, Alireza; Sonboli, Ali
2014-01-01
Background: Plants are considered as promising sources of new antibacterial agents as well as bioassay guided fractionation. Objectives: In the present work, the antibacterial properties, especially against methicillin-resistant Staphylococcus aureus (MRSA), of Bromus inermis inflorescence was studied, using the bioassay guided fractionation as well as the bio-autographic method. Materials and Methods: The plant organic extract was prepared via maceration in methanol, followed by the fractionation using n-hexane. The extracts were subjected for minimum inhibitory concentrations (MICs) against some human pathogenic bacteria via standard broth micro-dilution assay. Thereafter, a bio-autographical method was applied using the high performance thin layer chromatography (HPTLC) coupled with agar overlay assays for the primary characterization and identification of bioactive substance (s). Results: Through the bioassay guided fractionation method, the greatest antibacterial activities were related to the n-hexane extract. It was also revealed that the effective anti-MRSA agent of the assessed plant was a relatively polar substance with an MIC value of about 8 μg/mL against the tested MRSA strain (in comparison with the MIC value of 32 μg/mL for chloramphenicol). Conclusions: As a result of the full range UV-Vis scanning of the responsible band in the HPTLC experiments (200-700 nm), the flavonoid was the most imaginable natural compound. PMID:25741430
Karou, Simplice D; Tchacondo, Tchadjobo; Ouattara, Lassina; Anani, Kokou; Savadogo, Aly; Agbonon, Amegnona; Attaia, Mossaclok Ben; de Souza, Comlan; Sakly, Mohsen; Simpore, Jacques
2011-10-01
To investigate the antioxidant, antimicrobial, antiplasmodial, acute toxicity and haemolytic activities of methanolic extracts of three plants. Phytochemical analysis to determine the phenolic contents was also carried out. The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging, NCCLS broth microdilution and Plasmodium Lactate Dehydrogenase (pLDH) assays were used to determine antioxidant, antimicrobial and antiplasmodial activities, respectively. Haemolysis assay was conducted on A(+) human red blood cells and acute toxicity on male Swiss albino mice. Phenolics were quantitatively determined using spectrophotometric methods. The DPPH assay yielded interesting antioxidant activities of methanolic extract of Parinari curatellifolia (P. curatellifolia) and Entada africana (E. africana) (IC(50) were 0.20±0.01 μg/mL and 0.47±0.01 μg/mL, respectively). This activity was highly correlated with phenolic contents of extracts. The antimicrobial tests displayed minimal inhibitory concentrations (MICs) values ranging from 0.90 to 1.80 mg/mL for Serratia marcescens (S. marcescens) the most susceptible bacterial strain. MIC value was 1.20 mg/mL for susceptible fungal strains including Mucor rouxi (M. rouxi), Fusarium oxyporum (F. oxyporum) and Rhizopus nigricans (R. nigricans). pLDH assay showed moderate antiplasmodial activity of Balanites aegyptiaca (B. aegyptiaca) (IC(50) = 24.56±3.45 μg/mL), however this extract was highly haemolytic and toxic in mice (LD(50) = 625±128 mg/kg). Our results support in part the use of the selected plants in the treatment of microbial infections. In addition the plant showed interesting antioxidant activity that could be useful in the management of oxidative stress. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Leverstein-van Hall, Maurine A; Waar, Karola; Muilwijk, Jan; Cohen Stuart, James
2013-11-01
The CLSI recommends a fixed 2 : 1 ratio of co-amoxiclav for broth microdilution susceptibility testing of Enterobacteriaceae, while EUCAST recommends a fixed 2 mg/L clavulanate concentration. The aims of this study were: (i) to determine the influence of a switch from CLSI to EUCAST methodology on Escherichia coli susceptibility rates; (ii) to compare susceptibility results obtained using EUCAST-compliant microdilution with those from disc diffusion and the Etest; and (iii) to evaluate the clinical outcome of patients with E. coli sepsis treated with co-amoxiclav in relation to the susceptibility results obtained using either method. Resistance rates were determined in three laboratories that switched from CLSI to EUCAST cards with the Phoenix system (Becton Dickinson) as well as in 17 laboratories that continued to use CLSI cards with the VITEK 2 system (bioMérieux). In one laboratory, isolates were simultaneously tested by both the Phoenix system and either disc diffusion (n = 471) or the Etest (n = 113). Medical and laboratory records were reviewed for E. coli sepsis patients treated with co-amoxiclav monotherapy. Only laboratories that switched methodology showed an increase in resistance rates - from 19% in 2010 to 31% in 2011 (P < 0.0001). All isolates that tested susceptible by microdilution were also susceptible by disc diffusion or the Etest, but of 326 isolates that tested resistant by microdilution, 43% and 59% tested susceptible by disc diffusion and the Etest, respectively. Among the 89 patients included there was a better correlation between clinical response and measured MICs using the Phoenix system than the Etest. EUCAST methodology resulted in higher co-amoxiclav E. coli resistance rates than CLSI methodology, but correlated better with clinical outcome. EUCAST-compliant microdilution and disc diffusion provided discrepant results.
Mirajkar, Nandita S; Gebhart, Connie J
2016-03-01
Production-limiting diseases in swine caused by Brachyspira are characterized by mucohemorrhagic diarrhea (B. hyodysenteriae and "B. hampsonii") or mild colitis (B. pilosicoli), while B. murdochii is often isolated from healthy pigs. Emergence of novel pathogenic Brachyspira species and strains with reduced susceptibility to commonly used antimicrobials has reinforced the need for standardized susceptibility testing. Two methods are currently used for Brachyspira susceptibility testing: agar dilution (AD) and broth microdilution (BMD). However, these tests have primarily been used for B. hyodysenteriae and rarely for B. pilosicoli. Information on the use of commercial susceptibility testing products such as antibiotic gradient strips is lacking. Our main objective was to validate and compare the susceptibility results, measured as the minimum inhibitory concentration (MIC), of 6 antimicrobials for 4 Brachyspira species (B. hyodysenteriae, "B. hampsonii", B. pilosicoli, and B. murdochii) by BMD and AD (tiamulin, valnemulin, lincomycin, tylosin, and carbadox) or antibiotic gradient strip (doxycycline) methods. In general, the results of a high percentage of all 4 Brachyspira species differed by ±1 log2 dilution or less by BMD and AD for tiamulin, valnemulin, lincomycin, and tylosin, and by BMD and antibiotic gradient strip for doxycycline. The carbadox MICs obtained by BMD were 1-5 doubling dilutions different than those obtained by AD. BMD for Brachyspira was quicker to perform with less ambiguous interpretation of results when compared with AD and antibiotic gradient strip methods, and the results confirm the utility of BMD in routine diagnostics. © 2016 The Author(s).
Błażewicz, Izabela; Jaśkiewicz, Maciej; Piechowicz, Lidia; Neubauer, Damian; Nowicki, Roman J; Kamysz, Wojciech; Barańska-Rybak, Wioletta
2017-12-01
Daptomycin is a cyclic lipopeptide that is bactericidal against Staphylococcus aureus , including methicillin-resistant S. aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA) strains. Daptomycin exerts its antimicrobial effect by a calcium-dependent interaction with the cytoplasmic membrane resulting in depolarization, ion loss and rapid cell death. Unfortunately, loss of daptomycin susceptibility in S. aureus in the clinical setting has been noted. To evaluate the susceptibility profile to daptomycin among S. aureus strains isloted from patients with atopic dermatitis (AD). Another point was to correlate the results obtained by broth microdilution method and Etest, which is commonly applied in clinical setting. One hundred patients with the diagnosis of atopic dermatitis were microbiologically assessed for the carriage of S. aureus . Antimicrobial susceptibility tests were performed using broth-microdilution (BMD) and Etests for daptomycin. Staphylococcus aureus strains were isolated from the majority of our patients, either from the skin (73%) or the anterior nares (75%). Six of the 100 nasal swabs (6%) and 5 of the 100 skin swabs (5%) were positive for methicillin-resistant Staphylococcus aureus (MRSA). A total of 81 of 148 (54.7%) daptomycin non-susceptible isolates of S. aureus were identified by BMD. Only 19 of 81 were also classified as non-susceptible by Etest. Clinicians and microbiologists should be aware of the possibility of the emergence of daptomycin non-susceptibility (or increase in minimal inhibitory concentration) during prolonged therapy and closely monitor the susceptibility of persisting isolates that might be recovered during therapy.
Landman, David; Salamera, Julius; Quale, John
2013-12-01
Carbapenem-resistant Enterobacter species are emerging nosocomial pathogens. As with most multidrug-resistant Gram-negative pathogens, the polymyxins are often the only therapeutic option. In this study involving clinical isolates of E. cloacae and E. aerogenes, susceptibility testing methods with polymyxin B were analyzed. All isolates underwent testing by the broth microdilution (in duplicate) and agar dilution (in duplicate) methods, and select isolates were examined by the Etest method. Selected isolates were also examined for heteroresistance by population analysis profiling. Using a susceptibility breakpoint of ≤2 μg/ml, categorical agreement by all four dilution tests (two broth microdilution and two agar dilution) was achieved in only 76/114 (67%) of E. cloacae isolates (65 susceptible, 11 resistant). Thirty-eight (33%) had either conflicting or uninterpretable results (multiple skip wells, i.e., wells that exhibit no growth although growth does occur at higher concentrations). Of the 11 consistently resistant isolates, five had susceptible MICs as determined by Etest. Heteroresistant subpopulations were detected in eight of eight isolates tested, with greater percentages in isolates with uninterpretable MICs. For E. aerogenes, categorical agreement between the four dilution tests was obtained in 48/56 (86%), with conflicting and/or uninterpretable results in 8/56 (14%). For polymyxin susceptibility testing of Enterobacter species, close attention must be paid to the presence of multiple skip wells, leading to uninterpretable results. Susceptibility also should not be assumed based on the results of a single test. Until the clinical relevance of skip wells is defined, interpretation of polymyxin susceptibility tests for Enterobacter species should be undertaken with extreme caution.
Landman, David; Salamera, Julius
2013-01-01
Carbapenem-resistant Enterobacter species are emerging nosocomial pathogens. As with most multidrug-resistant Gram-negative pathogens, the polymyxins are often the only therapeutic option. In this study involving clinical isolates of E. cloacae and E. aerogenes, susceptibility testing methods with polymyxin B were analyzed. All isolates underwent testing by the broth microdilution (in duplicate) and agar dilution (in duplicate) methods, and select isolates were examined by the Etest method. Selected isolates were also examined for heteroresistance by population analysis profiling. Using a susceptibility breakpoint of ≤2 μg/ml, categorical agreement by all four dilution tests (two broth microdilution and two agar dilution) was achieved in only 76/114 (67%) of E. cloacae isolates (65 susceptible, 11 resistant). Thirty-eight (33%) had either conflicting or uninterpretable results (multiple skip wells, i.e., wells that exhibit no growth although growth does occur at higher concentrations). Of the 11 consistently resistant isolates, five had susceptible MICs as determined by Etest. Heteroresistant subpopulations were detected in eight of eight isolates tested, with greater percentages in isolates with uninterpretable MICs. For E. aerogenes, categorical agreement between the four dilution tests was obtained in 48/56 (86%), with conflicting and/or uninterpretable results in 8/56 (14%). For polymyxin susceptibility testing of Enterobacter species, close attention must be paid to the presence of multiple skip wells, leading to uninterpretable results. Susceptibility also should not be assumed based on the results of a single test. Until the clinical relevance of skip wells is defined, interpretation of polymyxin susceptibility tests for Enterobacter species should be undertaken with extreme caution. PMID:24088860
Schneider, Sarah C; Tinguely, Regula; Droz, Sara; Hilty, Markus; Donà, Valentina; Bodmer, Thomas; Endimiani, Andrea
2015-10-01
Antibiotic resistance in Ureaplasma urealyticum/Ureaplasma parvum and Mycoplasma hominis is an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencing gyrA, gyrB, parC, and parE genes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive for U. urealyticum/U. parvum, whereas 21 were positive for both U. urealyticum/U. parvum and M. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu in U. parvum of serovar 6) and ParE (Val417Thr in U. parvum of serovar 1 and the novel Thr417Val substitution in U. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility of U. urealyticum/U. parvum isolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse. Large combined microbiological and clinical studies should address this important issue. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Schneider, Sarah C.; Tinguely, Regula; Droz, Sara; Hilty, Markus; Donà, Valentina; Bodmer, Thomas
2015-01-01
Antibiotic resistance in Ureaplasma urealyticum/Ureaplasma parvum and Mycoplasma hominis is an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencing gyrA, gyrB, parC, and parE genes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive for U. urealyticum/U. parvum, whereas 21 were positive for both U. urealyticum/U. parvum and M. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu in U. parvum of serovar 6) and ParE (Val417Thr in U. parvum of serovar 1 and the novel Thr417Val substitution in U. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility of U. urealyticum/U. parvum isolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse. Large combined microbiological and clinical studies should address this important issue. PMID:26195516
Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B
2016-08-01
The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.
In vitro inhibitory activities of magnolol against Candida spp.
Zhou, Peiru; Fu, Jingya; Hua, Hong; Liu, Xiaosong
2017-01-01
Candida spp. cause various infections involving the skin, mucosa, deep tissues, and even life-threatening candidemia. They are regarded as an important pathogen of nosocomial bloodstream infection, with a high mortality rate. As a result of prolonged exposure to azoles, the therapeutic failure associated with azoles resistance has become a serious challenge in clinical situations. Therefore, novel, alternative antifungals are required urgently. In the present study, the CLSI M-27A broth microdilution method and the 2,3-Bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay were used to evaluate the antifungal effects of magnolol against various standard Candida strains in planktonic mode and biofilm formation, respectively. The antifungal activity of magnolol was demonstrated in planktonic C. albicans and non-albicans Candida species, especially fluconazole-resistant Candida krusei , with the minimum inhibitory concentrations ranging from 10 to 40 μg/mL. The BMIC 90 (minimum concentration with 90% Candida biofilm inhibited) values of magnolol ranged from 20 to 160 μg/mL, whereas the BMIC 90 values of fluconazole were more than 128 μg/mL. As an alternative and broad-spectrum antifungal agent, magnolol might be of benefit to the treatment of refractory Candida infection.
Chemical Composition and Antibacterial and Cytotoxic Activities of Allium hirtifolium Boiss
Ismail, Salmiah; Jalilian, Farid Azizi; Talebpour, Amir Hossein; Zargar, Mohsen; Shameli, Kamyar; Sekawi, Zamberi; Jahanshiri, Fatemeh
2013-01-01
Allium hirtifolium Boiss. known as Persian shallot, is a spice used as a traditional medicine in Iran and, Mediterranean region. In this study, the chemical composition of the hydromethanolic extract of this plant was analyzed using GC/MS. The result showed that 9-hexadecenoic acid, 11,14-eicosadienoic acid, and n-hexadecanoic acid are the main constituents. The antibacterial activity of the shallot extract was also examined by disk diffusion and microdilution broth assays. It was demonstrated that Persian shallot hydromethanolic extract was effective against 10 different species of pathogenic bacteria including methicillin resistant Staphylococcus aureus (MRSA), methicillin sensitive Staphylococcus aureus (MSSA), Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Escherichia coli, Escherichia coli O157:H7, Salmonella typhimurium, Proteus mirabilis, and Klebsiella pneumoniae. Specifically, the minimum concentration of the extract which inhibited bacterial growth (MIC values) was 1.88 mg/mL for most of the gram-positive bacteria. This concentration was not much different from the concentration that was safe for mammalian cells (1.50 mg/mL) suggesting that the hydromethanolic extract of Persian shallot may be a safe and strong antibacterial agent. PMID:23484141
Antiproliferative and antibacterial activity of some glutarimide derivatives.
Popović-Djordjević, Jelena B; Klaus, Anita S; Žižak, Željko S; Matić, Ivana Z; Drakulić, Branko J
2016-12-01
Antiproliferative and antibacterial activities of nine glutarimide derivatives (1-9) were reported. Cytotoxicity of compounds was tested toward three human cancer cell lines, HeLa, K562 and MDA-MB-453 by MTT assay. Compound 7 (2-benzyl-2-azaspiro[5.11]heptadecane-1,3,7-trione), containing 12-membered ketone ring, was found to be the most potent toward all tested cell lines (IC50 = 9-27 μM). Preliminary screening of antibacterial activity by a disk diffusion method showed that Gram-positive bacteria were more susceptible to the tested compounds than Gram-negative bacteria. Minimum inhibitory concentration (MIC) determined by a broth microdilution method confirmed that compounds 1, 2, 4, 6-8 and 9 inhibited the growth of all tested Gram-positive and some of the Gram-negative bacteria. The best antibacterial potential was achieved with compound 9 (ethyl 4-(1-benzyl-2,6-dioxopiperidin-3-yl)butanoate) against Bacillus cereus (MIC 0.625 mg/mL; 1.97 × 10(-3 )mol/L). Distinction between more and less active/inactive compounds was assessed from the pharmacophoric patterns obtained by molecular interaction fields.
Antimicrobial activity of natural products against Clostridium difficile in vitro.
Roshan, N; Riley, T V; Hammer, K A
2017-05-10
To investigate the antimicrobial activity of various natural products against Clostridium difficile in vitro. The antibacterial activity of 20 natural products was determined by the agar well diffusion and broth microdilution assays against four C. difficile strains, three comparator organisms and four gastrointestinal commensal organisms. Of the raw natural products, garlic juice had the highest activity. The most active processed products were peppermint oil and the four pure compounds trans-cinnamaldehyde, allicin, menthol and zingerone. Furthermore, Bacteroides species had similar susceptibility to C. difficile to most natural products; however, Lactobacillus casei was less susceptible. The combined effect of natural products with vancomycin or metronidazole was determined using the conventional checkerboard titration method and the fractional inhibitory concentration index was calculated. The results showed a possible synergism between trans-cinnamaldehyde and vancomycin and partial synergy between trans-cinnamaldehyde and metronidazole. The study indicates a range of antimicrobial activity of natural products against C. difficile and suggests that they may be useful as alternative or complementary treatments for C. difficile infection (CDI), particularly as most are able to be given orally. This study encourages further investigation of natural products for treatment of CDI. © 2017 The Society for Applied Microbiology.
Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans.
Leite, Maria Clerya Alvino; Bezerra, André Parente de Brito; de Sousa, Janiere Pereira; Guerra, Felipe Queiroga Sarmento; Lima, Edeltrudes de Oliveira
2014-01-01
Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol), cell membranes (citral to ergosterol binding), the time-kill curve, and biological activity on the yeast's morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral's mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.
Carvalho, Camila Rodrigues de; Ferreira-D'Silva, Alice; Wedge, David E; Cantrell, Charles L; Rosa, Luiz H
2018-06-06
In the present study, we evaluated the antifungal potential of cytochalasins produced by Diaporthe taxa against phytopathogenic fungi. Using molecular methods, seven endophytic fungal strains from the medicinal plants Copaifera pubiflora and Melocactus ernestii were identified as D. miriciae, while two isolates were identified to the genus level (Diaporthe sp.). All crude extracts of Diaporthe species produced via solid-state fermentation were evaluated by 1H NMR analyses. Crude extracts of the isolates D. miriciae UFMGCB 6350, 7719, 7646, 7653, 7701, 7772, and 7770 and Diaporthe sp. UFMGCB 7696 and 7720 were demonstrated to produce highly functionalized compounds. The extracts of D. miriciae UFMGCB 7719 and 6350 were selected as representative Diaporthe samples and subjected to bioassay-directed fractionation to isolate cytochalasins H and J. Cytochalasins H and J were evaluated for activities against the fungal plant pathogens Colletotrichum fragariae, C. gloeosporioides, C. acutatum, Botrytis cinerea, Fusarium oxysporum, Phomopsis obscurans, and P. viticola using microdilution broth assays. Cytochalasin H and J exhibited the most potent activities against the Phomopsis species tested. Our results showed that Diaporthe species were potential producers of different cytochalasins, which exhibit potential for controlling fungal diseases in planta and/or maintaining antagonism.
Sukandar, Elin Yulinah; Sunderam, Nethiyakalyani; Fidrianny, Irda
2014-01-01
Temu kunci (Kaempferia pandurata (Roxb.)) has a number of benefits and one of these is antibacterial. The rhizome is said to have antibacterial activity against Streptococcus mutans, Lactocillus sp. and Candida albicans. The aim of the study is to test the antibacterial activity of Kaempferia pandurata (Roxb.) rhizome ethanol extract on methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant coagulase negative Staphylococci (MRCNS), methicillin-sensitive Staphylococcus aureus (MSSA), Bacillus subtilis and Salmonella typhi. Antimicrobial activity of the extract was assayed by the microdilution method using Mueller Hinton Broth with sterilized 96 round-bottomed microwells to determine the Minimum Inhibitory Concentration (MIC) as well as to determine the time-kill activity. The MIC of the extract was 16 ppm for both Bacillus subtilis and MRSA; 8 ppm for both MSSA and Salmonella typhi and 4 ppm for MRCNS. Ethanol extract of Kaempferia pandurata (Roxb.) showed antibacterial activity against all the tested bacteria and was the most potent against MRCNS, with MIC 4 ppm. The killing profile test of the extract displayed bactericidal activity at 8-16 ppm against MRSA, MSSA, Bacillus subtilis and Salmonella typhi and bacteriostatic activity at 4 ppm towards MRCNS.
Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.
Zampini, Iris C; Vattuone, Marta A; Isla, Maria I
2005-12-01
The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.
Rodrigues, Fabiola F G; Oliveira, Liana G S; Rodrigues, Fábio F G; Saraiva, Manuele E; Almeida, Sheyla C X; Cabral, Mario E S; Campos, Adriana R; Costa, Jose Galberto M
2012-07-01
Cordia verbenacea is a Brazilian coastal shrub popularly known as "erva baleeira". The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens.
Boonyanugomol, Wongwarut; Kraisriwattana, Kairin; Rukseree, Kamolchanok; Boonsam, Kraisorn; Narachai, Panchaporn
In this study, we determined the antibacterial and synergistic activities of the essential oil from Zingiber cassumunar against the extensively drug-resistant (XDR) Acinetobacter baumannii strains. The antibacterial and synergistic properties of the essential oil from Z. cassumunar were examined by agar disc diffusion tests. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were evaluated by broth microdilution using the resazurin assay. The in vitro time-kill antibacterial kinetics was analyzed using the plate count technique. We found that the essential oil from Z. cassumunar had antibacterial activity against A. baumannii, with MIC and MBC ranging from 7.00 to 9.24mg/ml. The essential oil could completely inhibit A. baumannii at 1h, and coccoid-shaped bacteria were found after treatment. In addition, the essential oil had a synergistic effect when combined with antibiotics, e.g., aminoglycosides, fluoroquinolones, tetracyclines, and folate pathway inhibitors. Thus, the essential oil from Z. cassumunar has strong antibacterial and synergistic activities against XDR A. baumannii, which may provide the basis for the development of a new therapy against drug-resistant bacteria. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Pandini, J A; Pinto, F G S; Scur, M C; Santana, C B; Costa, W F; Temponi, L G
2018-02-01
The essential oils are extracted from plant compounds and can present activities antimicrobial and antioxidant properties. The goals of the present study were: (a) to determine the chemical composition of the essential oil of Guarea kunthiana A. Juss using the method of gas chromatography coupled to mass spectrometry (GC-MS); (b) to evaluate the antimicrobial potential of this oil using the broth microdilution method against different microorganisms: five Gram-negative bacteria, four Gram-positive bacteria and a yeast and (c) to determine the antioxidant activity of the oil using the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. The GC-MS analyses allowed identifying 13 constituents, representing 96.52% of the essencial oil composition. The main compounds identified were α-zingiberene (34.48%), β-sesquiphellandrene (22.90%), and α-curcumene (16.17%). With respect to the antimicrobial activity, the essential oil was effective against all the microorganisms tested, except for the bacteria E. coli and K. pneumoniae, which were resistant to the action of the oil. From a general point of view, Gram-positive bacteria were more susceptible to the action of the essential oil than Gram-negative bacteria. The essential oil exhibited antioxidant potential.
Jiamboonsri, Pimsumon; Pithayanukul, Pimolpan; Bavovada, Rapepol; Chomnawang, Mullika T
2011-07-25
Plant extracts are a valuable source of novel antibacterial compounds to combat pathogenic isolates of methicillin-resistant Staphylococcus aureus (MRSA), a global nosocomial infection. In this study, the alcoholic extract from Thai mango (Mangifera indica L. cv. 'Fahlun') seed kernel extract (MSKE) and its phenolic principles (gallic acid, methyl gallate and pentagalloylglucopyranose) demonstrated potent in vitro antibacterial activity against Staphylococcus aureus and 19 clinical MRSA isolates in studies of disc diffusion, broth microdilution and time-kill assays. Electron microscopy studies using scanning electron microscopy and transmission electron microscopy revealed impaired cell division and ultra-structural changes in bacterial cell morphology, including the thickening of cell walls, of microorganisms treated with MSKE; these damaging effects were increased with increasing concentrations of MSKE. MSKE and its phenolic principles enhanced and intensified the antibacterial activity of penicillin G against 19 clinical MRSA isolates by lowering the minimum inhibitory concentration by at least 5-fold. The major phenolic principle, pentagalloylglucopyranose, was demonstrated to be the major contributor to the antibacterial activity of MSKE. These results suggest that MSKE may potentially be useful as an alternative therapeutic agent or an adjunctive therapy along with penicillin G in the treatment of MRSA infections.
Antibacterial and antifungal activities of some Mexican medicinal plants.
Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E
2009-12-01
In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.
Youn, So Youn; Jeong, Ok Mi; Choi, Byung Kook; Jung, Suk Chan; Kang, Min Su
2017-03-01
Salmonella is a foodborne pathogen worldwide. Outbreaks of Salmonella are commonly associated with consumption of contaminated foods such as poultry products. Therefore, the objective of this study was to determine the occurrence, biofilm formation, antibiotic resistance, and sanitizer resistance of Salmonella enterica isolated from chicken carcasses. A total of 318 samples were collected from 15 chicken slaughterhouses in 8 provinces of Korea. They were then examined for Salmonella contamination. S. enterica isolates were tested for their susceptibilities to 15 antimicrobials by broth microdilution method. Their biofilm formation ability and resistance to sanitizers were also evaluated. Eighty-two isolates of S. enterica were obtained from the 318 samples. There were 14 serotypes and 2 untypable isolates. Fifty-seven (69.5%) isolates were resistant to at least one antibiotic while 30 (36.6%) isolates were resistant to 5 or more antibiotics. Two S. Senftenberg and 3 S. Montevideo isolates exhibited considerable biofilm formation ability (A 600 >0.2) following incubation in Luria-Bertani (LB) broth for 48 h. Biofilm cell survival and recovery growth assay after sanitization showed that most isolates were highly susceptible to 2.5% lactic acid and 0.1% cetylpyridinium chloride. Therefore, lactic acid and cetylpyridinium chloride might be alternatively or additionally used in addition to chlorine-based sanitizers that are frequently used to reduce Salmonella contamination of chicken carcasses. Our results provide basic information on the distribution of Salmonella serotypes in chicken slaughterhouses. This study also highlights the necessity to improve farming practices and use antimicrobial agents cautiously. This study also suggests that sanitization during the slaughtering process might be necessary to reduce Salmonella contamination of chicken carcasses. © 2017 Institute of Food Technologists®.
Singh, Pradeep Kumar; Kathuria, Shallu
2015-01-01
We compared EUCAST and CLSI antifungal susceptibility testing (AFST) methods for triazoles and amphotericin B against 124 clinical Mucorales isolates. The EUCAST method yielded MIC values 1- to 3-fold dilutions higher than those of the CLSI method for amphotericin B. The essential agreements between the two methods for triazoles were high, i.e., 99.1% (voriconazole), 98.3% (isavuconazole), and 87% (posaconazole), whereas it was significantly lower for amphotericin B (66.1%). Strategies for harmonization of the two methods for Mucorales AFST are warranted. PMID:26438489
Chassot, Francieli; Pozzebon Venturini, Tarcieli; Baldissera Piasentin, Fernanda; Morais Santurio, Janio; Estivalet Svidzinski, Terezinha Inez; Hartz Alves, Sydney
2016-10-01
We evaluated the in vitro antifungal activity of diphenyl diselenide and ebselen against echinocandin-susceptible and -resistant strains of Candida parapsilosis using the broth microdilution method. Diphenyl diselenide (MIC range =1-8 µg/mL) and ebselen (MIC range =0.25-4 µg/mL) showed in vitro activity against echinocandin-susceptible isolates. However, ebselen also showed the highest antifungal activity against echinocandin-resistant strains (MIC range =0.06-4 µg/mL). This study demonstrated that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation using in vivo experimental protocols.
Nash, Kevin A.; Wallace, Richard J.
2012-01-01
Summary: Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria. PMID:22763637
Edelstein, P H; Edelstein, M A
1993-01-01
Agar and broth microdilution MICs of RP 74501-RP 74502, a mixture of streptogramin antimicrobial agents that inhibited 90% of 22 Legionella strains tested, were 0.64 and 0.08 microgram/ml, respectively; respective erythromycin values were 1.0 and 0.12 microgram/ml. RP 74501-RP 74502 at 1 microgram/ml was more active than the same erythromycin concentration in a macrophage system for both L. pneumophila strains studied but at a lower concentration (0.25 microgram/ml) was much less active than erythromycin. PMID:8494390
Deng, Shuwen; Ansari, Saham; Rafati, Haleh; Taghizadeh-Armaki, Mojtaba; Nasrollahi-Omran, Ayatollah; Tolooe, Ali; Zhan, Ping; Liao, Wanqing; van der Lee, Henrich A.; Verweij, Paul E.
2016-01-01
ABSTRACT Trichophyton schoenleinii is an anthropophilic dermatophyte mainly causing tinea favosa of the scalp in certain regions of the world, especially Africa and Asia. We investigated the in vitro susceptibilities of 55 T. schoenleinii isolates collected over the last 30 years from Iran, Turkey, and China to 12 antifungals using the CLSI broth microdilution method. Our results revealed that terbinafine and ketoconazole were the most potent antifungal agents among those tested, independently of the geographic regions where strains were isolated. PMID:27956429
Deng, Shuwen; Ansari, Saham; Ilkit, Macit; Rafati, Haleh; Hedayati, Mohammad T; Taghizadeh-Armaki, Mojtaba; Nasrollahi-Omran, Ayatollah; Tolooe, Ali; Zhan, Ping; Liao, Wanqing; van der Lee, Henrich A; Verweij, Paul E; Seyedmousavi, Seyedmojtaba
2017-02-01
Trichophyton schoenleinii is an anthropophilic dermatophyte mainly causing tinea favosa of the scalp in certain regions of the world, especially Africa and Asia. We investigated the in vitro susceptibilities of 55 T. schoenleinii isolates collected over the last 30 years from Iran, Turkey, and China to 12 antifungals using the CLSI broth microdilution method. Our results revealed that terbinafine and ketoconazole were the most potent antifungal agents among those tested, independently of the geographic regions where strains were isolated. Copyright © 2017 American Society for Microbiology.
[Antimicrobial susceptibility patterns of Legionella isolates in the environment and in patients].
Choi, Go Eun; Kang, Jeong Eun; Lee, Eun Yup; Chang, Chulhun L; Tateda, Kazuhiro; Yamaguchi, Keizo; Kim, Kyeong Hee; Kim, Jeong Man
2010-02-01
Antimicrobial susceptibility of Legionella spp. has rarely been studied in Korea. Therefore, we aimed to determine the susceptibility of Legionella spp. to various antibiotics. We assessed the antimicrobial susceptibility of 66 environmental and clinical Legionella isolates collected between January 2001 and December 2008 from Korea and Japan. The minimum inhibitory concentrations (MICs) of 6 antibiotics, namely, azithromycin, ciprofloxacin, clarithromycin, clindamycin, gatifloxacin, and gemifloxacin were determined by the broth microdilution method using buffered starch yeast extract broth. The MIC ranges of the 6 antibiotics used against the Legionella isolates were as follows: 0.004-0.062 microg/mL (azithromycin), 0.002-0.5 microg/mL (ciprofloxacin), 0.004-0.5 microg/mL (clarithromycin), 0.12-4 microg/mL (clindamycin), 0.002-0.12 microg/mL (gatifloxacin), and 0.008-1 microg/mL (gemifloxacin). Legionella spp. isolates from Korea and Japan were most susceptible to gatifloxacin. Azithromycin, clarithromycin, ciprofloxacin, and gemifloxacin were also effective for treating legionellosis.
Kaffir lime leaves extract inhibits biofilm formation by Streptococcus mutans.
Kooltheat, Nateelak; Kamuthachad, Ludthawun; Anthapanya, Methinee; Samakchan, Natthapon; Sranujit, Rungnapa Pankla; Potup, Pachuen; Ferrante, Antonio; Usuwanthim, Kanchana
2016-04-01
Although kaffir lime has been reported to exhibit antioxidant and antileukemic activity, little is known about the antimicrobial effect of kaffir lime extract. Because Streptococcus mutans has been known to cause biofilm formation, it has been considered the most important causative pathogen of dental caries. Thus, the effective control of its effects on the oral biofilm is the key to the prevention of dental caries. The aims of the present study were to investigate the effect of kaffir lime leaves extract on biofilm formation and its antibacterial activity on S. mutans. We examined the effect of kaffir lime leaves extract on growth and biofilm formation of S. mutans. For the investigation we used a kaffir lime extract with high phenolic content. The minimum inhibitory concentration of the extract was determined by broth microdilution assay. The inhibitory effect of the test substances on biofilm formation was also investigated by biofilm formation assay and qRT-PCR of biofilm formation-associated genes. Kaffir lime leaves extract inhibits the growth of S. mutans, corresponding to the activity of an antibiotic, ampicillin. Formation of biofilm by S. mutans was also inhibited by the extract. These results were confirmed by the down-regulation of genes associated with the biofilm formation. The findings highlight the ability of kaffir lime leaves extract to inhibit S. mutans activity, which may be beneficial in the prevention of biofilm formation on dental surface, reducing dental plaque and decreasing the chance of dental carries. Copyright © 2016 Elsevier Inc. All rights reserved.
Antimicrobial activity of blended essential oil preparation.
Tadtong, Sarin; Suppawat, Supatcha; Tintawee, Anchalee; Saramas, Phanida; Jareonvong, Suchada; Hongratanaworakit, Tapanee
2012-10-01
Antimicrobial activities of two blended essential oil preparations comprising lavender oil, petigrain oil, clary sage oil, ylang ylang oil and jasmine oil were evaluated against various pathogenic microorganisms. Both preparations showed antimicrobial activity in the agar disc diffusion assay against the Gram-positive bacteria, Staphylococcus aureus ATCC6538 and S. epidermidis isolated strain, the fungus, Candida albicans ATCC10231, and the Gram-negative bacterium, Escherichia coli ATCC25922, but showed no activity against Pseudomonas aeruginosa ATCC9027. The minimum inhibitory concentration (MIC) of these preparations was evaluated. By the broth microdilution assay, preparation 1, comprising lavender oil, clary sage oil, and ylang ylang oil (volume ratio 3:4:3), exhibited stronger antimicrobial activity than preparation 2, which was composed of petigrain oil, clary sage oil, and jasmine oil (volume ratio 3:4:3). Moreover, the sum of the fractional inhibitory concentrations (Sigma fic) of preparation 1 expressed a synergistic antimicrobial effect against the tested microorganisms (Sigma fic
Cytotoxic and Antimicrobial Constituents from the Essential Oil of Lippia alba (Verbenaceae)
dos Santos, Nara O.; Pascon, Renata C.; Vallim, Marcelo A.; Figueiredo, Carlos R.; Soares, Marisi G.; Lago, João Henrique G.; Sartorelli, Patricia
2016-01-01
Backgroud: Lippia alba (Verbenaceae) is a plant widely used in folk medicine to treat various diseases. The present work deals with the chemical composition of the crude essential oil extracted from leaves of L. alba and evaluation of its antimicrobial and cytotoxic activities. Methods: Leaves of L. alba were extracted by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) as well as by nuclear magnetic resonance (NMR) spectroscopy. Cytotoxic and antimicrobial activities of crude essential oil were evaluated in vitro using MTT and broth microdilution assays, respectively. Results: Chemical analysis afforded the identification of 39 substances corresponding to 99.45% of the total oil composition. Concerning the main compounds, monoterpenes nerol/geraniol and citral correspond to approximately 50% of crude oil. The cytotoxic activity of obtained essential oil against several tumor cell lines showed IC50 values ranging from 45 to 64 µg/mL for B16F10Nex2 (murine melanoma) and A549 (human lung adenocarcinoma). In the antimicrobial assay, was observed that all tested yeast strains, except C. albicans, were sensitive to crude essential oil. MIC values were two to four-folds lower than those determined to bacterial strains. Conclusion: Analysis of chemical composition of essential oils from leaves of L. alba suggested a new chemotype nerol/geraniol and citral. Based in biological evidences, a possible application for studied oil as an antifungal in medicine, as well as in agriculture, is described. PMID:28930132
Sandra, Vimashiinee
2016-01-01
Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents. PMID:27006659
Basri, Dayang Fredalina; Sandra, Vimashiinee
2016-01-01
Canarium odontophyllum (CO) Miq. has been considered as one of the most sought-after plant species in Sarawak, Malaysia, due to its nutritional and pharmacological benefits. This study aimed to evaluate the pharmacodynamic interaction of crude methanol and acetone extracts from CO leaves in combination with oxacillin, vancomycin, and linezolid, respectively, against MRSA ATCC 33591 as preliminary study has reported its potential antistaphylococcal activity. The broth microdilution assay revealed that both methanol and acetone extracts were bactericidal with Minimum Inhibitory Concentration (MIC) of 312.5 μg/mL and 156.25 μg/mL and Minimum Bactericidal Concentration (MBC) of 625 μg/mL and 312.5 μg/mL, respectively. Fractional Inhibitory Concentration (FIC) indices were obtained via the chequerboard dilution assay where methanol extract-oxacillin, acetone extract-oxacillin, methanol extract-linezolid, and acetone extract-linezolid combinations exhibited synergism (FIC index ≤ 0.5). The synergistic action of the methanol extract-oxacillin combination was verified by time-kill analysis where bactericidal effect was observed at concentration of 1/8 × MIC of both compounds at 9.6 h compared to oxacillin alone. As such, these findings postulated that both extracts exert their anti-MRSA mechanism of action similar to that of vancomycin and provide evidence that the leaves of C. odontophyllum have the potential to be developed into antistaphylococcal agents.
Divband, Kolsum; Shokri, Hojjatollah; Khosravi, Ali Reza
2017-03-01
The aims of this study were to evaluate the efficacy of Thymus vulgaris (T. vulgaris) essential oil on the fungal growth and Tri4 gene expression in Fusarium oxysporum (F. oxysporum) strains. The oil was obtained by water-distillation using a Clevenger-type system. The chemical composition of the essential oil was obtained by gas chromatography- mass spectroscopy (GC-MS) and by retention indices. The antifungal activity was evaluated by broth microdilution assay. A quantitative real time RT-PCR (qRT-PCR) assay was also developed specific for F. oxysporum on the basis of trichothecene biosynthetic gene, Tri4, which allowed discrimination from F. oxysporum. Results showed thymol (32.67%) and p-cymene (16.68%) as the main components of T. vulgaris. Minimum inhibitory concentration (MIC) values varied from 5 to 20 μg/ml with T. vulgaris (mean: 10.50 μg/ml), while minimum fungicidal concentration (MFC) values ranged from 8 to 30 μg/ml with mean value of 16.20 μg/ml qRT-PCR results revealed a downregulation from 4.04 to 6.27 fold of Tri4 gene expression of the fungi exposed to T. vulgaris essential oil. The results suggest that T. vulgaris oil can be considered potential alternative natural fungicide to the synthetic chemicals that are currently used to prevent and control seed-borne diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pye, Charlotte C; Singh, Ameet; Weese, J Scott
2014-04-01
Biofilm formation by Pseudomonas aeruginosa has been documented in canine otic isolates. An increase in minimal inhibitory concentration (MIC) for specific antibiotics has been noted for biofilm-embedded bacteria. Tromethamine edetate disodium dihydrate buffered to pH 8 with tromethamine hydrochloride and deionized water (Triz-EDTA(®)) has been documented to potentiate bactericidal activity when used in combination with topical antibiotics, but the impact on biofilm-embedded bacteria is unknown. The objective of this study was to evaluate the impact of Triz-EDTA(®) use on in vitro antimicrobial susceptibility of biofilm-embedded P. aeruginosa. Biofilm formation was documented using a microtitre plate assay. Broth microdilution was used to assess the MIC of neomycin, polymyxin B, enrofloxacin and gentamicin for the biofilm-embedded bacteria. The microtitre plate assay was again used to assess the MIC of neomycin, polymyxin B, enrofloxacin and gentamicin for biofilm-embedded bacteria with added Triz-EDTA(®). Thirty-one isolates from dogs with otitis were tested. Addition of Triz-EDTA(®) significantly reduced MICs for neomycin (P < 0.003) and gentamicin (P < 0.02) but not for polymyxin B (P = 0.3). Enrofloxacin MICs increased in the presence of Triz-EDTA (P < 0.036). Triz-EDTA(®) may be a useful adjunctive treatment for chronic cases of Pseudomonas otitis where biofilms may have developed, if gentamicin or neomycin is to be used as a topical treatment. In vivo study is required to confirm this effect. © 2014 ESVD and ACVD.
Redwan, Elrashdy M; El-Baky, Nawal Abd; Al-Hejin, Ahmed M; Baeshen, Mohammed N; Almehdar, Hussein A; Elsaway, Abdulrahman; Gomaa, Abu-Bakr M; Al-Masaudi, Saad Berki; Al-Fassi, Fahad A; AbuZeid, Isam Eldin; Uversky, Vladimir N
2016-01-01
Methicillin-resistant Staphylococcus aureus (MRSA) causes major healthcare problems in many countries, as it is present as several hospital- and community-associated strains. Hospital-associated MRSA is one of the most prevalent nosocomial pathogens throughout the world and infections caused by community-acquired MRSA are rising. This emphasizes the need for new and efficient anti-MRSA agents. We evaluated the antibacterial effects of camel lactoferrin (cLf) and human lactoferrin (hLf) alone and in combination with several antibiotics against MRSA. Antimicrobials were tested against MRSA and an S. aureus control strain by the agar disc diffusion method. The minimum inhibitory concentration (MIC) was determined for antimicrobials by the broth microdilution method. Synergy between cLf or hLf and antibiotics was examined by checkerboard and time-kill assays. The agar disc diffusion assay showed that MRSA growth was inhibited by cLf at 0.25-3 mg/ml and hLf at 1-3 mg/ml. cLf demonstrated 3 times higher inhibitory activity against MRSA than hLf in terms of MIC values (250 vs. 750 μg/ml, respectively). Biotinylated cLf was recognized by two membrane proteins of MRSA, 66-67 KDa. Combinations of cLf or hLf and oxacillin or vancomycin at sub-MIC levels enhanced in vitro antibacterial activity against MRSA compared with each agent alone. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Cytotoxic and Antimicrobial Constituents from the Essential Oil of Lippia alba (Verbenaceae).
Santos, Nara O Dos; Pascon, Renata C; Vallim, Marcelo A; Figueiredo, Carlos R; Soares, Marisi G; Lago, João Henrique G; Sartorelli, Patricia
2016-08-12
Backgroud: Lippia alba (Verbenaceae) is a plant widely used in folk medicine to treat various diseases. The present work deals with the chemical composition of the crude essential oil extracted from leaves of L. alba and evaluation of its antimicrobial and cytotoxic activities. Methods: Leaves of L. alba were extracted by hydrodistillation and analyzed by gas chromatography/mass spectrometry (GC/MS) as well as by nuclear magnetic resonance (NMR) spectroscopy. Cytotoxic and antimicrobial activities of crude essential oil were evaluated in vitro using MTT and broth microdilution assays, respectively. Results: Chemical analysis afforded the identification of 39 substances corresponding to 99.45% of the total oil composition. Concerning the main compounds, monoterpenes nerol/geraniol and citral correspond to approximately 50% of crude oil. The cytotoxic activity of obtained essential oil against several tumor cell lines showed IC 50 values ranging from 45 to 64 µg/mL for B16F10Nex2 (murine melanoma) and A549 (human lung adenocarcinoma). In the antimicrobial assay, was observed that all tested yeast strains, except C. albicans , were sensitive to crude essential oil. MIC values were two to four-folds lower than those determined to bacterial strains. Conclusion: Analysis of chemical composition of essential oils from leaves of L. alba suggested a new chemotype nerol/geraniol and citral. Based in biological evidences, a possible application for studied oil as an antifungal in medicine, as well as in agriculture, is described.
Nirmal, Nilesh Prakash; Panichayupakaranant, Pharkphoom
2014-09-01
Caesalpinia sappan L. (Leguminosae or Fabaceae) heartwood has been used as a coloring agent, with antibacterial activity in food, beverages, cosmetics, and garments. To purify brazilin from C. sappan heartwood and use it as a standard marker for the preparation and standardization of an active constituent-rich extract. Crude ethanol extracts of C. sappan heartwood (CSE) were fractionated to isolate brazilin by an anti-P. acnes assay-guided isolation. Quantitative analysis was performed by HPLC. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined by the broth microdilution method. Brazilin isolated from CSE possessed antibacterial activity against P. acnes with MIC and MBC values of 15.6 and 31.2 µg/mL, respectively. Brazilin was, therefore, used as a standard marker for standardization and preparation of a brazilin rich extract (BRE). BRE was prepared from CSE using a simple one-step purification using a macroporous resin column eluted with 35% v/v ethanol. This method increased the brazilin content in the BRE up to 39.9% w/w. The antibacterial activity of the standardized BRE against acne involved bacteria was higher than for the CSE but lower than brazilin. However, for industrial applications, a large-scale one-step preparation of BRE has more advantages than the use of pure brazilin in terms of convenience and a low-cost production process. Therefore, BRE is considered as a potential coloring agent with antibacterial activity which is used for pharmaceutical, cosmetic, and nutraceutical applications.
Septama, Abdi Wira; Xiao, Jianbo; Panichayupakaranant, Pharkphoom
2017-01-01
Artocarpanone isolated from Artocarpus heterophyllus L. (Moraceae) exhibits antibacterial activity. The present study investigated synergistic activity between artocarpanone and tetracycline, ampicillin, and norfloxacin, respectively, against methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa , and Escherichia coli . A broth microdilution method was used for evaluating antibacterial susceptibility. Synergistic effects were identified using a checkerboard method, and a bacterial cell membrane disruption was investigated by assay of released 260 nm absorbing materials following bacteriolysis. Artocarpanone exhibited weak antibacterial activity against MRSA and P. aeruginosa with minimum inhibitory concentrations values of 125 and 500 μg/mL, respectively. However, the compound showed strong antibacterial activity against E. coli (7.8 μg/mL). The interaction between artocarpanone and all tested antibiotics revealed indifference and additive effects against P. aeruginosa and E. coli (fractional inhibitory concentration index [FICI] values of 0.75-1.25). The combination of artocarpanone (31.2 μg/mL) and norfloxacin (3.9 μg/mL) resulted in synergistic antibacterial activity against MRSA, with an FICI of 0.28, while the interaction between artocarpanone and tetracycline, and ampicillin showed an additive effect, with an FICI value of 0.5. A time-kill assay also indicated that artocarpanone had a synergistic effect on the antibacterial activity of norfloxacin. In addition, the combination of artocarpanone and norfloxacin altered the membrane permeability of MRSA. These findings suggest that artocarpanone may be used to enhance the antibacterial activity of norfloxacin against MRSA.
Neem (Azadirachta indica A. Juss) Oil: A Natural Preservative to Control Meat Spoilage
Del Serrone, Paola; Toniolo, Chiara; Nicoletti, Marcello
2015-01-01
Plant-derived extracts (PDEs) are a source of biologically-active substances having antimicrobial properties. The aim of this study was to evaluate the potential of neem oil (NO) as a preservative of fresh retail meat. The antibacterial activity of NO against Carnobacterium maltaromaticum, Brochothrix thermosphacta, Escherichia coli, Pseudomonas fluorescens, Lactobacillus curvatus and L. sakei was assessed in a broth model system. The bacterial growth inhibition zone (mm) ranged from 18.83 ± 1.18 to 30.00 ± 1.00, as was found by a disc diffusion test with 100 µL NO. The bacterial percent growth reduction ranged from 30.81 ± 2.08 to 99.70 ± 1.53 in the broth microdilution method at different NO concentrations (1:10 to 1:100,000). Viable bacterial cells were detected in experimentally-contaminated meat up to the second day after NO treatment (100 µL NO per 10 g meat), except for C. maltaromaticum, which was detected up to the sixth day by PCR and nested PCR with propidium monoazide (PMA™) dye. In comparison to the previously published results, C. maltaromaticum, E. coli, L. curvatus and L. sakei appeared more susceptible to NO compared to neem cake extract (NCE) by using a broth model system. PMID:28231186
Neem (Azadirachtaindica A. Juss) Oil: A Natural Preservative to Control Meat Spoilage.
Del Serrone, Paola; Toniolo, Chiara; Nicoletti, Marcello
2015-01-09
Plant-derived extracts (PDEs) are a source of biologically-active substances having antimicrobial properties. The aim of this study was to evaluate the potential of neem oil (NO) as a preservative of fresh retail meat. The antibacterial activity of NO against Carnobacterium maltaromaticum , Brochothrix thermosphacta, Escherichia coli , Pseudomonas fluorescens , Lactobacillus curvatus and L. sakei was assessed in a broth model system . The bacterial growth inhibition zone (mm) ranged from 18.83 ± 1.18 to 30.00 ± 1.00, as was found by a disc diffusion test with 100 µL NO. The bacterial percent growth reduction ranged from 30.81 ± 2.08 to 99.70 ± 1.53 in the broth microdilution method at different NO concentrations (1:10 to 1:100,000). Viable bacterial cells were detected in experimentally-contaminated meat up to the second day after NO treatment (100 µL NO per 10 g meat), except for C. maltaromaticum , which was detected up to the sixth day by PCR and nested PCR with propidium monoazide (PMA™) dye. In comparison to the previously published results, C. maltaromaticum , E. coli , L. curvatus and L. sakei appeared more susceptible to NO compared to neem cake extract (NCE) by using a broth model system.
Saini, V.; Riekerink, R. G. M. Olde; McClure, J. T.; Barkema, H. W.
2011-01-01
Determining the accuracy and precision of a measuring instrument is pertinent in antimicrobial susceptibility testing. This study was conducted to predict the diagnostic accuracy of the Sensititre MIC mastitis panel (Sensititre) and agar disk diffusion (ADD) method with reference to the manual broth microdilution test method for antimicrobial resistance profiling of Escherichia coli (n = 156), Staphylococcus aureus (n = 154), streptococcal (n = 116), and enterococcal (n = 31) bovine clinical mastitis isolates. The activities of ampicillin, ceftiofur, cephalothin, erythromycin, oxacillin, penicillin, the penicillin-novobiocin combination, pirlimycin, and tetracycline were tested against the isolates. Diagnostic accuracy was determined by estimating the area under the receiver operating characteristic curve; intertest essential and categorical agreements were determined as well. Sensititre and the ADD method demonstrated moderate to highly accurate (71 to 99%) and moderate to perfect (71 to 100%) predictive accuracies for 74 and 76% of the isolate-antimicrobial MIC combinations, respectively. However, the diagnostic accuracy was low for S. aureus-ceftiofur/oxacillin combinations and other streptococcus-ampicillin combinations by either testing method. Essential agreement between Sensititre automatic MIC readings and MIC readings obtained by the broth microdilution test method was 87%. Essential agreement between Sensititre automatic and manual MIC reading methods was 97%. Furthermore, the ADD test method and Sensititre MIC method exhibited 92 and 91% categorical agreement (sensitive, intermediate, resistant) of results, respectively, compared with the reference method. However, both methods demonstrated lower agreement for E. coli-ampicillin/cephalothin combinations than for Gram-positive isolates. In conclusion, the Sensititre and ADD methods had moderate to high diagnostic accuracy and very good essential and categorical agreement for most udder pathogen-antimicrobial combinations and can be readily employed in veterinary diagnostic laboratories. PMID:21270215
Aigner, Maria; Erbeznik, Thomas; Gschwentner, Martin; Lass-Flörl, Cornelia
2017-08-01
Candida species were tested for susceptibility to caspofungin, anidulafungin, and micafungin in order to evaluate the roles of Etest and Sensititre YeastOne in antifungal susceptibility testing for daily routines and to survey resistance. A total of 104 Candida species isolates detected from blood cultures were investigated. With EUCAST broth microdilution as the reference method, essential agreement (EA), categorical agreement (CA), very major errors (VME), major errors (ME), and minor (MIN) errors were assessed by reading MICs at 18, 24, and 48 h. By use of EUCAST broth microdilution and species-specific clinical breakpoints (CBPs), echinocandin resistance was not detected during the study period. Using EUCAST CBPs, MIC readings at 24 h for the Etest and Sensititre YeastOne resulted in CA levels of 99% and 93% for anidulafungin and 99% and 97% for micafungin. Using revised CLSI CBPs for caspofungin, CA levels were 92% and 99% for Etest and Sensititre YeastOne. The Etest proved an excellent, easy-to-handle alternative method for testing susceptibility to anidulafungin and micafungin. Due to misclassifications, the Etest is less suitable for testing susceptibility to caspofungin (8% of isolates falsely tested resistant). The CA levels of Sensititre YeastOne were 93% and 97% for anidulafungin and micafungin (24 h) by use of EUCAST CBPs and increased to 100% for both antifungals if CLSI CBPs were applied and to 100% and 99% if Sensititre YeastOne epidemiological cutoff values (ECOFFs) were applied. No one echinocandin could be demonstrated to be superior to another in vitro Since resistance was lacking among our Candida isolates, we cannot derive any recommendation from accurate resistance detection by the Etest and Sensititre YeastOne. Copyright © 2017 American Society for Microbiology.
Smart, Jennifer I; Corey, Gordon Ralph; Stryjewski, Martin E; Wang, Whedy; Barriere, Steven L
2016-12-01
The broth microdilution method (BMD) for testing telavancin minimum inhibitory concentrations (MICs) was revised (rBMD) in 2014 to improve the accuracy, precision, and reproducibility of the testing method. The aim of this study was to determine the effect of the revised method on telavancin MIC values for Staphylococcus aureus (S. aureus) clinical isolates obtained from hospital-acquired pneumonia (HAP) patients. Isolates from patients who participated in the phase 3 Assessment of Telavancin for Treatment of HAP Studies were retested using the rBMD method. Retesting of 647 isolates produced a range of telavancin MIC values from 0.015 µg/mL to 0.12 µg/mL with MIC 50/90 values of 0.06/0.06 µg/mL for the total pool of samples. For methicillin-resistant S. aureus (MRSA), MIC 50/90 values were 0.06/0.12 µg/mL. These values are up to 4-fold lower than MIC 50/90 values obtained using the original method. These results were used in part to justify lowering the telavancin breakpoints. All tested isolates remained susceptible to telavancin at the revised susceptibility breakpoint of ≤0.12 µg/mL. Overall, the clinical cure rate for microbiologically evaluable telavancin-treated patients was 78% for S. aureus, 76% for patients with MRSA, and 79% for patients with isolates with reduced susceptibility to vancomycin (MIC ≥1 µg/mL). Results from the rBMD method support the in vitro potency of telavancin against S. aureus. ATTAIN (NCT00107952 and NCT00124020). Theravance Biopharma Antibiotics, Inc.
2002-01-01
A total of 522 strains belonging to streptococci, enterococci and staphylococci isolated from sub-clinical and clinical cases of bovine mastitis from the west littoral region of Uruguay were analysed for their susceptibility to several antimicrobial agents. The susceptibility patterns were studied by agar disk diffusion methods (ADDM) and broth micro-dilution to determine the minimum inhibitory concentration (MIC). The concentration that inhibits 90% (MIC90) of the analysed strains reported in micrograms per millilitre, for Staphylococcus aureus were > 8, 8, ≤ 0.5, ≤ 4, ≤ 1, ≤ 0.5, > 64, ≤ 0.25, 0.5, ≤ 1 and ≤ 1 to penicillin, ampicillin, oxacillin, cephalotin, gentamicin, erythromycin, oxitetracycline, enrofloxacin, trimethoprim/sulfamethoxazole, neomycin, and clindamycin, respectively. Coagulase-negative staphylococci (CNS) had different values for penicillin (4) and ampicillin (2), while the other antimicrobial agents had the same MIC90 values as reported for S. aureus. The MIC90 values for streptococci were 0.12, 0.25, ≤ 4, 16, ≤ 0.25, 0.5, 0.25 for penicillin, ampicillin, cephalotin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, whereas MIC90 for enterococci were 4, 4, 4, ≤ 0.5, 2, > 8 for penicillin, ampicillin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, respectively. Of 336 strains of S. aureus, 160 (47.6%) were resistant to penicillin. For 41 CNS strains, 10 (27%) presented penicillin-resistance. All the streptococcal strains were susceptible to penicillin, while 3 (7%) of the 43 enteroccocal strains were resistant. Non significant statistical differences were found between the results obtained by ADDM and broth micro-dilution for classifying bacterial isolates as susceptible or resistant according to the National Committee of Clinical Laboratory Standards. PMID:12071114
de Morais, C B; Scopel, M; Pedrazza, G P R; da Silva, F K; Dalla Lana, D F; Tonello, M L; Miotto, S T S; Machado, M M; De Oliveira, L F S; Fuentefria, A M; Zuanazzi, J A S
2017-12-01
Intensive prophylactic use of antifungals leads to the increase of drug resistance and the need for new and more effective treatments are real. Plants from Leguminosae family are rich in flavonoids, for which numerous biological activities have been described, including antifungal effects. To screen methanolic extracts from Leguminosae species looking for alternative sources for antifungal agents (anti-dermatophyte and anti-Candida) and their innocuity. Antifungal activity was evaluated using the strains Candida albicans, C. krusei, C. glabrata, C. tropicalis, C. parapsilosis, Epidermophyton floccosum, Trichophyton mentagrophytes, T. rubrum and, Microsporum gypseum in the broth microdilution method. Later, the minimum inhibitory concentration (MIC) for Mimosa pigra, Eriosema heterophyllum, and Chamaecrista nictitans was determined. The most promising extract was fractionated and cytotoxicity and genotoxicity of the most active fraction were also assayed. Fungicide and/or fungistatic activity against dermatophyte strains were presented by 60% of the methanolic extracts assayed. M. pigra, E. heterophyllum, and C. nictitans methanolic extracts could inhibit dermatophyte strains at concentrations ranging from 1.9 to 1000μg/mL. M. pigra showed the lowest MIC values for a dichloromethane fraction (1.9μg/mL) without DNA damage at 10 and 50μg/mL and 100% of cell viability of human leukocytes. Our results indicate that methanolic extracts from Leguminosae plants are potential sources of antifungal compounds, mainly the extract and fractions from M. pigra. The dichloromethane fraction from M. pigra did not showed in vitro toxicity according to the applied assays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.
Septama, Abdi Wira; Panichayupakaranant, Pharkphoom
2015-01-01
Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.
Chowdhary, Anuradha; Singh, Pradeep Kumar; Kathuria, Shallu; Hagen, Ferry; Meis, Jacques F
2015-12-01
We compared EUCAST and CLSI antifungal susceptibility testing (AFST) methods for triazoles and amphotericin B against 124 clinical Mucorales isolates. The EUCAST method yielded MIC values 1- to 3-fold dilutions higher than those of the CLSI method for amphotericin B. The essential agreements between the two methods for triazoles were high, i.e., 99.1% (voriconazole), 98.3% (isavuconazole), and 87% (posaconazole), whereas it was significantly lower for amphotericin B (66.1%). Strategies for harmonization of the two methods for Mucorales AFST are warranted. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Examination of bacteria drug resistance utilizing surface plasmon resonance
NASA Astrophysics Data System (ADS)
Chiang, Ya-Ling; Chen, How-Foo; Lin, Chi-Hung; Chen, Shean-Jen
2007-05-01
An antimicrobial testing method using surface plasmon resonance to improve the present techniques is reported in this paper. Different from conventional methods, namely Kirby-Bauer disk diffusion and variations of broth microdilution, the examination time is reduced from 18-24 hours or more to less than one hour after the treatment of antibiotics. E-coli resistant and susceptible to ampicillin are used in the test to demonstrate this innovative method. It is generally known that discovering a method to exam the bacterium resistance rapidly and correctly is very important for patients and for preventing infective disease from spreading. The method reported can benefit this requirement.
García, M. T.; Pelaz, C.; Giménez, M. J.; Aguilar, L.
2000-01-01
The MICs at which 90% of isolates are inhibited for gemifloxacin, trovafloxacin, and grepafloxacin were low (≤0.01 μg/ml) for 271 Legionella isolates when they were determined by the broth microdilution method but increased (≥6 dilutions) when they were determined by the agar dilution method. This was due to the charcoal in the agar dilution medium, as shown by the progressive decrease in the MICs when the charcoal concentrations decreased. As free drug is the active fraction, charcoal binding should be considered. PMID:10898695
Landman, W J M; Mevius, D J; Veldman, K T; Feberwee, A
2008-08-01
The in vitro susceptibility of 17 Dutch Mycoplasma synoviae isolates from commercial poultry to enrofloxacin, difloxacin, doxycycline, tylosin and tilmicosin was examined. Three isolates originated from joint lesions and 14 were from the respiratory tract. The type strain M. synoviae WVU 1853 was included as a control strain. Antibiotic susceptibility was tested quantitatively using the broth microdilution test. Based on initial and final minimum inhibitory concentration values, all tested isolates were susceptible to doxycycline, tylosin and tilmicosin. Two isolates from the respiratory tract were resistant to enrofloxacin and showed intermediate resistance to difloxacin.
Al-Bakri, A G; Othman, G; Bustanji, Y
2009-07-01
To evaluate the antimicrobial activities of aspirin, EDTA and an aspirin-EDTA (A-EDTA) combination against Pseudomonas aeruginosa, Escherichia coli and Candida albicans in planktonic and biofilm cultures. Minimal inhibitory concentrations (MIC) and minimal biocidal concentrations (MBC) were determined using twofold broth microdilution and viable counting methods, respectively. Aspirin's recorded MIC values ranged from 1.2 to 2.7 mg ml(-1). Checkerboard assay demonstrated a synergism in antimicrobial activity upon combination. Aspirin's minimal biofilm eradication concentration values (MBEC) against the established biofilms ranged between 1.35 and 3.83 mg ml(-1). A complete eradication of bacterial biofilms was achieved after a 4-h treatment with the A-EDTA combination. Both aspirin and EDTA possess broad-spectrum antimicrobial activity for both planktonic and biofilm cultures. Aspirin used at the MBEC for 24 h was successful in eradicating P. aeruginosa, E. coli and C. albicans biofilms established on abiotic surfaces. Moreover, the exposure to the A-EDTA combination (4 h) effected complete bacterial biofilm eradication. There is a continuous need for the discovery of new antimicrobial agents. Aspirin and EDTA are 'nonantibiotic drugs', the combination of which can be used successfully to treat and eradicate biofilms established on abiotic surfaces.
Zhang, Jinqing; Liu, Wei; Tan, Jingwen; Sun, Yi; Wan, Zhe; Li, Ruoyu
2013-04-01
A standardized broth microdilution method was used to test the antifungal activity of geldanamycin (GA), an inhibitor of heat shock protein 90 (Hsp90), alone or in combination with the antifungal agent fluconazole (FLC) against 32 clinical isolates of Candida spp. In addition, a disk diffusion test was also used to evaluate the antifungal effect of these two drugs against Candida spp. by measuring the inhibition zone diameters. We found that the range of minimal inhibitory concentrations (MICs) for GA alone against Candida spp. was 3.2-12.8 mg/L and the geometric mean of MICs was 6.54 mg/L. In addition, the combination of GA with FLC showed synergistic effects in vitro against 2 FLC-susceptible and 6 FLC-resistant isolates of C. albicans. As for the other isolates, indifference but no antagonism was observed. In the disk diffusion assay, the diameter of inhibition zones for FLC combined with GA against FLC-resistant C. albicans isolates was 30 mm, while no inhibition was observed with FLC alone. These results demonstrate that GA possesses antifungal activity against Candida spp., and the combination of GA with FLC shows in vitro synergistic activity against some C. albicans isolates, especially those resistant to FLC.
Alves, Daniela Ribeiro; Maia de Morais, Selene; Tomiotto-Pellissier, Fernanda; Miranda-Sapla, Milena Menegazzo; Vasconcelos, Fábio Roger; da Silva, Isaac Neto Goes; Araujo de Sousa, Halisson; Assolini, João Paulo; Conchon-Costa, Ivete; Pavanelli, Wander Rogério; Freire, Francisco das Chagas Oliveira
2017-01-01
Caryocar coriaceum fruits, found in Brazilian Cerrado and Caatinga, are commonly used as food and in folk medicine, as anti-inflammatory, bactericide, fungicide, leishmanicide, and nematicide. Due to the biological potential of this plant, this study focuses on the evaluation of antifungal and antileishmanial activities, including anticholinesterase and antioxidant tests, correlating with total phenols and flavonoids content. Peel extracts contain higher yield of phenols and flavonoids as analyzed by spectrophotometric methods. HPLC analysis of flavonoids revealed that isoquercitrin is the main flavonoid in both parts of the fruit, and peel extract showed the best antioxidant activity. In the inhibition of the acetylcholinesterase assay, both extracts demonstrate action comparable to physostigmine. The antimicrobial activity of extracts was evaluated against strains of Malassezia sp. and Microsporum canis , using the broth microdilution technique, in which the extracts showed similar MIC and MFC. The extracts present antileishmanial activity and low toxicity on murine macrophages and erythrocytes. Therefore, these results suggest a potential for the application of C. coriaceum fruit's ethanol extracts in the treatment against dermatophyte fungi and leishmaniasis, probably due to the presence of active flavonoids. Further in vivo studies are recommended aiming at the development of possible new pharmaceutical compounds.
Alves, Daniela Ribeiro; Tomiotto-Pellissier, Fernanda; da Silva, Isaac Neto Goes; Araujo de Sousa, Halisson; Assolini, João Paulo; Freire, Francisco das Chagas Oliveira
2017-01-01
Caryocar coriaceum fruits, found in Brazilian Cerrado and Caatinga, are commonly used as food and in folk medicine, as anti-inflammatory, bactericide, fungicide, leishmanicide, and nematicide. Due to the biological potential of this plant, this study focuses on the evaluation of antifungal and antileishmanial activities, including anticholinesterase and antioxidant tests, correlating with total phenols and flavonoids content. Peel extracts contain higher yield of phenols and flavonoids as analyzed by spectrophotometric methods. HPLC analysis of flavonoids revealed that isoquercitrin is the main flavonoid in both parts of the fruit, and peel extract showed the best antioxidant activity. In the inhibition of the acetylcholinesterase assay, both extracts demonstrate action comparable to physostigmine. The antimicrobial activity of extracts was evaluated against strains of Malassezia sp. and Microsporum canis, using the broth microdilution technique, in which the extracts showed similar MIC and MFC. The extracts present antileishmanial activity and low toxicity on murine macrophages and erythrocytes. Therefore, these results suggest a potential for the application of C. coriaceum fruit's ethanol extracts in the treatment against dermatophyte fungi and leishmaniasis, probably due to the presence of active flavonoids. Further in vivo studies are recommended aiming at the development of possible new pharmaceutical compounds. PMID:29081821
In vitro anti-MRSA activity of carvone with gentamicin.
Mun, Su-Hyun; Kang, Ok-Hwa; Joung, Dae-Ki; Kim, Sung-Bae; Choi, Jang-Gi; Shin, Dong-Won; Kwon, Dong-Yeul
2014-04-01
Carvone is one of the naturally occurring monoterpenes, the largest class of secondary metabolites in plants, and exists in two enantiomers, R-carvone (R-car) and S-car. The objective of this study was to investigate the antimicrobial activity of R-car and S-car with gentamicin (GET) against methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a major human pathogen that causes serious problems, including hospital-acquired pneumonia, abscesses and surgical wound infections. Nosocomial MRSA infections often exhibit multidrug resistance. In the present study, antimicrobial susceptibility testing was performed with R-car, S-car and GET using the broth microdilution method. Minimal inhibitory concentration values for R- and S-car against six different strains of S. aureus ranged between 500 and 1,000 μg/ml. Anti-MRSA activity was evaluated using the checkerboard and time-kill assays to investigate the potential synergistic effects of different combinations of the carvone enantiomers and GET. R-car plus S-car, R-car plus GET and S-car plus GET exhibited significant synergistic activity against MRSA. These findings suggest that the single-agent anti-MRSA activities of R-car, S-car and GET are effectively increased through combination therapy. This study showed that carvone may be a potential adjuvant antimicrobial agent.
Multicomponent Therapeutics of Berberine Alkaloids
Luo, Jiaoyang; Yan, Dan; Yang, Meihua; Dong, Xiaoping; Xiao, Xiaohe
2013-01-01
Although berberine alkaloids (BAs) are reported to be with broad-spectrum antibacterial and antiviral activities, the interactions among BAs have not been elucidated. In the present study, methicillin-resistant Staphylococcus aureus (MRSA) was chosen as a model organism, and modified broth microdilution was applied for the determination of the fluorescence absorption values to calculate the anti-MRSA activity of BAs. We have initiated four steps to seek the optimal combination of BAs that are (1) determining the anti-MRSA activity of single BA, (2) investigating the two-component combination to clarify the interactions among BAs by checkerboard assay, (3) investigating the multicomponent combination to determine the optimal ratio by quadratic rotation-orthogonal combination design, and (4) in vivo and in vitro validation of the optimal combination. The results showed that the interactions among BAs are related to their concentrations. The synergetic combinations included “berberine and epiberberine,” “jatrorrhizine and palmatine” and “jatrorrhizine and coptisine”; the antagonistic combinations included “coptisine and epiberberine”. The optimal combination was berberine : coptisine : jatrorrhizine : palmatine : epiberberine = 0.702 : 0.863 : 1 : 0.491 : 0.526, and the potency of the optimal combination on cyclophosphamide-immunocompromised mouse model was better than the natural combinations of herbs containing BAs. PMID:23634170
In vitro anti-MRSA activity of carvone with gentamicin
MUN, SU-HYUN; KANG, OK-HWA; JOUNG, DAE-KI; KIM, SUNG-BAE; CHOI, JANG-GI; SHIN, DONG-WON; KWON, DONG-YEUL
2014-01-01
Carvone is one of the naturally occurring monoterpenes, the largest class of secondary metabolites in plants, and exists in two enantiomers, R-carvone (R-car) and S-car. The objective of this study was to investigate the antimicrobial activity of R-car and S-car with gentamicin (GET) against methicillin-resistant Staphylococcus aureus (MRSA). MRSA is a major human pathogen that causes serious problems, including hospital-acquired pneumonia, abscesses and surgical wound infections. Nosocomial MRSA infections often exhibit multidrug resistance. In the present study, antimicrobial susceptibility testing was performed with R-car, S-car and GET using the broth microdilution method. Minimal inhibitory concentration values for R- and S-car against six different strains of S. aureus ranged between 500 and 1,000 μg/ml. Anti-MRSA activity was evaluated using the checkerboard and time-kill assays to investigate the potential synergistic effects of different combinations of the carvone enantiomers and GET. R-car plus S-car, R-car plus GET and S-car plus GET exhibited significant synergistic activity against MRSA. These findings suggest that the single-agent anti-MRSA activities of R-car, S-car and GET are effectively increased through combination therapy. This study showed that carvone may be a potential adjuvant antimicrobial agent. PMID:24669246
In vitro activity of Citrus bergamia (bergamot) oil against clinical isolates of dermatophytes.
Sanguinetti, M; Posteraro, B; Romano, L; Battaglia, F; Lopizzo, T; De Carolis, E; Fadda, G
2007-02-01
Recently, bergamot oil was shown to be a potent antifungal agent in vitro against clinically important Candida species. In this study, the activities of bergamot natural essence and its furocoumarin-free and distilled extracts on dermatophytes such as Trichophyton, Microsporum and Epidermophyton species were investigated. In vitro susceptibility testing assays on 92 clinical isolates of dermatophytes (Trichophyton mentagrophytes n = 20, Trichophyton rubrum n = 18, Trichophyton interdigitale n = 15, Trichophyton tonsurans n = 2, Microsporum canis n = 24, Microsporum gypseum n = 1 and Epidermophyton floccosum n = 12) were performed using the CLSI M38-A broth microdilution method, except for employing an inoculum of 1-3 x 10(3) cfu/mL. MICs were determined at a visual endpoint reading of 80% inhibition compared with the growth control. MICs (v/v) of all fungi ranged from 0.156% to 2.5% for the natural essence, from 0.02% to 2.5% for the distilled extract, and from 0.08% to 1.25% for the furocoumarin-free extract. The three isolates of T. tonsurans and M. gypseum exhibited the highest MIC values. Data from this study indicate that bergamot oil is active in vitro against several common species of dermatophytes, suggesting its potential use for topical treatment of dermatophytoses.
Al-Wabli, Reem I; Al-Ghamdi, Alwah R; Ghabbour, Hazem A; Al-Agamy, Mohamed H; Monicka, James Clemy; Joe, Issac Hubert; Attia, Mohamed I
2017-02-28
Mycoses are serious health problem, especially in immunocompromised individuals. A new imidazole-bearing compound containing an oxime functionality was synthesized and characterized with different spectroscopic techniques to be used for the preparation of new antifungal agents. The stereochemistry of the oxime double bond was unequivocally determined via the single crystal X-ray technique. The title compound 4 , C 13 H 13 N₃O₃·C₃H₈O, crystallizes in the monoclinic space group P 2₁with a = 9.0963(3) Å, b = 14.7244(6) Å, c = 10.7035(4) Å, β = 94.298 (3)°, V = 1429.57(9) ų, Z = 2. The molecules were packed in the crystal structure by eight intermolecular hydrogen bond interactions. A comprehensive spectral analysis of the title molecule 4 has been performed based on the scaled quantum mechanical (SQM) force field obtained by density-functional theory (DFT) calculations. A molecular docking study illustrated the binding mode of the title compound 4 into its target protein. The preliminary antifungal activity of the title compound 4 was determined using a broth microdilution assay.
NASA Astrophysics Data System (ADS)
Süleymanoğlu, Nevin; Ustabaş, Reşat; Direkel, Şahin; Alpaslan, Yelda Bingöl; Ünver, Yasemin
2017-12-01
Thiol-thione tautomerism of 1,2,4-triazole derivative with Schiff base was investigated by spectroscopic methods and quantum mechanical calculations. Theoretical study of thiol-thione tautomeric forms of 1,2,4-triazole derivative with Schiff base; 1,2,4-triazole-thiol form, 1-((5-mercapto-4-(thiophene-2-ylmethyleneamino)-4H-1,2,4-triazole-3-yl)methyl)-3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1H-1,2,4-triazole-5(4H)-one (I) and 1,2,4-triazole-thione form, 3-(thiophene-2-ylmethyl)-4-(thiophene-2-ylmethyleneamino)-1-((4-(thiophene-2-ylmethyleneamino)-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl)-1H-1,2,4-triazole-5(4H)-one (II) was performed by the density functional theory (DFT) method with 6-311++G(d,p) basis set. Structural parameters were obtained and spectral parameters of NMR, FTIR and UV-vis were compared with experimental ones to determine structural details. In vitro antileishmanial activity was studied against Leishmania infantum promastigots by microdilution broth assay with Alamar Blue Dye. The results indicate that 1,2,4-triazole derivative exists in both thiol and thione form and, can be evaluated as antiparasitic in term of antileishmanial activity.
Kim, Si-Hyun; Park, Chulmin; Chun, Hye-Sun; Choi, Jae-Ki; Lee, Hyo-Jin; Cho, Sung-Yeon; Park, Sun Hee; Choi, Su-Mi; Choi, Jung-Hyun; Yoo, Jin-Hong
2016-01-01
With the rise in multidrug-resistant (MDR) bacterial infections, there has been increasing interest in combinations of ≥2 antimicrobial agents with synergistic effects. We established an MDR bacterial strain library to screen for in vitro antimicrobial synergy by using a broth microdilution checkerboard method and high-throughput luciferase-based bacterial cell viability assay. In total, 39 MDR bacterial strains, including 23 carbapenem-resistant gram-negative bacteria, 9 vancomycin-intermediate Staphylococcus aureus, and 7 vancomycin-resistant Enterococcus faecalis, were used to screen for potential antimicrobial synergies. Synergies were more frequently identified with combinations of imipenem plus trimethoprim–sulfamethoxazole for carbapenem-resistant Acinetobacter baumannii in the library. To verify this finding, we tested 34 A. baumannii clinical isolates resistant to both imipenem and trimethoprim–sulfamethoxazole by the checkerboard method. The imipenem plus trimethoprim–sulfamethoxazole combination showed synergy in the treatment of 21 (62%) of the clinical isolates. The results indicate that pilot screening for antimicrobial synergy in the MDR bacterial strain library could be valuable in the selection of combination therapeutic regimens to treat MDR bacterial infections. Further studies are warranted to determine whether this screening system can be useful to screen for the combined effects of conventional antimicrobials and new-generation antimicrobials or nonantimicrobials. PMID:26974861
Peñalver, Pedro; Huerta, Belén; Borge, Carmen; Astorga, Rafael; Romero, Rafael; Perea, Anselmo
2005-01-01
An in vitro assay measuring the antimicrobial activity of essential oils of Coridothymus capitatus (Spanish origanum), Satureja montana, Thymus mastichina (Spanish Origanum majorana), Thymus zygis (Spanish variety of Thymus vulgaris) and Origanum vulgare has been carried out against poultry origin strains of Escherichia coli, Salmonella enteritidis and Salmonella essen, and pig origin strains of enterotoxigenic E. coli (ETEC), Salmonella choleraesuis and Salmonella typhimurium. Using the broth microdilution method, all the essential oils showed an MIC > or = 2% (v/v) for the two strains of E. coli. The essential oil that showed the highest antimicrobial activity against the four strains of Salmonella was Origanum vulgare (MIC < or = 1% v/v), followed by Thymus zygis (MIC < or =2% v/v). Thymus mastichina inhibited all the microorganisms at the highest concentration, 4% (v/v), while the rest of the essential oils showed highly variable results. By chemotyping, higher inhibitory capacity was observed in the oils with a higher percentage of phenolic components (carvacrol and thymol) in comparison with oils containing the monoterpenic alcohol linalool. The results of this work confirm the antimicrobial activity of some essential oils, as well as their potential application in the treatment and prevention of poultry and pig diseases caused by salmonella.
Rodrigues, Fabiola F. G.; Oliveira, Liana G. S.; Rodrigues, Fábio F. G.; Saraiva, Manuele E.; Almeida, Sheyla C. X.; Cabral, Mario E. S.; Campos, Adriana R.; Costa, Jose Galberto M.
2012-01-01
Background: Cordia verbenacea is a Brazilian coastal shrub popularly known as “erva baleeira”. The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. Materials and Methods: The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). Results: The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. Conclusion: The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens. PMID:22923954
Kirmizibekmez, Hasan; Demirci, Betül; Yeşilada, Erdem; Başer, K Hüsnü Can; Demirci, Fatih
2009-07-01
The chemical compositions of the essential oils obtained by hydrodistillation from the dried leaves and flowers of Lavandula stoechas L. ssp. stoechas were separately identified by GC-FID and GC-MS analyses. The main components were alpha-fenchone (41.9 +/- 1.2%), 1,8-cineole (15.6 +/- 0.8%), camphor (12.1 +/- 0.5%), and viridiflorol (4.1 +/- 0.4%) in the leaves; and alpha-fenchone (39.2 +/- 0.9%), myrtenyl acetate (9.5 +/- 0.4%), alpha-pinene (6.1 +/- 0.09%), camphor (5.9 +/- 0.05%) and 1,8-cineole (3.8 +/- 0.1%) in the flowers. Overall, 55 and 66 constituents were identified in the leaf and flower essential oils representing more than 90% and 94% of the total, respectively. In addition, the essential oils were evaluated for their antibacterial and anticandidal activities by broth microdilution. The flower essential oil was found to be relatively more active than the leaf oil towards the tested pathogenic microorganisms. Methicillin-resistant Staphylococcus aureus was more susceptible to the flower oil (MIC = 31.2 microg/mL). The oils, evaluated for their free radical scavenging activity using a TLC-DPPH assay, were inactive at a concentration of 2 mg/mL.
Worakhunpiset, S; Tharnpoophasiam, P
2009-07-01
Although multiplex PCR amplification condition for simultaneous detection of total coliform bacteria, Escherichia coli and Clostridium perfringens in water sample has been developed, results with high sensitivity are obtained when amplifying purified DNA, but the sensitivity is low when applied to spiked water samples. An enrichment broth culture prior PCR analysis increases sensitivity of the test but the specific nature of enrichment broth can affect the PCR results. Three enrichment broths, lactose broth, reinforced clostridial medium and fluid thioglycollate broth, were compared for their influence on sensitivity and on time required with multiplex PCR assay. Fluid thioglycollate broth was the most effective with shortest enrichment time and lowest detection limit.
Wolk, D. M.; Picton, E.; Johnson, D.; Davis, T.; Pancholi, P.; Ginocchio, C. C.; Finegold, S.; Welch, D. F.; de Boer, M.; Fuller, D.; Solomon, M. C.; Rogers, B.; Mehta, M. S.; Peterson, L. R.
2009-01-01
The first U.S. multicenter clinical trial to assess the performance of the Cepheid Xpert MRSA assay (Xpert MRSA) was conducted. The assay is a qualitative test designed for the rapid detection of methicillin-resistant Staphylococcus aureus (MRSA) directly from nares swabs. This novel test combines integrated nucleic acid extraction and automated real-time PCR for the detection of a MRSA-specific signature sequence. A total of 1,077 nares specimens were collected from seven geographically distinct health care sites across the United States with prevalence rates ranging from 5.2% to 44%. Nares specimens were tested by (i) the Xpert MRSA assay, (ii) direct culture on CHROMagar MRSA medium (direct CM culture), and (iii) broth-enriched culture (Trypticase soy broth with 6.5% sodium chloride) followed by plating onto CHROMagar MRSA medium (broth-enriched CM culture). When direct CM culture was designated the reference method, the sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of the Xpert MRSA assay were 94.3%, 93.2%, 73.0%, and 98.8%, respectively. When broth-enriched CM culture was used as the reference method, the clinical sensitivity, specificity, PPV, and NPV of the Xpert MRSA assay were 86.3%, 94.9%, 80.5%, and 96.6%, respectively. The BD GeneOhm MRSA (BDGO) assay was performed as a comparative molecular method. No statistical performance differences were observed between the Xpert MRSA and BDGO assays when they were compared to culture methods. From this large-scale, multicenter clinical comparison, we conclude that the Xpert MRSA assay is a simple, rapid, and accurate method for performing active surveillance for MRSA in a variety of health care populations. PMID:19129414
False positive fecal coliform in biosolid samples assayed using A-1 medium.
Baker, Katherine H; Redmond, Brady; Herson, Diane S
2005-01-01
Two most probable number (MPN) methods-lauryl tryptose broth with Escherichia coli broth confirmation and direct A-1 broth incubation (A-1)--were compared for the enumeration of fecal coliform in lime-treated biosolid. Fecal coliform numbers were significantly higher using the A-1 method. Analysis of positive A-1 tubes, however, indicated that a high percentage of these were false positives. Therefore, the use of A-1 broth for 40 CFR Part 503 Pathogen Reduction (CFR, 1993) compliance testing is not recommended.
Cilerdzic, Jasmina; Kosanic, Marijana; Stajić, Mirjana; Vukojevic, Jelena; Ranković, Branislav
2016-01-01
The bioactivity of Ganoderma lucidum basidiocarps has been well documented, but there are no data on the medicinal properties of its submerged cultivation broth nor on the other species of the genus Ganoderma. Thus the aim of this study was to test the potential antimicrobial and antioxidant activity of fermentation broth obtained after submerged cultivation of G. applanatum, G. carnosum, and G. lucidum. DPPH· scavenging ability, total phenols, and flavonoid contents were measured to determine the antioxidative potential of Ganoderma spp. fermentation filtrates, whereas their antimicrobial potential was studied using the microdilution method. DPPH· scavenging activity of G. lucidum fermentation filtrates was significantly higher than that of G. applanatum and G. carnosum, with the maximum (39.67%) obtained from strain BEOFB 432. This filtrate also contained the highest concentrations of phenols (134.89 μg gallic acid equivalents/mL) and flavonoids (42.20 μg quercetin equivalent/mL). High correlations between the activity and phenol content in the extracts showed that these compounds were active components of the antioxidative activity. G. lucidum strain BEOFB 432 was the most effective antibacterial agent, whereas strain BEOFB 434 has proven to be the most effective antifungal agent. The study showed that Ganoderma spp. fermentation filtrates are novel potent antioxidative and antimicrobial agents that could be obtained more quickly and cheaper than basidiocarps.
Zuo, Guo-Ying; An, Jing; Han, Jun; Zhang, Yun-Ling; Wang, Gen-Chun; Hao, Xiao-Yan; Bian, Zhong-Qi
2012-01-01
Through bioassay-guided fractionation of the extracts from the aerial parts of the Chinese herb Hypericum japonicum Thunb. Murray, Isojacareubin (ISJ) was characterized as a potent antibacterial compound against the clinical methicillin-resistant Staphylococcus aureus (MRSA). The broth microdilution assay was used to determine the minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ISJ alone. The results showed that its MICs/MBCs ranged from 4/16 to 16/64 μg/mL, with the concentrations required to inhibit or kill 50% of the strains (MIC50/MBC50) at 8/16 μg/mL. Synergistic evaluations of this compound with four conventional antibacterial agents representing different types were performed by the chequerboard and time-kill tests. The chequerboard method showed significant synergy effects when ISJ was combined with Ceftazidime (CAZ), Levofloxacin (LEV) and Ampicillin (AMP), with the values of 50% of the fractional inhibitory concentration indices (FICI50) at 0.25, 0.37 and 0.37, respectively. Combined bactericidal activities were also observed in the time-kill dynamic assay. The results showed the ability of ISJ to reduce MRSA viable counts by log10CFU/mL at 24 h of incubation at a concentration of 1 × MIC were 1.5 (LEV, additivity), 0.92 (CAZ, indifference) and 0.82 (AMP, indifference), respectively. These in vitro anti-MRSA activities of ISJ alone and its synergy with conventional antibacterial agents demonstrated that ISJ enhanced their efficacy, which is of potential use for single and combinatory therapy of patients infected with MRSA. PMID:22942699
REIS, Luis F.C. DOS; CERDEIRA, Cláudio D.; PAULA, Bruno F. DE; da SILVA, Jeferson J.; COELHO, Luiz F.L.; SILVA, Marcelo A.; MARQUES, Vanessa B.B.; CHAVASCO, Jorge K.; ALVES-DA-SILVA, Geraldo
2015-01-01
SUMMARY In this study, the bioactivity of Talinum paniculatum was evaluated, a plant widely used in folk medicine. The extract from the T. paniculatum leaves (LE) was obtained by percolation with ethanol-water and then subjecting it to liquid-liquid partitions, yielding hexane (HX), ethyl acetate (EtOAc), butanol (BuOH), and aqueous (Aq) fractions. Screening for antimicrobial activity of the LE and its fractions was evaluated in vitro through broth microdilution method, against thirteen pathogenic and non-pathogenic microorganisms, and the antimycobacterial activity was performed through agar diffusion assay. The cytotoxic concentrations (CC90) for LE, HX, and EtOAc were obtained on BHK-21 cells by using MTT reduction assay. The LE showed activity against Serratia marcescens and Staphylococcus aureus, with Minimum Inhibitory Concentration (MIC) values of 250 and 500 µg/mL, respectively. Furthermore, HX demonstrated outstanding activity against Micrococcus luteusand Candida albicans with a MIC of 31.2 µg/mL in both cases. The MIC for EtOAc also was 31.2 µg/mL against Escherichia coli. Conversely, BuOH and Aq were inactive against all tested microorganisms and LE proved inactive against Mycobacterium tuberculosis and Mycobacterium bovis as well. Campesterol, stigmasterol, and sitosterol were the proposed structures as main compounds present in the EF and HX/EtOAc fractions, evidenced by mass spectrometry. Therefore, LE, HX, and EtOAc from T. paniculatum showed potential as possible sources of antimicrobial compounds, mainly HX, for presenting low toxicity on BHK-21 cells with excellent Selectivity Index (SI = CC90/MIC) of 17.72 against C. albicans. PMID:26603226
Oliveira, Maria Alcionéia Carvalho de; Borges, Aline Chiodi; Brighenti, Fernanda Lourenção; Salvador, Marcos José; Gontijo, Aline Vidal Lacerda; Koga-Ito, Cristiane Yumi
2017-11-06
The objective of this study was to evaluate the effects of Cymbopogon citratus essential oil and its main compound (citral) against primary dental colonizers and caries-related species. Chemical characterization of the essential oil was performed by gas chromatography/mass spectroscopy (GC/MS), and the main compound was determined. Antimicrobial activity was tested against Actinomyces naeslundii, Lactobacillus acidophilus, S. gordonii, S. mitis, S. mutans, S. sanguinis and S. sobrinus. Minimum inhibitory and bactericide concentrations were determined by broth microdilution assay for streptococci and lactobacilli reference, and for clinical strains. The effect of the essential oil on bacterial adhesion and biofilm formation/disruption was investigated. Negative (without treatment) and positive controls (chlorhexidine) were used. The effect of citral on preformed biofilm was also tested using the same methodology. Monospecies and microcosm biofilms were tested. ANOVA or Kruskal-Wallis tests were used (α=0.05). Cytotoxicity of the essential oil to human keratinocytes was performed by MTT assay. GC/MS demonstrated one major component (citral). The essential oil showed an inhibitory effect on all tested bacterial species, including S. mutans and L. acidophilus. Essential oil of C. citratus (10X MIC) reduced the number of viable cells of lactobacilli and streptococci biofilms (p < 0.05). The essential oil inhibited adhesion of caries-related polymicrobial biofilm to dental enamel (p < 0.01). Citral significantly reduced the number of viable cells of streptococci biofilm (p < 0.001). The essential oil showed low cytotoxicity to human keratinocytes. Based on these findings, this study can contribute to the development of new formulations for products like mouthwash, against dental biofilms.
Septama, Abdi Wira; Panichayupakaranant, Pharkphoom
2016-01-01
Antibacterial resistance has dramatically increased and resulted in serious health problems worldwide. One appealing strategy to overcome this resistance problem is the use of combinations of antibacterial compounds to increase their potency. The objective of this study is to determine the synergistic effects of artocarpin for ampicillin, norfloxacin, and tetracycline against methicillin-resistant Staphylococcus aureus (MRSA) as well as the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. A broth microdilution method (1.95-250 µg/mL) was used to determine the minimum inhibitory concentration (MIC) of artocarpin and the antibiotics. Any synergistic effects were evaluated at their own MIC using the checkerboard method and a time-kill assay at 37 °C for 24 h. Artocarpin showed antibacterial activity against MRSA and E. coli with an MIC value of 62.5 µg/mL, and against P. aeruginosa with an MIC value of 250 µg/mL. The interaction of artocarpin with all tested antibiotics produced synergistic effects against MRSA with a fractional inhibitory concentration index (FICI) of 0.15-0.37. In addition, a combination of artocarpin and norfloxacin showed a synergistic effect against E. coli with an FICI value of 0.37, while the combinations of artocarpin and tetracycline as well as artocarpin and norfloxacin exhibited synergy interactions against P. aeruginosa with FICI values of 0.24 and 0.37, respectively. Time-kill assays indicated that artocarpin enhanced the antimicrobial activities of tetracycline, ampicillin, and norfloxacin against MRSA as well as Gram-negative bacteria.
Septama, Abdi Wira; Xiao, Jianbo; Panichayupakaranant, Pharkphoom
2017-01-01
Aim/Backgrounds: Artocarpanone isolated from Artocarpus heterophyllus L. (Moraceae) exhibits antibacterial activity. The present study investigated synergistic activity between artocarpanone and tetracycline, ampicillin, and norfloxacin, respectively, against methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Escherichia coli. Materials and Methods: A broth microdilution method was used for evaluating antibacterial susceptibility. Synergistic effects were identified using a checkerboard method, and a bacterial cell membrane disruption was investigated by assay of released 260 nm absorbing materials following bacteriolysis. Results and Discussion: Artocarpanone exhibited weak antibacterial activity against MRSA and P. aeruginosa with minimum inhibitory concentrations values of 125 and 500 μg/mL, respectively. However, the compound showed strong antibacterial activity against E. coli (7.8 μg/mL). The interaction between artocarpanone and all tested antibiotics revealed indifference and additive effects against P. aeruginosa and E. coli (fractional inhibitory concentration index [FICI] values of 0.75-1.25). The combination of artocarpanone (31.2 μg/mL) and norfloxacin (3.9 μg/mL) resulted in synergistic antibacterial activity against MRSA, with an FICI of 0.28, while the interaction between artocarpanone and tetracycline, and ampicillin showed an additive effect, with an FICI value of 0.5. A time-kill assay also indicated that artocarpanone had a synergistic effect on the antibacterial activity of norfloxacin. In addition, the combination of artocarpanone and norfloxacin altered the membrane permeability of MRSA. Conclusion: These findings suggest that artocarpanone may be used to enhance the antibacterial activity of norfloxacin against MRSA. PMID:28512600
Antifungal activity of Cymbopogon winterianus jowitt ex bor against Candida albicans
de Oliveira, Wylly Araújo; de Oliveira Pereira, Fillipe; de Luna, Giliara Carol Diniz Gomes; Lima, Igara Oliveira; Wanderley, Paulo Alves; de Lima, Rita Baltazar; de Oliveira Lima, Edeltrudes
2011-01-01
Candida albicans is an opportunistic yeast and a member of the normal human flora that commonly causes infections in patients with any type of deficiency of the immune system. The essential oils have been tested for antimycotic activity and pose much potential as antifungal agents. This work investigated the activity of the essential oil of Cymbopogon winterianus against C. albicans by MIC, MFC and time-kill methods. The essential oil (EO) was obtained by hydrodistillation using a Clevenger-type apparatus. It was tested fifteen strains of C. albicans. The MIC was determined by the microdilution method and the MFC was determined when an aliquot of the broth microdilution was cultivated in SDA medium. The phytochemical analysis of EO showed presence of citronellal (23,59%), geraniol (18,81%) and citronellol (11,74%). The EO showed antifungal activity, and the concentrations 625 µg/mL and 1250 µg/mL inhibited the growth of all strains tested and it was fungicidal, respectively. The antimicrobial activity of various concentrations of EO was analyzed over time, it was found concentration-dependent antifungal activity, whose behavior was similar to amphotericin B and nystatin. PMID:24031651
NASA Astrophysics Data System (ADS)
AbdSharad, Ali; Usup, Gires; Sahrani, Fathul Karim; Ahmad, Asmat
2016-11-01
Biogenic souring and microbial-influenced corrosion is a common scenario in petroleum reservoir. The serious threat normally comes from sulfate-reducing bacteria (SRB). Alcaligenes faecalis was tested in this study for the ability to inhibit the growth of SRB. Ethyl acetate extraction of A. faecalis grown in marine broth was carried out to produce crude ethyl acetate of A. faecalis (CEAF). CEAF was diluted at concentrations 0.2-12.8 mg/mL and was tested for anti-microbial activity by microdilution susceptibility tests in 96-wells plate. CEAF was then analyzed by Gas Chromatography Mass Spectrometry (GC-MS). The microdilution susceptibility tests showed that the crude have anti- microbial activities on SRB. CEAF showed immediate killing effect against SRB in liquid medium which suggest the presence of active chemical compounds with antimicrobial activity. The GC-MS analysis showed the presence of 20 different chemical compounds in CEAF, The major components in CEAF can be related to antimicrobial, antifungal, antioxidant, pesticide, metabolism, toxicity, anticancer and corrosion inhibition activities. In conclusion, crude ethyl acetate extract of A. faecalis has the ability to inhibit SRB growth.
NASA Astrophysics Data System (ADS)
Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu
2016-01-01
The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol, methanol or DMSO. Consequently, obtained results show that the method of selection is extremely important and will influence the results. Thus, broth microdilution and reduction percentage methods can be recommended as reliable and useful screening methods for determination of antimicrobial activity of PLGA nanoparticle formulations used particularly in drug delivery systems compared to both agar well and disk diffusion methods.
Differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis
Maboni, Grazieli; Gressler, Leticia T.; Espindola, Julia P.; Schwab, Marcelo; Tasca, Caiane; Potter, Luciana; de Vargas, Agueda Castagna
2015-01-01
The aim of this study was to determine the differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis. Thirty-two strains of Moraxella spp. isolated from cattle and sheep with infectious keratoconjunctivitis were tested via broth microdilution method to determine their susceptibility to ampicillin, cefoperazone, ceftiofur, cloxacillin, enrofloxacin, florfenicol, gentamicin, neomycin, oxytetracycline and penicillin. The results demonstrated that Moraxella spp. strains could be considered sensitive for most of the antimicrobials tested in this study, but differences between the antimicrobial susceptibility profiles of these three Moraxella species were found. M. bovis might differ from other species due to the higher MIC and MBC values it presented. PMID:26273272
Mattos, Karine; Rodrigues, Luana Carbonera; Oliveira, Kelly Mari Pires de; Diniz, Pedro Fernando; Marques, Luiza Inahê; Araujo, Adriana Almeida; Chang, Marilene Rodrigues
2017-01-01
Incidence and antifungal susceptibility of Candida spp. from two teaching public hospitals are described. The minimum inhibitory concentrations of fluconazole, voriconazole, itraconazole, and amphotericin B were determined using Clinical Laboratory Standard Institute broth microdilution and genomic differentiation using PCR. Of 221 Candida isolates, 50.2% were obtained from intensive care unit patients; 71.5% were recovered from urine and 9.1% from bloodstream samples. Candida parapsilosis sensu stricto was the most common candidemia agent. We observed variations in Candida species distribution in hospitals in the same geographic region and documented the emergence of non-C. albicans species resistant to azoles.
Biedenbach, Douglas J; Hoban, Daryl J; Reiszner, Edina; Lahiri, Sushmita D; Alm, Richard A; Sahm, Daniel F; Bouchillon, Samuel K; Ambler, Jane E
2015-12-01
The in vitro activities of ceftaroline and comparators, using broth microdilution, were determined against 1,066 Staphylococcus aureus isolates from hospitalized patients. Seventeen medical centers from Latin American countries contributed isolates. Methicillin-resistant S. aureus (MRSA) percentages ranged from 46% (Brazil) to 62% (Argentina). All methicillin-susceptible S. aureus (MSSA) isolates were susceptible to ceftaroline. Ceftaroline activity against MRSA varied with MIC90s of 0.5 (Venezuela) to 2 (Brazil, Chile, and Colombia) μg/ml, which was the highest MIC value. ST-5 was the most common sequence type. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Madrid, Isabel Martins; Mattei, Antonella Souza; Santin, Rosema; dos Reis Gomes, Angelita; Cleff, Marlete Brum; Meireles, Mário Carlos Araújo
2012-05-01
The susceptibility of Sporothrix schenckii isolates from clinical cases of canine, feline and human sporotrichosis, and from the environment, was evaluated with 4% sodium hypochlorite and 6.6% chlorhexidine digluconate using the broth microdilution, agar diffusion and direct exposure techniques. The minimal inhibitory concentration was smaller than 0.8% for chlorhexidine digluconate and between 8% and 4% for sodium hypochlorite. Inhibition zones were not found in agar diffusion for sodium hypochlorite, and zones averaging 1.9 mm were found for chlorhexidine digluconate. In the direct exposure test, sodium hypochlorite demonstrated best performance at 20 min of contact, as chlorhexidine digluconate presented little antimicrobial activity. © 2011 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Kursunlu, Ahmed Nuri; Guler, Ersin; Sevgi, Fatih; Ozkalp, Birol
2013-09-01
In this study, the new Schiff base ligands derived from condensation of amine and 5-bromo-salicylaldehyde were characterized. All compounds, the Schiff bases and the metal complexes, were characterized by elemental analyzes, FT-IR, 1H NMR, 13C NMR and magnetic susceptibility measurements. The synthesized ligands, along with their metal (II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Salmonella enteritidis) and four Gram-positive (Streptococcus pyogones, Bacillus cereus, Staphylococcus aureus and Methicillin-resistant S. aureus) bacterial strains by using disc diffusion and broth microdilution techniques.
Shin, Jong Hee; Kim, Mi-Na; Jang, Sook Jin; Ju, Min Young; Kim, Soo Hyun; Shin, Myung Geun; Suh, Soon Pal; Ryang, Dong Wook
2012-06-01
The emerging fungal pathogens Candida haemulonii and Candida pseudohaemulonii often show high-level resistance to amphotericin B (AMB). We compared the utilities of five antifungal susceptibility testing methods, i.e., the Etest using Mueller-Hinton agar supplemented with glucose and methylene blue (Etest-MH), the Etest using RPMI agar supplemented with glucose (Etest-RPG), the Vitek-2 yeast susceptibility system, and the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth microdilution methods, for the detection of AMB-resistant isolates of C. haemulonii and closely related species. Thirty-eight clinical isolates (8 C. haemulonii, 10 C. pseudohaemulonii, and 20 Candida auris isolates) were analyzed. Of the 18 C. haemulonii and C. pseudohaemulonii isolates, 18, 15, 18, 10, and 9 exhibited AMB MICs of >1 μg/ml by the Etest-MH, Etest-RPG, Vitek-2, CLSI, and EUCAST methods, respectively. All 20 C. auris isolates showed AMB MICs of ≤1 μg/ml by all five methods. Of the methods, the Etest-MH generated the broadest distribution of AMB MICs for all 38 isolates and showed the best discrimination between the C. haemulonii and C. pseudohaemulonii isolates (4 to 32 μg/ml) and those of C. auris (0.125 to 0.5 μg/ml). Taking the Etest-MH as the reference method, the essential agreements (within two dilutions) for the Etest-RPG, Vitek-2, CLSI, and EUCAST methods were 84, 92, 55, and 55%, respectively; the categorical agreements were 92, 92, 79, and 76%, respectively. This study provides the first data on the efficacy of the Etest-MH and its excellent agreement with Vitek-2 for discriminating AMB-resistant from AMB-susceptible isolates of these Candida species.
Curry, Scott R.; Schlackman, Jessica L.; Hamilton, Travis M.; Henderson, Tatianna K.; Brown, Nakita T.; Marsh, Jane W.; Shutt, Kathleen A.; Brooks, Maria M.; Pasculle, A. William; Muto, Carlene A.; Harrison, Lee H.
2011-01-01
Active surveillance testing to identify and isolate asymptomatic carriers of toxigenic Clostridium difficile has been limited by the lack of a test that is sensitive, specific, and timely enough to serve as an infection control tool. We tested DNA preamplified from perirectal surveillance specimens in a liquid medium selective for C. difficile by using a modified commercial real-time PCR assay. All fermenting specimens were subcultured, and isolates were tested for toxigenicity. Culture-positive toxigenic isolates served as the gold standard for comparison with the broth preamplification/PCR assay. The limit of detection for the assay was 1 CFU. Relative to toxigenic anaerobic culture, the sensitivity, specificity, and positive and negative predictive values of this assay were 70/70 (100.0%), 422/426 (99.1%), 70/74 (94.6%), and 422/422 (100.0%), respectively. These data demonstrate that selective broth preamplification and real-time PCR of perirectal swab specimens constitute a practical approach to the detection of asymptomatic C. difficile carriage. PMID:21880961
Huang, Ay Huey; Wu, Jiunn Jong; Weng, Yu Mei; Ding, Hwia Cheng; Chang, Tsung Chain
1998-01-01
Nonfastidious aerobic gram-negative bacilli (GNB) are commonly isolated from blood cultures. The feasibility of using an electrochemical method for direct antimicrobial susceptibility testing of GNB in positive blood cultures was evaluated. An aliquot (10 μl) of 1:10-diluted positive blood cultures containing GNB was inoculated into the Bactometer module well (bioMérieux Vitek, Hazelwood, Mo.) containing 1 ml of Mueller-Hinton broth supplemented with an antibiotic. Susceptibility tests were performed in a breakpoint broth dilution format, with the results being categorized as resistant, intermediate, or susceptible. Seven antibiotics (ampicillin, cephalothin, gentamicin, amikacin, cefamandole, cefotaxime, and ciprofloxacin) were used in this study, with each agent being tested at the two interpretive breakpoint concentrations. The inoculated modules were incubated at 35°C, and the change in impedance in each well was continuously monitored for 24 h by the Bactometer. The MICs of the seven antibiotics for each blood isolate were also determined by the standardized broth microdilution method. Of 146 positive blood cultures (1,022 microorganism-antibiotic combinations) containing GNB tested by the direct method, the rates of very major, major, and minor errors were 0, 1.1, and 2.5%, respectively. The impedance method was simple; no centrifugation, preincubation, or standardization of the inocula was required, and the susceptibility results were normally available within 3 to 6 h after inoculation. The rapid method may allow proper antimicrobial treatment almost 30 to 40 h before the results of the standard methods are available. PMID:9738038
Dzotam, Joachim K.
2017-01-01
The present work was designed to investigate the antibacterial activities of methanol extracts from six Cameroonian edible plants and their synergistic effects with some commonly used antibiotics against multidrug-resistant (MDR) Gram-negative bacteria expressing active efflux pumps. The extracts were subjected to qualitative phytochemical screening and the microdilution broth method was used for antibacterial assays. The results of phytochemical tests indicate that all tested crude extracts contained polyphenols, flavonoids, triterpenes, and steroids. Extracts displayed selective antibacterial activities with the minimal inhibitory concentration (MIC) values ranging from 32 to 1024 μg/mL. The lowest MIC value (32 μg/mL) was recorded with Coula edulis extract against E. coli AG102 and K. pneumoniae K2 and with Mangifera indica bark extract against P. aeruginosa PA01 and Citrus sinensis extract against E. coli W3110 which also displayed the best MBC (256 μg/mL) value against E. coli ATCC8739. In combination with antibiotics, extracts from M. indica leaves showed synergistic effects with 75% (6/8) of the tested antibiotics against more than 80% of the tested bacteria. The findings of the present work indicate that the tested plants may be used alone or in combination in the treatment of bacterial infections including the multidrug-resistant bacteria. PMID:28904944
Arifullah, Mohmmed; Namsa, Nima Dandu; Mandal, Manabendra; Chiruvella, Kishore Kumar; Vikrama, Paritala; Gopal, Ghanta Rama
2013-01-01
Objective To evaluate the anti-bacterial and anti-oxidant activity of andrographolide (AND) and echiodinin (ECH) of Andrographis paniculata. Methods In this study, an attempt has been made to demonstrate the anti-microbial and anti-oxidant activity of isolated AND and ECH by broth micro-dilution method and 2,2-diphenyl-2-picryl-hydrazyl (DPPH) assay, respectively. Structure elucidation was determined by electro-spray ionization-MSD, NMR (1H and 13C) and IR spectra. Results AND was effective against most of the strains tested including Mycobacterium smegmatis, showing broad spectrum of growth inhibition activity with Minimum inhibitory concentration values against Staphylococcus aureus (100 µg/mL), Streptococcus thermophilus (350 µg/mL) Bacillus subtilis (100 µg/mL), Escherichia coli (50 µg/mL), Mycobacterium smegmatis (200 µg/mL), Klebsiella pneumonia (100 µg/mL), and Pseudomonas aeruginosa (200 µg/mL). ECH showed specific anti-bacterial activity against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa at a concentration higher than 225 µg/mL. Both AND and ECH were not effective against the two yeast strains, Candida albicans and Saccharomyces cerevisiae tested in this study. Conclusion This preliminary study showed promising anti-bacterial activity and moderate free radical scavenging activity of AND and ECH, and it may provide the scientific rationale for its popular folklore medicines. PMID:23905016
Liu, Qing-Qing; Han, Jun; Zuo, Guo-Ying; Wang, Gen-Chun; Tang, Hua-Shu
2016-05-01
Salvianolate (SAL) is a prescribed medicine from the Chinese herb Danshen (Salvia miltiorrhiza Bunge). It has been widely used in treatment of coronary and other diseases with significant effects. The in vitro antimicrobial activities of SAL against infectious pathogens were assayed and its combined effects on 10 clinical isolates of SCCmec III type methicillin-resistant Staphylococcus aureus (MRSA) with ten antibiotics were evaluated. Susceptibility to each agent alone was tested using a broth microdilution method, and the chequerboard and time-kill experiments were used for the combined activities. The results showed MIC was 128-256 mg/L for SAL used alone against MRSA. Significant synergies were observed for SAL/Ampicillin (Fosfomycin, Erythromycin, Piperacillin-tazobactam or Clindamycin) combination against over half of the isolates, with their MICs reduced by times of dilution (TOD) to 4-32 (FICIs 0.375-0.5), respectively. SAL/AMP combination showed the best combined effect of synergy on bacteriostatic and bactericidal activities, while SAL/AMK combination reversed the resistance of MRSA to AMK. The results demonstrated that SAL enhanced widely the in vitro anti-MRSA efficacy of the ten antibacterial agents, which had potential for combinatory therapy of patients infected with MRSA and warrants further investigations. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.
Madikizela, B; Ndhlala, A R; Finnie, J F; Van Staden, J
2014-04-28
Emergence of drug-resistant tuberculosis strains and long duration of treatment has established an urgent need to search for new effective agents. The great floral diversity of South Africa has potential for producing new bioactive compounds, therefore pharmacological screening of plant extracts within this region offers much potential. To assess the in vitro antimycobacterial, anti-inflammatory and genotoxicity activity of selected plants that are used for the treatment of TB and related symptoms in South Africa. Ground plant materials from 10 plants were extracted sequentially with four solvents (petroleum ether, dichloromethane, 80% ethanol and water) and a total of 68 extracts were produced. A broth microdilution method was used to screen extracts against Mycobacterium tuberculosis H37Ra. The cyclooxygenase-2 (COX-2) enzyme was used to evaluate the anti-inflammatory activity of the extracts and the Salmonella microsome assay using two Salmonella typhimurium strains (TA98 and TA100) to establish genotoxicity. Six out of 68 extracts showed good antimycobacterial activity. Three extracts showed good inhibition (>70%) of COX-2 enzyme. All the extracts tested were non-genotoxic against the tested Salmonella strains. The results observed in this study indicate that some of the plants such as Abrus precatorius subsp. africanus, Ficus sur, Pentanisia prunelloides and Terminalia phanerophlebia could be investigated further against drug-resistant TB strains. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean
2016-09-01
The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.
Prada, Y A; Guzmán, F; Rondón, P; Escobar, P; Ortíz, C; Sierra, D A; Torres, R; Mejía-Ospino, E
2016-09-01
In this work, we performed the rational design of a cationic antimicrobial peptide, GIBIMPY4, using the software DEPRAMPs developed at the GIBIM research group. GIBIMPY4 has a length of 17 amino acids, it is amphipathic, its structure is α-helix and it has a net charge of (+5). Solid-phase peptide synthesis was performed using the Fmoc strategy in acid medium. The primary structure was confirmed by MALDI-TOF mass spectrometry. The antimicrobial activity of the peptide was evaluated by broth microdilution method by measuring optical density in 96-well microplates. The minimal inhibitory concentration of GIBIMPY4 to kill 50 % of the bacterial cells (MIC50) was 6.20 ± 0.02 µM for MRSA and 4.55 ± 0.02 µM for E. coli O157:H7, while also reporting a bacteriostatic effect for the later. GIBIMPY4 activity was sensitive to salt concentration in E. coli but insignificant effect in its activity against MRSA. The peptide seems to be a broad-spectrum antimicrobial agent based on the results against Gram-positive and Gram-negative bacteria and was specific for bacterial cells E. coli O157:H7 with index of specificity equal to 9.01 in vitro assays.
Effect of essential oils prepared from Thai culinary herbs on sessile Candida albicans cultures.
Hovijitra, Ray S; Choonharuangdej, Suwan; Srithavaj, Theerathavaj
2016-01-01
Although medicinal herbs with fungicidal effects have been ubiquitously employed in traditional medicine, such effects of culinary herbs and spices still have to be elucidated. Therefore, it is noteworthy to determine the antifungal efficacy of some edible herbs used in Thai cuisine against sessile Candida albicans cultures, and to inquire if they can be further utilized as naturally-derived antifungals. Fourteen essential oils extracted from Thai culinary herbs and spices were tested for their antifungal activity against C. albicans using the agar disk diffusion method followed by broth micro-dilution method for the determination of minimum inhibitory concentration (MIC) and minimum fungicidal concentration. The oils with potent antifungal effects against planktonic fungi were then assessed for their effect against sessile fungus (adherent organisms and established biofilm culture). MIC of the oils against sessile C. albicans was evaluated by 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide reduction assay. All selected culinary herbs and spices, except galangal, garlic, and turmeric, exhibited inhibitory effects on planktonic yeast cells. Cinnamon bark and sweet basil leaf essential oils exhibited potent fungicidal effect on planktonic and sessile fungus. Sessile MICs were 8-16 times higher than planktonic MICs. Consequently, both cinnamon bark and sweet basil leaf herbal oils seem to be highly effective anti-Candida choices. (J Oral Sci 58, 365-371, 2016).
Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans.
Serra, Elisa; Hidalgo-Bastida, Lilia Araida; Verran, Joanna; Williams, David; Malic, Sladjana
2018-01-25
Management of oral candidosis, most frequently caused by Candida albicans , is limited due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. In this study, the antifungal activity of a range of commercial essential oils, two terpenes, chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) was established against planktonic cells cultured in a range of concentrations of the test agents. The minimal biofilm eradication concentration (MBEC) was determined by measuring re-growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested commercial essential oils demonstrated anticandidal activity (MICs from 0.06% ( v / v ) to 0.4% ( v / v )) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms (MBECs > 1.5% ( v / v )). The IC50s of the commercial essential oils were lower than the MICs, while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic agents against C. albicans , although host cell cytotoxicity is a consideration when developing these new treatments.
In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae.
Tavío, M M; Poveda, C; Assunção, P; Ramírez, A S; Poveda, J B
2014-11-29
Mycoplasma hyopneumoniae is involved in the porcine enzootic pneumonia and respiratory disease complex; therefore, the search for new treatment options that contribute to the control of this organism is relevant. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of tylvalosin and 19 other antimicrobial agents against 20 Spanish field isolates of M. hyopneumoniae were determined using the broth microdilution method, with the type strain (J) as a control strain. Tylvalosin had MIC50 and MIC90 values of 0.016 and 0.06 µg/ml, respectively, and was the second-most effective of the assayed antibiotics, after valnemulin. Tiamulin, tylosin and lincomycin were also among the antibiotics with the lowest MIC50 and MIC90 values against the 20 field isolates (0.06-0.25 µg/ml). However, resistance to tylosin and spiramycin, which like tylvalosin, are 16-membered macrolides, was observed. The MIC50 and MIC90 values for ciprofloxacin and enrofloxacin ranged from 0.125 to 1 µg/ml; the corresponding values ranged from 2 to 4 µg/ml for oxytetracyline, which was the most active tetracycline. Furthermore, tylvalosin and valnemulin exhibited the highest bactericidal activities. In conclusion, the macrolide tylvalosin and the pleuromutilin valnemulin exhibited the highest in vitro antimicrobial activities against M. hyopneumoniae field isolates in comparison with the other tested antibiotics. British Veterinary Association.
Violante, Ivana Maria Póvoa; Hamerski, Lidilhone; Garcez, Walmir Silva; Batista, Ana Lucia; Chang, Marilene Rodrigues; Pott, Vali Joana; Garcez, Fernanda Rodrigues
2012-01-01
Ethanol extracts from six selected species from the Cerrado of the Central-Western region of Brazil, which are used in traditional medicine for the treatment of infectious diseases and other medical conditions, namely Erythroxylum suberosum St. Hil. (Erythroxylaceae), Hyptis crenata Pohl. ex Benth. (Lamiaceae), Roupala brasiliensis Klotz. (Proteaceae), Simarouba versicolor St. Hil. (Simaroubaceae), Guazuma ulmifolia Lam. (Sterculiaceae) and Protium heptaphyllum (Aubl.) March. (Burseraceae), as well as fractions resulting from partition of these crude extracts, were screened in vitro for their antifungal and antibacterial properties. The antimicrobial activities were assessed by the broth microdilution assay against six control fungal strains, Candida albicans, C. glabrata, C. krusei, C. parapsilosis, C. tropicalis and Cryptococcus neoformans, and five control Gram-positive and negative bacterial strains, Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus aureus. Toxicity of the extracts and fractions against Artemia salina was also evaluated in this work. All plants investigated showed antimicrobial properties against at least one microorganism and two species were also significantly toxic to brine shrimp larvae. The results tend to support the traditional use of these plants for the treatment of respiratory and gastrointestinal disorders and/or skin diseases, opening the possibility of finding new antimicrobial agents from these natural sources. Among the species investigated, Hyptis crenata, Erythroxylum suberosum and Roupala brasiliensis were considered the most promising candidates for developing of future bioactivity-guided phytochemical investigations. PMID:24031956
Terbinafine inhibits Cryptococcus neoformans growth and modulates fungal morphology.
Guerra, Caroline Rezende; Ishida, Kelly; Nucci, Marcio; Rozental, Sonia
2012-08-01
Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis. Central nervous system infection is the most common clinical presentation followed by pulmonary, skin and eye manifestations. Cryptococcosis is primarily treated with amphotericin B (AMB), fluconazole (FLC) and itraconazole (ITC). In the present work, we evaluated the in vitro effect of terbinafine (TRB), an antifungal not commonly used to treat cryptococcosis. We specifically examined the effects of TRB, either alone or in conjunction with AMB, FLC and ITC, on clinical C. neoformans isolates, including some isolates resistant to AMB and ITC. Broth microdilution assays showed that TRB was the most effective drug in vitro. Antifungal combinations demonstrated synergism of TRB with AMB, FLC and ITC. The drug concentrations used for the combination formulations were as much as 32 and 16-fold lower than the minimum inhibitory concentration (MIC) values of FLC and AMB alone, respectively. In addition, calcofluor white staining revealed the presence of true septa in hyphae structures that were generated after drug treatment. Ultrastructural analyses demonstrated several alterations in response to drug treatment, such as cell wall alterations, plasma membrane detachment, presence of several cytoplasmic vacuoles and mitochondrial swelling. Therefore, we believe that the use of TRB alone or in combination with AMB and azoles should be explored as an alternative treatment for cryptococcosis patients who do not respond to standard therapies.
Dzotam, Joachim K; Kuete, Victor
2017-01-01
The present work was designed to investigate the antibacterial activities of methanol extracts from six Cameroonian edible plants and their synergistic effects with some commonly used antibiotics against multidrug-resistant (MDR) Gram-negative bacteria expressing active efflux pumps. The extracts were subjected to qualitative phytochemical screening and the microdilution broth method was used for antibacterial assays. The results of phytochemical tests indicate that all tested crude extracts contained polyphenols, flavonoids, triterpenes, and steroids. Extracts displayed selective antibacterial activities with the minimal inhibitory concentration (MIC) values ranging from 32 to 1024 μ g/mL. The lowest MIC value (32 μ g/mL) was recorded with Coula edulis extract against E. coli AG102 and K. pneumoniae K2 and with Mangifera indica bark extract against P. aeruginosa PA01 and Citrus sinensis extract against E. coli W3110 which also displayed the best MBC (256 μ g/mL) value against E. coli ATCC8739. In combination with antibiotics, extracts from M. indica leaves showed synergistic effects with 75% (6/8) of the tested antibiotics against more than 80% of the tested bacteria. The findings of the present work indicate that the tested plants may be used alone or in combination in the treatment of bacterial infections including the multidrug-resistant bacteria.
de Oliveira, Jonatas Rafael; de Aguiar Almeida, Rosilene Batista; das Graças Figueiredo Vilela, Polyana; de Oliveira, Felipe Eduardo; da Rocha, Rosilene Fernandes; Jorge, Antonio Olavo Cardoso; de Oliveira, Luciane Dias
2014-08-01
To evaluate the antimicrobial activity of Arctium lappa L. extract on Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Candida albicans, C. tropicalis and C. glabrata. In addition, the cytotoxicity of this extract was analyzed on macrophages (RAW 264.7). By broth microdilution method, different concentrations of the extract (250-0.4 mg/mL) were used in order to determine the minimum microbicidal concentration (MMC) in planktonic cultures and the most effective concentration was used on biofilms on discs made of acrylic resin. The cytotoxicity A. lappa L. extract MMC was evaluated on RAW 264.7 by MTT assay and the quantification of IL-1β and TNF-α by ELISA. The most effective concentration was 250 mg/mL and also promoted significant reduction (log₁₀) in the biofilms of S. aureus (0.438 ± 0.269), S. epidermidis (0.377 ± 0.298), S. mutans (0.244 ± 0.161) and C. albicans (0.746 ± 0.209). Cell viability was similar to 100%. The production of IL-1β was similar to the control group (p>0.05) and there was inhibition of TNF-α (p<0.01). A. lappa L. extract was microbicidal for all the evaluated strains in planktonic cultures, microbiostatic for biofilms and not cytotoxic to the macrophages. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pandey, Anand; Mishra, Rohit K; Tiwari, Amit K; Kumar, Awadhesh; Bajaj, A K; Dikshit, Anupam
2013-01-01
During anti-Malassezia screening of plants by CLSI broth microdilution method, Cladia aggregata (Swartz) Nyl. (family Cladoniaceae), a fruticose lichen from Sikkim (northeast Himalayan region), has been found effective at minimum inhibitory concentrations (mg/mL) of 2.72, 0.63, and 1.28 against yeast-like fungi namely, M. furfur, M. globosa and M. sympodialis, respectively. These test pathogens are responsible for pityriasis versicolor (PV) and seborrheic dermatitis (SD) in humans. We tried to establish the reason for variable MICs against various Malassezia spp. using bioinformatical tools, thereby reducing the cost of the experimentation. This is the first report on anti-Malassezia activity of C. aggregata and thus can serve as a potential source for the development of cosmaceuticals.
In vitro combination of antifungal agents against Malassezia pachydermatis.
Schlemmer, Karine B; de Jesus, Francielli P K; Loreto, Erico S; Farias, Julia B; Alves, Sydney H; Ferreiro, Laerte; Santurio, Janio M
2018-06-19
The yeast Malassezia pachydermatis is a common commensal and occasional opportunistic pathogen of theskin microbiota of animals and humans. In this study, the susceptibility of M. pachydermatis isolates to fluconazole (FLC), itraconazole (ITZ), ketoconazole (KTZ), clotrimazole (CLZ), and miconazole (MCZ) alone and in combination with terbinafine (TRB), nystatin (NYS), and caspofungin (CSP) was evaluated in vitro based on the M27-A3 technique and the checkerboard microdilution method using Sabouraud dextrose broth with 1% tween 80 (SDB). Based on the mean FICI values, the main synergies observed were combinations of ITZ+CSP and CLZ+CSP (55.17%). The most significant combinations deserve in vivo evaluations because might provide effective alternative treatments against M. pachydermatis due to their synergistic interactions.
Antibacterial activities of peptides from the water-soluble extracts of Italian cheese varieties.
Rizzello, C G; Losito, I; Gobbetti, M; Carbonara, T; De Bari, M D; Zambonin, P G
2005-07-01
Water-soluble extracts of 9 Italian cheese varieties that differed mainly for type of cheese milk, starter, technology, and time of ripening were fractionated by reversed-phase fast protein liquid chromatography, and the antimicrobial activity of each fraction was first assayed toward Lactobacillus sakei A15 by well-diffusion assay. Active fractions were further analyzed by HPLC coupled to electrospray ionization-ion trap mass spectrometry, and peptide sequences were identified by comparison with a proteomic database. Parmigiano Reggiano, Fossa, and Gorgonzola water-soluble extracts did not show antibacterial peptides. Fractions of Pecorino Romano, Canestrato Pugliese, Crescenza, and Caprino del Piemonte contained a mixture of peptides with a high degree of homology. Pasta filata cheeses (Caciocavallo and Mozzarella) also had antibacterial peptides. Peptides showed high levels of homology with N-terminal, C-terminal, or whole fragments of well known antimicrobial or multifunctional peptides reported in the literature: alphaS1-casokinin (e.g., sheep alphaS1-casein (CN) f22-30 of Pecorino Romano and cow alphaS1-CN f24-33 of Canestrato Pugliese); isracidin (e.g., sheep alphaS1-CN f10-21 of Pecorino Romano); kappacin and casoplatelin (e.g., cow kappa-CN f106-115 of Canestrato Pugliese and Crescenza); and beta-casomorphin-11 (e.g., goat beta-CN f60-68 of Caprino del Piemonte). As shown by the broth microdilution technique, most of the water-soluble fractions had a large spectrum of inhibition (minimal inhibitory concentration of 20 to 200 microg/mL) toward gram-positive and gram-negative bacterial species, including potentially pathogenic bacteria of clinical interest. Cheeses manufactured from different types of cheese milk (cow, sheep, and goat) have the potential to generate similar peptides with antimicrobial activity.
Waller, Stefanie Bressan; Madrid, Isabel Martins; Hoffmann, Jéssica Fernanda; Picoli, Tony; Cleff, Marlete Brum; Chaves, Fábio Clasen; Faria, Renata Osório de; Meireles, Mário Carlos Araújo; Braga de Mello, João Roberto
2017-07-01
Motivated by increasing reports of antifungal resistance in human and animal sporotrichosis, this study evaluated the chemical composition, cytotoxicity and anti-Sporothrix brasiliensis activity of extracts of marjoram (Origanum majorana) and rosemary (Rosmarinus officinalis). Ten (INF10) and 60 min (INF60) infusions, a decoction and a hydroalcoholic extract (HAE, 70 %) were prepared from both plants (10 % w/v). The extract composition was analysed by liquid chromatography/mass spectrometry and the cytotoxicity was evaluated using a colorimetric assay in canine and feline kidney cells. Using a broth microdilution assay (CLSI M38-A2) adapted to the extracts, 30 Sporothrix brasiliensis isolates from dogs, cats and humans, and one Sporothrix schenckii were tested.Results/Key findings. The predominant phenolic compounds found in all extracts were 4-hydroxybenzoic acid, caffeic acid and chlorogenic acid. Luteolin was also one of the predominant compounds, but only in the HAE of marjoram. Extracts of marjoram maintained cell viability in concentrations up to 2.5 mg ml-1 for the feline cell line and up to 10 mg ml-1 for the canine cell line, whereas in rosemary, the cell viability for both kidney lines was maintained with concentrations up to 5 mg ml-1. The activity of rosemary extracts was low or absent. Among the marjoram extracts, HAE was highlighted and had fungistatic activity against Sporothrix brasiliensis (MIC5040 mg ml-1), including in all itraconazole-resistant isolates. S. schenckiisensu stricto was sensitive to marjoram extracts (MIC/MFC ≤5 mg ml-1), with the exception of INF10. These findings support the potential usefulness of the HAE of marjoram in the treatment of sporotrichosis.
Carvacrol Codrugs: A New Approach in the Antimicrobial Plan
Fornasari, Erika; Di Stefano, Antonio; Cerasa, Laura Serafina; Marinelli, Lisa; Turkez, Hasan; Di Campli, Emanuela; Di Bartolomeo, Soraya; Robuffo, Iole; Cellini, Luigina
2015-01-01
Objective The increasing prevalence of antibiotic-resistant bacterial infections led to identify alternative strategies for a novel therapeutic approach. In this study, we synthesized ten carvacrol codrugs – obtained linking the carvacrol hydroxyl group to the carboxyl moiety of sulphur-containing amino acids via an ester bond – to develop novel compounds with improved antimicrobial and antibiofilm activities and reduced toxicity respect to carvacrol alone. Method All carvacrol codrugs were screened against a representative panel of Gram positive (S. aureus and S. epidermidis), Gram negative (E. coli and P. aeruginosa) bacterial strains and C. albicans, using broth microdilution assays. Findings Results showed that carvacrol codrug 4 possesses the most notable enhancement in the anti-bacterial activity displaying MIC and MBC values equal to 2.5 mg/mL for all bacterial strains, except for P. aeruginosa ATCC 9027 (MIC and MBC values equal to 5 mg/mL and 10 mg/mL, respectively). All carvacrol codrugs 1-10 revealed good antifungal activity against C. albicans ATCC 10231. The cytotoxicity assay showed that the novel carvacrol codrugs did not produce human blood hemolysis at their MIC values except for codrugs 8 and 9. In particular, deepened experiments performed on carvacrol codrug 4 showed an interesting antimicrobial effect on the mature biofilm produced by E. coli ATCC 8739, respect to the carvacrol alone. The antimicrobial effects of carvacrol codrug 4 were also analyzed by TEM evidencing morphological modifications in S. aureus, E. coli, and C. albicans. Conclusion The current study presents an insight into the use of codrug strategy for developing carvacrol derivatives with antibacterial and antibiofilm potentials, and reduced cytotoxicity. PMID:25859852
Selestino Neta, Maria Cipriano; Vittorazzi, Catia; Guimarães, Aline Cristina; Martins, João Damasceno Lopes; Fronza, Marcio; Endringer, Denise Coutinho; Scherer, Rodrigo
2017-12-01
Orange Jessamine [Murraya paniculata L. (Rutaceae)] has been used worldwide in folk medicine as an anti-inflammatory, antibiotic and analgesic. The objective of this study is to investigate the in vitro antioxidant, cytotoxic, antibacterial and antifungal activity and the time-kill curve studies of orange jessamine essential oil and β-caryophyllene, as well as the chemical composition of the essential oil. The cytotoxic activity of M. paniculata and β-caryophyllene (7.8-500 μg/mL) was evaluated using the MTT assay on normal fibroblasts and hepatoma cells. The minimal inhibitory concentration and time-kill curves (24 h) were evaluated against those of Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Enterococcus faecallis, Aspergillus (niger, fumigates and parasiticum) and F. solani by the broth microdilution method. The antioxidant activity was measured by the DPPH and ABTS assays. Chemical composition was evaluated by GC/MS analyses. GC/MS analyses identified 13 compounds, with β-caryophyllene as the major compound. The oil exhibited moderate antibacterial activity (MIC <1.0 mg/mL) and strong antifungal activity. Time-kill curve studies showed that either the essential oil or β-caryophyllene presented rapid bacterial killing (4 h for S. aureus) and fungicidal effect (2-4 h for F. solani); however, both displayed weak free radical scavenger capacity. The cytotoxic activity exhibited a prominent selective effect against hepatoma cancer cells (IC 50 value =63.7 μg/mL) compared with normal fibroblasts (IC 50 value =195.0 μg/mL), whereas the β-caryophyllene showed low cytotoxicity. The experimental data suggest that the activities of M. paniculata essential oil are due to the synergistic action among its components.
Sule, Abubakar; Ahmed, Qamar Uddin; Latip, Jalifah; Samah, Othman Abd; Omar, Muhammad Nor; Umar, Abdulrashid; Dogarai, Bashar Bello S
2012-07-01
Andrographis paniculata Nees. (Acanthaceae) is an annual herbaceous plant widely cultivated in southern Asia, China, and Europe. It is used in the treatment of skin infections in India, China, and Malaysia by folk medicine practitioners. Antifungal activity of the whole plant extracts and isolation of active principles from A. paniculata were investigated. Dichloromethane (DCM) and methanol (MEOH) extracts of A. paniculata whole plant were screened for their antifungal potential using broth microdilution method in vitro against seven pathogenic fungal species responsible for skin infections. Active principles were detected through bioguided assays and isolated using chromatography techniques. Structures of compounds were elucidated through spectroscopy techniques and comparisons were made with previously reported data for similar compounds. DCM extract revealed lowest minimum inhibitory concentration (MIC) value (100 μg/mL) against Microsporum canis, Candida albicans, and Candida tropicalis, whereas MEOH extract revealed lowest MIC (150 µg/mL) against C. tropicalis and Aspergillus niger. DCM extract showed lowest minimum fungicidal concentration (MFC) value (250 µg/mL) against M. canis, C. albicans, C. tropicalis and A. niger, whereas MEOH extract showed lowest MFC (250 µg/mL) against Trichophyton mentagrophytes, Trichophyton rubrum, M. canis, C. albicans, C. tropicalis and A. niger. Bioassay guided isolation from DCM and MEOH extract afforded 3-O-β-d-glucosyl-14-deoxyandrographiside, 14-deoxyandrographolide, and 14-deoxy-11,12-didehydroandrographolide as antifungal compounds. The lowest MIC (50 µg/mL) and MFC (50 µg/mL) was exerted by 14-deoxyandrographolide on M. canis. This is first report on the isolation of antifungal substances through bioassay-guided assay from A. paniculata. Our finding justifies the use of A. paniculata in folk medicines for the treatment of fungal skin infections.
Agudelo, Maria; Rodriguez, Carlos A; Zuluaga, Andres F; Vesga, Omar
2015-02-01
After demonstrating with diverse intravenous antibacterials that pharmaceutical equivalence (PE) does not predict therapeutic equivalence, we tested a single generic product of piperacillin/tazobactam (TZP) in terms of PE, pharmacokinetics and in vitro/vivo pharmacodynamics against several pathogens in neutropenic mouse thigh, lung and brain infection models. A generic product was compared head-to-head against the innovator. PE was evaluated by microbiological assay. Single-dose serum pharmacokinetics were determined in infected mice, and the MIC/MBC were determined by broth microdilution. In vivo experiments were done in a blind fashion. Reproducibility was tested on different days using different infecting organisms and animal models. Neutropenic MPF mice were infected in the thighs with Staphylococcus aureus GRP-0057 or Pseudomonas aeruginosa PA01 and in the lungs or brain with Klebsiella pneumoniae ATCC 10031. Treatment started 2h (thigh and brain) or 14 h (lung) after infection and was administered every 3h over 24h (thigh and lung) or 48 h (brain). Both products exhibited the same MIC/MBC against each strain, yielded overlaid curves in the microbiological assay (P>0.21) and were bioequivalent (IC90 83-117% for AUC test/reference ratio). In vivo, the generic product and innovator were again undistinguishable in all models and against the different bacterial pathogens involved. The relevance of these neutropenic murine models of infection was established by demonstrating their accuracy to predict the biological response following simultaneous treatment with a generic product or the innovator of TZP. Therapeutic equivalence of the generic product was proved in every model and against different pathogens. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Zhang, Li; Wang, He; Xiao, Meng; Kudinha, Timothy; Mao, Lei-Li; Zhao, Hao-Ran; Kong, Fanrong; Xu, Ying-Chun
2014-01-01
The rapid development in the clinical microbiology diagnostic assays presents more challenges for developing countries than for the developed world, especially in the area of test validation before the introduction of new tests. Here we report on the misleading high MICs of Candida spp. to azoles using the ATB FUNGUS 3 (bioMérieux, La Balme-les Grottes, France) with automated readings in China to highlight the dangers of introducing a diagnostic assay without validation. ATB FUNGUS 3 is the most commonly used commercial antifungal susceptibility testing method in China. An in-depth analysis of data showed higher levels of resistance to azoles when ATB FUNGUS 3 strips were read automatically than when read visually. Based on this finding, the performance of ATB FUNGUS 3, read both visually and automatically, was evaluated by testing 218 isolates of five clinically important Candida species, using broth microdilution (BMD) following CLSI M27-A3 as the gold-standard. The overall essential agreement (EA) between ATB visual readings and BMD was 99.1%. In contrast, the ATB automated readings showed higher discrepancies with BMD, with overall EA of 86.2%, and specifically lower EA was observed for fluconazole (80.7%), voriconazole (77.5%), and itraconazole (73.4%), which was most likely due to the trailing effect of azoles. The major errors in azole drug susceptibilities by ATB automated readings is a concern in China that can result in misleading clinical antifungal drug selection and pseudo high rates of antifungal resistance. Therefore, the ATB visual reading is generally recommended. In the meantime, we propose a practical algorithm to be followed for ATB FUNGUS 3 antifungal susceptibility for Candida spp. before the improvement in the automated reading system.
Lebel, Geneviève; Piché, Fanny; Frenette, Michel; Gottschalk, Marcelo; Grenier, Daniel
2013-12-01
Streptococcus suis serotype 2 is known to cause severe infections in pigs, including meningitis, endocarditis and pneumonia. Furthermore, this bacterium is considered an emerging zoonotic agent. Recently, increased antibiotic resistance in S. suis has been reported worldwide. The objective of this study was to evaluate the potential of nisin, a bacteriocin of the lantibiotic class, as an antibacterial agent against the pathogen S. suis serotype 2. In addition, the synergistic activity of nisin in combination with conventional antibiotics was assessed. Using a plate assay, the nisin-producing strain Lactococcus lactis ATCC 11454 proved to be capable of inhibiting the growth of S. suis (n=18) belonging to either sequence type (ST)1, ST25, or ST28. In a microdilution broth assay, the minimum inhibitory concentration (MIC) of purified nisin ranged between 1.25 and 5 μg/mL while the minimum bactericidal concentration (MBC) was between 5 and 10 μg/mL toward S. suis. The use of a capsule-deficient mutant of S. suis indicated that the presence of this polysaccharidic structure has no marked impact on susceptibility to nisin. Following treatment of S. suis with nisin, transmission electron microscopy observations revealed lysis of bacteria resulting from breakdown of the cell membrane. A time-killing curve showed a rapid bactericidal activity of nisin. Lastly, synergistic effects of nisin were observed in combination with several antibiotics, including penicillin, amoxicillin, tetracycline, streptomycin and ceftiofur. This study brought clear evidence supporting the potential of nisin for the prevention and treatment of S. suis infections in pigs. Copyright © 2013 Elsevier Inc. All rights reserved.
ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: structure and transfer.
Michael, Geovana Brenner; Kadlec, Kristina; Sweeney, Michael T; Brzuszkiewicz, Elzbieta; Liesegang, Heiko; Daniel, Rolf; Murray, Robert W; Watts, Jeffrey L; Schwarz, Stefan
2012-01-01
Integrative and conjugative elements (ICEs) have not been detected in Pasteurella multocida. In this study the multiresistance ICEPmu1 from bovine P. multocida was analysed for its core genes and its ability to conjugatively transfer into strains of the same and different genera. ICEPmu1 was identified during whole genome sequencing. Coding sequences were predicted by bioinformatic tools and manually curated using the annotation software ERGO. Conjugation into P. multocida, Mannheimia haemolytica and Escherichia coli recipients was performed by mating assays. The presence of ICEPmu1 and its circular intermediate in the recipient strains was confirmed by PCR and sequence analysis. Integration sites were sequenced. Susceptibility testing of the ICEPmu1-carrying recipients was conducted by broth microdilution. The 82 214 bp ICEPmu1 harbours 88 genes. The core genes of ICEPmu1, which are involved in excision/integration and conjugative transfer, resemble those found in a 66 641 bp ICE from Histophilus somni. ICEPmu1 integrates into a tRNA(Leu) and is flanked by 13 bp direct repeats. It is able to conjugatively transfer to P. multocida, M. haemolytica and E. coli, where it also uses a tRNA(Leu) for integration and produces closely related 13 bp direct repeats. PCR assays and susceptibility testing confirmed the presence and the functional activity of the ICEPmu1-associated resistance genes in the recipient strains. The observation that the multiresistance ICEPmu1 is present in a bovine P. multocida and can easily spread across strain and genus boundaries underlines the risk of a rapid dissemination of multiple resistance genes, which will distinctly decrease the therapeutic options.
Stanković, Nemanja; Mihajilov-Krstev, Tatjana; Zlatković, Bojan; Matejić, Jelena; Stankov Jovanović, Vesna; Kocić, Branislava; Čomić, Ljiljana
2016-05-01
The objective of the present study to perform a comparative analysis of the chemical composition, antioxidant, and antimicrobial activities of the essential oils of plant species Hyssopus officinalis, Achillea grandifolia, Achillea crithmifolia, Tanacetum parthenium, Laserpitium latifolium, and Artemisia absinthium from Balkan Peninsula. The chemical analysis of essential oils was performed by using gas chromatography and gas chromatography-mass spectrometry. Monoterpenes were dominant among the recorded components, with camphor in T. parthenium, A. grandifolia, and A. crithmifolia (51.4, 45.4, and 25.4 %, respectively), 1,8-cineole in H. officinalis, A. grandifolia, and A. crithmifolia (49.1, 16.4, and 14.8 %, respectively), and sabinene in L. latifolium and A. absinthium (47.8 and 21.5 %). The antiradical and antioxidant activities were determined by using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging methods. The essential oil of A. grandifolia has shown the highest antioxidant activity [IC50 of 33.575 ± 0.069 mg/mL for 2,2-diphenyl-1-picrylhydrazyl and 2.510 ± 0.036 mg vitamin C/g for the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay]. The antimicrobial activity against 16 multiresistant pathogenic bacteria isolated from human source material was tested by the broth microdilution assay. The resulting minimum inhibitory concentration/minimum bactericidal concentration values ranged from 4.72 to 93.2 mg/mL. Therefore, the essential oils of the plant species included in this study may be considered to be prospective natural sources of antimicrobial substances, and may contribute as effective agents in the battle against bacterial multiresistance. Georg Thieme Verlag KG Stuttgart · New York.
Ngo Mback, M N L; Agnaniet, H; Nguimatsia, F; Jazet Dongmo, P-M; Hzounda Fokou, J-B; Bakarnga-Via, I; Fekam Boyom, F; Menut, C
2016-09-01
The limitations encountered in the management of fungal infections are due to the resistance, high toxicity, and overuse of conventional antifungal drugs. For bringing solutions, the antifungal activity of Aeollanthus heliotropioides essential oil will be evaluated and optimized. The aerial parts of A. heliotropioides were harvested and essential oil extracted by hydrodistillation. The chemical composition was determined using gas chromatography and gas chromatography coupled with mass spectrometry and nuclear magnetic resonance. The sensitivity of fungal strains was determined using broth microdilution method. The fungicidal parameters were checked by viability assay using methylene blue dye. The Fractional Inhibitory Concentration Index was determined according the two-dimensional checkboard methods. The efficiency of the simulated optimum concentrations confirmed experimentally on American type culture collection strains, through the Time Kill Kinetic Study. The yield of extraction of essential oil was 0.1%. The major compounds were linalool (38.5%), Z-α-farnesene (25.1%), 9-hexa-decen-1-ol (13.9%) saturated/unsaturated massoia and γ-lactones (4.5%). The MIC of extract on yeast isolates ranged from 0.6mg/mL to 5mg/mL. The combination of essential oil with thymol leads mainly to synergistic effects (0.5≤FICI). The optimums of essential oil (1.6±0.4μl/mL) and thymol (0.6±0.1mg/mL) revealed a total inhibition of yeast after 120 and 180minutes according to the yeasts strains used. This study highlights the in vitro antifungal activity of A. heliotropioides essential oil and it synergistic effect with thymol. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Blechnum Orientale Linn - a fern with potential as antioxidant, anticancer and antibacterial agent
2010-01-01
Background Blechnum orientale Linn. (Blechnaceae) is used ethnomedicinally for the treatment of various skin diseases, stomach pain, urinary bladder complaints and sterilization of women. The aim of the study was to evaluate antioxidant, anticancer and antibacterial activity of five solvent fractions obtained from the methanol extract of the leaves of Blechnum orientale Linn. Methods Five solvent fractions were obtained from the methanol extract of B. orientale through successive partitioning with petroleum ether, chloroform, ethyl acetate, butanol and water. Total phenolic content was assessed using Folin-Ciocalteu's method. The antioxidant activity was determined by measuring the scavenging activity of DPPH radicals. Cytotoxic activity was tested against four cancer cell lines and a non-malignant cell using MTT assay. Antibacterial activity was assessed using the disc diffusion and broth microdilution assays. Standard phytochemical screening tests for saponins, tannins, terpenoids, flavonoids and alkaloids were also conducted. Results The ethyl acetate, butanol and water fractions possessed strong radical scavenging activity (IC50 8.6-13.0 μg/ml) and cytotoxic activity towards human colon cancer cell HT-29 (IC50 27.5-42.8 μg/ml). The three extracts were also effective against all Gram-positive bacteria tested: Bacillus cereus, Micrococcus luteus, methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant Staphylococcus aureus (MRSA) and Stapylococcus epidermidis(minimum inhibitory concentration MIC 15.6-250 μg/ml; minimum bactericidal concentration MBC 15.6-250 μg/ml). Phytochemical analysis revealed the presence of flavonoids, terpenoids and tannins. Ethyl acetate and butanol fractions showed highest total phenolic content (675-804 mg gallic acid equivalent/g). Conclusions The results indicate that this fern is a potential candidate to be used as an antioxidant agent, for colon cancer therapy and for treatment of MRSA infections and other MSSA/Gram-positive bacterial infectious diseases. PMID:20429956
Investigating the antifungal activity and mechanism(s) of geraniol against Candida albicans strains.
Leite, Maria Clerya Alvino; de Brito Bezerra, André Parente; de Sousa, Janiere Pereira; de Oliveira Lima, Edeltrudes
2015-04-01
Candida albicans can be a yeast that is a commensal on the human body but can cause opportunistic or pathogenic infections. Candida infections may create serious health problems and as a result has initiated a search for new drugs with an antifungal action. Geraniol is an acyclic monoterpene alcohol with known pharmacological properties, including antimicrobial activity. The aim of this work was to evaluate the antifungal activity and mechanism(s) of geraniol against C. albicans strains. The minimum inhibitory concentration (MIC) was determined through broth microdilution techniques. We investigated possible geraniol activity on the fungal cell wall (sorbitol protect effect), cell membrane (geraniol to ergosterol binding), the time-kill curve, and its biological activity on the yeast's morphology. Amphotericin B was used as control, and all tests were performed in duplicate. The MIC of geraniol was 16 μg/ml (for 90% of isolates) but its probable mechanism of action did not involve the cell wall and ergosterol binding. In the morphological interference assay, we observed that the product inhibited pseudohyphae and chlamydoconidia formation. Time-dependent kill curve assay demonstrated that the fungicidal activity for MIC × 2 started at 2 h for the ATCC 76485 strain, and at 4 h for the LM-70 strain. Geraniol showed in vitro antifungal potential against strains of C. albicans but did not involve action on the cell wall or ergosterol. This study contributes to the development of new antifungal drugs, especially against Candida spp. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Meerungrueang, W; Panichayupakaranant, P
2014-09-01
Medicinal plants involved in traditional Thai longevity formulations are potential sources of antimicrobial compounds. To evaluate the antimicrobial activities of some extracts from medicinal plants used in traditional Thai longevity formulations against some oral pathogens, including Streptococcus pyogenes, Streptococcus mitis, Streptococcus mutans, and Candida albicans. An extract that possessed the strongest antimicrobial activity was fractionated to isolate and identify the active compounds. Methanol and ethyl acetate extracts of 25 medicinal plants used as Thai longevity formulations were evaluated for their antimicrobial activity using disc diffusion (5 mg/disc) and broth microdilution (1.2-2500 µg/mL) methods. The ethyl acetate extract of Ficus foveolata Wall. (Moraceae) stems that exhibited the strongest antibacterial activity was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract of F. foveolata showed the strongest antibacterial activity with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 19.5-39.0 and 39.0-156.2 µg/mL, respectively. On the basis of an antibacterial assay-guided isolation, seven antibacterial compounds, including 2,6-dimethoxy-1,4-benzoquinone (1), syringaldehyde (2), sinapaldehyde (3), coniferaldehyde (4), 3β-hydroxystigmast-5-en-7-one (5), umbelliferone (6), and scopoletin (7), were purified. Among these isolated compounds, 2,6-dimethoxy-1,4-benzoquinone (1) exhibited the strongest antibacterial activities against S. pyogenes, S. mitis, and S. mutans with MIC values of 7.8, 7.8, and 15.6 µg/mL, and MBC values of 7.8, 7.8, and 31.2 µg/mL, respectively. In addition, this is the first report of these antibacterial compounds in the stems of F. foveolata.
Panyo, J; Matsunami, K; Panichayupakaranant, P
2016-09-01
Context Ixora megalophylla Chamch. (Rubiaceae) is a new plant species recently found in southern Thailand. Ethyl acetate extracts of its leaves and stems showed antimicrobial activities. Objectives To isolate and identify the antimicrobial compounds from I. megalophylla leaves and stems. Materials and methods The dried leaves (1.7 kg) and stems (3.5 kg) were consecutively extracted with petroleum ether (5 L × 4), ethyl acetate (5 L × 3) and ethanol (5 L × 4) under reflux conditions. The ethyl acetate extract was subjected to an antimicrobial assay guided isolation with Candida albicans and Streptococcus mutans. Compounds 1-10 were identified by (1)H NMR, (13)C NMR and EI-MS. Minimal lethal concentration (MLC) against C. albicans and Streptococcus spp. was determined using a broth microdilution method for 48 and 24 h, respectively. Results and discussion On the basis of the antimicrobial assay guided isolation, 10 known compounds, including vanillic acid (1), syringic acid (2), 4-hydroxy benzaldehyde (3), scopoletin (4), loliolide (5), syringaldehyde (6), sinapaldehyde (7), coniferaldehyde (8), syringaresinol (9) and 2,2'-dithiodipyridine (10), were identified. Compounds 1-5 were purified from the ethyl acetate extract of the leaves, while 6-9 and 10 were from the ethyl acetate and ethanol extracts of the stems, respectively. Among these isolates, 10 showed the strongest antibacterial activities against S. mutans and Streptococcus mitis, with minimum inhibitory concentrations (MICs) of 2-4 μg/mL, and MLC of 4 μg/mL, as well as having a weak antifungal activity against C. albicans (MIC of 125 μg/mL). This is the first report of the antimicrobial activities of 10.
D'Sousa' Costa, Cinara Oliveira; Ribeiro, Paulo Roberto; Loureiro, Marta Bruno; Simões, Rafael Conceição; de Castro, Renato Delmondez; Fernandez, Luzimar Gonzaga
2015-01-01
Schinus terebinthifolius is widely used in traditional medicine by Brazilian quilombola and indigenous communities for treatment of several diseases. Extracts from different tissues are being used to produce creams to treat cervicitis and cervicovaginitis. However, most studies are limited to the assessment of the essential oils and extracts obtained from the leaves. The aim was to evaluate antioxidant and antibacterial activities, to assess the phytochemical profile and to quantify total phenolic compounds of various extracts prepared from S. terebinthifolius grown in the coast of Bahia, Brazil. Extracts were obtained by hot continuous extraction (soxhlet) and by maceration. Quantification of phenolic compounds was performed using the Folin-Ciocalteu method and antioxidant properties were assessed by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Phytochemical screening was performed as described by in the literature and antibacterial activity against Enterococcus faecalis (ATCC 29212) was determined by the microdilution broth assay. Extraction method greatly affected the metabolite profile of the extracts. Antioxidant activity varied between 21.92% and 85.76%, while total phenols ranged between 5.44 and 309.03 mg EAG/g of extract. Leaf extract obtained with soxhlet showed minimum inhibitory concentration (MIC) of 15.62 μg/mL, while stem extract obtained by maceration was able to inhibit the growth of E. faecalis at 62.5 μg/mL. Stem bark extracts showed a MIC of 500 μg/mL for both extraction methods, while no inhibition was observed for fruit extracts. In general, total phenolic content, antioxidant and antibacterial activities were higher in samples obtained by soxhlet. Our results provide important clues in order to identify alternative sources of bioactive compounds that can be used to develop new drugs.
2011-01-01
Background Black elderberries (Sambucus nigra L.) are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV) infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG) for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product. PMID:21352539
Luiz, Raul Leal Faria; Vila, Taissa Vieira Machado; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru; Rozental, Sonia; Ishida, Kelly
2015-03-19
Biofilm formation is important in Candida albicans pathogenesis and constitutes a mechanism of antifungal resistance. Thus, we evaluated the effect of proanthocyanidins polymer-rich fractions from Stryphnodendron adstringens (fraction F2 and subfraction F2.4) against C. albicans biofilms. Firstly, the antifungal activity of F2 and F2.4 against planktonic cells of Candida albicans (ATCC 10231) was determined using broth microdilution method. Anti-biofilm effect of F2 and F2.4 was evaluated during biofilm formation or on mature biofilm of C. albicans and compared with standard antifungals amphotericin B and fluconazole. Metabolic activity of sessile and dispersion cells from biofilms after antifungal treatments were measured using a tetrazolium reduction assay and the biofilm total biomass was quantified by crystal violet-based assay. Morphological alterations after treatments were observed using scanning electron microscopy. The anti-biofilm effect of F2 and F2.4 were comparable to standard antifungals (amphotericin B and fluconazole). F2 and F2.4 treatments reduced biofilm metabolic activity (in sessile and in dispersion cells) during biofilm formation, and in mature biofilms, unlike fluconazole, which only prevents the biofilm formation. Treatments with F2, F2.4 or fluconazole reduced biofilm biomass during biofilm formation, but not in mature biofilm. Amphotericin B presented higher inhibitory effect on biofilm formation and on mature biofilm of C. albicans. F2 and F2.4 treatments led to the appearance of dumbbell-shaped blastoconidia and of blastoconidia clusters in biofilms. Proanthocyanidins polymer-rich fractions from S. adstringens successfully inhibited C. albicans planktonic growth and biofilm development, and they represent a potential new agent for the treatment of biofilm-associated candidiasis.
Heyman, Leali; Houri-Haddad, Yael; Heyman, Samuel N; Ginsburg, Isaac; Gleitman, Yossi; Feuerstein, Osnat
2017-08-10
The common usage of chewing sticks prepared from Neem tree (Azadirachta indica) in India suggests its potential efficacy in periodontal diseases. The objective of this study is to explore the antibacterial effects of Neem leaf extract on the periodontophatic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum, and its antioxidant capacities alone and in combination with bacteria and polycationic peptides that may be at the site of inflammation. Neem leaf extract was prepared by ethanol extraction. The growth kinetics of P. gingivalis and F. nucleatum under anaerobic conditions in the presence of Neem leaf extract were measured. Broth microdilution test was used to determine the Minimal Inhibitory Concentration (MIC) of Neem leaf extract against each bacterial strain. The effect of Neem leaf extract on the coaggregation of the bacteria was assessed by a visual semi-quantitative assay. The antioxidant capacities of Neem leaf extract alone and in combination with bacteria, with the addition of red blood cells or the polycationic peptides chlorhexidine and lisozyme, were determined using a chemiluminescence assay. Neem leaf extract showed prominent dose-dependent antibacterial activity against P. gingivalis, however, had no effect on the growth of F. nucleatum nor on the coaggregation of the two bacteria. Yet, it showed intense antioxidant activity, which was amplified following adherence to bacteria and with the addition of red blood cells or the polycationic peptides. Neem leaf extract, containing polyphenols that adhere to oral surfaces, have the potential to provide long-lasting antibacterial as well as synergic antioxidant activities when in complex with bacteria, red blood cells and lisozyme. Thus, it might be especially effective in periodontal diseases.
Venturini, Tarcieli Pozzebon; Chassot, Francieli; Loreto, Érico Silva; Keller, Jéssica Tairine; Azevedo, Maria Izabel; Zeni, Gilson; Santurio, Janio Morais; Alves, Sydney Hartz
2016-07-01
Herein, we describe the in vitro activity of a combination of the organoselenium compounds diphenyl diselenide and ebselen alone and in combination with amphotericin B, caspofungin, itraconazole, and voriconazole against 25 clinical isolates of Fusarium spp. For this analysis, we used the broth microdilution method based on the M38-A2 technique and checkerboard microdilution method. Diphenyl diselenide (MIC range = 4-32 μg/ml) and ebselen (MIC range = 2-8 μg/ml) showed in vitro activity against the isolates tested. The most effective combinations were (synergism rates): ebselen + amphotericin B (88%), ebselen + voriconazole (80%), diphenyl diselenide + amphotericin B (72%), and diphenyl diselenide + voriconazole (64%). Combination with caspofungin resulted in low rates of synergism: ebselen + caspofungin, 36%, and diphenyl diselenide + caspofungin, 28%; combination with itraconazole demonstrated indifferent interactions. Antagonistic effects were not observed for any of the combinations tested. Our findings suggest that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation in in vivo experimental models, especially in combination with amphotericin B and voriconazole. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Smith, Melvyn Howard; Hodgson, Julian; Eltringham, Ian Joseph
2010-12-01
As health services move toward universal methicillin-resistant Staphylococcus aureus (MRSA) screening for hospital admissions, the most cost-effective approach is yet to be defined. In this study, one of the largest to date, we evaluated the performance of the BD GeneOhm MRSA assay on the Rotor-Gene 6000 thermal cycler, using samples taken directly from pooled MRSA screens. Results were compared with the same assay performed on the Smart-Cycler II platform and overnight broth culture. Samples yielding discrepant results were subjected to detailed analysis with an in-house PCR and patient note review. A total of 1,428 pooled MRSA screens were tested. Sensitivities and specificities of 85.3% and 95.8% for the Rotor-Gene and 81% and 95.7% for the Smart-Cycler were obtained, compared with broth enrichment. The sensitivity of the BD GeneOhm assay was increased to 100% when the results of in-house PCR and patient note review were taken into account. This study demonstrates that the Rotor-Gene 6000 thermal cycler is a reliable platform for use with the BD GeneOhm assay. It also proves that commercial PCR can be performed direct on pooled samples in selective broth, without the need for overnight incubation.
Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica.
Silva, Rafaela Ribeiro; Oliveira e Silva, Davi; Fontes, Humberto Rollemberg; Alviano, Celuta Sales; Fernandes, Patricia Dias; Alviano, Daniela Sales
2013-05-16
Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as "gigante", was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an indifferent effect was detected when the extract was combined with vancomycin. The extract exhibits anti-inflammatory activity through the inhibition of the cell migration. The mixture of extract constituents and methicillin could lead to the development of a new combination antibiotic against MRSA infections.
Zuo, Guo-Ying; Zhang, Xin-Juan; Han, Jun; Li, Yu-Qing; Wang, Gen-Chun
2015-12-01
Methicillin-resistant Staphylococcus aureus (MRSA) is a problematic pathogen posing a serious therapeutic challenge in the clinic. It is often multidrug-resistant (MDR) to conventional classes of antibacterial agents and there is an urgent need to develop new agents or strategies for treatment. Magnolol (ML) and honokiol (HL) are two naturally occurring diallylbiphenols which have been reported to show inhibition of MRSA. In this study their synergistic effects with antibacterial agents were further evaluated via checkerboard and time-kill assays. The susceptibility spectrum of clinical MRSA strains was tested by the disk diffusion method. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of ML and HL were assayed by broth microdilution. The synergy was evaluated through checkerboard microdilution and time-killing experiments. ML and HL showed similar activity against both MSSA and MRSA with MIC/MBC at 16 ~ 64 mg/L, with potency similar to amikacin (AMK) and gentamicin (GEN). When they were used in combination with conventional antibacterial agents, they showed bacteriostatic synergy with FICIs between 0.25 ~ 0.5, leading to the combined MICs decreasing to as low as 1 ~ 2 and 1 ~ 16 mg/L for ML (HL) and the agents, respectively. MIC50 of the combinations decreased from 16 mg/L to 1 ~ 4 mg/L for ML (HL) and 8 ~ 128 mg/L to 2 ~ 64 mg/L for the antibacterial agents, which exhibited a broad spectrum of synergistic action with aminoglycosides (AMK, etilmicin (ETM) and GEN), floroquinolones (levofloxacin (LEV), ciprofloxacin and norfloxacin), fosfomycin (FOS) and piperacillin. The times of dilution (TOD, the extent of decreasing in MIC value) were determined up to 16 for the combined MIC. A more significant synergy after combining was determined as ML (HL) with AMK, ETM, GEN and FOS. ML (HL) combined with antibacterial agents did not show antagonistic effects on any of the ten MRSA strains. Reversal effects of MRSA resistance to AMK and GEN by ML and HL were also observed, respectively. All the combinations also showed better dynamic bactericidal activity against MRSA than any of single ML (HL) or the agents at 24 h incubation. The more significant synergy of combinations were determined as HL (ML) + ETM, HL + LEV and HL + AMK (GEN or FOS), with △LC24 of 2.02 ~ 2.25. ML and HL showed synergistic potentiation of antibacterial agents against clinical isolates of MRSA and warrant further pharmacological investigation.
Li, Xue; Lu, Yun; Ren, Zhitao; Zhao, Longyin; Hu, Xinxin; Jiang, Jiandong; You, Xuefu
2013-01-01
Background Staphylococcus aureus can cause severe infections, including bacteremia and sepsis. The spread of methicillin-resistant Staphylococcus aureus (MRSA) highlights the need for novel treatment options. Sodium new houttuyfonate (SNH) is an analogue of houttuynin, the main antibacterial ingredient of Houttuynia cordata Thunb. The aim of this study was to evaluate in vitro activity of SNH and its potential for synergy with antibiotics against hospital-associated MRSA. Methodology A total of 103 MRSA clinical isolates recovered in two hospitals in Beijing were evaluated for susceptibility to SNH, oxacillin, cephalothin, meropenem, vancomycin, levofloxacin, minocycline, netilmicin, and trimethoprim/sulfamethoxazole by broth microdilution. Ten isolates were evaluated for potential for synergy between SNH and the antibiotics above by checkerboard assay. Time-kill analysis was performed in three isolates to characterize the kill kinetics of SNH alone and in combination with the antibiotics that engendered synergy in checkerboard assays. Besides, two reference strains were included in all assays. Principal Findings SNH inhibited all test strains with minimum inhibitory concentrations (MICs) ranging from 16 to 64 µg/mL in susceptibility tests, and displayed inhibition to bacterial growth in concentration-dependent manner in time-kill analysis. In synergy studies, the combinations of SNH-oxacillin, SNH-cephalothin, SNH-meropenem and SNH-netilmicin showed synergistic effects against 12 MRSA strains with median fractional inhibitory concentration (FIC) indices of 0.38, 0.38, 0.25 and 0.38 in checkerboard assays. In time-kill analysis, SNH at 1/2 MIC in combination with oxacillin at 1/128 to 1/64 MIC or netilmicin at 1/8 to 1/2 MIC decreased the viable colonies by ≥2log10 CFU/mL. Conclusions/Significance SNH demonstrated in vitro antibacterial activity against 103 hospital-associated MRSA isolates. Combinations of sub-MIC levels of SNH and oxacillin or netilmicin significantly improved the in vitro antibacterial activity against MRSA compared with either drug alone. The SNH-based combinations showed promise in combating MRSA. PMID:23844154
Vinciguerra, Vittorio; Rojas, Florencia; Tedesco, Viviana; Giusiano, Gustavo; Angiolella, Letizia
2018-05-04
The composition of the essential oils (EOs) of O. vulgare L. EO and T. vulgaris EO, were analyzed by GC and GC-MS. Antifungal activities of the EOs and its main component, carvacrol, were evaluated against 27 clinical isolates of Malassezia furfur. Minimum inhibitory concentrations (MICs) were measured according to the broth microdilution protocols by Clinical and Laboratory Standards Institute (CLSI) modified for Malassezia spp. EOs and carvacrol showed low MIC values ranged 450-900 μg/ml against M. furfur. No differences in EOs antifungal activity were observed in sensitive to resistant fluconazole isolates. The antifungal activity obtained showed O. vulgare EO, T. vulgaris EO and carvacrol, their compound, as potential antimicrobial agents against M. furfur, yeast associated with human mycoses.
Antimicrobial activity of some medicinal barks used in Peruvian Amazon.
Kloucek, P; Svobodova, B; Polesny, Z; Langrova, I; Smrcek, S; Kokoska, L
2007-05-04
The aim of this study was to evaluate the antimicrobial activity of six barks traditionally used in Callería District (Ucayali Department, Peru) for treating conditions likely to be associated with microorganisms. Ethanol extracts of stem barks of Abuta grandifolia (Menispermaceae), Dipteryx micrantha (Leguminosae), Cordia alliodora (Boraginaceae), Naucleopsis glabra (Moraceae), Pterocarpus rohrii (Leguminosae), and root bark of Maytenus macrocarpa (Celastraceae) were tested against nine bacteria and one yeast using the broth microdilution method. All plants possessed significant antimicrobial effect, however, the extract of Naucleopsis glabra exhibited the strongest activity against Gram-positive bacteria (MICs ranging from 62.5 to 125 microg/ml), while the broadest spectrum of action was shown by the extract of Maytenus macrocarpa, which inhibited all the strains tested with MICs ranging from 125 to 250 microg/ml.
Guo, Li-Na; Xiao, Meng; Cao, Bin; Qu, Fen; Zhan, Yu-Liang; Hu, Yun-Jian; Wang, Xin-Ru; Liang, Guo-Wei; Gu, Hai-Tong; Qi, Jun; Yuan, Hui; Min, Rong; Wang, Fei-Yan; Liu, Lin-Juan; Wang, Hai-Bin; Jiang, Wei; Duan, Xue-Guang; Xu, Wen-Jian; Yu, Yan-Hua; Su, Jian-Rong; Zhang, Jian-Zhong; Nong, Jin-Qing; Liu, Shu-Mei; Li, Jun; Liu, Jun-Ting; Yue, Zhi-Gang; Yang, Duo; Guo, Jie; Zhao, Rui; Zhang, Ya-Nan; Yang, Xi-Ming; Liu, Xiao-Qing; Hsueh, Po-Ren; Xu, Ying-Chun
2017-09-01
To investigate the species distribution and antifungal susceptibility profiles of yeast isolates causing invasive infections across Beijing. A total of 1201 yeast isolates recovered from blood and other sterile body fluids were correctly identified by matrix-assisted laser desorption/ionization TOF MS supplemented by DNA sequencing. Antifungal susceptibility testing was performed according to the Clinical and Laboratory Standards Institute broth microdilution method. Candida (95.5%) remained the most common yeast species isolated; Candida albicans (38.8%) and Candida parapsilosis (22.6%) were the leading species of candidemia. Azole resistances were mainly observed in Candida glabrata and Candida tropicalis isolates. This study outlined the epidemiologic data of invasive yeast infections and highlighted the need for continuous monitoring of azole resistances among C. glabrata and C. tropicalis isolates in Beijing.
Antibacterial screening of some Peruvian medicinal plants used in Callería District.
Kloucek, P; Polesny, Z; Svobodova, B; Vlkova, E; Kokoska, L
2005-06-03
Nine ethanol extracts of Brunfelsia grandiflora (Solanaceae), Caesalpinia spinosa (Caesalpiniaceae), Dracontium loretense (Araceae), Equisetum giganteum (Equisetaceae), Maytenus macrocarpa (Celastraceae), Phyllanthus amarus (Euphorbiaceae), Piper aduncum (Piperaceae), Terminalia catappa (Combretaceae), and Uncaria tomentosa (Rubiaceae), medicinal plants traditionally used in Calleria District for treating conditions likely to be associated with microorganisms, were screened for antimicrobial activity against nine bacterial strains using the broth microdilution method. Among the plants tested, Phyllanthus amarus and Terminalia catappa showed the most promising antibacterial properties, inhibiting all of the strains tested with minimum inhibitory concentrations (MICs) ranging from 0.25 to 16 mg/ml. The extract from aerial part of Piper aduncum was significantly more active against Gram-positive (MICs ranging from 1 to 2 mg/ml) than against Gram-negative bacteria (MICs > 16 mg/ml).
Lovgren, M.; Dell’Acqua, L.; Palacio, R.; Echániz-Aviles, G.; Soto-Noguerón, A.; Castañeda, E.; Agudelo, C. I.; Heitmann, I.; Brandileone, M. C.; Zanella, R. C.; Rossi, A.; Pace, J.; Talbot, J. A.
1999-01-01
An international, multicenter study compared trimethoprim-sulfamethoxazole MICs for 743 Streptococcus pneumoniae isolates (107 to 244 isolates per country) by E test, using Mueller-Hinton agar supplemented with 5% defibrinated horse blood or 5% defibrinated sheep blood, with MICs determined by the National Committee for Clinical Laboratory Standards broth microdilution reference method. Agreement within 1 log2 dilution and minor error rates were 69.3 and 15.5%, respectively, on sheep blood-supplemented agar and 76.9 and 13.6%, respectively, with horse blood as the supplement. Significant interlaboratory variability was observed. E test may not be a reliable method for determining the resistance of pneumococci to trimethoprim-sulfamethoxazole. PMID:9854095
Pandey, Anand; Mishra, Rohit K.; Tiwari, Amit K.; Kumar, Awadhesh; Bajaj, A. K.; Dikshit, Anupam
2013-01-01
During anti-Malassezia screening of plants by CLSI broth microdilution method, Cladia aggregata (Swartz) Nyl. (family Cladoniaceae), a fruticose lichen from Sikkim (northeast Himalayan region), has been found effective at minimum inhibitory concentrations (mg/mL) of 2.72, 0.63, and 1.28 against yeast-like fungi namely, M. furfur, M. globosa and M. sympodialis, respectively. These test pathogens are responsible for pityriasis versicolor (PV) and seborrheic dermatitis (SD) in humans. We tried to establish the reason for variable MICs against various Malassezia spp. using bioinformatical tools, thereby reducing the cost of the experimentation. This is the first report on anti-Malassezia activity of C. aggregata and thus can serve as a potential source for the development of cosmaceuticals. PMID:24069589
Antimycobacterial terpenoids from Juniperus communis L. (Cuppressaceae).
Gordien, Andréa Y; Gray, Alexander I; Franzblau, Scott G; Seidel, Véronique
2009-12-10
Juniperus communis is a plant which has been reported as a traditional cure for tuberculosis (TB) and other respiratory diseases. The aim of this study was to isolate and identify the constituents responsible for the activity of the n-hexane extract of Juniperus communis roots against Mycobacterium tuberculosis H(37)Rv and Juniperus communis aerial parts against Mycobacterium aurum. Subsequently, it was to evaluate the activity of the pure isolated compounds against (i) drug-resistant Mycobacterium tuberculosis variants, (ii) non-replicating Mycobacterium tuberculosis and (iii) a range of non-tuberculous mycobacteria (NTM). The antimycobacterial activity of Juniperus communis extracts, fractions and constituents was determined against Mycobacterium tuberculosis H(37)Rv, and against rifampicin-, isoniazid-, streptomycin- and moxifloxacin-resistant variants, using the microplate broth Alamar Blue assay (MABA) method. Isolated constituents were tested against non-replicating Mycobacterium tuberculosis H(37)Rv, using the low oxygen recovery assay (LORA), and against NTM (Mycobacterium aurum, Mycobacterium phlei, Mycobacterium fortuitum and Mycobacterium smegmatis), using a broth microdilution method. Cytotoxicity studies were performed using mammalian Vero cells. The antimycobacterial activity of Juniperus communis was attributed to a sesquiterpene identified as longifolene (1) and two diterpenes, characterised as totarol (2) and trans-communic acid (3). All compounds were identified following analysis of their spectroscopic data (1D- and 2D-NMR, MS) and by comparison with the literature and commercial authentic standards when available. Revised assignments for 3 are reported. Totarol showed the best activity against Mycobacterium tuberculosis H(37)Rv (MIC of 73.7 microM). It was also most active against the isoniazid-, streptomycin-, and moxifloxacin-resistant variants (MIC of 38.4, 83.4 and 60 microM, respectively). Longifolene and totarol were most active against the rifampicin-resistant variant (MICs of 24 and 20.2 microM, respectively). Totarol showed the best activity in the LORA assay (MIC of 81.3 microM) and against all NTM species (MICs in the range of 7-14 microM). Trans-communic acid showed good activity against Mycobacterium aurum (MIC of 13.2 microM). The low selectivity indices (SI) obtained following cytotoxicity studies indicated that the isolated terpenoids were relatively toxic towards mammalian cells. This is the first report of the isolation of (1) and (2) from Juniperus communis roots, and of (3) from the aerial parts. The antimycobacterial activity of (1) and (3), and the activity of (2) against Mycobacterium aurum, Mycobacterium fortuitum and Mycobacterium phlei, is reported for the first time. The effect of totarol on drug-resistant variants and non-replicating Mycobacterium tuberculosis has never been published. The presence of antimycobacterial terpenoids in Juniperus communis aerial parts and roots justifies, to some extent, the ethnomedicinal use of this species as a traditional anti-TB remedy.
Galvis-Marín, Juan Camilo; Rodríguez-Bocanegra, María Ximena; Pulido-Villamarín, Adriana Del Pilar; Castañeda-Salazar, Rubiela; Celis-Ramírez, Adriana Marcela; Linares-Linares, Melva Yomary
Malassezia furfur is a human skin commensal yeast that can cause skin and opportunistic systemic infections. Given its lipid dependant status, the reference methods established by the Clinical and Laboratory Standards Institute (CLSI) to evaluate antifungal susceptibility in yeasts are not applicable. To evaluate the in vitro susceptibility of M. furfur isolates from infections in humans to antifungals of clinical use. The susceptibility profile to amphotericin B, itraconazole, ketoconazole and voriconazole of 20 isolates of M. furfur, using the broth microdilution method (CLSI M27-A3) and Etest ® , was evaluated. Itraconazole and voriconazole had the highest antifungal activity against the isolates tested. The essential agreement between the two methods for azoles antifungal activity was in the region of 60-85% and the categorical agreement was around 70-80%, while the essential and categorical agreement for amphotericin B was 10%. The azoles were the compounds that showed the highest antifungal activity against M. furfur, as determined by the two techniques used; however more studies need to be performed to support that Etest ® is a reliable method before its implementation as a routine clinical laboratory test. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.
Paterna, A; Tatay-Dualde, J; Amores, J; Prats-van der Ham, M; Sánchez, A; de la Fe, C; Contreras, A; Corrales, J C; Gómez-Martín, Á
2016-08-01
The minimum inhibitory concentration (MIC) and minimum mycoplasmacidal concentration (MMC) of 17 antimicrobials against 41 Spanish caprine isolates of Mycoplasma mycoides subsp. capri (Mmc) obtained from different specimens (milk, external auricular canal and semen) were determined using a liquid microdilution method. For half of the isolates, the MIC was also estimated for seven of the antimicrobials using an epsilometric test (ET), in order to compare both methods and assess the validity of ET. Mutations in genes gyrA, gyrB, parC and parE conferring fluoroquinolone resistance, which have been recently described in Mmc, were investigated using PCR. The anatomical origin of the isolate had no effect on its antimicrobial susceptibility. Moxifloxacin and doxycycline had the lowest MIC values. The rest of the fluoroquinolones studied (except norfloxacin), together with tylosin and clindamycin, also had low MIC values, although the MMC obtained for clindamycin was higher than for the other antimicrobials. For all the aminoglycosides, spiramycin and erythromycin, a notable level of resistance was observed. The ET was in close agreement with broth microdilution at low MICs, but not at intermediate or high MICs. The analysis of the genomic sequences revealed the presence of an amino acid substitution in codon 83 of the gene gyrA, which has not been described previously in Mmc. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghannoum, M. A.; Arthington-Skaggs, B.; Chaturvedi, V.; Espinel-Ingroff, A.; Pfaller, M. A.; Rennie, R.; Rinaldi, M. G.; Walsh, T. J.
2006-01-01
The Clinical and Laboratory Standards Institute (CLSI; formerly National Committee for Clinical Laboratory Standards, or NCCLS) M38-A standard for the susceptibility testing of filamentous fungi does not specifically address the testing of dermatophytes. In 2003, a multicenter study investigated the reproducibility of the microdilution method developed at the Center for Medical Mycology, Cleveland, Ohio, for testing the susceptibility of dermatophytes. Data from that study supported the introduction of this method for testing dermatophytes in the future version of the CLSI M38-A standard. In order for the method to be accepted by CLSI, appropriate quality control isolates needed to be identified. To that end, an interlaboratory study, involving the original six laboratories plus two additional sites, was conducted to evaluate potential candidates for quality control isolates. These candidate strains included five Trichophyton rubrum strains known to have elevated MICs to terbinafine and five Trichophyton mentagrophytes strains. Antifungal agents tested included ciclopirox, fluconazole, griseofulvin, itraconazole, posaconazole, terbinafine, and voriconazole. Based on the data generated, two quality control isolates, one T. rubrum isolate and one T. mentagrophytes isolate, were identified and submitted to the American Type Culture Collection (ATCC) for inclusion as reference strains. Ranges encompassing 95.2 to 97.9% of all data points for all seven drugs were established. PMID:17050812
Castanheira, Mariana; Duncanson, Frederick P; Diekema, Daniel J; Guarro, Josep; Jones, Ronald N; Pfaller, Michael A
2012-01-01
Fusarium (n = 67) and Scedosporium (n = 63) clinical isolates were tested by two reference broth microdilution (BMD) methods against a novel broad-spectrum (active against both yeasts and molds) antifungal, E1210, and comparator agents. E1210 inhibits the inositol acylation step in glycophosphatidylinositol (GPI) biosynthesis, resulting in defects in fungal cell wall biosynthesis. Five species complex organisms/species of Fusarium (4 isolates unspeciated) and 28 Scedosporium apiospermum, 7 Scedosporium aurantiacum, and 28 Scedosporium prolificans species were identified by molecular techniques. Comparator antifungal agents included anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B. E1210 was highly active against all of the tested isolates, with minimum effective concentration (MEC)/MIC(90) values (μg/ml) for E1210, anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B, respectively, for Fusarium of 0.12, >16, >16, >8, >8, 8, and 4 μg/ml. E1210 was very potent against the Scedosporium spp. tested. The E1210 MEC(90) was 0.12 μg/ml for S. apiospermum, but 1 to >8 μg/ml for other tested agents. Against S. aurantiacum, the MEC(50) for E1210 was 0.06 μg/ml versus 0.5 to >8 μg/ml for the comparators. Against S. prolificans, the MEC(90) for E1210 was only 0.12 μg/ml, compared to >4 μg/ml for amphotericin B and >8 μg/ml for itraconazole, posaconazole, and voriconazole. Both CLSI and EUCAST methods were highly concordant for E1210 and all comparator agents. The essential agreement (EA; ±2 doubling dilutions) was >93% for all comparisons, with the exception of posaconazole and F. oxysporum species complex (SC) (60%), posaconazole and S. aurantiacum (85.7%), and voriconazole and S. aurantiacum (85.7%). In conclusion, E1210 exhibited very potent and broad-spectrum antifungal activity against azole- and amphotericin B-resistant strains of Fusarium spp. and Scedosporium spp. Furthermore, in vitro susceptibility testing of E1210 against isolates of Fusarium and Scedosporium may be accomplished using either of the CLSI or EUCAST BMD methods, each producing very similar results.
Duncanson, Frederick P.; Diekema, Daniel J.; Guarro, Josep; Jones, Ronald N.; Pfaller, Michael A.
2012-01-01
Fusarium (n = 67) and Scedosporium (n = 63) clinical isolates were tested by two reference broth microdilution (BMD) methods against a novel broad-spectrum (active against both yeasts and molds) antifungal, E1210, and comparator agents. E1210 inhibits the inositol acylation step in glycophosphatidylinositol (GPI) biosynthesis, resulting in defects in fungal cell wall biosynthesis. Five species complex organisms/species of Fusarium (4 isolates unspeciated) and 28 Scedosporium apiospermum, 7 Scedosporium aurantiacum, and 28 Scedosporium prolificans species were identified by molecular techniques. Comparator antifungal agents included anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B. E1210 was highly active against all of the tested isolates, with minimum effective concentration (MEC)/MIC90 values (μg/ml) for E1210, anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B, respectively, for Fusarium of 0.12, >16, >16, >8, >8, 8, and 4 μg/ml. E1210 was very potent against the Scedosporium spp. tested. The E1210 MEC90 was 0.12 μg/ml for S. apiospermum, but 1 to >8 μg/ml for other tested agents. Against S. aurantiacum, the MEC50 for E1210 was 0.06 μg/ml versus 0.5 to >8 μg/ml for the comparators. Against S. prolificans, the MEC90 for E1210 was only 0.12 μg/ml, compared to >4 μg/ml for amphotericin B and >8 μg/ml for itraconazole, posaconazole, and voriconazole. Both CLSI and EUCAST methods were highly concordant for E1210 and all comparator agents. The essential agreement (EA; ±2 doubling dilutions) was >93% for all comparisons, with the exception of posaconazole and F. oxysporum species complex (SC) (60%), posaconazole and S. aurantiacum (85.7%), and voriconazole and S. aurantiacum (85.7%). In conclusion, E1210 exhibited very potent and broad-spectrum antifungal activity against azole- and amphotericin B-resistant strains of Fusarium spp. and Scedosporium spp. Furthermore, in vitro susceptibility testing of E1210 against isolates of Fusarium and Scedosporium may be accomplished using either of the CLSI or EUCAST BMD methods, each producing very similar results. PMID:22083469
Zhang, Jing; Silao, Fitz Gerald S; Bigol, Ursela G; Bungay, Alice Alma C; Nicolas, Marilou G; Heitman, Joseph; Chen, Ying-Lien
2012-01-01
Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of C. lusitaniae including pseudohyphal growth, serum survival, and growth at 37°C. We found that calcineurin and Crz1, a C. albicans Crz1 homolog acting as a downstream target of calcineurin, are required for C. lusitaniae pseudohyphal growth, a process for which the underlying mechanism remains largely unknown in C. lusitaniae but hyphal growth is fundamental to C. albicans virulence. We demonstrate that calcineurin is required for cell wall integrity, ER stress response, optimal growth in serum, virulence in a murine systemic infection model, and antifungal drug tolerance in C. lusitaniae. To further examine the potential of targeting the calcineurin signaling cascade for antifungal drug development, we examined the activity of a calcineurin inhibitor FK506 in combination with caspofungin against echinocandin resistant C. lusitaniae clinical isolates. Broth microdilution and drug disk diffusion assays demonstrate that FK506 has synergistic fungicidal activity with caspofungin against echinocandin resistant isolates. Our findings reveal that pseudohyphal growth is controlled by the calcineurin signaling cascade, and highlight the potential use of calcineurin inhibitors and caspofungin for emerging drug-resistant C. lusitaniae infections.
Jesus, D; Oliveira, J R; Oliveira, F E; Higa, K C; Junqueira, J C; Jorge, A O C; Back-Brito, G N; Oliveira, L D
2015-01-01
This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%.
NASA Astrophysics Data System (ADS)
Noshiranzadeh, Nader; Heidari, Azam; Haghi, Fakhri; Bikas, Rahman; Lis, Tadeusz
2017-01-01
A series of novel chiral lactic-hydrazone derivatives were synthesized by condensation of (S)-lactic acid hydrazide with salicylaldehyde derivatives and characterized by elemental analysis and spectroscopic studies (FT-IR, 1H NMR and 13C NMR spectroscopy). The structure of one compound was determined by single crystal X-ray analysis. Antibacterial activity of the synthesized compounds was studied against Staphylococcus aureus, Streptococcus pneumonia, Escherichia coli and Pseudomonas aeruginosa as bacterial cultures by broth microdilution method. All of the synthesized compounds showed good antibacterial activity with MIC range of 64-512 μg/mL. Compounds (S,E)-2-hydroxy-N-(2-hydroxy-5-nitrobenzylidene)propanehydrazide (5) and (S,E)-2-hydroxy-N-((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)propanehydrazide (7) were the most effective antibacterial derivatives against S. aureus and E. coli respectively with a MIC value of 64 μg/mL. Bacterial biofilm formation assay showed that these compounds significantly inhibited biofilm formation of P. aeruginosa. Also, in silico molecular docking studies were performed to show lipoteichoic acid synthase (LtaS) inhibitory effect of lactic hydrazone derivatives. The association between electronic and structural effects of some substituents on the benzylidene moiety and the biological activity of these chiral compounds were studied. Structural studies show that compound with higher hydrogen bonding interactions show higher antibacterial activity. The results show chiral hydrazone derivatives based on lactic acid hydrazide could be used as potential lead compounds for developing novel antibacterial agents.
Reporting an outbreak of Candida pelliculosa fungemia in a neonatal intensive care unit.
Lin, Hsiao-Chuan; Lin, Hsiang-Yu; Su, Bai-Hong; Ho, Mao-Wang; Ho, Cheng-Mao; Lee, Ching-Yi; Lin, Ming-Hsia; Hsieh, Hsin-Yang; Lin, Hung-Chih; Li, Tsai-Chung; Hwang, Kao-Pin; Lu, Jang-Jih
2013-12-01
Fungemia in preterm infants is associated with high mortality and morbidity. This study reports an outbreak of unusual fungemia in a tertiary neonatal intensive care unit (NICU). Ten Candida pelliculosa bloodstream isolates were identified from six infants hospitalized in the NICU from February to March 2009. Environmental study was performed, and genetic relatedness among the 10 clinical isolates of C pelliculosa and six control C pelliculosa strains was characterized by randomly amplified polymorphic DNA assay. In vitro susceptibility of isolates to six antifungal agents was analyzed by broth microdilution method. Amphotericin B was given to infected infants and prophylactic fluconazole was prescribed to the other noninfected extremely low birth weight infants during the outbreak. Thrombocytopenia (platelet counts <100×10(9)/L) was the early laboratory finding in four infants. One of six patients died, making overall mortality 17%. Fluconazole, voriconazole, amphotericin B, and micafungin provided good antifungal activity. Cultures from the environment and hands of caregivers were all negative. Molecular studies indicated the outbreak as caused by a single strain. The outbreak was controlled by strict hand washing, cohort infected patients, confined physicians and nurses to take care of patients, prophylactic fluconazole to uninfected neonates, and proper management of human milk. The study demonstrated the clinical importance of emerged non-albicans Candida species in NICU. For unusual pathogen isolated from immunocompromised hosts, more attention should be paid to monitor the possibility of an outbreak. Copyright © 2012. Published by Elsevier B.V.
Sánchez, E; Dávila-Aviña, J; Castillo, S L; Heredia, N; Vázquez-Alvarado, R; García, S
2014-04-01
The antimicrobial and antioxidant activities of some cultivars of the nopal cactus have not been determined. In this study, 8 cultivars of nopal cacti from Mexico were assayed for phenolic content, antioxidant activities, and antimicrobial activities against Campylobacter Jejuni, Vibrio cholera, and Clostridium Perfringens. Plant material was washed, dried, and macerated in methanol. Minimum bactericidal concentrations (MBCs) were determined using the broth microdilution method. Antioxidant activities were quantitatively determined using spectrophotometric methods. The MCBs of the nopal cacti ranged from 1.1 to 12.5 mg/mL for c. jejuni, 4.4 to 30 mg/mL for V. cholera, and 0.8 to 16 mg/mL for C. perfringens in the cultivars Cardon Blanco, Real de Catorce, and Jalpa, respectively. High quantities of total phenols and total flavonoids were found in the Jalpa cacti (3.80 mg of gallic acid equivalent GAE/g dry weight [DW] and 36.64 mg of quercetin equivalents [QE]/g DW, respectively). 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities (RSA) were correlated to bioactive compound contents. The Villanueva cacti had the highest %RSA at 42.31%, and the lowest activity was recorded in Copena V1 at 19.98%. In conclusion, we found that some of the 8 cactus pear cultivars studied may be used for their antioxidant compounds or antimicrobials to control or prevent the contamination of foods. © 2014 Institute of Food Technologists®
Canning, Corene; Sun, Shi; Ji, Xiangming; Gupta, Smiti; Zhou, Kequan
2013-05-02
The stem bark of Mammea africana is widely distributed in tropical Africa and commonly used in traditional medicine. This study aims to identify the active compound in Mammea africana and to evaluate its antimicrobial and antiproliferative activity. Methanol extract from the bark of the Mammea africana was separated by liquid-liquid extraction, followed by open column chromatography. A principal antimicrobial compound was purified by high performance liquid chromatography (HPLC) and its structure was elucidated by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The antibacterial activity of the purified compound was determined using the broth microdilution method against 7 common pathogenic bacteria. The compound was also evaluated for cytotoxicity by cell proliferation assay (MTS) using the mouse embryonic fibroblast cell line NIH 3T3 and the non-small cell lung cancer cell line A549. The purified active compound was determined to be mammea A/AA and was found to be highly active against Campylobacter jejuni (MIC=0.5 μg/ml), Streptococcus pneumoniae (MIC=0.25 μg/ml), and Clostridium difficile (MIC=0.25 μg/ml). The compound exhibited significant antiproliferative activities against both NIH 3T3 and A549 cell lines. Mammea A/AA isolated from Mammea africana exerts specific inhibitory activity against Campylobacter jejuni, Streptococcus pneumoniae, and Campylobacter difficile. Mammea A/AA was also found to exhibit significant cytotoxicity against both cancer and normal cell lines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Johann, Susana; Rosa, Luiz H; Rosa, Carlos A; Perez, Pilar; Cisalpino, Patrícia S; Zani, Carlos L; Cota, Betania B
2012-01-01
Altenusin is a biphenyl derivative isolated from different species of fungi, which presents several biological activities. We report the antifungal activity of the altenusin isolated from the endophytic fungus Alternaria sp., against clinical isolates of Paracoccidioides brasiliensis, and its action on cell walls of P. brasiliensis and the nonpathogenic yeast Schizosaccharomyces pombe. In vitro antifungal activity of altenusin was evaluated using the broth microdilution method against 11 strains of P. brasiliensis and one strain of S. pombe. The effects of the altenusin on the cell wall were estimated using the sorbitol protection assay. The altenusin presented strong activity against P. brasiliensis with MIC values ranging between 1.9 and 31.2 μg/ml, and 62.5 μg/ml for S. pombe. Our results demonstrated that the MIC values for altenusin were increased for P. brasiliensis Pb18 and for S. pombe when the medium was supplemented with sorbitol. Additionally, S. pombe cells treated with altenusin were more rounded in shape than untreated cells. Altenusin showed activity against clinical strains of P. brasiliensis at the concentration tested, and this compound probably affects fungal cell walls. These findings suggest that altenusin could act through the inhibition of cell wall synthesis or assembly in P. brasiliensis and S. pombe, and could be considered as a lead compound for the design of new antifungals. Copyright © 2011 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Cosentino, Sofia; Barra, Andrea; Pisano, Barbara; Cabizza, Maddalena; Pirisi, Filippo Maria; Palmas, Francesca
2003-07-01
In this work, the chemical compositions and antimicrobial properties of Juniperus essential oils and of their main components were determined. Five berry essential oils obtained from different species of Juniperus growing wild in Sardinia were analyzed. The components of the essential oils were identified by gas chromatography-mass spectrometry (GC-MS) analysis. The antimicrobial activities of the oils and their components against food spoilage and pathogenic microorganisms were determined by a broth microdilution method. The GC-MS analysis showed a certain variability in the concentrations of the main constituents of the oils. Alpha-pinene was largely predominant in the oils of the species J. phoenicea subsp. turbinata and J. oxycedrus. Alpha-pinene and myrcene constituted the bulk (67.56%) of the essential oil of J. communis. Significant quantitative differences were observed for myrcene, delta-3-carene, and D-germacrene. The results of the antimicrobial assay show that the oils of J. communis and J. oxycedrus failed to inhibit any of the microorganisms at the highest concentrations tested (MLC > or = 900 microg/ml), while the oils extracted from J. turbinata specimens were active against fungi, particularly against a strain of Aspergillus flavus (an aflatoxin B1 producer). Of the single compounds tested, delta-3-carene was found to possess the broadest spectrum of activity and appeared to contribute significantly to the antifungal activity observed for J. turbinata oils. This activity may be helpful in the prevention of aflatoxin contamination for many foods.
Sobeh, Mansour; Braun, Markus Santhosh; Krstin, Sonja; Youssef, Fadia S; Ashour, Mohamed L; Wink, Michael
2016-11-01
The essential oil compositions of the leaves of three related Myrtaceae species, namely Syzygium aqueum, Syzygium samarangense and Eugenia uniflora, were investigated using GLC/MS and GLC/FID. Altogether, 125 compounds were identified: α-Selinene (13.85%), β-caryophyllene (12.72%) and β-selinene constitute the most abundant constituents in S. aqueum. Germacrene D (21.62%) represents the major compound in S. samarangense whereas in E. uniflora, spathulenol (15.80%) represents the predominant component. Multivariate chemometric analyses were used to discriminate the essential oils using hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on the chromatographic results. The antimicrobial activity of the popularly used E. uniflora essential oil was assessed using broth microdilution method against six Gram-positive, three Gram-negative bacteria and two fungi. The oil showed moderate antimicrobial activity against Bacillus licheniformis exhibiting MIC and MMC of 0.63 mg/ml. The cytotoxic activity of E. uniflora essential oil was investigated against Trypanosoma brucei brucei (T. b. brucei) and MCF-7 cancer cell line using MTT assay. It showed moderate activity against MCF-7 cells with an IC 50 value of 76.40 μg/ml. On the other hand, T. brucei was highly susceptible to E. uniflora essential oil with IC 50 of 11.20 μg/ml, and a selectivity index of 6.82. © 2016 Wiley-VHCA AG, Zurich, Switzerland.
Skrivanova, Eva; Van Immerseel, Filip; Hovorkova, Petra; Kokoska, Ladislav
2016-01-01
Clostridium perfringens-induced necrotic enteritis is generally controlled by antibiotics. However, because of increasing antibiotic resistance, other antibacterial agents are required, preferably ones that do not affect the beneficial intestinal microbiota of the host. This study evaluated the in vitro selective growth-inhibitory effect of 8-hydroxyquinoline (8HQ) on C. perfringens vs. bifidobacteria in a medium containing chicken ileal digesta. Prior to the experiments, the minimum inhibitory concentrations of 8HQ and penicillin G were determined by broth microdilution assay. The minimum inhibitory concentration values of 8HQ for C. perfringens were 16-32 times lower than the values for bifidobacteria. Treatment of autoclaved and non-autoclaved chicken ileal digesta with 8HQ showed a selective anticlostridial effect. After incubation of C. perfringens with autoclaved ileal digesta for 3 h, all 8HQ concentrations tested (32-2048 μg/mL) significantly reduced C. perfringens bacterial count. In contrast, the same treatment had no or only a slight effect on bifidobacteria counts. Unlike 8HQ, penicillin G did not exhibit any selectivity. Similar results were obtained after incubation for 24 h. In non-autoclaved ileal digesta, all 8HQ concentrations tested significantly reduced C. perfringens bacterial counts after incubation for 30 min and 3 h, while no effect was observed on bifidobacteria. These results suggest that 8HQ may serve as a prospective veterinary compound for use against necrotic enteritis in poultry.
Zhang, Jing; Silao, Fitz Gerald S.; Bigol, Ursela G.; Bungay, Alice Alma C.; Nicolas, Marilou G.; Heitman, Joseph; Chen, Ying-Lien
2012-01-01
Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of C. lusitaniae including pseudohyphal growth, serum survival, and growth at 37°C. We found that calcineurin and Crz1, a C. albicans Crz1 homolog acting as a downstream target of calcineurin, are required for C. lusitaniae pseudohyphal growth, a process for which the underlying mechanism remains largely unknown in C. lusitaniae but hyphal growth is fundamental to C. albicans virulence. We demonstrate that calcineurin is required for cell wall integrity, ER stress response, optimal growth in serum, virulence in a murine systemic infection model, and antifungal drug tolerance in C. lusitaniae. To further examine the potential of targeting the calcineurin signaling cascade for antifungal drug development, we examined the activity of a calcineurin inhibitor FK506 in combination with caspofungin against echinocandin resistant C. lusitaniae clinical isolates. Broth microdilution and drug disk diffusion assays demonstrate that FK506 has synergistic fungicidal activity with caspofungin against echinocandin resistant isolates. Our findings reveal that pseudohyphal growth is controlled by the calcineurin signaling cascade, and highlight the potential use of calcineurin inhibitors and caspofungin for emerging drug-resistant C. lusitaniae infections. PMID:22952924
Malca-García, G.; Glenn, A.; Sharon, D.; Chait, G.; Díaz, D.; Pourmand, K.; Jonat, B.; Somogy, S.; Guardado, G.; Aguirre, C.; Chan, R.; Meyer, K.; Kuhlman, A.; Townesmith, A.; Effio-Carbajal, J.; Frías-Fernandez, F.; Benito, M.
2010-01-01
Aim The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as “inflammation”. The aim of this study was to evaluate the Minimum Inhibitory Concentration (MIC) of their antibacterial properties against Gram-positive and Gram-negative bacteria. Materials and methods The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. Results The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against E. coli and 38 extracts against S. aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256mg/ml, with only 36 species showing inhibitory concentrations of <4mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. Conclusions The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. PMID:20678568
Carezzano, M E; Sotelo, J P; Primo, E; Reinoso, E B; Paletti Rovey, M F; Demo, M S; Giordano, W F; Oliva, M de Las M
2017-07-01
Pseudomonas syringae is a phytopathogenic bacterium that causes lesions in leaves during the colonisation process. The damage is associated with production of many virulence factors, such as biofilm and phytotoxins. The essential oils of Thymus vulgaris (thyme) and Origanum vulgare (oregano) have been demonstrated to inhibit P. syringae. The aim of this study was to investigate the effects of T. vulgaris and O. vulgare essential oils on production of virulence factors of phytopathogenic P. syringae strains, including anti-biofilm and anti-toxins activities. The broth microdilution method was used for determination of MIC and biofilm inhibition assays. Coronatine, syringomycin and tabtoxin were pheno- and genotypically evaluated. Both oils showed good inhibitory activity against P. syringae, with MIC values from 1.43 to 11.5 mg·ml -1 for thyme and 5.8 to 11.6 mg·ml -1 for oregano. Biofilm formation, production of coronatine, syringomycin and tabtoxin were inhibited by thyme and oregano essential oil in most strains. The results presented here are promising, demonstrating the bactericidal activity and reduction of virulence factor production after treatment with thyme and oregano oil, providing insight into how they exert their antibacterial activity. These natural products could be considered in the future for the control of diseases caused by P. syringae. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Brilhante, Raimunda Sâmia Nogueira; Oliveira, Jonathas Sales de; Evangelista, Antônio José de Jesus; Serpa, Rosana; Silva, Aline Lobão da; Aguiar, Felipe Rodrigues Magalhães de; Pereira, Vandbergue Santos; Castelo-Branco, Débora de Souza Collares Maia; Pereira-Neto, Waldemiro Aquino; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha
2016-08-30
The aim of this study was to evaluate the in vitro hemolytic activity and biofilm antifungal susceptibility of veterinary and human Candida tropicalis strains, as well as their pathogenesis against Caenorhabditis elegans. Twenty veterinary isolates and 20 human clinical isolates of C. tropicalis were used. The strains were evaluated for their hemolytic activity and biofilm production. Biofilm susceptibility to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin was assessed using broth microdilution assay. The in vivo evaluation of strain pathogenicity was investigated using the nematode C. elegans. Hemolytic factor was observed in 95% of the strains and 97.5% of the isolates showed ability to form biofilm. Caspofungin and amphotericin B showed better results than azole antifungals against mature biofilms. Paradoxical effect on mature biofilm metabolic activity was observed at elevated concentrations of caspofungin (8-64μg/mL). Azole antifungals were not able to inhibit mature C. tropicalis biofilms, even at the higher tested concentrations. High mortality rates of C. elegans were observed when the worms were exposed to with C. tropicalis strains, reaching up to 96%, 96h after exposure of the worms to C. tropicalis strains. These results reinforce the high pathogenicity of C. tropicalis from veterinary and human sources and show the effectiveness of caspofungin and amphotericin B against mature biofilms of this species. Copyright © 2016 Elsevier B.V. All rights reserved.
Bussmann, R W; Malca-García, G; Glenn, A; Sharon, D; Chait, G; Díaz, D; Pourmand, K; Jonat, B; Somogy, S; Guardado, G; Aguirre, C; Chan, R; Meyer, K; Kuhlman, A; Townesmith, A; Effio-Carbajal, J; Frías-Fernandez, F; Benito, M
2010-10-28
The plant species reported here are traditionally used in Northern Peru to treat bacterial infections, often addressed by the local healers as "inflammation". The aim of this study was to evaluate the minimum inhibitory concentration (MIC) of their antibacterial properties against gram-positive and gram-negative bacteria. The antimicrobial activity of ethanolic and water extracts of 141 plant species was determined using a deep-well broth microdilution method on commercially available bacterial strains. The ethanolic extracts of 51 species inhibited Escherichia coli, and 114 ethanolic extracts inhibited Staphylococcus aureus. In contrast, only 30 aqueous extracts showed activity against Escherichia coli and 38 extracts against Staphylococcus aureus. The MIC concentrations were mostly very high and ranged from 0.008 to 256 mg/ml, with only 36 species showing inhibitory concentrations of <4 mg/ml. The ethanolic extracts exhibited stronger activity and a much broader spectrum of action than the aqueous extracts. Hypericum laricifolium, Hura crepitans, Caesalpinia paipai, Cassia fistula, Hyptis sidifolia, Salvia sp., Banisteriopsis caapi, Miconia salicifolia and Polygonum hydropiperoides showed the lowest MIC values and would be interesting candidates for future research. The presence of antibacterial activity could be confirmed in most species used in traditional medicine in Peru which were assayed in this study. However, the MIC for the species employed showed a very large range, and were mostly very high. Nevertheless, traditional knowledge might provide some leads to elucidate potential candidates for future development of new antibiotic agents. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
de Annunzio, Sarah Raquel; de Freitas, Laura Marise; Blanco, Ana Lígia; da Costa, Mardoqueu Martins; Carmona-Vargas, Christian C; de Oliveira, Kleber Thiago; Fontana, Carla Raquel
2018-01-01
Bacterial resistance to available antibiotics nowadays is a global threat leading researchers around the world to study new treatment modalities for infections. Antimicrobial photodynamic therapy (aPDT) has been considered an effective and promising therapeutic alternative in this scenario. Briefly, this therapy is based on the activation of a non-toxic photosensitizing agent, known as photosensitizer (PS), by light at a specific wavelength generating cytotoxic singlet oxygen and free radicals. Virtually all studies related to aPDT involve a huge screening to identify ideal PS concentration and light dose combinations, a laborious and time-consuming process that is hardly disclosed in the literature. Herein, we describe an antimicrobial Photodynamic Therapy (aPDT) study against Enterococcus faecalis and Propionibacterium acnes employing methylene blue, chlorin-e6 or curcumin as PS. Similarities and discrepancies between the two bacterial species were pointed out in an attempt to speed up and facilitate futures studies against those clinical relevant strains. Susceptibility tests were performed by the broth microdilution method. Our results demonstrate that aPDT mediated by the three above-mentioned PS was effective in eliminating both gram-positive bacteria, although P. acnes showed remarkably higher susceptibility to aPDT when compared to E. faecalis. PS uptake assays revealed that P. acnes is 80 times more efficient than E. faecalis in internalizing all three PS molecules. Our results evidence that the cell wall structure is not a limiting feature when predicting bacterial susceptibility to aPDT treatment. Copyright © 2017. Published by Elsevier B.V.
Diniz-Silva, Helena Taina; Cirino, Isis Caroline da Silva; Falcão-Silva, Vivyanne Dos Santos; Magnani, Marciane; de Souza, Evandro Leite; Siqueira-Júnior, José P
2016-01-01
Tannins have shown inhibitory effects against pathogenic bacteria, and these properties make tannins potential modifying agents in bacterial resistance. The minimum inhibitory concentration (MIC) of tannic acid (TA), gallic acid (GA) and norfloxacin (Nor) against Staphylococcus aureus SA-1119 (NorA-effluxing strain) was determined using broth microdilution tests. To assess the modulation of antibiotic resistance, the MIC of Nor was determined in growth media with or without TA or GA at a subinhibitory concentration (1/4 MIC). The checkerboard method was performed to obtain the fractional inhibitory concentration index (FICI) for the combined application of TA and Nor. TA displayed a weak inhibitory effect (MIC 512 μg/ml) against S. aureus SA-1119, while no inhibitory effect was displayed by GA (MIC >512 μg/ml). However, when TA was tested at a subinhibitory concentration in combination with Nor, the MIC of Nor against S. aureus SA-1119 decreased from 128 to 4 μg/ml (32-fold); this effect was not observed for GA. In the checkerboard assay, the MIC of TA and Nor decreased from 512 to 128 μg/ml (4-fold) and from 128 to 8 μg/ml (16-fold), respectively. The combination of TA and Nor presented an FICI as low as 0.31, which indicates a synergistic interaction. TA is a potential agent for increasing the clinical efficacy of Nor to control resistant S. aureus. © 2016 S. Karger AG, Basel.
Simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species.
Brilhante, Raimunda Sâmia Nogueira; Caetano, Erica Pacheco de; Oliveira, Jonathas Sales; Castelo-Branco, Débora de Souza Collares Maia; Souza, Elizabeth Ribeiro Yokobatake; Alencar, Lucas Pereira de; Cordeiro, Rossana de Aguiar; Bandeira, Tereza de Jesus Pinheiro Gomes; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha
2015-01-01
The antifungal activity of some statins against different fungal species has been reported. Thus, at the first moment, the in vitro antifungal activity of simvastatin, atorvastatin and pravastatin was tested against Candida spp. and Cryptococcus spp. Then, in a second approach, considering that the best results were obtained for simvastatin, this drug was evaluated in combination with antifungal drugs against planktonic growth and tested against biofilms of Candida spp. and Cryptococcus spp. Drug susceptibility testing was performed using the microdilution broth method, as described by the Clinical and Laboratory Standards Institute. The interaction between simvastatin and antifungals against planktonic cells was analyzed by calculating the fractional inhibitory concentration index. Regarding biofilm susceptibility, simvastatin was tested against growing biofilm and mature biofilm of one strain of each tested yeast species. Simvastatin showed inhibitory effect against Candida spp. and Cryptococcus spp. with minimum inhibitory concentration values ranging from 15.6 to 1000 mg L(-1) and from 62.5 to 1000 mg L(-1), respectively. The combination of simvastatin with itraconazole and fluconazole showed synergism against Candida spp. and Cryptococcus spp., while the combination of simvastatin with amphotericin B was synergistic only against Cryptococcus spp. Concerning the biofilm assays, simvastatin was able to inhibit both growing biofilm and mature biofilm of Candida spp. and Cryptococcus spp. The present study showed that simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species. Copyright © 2015 Elsevier Editora Ltda. All rights reserved.
Antimicrobial Activities and Time-Kill Kinetics of Extracts of Selected Ghanaian Mushrooms
Appiah, Theresa; Boakye, Yaw Duah
2017-01-01
The rapid rise of antimicrobial resistance is a worldwide problem. This has necessitated the need to search for new antimicrobial agents. Mushrooms are rich sources of potential antimicrobial agents. This study investigated the antimicrobial properties of methanol extracts of Trametes gibbosa, Trametes elegans, Schizophyllum commune, and Volvariella volvacea. Agar well diffusion, broth microdilution, and time-kill kinetic assays were used to determine the antimicrobial activity of the extracts against selected test organisms. Preliminary mycochemical screening revealed the presence of tannins, flavonoids, triterpenoids, anthraquinones, and alkaloids in the extracts. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea showed mean zone of growth inhibition of 10.00 ± 0.0 to 21.50 ± 0.84, 10.00 ± 0.0 to 22.00 ± 1.10, 9.00 ± 0.63 to 21.83 ± 1.17, and 12.00 ± 0.0 to 21.17 ± 1.00 mm, respectively. The minimum inhibitory concentration of methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea ranged from 4.0 to 20, 6.0 to 30.0, 8.0 to 10.0, and 6.0 to 20.0 mg/mL, respectively. Time-kill kinetics studies showed that the extracts possess bacteriostatic action. Methanol extracts of T. gibbosa, T. elegans, S. commune, and V. volvacea exhibited antimicrobial activity and may contain bioactive compounds which may serve as potential antibacterial and antifungal agents. PMID:29234399
Argueta-Figueroa, Liliana; Delgado-García, José J; García-Contreras, René; Martínez-Alvarez, Omar; Santos-Cruz, José; Oliva-Martínez, Carlos; Acosta-Torres, Laura S; de la Fuente-Hernández, Javier; Arenas-Arrocena, Ma C
2018-06-01
The purpose of this study was to characterize mineral trioxide aggregates (MTA) enriched with iron disulfide (FeS 2 ) nanostructures at different concentrations, and to investigate their storage modulus, radiopacity, setting time, pH, cytotoxicity, and antimicrobial activity. Iron disulfide nanostructures [with particle size of 0.357 ± 0.156 μm (mean ± SD)] at weight ratios of 0.2, 0.4, 0.6, 0.8, and 1.0 wt% were added to white MTA (wMTA). The radiopacity, rheological properties, setting time, and pH, as well as the cytotoxicity (assessed using the MTT assay) and antibacterial activity (assessed using the broth microdilution test) were determined for MTA/FeS 2 nanostructures. The nanostructures did not modify the radiopacity values of wMTA (~6 mm of aluminium); however, they reduced the setting time from 18.2 ± 3.20 min to 13.7 ± 1.8 min, and the storage modulus was indicative of a good stiffness. Whereas the wMTA/FeS 2 nanostructures did not induce cytotoxicity when in contact with human pulp cells (HPCs) and human gingival fibroblasts (HGFs), they showed bacteriostatic activity against Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis. Adding FeS 2 nanostructures to MTA might be an option for improving the root canal sealing and antibacterial effects of wMTA in endodontic treatments. © 2018 Eur J Oral Sci.
Tortorano, Anna Maria; Prigitano, Anna; Biraghi, Emanuela; Viviani, Maria Anna
2005-10-01
To investigate the in vitro antifungal susceptibility pattern of 375 Candida albicans bloodstream isolates recovered during the European Confederation of Medical Mycology survey of candidaemia performed in Lombardia, Italy and to test the ability to form biofilm. In vitro susceptibility to flucytosine, fluconazole, itraconazole, posaconazole, voriconazole and caspofungin was performed by broth microdilution following the NCCLS guidelines. Biofilm production was measured using the XTT reduction assay in 59 isolates selected as representative of different patterns of susceptibility to flucytosine and azoles. MICs (mg/L) at which 90% of the strains were inhibited were < or =0.25 for flucytosine, 0.25 for caspofungin, 4 for fluconazole and 0.06 for itraconazole, voriconazole and posaconazole. Flucytosine resistance was detected in five isolates and was associated with serotype B in 2/29 and serotype A in 3/346. Resistance to fluconazole was detected in 10 isolates; nine of these exhibited reduced susceptibility to the other azoles. Among the 10 patients with fluconazole-resistant C. albicans bloodstream infection, only one, an AIDS patient, had been previously treated with fluconazole. Biofilm production was observed in 23 isolates (39%) and was significantly associated with serotype B. No relationship was detected with the pattern of antifungal susceptibility. Resistance is uncommon in C. albicans isolates recovered from blood cultures, while biofilm production is a relatively frequent event. Periodic surveillance is warranted to monitor the incidence of in vitro antifungal resistance as well as of biofilm production.
NASA Technical Reports Server (NTRS)
Vellend, H.; Tuttle, S. A.; Barza, M.; Weinstein, L.; Picciolo, G. L.; Chappelle, E. W.
1975-01-01
Luciferase assay for adenosine triphosphate (ATP) was optimized for pure bacteria in broth in order to evaluate if changes in bacterial ATP content could be used as a rapid measure of antibiotic effect on microorganisms. Broth cultures of log phase bacteria were incubated at 310 K (37 C) for 2.5 hours at antimicrobial concentrations which resulted in the best discrimination between sensitive and resistant strains. Eighty-seven strains of 11 bacterial species were studied for their susceptibility to 12 commonly used antimicrobial agents: ampicillin, Penicillin G, nafcillin, carbenicillin, cephalothin, tetracycline, erythromycin, clindamycin, gentamicin, nitrofurantoin, colistin, and chloramplenicol. The major advantage of the ATP system over existing methods of rapid microbial susceptibility testing is that the assay can be made specific for bacterial ATP.
Lee, Seungok; Park, Yeon-Joon; Park, Kang-Gyun; Jekarl, Dong Wook; Chae, Hyojin; Yoo, Jin-Kyung; Seo, Sin Won; Choi, Jung Eun; Lim, Jung Hye; Heo, Seon Mi; Seo, Ju Hee
2013-07-01
We evaluated the performance of three chromogenic media (Brilliance agar I [Oxoid, UK], Brilliance agar II [Oxoid], and ChromID MRSA [Biomérieux, France]) combined with broth enrichment and the Xpert MRSA assay for screening of methicillin-resistant Staphylococcus aureus (MRSA). We obtained 401 pairs of duplicate nasal swabs from 321 patients. One swab was suspended overnight in tryptic soy broth; 50-µL aliquots of suspension were inoculated on the three chromogenic media. Brilliance agar I and II were examined after 24 hr, and ChromID MRSA, after 24 and 48 hr. The paired swab was processed directly using real-time PCR-based Xpert MRSA assay. True positives, designated as MRSA growth in any of the culture media, were detected with the prevalence of 17% in our institution. We report the sensitivity, specificity, positive predictive value, and negative predictive value of MRSA growth as follows: 92.3%, 94.0%, 75.9%, and 98.4% in Brilliance agar I (24 hr); 92.7%, 97.9%, 90.0%, and 98.5% in Brilliance agar II (24 hr); 95.6%, 95.8%, 82.3%, and 99.1% in ChromID MRSA (24 hr); 100%, 92.5%, 73.1%, and 100% in ChromID MRSA (48 hr); 92.6%, 96.7%, 85.1%, and 98.5% in Xpert MRSA assay. The agreement between the enriched culture and Xpert MRSA assay was 96.0%. Three chromogenic culture media combined with enrichment and Xpert MRSA assay demonstrated similar capabilities in MRSA detection. The Xpert MRSA assay yielded results comparable to those of culture methods, saving 48-72 hr, thus facilitating earlier detection of MRSA in healthcare settings.
Dzoyem, Jean Paul; Kuete, Victor; McGaw, Lyndy J; Eloff, Jacobus N
2014-10-28
Culinary herbs and spices are widely used ethnomedically across Africa. They are traditionally employed in the treatment of several ailments including inflammation disorders, pain alleviation and infectious diseases. Pharmacological studies are necessary to provide a scientific basis to substantiate their traditional use and safety. In this study, the 15-lipoxygenase inhibitory, antioxidant, antimycobacterial and the cytotoxic activities, total phenolic and flavonoid contents of fourteen edible plants were investigated. The 15-lipoxygenase inhibitory activity was evaluated by the ferrous oxidation-xylenol orange (FOX) assay method. The antioxidant activity was determined using free-radical scavenging assays. The antimycobacterial activity was determined by a broth microdilution method against three species of mycobacteria: Mycobacterium smegmatis, Mycobacterium aurum and Mycobacterium fortuitum using tetrazolium violet as growth indicator. The cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on Vero monkey kidney cells. All the extracts tested had some 15-lipoxygenase inhibitory activity ranging from 32.9 to 78.64%. Adansonia digitata (fruit) had the highest antioxidant capacity (IC₅₀ values of 8.15 μg/mL and 9.16 μg/mL in the DPPH and ABTS assays respectively; TEAC of 0.75 in the FRAP assay) along with the highest amount of total phenolics (237.68 mg GAE/g) and total flavonoids (16.14 mg E/g). There were good correlations between DPPH and ABTS values (R(2) 0.98) and between total phenolics and total flavonoids (R(2) 0.94). Tamarindus indica had significant antimycobacterial activity against Mycobacterium aurum (MIC 78 μg/mL). As could be expected with edible plants, all the extracts had a relatively low cytotoxicity with LC₅₀ values higher than 102 μg/mL with the exception of the two Aframomum species (33 and 74 μg/mL). This study provides scientific support for some of the the traditional uses and the pharmacological activities of the culinary herbs and spices investigated. The results suggest that increasing intake of some of these herbs may be useful in preventing or reducing the progression of lifestyle-related diseases. The diversity of the pharmacological activities of the extract from the fruit of Adansonia digitata suggested that this plant might be valuable for application in human and animal health. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Montague, Naomi S; Cleary, Timothy J; Martinez, Octavio V; Procop, Gary W
2008-10-01
The sensitivity, specificity, and positive and negative predictive values for the detection of group B streptococci from Lim enrichment broth with sheep blood agar (SBA), with selective Streptococcus agar (SSA), and by a peptide nucleic acid fluorescent in situ hybridization (PNA FISH) assay were as follows: for culture on SBA, 68.4%, 100%, 100%, and 87.9%, respectively; for culture on SSA, 85.5%, 100%, 100%, and 94.1%, respectively; and for the PNA FISH assay, 97.4%, 98.3%, 96.1%, and 98.9%, respectively.
Montague, Naomi S.; Cleary, Timothy J.; Martinez, Octavio V.; Procop, Gary W.
2008-01-01
The sensitivity, specificity, and positive and negative predictive values for the detection of group B streptococci from Lim enrichment broth with sheep blood agar (SBA), with selective Streptococcus agar (SSA), and by a peptide nucleic acid fluorescent in situ hybridization (PNA FISH) assay were as follows: for culture on SBA, 68.4%, 100%, 100%, and 87.9%, respectively; for culture on SSA, 85.5%, 100%, 100%, and 94.1%, respectively; and for the PNA FISH assay, 97.4%, 98.3%, 96.1%, and 98.9%, respectively. PMID:18667597
Kumar, Peeyush; Mishra, Sapna; Kumar, Atul; Kumar, Sanjeev; Prasad, Chandra Shekhar
2017-09-01
Contamination of environment and food from the prevalent spores and mycotoxins of Aspergillus niger has led to several diseases in humans and other animals. The present study investigated the control activity of plant essential oils against three strains of A. niger. In the elaborate assays done through microdilution plate assay and agar disk diffusion assay in the lab condition and in vivo assay on the stored wheat grains, the essential oil of Thymus vulgaris depicted overall superior efficacy. In microdilution plate assay, the oil of Anethum graveolens showed best fungistatic activity, while best fungicidal activity was depicted by Syzygium aromaticum oil. The oil of T. vulgaris showed moderate control efficacy against A. niger strains with its antifungal activity resulting mainly due to killing of microorganism rather than growth inhibition. In agar disk diffusion assay, T. vulgaris oil with a zone of inhibition (ZOI) of 23.3-61.1% was the most effective fungicide. The in vivo assay to evaluate the protection efficacy of oils for stored wheat grains against A. niger (AN1) revealed T. vulgaris (90.5-100%) to be the best control agent, followed by the oil of S. aromaticum (61.9-100%). The GC-MS analysis of T. vulgaris oil indicated the presence of thymol (39.11%), γ-terpinene (19.73%), o-cymene (17.21%), and β-pinene (5.38%) as major oil components. Phytotoxic effects of the oils on wheat seeds showed no significant phytotoxic effect of oils in terms of seed germination or seedling growth. The results of the study demonstrated control potentiality of essential oils for the protection of stored wheat against A. niger with prospect for development of eco-friendly antifungal products.
Zuo, Guo-Ying; Zhang, Xin-Juan; Yang, Cui-Xian; Han, Jun; Wang, Gen-Chun; Bian, Zhong-Qi
2012-03-09
The in vitro antimicrobial activities of 30 Chinese medicinal plants were evaluated with reference to the treatment record of infectious diseases in the Traditional Chinese Medicine (TCM) literature. The plant materials were extracted with 80% ethanol and the extracts were primarily screened against conventional clinical pathogens like Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans by the agar diffusion method. Their inhibition zone diameters (IZDs, mm, 50 mg/mL) ranged from 2,048 by the standard broth microdilution method. The seven extracts from M. yunnanensis, S. sinensis, G. morella, E. daneillii, M. squamulata, S. arborescens and B. hancei were determined as the most active extracts, with MICs of 8-64 μg/mL. The results were in good agreement with their traditional applications in skin and other infections.
NASA Astrophysics Data System (ADS)
Özdemir (nee Güngör), Özlem; Gürkan, Perihan; Özçelik, Berrin; Oyardı, Özlem
2016-02-01
Novel β-lactam derivatives (1c-3c) (1d-3d) were produced by using 6-aminopenicillanic acid (6-APA), 7-aminocephalosporanic acid (7-ACA) and the higher amino acid Schiff bases. The synthesized compounds were characterized by elemental analysis, IR, 1H/13C NMR and UV-vis spectra. Antibacterial activities of all the higher amino acid Schiff bases (1a-3a) (1b-3b) and β-lactam derivatives were screened against three gram negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii RSKK 02026), three gram positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 07005, Bacillus subtilis ATCC 6633) and their drug-resistant isolates by using broth microdilution method. Two fungi (Candida albicans and Candida krusei) were used for antifungal activity.
Composition and antimicrobial activity of Marrubium incanum Desr. (Lamiaceae) essential oil.
Petrović, Silvana; Pavlović, Milica; Maksimović, Zoran; Milenković, Marina; Couladis, Maria; Tzakouc, Olga; Niketić, Marjan
2009-03-01
The essential oil from the aerial parts of Marrubium incanum Desr. (Lamiaceae), obtained by hydrodistillation, was analyzed by GC and GC-MS. Forty-six compounds were identified, representing 96.3% of the total oil. The main components of the oil were (E)-caryophyllene (27.0%), germacrene D (26.2%) and bicyclogermacrene (11.5%). The microbial growth inhibitory properties of the isolated essential oil were determined using the agar diffusion and broth microdilution method against seven bacterial species (Staphylococcus aureus ATCC 25923, S. epidermidis ATCC 12228, Micrococcus flavus ATCC 10240, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Klebsiella pneumoniae NCIMB 9111, and Pseudomonas aeruginosa ATCC 27853), and two strains of the yeast Candida albicans (ATCC 10259 and ATCC24433). The essential oil showed activity against all the microorganisms tested, but differences in microbial susceptibility were registered.
Sakata, Junko; Yonekita, Taro; Kawatsu, Kentaro
2018-01-02
Thermostable direct hemolysin (TDH) and TDH-related hemolysin (TRH) are major virulence factors of enteropathogenic Vibrio parahaemolyticus. TDH and TRH are bacterial exotoxins, and their presence in culture medium serves as a specific marker for detecting this significant pathogen. Here, we developed and evaluated an immunochromatographic assay (TDH/TRH-ICA) to simultaneously or individually detect TDH and TRH. The TDH/TRH-ICA detected TDH in all broth cultures of 47 V. parahaemolyticus strains carrying tdh. The genes encoding TRH are classified as variants trh1 and trh2, and TRH was detected in all broth cultures of 25 V. parahaemolyticus strains carrying trh1 and certain proportion (5/31) of broth cultures of V. parahaemolyticus strains carrying trh2. In contrast, TDH and TRH were not detected in broth cultures of 12 non-enteropathogenic V. parahaemolyticus strains without tdh and trh. It was difficult to detect TRH2 using the TDH/TRH-ICA. However, TRH2 may not serve as a suitable marker for detecting enteropathogenic V. parahaemolyticus, and evidence indicates that TRH2 may not contribute to enteropathogenesis. Further, a screening method using a combination of TDH/TRH-ICA and SPP medium supplemented with 1.5% NaCl (modified-SPP medium) detected oyster samples artificially spiked with 1.1-22 colony-forming units of enteropathogenic V. parahaemolyticus per 25g of oysters within approximately 8.5h, including the enrichment culture. The assay may serve as a method that facilitates the rapid and easy detection of raw oysters contaminated with enteropathogenic V. parahaemolyticus. Copyright © 2017. Published by Elsevier B.V.
Qian, Qinfang; Venkataraman, Lata; Kirby, James E; Gold, Howard S; Yamazumi, Toshiaki
2010-04-01
We studied the utility of performing a penicillin binding protein 2a latex agglutination (PBP-LA) assay directly on Bactec blood culture broth samples containing Staphylococcus aureus to rapidly detect methicillin resistance. The sensitivity, specificity, positive predictive value, and negative predictive value of this method were 94.1%, 97.5%, 98%, and 92.9%, respectively.
Anti-inflammatory, antioxidant, and antimicrobial activities of Cocos nucifera var. typica
2013-01-01
Background Teas from the husk fiber of Cocos nucifera are used in the folk medicine to treat arthritis and other inflammatory processes. Some works show that some varieties have biological activities. However, one of the main variety of the species, C. nucifera var. typica, known in Brazil as “gigante”, was not studied yet. Thus, this study evaluates if this variety has the anti-inflammatory and antimicrobial activities already reported in other varieties. Methods C. nucifera aqueous crude extract (10, 50, and 100 mg/kg) and the reference drugs morphine (1 mg/kg) and acetylsalicylic acid (100 mg/kg) were evaluated in models of inflammation (formalin-induced licking and subcutaneous air pouch). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) photometric assay and compared with those of the standards (quercetin, rutin, and ascorbic acid). The extract was also screened against Candida albicans, Escherichia coli, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus (MRSA), in the agar diffusion method. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the broth micro-dilution assay. Activities of combinations of the extract and antibiotics (methicillin or vancomycin) against MRSA were evaluated using checkerboard assays. Results The extract significantly inhibited the time that the animals spent licking the formalin-injected paws (second phase). The extract also inhibited the inflammatory process induced by subcutaneous carrageenan injection by reducing cell migration, protein extravasation, and TNF-α production. Additionally, the extract showed an antioxidant potential in vitro as good as standards in their antioxidant activity. The extract was active only against S. aureus and MRSA. MIC and the bactericidal concentrations were identical (1,024 μg/ml). The extract and methicillin acted synergistically against the clinical MRSA isolate, whereas an indifferent effect was detected when the extract was combined with vancomycin. Conclusions The extract exhibits anti-inflammatory activity through the inhibition of the cell migration. The mixture of extract constituents and methicillin could lead to the development of a new combination antibiotic against MRSA infections. PMID:23680079
Re-Examining the Role of Hydrogen Peroxide in Bacteriostatic and Bactericidal Activities of Honey
Brudzynski, Katrina; Abubaker, Kamal; St-Martin, Laurent; Castle, Alan
2011-01-01
The aim of this study was to critically analyze the effects of hydrogen peroxide on growth and survival of bacterial cells in order to prove or disprove its purported role as a main component responsible for the antibacterial activity of honey. Using the sensitive peroxide/peroxidase assay, broth microdilution assay and DNA degradation assays, the quantitative relationships between the content of H2O2 and honey’s antibacterial activity was established. The results showed that: (A) the average H2O2 content in honey was over 900-fold lower than that observed in disinfectants that kills bacteria on contact. (B) A supplementation of bacterial cultures with H2O2 inhibited E. coli and B. subtilis growth in a concentration-dependent manner, with minimal inhibitory concentrations (MIC90) values of 1.25 mM/107 cfu/ml and 2.5 mM/107 cfu/ml for E. coli and B. subtilis, respectively. In contrast, the MIC90 of honey against E. coli correlated with honey H2O2 content of 2.5 mM, and growth inhibition of B. subtilis by honey did not correlate with honey H2O2 levels at all. (C) A supplementation of bacterial cultures with H2O2 caused a concentration-dependent degradation of bacterial DNA, with the minimum DNA degrading concentration occurring at 2.5 mM H2O2. DNA degradation by honey occurred at lower than ≤2.5 mM concentration of honey H2O2 suggested an enhancing effect of other honey components. (D) Honeys with low H2O2 content were unable to cleave DNA but the addition of H2O2 restored this activity. The DNase-like activity was heat-resistant but catalase-sensitive indicating that H2O2 participated in the oxidative DNA damage. We concluded that the honey H2O2 was involved in oxidative damage causing bacterial growth inhibition and DNA degradation, but these effects were modulated by other honey components. PMID:22046173
Re-examining the role of hydrogen peroxide in bacteriostatic and bactericidal activities of honey.
Brudzynski, Katrina; Abubaker, Kamal; St-Martin, Laurent; Castle, Alan
2011-01-01
The aim of this study was to critically analyze the effects of hydrogen peroxide on growth and survival of bacterial cells in order to prove or disprove its purported role as a main component responsible for the antibacterial activity of honey. Using the sensitive peroxide/peroxidase assay, broth microdilution assay and DNA degradation assays, the quantitative relationships between the content of H(2)O(2) and honey's antibacterial activity was established(.) The results showed that: (A) the average H(2)O(2) content in honey was over 900-fold lower than that observed in disinfectants that kills bacteria on contact. (B) A supplementation of bacterial cultures with H(2)O(2) inhibited E. coli and B. subtilis growth in a concentration-dependent manner, with minimal inhibitory concentrations (MIC(90)) values of 1.25 mM/10(7) cfu/ml and 2.5 mM/10(7) cfu/ml for E. coli and B. subtilis, respectively. In contrast, the MIC(90) of honey against E. coli correlated with honey H(2)O(2) content of 2.5 mM, and growth inhibition of B. subtilis by honey did not correlate with honey H(2)O(2) levels at all. (C) A supplementation of bacterial cultures with H(2)O(2) caused a concentration-dependent degradation of bacterial DNA, with the minimum DNA degrading concentration occurring at 2.5 mM H(2)O(2). DNA degradation by honey occurred at lower than ≤2.5 mM concentration of honey H(2)O(2) suggested an enhancing effect of other honey components. (D) Honeys with low H(2)O(2) content were unable to cleave DNA but the addition of H(2)O(2) restored this activity. The DNase-like activity was heat-resistant but catalase-sensitive indicating that H(2)O(2) participated in the oxidative DNA damage. We concluded that the honey H(2)O(2) was involved in oxidative damage causing bacterial growth inhibition and DNA degradation, but these effects were modulated by other honey components.
Effect of beef broth protein on the thermal inactivation of staphylococcal enterotoxin B1.
Lee, I C; Stevenson, K E; Harmon, L G
1977-01-01
Enterotoxin B produced by Staphylococus aureus 243 in brain heart infusion broth was concentrated by dialysis against 40% polyethylene glycol (20 M), partially purified on a Sephadex G-100 column and heated at 110 degrees C in thermal death time cans. Various heating menstrua included 0.04 M Veronal buffer (pH 7.4), beef broth, and fractions of beef broth obtained by ultrafiltration or precipitation with ammonium sulfate. The toxin was assayed serologically using the microslide gel double-diffusion method. The time requiring for 90% inactivation at 110 degrees C (D110 value) obtained in buffer and in beef broth was 18 and 60 min, respectively. When the concentration of beef broth was increased fivefold, the D110 increased to 78 min. The apparent protective effect or protein was further investigated using beef broth protein obtained by precipitation with (NH4)2SO4. The D110 values were 51 and 70 min when the protein concentration in the heating menstruum was 3.8 and 7.7 mg/ml, respectively. However, when the beef broth protein was dialyzed against buffer before use as a heating menstrum, the D110 was only 39 or 41 min at comparable protein concentrations. Results indicated a dialyzable factor, whose protective effect was partially destroyed by trypsin and chymotrypsin but did not by disodium ethylenediaminetetraacetate, was involved in the protection of enterotoxin B during heating. PMID:403860
Tamokou, Jean de Dieu; Simo Mpetga, Deke James; Keilah Lunga, Paul; Tene, Mathieu; Tane, Pierre; Kuiate, Jules Roger
2012-07-18
Albizia adianthifolia is used traditionally in Cameroon to treat several ailments, including infectious and associated diseases. This work was therefore designed to investigate the antioxidant and antimicrobial activities of ethyl acetate extract, fractions and compounds isolated from the stem bark of this plant. The plant extract was prepared by maceration in ethyl acetate. Its fractionation was done by column chromatography and the structures of isolated compounds were elucidated using spectroscopic data in conjunction with literature data. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) and trolox equivalent antioxidant capacity (TEAC) assays were used to detect the antioxidant activity. Broth micro-dilution method was used for antimicrobial test. Total phenol content was determined spectrophotometrically in the extracts by using Folin-Ciocalteu method. The fractionation of the extract afforded two known compounds: lupeol (1) and aurantiamide acetate (2) together with two mixtures of fatty acids: oleic acid and n-hexadecanoic acid (B₁); n-hexadecanoic acid, octadecanoic acid and docosanoic acid (B₂). Aurantiamide acetate was the most active compound. The total phenol concentration expressed as gallic acid equivalents (GAE) was found to vary from 1.50 to 13.49 μg/ml in the extracts. The antioxidant activities were well correlated with the total phenol content (R² = 0.946 for the TEAC method and R² = 0.980 for the DPPH free-radical scavenging assay). Our results clearly reveal that the ethyl acetate extract from the stem bark of A. adianthifolia possesses antioxidant and antimicrobial principles. The antioxidant activity of this extract as well as that of compound 2 are being reported herein for the first time. These results provide promising baseline information for the potential use of this plant as well as compound 2 in the treatment of oxidative damage and infections associated with the studied microorganisms.
Sued, Bruna Pinto Ribeiro; Pereira, Paula Marcele Afonso; Faria, Yuri Vieira; Ramos, Juliana Nunes; Binatti, Vanessa Batista; Santos, Kátia Regina Netto Dos; Seabra, Sérgio Henrique; Hirata, Raphael; Vieira, Verônica Viana; Mattos-Guaraldi, Ana Luíza; Pereira, José Augusto Adler
2017-03-01
The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced biofilm formation by an ORSH strain on polystyrene. Sphygmomanometers and thermometers are fomites for the transmission of ORSH. A sub-lethal dose of vancomycin may favor biofilm formation by ORSH on fomites and catheter surfaces.
Sued, Bruna Pinto Ribeiro; Pereira, Paula Marcele Afonso; Faria, Yuri Vieira; Ramos, Juliana Nunes; Binatti, Vanessa Batista; dos Santos, Kátia Regina Netto; Seabra, Sérgio Henrique; Hirata, Raphael; Vieira, Verônica Viana; Mattos-Guaraldi, Ana Luíza; Pereira, José Augusto Adler
2017-01-01
BACKGROUND The association between Staphylococcus haemolyticus and severe nosocomial infections is increasing. However, the extent to which fomites contribute to the dissemination of this pathogen through patients and hospital wards remains unknown. OBJECTIVES In the present study, sphygmomanometers and thermometers were evaluated as potential fomites of oxacillin-resistant S. haemolyticus (ORSH). The influence of oxacillin and vancomycin on biofilm formation by ORSH strains isolated from fomites was also investigated. METHODS The presence of ORSH on swabs taken from fomite surfaces in a Brazilian hospital was assessed using standard microbiological procedures. Antibiotic susceptibility profiles were determined by the disk diffusion method, and clonal distribution was assessed in pulsed-field gel electrophoresis (PFGE) assays. Minimum inhibitory concentrations (MICs) of oxacillin and vancomycin were evaluated via the broth microdilution method. Polymerase chain reaction (PCR) assays were performed to detect the mecA and icaAD genes. ORSH strains grown in media containing 1/4 MIC of vancomycin or oxacillin were investigated for slime production and biofilm formation on glass, polystyrene and polyurethane catheter surfaces. FINDINGS ORSH strains comprising five distinct PFGE types were isolated from sphygmomanometers (n = 5) and a thermometer (n = 1) used in intensive care units and surgical wards. ORSH strains isolated from fomites showed susceptibility to only linezolid and vancomycin and were characterised as multi-drug resistant (MDR). Slime production, biofilm formation and the survival of sessile bacteria differed and were independent of the presence of the icaAD and mecA genes, PFGE type and subtype. Vancomycin and oxacillin did not inhibit biofilm formation by vancomycin-susceptible ORSH strains on abiotic surfaces, including on the catheter surface. Enhanced biofilm formation was observed in some situations. Moreover, a sub-lethal dose of vancomycin induced biofilm formation by an ORSH strain on polystyrene. MAIN CONCLUSIONS Sphygmomanometers and thermometers are fomites for the transmission of ORSH. A sub-lethal dose of vancomycin may favor biofilm formation by ORSH on fomites and catheter surfaces. PMID:28225903
Valle, Demetrio L.; Cabrera, Esperanza C.; Puzon, Juliana Janet M.; Rivera, Windell L.
2016-01-01
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria. PMID:26741962
Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L
2016-01-01
Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.
Altintas, Ayhan; Tabanca, Nurhayat; Tyihák, Erno; Ott, Peter G; Móricz, Agnes M; Mincsovics, Emil; Wedge, David E
2013-01-01
Essential oils obtained by hydrodistillation (HD) and microwave-assisted HD (MWHD) of Origanum onites aerial parts were analyzed by GC and GCIMS. Thirty-one constituents representing 98.6% of the water-distilled oil and 52 constituents representing 99.6% of the microwave-distilled oil were identified. Carvacrol (76.8% HD and 79.2% MWHD) and thymol (4.7% HD and 4.4% MWHD) were characterized as major constituents in both essential oils. Separation of carvacrol and thymol was achieved by overpressured layer chromatography. HPTLC and TLC separations were also compared. Essential oils were evaluated for antifungal activity against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae, and C. gloeosporioides using a direct overlay bioautography assay. Furthermore, main oil components carvacrol and thymol were then evaluated for antifungal activity; only carvacrol demonstrated nonselective antifungal activity against the three Colletotrichum species. Thymol and carvacrol were subsequently evaluated in a 96-well microdilution broth assay against Phomopsis obscurans, Fusarium oxysporum, three Colletotrichum species, and Botrytis cinerea. No activity was observed against any of the three Colletotrichum species at or below 30 pM. However, thymol demonstrated antifungal activity and produced 31.7% growth inhibition of P. obscurans at 120 h and 0.3 pM, whereas carvacrol appeared inactive. Thymol and carvacrol at 30 pM showed 51.5 and 36.9% growth inhibition of B. cinerea at 72 h. The mechanism of antibacterial activity was studied in a bioautography-based BioArena system. Thymol and carvacrol showed similar inhibition/killing effect against Bacillus subtilis soil bacteria; the action could be enhanced by the formaldehyde generator and transporter copper (II) ions and could be decreased in the presence of L-arginine, a formaldehyde capturer. Results indicated that Origanum essential oils and its major components thymol and carvacrol appear to generate antimicrobial activity through a mechanism of action where formaldehyde and its reaction products are produced.
Öz, Yasemin; Özdemir, Havva Gül; Gökbolat, Egemen; Kiraz, Nuri; Ilkit, Macit; Seyedmousavi, Seyedmojtaba
2016-04-01
Aspergillus species can cause ocular morbidity and blindness, and thus, appropriate antifungal therapy is needed. We investigated the in vitro activity of itraconazole, voriconazole, posaconazole, caspofungin, anidulafungin, and amphotericin B against 14 Aspergillus isolates obtained from patients with ocular mycoses, using the CLSI reference broth microdilution methodology. In addition, time-kill assays were performed, exposing each isolate separately to 1-, 4-, and 16-fold concentrations above the minimum inhibitory concentration (MIC) of each antifungal agent. A sigmoid maximum-effect (E max) model was used to fit the time-kill curve data. The drug effect was further evaluated by measuring an increase/decrease in the killing rate of the tested isolates. The MICs of amphotericin B, itraconazole, voriconazole, and posaconazole were 0.5-1.0, 1.0, 0.5-1.0, and 0.25 µg/ml for A. brasiliensis, A. niger, and A. tubingensis isolates, respectively, and 2.0-4.0, 0.5, 1.0 for A. flavus, and 0.12-0.25 µg/ml for A. nomius isolates, respectively. A. calidoustus had the highest MIC range for the azoles (4.0-16.0 µg/ml) among all isolates tested. The minimum effective concentrations of caspofungin and anidulafungin were ≤0.03-0.5 µg/ml and ≤0.03 µg/ml for all isolates, respectively. Posaconazole demonstrated maximal killing rates (E(max) = 0.63 h(-1), r(2) = 0.71) against 14 ocular Aspergillus isolates, followed by amphotericin B (E(max) = 0.39 h(-1), r(2) = 0.87), voriconazole (E(max) = 0.35 h(-1), r(2) = 0.098), and itraconazole (E(max) = 0.01 h(-1), r(2) = 0.98). Overall, the antifungal susceptibility of the non-fumigatus Aspergillus isolates tested was species and antifungal agent dependent. Analysis of the kinetic growth assays, along with consideration of the killing rates, revealed that posaconazole was the most effective antifungal against all of the isolates.
Isa, Adamu Imam; Awouafack, Maurice Ducret; Dzoyem, Jean Paul; Aliyu, Mohammed; Magaji, Rabiu AbduSsalam; Ayo, Joseph Olusegun; Eloff, Jacobus Nicolaas
2014-11-27
Strychnos spinosa Lam. is a deciduous tree used in traditional medicine to treat infectious diseases. This study is designed to determine the antimicrobial, antioxidant and cytotoxic activities of extracts and fractions from leaves of S. spinosa. Extracts were obtained by maceration with acetone, methanol and dichloromethane/methanol (1/1) while fractions were prepared by liquid-liquid fractionation of the acetone extract. A broth serial microdilution method with tetrazolium violet as growth indicator was used to determine the minimum inhibitory concentration (MIC) against fungi, Gram-positive and Gram-negative bacteria. The antioxidant activity was determined using free-radical-scavenging assays, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to determine cytotoxicity. Four extracts and five fractions had good to weak antimicrobial activity with MICs ranging from 0.04 to >1.25 mg/ml against both fungi and bacteria. The chloroform and ethyl acetate fractions had an MIC of 0.08 mg/ml against Aspergillus fumigatus. The n-butanol fraction had an MIC of 0.04 mg/ml against Cryptococcus neoformans. The hexane and chloroform fractions had an MIC of 0.08 mg/ml against Staphylococcus aureus. The antioxidant activities were much lower than that of the positive controls. Except for the alkaloid extract, all the extracts and fractions had free-radical-scavenging activity (IC50 ranging from 33.66 to 314.30 μg/ml). The cytotoxicity on Vero cells was reasonable to low with LC50 values ranging between 30.56 and 689.39 μg/ml. The acetone extract and the chloroform fraction had the highest antibacterial activity. By solvent-solvent fractionation it was possible to increase the activity against A. fumigatus and to decrease the cytotoxicity leading to a potentially useful product to protect animals against aspergillosis. Our results therefore support the use of S. spinosa leaves in traditional medicine to treat infectious diseases.
Arena, Mattia Pia; Silvain, Amandine; Normanno, Giovanni; Grieco, Francesco; Drider, Djamel; Spano, Giuseppe; Fiocco, Daniela
2016-01-01
Lactobacillus plantarum is one of the most versatile species extensively used in the food industry both as microbial starters and probiotic microorganisms. Several L. plantarum strains have been shown to produce different antimicrobial compounds such as organic acids, hydrogen peroxide, diacetyl, and also bacteriocins and antimicrobial peptides, both denoted by a variable spectrum of action. In recent decades, the selection of microbial molecules and/or bacterial strains able to produce antagonistic molecules to be used as antimicrobials and preservatives has been attracting scientific interest, in order to eliminate or reduce chemical additives, because of the growing attention of consumers for healthy and natural food products. The aim of this work was to investigate the antimicrobial activity of several food-isolated L. plantarum strains, analyzed against the pathogenic bacteria Listeria monocytogenes, Salmonella Enteritidis, Escherichia coli O157:H7 and Staphylococcus aureus. Antagonistic activity was assayed by agar spot test and revealed that strain L. plantarum 105 had the strongest ability to contrast the growth of L. monocytogenes, while strains L. plantarum 106 and 107 were the most active microorganisms against E. coli O157:H7. The antimicrobial ability was also screened by well diffusion assay and broth micro-dilution method using cell-free supernatants (CFS) from each Lactobacillus strain. Moreover, the chemical nature of the molecules released in the CFS, and possibly underlying the antagonistic activity, was preliminary characterized by exposure to different constraints such as pH neutralization, heating, catalase, and proteinase treatments. Our data suggest that the ability of L. plantarum cultures to contrast pathogens growth in vitro depends, at least in part, on a pH-lowering effect of supernatants and/or on the presence of organic acids. Cluster analysis was performed in order to group L. plantarum strains according to their antimicrobial effect. This study emphasizes the tempting use of the tested L. plantarum strains and/or their CFS as antimicrobial agents against food-borne pathogens. PMID:27148172
D’Sousa’ Costa, Cinara Oliveira; Ribeiro, Paulo Roberto; Loureiro, Marta Bruno; Simões, Rafael Conceição; de Castro, Renato Delmondez; Fernandez, Luzimar Gonzaga
2015-01-01
Background: Schinus terebinthifolius is widely used in traditional medicine by Brazilian quilombola and indigenous communities for treatment of several diseases. Extracts from different tissues are being used to produce creams to treat cervicitis and cervicovaginitis. However, most studies are limited to the assessment of the essential oils and extracts obtained from the leaves. Objective: The aim was to evaluate antioxidant and antibacterial activities, to assess the phytochemical profile and to quantify total phenolic compounds of various extracts prepared from S. terebinthifolius grown in the coast of Bahia, Brazil. Materials and Methods: Extracts were obtained by hot continuous extraction (soxhlet) and by maceration. Quantification of phenolic compounds was performed using the Folin-Ciocalteu method and antioxidant properties were assessed by 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. Phytochemical screening was performed as described by in the literature and antibacterial activity against Enterococcus faecalis (ATCC 29212) was determined by the microdilution broth assay. Results: Extraction method greatly affected the metabolite profile of the extracts. Antioxidant activity varied between 21.92% and 85.76%, while total phenols ranged between 5.44 and 309.03 mg EAG/g of extract. Leaf extract obtained with soxhlet showed minimum inhibitory concentration (MIC) of 15.62 μg/mL, while stem extract obtained by maceration was able to inhibit the growth of E. faecalis at 62.5 μg/mL. Stem bark extracts showed a MIC of 500 μg/mL for both extraction methods, while no inhibition was observed for fruit extracts. Conclusion: In general, total phenolic content, antioxidant and antibacterial activities were higher in samples obtained by soxhlet. Our results provide important clues in order to identify alternative sources of bioactive compounds that can be used to develop new drugs. PMID:26246739
Brudzynski, Katrina; Sjaarda, Calvin; Lannigan, Robert
2015-01-01
The emergence of extended- spectrum β-lactamase (ESBL) is the underlying cause of growing antibiotic resistance among Gram-negative bacteria to β-lactam antibiotics. We recently reported the discovery of honey glycoproteins (glps) that exhibited a rapid, concentration-dependent antibacterial activity against both Gram-positive Bacillus subtilis and Gram-negative Escherichia coli that resembled action of cell wall-active β-lactam drugs. Glps showed sequence identity with the Major Royal Jelly Protein 1 (MRJP1) precursor that harbors three antimicrobial peptides: Jelleins 1, 2, and 4. Here, we used semi-quantitative radial diffusion assay and broth microdilution assay to evaluate susceptibility of a number of multi-drug resistant (MDR) clinical isolates to the MRJP1-contaning honey glycoproteins. The MDR bacterial strains comprised three methicillin-resistant Staphylococcus aureus (MRSA), four Pseudomonas aeruginosa, two Klebsiella pneumoniae, two vancomycin-resistant Enterococci (VRE), and five ESBL identified as one Proteus mirabilis, three E. coli, and one E. coli NDM. Their resistance to different classes of antibiotics was confirmed using automated system Vitek 2. MDR isolates differed in their susceptibility to glps with MIC90 values ranging from 4.8 μg/ml against B. subtilis to 14.4 μg/ml against ESBL K. pneumoniae, Klebsiella spp. ESBL and E. coli and up to 33 μg/ml against highly resistant strains of P. aeruginosa. Glps isolated from different honeys showed a similar ability to overcome bacterial resistance to β-lactams suggesting that (a) their mode of action is distinct from other classes of β-lactams and that (b) the common glps structure was the lead structure responsible for the activity. The results of the current study together with our previous evidence of a rapid bactericidal activity of glps demonstrate that glps possess suitable characteristics to be considered a novel antibacterial drug candidate. PMID:26217333
Nirmal, Nilesh Prakash; Panichayupakaranant, Pharkphoom
2015-01-01
Brazilin is a major active principle of Caesalpinia sappan L. (Leguminosae or Fabaceae). For industry aspects, brazilin-rich extract (BRE) has been prepared and standardized to contain 39% w/w brazilin. BRE may have more advantages than brazilin in term of a lower-cost production process. To investigate the antioxidant, antibacterial, and anti-inflammatory activities of BRE. BRE was prepared by a simple one-step purification of the crude ethanol extract of C. sappan heartwood (CSE) using a Diaion® HP-20 column. The antioxidant activities were determined using three methods, including DPPH radical scavenging, reducing power, and β-carotene bleaching assays, at concentration ranges of 1-10, 10-100, and 10-100 µg/mL, respectively. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of BRE (15.6-1000 µg/mL) against Gram-positive and Gram-negative bacteria were determined by the broth microdilution method. Anti-inflammatory activity of BRE (0.1-5 µg/mL) was evaluated as anti-denaturation activity using bovine serum albumin as a substrate. On the basis of β-carotene bleaching assay, BRE showed antioxidant activity with an EC50 value of 60.5 µg/mL, which was almost equal to that of pure brazilin (52.1 µg/mL). Gram-positive bacteria were more sensitive to all tested samples than Gram-negative bacteria. BRE possessed higher antibacterial activities than CSE, but lower than brazilin. MIC/MBC values of 62.5-125/125 and 250-500/250-500 µg/mL were obtained for BRE against Gram-positive and Gram-negative bacteria, respectively. A low concentration (0.1 µg/mL) of brazilin, BRE, and CSE showed anti-inflammatory activity by inhibiting protein denaturation up to 46.8, 54.1, and 61.9%, respectively.
Azizan, Nuramirah; Mohd Said, Shahida; Zainal Abidin, Zamirah; Jantan, Ibrahim
2017-12-05
In this study, the essential oils of Orthosiphon stamineus Benth and Ficus deltoidea Jack were evaluated for their antibacterial activity against invasive oral pathogens, namely Enterococcus faecalis , Streptococcus mutans , Streptococcus mitis , Streptococcus salivarius , Aggregatibacter actinomycetemcomitans , Porphyromonas gingivalis and Fusobacterium nucleatum . Chemical composition of the oils was analyzed using gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antibacterial activity of the oils and their major constituents were investigated using the broth microdilution method (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)). Susceptibility test, anti-adhesion, anti-biofilm, checkerboard and time-kill assays were also carried out. Physiological changes of the bacterial cells after exposure to the oils were observed under the field emission scanning electron microscope (FESEM). O. stamineus and F. deltoidea oils mainly consisted of sesquiterpenoids (44.6% and 60.9%, respectively), and β-caryophyllene was the most abundant compound in both oils (26.3% and 36.3%, respectively). Other compounds present in O. stamineus were α-humulene (5.1%) and eugenol (8.1%), while α-humulene (5.5%) and germacrene D (7.7%) were dominant in F. deltoidea . The oils of both plants showed moderate to strong inhibition against all tested bacteria with MIC and MBC values ranging 0.63-2.5 mg/mL. However, none showed any inhibition on monospecies biofilms. The time-kill assay showed that combination of both oils with amoxicillin at concentrations of 1× and 2× MIC values demonstrated additive antibacterial effect. The FESEM study showed that both oils produced significant alterations on the cells of Gram-negative bacteria as they became pleomorphic and lysed. In conclusion, the study indicated that the oils of O. stamineus and F. deltoidea possessed moderate to strong antibacterial properties against the seven strains pathogenic oral bacteria and may have caused disturbances of membrane structure or cell wall of the bacteria.
Alviano, Wagner S; Alviano, Daniela S; Diniz, Cláudio G; Antoniolli, Angelo R; Alviano, Celuta S; Farias, Luiz M; Carvalho, Maria Auxiliadora R; Souza, Margareth M G; Bolognese, Ana Maria
2008-06-01
This study aims to determine antibacterial activities of Cocos nucifera (husk fiber), Ziziphus joazeiro (inner bark), Caesalpinia pyramidalis (leaves), aqueous extracts and Aristolochia cymbifera (rhizomes) alcoholic extract against Prevotella intermedia, Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans and Lactobacillus casei. The antioxidant activity and acute toxicity of these extracts were also evaluated. The plant extracts antibacterial activity was evaluated in vitro and the minimal inhibitory concentration (MIC) was determined by the broth micro-dilution assay. The bacterial killing kinetic was also evaluated for all extracts. In addition, the antibacterial effect of the extracts was tested in vitro on artificial oral biofilms. The acute toxicity of each extract was determined in according to Lorke [Lorke D. A new approach to practical acute toxicity testing. Arch Toxicol 1983;54:275-87] and the antioxidant activity was evaluated by DPPH photometric assay [Mensor LL, Menezes FS, Leitão GG, Reis AS, Santos TC, Coube CS, et al. Screening of Brazilian plants extract for antioxidant activity by the use of DPPH free radical method. Phytother Res 2001;15:127-30]. MIC and the bactericidal concentrations were identical, for each evaluated extract. However, microbes of artificial biofilms were less sensitive to the extracts than the planktonic strains. A. cymbifera extract induced the highest bactericidal effect against all tested bacteria, followed by C. nucifera, Z. joazeiro and C. pyramidalis extracts, respectively. All extracts showed good antioxidant potential, being C. nucifera and C. pyramidalis aqueous extracts the most active ones. In conclusion, all oral bacteria tested (planktonic or in artificial biofilms) were more susceptible to, and rapidly killed in presence of A. cymbifera, C. pyramidalis and C. nucifera than Z. joazeiro extracts, respectively. Thus, these extracts may be of great interest for future studies about treatment of oral diseases, considering their potent antioxidant activity and low toxicity.
Zengin, Gokhan; Sarikurkcu, Cengiz; Gunes, Erdogan; Uysal, Ahmet; Ceylan, Ramazan; Uysal, Sengul; Gungor, Halil; Aktumsek, Abdurrahman
2015-08-01
This work reports the antioxidant, antimicrobial, and inhibitory effects of methanol and water extracts from Ganoderma applanatum (GAM: methanol extract and GAW: water extract) and G. resinaceum (GRM: methanol extract and GRW: water extract) against cholinesterase, tyrosinase, α-amylase and α-glucosidase. The total phenolics, flavonoids contents, and HPLC profile of phenolic components present in the extracts, were also determined. Antioxidant activities were investigated by using different assays, including DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating assays. Antimicrobial activity of the tested Ganoderma extracts was also studied by the broth microdilution method. Generally, the highest antioxidant (59.24 mg TEs per g extract for DPPH, 41.32 mg TEs per g extract for ABTS, 41.35 mg TEs per g extract for CUPRAC, 49.68 mg TEs per g extract for FRAP, 130.57 mg AAEs per g extract for phosphomolybdenum and 26.92 mg EDTAEs per g extract) and enzyme inhibitory effects (1.47 mg GALAEs per g extract for AChE, 1.51 mg GALAEs per g extract for BChE, 13.40 mg KAEs per g extract for tyrosinase, 1.13 mmol ACEs per g extract for α-amylase and 2.20 mmol ACEs per g extract for α-glucosidase) were observed in GRM, which had the highest concentrations of phenolics (37.32 mg GAEs g(-1) extract). Again, Ganoderma extracts possess weak antibacterial and antifungal activities. Apigenin and protocatechuic acid were determined as the main components in GRM (1761 μg per g extract) and GAM (165 μg per g extract), respectively. The results suggest that the Ganoderma species may be considered as a candidate for preparing new food supplements and can represent a good model for the development of new drug formulations.
Staneck, J L; Allen, S D; Harris, E E; Tilton, R C
1985-01-01
The Sensititre Autoreader is a microcomputer-driven instrument capable of automatically reading antimicrobial susceptibility microdilution trays. The instrument measures the fluorescence liberated by bacterial enzymatic activity on fluorogenic substrates as an indicator of growth in each well. A mathematical algorithm converts the fluorescent signals from an antimicrobial dilution series to an MIC endpoint. A three-center study evaluated the performance of the Autoreader in comparison with MIC determined visually in a duplicate set of control plates lacking fluorogenic substrate. Among 828 isolates of gram-negative bacilli tested against 17 antimicrobial agents, Autoreader 18-h MIC were within +/- 1 twofold dilution of control MIC values (agreement) in 95.3% of instances. In 3.5% of the instances, Autoreader values occurred +/- 2 half-step dilutions from control values (minor discrepancy), and in only 1.2% of instances did Autoreader values deviate from control values by greater than +/- 2 dilution steps (major discrepancy). Agreement, minor discrepancies, and major discrepancies were noted among 148 gram-positive cocci tested against 11 antimicrobial agents in 93.5, 4.8, and 1.7% of the instances, respectively. Over half of the major discrepancies noted with gram-negative bacilli occurred with Proteus mirabilis-beta-lactam combinations, a problem that was resolved when a lower initial inoculum was used. Inter-and intralaboratory reproducibility was excellent. Standard Sensititre susceptibility trays may be instrument read at 18 h reproducibly and accurately with only slight modification of conventional procedures to include fluorogenic enzyme substrates in the incubation broth. PMID:4031033
Cell viability of Candida albicans against the antifungal activity of thymol.
de Vasconcelos, Laís César; Sampaio, Fabio Correia; Albuquerque, Allan de Jesus dos Reis; Vasconcelos, Laurylene César de Souza
2014-01-01
Candida albicans is a commensal fungus, but circumstantially it may cause superficial infections of the mucous membranes, such as denture stomatitis, when a biofilm is formed on the surface of dental prostheses. This study evaluated the cell viability of C. albicans biofilms against the antifungal activity of thymol when compared with miconazole, by the fluorescence imaging using SYTO 9 and propidium iodide dyes, and counting of colony forming units. C. albicans standard strains (ATCC 11006) were used. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of drugs were determined by broth microdilution tests and the inoculum was standardized to match 0.5 on the McFarland scale (106 cfu/mL). Biofilms were grown on the surface of acrylic resin disks in parallel flow chambers from Sabouraud broth supplemented with 10% dextrose. For counting of colony forming units, the fungal solution was sequentially diluted and plated in Sabouraud dextrose agar. Data were analyzed using two-way ANOVA and Tukey's test (a=5%). Biofilms treated with thymol and miconazole presented low numbers of viable cells at the evaluated exposure times. There was statistically significant difference (p<0.05) when compared with control, and the mean value of the exposure times between miconazole and thymol did not differ significantly (p>0.05). In conclusion, both drugs have similar efficiency as antifungal agents against biofilms of C. albicans formed on acrylic surfaces.
NASA Astrophysics Data System (ADS)
Tegze, Anna; Sági, Gyuri; Kovács, Krisztina; Homlok, Renáta; Tóth, Tünde; Mohácsi-Farkas, Csilla; Wojnárovits, László; Takács, Erzsébet
2018-06-01
This work aimed at investigating the ionizing radiation induced degradation of two fluoroquinolone antibiotics: norfloxacin and ciprofloxacin. At 0.1 mmol dm-3 concentration a low dose, 2 kGy was sufficient to degrade the initial molecules. However, despite of the high removal efficiency the degrees of both the mineralization and the oxidation were low, ∼10% and ∼25%, respectively. (The difference between the results obtained in norfloxacin and ciprofloxacin solutions was not statistically significant.) Broth microdilution tests carried out on Staphylococcus aureus evidenced removal of antibacterial activity in samples irradiated with 2 kGy. Acute toxicity determined on Vibrio fischeri bacteria showed increased toxicity at low doses indicating that the early degradation products were more toxic than the initial molecules. The results of biodegradation experiments performed in activated sludge have shown that the degradation products have become available to the metabolic processes of the microorganisms.
[In vitro activity of voriconazole and three other antifungal agents against dermatophytes].
Serrano-Martino, María del Carmen; Chávez-Caballero, Mónica; Valverde-Conde, Anastasio; Claro, Rosa María; Pemán, Javier; Martín-Mazuelos, Estrella
2003-11-01
The increase in infections due to dermatophytes in recent years led us to study the effectiveness of new antifungal formulations against these microorganisms. The in vitro activity of a new antifungal agent, voriconazole, was compared with three other antifungal agents, itraconazole, fluconazole and terbinafine, against 120 dermatophytes belonging to four species (61 Trichophyton mentagrophytes, 34 Microsporum canis, 13 M. gypseum and 12 T. rubrum). A broth microdilution method was used following the recommendations of the NCCLS document M38-P with some modifications. Terbinafine was the most active agent against the dermatophytes studied (MIC90 < or = 0.03 mg/ml), followed by voriconazole (MIC90, 0.25 micro g/ml) and itraconazole (MIC90, 0.5 micro g/ml). Fluconazole was the least active antifungal agent. The most susceptible species was M. canis. Voriconazole was found to have effective activity against dermatophytes.
Sienkiewicz, Monika; Łysakowska, Monika; Kowalczyk, Edward; Szymańska, Grażyna; Kochan, Ewa; Krukowska, Jolanta; Olszewski, Jurek; Zielińska-Bliźniewska, Hanna
2017-03-01
The aim of this work was to characterize the ability of essential oils to support antibiotics against pathogenic bacteria in wounds. Gram-positive and Gram-negative bacteria obtained from wound infections were identified according to standard microbiological methods. Essential oils were analysed by GC-FID-MS. The susceptibility of bacteria to antibiotics, essential oils and their combination was assessed using the disc-diffusion method. The Minimal Inhibitory Concentration and Minimum Bactericidal Concentration of the essential oils were established by the micro-dilution broth method. Although cinnamon, clove, thyme and lavender essential oils were found to have the greatest antibacterial activity when used alone, the greatest additive and synergistic effects against pathogenic wound bacteria in combination with recommended antibiotics were demonstrated by basil, clary sage and rosemary oils. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.
Tomczykowa, Monika; Tomczyk, Michał; Jakoniuk, Piotr; Tryniszewska, Elzbieta
2008-01-01
The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+), Klebsiella pneumoniae (ESBL+), Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts), which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.
Antimicrobial activity of commercial Olea europaea (olive) leaf extract.
Sudjana, Aurelia N; D'Orazio, Carla; Ryan, Vanessa; Rasool, Nooshin; Ng, Justin; Islam, Nabilah; Riley, Thomas V; Hammer, Katherine A
2009-05-01
The aim of this research was to investigate the activity of a commercial extract derived from the leaves of Olea europaea (olive) against a wide range of microorganisms (n=122). Using agar dilution and broth microdilution techniques, olive leaf extract was found to be most active against Campylobacter jejuni, Helicobacter pylori and Staphylococcus aureus [including meticillin-resistant S. aureus (MRSA)], with minimum inhibitory concentrations (MICs) as low as 0.31-0.78% (v/v). In contrast, the extract showed little activity against all other test organisms (n=79), with MICs for most ranging from 6.25% to 50% (v/v). In conclusion, olive leaf extract was not broad-spectrum in action, showing appreciable activity only against H. pylori, C. jejuni, S. aureus and MRSA. Given this specific activity, olive leaf extract may have a role in regulating the composition of the gastric flora by selectively reducing levels of H. pylori and C. jejuni.
Godinho, Kevin S; Keane, Sue G; Nanjiani, Ian A; Benchaoui, Hafid A; Sunderland, Simon J; Jones, M Anne; Weatherley, Andrew J; Gootz, Thomas D; Rowan, Tim G
2005-01-01
The in vitro activity of tulathromycin was evaluated against common bovine and porcine respiratory pathogens collected from outbreaks of clinical disease across eight European countries from 1998 to 2001. Minimum inhibitory concentrations (MICs) for one isolate of each bacterial species from each outbreak were determined using a broth microdilution technique. The lowest concentrations inhibiting the growth of 90% of isolates (MIC90) for tulathromycin were 2 microg/ml for Mannheimia (Pasteurella) haemolytica, 1 microg/ml for Pasteurella multocida (bovine), and 2 microg/ml for Pasteurella multocida (porcine) and ranged from 0.5 to 4 microg/ml for Histophilus somni (Haemophilus somnus) and from 4 to 16 microg/ml for Actinobacillus pleuropneumoniae. Isolates were retested in the presence of serum. The activity of tulathromycin against fastidious organisms was affected by culture conditions, and MICs were reduced in the presence of serum.
Kucerova, Z; Hradecka, H; Nechvatalova, K; Nedbalcova, K
2011-05-12
Limited data regarding the susceptibility of Actinobacillus pleuropneumoniae to antimicrobials has been published during recent years. Accordingly, the aim of the present study was to investigate the distribution of MICs for the isolates of A. pleuropneumoniae from diseased pigs in the Czech Republic between 2007 and 2009. A total of 242 isolates were tested for susceptibility to 16 antimicrobial agents by a broth microdilution method. A low degree of resistance was observed for florfenicol (0.8%), amoxicillin and clavulanic acid (0.8%), tilmicosin (1.2%), tiamulin (1.7%) and ampicillin (3.3%), whereas resistance to tetracycline was detected more frequently, 23.9% of isolates. Interestingly, resistance to florfenicol has not yet been reported in any study investigating antimicrobial resistance of A. pleuropneumoniae. By PCR the presence of the floR gene was confirmed in all florfenicol resistant isolates. Copyright © 2011 Elsevier B.V. All rights reserved.
Dos Santos, Fernanda M; de Souza, Maria Gorete; Crotti, Antônio E Miller; Martins, Carlos H G; Ambrósio, Sérgio R; Veneziani, Rodrigo C S; E Silva, Márcio L Andrade; Cunha, Wilson R
2012-04-01
This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis.
dos Santos, Fernanda M.; de Souza, Maria Gorete; Crotti, Antônio E. Miller; Martins, Carlos H. G.; Ambrósio, Sérgio R.; Veneziani, Rodrigo C. S.; e Silva, Márcio L. Andrade; Cunha, Wilson R.
2012-01-01
This work describes the phytochemical study of the extracts from aerial parts of Tibouchina candolleana as well as the evaluation of the antimicrobial activity of extracts, isolated compounds, and semi-synthetic derivatives of ursolic acid against endodontic bacteria. HRGC analysis of the n-hexane extract of T. candolleana allowed identification of β-amyrin, α-amyrin, and β-sitosterol as major constituents. The triterpenes ursolic acid and oleanolic acid were isolated from the methylene chloride extract and identified. In addition, the flavonoids luteolin and genistein were isolated from the ethanol extract and identified. The antimicrobial activity was investigated via determination of the minimum inhibitory concentration (MIC) using the broth microdilution method. Amongst the isolated compounds, ursolic acid was the most effective against the selected endodontic bacteria. As for the semi-synthetic ursolic acid derivatives, only the methyl ester derivative potentiated the activity against Bacteroides fragilis. PMID:24031892
Antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market.
Xiao, Jin-Zhong; Takahashi, Sachiko; Odamaki, Toshitaka; Yaeshima, Tomoko; Iwatsuki, Keiji
2010-01-01
The aim of the present study was to analyze the antibiotic susceptibility of bifidobacterial strains distributed in the Japanese market. A total of 23 strains, including probiotic isolates from foods, supplements, pharmaceuticals and reference strains of each species (or subspecies), were tested for susceptibility to 15 antibiotics by the broth microdilution method and examined for the presence of possible resistant determinants. The strains were susceptible overall to chloramphenicol, ampicillin, vancomycin and linezolid, and were intrinsically resistant to aminoglycoside group agents. Susceptibility to erythromycin, clindamycin, rifampicin, tetracycline and trimethoprim varied among the strains. All strains of Bifidobacterium animalis subsp. lactis were resistant to tetracycline and appeared to harbor tet(W) genes. No risk factor for safety was found for bifidobacterial strains distributed in the Japanese market in respect of their antimicrobial resistance, although the presence of the tet(W) gene in some strains stresses the need for future evaluation.
Antimicrobial susceptibility pattern of Brachyspira intermedia isolates from European layers.
Verlinden, Marc; Boyen, Filip; Pasmans, Frank; Garmyn, An; Haesebrouck, Freddy; Martel, An
2011-09-01
A broth microdilution method was used to determine the antimicrobial susceptibility of 20 Brachyspira intermedia isolates obtained from different layer flocks in Belgium and The Netherlands between 2008 and 2010. The antimicrobial agents used were tylosin, tilmicosin, tiamulin, valnemulin, doxycycline, and lincomycin. The minimal inhibitory concentration (MIC) distribution patterns of tylosin, tilmicosin, lincomycin, and doxycycline were bimodal, demonstrating acquired resistance against doxycycline in three strains, against the macrolides in two strains, and against lincomycin in one strain. The MICs of tiamulin and valnemulin showed a monomodal distribution, but with tailing toward the higher MIC values, possibly suggesting low-level acquired resistance in six isolates. Sequencing revealed a G1058C mutation in the 16S rRNA gene in all doxycycline-resistant strains. The strain resistant to tylosin, tilmicosin, and lincomycin had an A2058T mutation in the 23S rRNA gene.
Ceftaroline fosamil salvage therapy: an option for reduced-vancomycin-susceptible MRSA bacteraemia.
Espedido, Björn A; Jensen, Slade O; van Hal, Sebastiaan J
2015-03-01
To examine the activity of ceftaroline against reduced-vancomycin-susceptible MRSA isolates. One-hundred and three MRSA blood culture isolates (predominantly ST239-MRSA-III), with varying vancomycin phenotypes, had their ceftaroline MICs determined by broth microdilution and MIC Evaluator strip (Oxoid-Thermo Fisher). Statistical analyses were performed that examined relationships with vancomycin and daptomycin MICs. Mutations in mecA were also examined. All 103 isolates (including 60 heteroresistant vancomycin-intermediate Staphylococcus aureus/vancomycin-intermediate S. aureus) were susceptible to ceftaroline, with one isolate displaying heteroresistance that may be related to a mecA mutation. Higher ceftaroline MICs were associated with vancomycin-susceptible S. aureus isolates. This study highlights that ceftaroline fosamil is an option for salvage therapy based on in vitro activity. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Soto-Noguerón, Araceli; Carnalla-Barajas, María Noemí; Cornejo-Juárez, Patricia; Volkow-Fernández, Patricia; Velázquez-Meza, María Elena; Echániz-Aviles, Gabriela
2018-01-01
To describe the distribution of pneumococcal serotypes causing infectious diseases in patients with hematological malignancies and solid tumors and their antimicrobial susceptibility before and after introduction of pneumococcal conjugate vaccine (PCV7) in Mexico. Consecutive pneumococcal isolates from hospitalized patients from the SIREVA-network were serotyped using the Quellung reaction and antimicrobial susceptibility was performed using the broth microdilution method. A total of 175 pneumococcal isolates were recovered, 105 from patients with hematological malignancies and 70 with solid tumors. Serotypes 19A (22.7%), 19F (20.4%), and 35B (17.7%) were the most frequent isolates in the first group and serotypes 3 (27.2%) and 19A (28.6%) in the second group. No decreased susceptibility to beta-lactams or TMP/SMX was observed after introduction of PCV7. An increase in non-vaccine types is observed without significate changes in antimicrobial susceptibility after introduction of PCV7.
[Analysis of antibiotic susceptibility of foodborne Listeria monocytogenes in China].
Yang, Yang; Fu, Ping; Guo, Yunchang; Liu, Xiurmei
2008-03-01
To study the antibiotic susceptibility of foodborne Listeria monocytogenes in China. The susceptibilities of 476 strains of foodborne Listeria monocytogenes to antibiotics were determined in Broth Microdilution Susceptibility Testing in Clinical and Laboratory Standards Institute. The antibiotics of gentamicin, ampicillin, penicillin, tetracycline, doxycycline, imipenem, erythromycin, ciprofloxacin, levofloxacin, cephalothin, rifampin, vancomycin, chloramphenicol, Trimethoprim-sulfamethoxazole, ampicillin-sulbactam were used. The rates of antibiotic resistance in 467 is olates were 4.5%. Tetracycline resistance was most prevalent, accouting for 4.07% . The foods that the rates of antibiotic resistance were highest were vegetable (10%). Among 14 provinces, Jilin, Hubei and Hebei were the third top, the rate of which were 19.6% and 9.1% and 8%, respectively. It was suggested that antibiotic resistance exists in foodborne Listeria monocytogenes to a certain extent in China. It should pay more attention to the use of drugs in prevention and clinic treatment to reduce the antibiotic resistant strains.
Antimicrobial activity of chemically modified dextran derivatives.
Tuchilus, Cristina G; Nichifor, Marieta; Mocanu, Georgeta; Stanciu, Magdalena C
2017-04-01
Cationic amphiphilic dextran derivatives with a long alkyl group attached to the reductive end of the polysaccharide chain and quaternary ammonium groups attached as pendent groups to the main dextran backbone were synthesized and tested for their antimicrobial properties against several bacteria and fungi strains. Dependence of antimicrobial activity on both polymer chemical composition (dextran molar mass, length of end alkyl group and chemical structure of ammonium groups) and type of microbes was highlighted by disc-diffusion method (diameter of inhibition zone) and broth microdilution method (minimum inhibitory concentrations). Polymers had antimicrobial activity for all strains studied, except for Pseudomonas aeruginosa ATCC 27853. The best activity against Staphylococcus aureus (Minimun Inhibitory Concentration 60μg/mL) was provided by polymers obtained from dextran with lower molecular mass (Mn=4500), C 12 H 25 or C 18 H 37 end groups, and N,N-dimethyl-N-benzylammonium pendent groups. Copyright © 2017 Elsevier Ltd. All rights reserved.
HARADA, Kazuki; USUI, Masaru; ASAI, Tetsuo
2014-01-01
ABSTRACT In this study, susceptibilities of Pasteurella multocida, Mannheimia haemolytica and Actinobacillus pleuropneumoniae to enrofloxacin and orbifloxacin were tested using an agar diffusion method with the commercial disks and a broth microdilution method. Good correlation between the 2 methods for enrofloxacin and orbifloxacin was observed for P. multocida (r = −0.743 and −0.818, respectively), M. haemolytica (r = −0.739 and −0.800, respectively) and A. pleuropneumoniae (r = −0.785 and −0.809, respectively). Based on the Clinical and Laboratory Standards Institute interpretive criteria for enrofloxacin, high-level categorical agreement between the 2 methods was found for P. multocida (97.9%), M. haemolytica (93.8%) and A. pleuropneumoniae (92.0%). Our findings indicate that the tested commercial disks can be applied for susceptibility testing of veterinary respiratory pathogens. PMID:25008965
Voukeng, Igor K; Beng, Veronique P; Kuete, Victor
2017-07-25
Multidrug resistant (MDR) bacteria are responsible for therapeutic failure and there is an urgent need for novels compounds efficient on them. Eleven methanol extracts from seven Cameroonian medicinal plants were tested for their antibacterial activity using broth micro-dilution method against 36 MDR bacterial strains including Escherichia coli, Enterobacter aerogenes, Enterobacter cloacae, Klebsiella pneumoniae, Providencia stuartii, Pseudomonas aeruginosa and Staphylococcus aureus. Euphorbia prostrata extract was found active against all the 36 tested bacteria including Gram-negative phenotypes over-expressing efflux pumps such as P. aeruginosa PA124, E. aerogenes CM64 and E. coli AG102. E. prostrata had minimal inhibitory concentrations values between 128 and 256 µg/mL on 55.55% of the studied microorganisms. Other plants extract displayed selective antibacterial activity. Results obtained in this study highlight the antibacterial potential of the tested plants and the possible use of E. prostrata to combat bacterial infections including MDR phenotypes.
da Silva Luz, Isabelle; Gomes-Neto, Nelson Justino; Magnani, Marciane; de Souza, Evandro Leite
2015-12-01
This study assessed the efficacy of Origanum vulgare L. essential oil (OVEO) and carvacrol in inhibiting the growth of Pseudomonas aeruginosa ATCC 9027, as well as the development of direct tolerance and cross-tolerance when this bacterium was challenged with sublethal amounts of these substances in a meat-based broth and in a meat model. OVEO and carvacrol at their minimum inhibitory concentrations (MICs), 1/2 MIC and 1/4 MIC decreased the viable cell counts of P. aeruginosa in meat-based broth. Direct tolerance or cross-tolerance was not induced after exposure of the assayed bacterial strain to sublethal amounts of OVEO or carvacrol in meat-based broth and in an artificially contaminated ground beef. Bacterial cells progressively subcultured in meat-based broth with increasing amounts of the tested substances survived up to the MIC of OVEO and to 1/2 MIC of carvacrol. The results reveal a lack of induction of tolerance in P. aeruginosa by exposure to OVEO or carvacrol in meat-based broth and in a meat model. © The Author(s) 2014.
LeBel, Geneviève; Haas, Bruno; Adam, Andrée-Ann; Veilleux, Marie-Pier; Lagha, Amel Ben; Grenier, Daniel
2017-11-01
Halitosis, also known as bad breath or oral malodour, is a condition affecting a large proportion of the population. Solobacterium moorei is a Gram-positive anaerobic bacterium that has been specifically associated with halitosis. In this study, we investigated the effects of essential oils, more particularly cinnamon bark oil, on growth, biofilm formation, eradication and killing, as well as hydrogen sulfide (H 2 S) production by S. moorei. A broth microdilution assay was used to determine the antibacterial activity of essential oils. Biofilm formation was assessed by a crystal violet staining assay and scanning electron microscopy. The biofilm of S. moorei was characterized by enzymatic treatments. Biofilm killing was determined by a luminescence assay monitoring ATP production. H 2 S production was quantified with a colorimetric assay. The biocompatibility of cinnamon oil was investigated using a gingival keratinocyte cell line. Among the ten essential oils tested, cinnamon oil was found to be the most powerful against S. moorei with MIC and MBC values of 0.039% and 0.156%, respectively. The biofilm formed by S. moorei was then characterized. The fact that DNase I and to a lesser extent proteinase K significantly reduced biofilm formation by S. moorei and induced its eradication suggests that the extracellular matrix of S. moorei biofilm may be mainly containing a DNA backbone associated with proteins. At concentrations below the MIC, cinnamon oil reduced S. moorei biofilm formation that resulted from an attenuation of bacterial growth. It was also found that treatment of a pre-formed biofilm of S. moorei with cinnamon oil significantly decreased its viability although it did not cause its eradication. Cinnamon oil had an inhibitory effect on the production of H 2 S by S. moorei. Lastly, it was found that at concentrations effective against S. moorei, no significant loss of viability in gingival keratinocytes occurred after a 1-h exposure. Our study brought evidence that cinnamon oil may be a promising substance to incorporate into oral hygiene products for controlling bad breath by inhibiting growth, killing biofilm, and reducing H 2 S production by S. moorei. Moreover, at the effective concentrations, cinnamon oil was found to have no toxic effects on oral keratinocytes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jesus, D.; Oliveira, J. R.; Oliveira, F. E.; Higa, K. C.; Junqueira, J. C.; Jorge, A. O. C.; Back-Brito, G. N.; Oliveira, L. D.
2015-01-01
This study evaluated the antifungal activity of Persea americana extract on Candida albicans biofilm and its cytotoxicity in macrophage culture (RAW 264.7). To determine the minimum inhibitory concentration (MIC), microdilution in broth (CLSI M27-S4 protocol) was performed. Thereafter, the concentrations of 12.5, 25, 50, 100, and 200 mg/mL (n = 10) with 5 min exposure were analyzed on mature biofilm in microplate wells for 48 h. Saline was used as control (n = 10). After treatment, biofilm cells were scraped off and dilutions were plated on Sabouraud dextrose agar. After incubation (37°C/48 h), the values of colony forming units per milliliter (CFU/mL) were converted to log10 and analyzed (ANOVA and Tukey test, 5%). The cytotoxicity of the P. americana extract was evaluated on macrophages by MTT assay. The MIC of the extract was 6.25 mg/mL and with 12.5 mg/mL there was elimination of 100% of planktonic cultures. Regarding the biofilms, a significant reduction (P < 0.001) of the biofilm at concentrations of 50 (0.580 ± 0.209 log10), 100 (0.998 ± 0.508 log10), and 200 mg/mL (1.093 ± 0.462 log10) was observed. The concentrations of 200 and 100 mg/mL were cytotoxic for macrophages, while the concentrations of 50, 25, and 12.5 mg/mL showed viability higher than 55%. PMID:26605376
Morfín-Otero, Rayo; Mendoza-Olazarán, Soraya; Silva-Sánchez, Jesús; Rodríguez-Noriega, Eduardo; Laca-Díaz, Jorge; Tinoco-Carrillo, Perla; Petersen, Luis; López, Perla; Reyna-Flores, Fernando; Alcantar-Curiel, Dolores; Garza-Ramos, Ulises; Garza-González, Elvira
2013-10-01
The prevalence and genetic characteristics of Escherichia coli and Klebsiella pneumoniae clinical isolates producing extended-spectrum β-lactamase (ESBL) were examined. Between October 2010 and March 2011, E. coli (n=460) and K. pneumoniae (n=78) isolates were collected at a tertiary care hospital in Guadalajara, Mexico. The minimum inhibitory concentration (MIC) for each isolate was determined using a broth microdilution method, and ESBL production was assayed. The presence of β-lactamase genes, blaSHV, blaCTX-M, and blaTLA-1, was detected by PCR and confirmed with sequencing. Only ESBL-producing isolates were further subjected to pulsed-field gel electrophoresis (PFGE) and plasmid profiling. All of the ESBL isolates were multidrug resistant and 75/460 (16.3%) E. coli isolates and 21/78 (26.9%) K. pneumoniae isolates were found to produce ESBL. For the E. coli isolates, >95% susceptibility to amikacin, meropenem, fosfomycin, imipenem, and nitrofurantoin was observed. For K. pneumoniae, similar results were obtained, with discrepancies observed for gentamicin and nitrofurantoin. PFGE further identified eleven pulsotypes for E. coli and three clusters of K. pneumoniae. CTX-M-15 was detected in 85% of ESBL-producing E. coli and in 76% of ESBL-producing K. pneumoniae. In contrast, SHV-5 ESBL was identified in 17% of E. coli isolates and in 86% of K. pneumoniae isolates. The bla-TLA-1 gene was not detected in any of the 96 isolates analyzed. Overall, CTX-M-15 and SHV-5 were found to have a high rate of spread throughout the hospital and were associated with strong multidrug resistance.
Qiu, J; Wang, J; Luo, H; Du, X; Li, H; Luo, M; Dong, J; Chen, Z; Deng, X
2011-01-01
To determine the antimicrobial activity of costus (Saussurea lappa) oil against Staphylococcus aureus, and to evaluate the influence of subinhibitory concentrations of costus oil on virulence-related exoprotein production in staph. aureus. Minimal inhibitory concentrations (MICs) were determined using a broth microdilution method, and the MICs of costus oil against 32 Staph. aureus strains ranged from 0.15 to 0.6 μl ml(-1) . The MIC(50) and MIC(90) were 0.3 and 0.6 μl ml(-1) , respectively. Western blot, haemolytic, tumour necrosis factor (TNF) release and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of costus oil on virulence-associated exoprotein production in Staph. aureus. The data presented here show that costus oil dose dependently decreased the production of α-toxin, toxic shock syndrome toxin 1 (TSST-1) and enterotoxins A and B in both methicillin-sensitive Staph. aureus (MSSA) and methicillin-resistant Staph. aureus (MRSA). Costus oil has potent antimicrobial activity against Staph. aureus, and the production of α-toxin, TSST-1 and enterotoxins A and B in Staph. aureus was decreased by costus oil. The data suggest that costus oil may deserve further investigation for its potential therapeutic value in treating Staph. aureus infections. Furthermore, costus oil could be rationally applied in food products as a novel food preservative both to inhibit the growth of Staph. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.
Al-Mariri, Ayman; Safi, Mazen
2013-03-01
Brucellosis, a zoonosis caused by four species of brucella, has a high morbidity. The major cause of brucellosis worldwide is brucella melitensis. Medicinal plants are considered as new antibacterial sources that could replace conventional antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the efficacy of some native plants, alone and in combination with some antibiotics, in the treatment of brucellosis. The present experimental in vitro study was carried out to evaluate the anti-brucella activities of essential oils of Rosmarinus officinalis L., Origanum syriacum, Thymus syriacus, Salvia palaestina Benth, Mentha piperia, and Lavandula stoechas L., alone and in combination with some antibiotics. The activity against 16 tetracycline-resistant B. melitensis isolates was determined by disc diffusion method incorporating a concentration of 5%. Antibiotic discs were also used as a control. Microdilution brucella broth susceptibility assay was used in order to determine the MICs of essential oils and five antibiotics. Among all the herbs evaluated, only the essential oils of O. syriacum and T. syriacus plants demonstrated most effective anti-brucella activity, and were then chosen for MIC study. The minimal inhibitory concentrations (MIC50) of essential oils of O. syriacum and T. syriacus against tetracycline-resistant B. melitensis were 3.125 µl/ml and 6.25 µl/ml, respectively. Among the essential oils studied, those of O. syriacum and T. syriacus were most effective. Since a combination of levofloxacin and Thymus syriacus essential oil increased the efficacy of this antibiotic, O. syriacum and T. syriacus are recommended to be used as bactericidal agents against B. melitensis.
Yanat, Betitera; Machuca, Jesús; Díaz-De-Alba, Paula; Mezhoud, Halima; Touati, Abdelaziz; Pascual, Álvaro; Rodríguez-Martínez, José-Manuel
2017-01-01
The objective was to assess the prevalence of plasmid-mediated quinolone resistance (PMQR)-producing isolates in a collection of quinolone-resistant Enterobacteriaceae of community origin isolated in Bejaia, Algeria. A total of 141 nalidixic acid-resistant Enterobacteriaceae community isolates were collected in Bejaia (Northern Algeria) and screened for PMQR genes using polymerase chain reaction (PCR). For PMQR-positive strains, antimicrobial susceptibility testing was performed by broth microdilution and disk diffusion. Mutations in the quinolone resistance-determining regions of the target genes, gyrA and parC, were detected with a PCR-based method and sequencing. Southern blotting, conjugation and transformation assays and molecular typing by pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing were also performed. The prevalence of PMQR-producing Enterobacteriaceae isolates was 13.5% (19/141); 11 of these isolates produced Aac(6')-Ib-cr and 8 were qnr-positive (4 qnrB1-like, 2 qnrS1-like, and 2 qnrD1-like), including the association with aac(6')-Ib-cr gene in three cases. PMQR gene transfer by conjugation was successful in 6 of 19 isolates tested. PFGE revealed that most of the PMQR-positive Escherichia coli isolates were unrelated, except for two groups comprising two and four isolates, respectively, including the virulent multidrug-resistant clone E. coli ST131 that were clonally related. Our findings indicate that PMQR determinants are prevalent in Enterobacteriaceae isolates from the community studied. We describe the first report of the qnrD gene in Algeria.
Antibacterial and antifungal activities from Siamese crocodile blood.
Leelawongtawon, Ratree; Siruntawineti, Jindawan; Chaeychomsri, Win; Sattaponpan, Chisanucha
2010-12-01
To evaluate the in vitro antimicrobial activity of the Siamese crocodile blood against bacteria and fungi. Thirty Siamese crocodile blood samples including freeze dried whole blood (FDWB), fresh serum (FS), and freeze dried serum (FDS) were evaluated for antimicrobial susceptibility and MIC values against ATCC-registered strains of nine bacterial species and two fungal species and one fungus isolated from a clinical specimen, by using the standard broth microdilution method and a modified resazurin microtiter plate assay. The result showed that FS (80 mg/ml) and FDS (100 mg/ml) inhibited Gram negative bacteria including Enterobacter aerogenes ATCC 13048, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 27736, Salmonella typhimurium ATCC 13311 and Pseudomonas aeruginosa ATCC 27853 with the susceptibility rate at 23.30%, 10.00%, 40.00%, 70.00%, and 86.67%, respectively for FS, and 30.00%, 10.00%, 43.33%, 76.67% and 90.00%, respectively for FDS. The MIC and MBC were in the range of 12.50-100.00 mg/ml and 25.00-100.00 mg/m1 respectively. FS and FDS also inhibited Cryptococcus neoformans 250309 and Aspergillus niger with the susceptibility rate at 90.00% and 80.00%, respectively for FS and 100.00% and 83.33%, respectively for FDS. The MIC was in the range of 25.00-100.00 mg/ml. However, FS and FDS did not inhibit Gram positive bacteria and did not kill fungi. FDWB (100 mg/ml) could neither inhibit bacteria nor fungi. FS and FDS from Siamese crocodile exhibited potential antibacterial and antifungal activities.
2015-01-01
Pseudomonas aeruginosa, the major nosocomial opportunistic pathogen, is an important cause of infectious morbidity and mortality among immunocompromised patients. To establish the role of metallo-β-lactamases (MBL) and efflux-mediated mechanisms in confer- ring carbapenem resistance in nosocomial isolates of P. aeruginosa. We analyzed carbapenem nonsusceptible nosocomial P. aeruginosa isolates obtained from pediatric and adult patients at three hospitals in Moscow in 2012-2015. Carbapenem susceptibility was assessed using the E-test. In addition, minimal inhibitory concentrations (MICs) of meropenem were tested by the broth microdilution method. The presence of MBL was determined using the ED TA-mediated suppression test. Efflux-dependent resistance was measured using an assay based on MIC modification by an ionophore carbonyl cyanide 3-chlorophenyl hydrazine (CCCP). A total of 54 carbapenem nonsusceptible P. aeruginosa isolates was examined. The presence of an MBL was detected in 37 (69%) isolates, 29 (54%) isolates had efflux-mediated resistance. In 10 (19%) isolates neither MBL nor efflux activity was found. Five out of 6 isolates (83%) with highly active efflux were MBL-positive. Among isolates with low efflux activity, 74% (17/23) possessed MBL, whereas in isolates with no efflux the rate of MBL-positivity was 60% (15/25). The prevalence of MBL- and efflux-mediated carbapenem resistance in nosocomial P. aeruginosa is high. Moreover, our results reveal that several resistance mechanisms may combine at the isolate level. These data may contribute to the development of novel strategies in combating carbapenem resistance.
Mohammad, Haroon; Cushman, Mark; Seleem, Mohamed N
2015-01-01
The emergence of community-associated methicillin-resistant Staphylococcus aureus (MRSA), including strains resistant to current antibiotics, has contributed to an increase in the number of skin infections reported in humans in recent years. New therapeutic options are needed to counter this public health challenge. The aim of the present study was to examine the potential of thiazole compounds synthesized by our research group to be used topically to treat MRSA skin and wound infections. The broth microdilution method confirmed that the lead thiazole compound and four analogues are capable of inhibiting MRSA growth at concentrations as low as 1.3 μg/mL. Additionally, three compounds exhibited a synergistic relationship when combined with the topical antibiotic mupirocin against MRSA in vitro via the checkerboard assay. Thus the thiazole compounds have potential to be used alone or in combination with mupirocin against MRSA. When tested against human keratinocytes, four derivatives of the lead compound demonstrated an improved toxicity profile (were found to be non-toxic up to a concentration of 20 μg/mL). Utilizing a murine skin infection model, we confirmed that the lead compound and three analogues exhibited potent antimicrobial activity in vivo, with similar capability as the antibiotic mupirocin, as they reduced the burden of MRSA present in skin wounds by more than 90%. Taken altogether, the present study provides important evidence that these thiazole compounds warrant further investigation for development as novel topical antimicrobials to treat MRSA skin infections.
Elkhatib, Walid F.
2016-01-01
The purpose of this study was to: (i) evaluate the antibacterial activities of three Egyptian honeys collected from different floral sources (namely, citrus, clover, and marjoram) against Escherichia coli; (ii) investigate the effects of these honeys on bacterial ultrastructure; and (iii) assess the anti-virulence potential of these honeys, by examining their impacts on the expression of eight selected genes (involved in biofilm formation, quorum sensing, and stress survival) in the test organism. The minimum inhibitory concentration (MIC) of the honey samples against E. coli ATCC 8739 were assessed by the broth microdilution assay in the presence and absence of catalase enzyme. Impacts of the honeys on the cellular ultrastructure and the expression profiles of the selected genes of E. coli were examined using transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qPCR) analysis, respectively. The susceptibility tests showed promising antibacterial activities of all the tested honeys against E. coli. This was supported by the TEM observations, which revealed “ghost” cells lacking DNA, in addition to cells with increased vacuoles, and/or with irregular shrunken cytoplasm. Among the tested honeys, marjoram exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. The qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Our results indicate that some varieties of the Egyptian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets. PMID:26954570
Zhang, Jianmin; Xu, Chenggang; Shen, Haiyan; Li, Jingyi; Guo, Lili; Cao, Guojie; Feng, Saixiang; Liao, Ming
2014-10-01
Biofilms are surface-associated microbial communities, which are encased in self-synthesized extracellular environment. Biofilm formation may trigger drug resistance and inflammation, resulting in persistent infections. Haemophilus parasuis is the etiological agent of a systemic disease, Glässer's disease, characterized by fibrinous polyserositis, arthritis and meningitis in pigs. The purpose of this study was to examine the correlation between biofilm and antibiotic resistance among the clinical isolates of H. parasuis. In the present study, we tested biofilm-forming ability of 110 H. parasuis isolates from various farms using polystyrene microtiter plate assays. Seventy-three isolates of H. parasuis (66.4%) showed biofilm formation and most of them performed weak biofilm-forming ability (38/73). All isolates were tested for antimicrobial susceptibility to 18 antimicrobial agents by the broth microdilution method. H. parasuis isolates showed very high resistance (>90%) to sulfanilamide, nalidixic acid, and trimethoprim. Resistance to eight antibiotics such as penicillin (41.1% vs 8.1%), ampicillin (31.5% vs 8.1%), amoxicillin (28.8% vs 5.4%), gentamicin (46.6% vs 24.3%), cefazolin (19.2% vs 2.7%), doxycycline (19.2% vs 8.1%), cefotaxime (11% vs 2.7%), and cefaclor (13.7% vs 5.4%) was comparatively higher among biofilm producers than non-biofilm producers. Pulsed-field gel electrophoresis (PFGE) analyses could distinguish various isolates. Our data indicated that H. parasuis field isolates were able to form biofilms in vitro. In addition, biofilm positive strains had positive correlation with resistance to β-lactams antibiotics. Thus, biofilm formation may play important roles during H. parasuis infections. Copyright © 2014. Published by Elsevier Ltd.
Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts.
Beesoo, Rima; Bhagooli, Ranjeet; Neergheen-Bhujun, Vidushi S; Li, Wen-Wu; Kagansky, Alexander; Bahorun, Theeshan
2017-06-01
Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections. Copyright © 2017 Elsevier Inc. All rights reserved.
Karpanen, T J; Worthington, T; Hendry, E R; Conway, B R; Lambert, P A
2008-11-01
Effective skin antisepsis and disinfection of medical devices are key factors in preventing many healthcare-acquired infections associated with skin microorganisms, particularly Staphylococcus epidermidis. The aim of this study was to investigate the antimicrobial efficacy of chlorhexidine digluconate (CHG), a widely used antiseptic in clinical practice, alone and in combination with tea tree oil (TTO), eucalyptus oil (EO) and thymol against planktonic and biofilm cultures of S. epidermidis. Antimicrobial susceptibility assays against S. epidermidis in a suspension and in a biofilm mode of growth were performed with broth microdilution and ATP bioluminescence methods, respectively. Synergy of antimicrobial agents was evaluated with the chequerboard method. CHG exhibited antimicrobial activity against S. epidermidis in both suspension and biofilm (MIC 2-8 mg/L). Of the essential oils thymol exhibited the greatest antimicrobial efficacy (0.5-4 g/L) against S. epidermidis in suspension and biofilm followed by TTO (2-16 g/L) and EO (4-64 g/L). MICs of CHG and EO were reduced against S. epidermidis biofilm when in combination (MIC of 8 reduced to 0.25-1 mg/L and MIC of 32-64 reduced to 4 g/L for CHG and EO, respectively). Furthermore, the combination of EO with CHG demonstrated synergistic activity against S. epidermidis biofilm with a fractional inhibitory concentration index of <0.5. The results from this study suggest that there may be a role for essential oils, in particular EO, for improved skin antisepsis when combined with CHG.
Nobmann, Patricia; Smith, Aoife; Dunne, Julie; Henehan, Gary; Bourke, Paula
2009-01-15
Novel mono-substituted carbohydrate fatty acid (CFA) esters and ethers were investigated for their antibacterial activity against a range of pathogenic and spoilage bacteria focussing on Listeria monocytogenes. Carbohydrate derivatives with structural differences enable comparative studies on the structure/activity relationship for antimicrobial efficacy and mechanism of action. The antimicrobial efficacy of the synthesized compounds was compared with commercially available compounds such as monolaurin and monocaprylin, as well as the pure free fatty acids, lauric acid and caprylic acid, which have proven antimicrobial activity. Compound efficacy was compared using an absorbance based broth microdilution assay to determine the minimum inhibitory concentration (MIC), increase in lag phase and decrease in maximum growth rate. Among the carbohydrate derivatives synthesized, lauric ether of methyl alpha-d-glucopyranoside and lauric ester of methyl alpha-d-mannopyranoside showed the highest growth-inhibitory effect with MIC values of 0.04 mM, comparable to monolaurin. CFA derivatives were generally more active against Gram positive bacteria than Gram negative bacteria. The analysis of both ester and ether fatty acid derivatives of the same carbohydrate, in tandem with alpha and beta configuration of the carbohydrate moiety suggest that the carbohydrate moiety is involved in the antimicrobial activity of the fatty acid derivatives and that the nature of the bond also has a significant effect on efficacy, which requires further investigation. This class of CFA derivatives has great potential for developing antibacterial agents relevant to the food industry, particularly for control of Listeria or other Gram-positive pathogens.
Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.
Hamed, Selwan; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Youssef, Tareq
2017-08-01
The fast progression of nanotechnology has led to novel therapeutic interventions. Antimicrobial activities of silver nanoparticles (Ag NPs) were tested against standard ATCC strains of Staphylococcus aureus (ATCC 9144), Escherichia coli (O157:H7), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 90028) in addition to 60 clinical isolates collected from cancer patients. Antimicrobial activity was tested by disk diffusion method and MIC values for Ag NPs alone and in combination with N-acetylcysteine (NAC) against tested pathogens were determined by broth microdilution method. Ag NPs showed a robust antimicrobial activity against all tested pathogens and NAC substantially enhanced the antimicrobial activity of Ag NPs against all tested pathogens. Synergism between Ag NPs and NAC has been confirmed by checkerboard assay. The effect of Ag NPs on tested pathogens was further scrutinized by Transmission Electron Microscope (TEM) which showed disruption of cell wall in both bacteria and fungi. Ag NPs abrogated the activity of respiratory chain dehydrogenase of all tested pathogens and released muramic acid content from S. aureus in culture. The cytotoxic effect of Ag NPs alone and in combination with NAC was examined using human HepG2 cells and this revealed no cytotoxicity at MIC values of Ag NPs and interestingly, NAC reduced the cytotoxic effect of Ag NPs at concentrations higher than their MIC values. Taken together, Ag NPs have robust antimicrobial activity and NAC substantially enhances their antimicrobial activities against MDR pathogens which would provide a novel safe, effective, and inexpensive therapeutic approach to control the prevalence of MDR pathogens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wasfi, Reham; Elkhatib, Walid F; Khairalla, Ahmed S
2016-01-01
The purpose of this study was to: (i) evaluate the antibacterial activities of three Egyptian honeys collected from different floral sources (namely, citrus, clover, and marjoram) against Escherichia coli; (ii) investigate the effects of these honeys on bacterial ultrastructure; and (iii) assess the anti-virulence potential of these honeys, by examining their impacts on the expression of eight selected genes (involved in biofilm formation, quorum sensing, and stress survival) in the test organism. The minimum inhibitory concentration (MIC) of the honey samples against E. coli ATCC 8739 were assessed by the broth microdilution assay in the presence and absence of catalase enzyme. Impacts of the honeys on the cellular ultrastructure and the expression profiles of the selected genes of E. coli were examined using transmission electron microscopy (TEM) and quantitative real-time polymerase chain reaction (qPCR) analysis, respectively. The susceptibility tests showed promising antibacterial activities of all the tested honeys against E. coli. This was supported by the TEM observations, which revealed "ghost" cells lacking DNA, in addition to cells with increased vacuoles, and/or with irregular shrunken cytoplasm. Among the tested honeys, marjoram exhibited the highest total antibacterial activity and the highest levels of peroxide-dependent activity. The qPCR analysis showed that all honey-treated cells share a similar overall pattern of gene expression, with a trend toward reduced expression of the virulence genes of interest. Our results indicate that some varieties of the Egyptian honey have the potential to be effective inhibitor and virulence modulator of E. coli via multiple molecular targets.
Hoekou, Yao Patrick; Tchacondo, Tchadjobo; Karou, Simplice Damintoti; Yerbanga, Rakiswende Serge; Achoribo, Elom; Da, Ollo; Atakpama, Wouyo; Batawila, Komlan
2017-01-01
Holarrhena floribunda is a plant of wide usage in the Togolese folk medicine. A previous ethnobotanical survey on the latex plants of the Maritime region of the country revealed that this plant was included in several recipes curing malaria and microbial infections. Therefore, this study aimed to seek for the effectiveness of the ethanolic extract of the plant in the treatment of these diseases. The antimicrobial test was performed using the agar well-diffusion and the NCCLS broth microdilution methods, while the in vivo antimalarial activity was evaluated following the four-day suppressive test of Peters. The acute toxic effects of the extract were monitored after a single oral dose (5,000 mg/kg body weight) administration in NMRI mice. The results indicated that the ethanolic extract of leaves of H. floribunda was active on Staphylococcus aureus ATCC 29213 and clinical strains of Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae with MICs ranging from 0.62 to 1.25 mg/mL. The extract also showed significant parasitaemia suppression in a dose-dependent manner. In the acute toxicity assay, the oral administration of the extract to the mice did not affect the relative weight of vital organs, and there were no signs of toxicity or death during the study period. The LD50 of the tested extract was found to be greater than 5,000 mg/kg, indicating its safety. This study demonstrates the antibacterial and antimalarial activities of leaves of H. floribunda and then, supports its medicinal use in the treatment of microbial infections.
Hoekou, Yao Patrick; Tchacondo, Tchadjobo; Karou, Simplice Damintoti; Yerbanga, Rakiswende Serge; Achoribo, Elom; Da, Ollo; Atakpama, Wouyo; Batawila, Komlan
2017-01-01
Background: Holarrhena floribunda is a plant of wide usage in the Togolese folk medicine. A previous ethnobotanical survey on the latex plants of the Maritime region of the country revealed that this plant was included in several recipes curing malaria and microbial infections. Therefore, this study aimed to seek for the effectiveness of the ethanolic extract of the plant in the treatment of these diseases. Methods: The antimicrobial test was performed using the agar well-diffusion and the NCCLS broth microdilution methods, while the in vivo antimalarial activity was evaluated following the four-day suppressive test of Peters. The acute toxic effects of the extract were monitored after a single oral dose (5,000 mg/kg body weight) administration in NMRI mice. Results: The results indicated that the ethanolic extract of leaves of H. floribunda was active on Staphylococcus aureus ATCC 29213 and clinical strains of Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae with MICs ranging from 0.62 to 1.25 mg/mL. The extract also showed significant parasitaemia suppression in a dose-dependent manner. In the acute toxicity assay, the oral administration of the extract to the mice did not affect the relative weight of vital organs, and there were no signs of toxicity or death during the study period. The LD50 of the tested extract was found to be greater than 5,000 mg/kg, indicating its safety. Conclusion: This study demonstrates the antibacterial and antimalarial activities of leaves of H. floribunda and then, supports its medicinal use in the treatment of microbial infections. PMID:28573239
Sheng, Wang-Huei; Chuang, Yu-Chung; Teng, Lee-Jene; Hsueh, Po-Ren
2014-08-01
This study was intended to delineate the association between digestive tract malignancies and bacteraemia due to Streptococcus gallolyticus subspecies pasteurianus. We reviewed the medical records and microbiological results of patients with bacteraemia due to Streptococcus bovis during the period 2000-2012. Species and subspecies identification of isolates originally classified as S. bovis was confirmed by 16S rRNA sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) assays. Minimum inhibitory concentrations of antimicrobial agents were determined by the broth microdilution method. Of the 172 S. bovis complex isolates obtained from 172 patients (age range, <1-94 years, median age, 66) with bacteraemia, 31 isolates were identified to be S. gallolyticus subspecies gallolyticus, 126 were S. gallolyticus subspecies pasteurianus, and 15 were shown to be Streptococcus infantarius. The majority (n = 104, 60%) of patients were male and had underlying malignancies (n = 87, 51%). Bacteraemia due to S. gallolyticus subspecies gallolyticus was significantly associated with endocarditis while S. gallolyticus subspecies pasteurianus was more likely to be associated with malignancies of the digestive tract, including gastric, pancreatic, hepatobiliary and colorectal cancers. Septic shock at presentation was the only factor associated with mortality among patients with bacteraemia due to either subspecies of S. bovis. Isolates of S. gallolyticus subspecies pasteurianus had higher rates of resistance to macrolides and clindamycin than isolates of S. gallolyticus subspecies gallolyticus. Extensive diagnostic work-up for digestive tract malignancies and trans-esophageal echocardiogram should be investigated in patients with bacteraemia caused by S. gallolyticus. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
İskeleli, Nazan Ocak; Alpaslan, Yelda Bingöl; Direkel, Şahin; Ertürk, Aliye Gediz; Süleymanoğlu, Nevin; Ustabaş, Reşat
2015-03-01
The synthesized Schiff base, 4-[(4-Hydroxy-3-fluoro-5-methoxy-benzylidene)amino]-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (I), has been characterized by 13C NMR, 1H NMR, 2D NMR (1H-1H COSY and 13C APT), FT-IR, UV-vis and X-ray single-crystal techniques. Molecular geometry of the compound I in the ground state, vibrational frequencies and chemical shift values have been calculated by using the density functional method (DFT) with 6-311++G(d,p) basis set. The obtained results indicate that optimized geometry can well reflect the crystal structural parameters. The differences between experimental and calculated results of FT-IR and NMR have supported the existence of intermolecular (O-H⋯O type) and intramolecular (C-H⋯O type) hydrogen bonds in the crystal structure. Molecular electrostatic potential (MEP), frontier molecular orbital analysis (HOMO-LUMO) and electronic absorption spectra were carried out at B3LYP/6-311G++(d,p). HOMO-LUMO electronic transition of 3.92 eV is due to contribution of the bands the n → π∗. The antimicrobial activity of the compound I was determined against the selected 11 bacteria and 8 fungi by microdilution broth assay with Alamar Blue. In vitro studies showed that the compound I has no antifungal effect for selected fungal isolates. However, the compound I shows remarkable antibacterial effect for the bacteria; Streptococcus pneumoniae, Haemophilus influenzae and Enterococcus faecalis.
Abreu Miranda, Mariza; Lemos, Marivane; Alves Cowart, Kamila; Rodenburg, Douglas; D McChesney, James; Radwan, Mohamed M; Furtado, Niege Araçari Jacometti Cardoso; Kenupp Bastos, Jairo
2015-08-22
Solanum cernuum Vell. (Solanaceae) is a Brazilian medicinal plant, traditionally known as "panaceia". Its folk name is probably due to its wide range of applications in traditional medicine including the treatment of ulcers. To evaluate the gastroprotective activities of the hydroethanolic extract (ESC) of S. cernuum and its major isolated compounds using in vivo gastric ulcer models. The ESC extract was obtained by maceration followed by percolation of the dried and powdered leaves of S. cernuum in ethanol:water (7:3). The major compounds in the extract were isolated by applying various preparative chromatographic techniques. The gastroprotective activity was evaluated in mice using different gastric ulcer-induced models. The anti-Helicobacter pylori activity was performed using the agar-well diffusion and broth microdilution methods. The ESC extract showed gastroprotective effects in the assay of acute gastric ulcer-induced by HCl/EtOH, nonsteroidal anti-inflammatory drug, and acetic acid-induced chronic ulcer protocols. The results also demonstrated that the gastroprotection induced by ESC extract is related to the activity of nitric oxide and endogenous sulfhydryls, which are important gastroprotective factors. The ESC extract and the alkaloid cernumidine did not show activity against H. pylori in the concentrations tested. The present study showed that the crude extract of S. cernuum possessed gastroprotective activity which corroborating the traditional use of this plant for the treatment of gastric ulcers. The isolated flavonoids, quercitrin and afzelin as well as the phenylpropanoid, isoferulic acid are suggested to be the compounds responsible for the gastroprotective activity of S. cernuum extract. Copyright © 2015. Published by Elsevier Ireland Ltd.
Methodological comparisons for antimicrobial resistance surveillance in feedlot cattle
2013-01-01
Background The purpose of this study was to objectively compare methodological approaches that might be utilized in designing an antimicrobial resistance (AMR) surveillance program in beef feedlot cattle. Specifically, four separate comparisons were made to investigate their potential impact on estimates for prevalence of AMR. These included investigating potential differences between 2 different susceptibility testing methods (broth microdilution and disc diffusion), between 2 different target bacteria (non-type-specific E. coli [NTSEC] and Mannheimia haemolytica), between 2 strategies for sampling feces (individual samples collected per rectum and pooled samples collected from the pen floor), and between 2 strategies for determining which cattle to sample (cattle that were culture-positive for Mannheimia haemolytica and those that were culture-negative). Results Comparing two susceptibility testing methods demonstrated differences in the likelihood of detecting resistance between automated disk diffusion (BioMIC®) and broth microdilution (Sensititre®) for both E. coli and M. haemolytica. Differences were also detected when comparing resistance between two bacterial organisms within the same cattle; there was a higher likelihood of detecting resistance in E. coli than in M. haemolytica. Differences in resistance prevalence were not detected when using individual animal or composite pen sampling strategies. No differences in resistance prevalences were detected in E. coli recovered from cattle that were culture-positive for M. haemolytica compared to those that were culture-negative, suggesting that sampling strategies which targeted recovery of E. coli from M. haemolytica-positive cattle would not provide biased results. Conclusions We found that for general purposes, the susceptibility test selected for AMR surveillance must be carefully chosen considering the purpose of the surveillance since the ability to detect resistance appears to vary between these tests depending upon the population where they are applied. Continued surveillance of AMR in M. haemolytica recovered by nasopharyngeal swab is recommended if monitoring an animal health pathogen is an objective of the surveillance program as results of surveillance using fecal E. coli cannot be extrapolated to this important respiratory pathogen. If surveillance of E. coli was pursued in the same population, study populations could target animals that were culture-positive for M. haemolytica without biasing estimates for AMR in E. coli. Composite pen-floor sampling or sampling of individuals per-rectum could possibly be used interchangeably for monitoring resistance in E. coli. PMID:24144185
Bhatia, V K; Sharma, P C
2015-01-01
Various antifungal agents both topical and systemic have been introduced into clinical practice for effectively treating dermatophytic conditions. Dermatophytosis is the infection of keratinised tissues caused by fungal species of genera Trichophyton, Epidermophyton and Microsporum, commonly known as dermatophytes affecting 20-25% of the world's population. The present study aims at determining the susceptibility patterns of dermatophyte species recovered from superficial mycoses of human patients in Himachal Pradesh to antifungal agents; itraconazole, terbinafine and ketoconazole. The study also aims at determining the minimum inhibitory concentrations (MICs) of these agents following the recommended protocol of Clinical and Laboratory Standards Institute (CLSI) (M38-A2). A total of 53 isolates of dermatophytes (T. mentagrophyte-34 in no., T. rubrum-18 and M. gypseum-1) recovered from the superficial mycoses were examined. Broth microdilution method M38-A2 approved protocol of CLSI (2008) for filamentous fungi was followed for determining the susceptibility of dermatophyte species. T. mentagrophyte isolates were found more susceptible to both itraconazole and ketoconazole as compared to terbinafine (MIC50: 0.125 µg/ml for itraconazole, 0.0625 µg/ml for ketoconazole and 0.5 µg/ml for terbinafine). Three isolates of T. mentagrophytes (VBS-5, VBSo-3 and VBSo-73) and one isolate of T. rubrum (VBPo-9) had higher MIC values of itraconazole (1 µg/ml). Similarly, the higher MIC values of ketoconazole were observed in case of only three isolates of T. mentagrophyte (VBSo-30 = 2 µg/ml; VBSo-44, VBM-2 = 1 µg/ml). The comparative analysis of the three antifungal drugs based on t-test revealed that 'itraconazole and terbinafine' and 'terbinafine and ketoconazole' were found independent based on the P < 0.005 in case of T. mentagrophyte isolates. In case of T. rubrum, the similarity existed between MIC values of 'itraconazole and ketoconazole' and 'terbinafine and ketoconazole'. The MIC values observed in the present study based on standard protocol M38-A2 of CLSI 2008 might serve as reference for further studies covering large number of isolates from different geographic regions of the state. Such studies might reflect on the acquisition of drug resistance among isolates of dermatophyte species based on MIC values.
New antioxidants from the culture broth of Hericium coralloides.
Kim, Ji-Yul; Woo, E-Eum; Lee, In-Kyoung; Yun, Bong-Sik
2018-05-17
In our effort to find antioxidants from the higher fungi, we isolated three new compounds (1-3) with a known compound, spirobenzofuran (4), from the culture broth of Hericium coralloides. Bioassay-guided fractionation led to the isolation of these compounds, and we determined the chemical structures through spectroscopic methods. These compounds exhibited antioxidant activity in the range of IC 50 values of 29-66 μM in the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging assay.
So, Wonhee; Crandon, Jared L; Nicolau, David P
2015-08-01
We assessed the effects of the urine matrix and its varying pH on the potency of the novel broad-spectrum fluoroquinolone delafloxacin and of ciprofloxacin against 16 urogenic Enterobacteriaceae in the urine of patients with suspected urinary tract infection. We determined minimum inhibitory concentrations in broth and urine using microdilution in 9 Escherichia coli and 7 Klebsiella pneumoniae specimens. The change in potency between broth and urine was calculated. Against 16 highly ciprofloxacin resistant Enterobacteriaceae with a broth minimum inhibitory concentration of 32 mg/l or greater the minimum inhibitory concentration in delafloxacin in broth was 2 mg/l (1 and 0 isolates of E. coli and K. pneumoniae, respectively), 4 mg/l (3 and 0), 8 mg/l (3 and 1), 16 mg/l (2 and 4) and 32 mg/l (0 and 2). Across the 143 collected urines pH ranged from 4.7 to 9.0 with 71% at pH 6.5 or less. The delafloxacin minimum inhibitory concentration measured in 80% urine from 100 unique patient samples (pH 5.0 to 8.3) was 2 mg/l or less (18% and 0.8% for E. coli and K. pneumoniae, respectively), 4 mg/l (23% and 6%), 8 mg/l (21% and 18%), 16 mg/l (23% and 33%) and 32 mg/l or greater (15% and 42%). For E. coli and K. pneumoniae combined the median changes in the delafloxacin minimum inhibitory concentration were a 1 doubling dilution decrease at pH 6.0 or less, no change at pH 6.1 to 7.0 and a 1 doubling dilution increase at pH 7.1 or greater. Unlike delafloxacin, ciprofloxacin showed a 1 doubling dilution increase for E. coli and no change for K. pneumoniae at pH 7.0 or less with no change observed at pH 7.1 or greater. Most urines collected from patients with urinary tract infection had a pH of 6.5 or less. Delafloxacin broth minimum inhibitory concentrations were twofold to fivefold doubling dilutions lower than those of ciprofloxacin. In contrast to ciprofloxacin, the potency of delafloxacin was further enhanced in the acidic environment commonly observed in the setting of urinary tract infection. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Antimicrobial susceptibility of Brachyspira hyodysenteriae isolated from 21 Polish farms.
Zmudzki, J; Szczotka, A; Nowak, A; Strzelecka, H; Grzesiak, A; Pejsak, Z
2012-01-01
Swine dysentery (SD) is a common disease among pigs worldwide, which contributes to major production losses. Antimicrobial susceptibility testing of B. hyodysenteriae, the etiological agent of SD, is mainly performed by the agar dilution method. This method has certain limitations due to difficulties in interpretation of results. The aim of this study was the analysis of antimicrobial susceptibility of Brachyspira hyodysenteriae (B. hyodysenteriae) Polish field isolates by broth microdilution procedure. The study was performed on 21 isolates of B. hyodysenteriae, collected between January 2006 to December 2010 from cases of swine dysentery. VetMIC Brachyspira panels with antimicrobial agents (tiamulin, valnemulin, doxycycline, lincomycin, tylosin and ampicillin) were used for susceptibility testing of B. hyodysenteriae. The minimal inhibitory concentration (MIC) was determined by the broth dilution procedure. The lowest antimicrobial activity was demonstrated for tylosin and lincomycin, with inhibition of bacterial growth using concentrations > 128 microg/ml and 32 microg/ml, respectively. In the case of doxycycline, the MIC values were < or = 2.0 microg/ml. No decreased susceptibility to tiamulin was found among the Polish isolates and MIC values for this antibiotic did not exceed 1.0 microg/ml. The results of the present study confirmed that Polish B. hyodysenteriae isolates were susceptible to the main antibiotics (tiamulin and valnemulin) used in treatment of swine dysentery. Further studies are necessary to evaluate a possible slow decrease in susceptibility to tiamulin and valnemulin of B. hyodysenteriae strains in Poland.
Klein, Günter; Pack, Alexander; Reuter, Gerhard
1998-01-01
The food chain, especially raw minced meat, is thought to be responsible for an increase in the incidence of vancomycin-resistant enterococci (VRE) in human nosocomial infections. Therefore, 555 samples from 115 batches of minced beef and pork from a European Union-licensed meat-processing plant were screened for the occurrence of VRE. The processed meat came from 45 different slaughterhouses in Germany. Enterococci were isolated directly from Enterococcosel selective agar plates and also from Enterococcosel selective agar plates supplemented with 32 mg of vancomycin per liter. In addition, peptone broth was used in a preenrichment procedure, and samples were subsequently plated onto Enterococcosel agar containing vancomycin. To determine resistance, 209 isolates from 275 samples were tested with the glycopeptides vancomycin, teicoplanin, and avoparcin and 19 other antimicrobial substances by using a broth microdilution test. When the direct method was used, VRE were found in 3 of 555 samples (0.5%) at a concentration of 1.0 log CFU/g of minced meat. When the preenrichment procedure was used, 8% of the samples were VRE positive. Our findings indicate that there is a low incidence of VRE in minced meat in Germany. In addition, the resistance patterns of the VRE isolates obtained were different from the resistance patterns of clinical isolates. A connection between the occurrence of VRE in minced meat and nosocomial infections could not be demonstrated on the basis of our findings. PMID:9572958
Hayashi, Masahiro; Natori, Tatsuya; Kubota-Hayashi, Sayoko; Miyata, Machiko; Ohkusu, Kiyofumi; Kawamoto, Keiko; Kurazono, Hisao; Makino, Souichi; Ezaki, Takayuki
2013-01-01
A quick foodborne pathogen screening method after six-hour enrichment culture with a broad-range food pathogen enrichment broth is described. Pathogenic factors of Salmonella enterica, Shigella spp., enteroinvasive Escherichia coli, and enterohemorrhagic E. coli are amplified with a cocktail primer and rapid polymerase chain reaction (PCR), which finishes amplification in 30 min. The PCR amplicon was differentiated with a dipstick DNA chromatography assay in 5-10 min. Starting from a four- to six-hour enrichment culture, this assay was finished within 45 min. Detection sensitivity of this protocol was less than 2.5 CFU/25 g for S. enterica and 3.3 CFU/25 g for enterohemorrhagic E. coli in spiked ground meat experiments.
Bharti, Veni; Vasudeva, Neeru; Dhuhan, Joginder Singh
2013-01-01
Purpose: The study is aimed at finding new antibiotic therapy for aquaculture due to potential of bacteria to develop resistance to the existing therapies. Use of large quantities of synthetic antibiotics in aquaculture thus has the potential to be detrimental to fish health, to the environment and wildlife and to human health. Methods: Antimicrobial potential of volatile oil and fractions of chloroform extract of Oreganum vulgare was evaluated alone and in the presence of standard antimicrobials against common fish pathogens by disc-diffusion, agar well assay and two fold microdilution method by nanodrop spectrophotometric method. Results: The best results were represented by volatile oil followed by phenolic fraction by disc-diffusion, agar well and microdilution assays (Minimum inhibitory concentration). By the interaction studies, it was observed that the volatile oil and phenolic fraction were able to inhibit the pathogens at very low concentration compared to standard drugs. The fractional inhibitory concentration index (FICI) was calculated and volatile oil and phenolic fractions were found to be synergistic against Pseudomonas fluorescens and Candida albicans. Conclusion: The experimental data suggests the use of volatile oil and phenolic fraction in combination with standard antimicrobials to maintain healthy aquaculture with lesser adverse effects as compared to synthetic antibiotic therapy. PMID:24312842
Arjoon, Amanda V; Saylor, Charlotte V; May, Meghan
2012-10-02
Mycoplasmosis is a common infection in human and veterinary medicine, and is associated with chronic inflammation and high morbidity. Mycoplasma species are often intrinsically resistant to many conventional antimicrobial therapies, and the resistance patterns of pathogenic mycoplasmas to commonly used medicinal (antimicrobial) plant extracts are currently unknown. Aqueous extracts, ethanol extracts, or oils of the targeted plant species and colloidal silver were prepared or purchased. Activity against the wall-less bacterial pathogen Mycoplasma mycoides subsp. capri was determined and compared to activities measured against Escherichia coli and Bacillus subtilis. Antimicrobial susceptibility testing was performed by broth microdilution assays. The lethal or inhibitory nature of each extract was determined by subculture into neat growth medium. Growth of M. mycoides capri, E. coli, and B. subtilis was inhibited by elderberry extract, oregano oil, ethanol extract of oregano leaves, and ethanol extract of goldenseal root. No inhibition was seen with aqueous extract of astragalus or calendula oil. Growth of M. mycoides capri and B. subtilis was inhibited by ethanol extract of astragalus, whereas growth of E. coli was not. Similarly, M. mycoides capri and E. coli were inhibited by aqueous extract of thyme, but B. subtilis was unaffected. Only B. subtilis was inhibited by colloidal silver. Measured MICs ranged from 0.0003 mg/mL to 3.8 mg/mL. Bacteriostatic and bactericidal effects differed by species and extract. The atypical pathogen M. mycoides capri was sensitive to extracts from many medicinal plants commonly used as antimicrobials in states of preparation and concentrations currently available for purchase in the United States and Europe. Variation in bacteriostatic and bactericidal activities between species and extracts indicates that multiple effecter compounds are present in these plant species.
Marangoni, Antonella; Foschi, Claudio; Micucci, Matteo; Nahui Palomino, Rogers Alberto; Gallina Toschi, Tullia; Vitali, Beatrice; Camarda, Luca; Mandrioli, Mara; De Giorgio, Marta; Aldini, Rita; Corazza, Ivan; Chiarini, Alberto; Cevenini, Roberto; Budriesi, Roberta
2017-01-01
The high incidence of vulvo-vaginal candidiasis, combined with the growing problems about azole resistance and toxicity of antifungal drugs, highlights the need for the development of new effective strategies for the treatment of this condition. In this context, natural compounds represent promising alternatives. The cyanobacterium Spirulina platensis, a blue-green alga, exhibits antimicrobial activities against several microorganisms. Nevertheless, only few data about the antifungal properties of Spirulina platensis are available and its potential toxic effects have not been largely investigated. The aim of this study was to evaluate the in vitro activity of a fully-characterized water extract of Spirulina platensis against 22 strains of Candida spp. Prior to considering its potential topical use, we both investigated whether the extract exerted target activities on guinea pig uterine smooth muscle, and the impact of Spirulina platensis on the dominant microorganisms of the vaginal microbiota (i.e., lactobacilli), in order to exclude possible adverse events. By means of a broth microdilution assay, we found that the microalga extract possesses good antifungal properties (MIC: 0.125-0.5 mg/ml), against all the Candida species with a fungicidal activity. At the concentrations active against candida, Spirulina platensis did not modify the spontaneous basic waves pattern of uterine myometrium as underlined by the absence of aberrant contractions, and did not affect the main health-promoting bacteria of the vaginal ecosystem. Finally, we evaluated the selectivity index of our extract by testing its cytotoxicity on three different cell lines and it showed values ranging between 2 and 16. Further in vivo studies are needed, in particular to evaluate the use of control-release formulations in order to maintain Spirulina platensis concentrations at anti-Candida active doses but below the toxic levels found in the present work.
Fakhri, Ali; Kahi, Delaram Salehpour
2017-01-01
A facile one-step hydrothermal route was developed here to prepare MnS 2 /reduced graphene oxide nanohybrids. The crystal morphologies could be controlled by adjusting the solvent, surfactant, and pH of the precursor solution. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-Vis absorption spectra, and photoluminescence spectra (PL), were used to characterize the structures of the samples were used to characterize the structures of the samples, and the specific surface area was determined using the Brunauer-Emmett-Teller (BET) method. The thickness of the MnS 2 nanoparticles and MnS 2 /reduced graphene oxide nanohybrids were measured to be about 20 and 5nm, respectively. The total pore volume and specific surface area were 0.540 and 1.173cm 3 g -1 and 45.91 and 98.23m 2 g -1 for pure MnS 2 and MnS 2 /r-GO hybrids, respectively. Carbophenothion as an insecticide photodegradation was used to estimate the photocatalytic activity of the MnS 2 /reduced graphene oxide nanohybrids morphologies under UV light. The Carbophenothion hardly decomposed during photolysis over a period of 45min. The rate constant, k value, for the photocatalysis of Carbophenothion by MnS 2 /reduced graphene oxide nanohybrids under UV light radiation is 0.134min -1 . The antibacterial properties of the nanohybrids were evaluated by determining their minimum inhibitory and bactericidal concentrations (MIC and MBC), using a broth microdilution assay for Escherichia coli (E. coli) bacteria. The MIC and MBC values are 4.0 and 32.0μg/mL. Copyright © 2016 Elsevier B.V. All rights reserved.
Niemann, Lisa; Müller, Petra; Brauns, Jasmin; Nathaus, Rolf; Schäkel, Franziska; Kipschull, Kerstin; Höltig, Doris; Wendt, Michael; Schwarz, Stefan; Kadlec, Kristina
2018-06-01
The collaboration project VASIB aims at reducing the antibiotic consumption in pig production by integrating information from consulting expertise in clinical inspection, hygiene, epidemiology, microbiology and pharmacology. In this VASIB subproject, we investigated the antimicrobial susceptibility and relatedness of porcine respiratory tract pathogens. Bordetella bronchiseptica (n = 47), Pasteurella multocida (n = 18) and Streptococcus suis (n = 58) were obtained from weaner pigs at two farms. Antimicrobial susceptibility testing was performed by broth microdilution according to CLSI standards. Resistance genes were detected via specific PCR assays. Macrorestriction analysis was conducted to determine the relatedness of the isolates and to identify clones. The B. bronchiseptica isolates showed indistinguishable (farm 1) or two closely related XbaI-patterns (farm 2). Different SmaI-PFGE patterns of P. multocida isolates were obtained at three different time points. In contrast, PFGE analysis of S. suis indicated more than one fragment pattern per pig and time point. Isolates exhibiting indistinguishable PFGE patterns were considered to represent the same clone. This study showed that only two closely related B. bronchiseptica clones were present in both farms, which had low MICs to all antimicrobials, except to β-lactams. Different P. multocida clones were present at the three time points. They showed overall low MIC values, with two clones being resistant and one intermediate to tetracycline. S. suis clones were resistant to tetracycline (n = 19) and/or erythromycin/clindamycin (n = 16). They harboured the tetracycline resistance genes tet(O), tet(M) or tet(L) and/or the macrolide/lincosamide/streptogramin B resistance gene erm(B). Five penicillin-resistant S. suis clones were also detected. Copyright © 2018 Elsevier B.V. All rights reserved.
Elemam, Azza; Rahimian, Joseph; Doymaz, Mehmet
2010-10-01
Since carbapenemase-producing Klebsiella pneumoniae strains were first reported in North Carolina, these highly resistant organisms have been isolated with increasing frequency, especially in the New York City area. Polymyxin B is one of the few antimicrobials that retain reliable activity against these organisms. However, polymyxin B MICs are elevated against K. pneumoniae isolates with increasing frequency, leaving clinicians with few therapeutic options. We investigated several antimicrobial agents for potential synergy with polymyxin B against 12 clinical strains of carbapenemase-producing K. pneumoniae. A broth microdilution assay using a 96-well plate was developed in which graded dilutions of polymyxin B and the study drug were incubated with resistant isolates in a checkerboard pattern. Polymyxin B was studied in combination with cefazolin, ceftriaxone, cefepime, imipenem, gentamicin, tigecycline, doxycycline, and rifampin. All K. pneumoniae strains tested positive for K. pneumoniae carbapenemase (KPC) genes by real-time PCR and had elevated polymyxin B MIC values ranging from 16 to 128 μg/ml. Synergy was observed with the combination of polymyxin B and rifampin as well as with polymyxin B and doxycycline, resulting in at least a 4-fold decrease in the polymyxin B MIC. For both combinations, this effect occurred at physiologically achievable concentrations. Less pronounced synergy was noted with tigecycline and polymyxin B. No synergy was observed at physiologic concentrations with the other antimicrobials studied. These results suggest that rifampin, doxycycline, and tigecycline may be useful additions to polymyxin B in the treatment of infections caused by highly resistant carbapenemase-producing K. pneumoniae. Further studies are warranted to determine if these in vitro findings translate into clinical efficacy.
Kosikowska, Urszula; Andrzejczuk, Sylwia; Plech, Tomasz; Malm, Anna
2016-10-01
Haemophilus parainfluenzae and Haemophilus influenzae, upper respiratory tract microbiota representatives, are able to colonize natural and artificial surfaces as biofilm. The aim of the present study was to assay the effect of ten 1,2,4-triazole-ciprofloxacin hybrids on planktonic or biofilm-forming haemophili cells in vitro under stationary conditions on the basis of MICs (minimal inhibitory concentrations) and MBICs (minimal biofilm inhibitory concentrations). In addition, anti-adhesive properties of these compounds were examined. The reference strains of H. parainfluenzae and H. influenzae were included. The broth microdilution microtiter plate (MTP) method with twofold dilution of the compounds, or ciprofloxacin (reference agent) in 96-well polystyrene microplates, was used. The optical density (OD) reading was made spectrophotometrically at a wavelength of 570 nm (OD570) both to measure bacterial growth and to detect biofilm-forming cells under the same conditions with 0.1% crystal violet. The following values of parameters were estimated for 1,2,4-triazole-ciprofloxacin hybrids - MIC = 0.03-15.63 mg/L, MBIC = 0.03-15.63 mg/L, MBIC/MIC = 0.125-8, depending on the compound, and for ciprofloxacin - MIC = 0.03-0.06 mg/L, MBIC = 0.03-0.12 mg/L, MBIC/MIC = 1-2. The observed strong anti-adhesive properties (95-100% inhibition) of the tested compounds were reversible during long-term incubation at subinhibitory concentrations. Thus, 1,2,4-triazole-ciprofloxacin hybrids may be considered as starting compounds for designing improved agents not only against planktonic but also against biofilm-forming Haemophilus spp. cells. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Fridlund, Jimmy; Woksepp, Hanna; Schön, Thomas
2016-10-01
Recent studies show that suboptimal blood levels of β-lactam antibiotics are present in intensive care unit (ICU) patients. A common reference method for assessing drug concentrations is liquid chromatography coupled with mass-spectrometry (LC-MS) which is highly accurate but rarely available outside reference centres. Thus, our aim was to develop a microbiological method for monitoring β-lactam antibiotic serum levels which could be used at any hospital with a microbiological laboratory. The method was developed as a 96-well broth microdilution format to assess the concentrations of cefotaxime (CTX), meropenem (MER), and piperacillin (PIP). Patient serum containing antibiotics were diluted in suspensions of bacteria with known minimal inhibitory concentrations (MICs). Serum antibiotic concentrations were calculated by dividing the MIC with the dilution factor at which the serum inhibited growth of the bacterial suspension. Serum (n=88) from ICU patients at four hospitals in south-east Sweden were analysed and compared to LC-MS analysis. The overall accuracy and precision for spiked samples and patient samples was within the pre-set target of ±20.0% for all drugs. There was a significant correlation between the microbiological assay and LC-MS for the patient samples (CTX: r=0.86, n=31; MER: r=0.96, n=11; PIP: r=0.88, n=39) and the agreement around the clinical cut-off for CTX (4.0mg/l), MER (2.0mg/l) and PIP (16.0mg/l) was 90%, 100% and 87%, respectively. The microbiological method has a performance for determination of serum levels of meropenem, piperacillin and cefotaxime suitable for clinical use. It is an inexpensive method applicable in any microbiology laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.
Felczykowska, Agnieszka; Pastuszak-Skrzypczak, Alicja; Pawlik, Anna; Bogucka, Krystyna; Herman-Antosiewicz, Anna; Guzow-Krzemińska, Beata
2017-06-07
Lichens that were used in traditional medicine for ages produce numerous secondary metabolites, however our knowledge about biological activities of substances secreted by separated bionts is scarce. The main objectives of this study were to isolate and find optimal conditions for the growth of mycelia from three common lichen-forming fungi, i.e. Caloplaca pusilla, Protoparmeliopsis muralis and Xanthoria parietina and to evaluate antibacterial and antiproliferative activities of their acetone extracts. Agar disc diffusion and broth microdilution methods were used to test antimicrobial activity against six species of bacteria. MTT method, flow cytometry assay and DAPI staining were applied to test antiproliferative activity of selected extracts against MCF-7 (human breast adenocarcinoma), PC-3 (human prostate cancer) and HeLa (human cervix adenocarcinoma) cancer cells. P. muralis strongly inhibited the growth of Gram-positive bacteria, i.e. Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis (MICs from 6.67 to 100.00 μg mL -1 ). X. parietina grown on PDA and G-LBM media decreased HeLa or MCF-7 cancer cells viability with IC 50 values of about 8 μg mL -1 , while C. pusilla grown on G-LBM medium showed the highest potency in decreasing MCF-7 (7.29 μg mL -1 ), PC-3 (7.96 μg mL -1 ) and HeLa (6.57 μg mL -1 ) cancer cells viability. We also showed induction of apoptosis in HeLa, PC-3 and MCF-7 cell lines treated with increasing concentrations of C. pusilla extract. We showed that selected acetone extracts demonstrated a strong antimicrobial and anticancer effects that suggests that aposymbiotically cultured lichen-forming fungi can be a source of antibacterial and antiproliferative compounds.
Khosravi, A R; Sharifzadeh, A; Nikaein, D; Almaie, Z; Gandomi Nasrabadi, H
2018-06-01
Systemic candidiasis has become an emerging fungal infection in recent years. Anti-Candida resistance to conventional antifungal agents has subsequently increased. This study reported the chemical composition, antioxidant and anti-Candida activity of Origanum majorana, Artemisia dracunculus, Cymbopogon citrate, Cinnamomum verum and Caryophyllus aromaticus essential oils. Different Candida species, from urine tracts of hospitalized patients, were included to be challenged with understudied essential oils. Chemical compositions were determined using gas chromatography/mass spectroscopy (GC/MS) analysis and antioxidant activity was measured using DDPH assay. MIC of these essential oils was evaluated using broth micro-dilution test. Caryophyllus aromaticus had the highest antioxidant activity while the lowest antioxidant activity was for Artemisia dracunculus. MICs of Cinnamomum verum, Caryophillium aromaticus, Artemisia dracunculus, Origanum vulgare and Cymbopogon citratus essential oils ranged from 125 to 175μg/mL (mean value: 147.7±25.5μg/mL), 700 to 1000μg/mL (mean value: 740.9±105.4μg/mL), 1000 to 2000μg/mL (mean value: 1454.5±509.6μg/mL), 173 to 350μg/mL (mean value: 208±55.8μg/mL) and 125 to 175μg/mL (mean value: 156.8±24.6μg/mL) for different Candida species, respectively. In general, natural compounds are suitable to be used as anti-Candida and antioxidant agents. However in this stage, these compounds could be applied as supplementary agents along with conventional antifungal drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Boikov, Dina A.; James, Kenneth D.; Bartizal, Ken; Sobel, Jack D.
2017-01-01
Background: The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. Objectives: To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. Methods: MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans (n = 60), Candida glabrata (n = 21), Candida parapsilosis (n = 14) and Candida tropicalis (n = 13). Results: Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. Conclusions: CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. PMID:28158577
Caol, Sanjie; Divers, Thomas; Crisman, Mark; Chang, Yung-Fu
2017-09-29
Lyme disease in humans is predominantly treated with tetracycline, macrolides or beta lactam antibiotics that have low minimum inhibitory concentrations (MIC) against Borrelia burgdorferi. Horses with Lyme disease may require long-term treatment making frequent intravenous or intramuscular treatment difficult and when administered orally those drugs may have either a high incidence of side effects or have poor bioavailability. The aim of the present study was to determine the in vitro susceptibility of three B. burgdorferi isolates to three antibiotics of different classes that are commonly used in practice for treating Borrelia infections in horses. Broth microdilution assays were used to determine minimum inhibitory concentration of three antibiotics (ceftiofur sodium, minocycline and metronidazole), for three Borrelia burgdorferi isolates. Barbour-Stoner-Kelly (BSK K + R) medium with a final inoculum of 10 6 Borrelia cells/mL and incubation periods of 72 h were used in the determination of MICs. Observed MICs indicated that all isolates had similar susceptibility to each drug but susceptibility to the tested antimicrobial agents varied; ceftiofur sodium (MIC = 0.08 μg/ml), minocycline hydrochloride (MIC = 0.8 μg/ml) and metronidazole (MIC = 50 μg/ml). The MIC against B. burgorferi varied among the three antibiotics with ceftiofur having the lowest MIC and metronidazole the highest MIC. The MIC values observed for ceftiofur in the study fall within the range of reported serum and tissue concentrations for the drug metabolite following ceftiofur sodium administration as crystalline-free acid. Minocycline and metronidazole treatments, as currently used in equine practice, could fall short of attaining MIC concentrations for B. burgdorferi.
Chusri, Sasitorn; Sinvaraphan, Naruephan; Chaipak, Ploypailin; Luxsananuwong, Atita; Voravuthikunchai, Supayang Piyawan
2014-12-01
Household ancient remedies reported here are described in the National List of Essential Medicines and have traditionally been used in Thailand to treat infection-related ailments. However, the safety and effectiveness of these remedies have been poorly evaluated. The aim of this study was to evaluate the antibacterial properties of these remedies against seven gram-positive and gram-negative multidrug-resistant bacteria species. Phytochemical constituents and cytotoxicity of these remedies were also determined. Seven remedies, consisting of Um-Ma-Luk-Ka-Wa-Tee, Chan-Ta-Lee-La, Kheaw-Hom, Learng-Pid-Sa-Mud, Pra-Sa-Chan-Dang, Dhart-Ban-Chob, and Tree-Hom, were prepared by a licensed traditional medical doctor using a mixture of medicinal plants. Antibacterial activity of ethanol extracts of the remedies was determined by using a broth microdilution method. Qualitative phytochemical screening analysis was carried out to identify the presence of major components. Cytotoxicity activities of the extracts against Vero cells were assessed by green fluorescent protein-based assay. With the exception of Dhart-Ban-Chob extract, significant minimum inhibitory concentrations (MICs) of <16 to 32 μg/mL were observed for the remedy extracts depending on the bacterial strains. The Um-Ma-Luk-Ka-Wa-Tee extract was noncytotoxic against Vero cells and possessed the highest activity, with MICs of <16 to 31 μg/mL against all methicillin-resistant Staphylococcus aureus isolates. Remarkable antibacterial activities against multidrug-resistant pathogens, as well as low toxicity on Vero cells, of Um-Ma-Luk-Ka-Wa-Tee support the use of this remedy in traditional medicine. Further investigation on other biological activities related to traditional applications, appropriate biomarkers, and treatment mechanisms of the household remedy are required.
Boikov, Dina A; Locke, Jeffrey B; James, Kenneth D; Bartizal, Ken; Sobel, Jack D
2017-05-01
The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans ( n = 60), Candida glabrata ( n = 21), Candida parapsilosis ( n = 14) and Candida tropicalis ( n = 13). Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Clinical and Microbiological Aspects of β-Lactam Resistance in Staphylococcus lugdunensis
McHardy, Ian H.; Veltman, Jennifer; Hindler, Janet; Bruxvoort, Katia; Carvalho, Marissa M.
2016-01-01
ABSTRACT Antimicrobial susceptibility results from broth microdilution MIC testing of 993 Staphylococcus lugdunensis isolates recovered from patients at a tertiary care medical center from 2008 to 2015 were reviewed. Ninety-two oxacillin-susceptible isolates were selected to assess the accuracy of penicillin MIC testing, the penicillin disk diffusion test, and three β-lactamase tests, including the cefoxitin-induced nitrocefin test, penicillin cloverleaf assay, and penicillin disk zone edge test. The results of all phenotypic tests were compared to the results of blaZ PCR. The medical records of 62 patients from whom S. lugdunensis was isolated, including 31 penicillin-susceptible and 31 penicillin-resistant strains, were retrospectively reviewed to evaluate the clinical significance of S. lugdunensis isolation, the antimicrobial agents prescribed, if any, and the clinical outcome. MIC testing revealed that 517/993 (52.1%) isolates were susceptible to penicillin and 946/993 (95.3%) were susceptible to oxacillin. The induced nitrocefin test was 100% sensitive and specific for the detection of β-lactamase compared to the blaZ PCR results, whereas the penicillin disk zone edge and cloverleaf tests showed sensitivities of 100% but specificities of only 9.1% and 89.1%, respectively. The penicillin MIC test had 100% categorical agreement with blaZ PCR, while penicillin disk diffusion yielded one major error. Only 3/31 patients with penicillin-susceptible isolates were treated with a penicillin family antimicrobial. The majority of cases were treated with other β-lactams, trimethoprim-sulfamethoxazole, or vancomycin. These data indicate that nearly all isolates of S. lugdunensis are susceptible to narrow-spectrum antimicrobial agents. Clinical laboratories in areas with resistance levels similar to those described here can help promote the use of these agents versus vancomycin by effectively designing their antimicrobial susceptibility reports to convey this message. PMID:27927926
Clinical and Microbiological Aspects of β-Lactam Resistance in Staphylococcus lugdunensis.
McHardy, Ian H; Veltman, Jennifer; Hindler, Janet; Bruxvoort, Katia; Carvalho, Marissa M; Humphries, Romney M
2017-02-01
Antimicrobial susceptibility results from broth microdilution MIC testing of 993 Staphylococcus lugdunensis isolates recovered from patients at a tertiary care medical center from 2008 to 2015 were reviewed. Ninety-two oxacillin-susceptible isolates were selected to assess the accuracy of penicillin MIC testing, the penicillin disk diffusion test, and three β-lactamase tests, including the cefoxitin-induced nitrocefin test, penicillin cloverleaf assay, and penicillin disk zone edge test. The results of all phenotypic tests were compared to the results of blaZ PCR. The medical records of 62 patients from whom S. lugdunensis was isolated, including 31 penicillin-susceptible and 31 penicillin-resistant strains, were retrospectively reviewed to evaluate the clinical significance of S. lugdunensis isolation, the antimicrobial agents prescribed, if any, and the clinical outcome. MIC testing revealed that 517/993 (52.1%) isolates were susceptible to penicillin and 946/993 (95.3%) were susceptible to oxacillin. The induced nitrocefin test was 100% sensitive and specific for the detection of β-lactamase compared to the blaZ PCR results, whereas the penicillin disk zone edge and cloverleaf tests showed sensitivities of 100% but specificities of only 9.1% and 89.1%, respectively. The penicillin MIC test had 100% categorical agreement with blaZ PCR, while penicillin disk diffusion yielded one major error. Only 3/31 patients with penicillin-susceptible isolates were treated with a penicillin family antimicrobial. The majority of cases were treated with other β-lactams, trimethoprim-sulfamethoxazole, or vancomycin. These data indicate that nearly all isolates of S. lugdunensis are susceptible to narrow-spectrum antimicrobial agents. Clinical laboratories in areas with resistance levels similar to those described here can help promote the use of these agents versus vancomycin by effectively designing their antimicrobial susceptibility reports to convey this message. Copyright © 2017 American Society for Microbiology.
Herzner, Gudrun; Schlecht, Anja; Dollhofer, Veronika; Parzefall, Christopher; Harrar, Klaus; Kreuzer, Andreas; Pilsl, Ludwig; Ruther, Joachim
2013-01-01
Food resources contaminated with spoilage or pathogenic microorganisms pose severe problems to all higher organisms. Here, we describe a food-hygienic strategy of the emerald cockroach wasp Ampulex compressa. The wasp larvae develop on and inside the American cockroach Periplaneta americana, a host that can harbor various putrefactive microbes, as well as human and insect pathogens. From P. americana, we isolated the Gram-negative bacterium Serratia marcescens, which is a potent entomopathogen that can rapidly kill insect larvae. It is also known as a food contaminant and as an opportunistic human pathogen. Using behavioral observations and chemical analyses, we demonstrated that A. compressa larvae impregnate their cockroach hosts from inside with large amounts of an oral secretion containing a blend of γ-lactones and isocoumarins with (R)-(-)-mellein [(R)-(-)-3,4-diydro-8-hydroxy-3-methylisocoumarin] and micromolide [(4R,9Z)-octadec-9-en-4-olide] as dominant components. We fractionated hexane extracts of the secretion and investigated the antimicrobial properties of the fraction containing the lactones and isocoumarins, as well as of synthetic (R)-(-)-mellein and micromolide, against S. marcescens and a Gram-positive bacterium, Staphylococcus hyicus, in broth microdilution assays. The test fraction inhibited growth of both tested bacteria. The activity of the fraction against S. marcescens was explained by (R)-(-)-mellein alone, and the activity against S. hyicus was explained by the combined action of (R)-(-)-mellein and micromolide. Our data suggest that the specific combination of antimicrobials in the larval secretion provides an effective frontline defense against the unpredictable spectrum of microbes that A. compressa larvae may encounter during their development inside their cockroach hosts. PMID:23297195
Lee, Mui Li; Tan, Nget Hong; Fung, Shin Yee; Sekaran, Shamala Devi
2011-03-01
The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme. Copyright © 2010 Elsevier Inc. All rights reserved.
Abdel-Baky, Rehab Mahmoud; Ali, Mohamed Abdullah; Abuo-Rahma, Gamal El-Din Ali A; AbdelAziz, Neveen
2017-01-01
Proteus mirabilis is one of the important pathogens that colonize the urinary tract and catheters resulting in various complications, such as blockage of the catheters and the formation of infective stones. In this study we evaluated the effect of N-acetyl cysteine (NAC) and dipropyl disulphide on some virulence factors expressed by a Proteus mirabilis strain isolated from a catheterized patient. Antibacterial activity of both compounds was determined by broth microdilution method. Their effect on different types of motility was determined by LB medium with variable agar content and sub-MIC of each drug. Their effect on adherence and mature biofilms was tested by tissue culture plate assay. Inhibitory effect on urease production was determined and supported by molecular docking studies. The minimum inhibitory concentration (MIC) of NAC and dipropyl disulphide was 25 mM and 100 mM, respectively. Both compounds decreased the swarming ability and biofilm formation of the tested isolate in a dose-dependent manner. NAC had higher urease inhibitory activity (IC50 249 ±0.05 mM) than that shown by dipropyl disulphide (IC 50 10±0.2 mM). Results were supported by molecular docking studies which showed that NAC and dipropyl disulphide interacted with urease enzyme with binding free energy of -4.8 and -8.528 kcal/mol, respectively. Docking studies showed that both compounds interacted with Ni ion and several amino acids (His-138, Gly-279, Cysteine-321, Met-366 and His-322) which are essential for the enzyme activity. NAC and dipropyl disulphide could be used in the control of P. mirabilis urinary tract infections.
Cytotoxic and antimicrobial activity of selected Cameroonian edible plants
2013-01-01
Background In Cameroon, the use of edible plants is an integral part of dietary behavior. However, evidence of the antimicrobial as well as the cytotoxic effects of many of them has not been investigated. In the present study, aqueous and methanol extracts from barks, seeds, leaves and roots of three Cameroonian edible plants namely Garcina lucida, Fagara heitzii and Hymenocardia lyrata were evaluated for their cytotoxic and antimicrobial activities. Methods Antibacterial and antifungal activities were assessed by the broth micro-dilution method meanwhile the cytotoxicity was performed using sulphorhodamine B assay (SRB) against the human leukemia THP-1, the alveolar epithelial A549, prostate cancer PC-3, breast adenocarcinoma MCF-7 and cervical cancer HeLa cell lines. Results The minimum inhibitory concentration (MIC) values of the seven tested extracts ranged from 62.5 μg/ml to 1000 μg/ml. The methanol (MeOH) extract from the roots of H. lyrata showed the highest antibacterial activity against Gram-positive bacteria S. aureus and S. epidermitis. The best antifungal activity was obtained with the MeOH extract from the leaves of G. lucida against C. tropicalis (MIC value of 62.5 μg/ml). The in vitro antiproliferative activity revealed that, extract from the bark of F. heitzii and extract from H. lyrata roots had significant cytotoxic activity on THP-1 (IC50 8.4 μg/ml) and PC-3 (IC50 9.5 μg/ml) respectively. Conclusion Our findings suggest that Cameroonian spices herein studied could be potentially useful for the development of therapeutic agents against bacterial infections as well as for prostate and leukemia cancer. PMID:23565827
Mallegol, Julia; Fernandes, Prabhavathi; Melano, Roberto G; Guyard, Cyril
2014-01-01
The activity of solithromycin was evaluated against clinical Legionella pneumophila serogroup 1 (Lp1) isolates (n = 196) collected in Ontario, Canada, from 1980 to 2011. Its in vitro activity was compared to that of azithromycin (AZM) using the broth microdilution method. Solithromycin had a MIC50 of ≤0.015 μg/ml and a MIC90 of 0.031 μg/ml, making its activity at least 8-fold to 32-fold higher than that of AZM (MIC50 and MIC90, 0.125 μg/ml and 1 μg/ml, respectively). Ninety-nine percent of the isolates had MICs for solithromycin ranging from ≤0.015 μg/ml to 0.031 μg/ml, whereas 83.6% of the isolates showed MICs for AZM ranging from 0.062 μg/ml to 0.25 μg/ml. Interestingly, 96.7% (30 out of 31 clinical isolates) identified with higher AZM MICs (0.5 μg/ml to 2 μg/ml) belonged to the clinically prevalent sequence type 1. To investigate the intracellular activity of solithromycin, in vitro invasion assays were also performed against a subset of representative Lp1 isolates internalized within human lung epithelial cells. Solithromycin and AZM both inhibited growth of all intracellular Lp1 isolates at 1× or 8× MICs, displaying bacteriostatic effects, as would be expected with protein synthesis inhibitor rather than bactericidal activity. Solithromycin demonstrated the highest in vitro and intracellular potency against all Lp1 isolates compared to AZM. Given the rapid spread of resistance mechanisms among respiratory pathogens and the reported treatment failures in legionellosis, the development of this new fluoroketolide, already in phase 3 oral clinical studies, constitutes a promising alternative option for the treatment of legionellosis.
Mallegol, Julia; Fernandes, Prabhavathi
2014-01-01
The activity of solithromycin was evaluated against clinical Legionella pneumophila serogroup 1 (Lp1) isolates (n = 196) collected in Ontario, Canada, from 1980 to 2011. Its in vitro activity was compared to that of azithromycin (AZM) using the broth microdilution method. Solithromycin had a MIC50 of ≤0.015 μg/ml and a MIC90 of 0.031 μg/ml, making its activity at least 8-fold to 32-fold higher than that of AZM (MIC50 and MIC90, 0.125 μg/ml and 1 μg/ml, respectively). Ninety-nine percent of the isolates had MICs for solithromycin ranging from ≤0.015 μg/ml to 0.031 μg/ml, whereas 83.6% of the isolates showed MICs for AZM ranging from 0.062 μg/ml to 0.25 μg/ml. Interestingly, 96.7% (30 out of 31 clinical isolates) identified with higher AZM MICs (0.5 μg/ml to 2 μg/ml) belonged to the clinically prevalent sequence type 1. To investigate the intracellular activity of solithromycin, in vitro invasion assays were also performed against a subset of representative Lp1 isolates internalized within human lung epithelial cells. Solithromycin and AZM both inhibited growth of all intracellular Lp1 isolates at 1× or 8× MICs, displaying bacteriostatic effects, as would be expected with protein synthesis inhibitor rather than bactericidal activity. Solithromycin demonstrated the highest in vitro and intracellular potency against all Lp1 isolates compared to AZM. Given the rapid spread of resistance mechanisms among respiratory pathogens and the reported treatment failures in legionellosis, the development of this new fluoroketolide, already in phase 3 oral clinical studies, constitutes a promising alternative option for the treatment of legionellosis. PMID:24277019
Massunari, Loiane; Novais, Renata Zoccal; Oliveira, Márcio Teixeira; Valentim, Diego; Dezan Junior, Eloi; Duque, Cristiane
2017-01-01
Psidium cattleianum (PC) has been displaying inhibitory effect against a variety of microorganisms, but this effect has not yet been tested against endodontic pathogens. The aim of this study was to evaluate the antimicrobial activity and biocompatibility of the aqueous (PCAE) and hydroethanolic (PCHE) extracts from Psidium cattleianum (PC) leaves. Minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the microdilution broth method in order to analyze the antimicrobial effect against Enterococcus faecalis, Pseudomonas aeruginosa, Actinomyces israelii and Candida albicans in planktonic conditions. Biofilm assays were conducted only with the extracts that were able to determine the MLC for microorganisms in planktonic conditions. Immediate and late tissue reactions against PC extracts were evaluated using edemogenic test and histological analysis of subcutaneous implants in Wistar rats. The results showed that the MIC and MLC values ranged between 0.25 and 4 mg/mL. The MLC obtained for PCHE inhibited 100% growth of all the tested strains, except for C. albicans. PCAE had the same effect for E. faecalis and P. aeruginosa. Both PC extracts were able to eliminate E. faecalis biofilms and only the PCHE eliminated P. aeruginosa biofilms. The positive controls inhibited the growth of all tested strains in MIC and MLC essays, but no CHX tested concentrations were able to eliminate A. israelii biofilm. PCAE caused a discrete increase in the edema over time, while PCHE caused a higher initial edema, which decreased progressively. Both PCAE and PCHE extracts were biocompatible, but PCHE showed better results with slight levels of inflammation at 28 days. In conclusion, PCHE was biocompatible and presented better antimicrobial effect against important pathogens associated with persistent endodontic infections.
Ooi, N; Eady, E A; Cove, J H; O'Neill, A J
2015-02-01
To investigate the antistaphylococcal/antibiofilm activity and mode of action (MOA) of a panel of redox-active (RA) compounds with a history of human use and to provide a preliminary preclinical assessment of their potential for topical treatment of staphylococcal infections, including those involving a biofilm component. Antistaphylococcal activity was evaluated by broth microdilution and by time-kill studies with growing and slow- or non-growing cells. The antibiofilm activity of RA compounds, alone and in combination with established antibacterial agents, was assessed using the Calgary Biofilm Device. Established assays were used to examine the membrane-perturbing effects of RA compounds, to measure penetration into biofilms and physical disruption of biofilms and to assess resistance potential. A living skin equivalent model was used to assess the effects of RA compounds on human skin. All 15 RA compounds tested displayed antistaphylococcal activity against planktonic cultures (MIC 0.25-128 mg/L) and 7 eradicated staphylococcal biofilms (minimum biofilm eradication concentration 4-256 mg/L). The MOA of all compounds involved perturbation of the bacterial membrane, whilst selected compounds with antibiofilm activity caused destructuring of the biofilm matrix. The two most promising agents [celastrol and nordihydroguaiaretic acid (NDGA)] in respect of antibacterial potency and selective toxicity against bacterial membranes acted synergistically with gentamicin against biofilms, did not damage artificial skin following topical application and exhibited low resistance potential. In contrast to established antibacterial drugs, some RA compounds are capable of eradicating staphylococcal biofilms. Of these, celastrol and NDGA represent particularly attractive candidates for development as topical antistaphylococcal biofilm treatments. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Wei, Lee Seong; Wee, Wendy; Siong, Julius Yong Fu; Syamsumir, Desy Fitrya
2011-01-01
Peperomia pellucida leaf extract was characterized for its anticancer, antimicrobial, antioxidant activities, and chemical compositions. Anticancer activity of P. pellucida leaf extract was determined through Colorimetric MTT (tetrazolium) assay against human breast adenocarcinoma (MCF-7) cell line and the antimicrobial property of the plant extract was revealed by using two-fold broth micro-dilution method against 10 bacterial isolates. Antioxidant activity of the plant extract was then characterized using α, α-diphenyl-β-picrylhydrazyl (DPPH) radical scavenging method and the chemical compositions were screened and identified using gas chromatography-mass spectrometry (GC-MS). The results of present study indicated that P. pellucida leaf extract possessed anticancer activities with half maximal inhibitory concentration (IC(50)) of 10.4 ± 0.06 µg/ml. The minimum inhibitory concentration (MIC) values were ranged from 31.25 to 125 mg/l in which the plant extract was found to inhibit the growth of Edwardsiella tarda, Escherichia coli, Flavobacterium sp., Pseudomonas aeruginosa and Vibrio cholerae at 31.25 mg/l; Klebsiella sp., Aeromonas hydrophila and Vibrio alginolyticus at 62.5 mg/l; and it was able to control the growth of Salmonella sp. and Vibrio parahaemolyticus at 125 mg/l. At the concentration of 0.625 ppt, the plant extract was found to inhibit 30% of DPPH, free radical. Phytol (37.88%) was the major compound in the plant extract followed by 2-Naphthalenol, decahydro- (26.20%), Hexadecanoic acid, methyl ester (18.31%) and 9,12-Octadecadienoic acid (Z,Z)-, methyl ester (17.61%). Findings from this study indicated that methanol extract of P. pellucida leaf possessed vast potential as medicinal drug especially in breast cancer treatment.
Herzner, Gudrun; Schlecht, Anja; Dollhofer, Veronika; Parzefall, Christopher; Harrar, Klaus; Kreuzer, Andreas; Pilsl, Ludwig; Ruther, Joachim
2013-01-22
Food resources contaminated with spoilage or pathogenic microorganisms pose severe problems to all higher organisms. Here, we describe a food-hygienic strategy of the emerald cockroach wasp Ampulex compressa. The wasp larvae develop on and inside the American cockroach Periplaneta americana, a host that can harbor various putrefactive microbes, as well as human and insect pathogens. From P. americana, we isolated the Gram-negative bacterium Serratia marcescens, which is a potent entomopathogen that can rapidly kill insect larvae. It is also known as a food contaminant and as an opportunistic human pathogen. Using behavioral observations and chemical analyses, we demonstrated that A. compressa larvae impregnate their cockroach hosts from inside with large amounts of an oral secretion containing a blend of γ-lactones and isocoumarins with (R)-(-)-mellein [(R)-(-)-3,4-diydro-8-hydroxy-3-methylisocoumarin] and micromolide [(4R,9Z)-octadec-9-en-4-olide] as dominant components. We fractionated hexane extracts of the secretion and investigated the antimicrobial properties of the fraction containing the lactones and isocoumarins, as well as of synthetic (R)-(-)-mellein and micromolide, against S. marcescens and a Gram-positive bacterium, Staphylococcus hyicus, in broth microdilution assays. The test fraction inhibited growth of both tested bacteria. The activity of the fraction against S. marcescens was explained by (R)-(-)-mellein alone, and the activity against S. hyicus was explained by the combined action of (R)-(-)-mellein and micromolide. Our data suggest that the specific combination of antimicrobials in the larval secretion provides an effective frontline defense against the unpredictable spectrum of microbes that A. compressa larvae may encounter during their development inside their cockroach hosts.
Effect of hydrogen peroxide on antibacterial activities of Canadian honeys.
Brudzynski, Katrina
2006-12-01
Honey is recognized as an efficacious topical antimicrobial agent in the treatment of burns and wounds. The antimicrobial activity in some honeys depends on the endogenous hydrogen peroxide content. This study was aimed to determine whether honey's hydrogen peroxide level could serve as a honey-specific, activity-associated biomarker that would allow predicting and assessing the therapeutic effects of honey. Using a broth microdilution assay, I analyzed antibacterial activities of 42 Canadian honeys against two bacterial strains: Escherichia coli (ATCC 14948) and Bacillus subtilis (ATCC 6633). The MIC90 and MIC50 were established from the dose-response relationship between antibacterial activities and honey concentrations. The impact of H2O2 on antibacterial activity was determined (i) by measuring the levels of H2O2 before and after its removal by catalase and (ii) by correlating the results with levels of antibacterial activities. Canadian honeys demonstrated moderate to high antibacterial activity against both bacterial species. Both MIC90 and MIC50 revealed that the honeys exhibited a selective growth inhibitory activity against E. coli, and this activity was strongly influenced by endogenous H2O2 concentrations. Bacillus subtilis activity was marginally significantly correlated with H2O2 content. The removal of H2O2 by catalase reduced the honeys' antibacterial activity, but the enzyme was unable to completely decompose endogenous H2O2. The 25%-30% H2O2 "leftover" was significantly correlated with the honeys' residual antibacterial activity against E. coli. These data indicate that all Canadian honeys exhibited antibacterial activity, with higher selectivity against E. coli than B. subtilis, and that these antibacterial activities were correlated with hydrogen peroxide production in honeys. Hydrogen peroxide levels in honey, therefore, is a strong predictor of the honey's antibacterial activity.
Sinvaraphan, Naruephan; Chaipak, Ploypailin; Luxsananuwong, Atita; Voravuthikunchai, Supayang Piyawan
2014-01-01
Abstract Aim: Household ancient remedies reported here are described in the National List of Essential Medicines and have traditionally been used in Thailand to treat infection-related ailments. However, the safety and effectiveness of these remedies have been poorly evaluated. The aim of this study was to evaluate the antibacterial properties of these remedies against seven gram-positive and gram-negative multidrug-resistant bacteria species. Phytochemical constituents and cytotoxicity of these remedies were also determined. Methods: Seven remedies, consisting of Um-Ma-Luk-Ka-Wa-Tee, Chan-Ta-Lee-La, Kheaw-Hom, Learng-Pid-Sa-Mud, Pra-Sa-Chan-Dang, Dhart-Ban-Chob, and Tree-Hom, were prepared by a licensed traditional medical doctor using a mixture of medicinal plants. Antibacterial activity of ethanol extracts of the remedies was determined by using a broth microdilution method. Qualitative phytochemical screening analysis was carried out to identify the presence of major components. Cytotoxicity activities of the extracts against Vero cells were assessed by green fluorescent protein–based assay. Results: With the exception of Dhart-Ban-Chob extract, significant minimum inhibitory concentrations (MICs) of <16 to 32 μg/mL were observed for the remedy extracts depending on the bacterial strains. The Um-Ma-Luk-Ka-Wa-Tee extract was noncytotoxic against Vero cells and possessed the highest activity, with MICs of <16 to 31 μg/mL against all methicillin-resistant Staphylococcus aureus isolates. Conclusions: Remarkable antibacterial activities against multidrug-resistant pathogens, as well as low toxicity on Vero cells, of Um-Ma-Luk-Ka-Wa-Tee support the use of this remedy in traditional medicine. Further investigation on other biological activities related to traditional applications, appropriate biomarkers, and treatment mechanisms of the household remedy are required. PMID:25415453
2012-01-01
Background Mycoplasmosis is a common infection in human and veterinary medicine, and is associated with chronic inflammation and high morbidity. Mycoplasma species are often intrinsically resistant to many conventional antimicrobial therapies, and the resistance patterns of pathogenic mycoplasmas to commonly used medicinal (antimicrobial) plant extracts are currently unknown. Methods Aqueous extracts, ethanol extracts, or oils of the targeted plant species and colloidal silver were prepared or purchased. Activity against the wall-less bacterial pathogen Mycoplasma mycoides subsp. capri was determined and compared to activities measured against Escherichia coli and Bacillus subtilis. Antimicrobial susceptibility testing was performed by broth microdilution assays. The lethal or inhibitory nature of each extract was determined by subculture into neat growth medium. Results Growth of M. mycoides capri, E. coli, and B. subtilis was inhibited by elderberry extract, oregano oil, ethanol extract of oregano leaves, and ethanol extract of goldenseal root. No inhibition was seen with aqueous extract of astragalus or calendula oil. Growth of M. mycoides capri and B. subtilis was inhibited by ethanol extract of astragalus, whereas growth of E. coli was not. Similarly, M. mycoides capri and E. coli were inhibited by aqueous extract of thyme, but B. subtilis was unaffected. Only B. subtilis was inhibited by colloidal silver. Measured MICs ranged from 0.0003 mg/mL to 3.8 mg/mL. Bacteriostatic and bactericidal effects differed by species and extract. Conclusions The atypical pathogen M. mycoides capri was sensitive to extracts from many medicinal plants commonly used as antimicrobials in states of preparation and concentrations currently available for purchase in the United States and Europe. Variation in bacteriostatic and bactericidal activities between species and extracts indicates that multiple effecter compounds are present in these plant species. PMID:23031072
Wongsariya, Karn; Phanthong, Phanida; Bunyapraphatsara, Nuntavan; Srisukh, Vimol; Chomnawang, Mullika Traidej
2014-03-01
Citrus hystrix de Candolle (Rutaceae), an edible plant regularly used as a food ingredient, possesses antibacterial activity, but there is no current data on the activity against bacteria causing periodontal diseases. C. hystrix essential oil from leaves and peel were investigated for antibiofilm formation and mode of action against bacteria causing periodontal diseases. In vitro antibacterial and antibiofilm formation activities were determined by broth microdilution and time kill assay. Mode of action of essential oil was observed by SEM and the active component was identified by bioautography and GC/MS. C. hystrix leaves oil exhibited antibacterial activity at the MICs of 1.06 mg/mL for P. gingivalis and S. mutans and 2.12 mg/mL for S. sanguinis. Leaf oil at 4.25 mg/mL showed antibiofilm formation activity with 99% inhibition. The lethal effects on P. gingivalis were observed within 2 and 4 h after treated with 4 × MIC and 2 × MIC, respectively. S. sanguinis and S. mutans were completely killed within 4 and 8 h after exposed to 4 × MIC and 2 × MIC of oil. MICs of tested strains showed 4 times reduction suggesting synergistic interaction of oil and chlorhexidine. Bacterial outer membrane was disrupted after treatment with leaves oil. Additionally, citronellal was identified as the major active compound of C. hystrix oil. C. hystrix leaf oil could be used as a natural active compound or in combination with chlorhexidine in mouthwash preparations to prevent the growth of bacteria associated with periodontal diseases and biofilm formation.
Kannan, Rajaretinam Rajesh; Iniyan, Appadurai Muthamil; Vincent, Samuel Gnana Prakash
2014-01-01
Background & objectives: Antibiotic resistance in pathogens has become a serious problem worldwide. Therefore, the search for new antibiotics for drug resistanct pathogens is an important endeavor. The present study deals with the production of anti-methicillin resistant Staphylococcus aureus (MRSA) potential of Streptomyces rubrolavendulae ICN3 and evaluation of anti-MRSA compound in zebrafish embryos. Methods: The antibiotic production from S. rubrolavendulae ICN3 was optimized in solid state fermentation and extracted. The antagonistic activity was confirmed against MRSA and purified in silica gel column and reverse phase - HPLC with an absorption maximum at 215 nm. Minimal inhibitory concentration of the compound was determined by broth microdilution method. Zebrafish embryos were used to evaluate the extract/compound for its minimal inhibition studies, influences on heart beat rates, haematopoietic blood cell count and lethal dose values. Results: Streptomyces rubrolavendulae ICN3 showed potent antagonistic activity against MRSA with a zone of 42 mm. The minimum inhibitory concentration was calculated as 500 μg/ml of the crude extract and the purified C23 exhibited 2.5 μg/ml in in vitro assay. The LC50 value of the anti MRSA compound C23 was calculated as 60.49 μg/ml and the MRSA treated embryos survived in the presence of purified compound C23 at a dose of 10 μg/ml. Interpretation & conclusions: Our results suggested that the compound was potent with less toxic effects in zebrafish embryonic model system for MRSA infection. Further structural evaluation and analysis in higher mammalian model system may lead to a novel drug candidate for drug resistant Staphylococcus aureus. PMID:25109726
Antioxidant and antimicrobial activity of stingless bee bread and propolis extracts
NASA Astrophysics Data System (ADS)
Akhir, Rabieatul Adawieah Md; Bakar, Mohd Fadzelly Abu; Sanusi, Shuaibu Babaji
2017-10-01
Bee bread and propolis are by-products of honey bee. The main objective of this research was to investigate the antioxidant and antimicrobial activity of stingless bee bread and propolis extracted using 70% ethanol and n-hexane. The antioxidant activity of the sample extracts were determined by spectrophotometry analysis while for the antimicrobial activity, the sample extracts were analyzed using disc diffusion and broth dilution assays. For DPPH and ABTS assays, the results showed that ethanolic extract of bee bread showed the highest free radical scavenging (%) as compared to other samples. However, FRAP values for both hexanic extracts are higher as compared to the ethanolic extracts. For disc diffusion assay, the results showed that the ethanolic extract of bee bread and propolis as well as hexanic extract of propolis were able to inhibit all tested bacteria. Meanwhile, broth dilution assay showed minimum inhibition zone (MIC) ranging from <6.67 to 33.33 µL/mL. As the conclusion, both bee bread and propolis produced by stingless bee in this study displayed antioxidant and antimicrobial effect but there are different in the degree of antioxidant and antimicrobial activity exhibited between each of the samples.
Potential use of gallium-doped phosphate-based glass material for periodontitis treatment.
Sahdev, Rohan; Ansari, Tahera I; Higham, Susan M; Valappil, Sabeel P
2015-07-01
This study aimed at evaluating the potential effect of gallium-incorporated phosphate-based glasses towards periodontitis-associated bacteria, Porphyromonas gingivalis, and matrix metalloproteinase-13. Periodontitis describes a group of inflammatory diseases of the gingiva and supporting structures of the periodontium. They are initiated by the accumulation of plaque bacteria, such as the putative periodontal pathogen Porphyromonas gingivalis, but the host immune response such as elevated matrix metalloproteinases are the major contributing factor for destruction of periodontal tissues. Antibacterial assays of gallium-incorporated phosphate-based glasses were conducted on Porphyromonas gingivalis ATCC 33277 using disc diffusion assay on fastidious anaerobe agar and liquid broth assay in a modified tryptic soy broth. In vitro study investigated the effect of gallium on purified recombinant human matrix metalloproteinase-13 activity using matrix metalloproteinase assay kit. In vivo biocompatibility of gallium-incorporated phosphate-based glass was evaluated in rats as subcutaneous implants. Antibacterial assay of gallium displayed activity against Porphyromonas gingivalis (inhibition zone of 22 ± 0.5 mm compared with 0 mm for control glass, c-PBG). Gallium in the glass contributed to growth inhibitory effect on Porphyromonas gingivalis (up to 1.30 reductions in log 10 values of the viable counts compared with control) in a modified tryptic soy broth. In vitro study showed gallium-incorporated phosphate-based glasses inhibited matrix metalloproteinase activity significantly (p ≤ 0.01) compared with c-PBG. Evaluation of in vivo biocompatibility of gallium-incorporated phosphate-based glasses in rats showed a non-toxic and foreign body response after 2 weeks of implantation. The results indicate that gallium ions might act on multiple targets of biological mechanisms underlying periodontal disease. Moreover, gallium-incorporated phosphate-based glasses are biocompatible in a rat model. The findings warrant further investigation and will have important clinical implications in the future treatment and management of periodontitis. © The Author(s) 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Phaopongthai, Jatuporn; Wiyakrutta, Suthep; Meksuriyen, Duangdeun; Sriubolmas, Nongluksna; Suwanborirux, Khanit
2013-12-01
In this study, a tropical endophytic fungus, Alternaria alternata Tche-153 was isolated from a Thai medicinal plant Terminalia chebula Rezt. The ethyl acetate extract prepared from the fermentation broth exhibited significant ketoconazole-synergistic activity against Candida albicans. Bioassay-directed fractionation of the ethyl acetate extract led to the isolation of altenusin (1), isoochracinic acid (2), and altenuic acid (3) together with 2,5-dimethyl-7-hydroxychromone (4). Using the disc diffusion method and the microdilution chequerboard technique, only altenusin (1) in combination with each of three azole drugs, ketoconazole, fluconazole or itraconazole at their low sub-inhibitory concentrations exhibited potent synergistic activity against C. albicans with the fractional inhibitory concentration index range of 0.078 to 0.188. This first discovery of altenusin (1) as a new azole-synergistic prototype possessing a biphenyl structure is of significance for further development of new azole-synergists to treat invasive candidiasis.
Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica
NASA Astrophysics Data System (ADS)
Kuspradini, H.; Putri, AS; Mitsunaga, T.
2018-04-01
Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.
Li, Xin; Sheng, Juzheng; Huang, Guihua; Ma, Ruixin; Yin, Fengxin; Song, Di; Zhao, Can; Ma, Shutao
2015-06-05
In an attempt to discover potential antibacterial agents against the increasing bacterial resistance, novel cinnamaldehyde derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activity against nine significant pathogens using broth microdilution method, and their cell division inhibitory activity against four representative strains. In the in vitro antibacterial activity, the newly synthesized compounds generally displayed better efficacy against Staphylococcus aureus ATCC25923 than the others. In particular, compounds 3, 8 and 10 exerted superior or comparable activity to all the reference drugs. In the cell division inhibitory activity, all the compounds showed the same trend as their in vitro antibacterial activity, exhibiting better activity against S. aureus ATCC25923 than the other strains. Additionally, compounds 3, 6, 7 and 8 displayed potent cell division inhibitory activity with an MIC value of below 1 μg/mL, over 256-fold better than all the reference drugs. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Regional Resistance Surveillance Program Results for 12 Asia-Pacific Nations (2011)
Mendes, Rodrigo E.; Mendoza, Myrna; Banga Singh, Kirnpal K.; Castanheira, Mariana; Bell, Jan M.; Turnidge, John D.; Lin, Stephen S. F.
2013-01-01
The Regional Resistance Surveillance program monitored susceptibility rates and developing resistance by geographic region, including 12 Asia-Pacific (APAC) countries. Reference broth microdilution methods for susceptibility/interpretations were applied, processing 5,053 strains. Among Staphylococcus aureus isolates (37% methicillin-resistant S. aureus [MRSA], highest in South Korea [73%]), linezolid (LZD), tigecycline (TIG), and vancomycin were 100% active, but 33 and 34% of strains were levofloxacin (LEV) or macrolide resistant, respectively. Streptococcus pneumoniae was most resistant to β-lactams and macrolides (45%) but was LZD, LEV, and TIG susceptible (>98%). Extended-spectrum β-lactamase (ESBL) phenotype rates in Escherichia coli and Klebsiella spp. were 48 and 47%, respectively, and were highest in Taiwan, at 75 to 91%. The best anti-ESBL-phenotype agents were amikacin (81 to 96% susceptible), colistin (COL; >98%), TIG (>98%), and carbapenems (81 to 97%). Pseudomonas aeruginosa showed ≥20% resistance to all drugs except COL (99% susceptible). In conclusion, endemic evolving antimicrobial resistances in APAC nations show compromised roles for many commonly used antimicrobials. PMID:23959306
NASA Astrophysics Data System (ADS)
Şahin, Mustafa; Koçak, Nuriye; Erdenay, Damla; Arslan, Uğur
2013-02-01
New asymmetrical tridentate Schiff base ligands were synthesized using 1,2-phenylenediamine, 4-methyl-1,2-phenylenediamine, 2-hydroxy-1-napthaldehyde, 9-anthracenecarboxaldehyde. Schiff base ligands and their metal complexes were synthesised and characterized by using FT-IR, 1H NMR, 13C NMR, UV-Vis, XRD, ESR, elemental analysis and fluorescence studies. The antimicrobial activity of the ligands and their metal complexes were studied against Staphylococcus aureus ATCC 29213, S. aureus ATCC 25923, Streptococcus mutans RSHM 676, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853. The determination of the antibacterial activity was done using the broth microdilution methods. In general, it has been determined that the studied compounds have MIC values similar to Gram-positive and Gram-negative bacteria. It has been found that Ni, Pb, Zn derivatives of HL1A and ZnL2A has lower MIC values than ampicillin for P. aeruginosa ATCC 27853 strain.
Yan, Shao Fei; Wang, Wei; Bai, Li; Hu, Yu Jie; Dong, Yin Ping; Xu, Jin; Li, Feng Qin
2016-06-01
We aimed to investigate the potential pathogenic profile and antibiotic resistance of Listeria monocytogenes isolated from ready-to-eat food in China. Antimicrobial resistance was determined by broth microdilution following the Clinical and Laboratory Standards Institute protocol. Molecular serotyping, virulence, and resistance genes were identified using PCR. Multi-locus sequence typing was performed on resistant strains. A total of 11.53% (113/980) isolates were resistant, from which 82.3% (93/113) harbored all the virulence genes tested. The resistant strains were subtyped into 18 sequence types (STs), from which ST2, ST5, ST8, and ST9 were involved in listeriosis. This study indicated that several L. monocytogenes isolates from ready-to-eat foods in China have pathogenic potential and are resistant to antibiotics, including antibiotics used as medicines by humans for listeriosis treatment. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Antibiotic resistance assessment in S. aureus strains isolated from raw sheep's milk cheese.
Spanu, V; Virdis, S; Scarano, C; Cossu, F; De Santis, E P L; Cosseddu, A M
2010-06-01
In vitro activities of 16 antibiotics were tested against 36 Staphylococcus aureus (SA) strains isolated from raw sheep's milk cheese from six dairies. The minimum inhibitory concentration (MIC) was determined using a broth microdilution method (CLSI). All 36 isolates were analyzed for the presence of the accessory gene regulator gene, agr (I-IV), and genes encoding resistance to methicillin (mecA), erythromycin (ermA), penicillin (blaZ), and vancomycin (vanA-B). The isolates were also analyzed for similarities in pulsed-field gel electrophoresis (PFGE) patterns. SA strains showed resistance to ampicillin (36.1%), penicillin (33.3%), tetracycline (11.1%), and cloxacillin (2.8%) but were susceptible (>or=94.4%) to 12 out of 16 tested antimicrobials. The overall susceptibility of the strains to oxacillin, vancomycin, and erythromycin was confirmed by the absence of the mecA, vanA-B, and ermA genes. The PFGE results showed that 32 strains belonged to 10 different clusters (P1-P10) while four strains were untypeable.
Ayatollahi Mousavi, Seyyed Amin; Salari, Samira; Hadizadeh, Sanaz
2015-01-01
Background Dermatophytosis is the common cutaneous infections in humans and animals, which is caused by the keratinophylic fungus called dermatophytes. In recent years, drugs resistance in pathogenic fungi, including dermatophyte strains to the current antifungals have been increased. Objectives The aim of this study was to evaluate the antifungal efficacy of AgNPs against Microsporum canis, Trichophyton mentagrophytes , and Microsporum gypseum. Materials and Methods The antifungal susceptibility of nanosilver particles compared with griseofulvin (GR). Its efficacy was investigated against three strains of dermatophytes by both agar dilution and broth microdilution test (BMD). Results The average minimum inhibitory concentration (MIC) AgNPs on M. canis, T. mentagrophytes and M. gypseum were 200, 180 and 170 μg.mL-1, respectively. Whereas these strains showed MIC of 25, 100 and 50 μg.mL-1 for GR. Conclusions Our finding indicated that the AgNPs was less active than GR but it had anti-dermatophytic effect. PMID:28959308
In Vitro Antifungal Susceptibility of Neoscytalidium dimidiatum Clinical Isolates from Malaysia.
James, Jasper Elvin; Santhanam, Jacinta; Lee, Mei Chen; Wong, Choon Xian; Sabaratnam, Parameswari; Yusoff, Hamidah; Tzar, Mohd Nizam; Razak, Mohd Fuat Abdul
2017-04-01
Neoscytalidium dimidiatum is an opportunistic fungus causing cutaneous infections mostly, which are difficult to treat due to antifungal resistance. In Malaysia, N. dimidiatum is associated with skin and nail infections, especially in the elderly. These infections may be mistaken for dermatophyte infections due to similar clinical appearance. In this study, Neoscytalidium isolates from cutaneous specimens, identified using morphological and molecular methods (28 Neoscytalidium dimidiatum and 1 Neoscytalidium sp.), were evaluated for susceptibility towards antifungal agents using the CLSI broth microdilution (M38-A2) and Etest methods. Amphotericin B, voriconazole, miconazole and clotrimazole showed high in vitro activity against all isolates with MIC ranging from 0.0313 to 1 µg/mL. Susceptibility towards fluconazole and itraconazole was noted in up to 10% of isolates, while ketoconazole was inactive against all isolates. Clinical breakpoints for antifungal drugs are not yet available for most filamentous fungi, including Neoscytalidium species. However, the results indicate that clinical isolates of N. dimidiatum in Malaysia were sensitive towards miconazole, clotrimazole, voriconazole and amphotericin B, in vitro.
Antibacterial activity of some bryophytes used traditionally for the treatment of burn infections.
Singh, Meenakshi; Singh, Shweta; Nath, Virendra; Sahu, Vinay; Rawat, Ajay Kumar Singh
2011-05-01
Plagiochasma appendiculatum L. & L. (Aytoniaceae), Conocephalum conicum (L.) Necker (Conocephalaceae), Bryum argenteum Hedw. (Bryaceae), and Mnium marginatum (With.) P. Beauv. (Mniaceae) are bryophytes (liverworts and mosses) used by traditional healers for the treatment of burn, cuts, wounds, and skin disorders. This study evaluated the antibacterial activity of four bryophytes against some common bacteria responsible for burn infections. Different fractions of bryophytes were screened using the disc diffusion (qualitative) and broth microdilution (quantitative) methods, according to the guidelines of the National Committee for Clinical and Laboratory Standards. Chloroform fractions of liverworts were more active against Gram negative strains while butanol fractions of mosses had significant activity against Gram positive bacteria. Staphylococcus aureus was the most sensitive strain of those tested with the butanol fraction of M. marginatum (moss), with the strongest inhibition zone of 102.92% and minimum inhibitory concentration of 30 μg mL(-1). Our findings support the use of the bryophytes in traditional medicine for burn infections because of their significant antibacterial activity.
Madrid, Alejandro; Espinoza, Luis; González, Cesar; Mellado, Marco; Villena, Joan; Santander, Rocío; Silva, Viviana; Montenegro, Iván
2012-12-18
Psoralea glandulosa L. (Fabaceae) is a medicinal resinous shrub used in Chilean folk medicine as antiseptic in treatment of infections and skin diseases caused by bacteria and fungus. To evaluate the in vitro antifungal activity of the resin and the active components from P. glandulosa against clinical yeast isolates. Active compounds were obtained of the resinous exudate from aerial parts of P. glandulosa. Eight species of yeast were exposed to the resin and two major compounds. Minimum inhibitory concentration (MIC(80)) was determined according to the standard broth microdilution method. Bakuchiol and 3-hydroxy-bakuchiol demonstrated potent activity with the MIC(80) ranging from 4 to >16 and 0.125 to 16 μg/mL, respectively. The resin had some degree of antifungal activity. The overall results provided important information for the potential application of the 3-hydroxy-bakuchiol from P. glandulosa in the therapy of serious infection and skin diseases caused by clinical yeast. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Auzou, M; Caillon, J; Poyart, C; Weber, P; Ploy, M-C; Leclercq, R; Cattoir, V
2015-07-01
The primary objective of our study was to obtain susceptibility data for josamycin against Streptococcus pyogenes isolated from patients presenting with upper respiratory tract infections in France. The secondary objective was to characterize the molecular mechanism of resistance in macrolide-resistant isolates. MICs of erythromycin, clarithromycin, azithromycin, josamycin, and clindamycin were determined by the broth microdilution method. Resistance genes erm(B), erm(TR), and mef(A) were screened by PCR. The MIC50 and MIC90 of josamycin against 193 isolates of S. pyogenes were 0.12 and 0.25mg/L, respectively, with a resistance rate estimated at 4.7%. Resistance was due to the erm(B) gene whereas strains harboring erm(TR) or mef(A) remained susceptible. Josamycin was active against >95% of S. pyogenes isolated from patients with upper respiratory tract infections, and can be used as an alternative for the treatment of pharyngitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Promethazine improves antibiotic efficacy and disrupts biofilms of Burkholderia pseudomallei.
Sidrim, José Júlio Costa; Vasconcelos, David Caldas; Riello, Giovanna Barbosa; Guedes, Glaucia Morgana de Melo; Serpa, Rosana; Bandeira, Tereza de Jesus Pinheiro Gomes; Monteiro, André Jalles; Cordeiro, Rossana de Aguiar; Castelo-Branco, Débora de Souza Collares Maia; Rocha, Marcos Fábio Gadelha; Brilhante, Raimunda Sâmia Nogueira
2017-01-01
Efflux pumps are important defense mechanisms against antimicrobial drugs and maintenance of Burkholderia pseudomallei biofilms. This study evaluated the effect of the efflux pump inhibitor promethazine on the structure and antimicrobial susceptibility of B. pseudomallei biofilms. Susceptibility of planktonic cells and biofilms to promethazine alone and combined with antimicrobials was assessed by the broth microdilution test and biofilm metabolic activity was determined with resazurin. The effect of promethazine on 48 h-grown biofilms was also evaluated through confocal and electronic microscopy. The minimum inhibitory concentration (MIC) of promethazine was 780 mg l -1 , while the minimum biofilm elimination concentration (MBEC) was 780-3,120 mg l -1 . Promethazine reduced the MIC values for erythromycin, trimethoprim/sulfamethoxazole, gentamicin and ciprofloxacin and reduced the MBEC values for all tested drugs (p<0.05). Microscopic analyses demonstrated that promethazine altered the biofilm structure of B. pseudomallei, even at subinhibitory concentrations, possibly facilitating antibiotic penetration. Promethazine improves antibiotics efficacy against B. pseudomallei biofilms, by disrupting biofilm structure.
NASA Astrophysics Data System (ADS)
Özdemir, Ümmühan Özmen; Arslan, Fatma; Hamurcu, Fatma
2010-01-01
Ethane sulfonic acide hydrazide ( esh: CH 3CH 2SO 2NHNH 2) derivatives as 5-methylsalicyl-aldehydeethanesulfonylhydrazone ( 5msalesh), 5-methyl-2-hydroxyacetophenoneethane sulfonylhydrazone ( 5mafesh) and their Ni(II), Co(II) complexes have been synthesized for the first time. The structure of these compounds has been investigated by elemental analysis, FT-IR, 1H NMR, 13C NMR, LC/MS, UV-vis spectrophotometric method, magnetic susceptibility, thermal studies and conductivity measurements. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus, Bacillus subtilis, Bacillus magaterium and Gram negative bacteria; Salmonella enteritidis, Escherichia coli by using the microdilution broth method. The biological activity screening showed that ligands have more activity than complexes against the tested bacteria. The inhibition activities of these compounds on carbonic anhydrase II (CA II) have been investigated by comparing IC 50 and Ki values and it has been found that 5msalesh and its complexes have more enzyme inhibition efficiency than other compounds.
Essential Oils Composition and Antimicrobial Activity of Six Conifers Harvested in Lebanon.
Fahed, Layal; Khoury, Madona; Stien, Didier; Ouaini, Naïm; Eparvier, Véronique; El Beyrouthy, Marc
2017-02-01
The chemical composition and antimicrobial activity of the essential oils (EOs) of six conifers harvested in Lebanon, Abies cilicica, Cupressus sempervirens, Juniperus excelsa, Juniperus oxycedrus, Cedrus libani and Cupressus macrocarpa gold crest, were investigated. The EOs were obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC and GC/MS analyses. A principal components analysis based on Pearson correlation between essential oils chemical analyses was also conducted. The minimum inhibitory concentrations (MICs) of these essentials oils were determined against a range of bacteria and fungi responsible for cutaneous infections in human, using the broth microdilution technique. The EOs showed the most interesting bioactivity on the dermatophytes species (MIC values 32 - 64 μg/ml). Each of the major compounds of C. macrocarpa as well as an artificial reconstructed EO were tested on Trichophyton rubrum showing a contribution of the minor components to the overall activity. © 2017 Wiley-VHCA AG, Zurich, Switzerland.
Zomorodian, Kamiar; Saharkhiz, Mohammad Jamal; Shariati, Samaneh; Pakshir, Keyvan; Rahimi, Mohammad Javad; Khashei, Reza
2012-01-01
Nepeta cataria L. is traditionally consumed as a food additive. The effects of three different harvest stages of N. cataria essential oils (EOs) against most common causes of food-borne infections were evaluated by broth microdilution method as recommended by the Clinical and Laboratory Standards Institute (CLSI). The chemical composition of the EOs from N. cataria has been analyzed by gas chromatography/mass spectrometry (GC/MS). The analysis of the EOs indicated that 4a-α,7-α,7a-β-nepetalactone (55–58%) and 4a-α,7-β,7a-α-nepetalactone (30–31.2%) were the major compounds of the EOs at all developmental stages. The results showed that the tested EOs exhibited antimicrobial activities against the food-borne pathogens at concentrations of 0.125–2 μL/mL. Based on these results, the EO of N. cataria can possibly be used in food products as a natural preservative agent. PMID:22779012
2013-07-12
assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 1979, 16:710–718. 3. Noedl H, Attlmayr B...40:685–691. 32. Hawley SR, Bray PG, Mungthin M, Atkinson JD, O’Neill PM, Ward SA: Relationship between antimalarial drug activity , accumulation, and...success rate when testing DHA, AS, MQ, QN, CQ, and PPQ activities . A “successful” IC50 assay result for each P. falciparum clinical isolate was defined as
Hayashi, Masahiro; Natori, Tatsuya; Kubota-Hayashi, Sayoko; Miyata, Machiko; Ohkusu, Kiyofumi; Kurazono, Hisao; Makino, Souichi; Ezaki, Takayuki
2013-01-01
A quick foodborne pathogen screening method after six-hour enrichment culture with a broad-range food pathogen enrichment broth is described. Pathogenic factors of Salmonella enterica, Shigella spp., enteroinvasive Escherichia coli, and enterohemorrhagic E. coli are amplified with a cocktail primer and rapid polymerase chain reaction (PCR), which finishes amplification in 30 min. The PCR amplicon was differentiated with a dipstick DNA chromatography assay in 5–10 min. Starting from a four- to six-hour enrichment culture, this assay was finished within 45 min. Detection sensitivity of this protocol was less than 2.5 CFU/25 g for S. enterica and 3.3 CFU/25 g for enterohemorrhagic E. coli in spiked ground meat experiments. PMID:24364031
In vitro evaluation of antimicrobial features of sugammadex.
Hanci, Volkan; Vural, Ahmet; Hanci, Sevgi Yılmaz; Ali Kiraz, Hasan; Omür, Dilek; Unver, Ahmet
2014-01-01
Drugs administered by intravenous routes may be contaminated during several stages of production or preparation. Sugammadex is a modified gamma cyclodextrin. While research into the antibacterial effects of varieties of cyclodextrin is available, there are no studies focusing on the antibacterial effects of sugammadex. This study investigates the in vitro antimicrobial activity of sugammadex. The in vitro antimicrobial activity of sugammadex was investigated using the broth microdilution method. The pH of the test solution was determined using a pH meter. The test microorganisms included Staphylococcus aureus ATCC 29213, Enterococcus fecalis ATCC 29212, Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853. In the second phase of the study 100mg/mL sugammadex (50μg) was contaminated with test microorganisms (50μg), including S. aureus ATCC 29213, E. fecalis ATCC 29212, E. coli ATCC 25922 and P. aeruginosa ATCC 27853, left to incubate for 24h and then the bacterial production in sugammadex was evaluated. The pH of the test solutions ranged between 7.25 and 6.97. Using the microdilution method, sugammadex had no antibacterial effect on S. aureus, E. fecalis, E. coli and P. aeruginosa at any concentration. In the second phase of the study bacterial production was observed after 24h in 100mg/mL sugammadex contaminated with the test microorganisms S. aureus, E. fecalis, E. coli and P. aeruginosa. Sugammadex had no antimicrobial effect on the test microorganisms, S. aureus, E. fecalis, E. coli and P. aeruginosa. Care should be taken that sterile conditions are maintained in the preparation of sugammadex; that the same sugammadex preparation not be used for more than one patient; and that storage conditions are adhered to after sugammadex is put into the injector. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.
Metcalf, Benjamin J.; Chochua, Sopio; Li, Zhongya; Gertz, Robert E.; Walker, Hollis; Hawkins, Paulina A.; Tran, Theresa; Whitney, Cynthia G.; McGee, Lesley; Beall, Bernard W.
2016-01-01
ABSTRACT β-Lactam antibiotics are the drugs of choice to treat pneumococcal infections. The spread of β-lactam-resistant pneumococci is a major concern in choosing an effective therapy for patients. Systematically tracking β-lactam resistance could benefit disease surveillance. Here we developed a classification system in which a pneumococcal isolate is assigned to a “PBP type” based on sequence signatures in the transpeptidase domains (TPDs) of the three critical penicillin-binding proteins (PBPs), PBP1a, PBP2b, and PBP2x. We identified 307 unique PBP types from 2,528 invasive pneumococcal isolates, which had known MICs to six β-lactams based on broth microdilution. We found that increased β-lactam MICs strongly correlated with PBP types containing divergent TPD sequences. The PBP type explained 94 to 99% of variation in MICs both before and after accounting for genomic backgrounds defined by multilocus sequence typing, indicating that genomic backgrounds made little independent contribution to β-lactam MICs at the population level. We further developed and evaluated predictive models of MICs based on PBP type. Compared to microdilution MICs, MICs predicted by PBP type showed essential agreement (MICs agree within 1 dilution) of >98%, category agreement (interpretive results agree) of >94%, a major discrepancy (sensitive isolate predicted as resistant) rate of <3%, and a very major discrepancy (resistant isolate predicted as sensitive) rate of <2% for all six β-lactams. Thus, the PBP transpeptidase signatures are robust indicators of MICs to different β-lactam antibiotics in clinical pneumococcal isolates and serve as an accurate alternative to phenotypic susceptibility testing. PMID:27302760
Evaluation of the anti-Listeria potentials of some plant-derived triterpenes.
Penduka, Dambudzo; Mosa, Rebamang; Simelane, Mthokozisi; Basson, Albert; Okoh, Anthony; Opoku, Andy
2014-07-23
Listeriosis is a fatal disease caused by pathogenic Listeria bacteria and it is most prevalent in immune-compromised individuals. The increase in numbers of immune-compromised individuals against a background of Listeria antibiotic resistance, limits listeriosis treatment options. This therefore calls for research into substitute treatments, of which, medicinal plants derived compounds offer a viable alternative. The broth microdilution assay was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of three plant triterpenes namely 3β-hydroxylanosta-9,24-dien-21-oic acid, methyl-3β-hydroxylanosta-9,24-dien-21-oate and 3β-acetylursolic acid, against Listeria monocytogenes, Listeria ivanovii and Listeria grayi species. The chequerboard method was used to assess the interactions between the triterpenes and conventional antibiotics: ampicillin, neomycin, gentamicin and penicillin G. The lactate dehydrogenase membrane damage method was used to assess the triterpenes' membrane damaging potentials against the Listeria bacteria. The triterpenes' MIC values were found to range from 0.185 to 1.67 mg/ml while, the MBC determination assay results revealed that the test triterpenes were bacteriostatic against the Listeria bacteria. The interactions involving 3β-hydroxylanosta-9,24-dien-21-oic acid were mainly additive with ampicillin and synergistic with neomycin, gentamicin and penicillin G. The interactions involving methyl-3β-hydroxylanosta-9,24-dien-21-oate were mainly antagonistic with ampicillin, indifferent with neomycin, ranging from synergistic to indifference with gentamicin and synergistic with penicillin G. The interactions involving 3β-acetylursolic acid were mainly indifferent with ampicillin, synergistic with neomycin and gentamicin while ranging between synergistic and additive with penicillin G. The low levels of cytosolic lactate dehydrogenase released from the cells treated with 4× MIC concentration of the triterpenes in comparison to that of cells treated with 3% Triton X-100 proved that membrane damage was not the mode of action of the triterpenes. This study therefore shows the potential that these plant triterpenes have in listeriosis chemotherapy especially as shown by the favourable interactions they had with penicillin G, one of the antibiotics of choice in listeriosis treatment.
2009-01-01
Background Recent years have witnessed that there is a revival of interest in drug discovery from medicinal plants for the maintenance of health in all parts of the world. The aim of this work was to investigate 26 plants belonging to 17 families collected from a unique place in Yemen (Soqotra Island) for their in vitro anticancer, antimicrobial and antioxidant activities. Methods The 26 plants were extracted with methanol and hot water to yield 52 extracts. Evaluation for in vitro anticancer activity was done against three human cancer cell lines (A-427, 5637 and MCF-7) by using an established microtiter plate assay based on cellular staining with crystal violet. Antimicrobial activity was tested against three Gram-positive bacteria, two Gram-negative bacteria, one yeast species and three multiresistant Staphylococcus strains by using an agar diffusion method and the determination of MIC against three Gram-positive bacteria with the broth micro-dilution assay. Antioxidant activity was investigated by measuring the scavenging activity of the DPPH radical. Moreover, a phytochemical screening of the methanolic extracts was done. Results Notable cancer cell growth inhibition was observed for extracts from Ballochia atro-virgata, Eureiandra balfourii and Hypoestes pubescens, with IC50 values ranging between 0.8 and 8.2 μg/ml. The methanol extracts of Acanthospermum hispidum, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia and Euphorbia socotrana also showed noticeable antiproliferative potency with IC50 values < 50 μg/ml. The greatest antimicrobial activity was exhibited by extracts from Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana, Commiphora ornifolia, Euclea divinorum, Euphorbia socotrana, Leucas samhaensis, Leucas virgata, Rhus thyrsiflora, and Teucrium sokotranum with inhibition zones > 15 mm and MIC values ≤ 250 μg/ml. In addition, the methanolic extracts of Acacia pennivenia, Boswellia dioscorides, Boswellia socotrana and Commiphora ornifolia showed good antioxidant potential at low concentrations (more than 80% at 50 μg/ml). Conclusion Our results show once again that medicinal plants can be promising sources of natural products with potential anticancer, antimicrobial and antioxidative activity. The results will guide the selection of some plant species for further pharmacological and phytochemical investigations. PMID:19320966
AL-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen
2018-01-01
Background: Propolis consists of a complex mixture of resinous substances collected by honeybees from different plant sources. The objective of this study was to investigate the chemical composition, biological activities, and synergistic properties with antibiotics of propolis samples collected from various geographic origins (Germany, Ireland, and Czech Republic). Methods: The chemical composition of the propolis was analyzed by Gas Liquid Chromatography-Mass Spectrometry (GLC-MS) and High-performance liquid chromatography (HPLC). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic interactions were assessed by checkerboard dilution and time-kill curve assays. Results: HPLC and GLC-MS analyses revealed that ethanol extract of propolis (EEP) and water extracts of propolis (WEP) contained more than 100 different phytochemicals. The most abundant compounds were aromatic alcohols, aromatic acids, cinnamic acid and its esters, fatty acids, and flavanone (chrysin). Czech propolis showed the highest phenolic content (129.83 ± 5.9 mg CAE/g) followed by Irish propolis and German propolis. Furthermore, Irish propolis exhibited the highest value of total flavonoid content (2.86 ± 0.2 mg QE/g) and antioxidant activity (IC50 = 26.45 µg/mL). All propolis samples showed moderate antibacterial effect against Gram-positive microorganisms with MIC ranging from 0.08 mg/mL to 2.5 mg/mL. Moreover, EEP exhibited moderate activity against Gram-negative bacteria with MIC between 0.6 mg/mL to 5 mg/mL. In addition, EEP displayed moderate antifungal activity (MIC values between 0.6–2.5 mg/mL). The results obtained from time kill-kinetic assay and checkerboard dilution test of two-drug combinations between EEP and antibiotics such as vancomycin, oxacillin, and levofloxacin indicate mainly synergistic interactions against drug-resistant microbial pathogens including MRSA and VRE. Conclusions: The propolis extract synergistically enhanced the efficacy of antibiotics, especially those acting on cell wall synthesis (vancomycin and oxacillin) against drug-resistant microorganisms. PMID:29301368
Oliveira, Darley Maria; Melo, Fernanda Germano; Balogun, Sikiru Olaitan; Flach, Adriana; de Souza, Edineide Cristina Alexandre; de Souza, Gilmar Prado; Rocha, Iolanda do Nascimento Araújo; da Costa, Luiz Antonio Mendonça Alves; Soares, Ilsamar Mendes; da Silva, Larissa Irene; Ascêncio, Sérgio Donizeti; de Oliveira Martins, Domingos Tabajara
2015-08-22
Leonotis nepetifolia (L) R. Br., Lamiaceae, a pantropical shrub, popularly known in Brazil as "cordão-de-frade", "rubim", is reportedly used in Brazilian ethnomedicine as well as in different countries in the treatments of ailments such as infections, inflammations, wounds, stomach disorders, among others. To evaluate its potential cytotoxicity and antibacterial mode of action of the hydroethanolic extract of L. nepetifolia (HELn) leaves, including phytochemical analysis. The cytotoxicity of HELn was investigated by Alamar blue assay, using CHO-K1 cells. Antibacterial activity of HELn was tested by broth microdilution methods against a panel of bacteria of clinical interest. The mode of action of L. nepetifolia was studied by targeting bacterial membranes. Phytochemical analysis was performed by determining total secondary metabolites with spectrophotometric assays and HPLC. HELn is not cytotoxic in the in vitro evaluation (IC50>200 μg/mL). It demonstrated a good spectrum of antibacterial activity with major activity against Shigella flexneri, Enterococcus faecalis, Staphylococcus aureus and Bacillus subtilis with MIC=6.25 µg/mL, Helicobacter pylori with MIC of 25 µg/mL and Streptococcus pyogenes with MIC of 50 µg/mL. Its mode of action is associated, at least partly, with changes in the permeability of bacterial membranes, as evidenced by the increased entry of hydrophobic antibiotics in Shigella flexneri and intense efflux of K(+) and nucleotide leakage in E. faecalis and Shigella flexneri. In addition, the presence of phenols, flavonoids and carotenoids, described in the literature to possess antibacterial effects, were detected in the composition of HELn, with high phenol content (11.55%), especially the flavonoids (6.47%). The results indicate that HELn has low cytotoxicity and potent antibacterial activity. It is bacteriostatic in nature, possibly acting at the level of bacterial membranes, especially on the cytoplasmic membrane and outer membrane, thus supporting its popular use in infectious processes. In addition, the presence of phenols, flavonoids, carotenoids, fatty acids and steroids, described in the literature as possessing antimicrobial activity, were detected in the composition of HELn. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Modulation of the norfloxacin resistance in Staphylococcus aureus by Cordia verbenaceae DC.
Matias, Edinardo F F; Santos, Karla K A; Falcão-Silva, Vivyanne S; Siqueira-Junior, Jose P; Costa, Jose G M; Coutinho, Henrique D M
2013-01-01
Several chemical compounds isolated from natural sources have antibacterial activity and some enhance the antibacterial activity of antibiotics reversing the natural resistance of bacteria to certain antibiotics. In this study, the hexane and methanol extract of Cordia verbenaceae were assessed for antibacterial activity alone and combinated with norfloxacin against the Staphylococcus aureus strain SA1199B. The minimum inhibitory concentration (MIC) of extracts was assayed using microdilution assay and the modulatory activity was evaluated using plate diffusion assay. The MIC observed varied between 256 to >1024 μg/ml. However, the antibiotic activity of norfloxacin was enhanced in the presence of subinhibitory concentrations of hexane extract of C. verbenaceae (HECV). INTERPRETATIONS & CONCLUSIONS: Our results indicate that Cordia verbenaceae DC. can be a source of plant derived products with antibiotic modifying activity.
Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong
2017-01-01
This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus ( S. aureus ), Listeria monocytogenes ( L. monocytogenes ) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 10 2 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes , and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes , and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples.
Ding, Tian; Suo, Yuanjie; Zhang, Zhaohuan; Liu, Donghong; Ye, Xingqian; Chen, Shiguo; Zhao, Yong
2017-01-01
This study firstly developed a multiplex real-time PCR (RT-PCR) technique combined with a pre-enrichment step to simultaneously detect Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes) and Salmonella spp. in raw milk and the dairy farm environment (feces, soil, feed, water) in one reaction. Brain heart infusion (BHI) broth was selected for the enrichment step to increase the density of the target bacteria by using an incubation of 4 h before multiplex RT-PCR. The results showed that the detection limit of the multiplex real-time assay was approximately 102 CFU/mL for pure cultures and artificially contaminated milk without enrichment, while 12, 14, and 10 CFU/25 mL, respectively, for S. aureus, L. monocytogenes, and Salmonella spp. after pre-enrichment. The newly developed multiplex RT-PCR assay was applied to 46 dairy farm environmental samples and raw milk samples covering a wide variety of sample types. The results demonstrated that the multiplex RT-PCR assay coupled with the BHI enrichment broth was suitable for the simultaneous screening of S. aureus, L. monocytogenes, and Salmonella spp. in the pasture environment and in raw milk. The multiplex RT-PCR assay clearly and successfully shortened the total detection time and reduced labor compared to conventional culture-based methods for testing natural samples. PMID:28620364
Cordero-Laurent, E; Rodríguez, C; Rodríguez-Cavallini, E; Gamboa-Coronado, M M; Quesada-Gómez, C
2012-12-01
To assess the susceptibility of 100 isolates of Bacteroides spp. recovered in a major Costa Rican hospital between 2000 and 2008 to several ß-lactams, chloramphenicol, clindamycin and metronidazole. Susceptibility to amoxicillin, amoxicillin with clavulanic acid, piperacillin, piperacillin with tazobactam, ticarcillin, ticarcillin with clavulanic acid, cefoxitin, cefotetan, imipenem, chloramphenicol, clindamycin, and metronidazole was determined with the ATB ANA® system. In addition, minimum inhibitory concentrations (MIC) of clindamycin and metronidazole were determined with the broth microdilution method because these drugs are the treatment of choice for anaerobic infections in Costa Rica. Reference strains ATCC® 25285 and ATCC® 29741 were employed as indicated. According to the ATB ANA® system, 93 isolates were resistant to at least one antibiotic. Resistance to ß-lactams was common. By contrast, resistance to ß-lactams supplemented with ß-lactamase inhibitors was rare. All of the strains were inhibited by imipenem and chloramphenicol. By a broth microdilución test, resistance to clindamycin was 20%, with MIC ranging from 64 mg/L to 256 mg/L; all of the strains were susceptible to metronidazole. The high MIC for clindamycin obtained for the majority of the resistant strains is highly suggestive of the presence of mechanisms of acquired resistance among the isolates, therefore surveillance studies are required to determine its efficacy. The low resistance to metronidazole observed underlines its value as a first-line drug. On the other hand, imipenem could be used to treat infections that do not respond well to metronidazole or clindamycin.
Starr, Charles G; Maderdrut, Jerome L; He, Jing; Coy, David H; Wimley, William C
2018-06-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring cationic peptide with potent immunosuppressant and cytoprotective activities. We now show that full length PACAP38 and to a lesser extent, the truncated form PACAP27, and the closely related vasoactive intestinal peptide (VIP) and secretin had antimicrobial activity against the Gram-negative bacteria Escherichia coli in the radial diffusion assay. PACAP38 was more potent than either the bovine neutrophil antimicrobial peptide indolicidin or the synthetic antimicrobial peptide ARVA against E. coli. PACAP38 also had activity against the Gram-positive bacteria Staphylococcus aureus in the same assay with comparable potency to indolicidin and ARVA. In the more stringent broth dilution assay, PACAP38 had moderate sterilizing activity against E. coli, and potent sterilizing activity against the Gram-negative bacteria Pseudomonas aeruginosa. PACAP27, VIP and secretin were much less active than PACAP38 in this assay. PACAP38 also had some activity against the Gram-positive bacteria Bacillus cereus in the broth dilution assay. Many exopeptidase-resistant analogs of PACAP38, including both receptor agonists and antagonists, had antimicrobial activities equal to, or better than PACAP38, in both assays. PACAP38 made the membranes of E. coli permeable to SYTOX Green, suggesting a classical membrane lytic mechanism. These data suggest that analogs of PACPAP38 with a wide range of useful biological activities can be made by judicious substitutions in the sequence. Copyright © 2018 Elsevier Inc. All rights reserved.
Hofko, Marjeta; Hamilton, Fiona; Mackenzie, Laura; Zimmermann, Stefan; Templeton, Kate
2015-01-01
We evaluated the performance of the BD Max StaphSR assay for the direct detection of Staphylococcus aureus from blood culture medium. In a two-center trial, 155 blood cultures from the BD Bactec FX system and 212 from the bioMérieux BacT/Alert system were tested; 170 bottles yielded S. aureus, and all were identified correctly by the BD Max StaphSR assay. The assay required approximately 2.5 h, thus allowing rapid identification of blood cultures flagged positive. PMID:26292311
Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.).
Bezerra, Camila Fonseca; Rocha, Janaína Esmeraldo; Nascimento Silva, Maria Karollyna do; de Freitas, Thiago Sampaio; de Sousa, Amanda Karine; Dos Santos, Antônia Thassya Lucas; da Cruz, Rafael Pereira; Ferreira, Maciel Horácio; da Silva, Josefa Carolaine Pereira; Machado, Antonio Judson Targino; Carneiro, Joara Nályda Pereira; Sales, Débora Lima; Coutinho, Henrique Douglas Melo; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Morais-Braga, Maria Flaviana Bezerra
2018-05-08
Psidium guajava L. is a plant widely used for food and in folk medicine all over the world. Studies have shown that guava leaves have antifungal properties. In this study, Flavonoid and Tannic fractions were tested to investigate their chemical composition and antifungal potential in vitro.21 compounds in the two fractions, presenting a higher content of phenolic compounds. The antifungal assays were performed against Candida albicans, Candida tropicalis and Candida krusei by microdilution to determine the IC 50 and the cell viability curve. Minimal Fungicidal Concentration(MFC) and the inhibitory effects of the association of the fractions with Fluconazole, as well as the assays used to verify any morphological changes were performed in microculture chambers based on the concentrations from the microdilution. The IC 50 of the isolated fractions and the fractions associated with each other were calculated, varying from 69.29 to 3444.62 μg/mL and the fractions associated with fluconazole varied from 925.56 to 1.57 μg/mL, it was clear that the association of the natural product with the antifungal presented a synergism. The fractions affected pleomorphism capacity and have a potential antifungal activity as they caused fungal inhibition in isolated use, potentiated the action of Fluconazole, reducing its concentration and impeding morphological transition, one of the virulence factors of the genus. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microbiological culture broth designed from food waste.
Chalón, Miriam C; Terán, Victoria; Arena, Mario E; Oliszewki, Rubén; González, Silvia N
2013-01-30
The current trend of increasing air, water, and soil pollution is, in part, due to inadequate management of municipal solid waste (MSW). The relationship between public health and the collection, storage and improper disposal of solid waste has encouraged several studies and the results were attributed to the spread of over twenty human and animal diseases due to this interrelationship. The term "single cell protein" (SCP) refers to microbial biomass used as a dietary additive. It has high nutritional value because of its high content of vitamins, lipids, and proteins of biological quality (the presence of all essential amino acids) (Lal, 2005). The aim of this work was to design a culture media for microbiological assays and to produce SCP for animal feeding, using nutrients contained in organic waste. In order to compare the effectiveness of food waste (FW) and LAPTg media, different strains of Lactobacillus, Enterococcus, Staphylococcus, Shigella, Salmonella, Saccharomyces and Schizosaccharomyces were studied. In all cases, the growth obtained from FW and LAPTg culture media were not significantly different (p > 0.05). In addition, the growth of Saccharomyces cerevisiae was studied in order to produce SCP for animal feeding. Comparative experiments involving molasses broth, FW broth, and basal broth were carried out. The biomass yield calculated at 24 h from FW broth was 13% lower than from molasses broth. The FW broth provided a significantly lower biomass yield; however, it can be very useful in areas where molasses are not available. FW broth can be elaborated at low cost, in any populated region of the world because its ingredients are wastes generated by humans. It has great versatility, allowing the development of a wide variety of microorganisms, both Gram negative and Gram positive bacteria as well as yeasts. The production of safe protein additives, with high biological quality and low cost, is necessary due to the increasing global demand for food for humans and animals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Li, J; Ulvin, K; Biboh, H; Kristiansen, I S
2012-12-01
Meticillin-resistant Staphylococcus aureus (MRSA) represents a considerable challenge for health care in terms of complications and costs. Whilst bacteriological culture remains the most common method for detecting MRSA, the polymerase-chain-reaction-based Xpert MRSA assay was introduced to Ullevål Oslo University Hospital, Norway in 2009. To estimate the cost-effectiveness of supplementing a broth-enriched culture test with the Xpert MRSA assay in comparison with using the culture test alone as part of an active surveillance strategy. A decision-tree model was developed to compare the current strategy (broth-enriched culture test) with two new strategies using the Xpert MRSA assay (daytime and 24 h). Costs and outcomes (length of pre-emptive isolation, number of unavailable room-hours, quality of life) were measured. The current strategy was more expensive (NOK16,984 per patient) than the daytime Xpert strategy and 24 h Xpert strategy (NOK7360 and NOK3690 per patient, respectively). The new strategies reduced the length of pre-emptive isolation per patient (by 43.9 h and 57.5 h for the daytime Xpert strategy and 24 h Xpert strategy, respectively), and also the number of unavailable room-hours per case (by 57.1 h and 77.7 h, respectively). The improvement in patients' quality-adjusted life years (QALYs) was nominal (2.4*10(-4) and 3.0*10(-4) QALYs per patient for the daytime Xpert strategy and 24 h Xpert strategy, respectively). The sensitivity analyses indicated that these results were robust to reasonable changes in the model parameters. The 24 h Xpert strategy appears to be the best strategy for active surveillance as it reduces costs and unfavourable outcomes compared with the other strategies, while improving favourable outcomes under reasonable assumptions. Copyright © 2012 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Validation of Modifications to the ANSR(®) Listeria Method for Improved Ease of Use and Performance.
Caballero, Oscar; Alles, Susan; Le, Quynh-Nhi; Gray, R Lucas; Hosking, Edan; Pinkava, Lisa; Norton, Paul; Tolan, Jerry; Mozola, Mark; Rice, Jennifer; Chen, Yi; Odumeru, Joseph; Ryser, Elliot
2016-01-01
A study was conducted to validate minor reagent formulation, enrichment, and procedural changes to the ANSR(®) Listeria method, Performance-Tested Method(SM) 101202. In order to improve ease of use and diminish risk of amplicon contamination, the lyophilized reagent components were reformulated for increased solubility, thus eliminating the need to mix by pipetting. In the alternative procedure, an aliquot of the lysate is added to lyophilized ANSR reagents, immediately capped, and briefly mixed by vortexing. When three foods (hot dogs, Mexican-style cheese, and cantaloupe) and sponge samples taken from a stainless steel surface were tested, significant differences in performance between the ANSR and U.S. Food and Drug Administration Bacteriological Analytical Manual or U.S. Department of Agriculture, Food Safety and Inspection Service Microbiology Laboratory Guidebook reference culture procedures were seen with hot dogs and Mexican-style cheese after 16 h enrichment, with the reference methods producing more positive results. After 24 h enrichment, however, there were no significant differences in method performance for any of the four matrixes tested. Robustness testing was also conducted, with variations to lysis buffer volume, lysis time, and sample volume having no demonstrable effect on assay results. Accelerated stability testing was carried out over a 10-week period and showed no diminishment in assay performance. A second phase of the study examined performance of the ANSR assay following enrichment in a new medium, LESS Plus broth, designed for use with all food and environmental sample types. With the alternative LESS Plus broth, there were no significant differences in performance between the ANSR method and the reference culture procedures for any of the matrixes tested after either 16 or 24 h enrichment, although 24 h enrichment is recommended for hot dogs due to higher sensitivity. Results of inclusivity and exclusivity testing using LESS Plus broth showed that the ANSR assay is highly specific, with 100% expected results for target and nontarget bacteria.
Modulation of the norfloxacin resistance in Staphylococcus aureus by Cordia verbenaceae DC
Matias, Edinardo F.F.; Santos, Karla K. A.; Falcão-Silva, Vivyanne S.; Siqueira-Júnior, José P.; Costa, José G. M.; Coutinho, Henrique D.M.
2013-01-01
Background & objectives: Several chemical compounds isolated from natural sources have antibacterial activity and some enhance the antibacterial activity of antibiotics reversing the natural resistance of bacteria to certain antibiotics. In this study, the hexane and methanol extract of Cordia verbenaceae were assessed for antibacterial activity alone and combinated with norfloxacin against the Staphylococcus aureus strain SA1199B. Methods: The minimum inhibitory concentration (MIC) of extracts was assayed using microdilution assay and the modulatory activity was evaluated using plate diffusion assay. Results: The MIC observed varied between 256 to >1024 μg/ml. However, the antibiotic activity of norfloxacin was enhanced in the presence of subinhibitory concentrations of hexane extract of C. verbenaceae (HECV). Interpretations & conclusions: Our results indicate that Cordia verbenaceae DC. can be a source of plant derived products with antibiotic modifying activity. PMID:23481069
In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures.
Wei, Guo-Xian; Xu, Xin; Wu, Christine D
2011-06-01
To investigate the antimycotic activity of the plant alkaloid berberine (BBR), alone and in combination with antifungal azoles, against planktonic and biofilm Candida cultures. The minimum inhibitory concentrations (MICs) of BBR, miconazole (MCZ), and fluconazole (FLC) towards Candida albicans, Candida glabrata, Candida kefyr, Candida krusei, Candida parapsilosis, and Candida tropicalis were determined by a microdilution method. For C. albicans, the synergistic effects of BBR combined with MCZ or FLC were examined in a paper disc agar diffusion assay and checkerboard microdilution assay. The effect of the BBR/MCZ combination was further investigated in a C. albicans biofilm formation model with a dual-chamber flow cell. The effect on metabolic activity of biofilm cells was established using 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT)/menadione. Berberine inhibited the growth of various Candida species (MICs 0.98-31.25mg/L) in the following order of susceptibility: C. krusei > C. kefyr > C. glabrata > C. tropicalis > C. parapsilosis and C. albicans. Synergism between BBR and MCZ or FLC was observed in the disc diffusion assay as well as in suspension showing an FIC index <0.5 (∑FIC=0.19). Whilst neither BBR (16 mg/L) nor MCZ (0.8 mg/L) alone significantly inhibited biofilm formation of C. albicans, their combination reduced biofilm formation by >91% after 24 h, as established from the reduction in surface area coverage (P<0.01). The BBR/MCZ combination also exhibited synergy against the metabolic activity of pre-formed C. albicans biofilms in polystyrene microtiter plates (∑FIC=0.25). Berberine exhibits synergistic effects with commonly used antimycotic drugs against C. albicans, either in planktonic or in biofilm growth phases. Published by Elsevier Ltd.
2012-09-13
6. Desjardins RE, Canfield CJ, Haynes JD, Chulay JD: Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution...vitro antimalarial drug efficacy testing and application to clinical isolates. Antimicrob Agents Chemother 2007, 51:1172–1178. 12. Akala HM, Eyase FL...Cheruiyot AC, Omondi AA, Ogutu BR, Waters NC, Johnson JD, Polhemus ME, Schnabel DC, Walsh DS: Antimalarial drug sensitivity profile of western Kenya
Peng, Linda X; Wallace, Morgan; Andaloro, Bridget; Fallon, Dawn; Fleck, Lois; Delduco, Dan; Tice, George
2011-01-01
The BAX System PCR assay for Salmonella detection in foods was previously validated as AOAC Research Institute (RI) Performance Tested Method (PTM) 100201. New studies were conducted on beef and produce using the same media and protocol currently approved for the BAX System PCR assay for E. coli O157:H7 multiplex (MP). Additionally, soy protein isolate was tested for matrix extension using the U.S. Food and Drug Administration-Bacteriological Analytical Manual (FDA-BAM) enrichment protocols. The studies compared the BAX System method to the U.S. Department of Agriculture culture method for detecting Salmonella in beef and the FDA-BAM culture method for detecting Salmonella in produce and soy protein isolate. Method comparison studies on low-level inoculates showed that the BAX System assay for Salmonella performed as well as or better than the reference method for detecting Salmonella in beef and produce in 8-24 h enrichment when the BAX System E. coli O157:H7 MP media was used, and soy protein isolate in 20 h enrichment with lactose broth followed by 3 h regrowth in brain heart infusion broth. An inclusivity panel of 104 Salmonella strains with diverse serotypes was tested by the BAX System using the proprietary BAX System media and returned all positive results. Ruggedness factors involved in the enrichment phase were also evaluated by testing outside the specified parameters, and none of the factors examined affected the performance of the assay.
Non Diphtheritic Corynebacteria: An Emerging Nosocomial Pathogen in Skin and Soft Tissue Infection.
Rudresh, Shoorashetty Manohar; Ravi, G S; Alex, Ann Mary; Mamatha, K R; Sunitha, L; Ramya, K Thangam
2015-12-01
Non-diphtheritic corynebacteria are normal inhabitants of skin and mucous membrane. When isolated from clinical specimens they are often considered as contaminants. Recent reports suggest their role as emerging nosocomial pathogens. To speciate non-diphtheritic corynebacteria isolated from wound specimens, to correlate their clinical significance and to determine their invitro antimicrobial susceptibilities to 9 antimicrobial agents. Twenty five non-diphtheritic corynebacteria from skin and soft tissue infections were selected for study. Isolates were identified by battery of tests and minimum inhibitory concentration (MIC) was detected by Clinical & Laboratory Standards Institute (CLSI) described broth microdilution method. MIC was interpreted according CLSI and British Society for Antimicrobial Chemotherapy (BSAC) guidelines. C. amycolatum was the predominant species (20%) followed by C. striatum (16%). Penicillin was least effective invitro followed by clindamycin and ciprofloxacin. Excellent activities were shown by vancomycin, linezolid and imipenem. Multidrug resistance was found in all the species. Non-diphtheritic corynebacteria are potential nosocomial pathogens among acute/chronic complicated skin and soft tissue infection. Vancomycin or linezolid can be used empirically to treat such infections until the invitro susceptibility results are available.
Benbelaïd, Fethi; Khadir, Abdelmounaïm; Abdoune, Mohamed Amine; Bendahou, Mourad; Muselli, Alain; Costa, Jean
2014-01-01
Objective To evaluate some essential oils in treatment of intractable oral infections, principally caused by biofilm of multidrug-resistant Enterococcus faecalis (E. faecalis), such as persistent endodontic infections in which their treatment exhibits a real challenge for dentists. Methods Ten chemically analyzed essential oils by gas chromatography-mass spectrometry were evaluated for antimicrobial activity against sensitive and resistant clinical strains of E. faecalis in both planktonic and biofilm state using two methods, disk diffusion and broth micro-dilution. Results Studied essential oils showed a good antimicrobial activity and high ability in E. faecalis biofilm eradication, whether for sensitive or multidrug-resistant strains, especially those of Origanum glandulosum and Thymbra capitata with interesting minimum inhibitory concentration, biofilm inhibitory concentration, and biofilm eradication concentration values which doesn't exceed 0.063%, 0.75%, and 1.5%, respectively. Conclusions Findings of this study indicate that essential oils extracted from aromatic plants can be used in treatment of intractable oral infections, especially caused by biofilm of multidrug-resistant E. faecalis. PMID:25182948
Li, Xin-Peng; Gao, Ri-Hong; Hou, Pei-Bin; Ren, Yan-Yan; Zhang, Hua-Ning; Jiang, Kui-Ying; Chen, Yu-Zhen; Qi, Zi-Gang; Xu, Min; Bi, Zhen-Wang
2017-08-01
No studies have reported the isolation of serotype Salmonella Isangi from cases of salmonellosis in mainland China. We investigated an outbreak of foodborne disease with salmonella and collected the samples from the patients and surplus foods. Salmonella strains were isolated and the serotype was identified according to the Kauffmann-White scheme. The relatedness of the isolates was determined using pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS). Antimicrobial susceptibility was conducted by the broth microdilution method. There were 74 diners in the case, 33 of which got ill, with an attack rate of 44.6% (33/74). A total of 24 samples were collected from the outbreak cases, six Salmonella Isangi strains were isolated and susceptible to all tested drugs. PFGE and WGS analysis suggested that the pathogen dissemination through a single or limited vector(s), the steamed fish and mixed food (fry spicy chicken, braised pork ribs, and goose leg), may be the source of infection or be cross-contaminated. We first report the characteristics of an outbreak and molecular strain relatedness of Salmonella Isangi in mainland China.
Casellas, J M; Bantar, C; Duret, F
2007-10-01
Tigecycline, the 9-t-butylglycylamino derivative of minocycline is the first commercially available glycylcycline exhibiting an extended spectrum of antibacterial activity due to its capacity to evade the tetracycline ribosomal and efflux resistance mechanisms. We conducted a collaborative in vitro study determining the activity of tigecycline compared to 14 antimicrobials against clinically relevant isolates obtained from adult patients hospitalized in 9 Argentinean institutions. Minimum inhibitory concentrations (MICs) were determined by the reference broth microdilution method. The number of isolates and MICs 50/90 (mg/L) for tigecycline were the following: Acinetobacter spp. 132 (0.5/1); Escherichia coli 220 (0.12/0.25); Klebsiella spp. 220 (0.5/1), Enterobacter spp. 205 (0.5/1); Serratia spp. 84 (0.5/2); Haemophilus influenzae 96 (0.25/0.5); Staphylococcus aureus 223 (0.12/0.25); Streptococcus pneumoniae 98 (
NASA Astrophysics Data System (ADS)
Brkić, Dominik R.; Božić, Aleksandra R.; Marinković, Aleksandar D.; Milčić, Miloš K.; Prlainović, Nevena Ž.; Assaleh, Fathi H.; Cvijetić, Ilija N.; Nikolić, Jasmina B.; Drmanić, Saša Ž.
2018-05-01
The ratios of E/Z isomers of sixteen synthesized 1,3-dihydro-3-(substituted phenylimino)-2H-indol-2-one were studied using experimental and theoretical methodology. Linear solvation energy relationships (LSER) rationalized solvent influence of the solvent-solute interactions on the UV-Vis absorption maxima shifts (νmax) of both geometrical isomers using the Kamlet-Taft equation. Linear free energy relationships (LFER) in the form of single substituent parameter equation (SSP) was used to analyze substituent effect on pKa, NMR chemical shifts and νmax values. Electron charge density was obtained by the use of Quantum Theory of Atoms in Molecules, i.e. Bader's analysis. The substituent and solvent effect on intramolecular charge transfer (ICT) were interpreted with the aid of time-dependent density functional (TD-DFT) method. Additionally, the results of TD-DFT calculations quantified the efficiency of ICT from the calculated charge-transfer distance (DCT) and amount of transferred charge (QCT). The antimicrobial activity was evaluated using broth microdilution method. 3D QSAR modeling was used to demonstrate the influence of substituents effect as well as molecule geometry on antimicrobial activity.
In vitro susceptibility testing of Malassezia pachydermatis to gentamicin.
Silva, Freddy A; Ferrer, Otilia; Déniz, Soraya; Rosario, Inmaculada; Conde-Felipe, Magnolia; Díaz, Esther L; Acosta-Hernández, Begoña
2017-08-01
Two studies have observed that growth media containing gentamicin can inhibit the growth of the yeast organism Malassezia pachydermatis. The minimum inhibitory concentration (MIC) of this bactericidal antibiotic for this organism has not been previously determined. To evaluate the susceptibility of M. pachydermatis isolates to gentamicin. The MIC of gentamicin was determined using a modified version of the M27-A3 microdilution method following the guidelines of the Clinical and Laboratory Standards Institute. A modified Christensen's urea broth was used to enhance the growth of the M. pachydermatis isolates. Visual and spectrophotometric end-point readings were performed to detect the presence or absence of yeast growth. The MIC50 and MIC90 of gentamicin were 8.12 μg/mL and 32.5 μg/mL, respectively; M. pachydermatis strains were classified as susceptible (S), intermediate (I) and resistant (R). The susceptibility of these isolates to gentamicin in vitro, by visual and spectrophotometric end-point reading, was: S, 54-56%; I, 40-41%; and R, 3-6%. Prospective MICs for M. pachydermatis have been established for gentamicin. © 2017 ESVD and ACVD.
Bassolé, Imaël Henri Nestor; Lamien-Meda, Aline; Bayala, Balé; Tirogo, Souleymane; Franz, Chlodwig; Novak, Johannes; Nebié, Roger Charles; Dicko, Mamoudou Hama
2010-11-03
Essential oils from leaves of Lippia multiflora, Mentha x piperita and Ocimum basilicum from Burkina Faso were analysed by GC-FID and GC-MS. Major components were p-cymene, thymol, b-caryophyllene, carvacrol and carvone for L. multiflora, menthol and iso-menthone for M. x piperita and, linalool and eugenol for O. basilicum. The essential oils and their major monoterpene alcohols were tested against nine bacterial strains using the disc diffusion and broth microdilution methods. The essential oils with high phenolic contents were the most effective antimicrobials. The checkerboard method was used to quantify the efficacy of paired combinations of essential oils and their major components. The best synergetic effects among essential oils and major components were obtained with combinations involving O. basilicum essential oil and eugenol, respectively. As phenolic components are characterized by a strong spicy aroma, this study suggests that the selection of certain combinations of EOs could help to reduce the amount of essential oils and consequently reduce any adverse sensory impact in food.
Bansal, Yashik; Chander, Jagdish; Kaistha, Neelam; Singla, Nidhi; Sood, Sunandan; van Diepeningen, Anne D
2016-11-01
The two most common filamentous fungi causing mycotic keratitis are Aspergillus and Fusarium spp. Around 70 Fusarium spp. are involved in causing human infections. In this study, four cases of keratitis in sugarcane farmers in India are being reported, caused by the sugar cane pathogen Fusarium sacchari, a species of the Fusarium fujikuroi species complex. Fusarial keratitis was established by potassium hydroxide/Calcofluor white wet mounts and fungal culture of corneal scrapings on conventional media. Final identification was done by genetic sequencing at CBS-KNAW, Utrecht, The Netherlands. The antifungal susceptibility testing was done using broth microdilution method as per CLSI document M38-A2. Four cases of F. sacchari keratitis were identified. Three of them had trauma with sugarcane leaves, whereas one sugarcane farmer reported trauma by vegetative matter. The morphological similarities among various Fusarium species warrant use of molecular methods for identification of cryptic species. A wide distribution of sugarcane farming could be the possible explanation for emergence of F. sacchari keratitis in India. © 2016 Blackwell Verlag GmbH.
Antianaerobic Antimicrobials: Spectrum and Susceptibility Testing
Wexler, Hannah M.; Goldstein, Ellie J. C.
2013-01-01
SUMMARY Susceptibility testing of anaerobic bacteria recovered from selected cases can influence the choice of antimicrobial therapy. The Clinical and Laboratory Standards Institute (CLSI) has standardized many laboratory procedures, including anaerobic susceptibility testing (AST), and has published documents for AST. The standardization of testing methods by the CLSI allows comparisons of resistance trends among various laboratories. Susceptibility testing should be performed on organisms recovered from sterile body sites, those that are isolated in pure culture, or those that are clinically important and have variable or unique susceptibility patterns. Organisms that should be considered for individual isolate testing include highly virulent pathogens for which susceptibility cannot be predicted, such as Bacteroides, Prevotella, Fusobacterium, and Clostridium spp.; Bilophila wadsworthia; and Sutterella wadsworthensis. This review describes the current methods for AST in research and reference laboratories. These methods include the use of agar dilution, broth microdilution, Etest, and the spiral gradient endpoint system. The antimicrobials potentially effective against anaerobic bacteria include beta-lactams, combinations of beta-lactams and beta-lactamase inhibitors, metronidazole, chloramphenicol, clindamycin, macrolides, tetracyclines, and fluoroquinolones. The spectrum of efficacy, antimicrobial resistance mechanisms, and resistance patterns against these agents are described. PMID:23824372
Halamova, Katerina; Kokoska, Ladislav; Flesar, Jaroslav; Sklenickova, Olga; Svobodova, Blanka; Marsik, Petr
2010-12-01
The antiyeast activity of the black cumin seed (Nigella sativa) quinones dithymoquinone, thymohydroquinone (THQ), and thymoquinone (TQ) were evaluated in vitro with a broth microdilution method against six dairy spoilage yeast species. Antifungal effects of the quinones were compared with those of preservatives commonly used in milk products (calcium propionate, natamycin, and potassium sorbate) at two pH levels (4.0 and 5.5). THQ and TQ possessed significant antiyeast activity and affected the growth of all strains tested at both pH levels, with MICs ranging from 8 to 128 μg/ml. With the exception of the antibiotic natamycin, the inhibitory effects of all food preservatives against the yeast strains tested in this study were strongly affected by differences in pH, with MICs of ≥16 and ≥512 μg/ml at pH 4.0 and 5.5, respectively. These findings suggest that HQ and TQ are effective antiyeast agents that could be used in the dairy industry as chemical preservatives of natural origin.
Zomorodian, Kamiar; Moein, Mahmoodreza; Pakshir, Keyvan; Karami, Forough; Sabahi, Zahra
2017-10-01
Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography-mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC 95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC 50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases.
Carregaro, Adriano Bonfim; Santurio, Deise Flores; de Sá, Mariangela Facco; Santurio, Janio Moraes; Alves, Sydney Hartz
2016-01-01
This study evaluated the in vitro antibacterial activity of essential oils from Lippia graveolens (Mexican oregano), Origanum vulgaris (oregano), Thymus vulgaris (thyme), Rosmarinus officinalis (rosemary), Cymbopogon nardus (citronella), Cymbopogon citratus (lemongrass), and Eucalyptus citriodora (eucalyptus) against Escherichia coli (n = 22) strains isolated from Alouatta spp. feces. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined for each isolate using the broth microdilution technique. Essential oils of Mexican oregano (MIC mean = 1818 μg mL−1; MBC mean = 2618 μg mL−1), thyme (MIC mean = 2618 μg mL−1; MBC mean = 2909 μg mL−1), and oregano (MIC mean = 3418 μg mL−1; MBC mean = 4800 μg mL−1) showed the best antibacterial activity, while essential oils of eucalyptus, rosemary, citronella, and lemongrass displayed no antibacterial activity at concentrations greater than or equal to 6400 μg mL−1. Our results confirm the antimicrobial potential of some essential oils, which deserve further research. PMID:27313638
Kelley, Peter G; Gao, Wei; Ward, Peter B; Howden, Benjamin P
2011-05-01
The aim of this study was to establish the relationship between reduced vancomycin and daptomycin susceptibility among Australasian vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA) isolates from patients never exposed to daptomycin. Forty-seven stored clinical isolates of hVISA/VISA collected before November 2008 from around Australia and New Zealand were selected. Daptomycin and vancomycin MIC testing was performed using broth microdilution (BMD) and Etest methods. Daptomycin population analysis was performed on a subset of isolates. The percentage of daptomycin non-susceptible isolates was 0% for vancomycin-susceptible S. aureus (VSSA) (Etest and BMD), for hVISA it was 26% by Etest and 15% by BMD, and for VISA 62% by Etest and 38% by BMD. Population analysis profile testing demonstrated daptomycin heteroresistance among the hVISA and VISA strains tested. This is the highest rate of daptomycin non-susceptibility reported among hVISA isolates to date. Clinicians should exhibit caution when using daptomycin in situations where serious hVISA or VISA infection is a possibility.
Chemical Composition and Antimicrobial Activities of the Essential Oil From Salvia mirzayanii Leaves
Zomorodian, Kamiar; Moein, Mahmoodreza; Pakshir, Keyvan; Karami, Forough; Sabahi, Zahra
2017-01-01
Resistance of many pathogens to available drugs is a global challenge and is leading to growing interest in natural alternative products. In this study, chemical composition and in vitro antibacterial and antifungal activities of the essential oil from Salvia mirzayanii were investigated. The chemical constituents of essential oil from S mirzayanii were analyzed by gas chromatography–mass spectrometry. The antimicrobial activity was determined by broth microdilution. The main identified compounds were 1,8-cineole (41.2 ± 1.3%), linalool acetate (11.0 ± 0.5%), and α-terpinyl acetate (6.0 ± 0.4%) (mL of essential oil/g of plant material). The MIC95 were 0.03 to 0.5 µL/mL and 16 to 128 µL/mL for gram-positive and gram-negative bacteria, respectively. These results indicated that Salvia mirzayanii essential oil significantly inhibited the growth of standard and clinically isolated tested yeasts by MIC50 0.03 to 1 µL/mL. Potent antibacterial and antifungal activities of Salvia mirzayanii essential oil may be considered in future study, particularly against antibiotic-resistant cases. PMID:28689440
Antifungal activity of medicinal plant extracts; preliminary screening studies.
Webster, Duncan; Taschereau, Pierre; Belland, René J; Sand, Crystal; Rennie, Robert P
2008-01-04
In the setting of HIV and organ transplantation, opportunistic fungal infections have become a common cause of morbidity and mortality. Thus antifungal therapy is playing a greater role in health care. Traditional plants are a valuable source of novel antifungals. To assess in vitro antifungal activity of aqueous plant extracts. The minimum inhibitory concentrations were determined for each extract in the setting of human pathogenic fungal isolates. Plants were harvested and identification verified. Aqueous extracts were obtained and antifungal susceptibilities determined using serial dilutional extracts with a standardized microdilution broth methodology. Twenty-three fungal isolates were cultured and exposed to the plant extracts. Five known antifungals were used as positive controls. Results were read at 48 and 72 h. Of the 14 plants analyzed, Fragaria virginiana Duchesne, Epilobium angustifolium L. and Potentilla simplex Michx. demonstrated strong antifungal potential overall. Fragaria virginiana had some degree of activity against all of the fungal pathogens. Alnus viridis DC., Betula alleghaniensis Britt. and Solidago gigantea Ait. also demonstrated a significant degree of activity against many of the yeast isolates. Fragaria virginiana, Epilobium angustifolium and Potentilla simplex demonstrate promising antifungal potential.
Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland.
Kirchgässner, C; Schmitt, S; Borgström, A; Wittenbrink, M M
2016-06-01
Brachyspira (B.) hyodysenteriae is the causative agent of swine dysentery (SD), a severe mucohaemorrhagic diarrheal disease in pigs worldwide. So far, the antimicrobial susceptibility patterns of B. hyodysenteriae in Switzerland have not been investigated. Therefore, a panel of 30 porcine B. hyodysenteriae isolates were tested against 6 antimicrobial agents by using the VetMIC Brachy panel, a broth microdilution test. Tiamulin and valnemulin showed high antimicrobial activity inhibiting all isolates at low concentrations. The susceptibility testing of doxycycline revealed values from ≤0.25 μg/ ml (47%) to 2 μg/ml (10%). The MIC values of lincomycin ranged between ≤0.5 μg/ml (30%) and 32 μg/ml (43%). For tylosin, 57% of the isolates could not be inhibited at the highest concentration of ≥128 μg/ml. The MIC values for tylvalosin were between ≤0.25 μg/ml (10%) and 8 μg/ml (20%). These findings reveal Switzerland's favourable situation compared to other European countries. Above all, tiamulin and valnemulin are still effective antimicrobial agents and can be further used for the treatment of SD.
Kulengowski, Brandon; Brignola, Matthew; Gallagher, Chanah; Rutter, W Cliff; Ribes, Julie A; Burgess, David S
2017-01-01
Abstract Background Polymyxins are being revitalized to combat carbapenem-resistant Enterobacteriaceae (CRE). However, evaluating the activity of these agents by traditional broth dilution methods is not practical for busy clinical laboratories. We compared polymyxin B (PMB) activity utilizing two quantitative susceptibility testing methods, Etest® and broth microdilution (BMD), against CRE isolates from patients at an academic medical center. Methods PMB activity against 70 recent CRE clinical isolates was determined by BMD and Etest® according to CLSI guidelines. P. aeruginosa ATCC® 27853 was used as a quality control strain. The CLSI PMB susceptibility breakpoint of non-fermenting gram-negative bacteria (<2 mg/L) was used. Essential agreement between methods was defined as an MIC measured within 1 log2 dilution. Categorical agreement was defined between methods as classification of isolates in the same susceptibility category (susceptible or resistant). Major and very major error rates were calculated, and McNemar’s test was used for determining a difference between methods. Results CRE isolates were primarily Enterobacter spp. (43%), followed by K. pneumoniae (41%) and E. coli (9%). Essential agreement between testing methods was low (9%), but categorical agreement was 81% (P = 0.0002). Although false non-susceptibility was never observed by Etest® (BMD as reference), the rate of very major errors by Etest® was high (19%). Etest® miscalled 87% of PMB-resistant CRE. Conclusion Etest® reporting of false susceptibility may result in inappropriate antibiotic utilization and treatment failure clinically. We do not recommend using Etest® for PMB susceptibility testing for routine patient care. Disclosures All authors: No reported disclosures.
Hygiene quality and presence of ESBL-producing Escherichia coli in raw food diets for dogs
Nilsson, Oskar
2015-01-01
Background Raw food diets are popular among some dog owners, even though there are concerns regarding the infectious disease risk and public health implications. Hence, the two aims of this study were to investigate the hygiene quality of raw food diets for dogs in the Swedish market and if Escherichia coli with transferable resistance to extended spectrum cephalosporins (ESC) was present in such products. Methods Samples of raw food diets were suspended and further diluted in 0.9% saline. Appropriate dilutions were 1) cultured on Petrifilm™SEC to quantify the amount of E. coli in the samples and 2) mixed with cefotaxime to a final concentration of 1 mg/L and cultured on Petrifilm™SEC to quantify the amount of ESC-resistant E. coli in the samples. Furthermore, undiluted suspensions were mixed 1:1 with double strength MacConkey broth with cefotaxime, enriched overnight and finally cultured on MacConkey agar with cefotaxime (1 mg/L). Suspected ESC-resistant E. coli were screened by PCR for genes encoding extended spectrum beta lactamases and plasmid-mediated AmpC and their susceptibility to a panel of antimicrobials was performed by broth microdilution using VetMIC GN-mo. Results Escherichia coli was isolated from all samples (n=39) and ESC-resistant E. coli was isolated from nine samples (23%). All ESC-resistant E. coli were PCR-positive for the bla CMY-2 group and only one of them was also resistant to a non-beta-lactam antibiotic. Conclusion The results of this study indicate that raw food diets could be a source of ESC-resistant E. coli to dogs and highlight the need for maintaining good hygiene when handling these products to prevent infection. PMID:26490763
Hackel, Meredith A; Tsuji, Masakatsu; Yamano, Yoshinori; Echols, Roger; Karlowsky, James A; Sahm, Daniel F
2018-02-01
The in vitro activity of the investigational siderophore cephalosporin, cefiderocol (formerly S-649266), was determined against a 2014-2016, 52-country, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae ( n = 1,022), multidrug-resistant (MDR) Acinetobacter baumannii ( n = 368), MDR Pseudomonas aeruginosa ( n = 262), Stenotrophomonas maltophilia ( n = 217), and Burkholderia cepacia ( n = 4) using the Clinical and Laboratory Standards Institute (CLSI) standard broth microdilution method. Iron-depleted cation-adjusted Mueller-Hinton broth (ID-CAMHB), prepared according to a recently approved (2017), but not yet published, CLSI protocol, was used to test cefiderocol; all other antimicrobial agents were tested using CAMHB. The concentration of cefiderocol inhibiting 90% (MIC 90 ) of isolates of carbapenem-nonsusceptible Enterobacteriaceae was 4 μg/ml; cefiderocol MICs ranged from 0.004 to 32 μg/ml, and 97.0% (991/1,022) of isolates demonstrated cefiderocol MICs of ≤4 μg/ml. The MIC 90 s for cefiderocol for MDR A. baumannii , MDR P. aeruginosa , and S. maltophilia were 8, 1, and 0.25 μg/ml, respectively, with 89.7% (330/368), 99.2% (260/262), and 100% (217/217) of isolates demonstrating cefiderocol MICs of ≤4 μg/ml. Cefiderocol MICs for B. cepacia ranged from 0.004 to 8 μg/ml. We conclude that cefiderocol demonstrated potent in vitro activity against a 2014-2016, worldwide collection of clinical isolates of carbapenem-nonsusceptible Enterobacteriaceae , MDR A. baumannii , MDR P. aeruginosa , S. maltophilia , and B. cepacia isolates as 96.2% of all (1,801/1,873) isolates tested had cefiderocol MICs of ≤4 μg/ml. Copyright © 2018 Hackel et al.
Chutrakul, Chanikul; Khaokhajorn, Pratoomporn; Auncharoen, Patchanee; Boonruengprapa, Tanapong; Mongkolporn, Orarat
2013-01-01
Severe chili anthracnose disease in Thailand is caused by Colletotrichum gloeosporioides and C. capsici. To discover anti-anthracnose substances we developed an efficient dual-fluorescent labeling bioassay based on a microdilution approach. Indicator strains used in the assay were constructed by integrating synthetic green fluorescent protein (sGFP) and Discosoma sp. red fluorescent protein (DsRedExp) genes into the genomes of C. gloeosporioides or C. capsici respectively. Survival of co-spore cultures in the presence of inhibitors was determined by the expression levels of these fluorescent proteins. This developed assay has high potential for utilization in the investigation of selective inhibition activity to either one of the pathogens as well as the broad-range inhibitory effect against both pathogens. The value of using the dual-fluorescent assay is rapid, reliable, and consistent identification of anti-anthracnose agents. Most of all, the assay enables the identification of specific inhibitors under the co-cultivation condition.
Zuo, Guo-Ying; Wang, Chun-Juan; Han, Jun; Li, Yu-Qing; Wang, Gen-Chun
2016-12-15
Methicillin-resistant Staphylococcus aureus (MRSA) poses a serious therapeutic challenge in current clinic and new drug development. Natural coumarins have diverse bioactivities and the potential of resistance modifying effects. This study is to present in-depth evaluations of in vitro antimicrobial activities of four natural coumarins 5-geranyloxy-7-methoxycoumarin (Gm, 1), (5,7-dimethoxy-8-prenyloxycoumarin (artanin, Ar, 2)), isopimpinellin (Is, 3) and phellopterin (Ph, 4) from Zanthoxylum nitidum (Roxb.) DC. (Rutaceae) extracts, focusing on their potential restoration the activity of conventional antibacterial agents against clinical MRSA strains. Bioactivity-guided fractionation and spectral analyses were used to isolate the coumarins and identify the structures, respectively. The double broth microdilution method was used to assay the coumarins' alone activity. The classic checkerboard microdilution and dynamic time-killing methods were used to evaluate combinatory effects. The four plant coumarins Gm (1), Ar (2), Is (3) and Ph (4) were isolated and identified from Z. nitidum extracts. Coumarins 1-4 displayed promising inhibition against both MSSA and MRSA with minimal inhibitory concentrations (MICs) of 8-64µg/ml, but very weak against Gram-negative pathogen and yeast with MICs of 256 to ≥1024µg/ml. The geranyloxy and prenyloxy substitutions showed to be more active than the methoxy substitution on the coumarin skeletons. 1-4 also showing different extent of synergism with a total of eight conventional antibacterial agents, i.e. chloramphenicol (CL), gentamicin (CN), fosfomycin (FF), levofloxacin (LE), minocycline (MI), piperacillin/tazobactam (P/T), teicoplanin (TE) and vancomycin (VA) against ten clinical MRSA strains. Four to ten of the tested MRSA strains showed bacteriostatic synergy in the eleven combinations. The anti-MRSA modifying effects were related to different arrangement in the combinations with fractional inhibitory concentration indices (FICIs) from 0.187 to 1.125 and the three combinations CN (Is), CL (Ph) and MI (Gm) were the best ones. The enhancement of activity was also shown by 2-64 of dose reduction indices (DRIs) of the combined MICs, with VA (Ph) combination resulted the biggest DRI. The resistance of MRSA to antibacterial agents could be reversed in the combinations of CL (Gm or Ph), LE (Ph) and MI (Is) following the Clinical and Laboratory Standards Institute (CLSI) criteria. Six combinations P/T (Gm), TE (Ar), CN (Is), VA (Ph) and CL (Gm or Ph) also showed bactericidal synergy with Δlog 10 CFU/ml >2 at 24h incubation. The coumarins showed high potentiating effects of the antibacterial agents against multi-drug resistant SA. The resistance reversal effect of CL, LE and MI warrants further pharmacological investigation on combinatory therapy for the sake of fighting against MRSA infections. Copyright © 2016 Elsevier GmbH. All rights reserved.
Inhibitory Effects of Pterodon emarginatus Bean Oil and Extract on Staphylococcus aureus
Mendes, V. S.; Sant'Anna, J. B.; Oliveira, S. C. C.; Maldonade, Iriani Rodrigues; Machado, Eleuza Rodrigues
2017-01-01
Background: Pterodon emarginatus is a tree of the Brazilian Savannah. The beans of this tree are used in folk medicine as anti-inflammatory preparations, especially for infections caused by Staphylococcus aureus. These bacteria can cause simple infections or serious illnesses such as pneumonia, meningitis, endocarditis, toxic shock syndrome, septicemia, and others. Objective: This study had the goal of verifying the effect of the essential oil (OE) from P. emarginatus on the inhibition of S. aureus in culture medium, i.e., “ in vitro” tests. Materials and Methods: The vegetable material was cut and crushed with a press. The OE was obtained by extraction using hexane, alcohol, and water. The P. emarginatus extracts obtained were used to evaluate the antimicrobial effect on S. aureus (ATCC 25923) by tests of well diffusion, disc diffusion, and microdilution. The strain used in the assays was maintained in brain heart infusion broth and nutrient agar until testing. Afterward, the bacteria were spread on agar plates with Mueller-Hinton agar medium. In the wells and on the paper discs, the OE suspensions were placed in the following volumes: 10, 15, 20, 25, 30, 40, and 80 μL and subsequently they were incubated at 35°C ± 2°C. After 24 h, the number of colony-forming unit was determined. Results: Pure OE and hydroalcoholic extract inhibited the growth of S. aureus, while aqueous extract had no effect on bacterial growth in all microbial methods used. Conclusion: Thus, the present study showed the potential of sucupira-based extracts against S. aureus growth, opening new perspectives for the evaluation of these bioactive compounds as phytopharmaceutical products. SUMMARY Plant extract act as antimicrobials to prevent and reduce bacterial contaminationBeans of Pterodon emarginatus has antibacterial propertiesExtraction with different solvents might implicate on the rate of bacterial deathThe effect of different microbiological methods (well diffusion, disc diffusion and microdilution) was evaluated on reducing CFUThe results showed by MBC that concentrations superior to 10% (v/v) using AC and 7.5% (v/v) using OE were necessary to eliminate colonies formedAccording to data of MIC, at 2.5% of AC and OE was enough to kill S. aureusThe well diffusion technique demonstrated better performance than disc diffusion test for OE and AC extractsHydroalcoholic and oil extracts of sucupira beans had highest effect against Staphylococcus aureusAqueous extract had no effect on bacterial growth in all microbial methods testedThe sucupira-based extracts is a promising source as herbal drug due to therapeutic value Abbreviations Used: OE: Essencial oil; AC: Hydroalcoholic oil extract; AQ: Aqueous extracts; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony formed unit. PMID:29263627
Inhibitory Effects of Pterodon emarginatus Bean Oil and Extract on Staphylococcus aureus.
Mendes, V S; Sant'Anna, J B; Oliveira, S C C; Maldonade, Iriani Rodrigues; Machado, Eleuza Rodrigues
2017-01-01
Pterodon emarginatus is a tree of the Brazilian Savannah. The beans of this tree are used in folk medicine as anti-inflammatory preparations, especially for infections caused by Staphylococcus aureus . These bacteria can cause simple infections or serious illnesses such as pneumonia, meningitis, endocarditis, toxic shock syndrome, septicemia, and others. This study had the goal of verifying the effect of the essential oil (OE) from P. emarginatus on the inhibition of S. aureus in culture medium, i.e., " in vitro " tests. The vegetable material was cut and crushed with a press. The OE was obtained by extraction using hexane, alcohol, and water. The P. emarginatus extracts obtained were used to evaluate the antimicrobial effect on S. aureus (ATCC 25923) by tests of well diffusion, disc diffusion, and microdilution. The strain used in the assays was maintained in brain heart infusion broth and nutrient agar until testing. Afterward, the bacteria were spread on agar plates with Mueller-Hinton agar medium. In the wells and on the paper discs, the OE suspensions were placed in the following volumes: 10, 15, 20, 25, 30, 40, and 80 μL and subsequently they were incubated at 35°C ± 2°C. After 24 h, the number of colony-forming unit was determined. Pure OE and hydroalcoholic extract inhibited the growth of S. aureus , while aqueous extract had no effect on bacterial growth in all microbial methods used. Thus, the present study showed the potential of sucupira-based extracts against S. aureus growth, opening new perspectives for the evaluation of these bioactive compounds as phytopharmaceutical products. Plant extract act as antimicrobials to prevent and reduce bacterial contaminationBeans of Pterodon emarginatus has antibacterial propertiesExtraction with different solvents might implicate on the rate of bacterial deathThe effect of different microbiological methods (well diffusion, disc diffusion and microdilution) was evaluated on reducing CFUThe results showed by MBC that concentrations superior to 10% (v/v) using AC and 7.5% (v/v) using OE were necessary to eliminate colonies formedAccording to data of MIC, at 2.5% of AC and OE was enough to kill S. aureus The well diffusion technique demonstrated better performance than disc diffusion test for OE and AC extractsHydroalcoholic and oil extracts of sucupira beans had highest effect against Staphylococcus aureus Aqueous extract had no effect on bacterial growth in all microbial methods testedThe sucupira-based extracts is a promising source as herbal drug due to therapeutic value Abbreviations Used: OE: Essencial oil; AC: Hydroalcoholic oil extract; AQ: Aqueous extracts; MIC: Minimum inhibitory concentration; MBC: Minimum bactericidal concentration; CFU: Colony formed unit.
Extracellular deoxyribonuclease production by periodontal bacteria.
Palmer, L J; Chapple, I L C; Wright, H J; Roberts, A; Cooper, P R
2012-08-01
Whilst certain bacteria have long been known to secrete extracellular deoxyribonuclease (DNase), the purpose in microbial physiology was unclear. Recently, however, this enzyme has been demonstrated to confer enhanced virulence, enabling bacteria to evade the host's immune defence of extruded DNA/chromatin filaments, termed neutrophil extracellular traps (NETs). As NETs have recently been identified in infected periodontal tissue, the aim of this study was to screen periodontal bacteria for extracellular DNase activity. To determine whether DNase activity was membrane bound or secreted, 34 periodontal bacteria were cultured in broth and on agar plates. Pelleted bacteria and supernatants from broth cultures were analysed for their ability to degrade DNA, with relative activity levels determined using an agarose gel electrophoresis assay. Following culture on DNA-supplemented agar, expression was determined by the presence of a zone of hydrolysis and DNase activity related to colony size. Twenty-seven bacteria, including red and orange complex members Porphyromonas gingivalis, Tannerella forsythia, Fusobacterium nucleatum, Parvimonas micra, Prevotella intermedia, Streptococcus constellatus, Campylobacter rectus and Prevotella nigrescens, were observed to express extracellular DNase activity. Differences in DNase activity were noted, however, when bacteria were assayed in different culture states. Analysis of the activity of secreted DNase from bacterial broth cultures confirmed their ability to degrade NETs. The present study demonstrates, for the first time, that DNase activity is a relatively common property of bacteria associated with advanced periodontal disease. Further work is required to determine the importance of this bacterial DNase activity in the pathogenesis of periodontitis. © 2011 John Wiley & Sons A/S.
[In vitro utilization of fructooligosaccharide by streptococci mutans].
Linardi, M M; Rosa, O P; Buzalaf, M A; Torres, S A
2001-01-01
Neosugar is the trade name of a fructooligosaccharide (FOS) whose utilization by oral bacteria is not well known yet. The aim of the present study was to evaluate in vitro the effect of this product on the growth, fermentation and production of plaque by mutans streptococci: S. mutans, serotypes c, e and f, S. sobrinus, serotype d, S. downei, serotype h, S. cricetus, serotype a and S. rattus, serotype b. The evaluation of growth was carried out in Brain Heart Infusion (BHI) broths containing or not sucrose and FOS and in buffered broths having glucose or FOS as carbon sources, through optical density reading in spectrophotometer after 24 hours of incubation at 37 degrees C. Thereafter the reading of pH was made in the same media. The plaque produced on glass sticks in BHI broths containing 5% sucrose or FOS was weighed and carbohydrates and proteins were assayed. The possible cariogenicity of Neosugar was confirmed, since it sustained the same growth and intensity of fermentation of sucrose in BHI broth for all streptococci and permitted in vitro production of plaque by some of them. The amount of plaque as well as its content of proteins and carbohydrates were smaller than those produced with sucrose, although the difference was statistically significant only for carbohydrates.
Gaydos, C. A.; Davis, T.; Marrazzo, J.; Furgerson, D.; Taylor, S. N.; Smith, B.; Bachmann, L. H.; Ackerman, R.; Spurrell, T.; Ferris, D.; Burnham, C.-A. D.; Reno, H.; Lebed, J.; Eisenberg, D.; Kerndt, P.; Philip, S.; Jordan, J.; Quigley, N.
2017-01-01
ABSTRACT Trichomoniasis is the most prevalent curable sexually transmitted disease (STD). It has been associated with preterm birth and the acquisition and transmission of HIV. Recently, nucleic acid amplification tests (NAAT) have been FDA cleared in the United States for detection of Trichomonas vaginalis in specimens from both women and men. This study reports the results of a multicenter study recently conducted using the Xpert TV (T. vaginalis) assay to test specimens from both men and women. On-demand results were available in as little as 40 min for positive specimens. A total of 1,867 women and 4,791 men were eligible for inclusion in the analysis. In women, the performance of the Xpert TV assay was compared to the patient infected status (PIS) derived from the results of InPouch TV broth culture and Aptima NAAT for T. vaginalis. The diagnostic sensitivities and specificities of the Xpert TV assay for the combined female specimens (urine samples, self-collected vaginal swabs, and endocervical swabs) ranged from 99.5 to 100% and 99.4 to 99.9%, respectively. For male urine samples, the diagnostic sensitivity and specificity were 97.2% and 99.9%, respectively, compared to PIS results derived from the results of broth culture for T. vaginalis and bidirectional gene sequencing of amplicons. Excellent performance characteristics were seen using both female and male specimens. The ease of using the Xpert TV assay should result in opportunities for enhanced screening for T. vaginalis in both men and women and, hopefully, improved control of this infection. PMID:29167292
Ishida, Kelly; Rozental, Sonia; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru
2009-01-01
Background Stryphnodendron adstringens (Mart.) Coville, Leguminosae, also known in Brazil as barbatimão, is rich in tannins and many flavan-3-ols and proanthocyanidins such as prodelphinidins and prorobinetinidins. Previous studies have demonstrated several pharmacological properties of tannins from barbatimão, including anti-candidal activity. Methods The antifungal activity of proanthocyanidin polymeric tannins from Stryphnodendron adstringens (subfraction F2.4) was evaluated against three strains of Cryptococcus neoformans with different capsule expressions, using the broth microdilution technique, light microscopy and transmission electron microscopy. The effect of subfraction F2.4 on C. neoformans and melanoma mammalian cells pigmentation was also evaluated. Results Although susceptibility assays revealed MIC values quite similar (between 2.5 and 5.0 μg/ml), analyses of MFC values revealing that the acapsular mutant Cap 67 was more susceptible to be killed by the subfraction F2.4 (MFC = 20 μg/ml) than the two tested capsular strains (T1-444 and ATCC 28957) (MFC > 160 μg/ml). Optical and electron microscopy experiments revealed relevant alterations in cell shape and size in all strains treated with 1 and 2.5 μg/ml of subfraction F2.4. Capsule size of the capsular strains decreased drastically after subfraction F2.4 treatment. In addition, ultrastructural alterations such as cell wall disruption, cytoplasm extraction, mitochondria swelling, increase in the number of cytoplasmic vacuoles and formation of membranous structures in the cytoplasm were also observed in treated yeasts. Incubation with subfraction F2.4 also decreased C. neoformans pigmentation, however, did not interfere in melanization of B16F10 mammalian cells. Conclusion Our data indicate that tannins extracted from S. adstringens interfered with growth, capsule size and pigmentation, all important virulence factors of C. neoformans, and may be considered as a putative candidate for the development of new antifungal agents. PMID:19891776
Bagheri-Nesami, Masoumeh; Rezai, Mohammad Sadegh; Ahangarkani, Fatemeh; Rafiei, Alireza; Nikkhah, Attieh; Eslami, Gohar; Shafahi, Kheironesa; Hajalibeig, Azin; Khajavi, Rezvan
2017-09-01
Ventilator-associated pneumonia (VAP) due to non-fermenting Gram-negative bacilli (NFGNB), especially Pseudomonas aeruginosa and Acinetobacter spp., is one of the main hospital-acquired infections leading to mortality and morbidity, especially in intensive care units (ICUs). This study seeks to determine the multidrug and co-resistance (MDR) patterns of NFGNB that are agents of VAP, and assess the presence of class 1 integron in these bacteria. This cross-sectional study involved VAP patients admitted in the ICUs of 18 hospitals in the Mazandaran province, located in the North of Iran. The antibiotic susceptibility pattern was determined by the minimum inhibitory concentration (MIC) test by using broth microdilution method. Presence of class 1 integron was evaluated by the polymerase chain reaction (PCR) assay. Out of a total of 83 patients who were microbiologically diagnosed as VAP, 52 non-duplicated NFGNBs (24 P. aeruginosa and 28 A. baumannii ) were causative of VAP, out of which MDR NFGNBs were responsible for 48 (57.83%) cases. The frequencies of MDR NFGNBs were as follows: 27 (56.25%) A. baumannii and 21 (43.75%) P. aeruginosa . P. aeruginosa isolates were resistant to all aminoglycoside antibiotics (50%), ciprofloxacin (45.8%), ceftazidime (70.8%), cefepime (87.5%), colistin (62.5%), and imipenem (29.2%). A. baumannii isolates were resistant to aminoglycosides (53.6%), ciprofloxacin (85.7%), ceftazidime (92. 9%), cefepime (92.9%), colistin (35.7%), and imipenem (57.1%). Twelve isolates were resistant to all 10 tested antibiotics. The number of rates of class 1 integron, positive for MDR P. aeruginosa and MDR A. baumannii , were 20 (95.23%) and 21 (77.78%), respectively. The high prevalence of multidrug resistance and incidence of class 1 integron is a therapeutic concern. Employing antibiotic stewardship in hospitals could prevent the dissemination of MDR bacteria.
Swarupa, V; Chaudhury, A; Krishna Sarma, P V G
2017-03-01
The present study aimed to investigate the anti-Staphylococcus aureus and anti-biofilm properties of 4-methoxy-1-methyl-2-oxopyridine-3-carbamide (MMOXC) on S. aureus UDP-MurNAc-pentapeptide (MurF), peptidyl deformylase (PDF) and uridine monophosphate kinase (UMPK). The in vitro efficacy of MMOXC was evaluated using quantitative polymerase chain reaction, in vitro assays and broth microdilution methods. Further, the minimum inhibitory concentration (MIC), IC 50 and zone of inhibition were recorded in addition to the anti-biofilm property. MMOXC inhibited pure recombinant UMPK and PDF enzymes with a K i of 0·37 and 0·49 μmol l -1 . However K i was altered for MurF with varying substrates. The MurF K i for UMT, d-Ala-d-Ala and ATP as substrates was 0·3, 0·25 and 1·4 μmol l -1 , respectively. Real-time PCR analysis showed a significant reduction in PDF and MurF expression which correlated with the MIC 90 at 100 μmol l -1 and IC 50 in the range 42 ± 1·5 to 50 ± 1 μmol l -1 against all strains tested. At 5 μmol l -1 MMOXC was able completely to remove preformed biofilms of S. aureus and other drug resistant strains. MMOXC was able to kill S. aureus and drug resistant strains tested by inhibiting MurF, UMPK and PDF enzymes and completely obliterated preformed biofilms. Growth reduction and biofilm removal are prerequisites for controlling S. aureus infections. In this study MMOXC exhibited prominent anti-S. aureus and anti-biofilm properties by blocking cell wall formation, RNA biosynthesis and protein maturation. © 2016 The Society for Applied Microbiology.
Sullivan, Eva; Bensman, Joyce; Lou, Mimi; Agnello, Melissa; Shriner, Kimberly; Wong-Beringer, Annie
2014-01-01
To determine the differential association of host characteristics, antimicrobial resistance, and type III secretion system virulence of Pseudomonas aeruginosa isolates with respiratory syndromes in hospitalized adult patients. Retrospective, cohort study. Community teaching hospital. Two hundred eighteen consecutive adult patients with respiratory culture positive for P. aeruginosa between January 2005 to January 2010. Medical charts were reviewed to obtain demographic, laboratory, radiographic, and clinical information. Isolates were assayed by polymerase chain reaction for genes encoding the type III secretion system effectors (ExoU, ExoS, and PcrV) and for strain relatedness using randomly amplified polymorphic DNA analysis. Levofloxacin susceptibility was determined by broth microdilution. Patients were grouped by colonization, bronchitis, or pneumonia and were compared for differential risk of developing the clinical syndrome with respect to host and microbial characteristics. Half of the study cohort (54%, 117 of 218) had pneumonia, 32% (70 of 218) had bronchitis, and 14% (31 of 218) had colonization; in-hospital mortality was 35%, 11%, and 0%, respectively. Host factors strongly associated with pneumonia development were residence in long-term care facility, healthcare-associated acquisition of P. aeruginosa, higher Acute Physiology and Chronic Health Evaluation II score, presence of enteral feeding tube, mechanical ventilation, and recent history of pneumonia. Fluoroquinolone-resistant (57% vs 34%, 16%; p < 0.0001) and multidrug-resistant (36% vs 26%, 7%; p = 0.0045) strains were more likely to cause pneumonia than bronchitis or colonization, respectively. Analysis of host and microbial factors in a multivariate regression model yielded the combined traits of fluoroquinolone resistance and gene encoding the type III secretion system ExoU effector in P. aeruginosa as the single most significant predictor of pneumonia development. These results suggest that fluoroquinolone-resistant phenotype in a type III secretion system exoU strain background contributes toward the pathogenesis of P. aeruginosa in pneumonia.
Banothu, Venkanna; Neelagiri, Chandrasekharnath; Adepally, Uma; Lingam, Jayalakshmi; Bommareddy, Kesavaharshini
2017-12-01
Albizia odoratissima (L. f.) Benth has been used in Indian folk medicine to treat numerous inflammatory pathologies, such as leprosy, ulcers, burns and asthma. To evaluate the antioxidant and antimicrobial properties of A. odoratissima. Dried leaves of A. odoratissima were extracted in organic solvents (hexane, chloroform, ethyl acetate, and methanol). The total phenolic content (TPC) and total flavonoid content (TFC) were determined using the Folin-Ciocalteu and aluminum chloride colorimetric methods, respectively. The antioxidant activity was examined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H 2 O 2 ), 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), and ferric reducing antioxidant power (FRAP) assays. The antibacterial activity was examined using minimum inhibitory concentration (MIC) and the minimum bacterial concentration (MBC), determined by broth microdilution method against Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Proteus vulgaris) and Gram-positive bacterium (Staphylococcus aureus). The TPC ranged from 4.40 ± 1.06 to 1166.66 ± 31.85 mg GAE/g of dry weight (DW), and the TFC ranged from 48.35 ± 3.62 to 109.74 ± 1.84 mg QE/g of DW. The IC 50 values of the ethyl acetate extract for DPPH, ABTS, and H 2 O 2 were 10.96 ± 0.40, 4.35 ± 0.07, and 163.82 ± 1.52 μg/mL, respectively. Both methanol and ethyl acetate extracts demonstrated effective antibacterial activity with MICs and MBCs values ranging 136-546 μg/mL and 273-1093 μg/mL, respectively, against the tested pathogenic species. The leaves of A. odoratissima showed potent free radical scavenging property and antimicrobial activity.
Isnard, Christophe; Dhalluin, Anne; Malandain, Damasie; Bruey, Quentin; Auzou, Michel; Michon, Jocelyn; Giard, Jean-Christophe; Guérin, François; Cattoir, Vincent
2018-02-05
Ceftaroline and ceftobiprole are new parenteral cephalosporins with potent activity against methicillin-resistant (MR) staphylococci, which are the leading cause of prosthetic joint infections (PJIs). The aim of this study was to determine and compare the in vitro activities of both molecules against staphylococcal isolates recovered from clinically documented PJIs. A collection of 200 non-duplicate clinical isolates [100 Staphylococcus aureus and 100 coagulase-negative staphylococci (CoNS), including 19 and 27 MR isolates, respectively] was studied. Minimum inhibitory concentrations (MICs) of oxacillin, ceftaroline, ceftobiprole, vancomycin, teicoplanin, clindamycin, levofloxacin, linezolid and daptomycin were determined by the broth microdilution method. Bactericidal activity (at 4× MIC) of ceftaroline, ceftobiprole, vancomycin, teicoplanin, linezolid and daptomycin was assessed by time-kill assay. Among the S. aureus isolates, 100% were susceptible to ceftaroline (MIC 50/90 , 0.25/0.5μg/mL) and 98% were susceptible to ceftobiprole (MIC 50/90 , 0.5/1μg/mL), regardless of their methicillin resistance. The two ceftobiprole-non-susceptible strains (including one MRSA) showed MICs at 4mg/L. Against CoNS isolates, ceftaroline and ceftobiprole exhibited in vitro potency with MIC 50/90 values at 0.06/0.25μg/mL and 0.25/1μg/mL, respectively. At 4× MIC, ceftaroline and ceftobiprole showed rapid and marked bactericidal activity against both S. aureus and CoNS (after 24/12h and 12/6h of incubation, respectively), whilst none of the other molecules tested had a bactericidal effect by 24h. This study showed that ceftaroline and ceftobiprole have excellent in vitro activity against clinical isolates of staphylococci involved in PJIs. These molecules may therefore represent promising alternatives for the treatment of such infections. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Rossolini, Gian M; Dryden, Matthew S; Kozlov, Roman S; Quintana, Alvaro; Flamm, Robert K; Läuffer, Jörg M; Lee, Emma; Morrissey, Ian; CLASS Study Group
2011-01-01
to assess the in vitro activity of ceftobiprole and comparators against a recent collection of Gram-positive and Gram-negative pathogens, in order to detect potential changes in susceptibility patterns, and to evaluate the Etest assay for ceftobiprole susceptibility testing. contemporary Gram-positive and Gram-negative isolates (excluding extended-spectrum β-lactamase-producing isolates) from across Europe and the Middle East were collected, and their susceptibility to ceftobiprole, vancomycin, teicoplanin, linezolid, ceftazidime and cefepime was assessed using the Etest method. Quality testing [using Etest and broth microdilution (BMD)] was conducted at a central reference laboratory. some 5041 Gram-positive and 4026 Gram-negative isolates were included. Against Gram-positive isolates overall, ceftobiprole had the lowest MIC50 (0.5 mg/L), compared with 1 mg/L for its comparators (vancomycin, teicoplanin and linezolid). Against methicillin-resistant Staphylococcus aureus, all four agents had a similar MIC90 (2 mg/L), but ceftobiprole had a 4-fold better MIC90 (0.5 mg/L) against methicillin-susceptible strains. Only 38 Gram-positive isolates were confirmed as ceftobiprole resistant. Among Gram-negative strains, 86.9%, 91.7% and 95.2% were susceptible to ceftobiprole, ceftazidime and cefepime, respectively. Pseudomonas aeruginosa was less susceptible to all three antimicrobials than any other Gram-negative pathogen. There was generally good agreement between local Etest results and those obtained at the reference laboratory (for ceftobiprole: 86.8% with Gram-negatives; and 94.7% with Gram-positives), as well as between results obtained by BMD and Etest methods (for ceftobiprole: 98.2% with Gram-negatives; and 98.4% with Gram-positives). ceftobiprole exhibits in vitro activity against a wide range of Gram-positive and Gram-negative pathogens, including multidrug-resistant strains. No changes in its known susceptibility profile were identified.
Witkowska-Banaszczak, Ewa; Długaszewska, Jolanta
2017-11-01
This study was undertaken to evaluate the antioxidant activity of methanol and water extracts from Succisa pratensis Moench (Dipsacaceae) leaves and flowers as well as the chemical composition of the essential oils found in them and the antimicrobial activity of the oils and extracts thereof. The essential oils from S. pratensis leaves and flowers were analysed by the GC-MS. The total phenolic content was determined with Folin-Ciocalteu, that of flavonoids with aluminium chloride and that of phenolic acids with Arnov's reagent. The antioxidant activity was investigated by the DPPH radical scavenging assay. Antimicrobial activity was studied in vitro against G-positive and G-negative bacteria, and fungi using disc diffusion and broth microdilution methods. Eighty-six components of the leaf essential oil and 50 of the flower essential oil were identified. The main components of the leaf essential oil were 2-hexyl-1-octanol (5.76%) and heptacosane (5.53%), whereas hexadecanoic acid (16.10%), 8-octadecen-1-ol acetate (9.86%), methyl linolenate (8.58%), pentacosane (6.63%) and heptacosane (5.50%) were found in the flower essential oil. The essential oils exerted high antimicrobial activity (range: 0.11 to >3.44mg/ml) against the following bacteria: Pseudomonas aeruginosa, Staphylococcus aureus and fungi: Trichophyton mentagrophytes, Candida albicans, whereas the methanol and water extracts showed moderate or weak activity. The strongest antioxidant activity was shown by methanol extracts from S. pratensis leaves, IC 50 = 0.09 mg/ml. There was a positive correlation between the total phenolic content and the antimicrobial activity, while for the antioxidant effect, it was not observed. The results suggest great antibacterial activity of the oils and high antioxidant activity of the methanol extract and may justify the application in treating infections. © 2017 Royal Pharmaceutical Society.
Tyson, G. H.; Chen, Y.; Li, C.; Mukherjee, S.; Young, S.; Lam, C.; Folster, J. P.; Whichard, J. M.; McDermott, P. F.
2015-01-01
The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2′)-If, aph(2″)-Ig, aph(2″)-Ih, aac(6′)-Ie-aph(2″)-Ia, aac(6′)-Ie-aph(2″)-If, aac(6′)-Im, aadE, sat4, ant(6′), aad9, aph(3′)-Ic, and aph(3′)-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. PMID:26519386
Zhao, S; Tyson, G H; Chen, Y; Li, C; Mukherjee, S; Young, S; Lam, C; Folster, J P; Whichard, J M; McDermott, P F
2016-01-15
The objectives of this study were to identify antimicrobial resistance genotypes for Campylobacter and to evaluate the correlation between resistance phenotypes and genotypes using in vitro antimicrobial susceptibility testing and whole-genome sequencing (WGS). A total of 114 Campylobacter species isolates (82 C. coli and 32 C. jejuni) obtained from 2000 to 2013 from humans, retail meats, and cecal samples from food production animals in the United States as part of the National Antimicrobial Resistance Monitoring System were selected for study. Resistance phenotypes were determined using broth microdilution of nine antimicrobials. Genomic DNA was sequenced using the Illumina MiSeq platform, and resistance genotypes were identified using assembled WGS sequences through blastx analysis. Eighteen resistance genes, including tet(O), blaOXA-61, catA, lnu(C), aph(2″)-Ib, aph(2″)-Ic, aph(2')-If, aph(2″)-Ig, aph(2″)-Ih, aac(6')-Ie-aph(2″)-Ia, aac(6')-Ie-aph(2″)-If, aac(6')-Im, aadE, sat4, ant(6'), aad9, aph(3')-Ic, and aph(3')-IIIa, and mutations in two housekeeping genes (gyrA and 23S rRNA) were identified. There was a high degree of correlation between phenotypic resistance to a given drug and the presence of one or more corresponding resistance genes. Phenotypic and genotypic correlation was 100% for tetracycline, ciprofloxacin/nalidixic acid, and erythromycin, and correlations ranged from 95.4% to 98.7% for gentamicin, azithromycin, clindamycin, and telithromycin. All isolates were susceptible to florfenicol, and no genes associated with florfenicol resistance were detected. There was a strong correlation (99.2%) between resistance genotypes and phenotypes, suggesting that WGS is a reliable indicator of resistance to the nine antimicrobial agents assayed in this study. WGS has the potential to be a powerful tool for antimicrobial resistance surveillance programs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Prüller, Sandra; Rensch, Ulrike; Meemken, Diana; Kaspar, Heike; Kopp, Peter A; Klein, Günter; Kehrenberg, Corinna
2015-01-01
Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1-2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes blaBOR-1 (n = 147), blaOXA-2, (n = 4), strA and strB (n = 17), sul1 (n = 10), sul2 (n = 73), dfrA7 (n = 3) and tet(A) (n = 8) were detected and a plasmid localisation was identified for several of the resistance genes.
Maiolo, Elena Maryka; Furustrand Tafin, Ulrika; Borens, Olivier
2014-01-01
We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains. PMID:24566186
Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil.
Waller, Stefanie Bressan; Madrid, Isabel Martins; Ferraz, Vanny; Picoli, Tony; Cleff, Marlete Brum; de Faria, Renata Osório; Meireles, Mário Carlos Araújo; de Mello, João Roberto Braga
The study aimed to evaluate the anti-Sporothrix sp. activity of the essential oil of Origanum majorana Linn. (marjoram), its chemical analysis, and its cytotoxic activity. A total of 18 fungal isolates of Sporothrix brasiliensis (n: 17) from humans, dogs and cats, and a standard strain of Sporothrix schenckii (n: 1) were tested using the broth microdilution technique (Clinical and Laboratory Standard Institute - CLSI M27-A3) and the results were expressed in minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). The MIC 50 and MIC 90 of itraconazole against S. brasiliensis were 2μg/mL and 8μg/mL, respectively, and the MFC 50 and MFC 90 were 2μg/mL and >16μg/mL, respectively, with three S. brasiliensis isolates resistant to antifungal. S. schenckii was sensitive at MIC of 1μg/mL and MFC of 8μg/mL. For the oil of O. majorana L., all isolates were susceptible to MIC of ≤2.25-9mg/mL and MFC of ≤2.25-18mg/mL. The MIC 50 and MIC 90 were ≤2.25mg/mL and 4.5mg/mL, respectively, and the MFC 50/90 values were twice more than the MIC. Twenty-two compounds were identified by gas chromatography with a flame ionization detector (CG-FID) and 1,8-cineole and 4-terpineol were the majority. Through the colorimetric (MTT) assay, the toxicity was observed in 70-80% of VERO cells between 0.078 and 5mg/mL. For the first time, the study demonstrated the satisfactory in vitro anti-Sporothrix sp. activity of marjoram oil and further studies are needed to ensure its safe and effective use. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Saavedra, Sandra Yamile; Diaz, Lorena; Wiesner, Magdalena; Correa, Adriana; Arévalo, Stefany Alejandra; Reyes, Jinnethe; Hidalgo, Andrea Melissa; de la Cadena, Elsa; Perenguez, Marcela; Montaño, Lucy Angeline; Ardila, Javier; Ríos, Rafael; Ovalle, María Victoria; Díaz, Paula; Porras, Paola; Villegas, Maria V; Arias, Cesar A; Beltrán, Mauricio; Duarte, Carolina
2017-12-01
Polymyxins are last-resort antimicrobial agents used to treat infections caused by carbapenem-resistant Enterobacteriaceae Due to the worldwide dissemination of polymyxin resistance in animal and human isolates, we aimed to characterize polymyxin resistance associated with the presence of mcr-1 in Enterobacteriaceae and nonfermenter Gram-negative bacilli, using isolates collected retrospectively in Colombia from 2002 to 2016. A total of 5,887 Gram-negative clinical isolates were studied, and 513 were found to be resistant to the polymyxins. Susceptibility to colistin was confirmed by broth microdilution for all mcr-1 -positive isolates, and these were further subjected to whole-genome sequencing (WGS). The localization of mcr-1 was confirmed by S1 pulsed-field gel electrophoresis (S1-PFGE) and CeuI-PFGE hybridization. Transferability was evaluated by mating assays. A total of 12 colistin-resistant isolates recovered after 2013 harbored mcr-1 , including 8 Escherichia coli , 3 Salmonella enterica serovar Typhimurium, and 1 Klebsiella pneumoniae isolate . E. coli isolates were unrelated by PFGE and belonged to 7 different sequence types (STs) and phylogroups. S Typhimurium and K. pneumoniae isolates belonged to ST34 and ST307, respectively. The mcr-1 gene was plasmid borne in all isolates but two E. coli isolates which harbored it on the chromosome. Conjugation of mcr-1 was successful in 8 of 10 isolates (8.2 × 10 -5 to 2.07 × 10 -1 cell per recipient). Plasmid sequences showed that the mcr-1 plasmids belonged to four different Inc groups (a new IncP-1 variant and the IncFII, IncHI1, and IncH families). Our results indicate that mcr-1 is circulating in clinical isolates of colistin-resistant Enterobacteriaceae in Colombia and is mainly harbored in transferable plasmids. Copyright © 2017 American Society for Microbiology.
Diaz, Lorena; Wiesner, Magdalena; Correa, Adriana; Arévalo, Stefany Alejandra; Reyes, Jinnethe; Hidalgo, Andrea Melissa; de la Cadena, Elsa; Perenguez, Marcela; Montaño, Lucy Angeline; Ardila, Javier; Ríos, Rafael; Ovalle, María Victoria; Díaz, Paula; Porras, Paola; Villegas, Maria V.; Arias, Cesar A.; Beltrán, Mauricio
2017-01-01
ABSTRACT Polymyxins are last-resort antimicrobial agents used to treat infections caused by carbapenem-resistant Enterobacteriaceae. Due to the worldwide dissemination of polymyxin resistance in animal and human isolates, we aimed to characterize polymyxin resistance associated with the presence of mcr-1 in Enterobacteriaceae and nonfermenter Gram-negative bacilli, using isolates collected retrospectively in Colombia from 2002 to 2016. A total of 5,887 Gram-negative clinical isolates were studied, and 513 were found to be resistant to the polymyxins. Susceptibility to colistin was confirmed by broth microdilution for all mcr-1-positive isolates, and these were further subjected to whole-genome sequencing (WGS). The localization of mcr-1 was confirmed by S1 pulsed-field gel electrophoresis (S1-PFGE) and CeuI-PFGE hybridization. Transferability was evaluated by mating assays. A total of 12 colistin-resistant isolates recovered after 2013 harbored mcr-1, including 8 Escherichia coli, 3 Salmonella enterica serovar Typhimurium, and 1 Klebsiella pneumoniae isolate. E. coli isolates were unrelated by PFGE and belonged to 7 different sequence types (STs) and phylogroups. S. Typhimurium and K. pneumoniae isolates belonged to ST34 and ST307, respectively. The mcr-1 gene was plasmid borne in all isolates but two E. coli isolates which harbored it on the chromosome. Conjugation of mcr-1 was successful in 8 of 10 isolates (8.2 × 10−5 to 2.07 × 10−1 cell per recipient). Plasmid sequences showed that the mcr-1 plasmids belonged to four different Inc groups (a new IncP-1 variant and the IncFII, IncHI1, and IncH families). Our results indicate that mcr-1 is circulating in clinical isolates of colistin-resistant Enterobacteriaceae in Colombia and is mainly harbored in transferable plasmids. PMID:28893788
Perez, Keila L; Alam, M Jahangir; Castillo, Alejandro; Taylor, T Matthew
2013-01-01
Escherichia albertii is an emerging gram-negative facultative rod that has been implicated in multiple cases of human diarrheal disease, particularly in young children. When biochemical and other typing methods have been used, this organism has often been misidentified due to similarities with other members of the family Enterobacteriaceae. Isolates have been reported to be capable of producing attachment and effacement lesions via the synthesis of intimin, cytolethal distending toxin, and a variant form of Shiga toxin. The purposes of this study were to characterize the antibiotic resistance characteristics and the growth of individual strains of E. albertii on raw ground beef at different storage temperatures. Nalidixic acid-resistant strains of E. albertii were inoculated onto raw ground beef to a target of 4.0 log CFU/g, and samples were then aerobically incubated at 5, 22, or 35°C for various time periods prior to microbiological enumeration of the pathogen on lactose-free MacConkey agar containing 50 mg of nalidixic acid per liter and 0.5% L-rhamnose. Antibiotic resistance was determined using a broth microdilution assay. E. albertii did not grow at 5°C, with populations declining slowly over 14 days of refrigerated storage. Strains of the organism grew well under abusive storage, increasing by 2.5 to 3.1 log CFU/g and 4.1 to 4.3 log CFU/g after 24 h at 22 and 35°C, respectively. All strains were resistant to tetracycline but were sensitive to tested cephalosporins and chloramphenicol. Resistance to penicillin was observed, but susceptibility to other members of the b -lactam group, including ampicillin, amoxicillin, and clavulanic acid, was recorded. E. albertii represents an emerging pathogen with a probable foodborne transmission route. Future research should focus on verifying food process measures able to inactivate the pathogen.
2013-01-01
Background Picralima nitida Stapf (Apocynaceae) is a medicinal plant used traditionally in Cameroon to cure various ailments such as gastrointestinal disorders and dysentery. This study reports the in vitro and in vivo anti-shigellosis activity of the methanol extract of this plant on rats. Methods The antimicrobial activity of the extract against pathogenic strains was evaluated using the disc diffusion assay and broth microdilution method. After oral administration of a suspension of Shigella dysenteriae type I (sd1), diarrheic rats were divided into 5 groups; the control group received the vehicle of the extract and the four others 125, 250, 500 mg/kg of the plant extract and ciprofloxacin (20 mg/kg) respectively for 7 days. The frequency of faeces emission as well as the weight of normal and diarrheic faeces was recorded. The presence of stools containing mucus or blood and the number of sd1 in faeces were also recorded. Results In vitro, the extract had an antimicrobial effect on 11 out of the 17 pathogenic strains tested. The values of CMI and CMB obtain against Shigella dysenteriae type I were 800 and 6400 μg/ml respectively. In vivo, diarrhoea induction was effective and we notice an increase in faeces frequency and weight (p < 0.05), increase in the percentage of diarrheic stool released as well as the mucus contained in stool (p < 0.05), an increase in bacterial population in stool (p < 0.05). Picralima nitida extract, like ciprofloxacin markedly reduces the frequency faeces released and sd1 density from 100% (diarrheic rats) to 47.22 and 61.69% (500 mg/kg) respectively. It also slowed down the movement of charcoal meal through gastro-intestinal tract with the percentage of intestinal length covered of 60.54 (500 mg/kg). Conclusion This anti-shigellosis activity in vitro and in vivo attests the usefulness of Picralima nitida in the traditional treatment of gastrointestinal disorders such as dysentery. PMID:23957940
Ribeiro, Ana Roseli S; Diniz, Polyana B F; Estevam, Charles S; Pinheiro, Malone S; Albuquerque-Júnior, Ricardo L C; Thomazzi, Sara M
2013-05-20
Caesalpinia pyramidalis Tul. (Fabaceae), known as "catingueira", has been used in folk medicine in the treatment of various disorders such as gastritis, heartburn, indigestion, and stomach ache. However, the gastroprotective properties of this species have not yet been studied. The ethanol extract of Caesalpinia pyramidalis inner bark was used in rats via oral route, at the doses of 30, 100, and 300 mg/kg. The antiulcer assays were performed using the ethanol- and nonsteroidal anti-inflammatory drug-induced ulcer models. Gastric secretion parameters (volume, pH, and total acidity) were also evaluated by the pylorus ligated model, and the mucus in the gastric content was determined. The anti-Helicobacter pylori activity of the ethanol extract of Caesalpinia pyramidalis was performed using the agar-well diffusion and broth microdilution methods. The ethanol extract (30, 100, and 300 mg/kg) produced dose dependent inhibition (P<0.01) on the ulcer lesion index, the total lesion area, and the percentage of lesion area in the ethanol-induced ulcer model. The ethanol extract (30, 100, and 300 mg/kg) also reduced (P<0.001) the ulcer index in the indomethacin-induced ulcer model. In the model ligature pylorus, the treatment with Caesalpinia pyramidalis ethanol extract failed to significantly change the gastric secretion parameters. However, after treatment with the ethanol extract of Caesalpinia pyramidalis (30, 100, and 300 mg/kg), there was a significant increase (P<0.05) in mucus production. The ethanol extract showed anti-Helicobacter pylori activity, with inhibition halos of 12.0 ± 1.7 mm at 10,000 μg/mL. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the ethanol extract were of 625 and 10,000 μg/mL, respectively. Collectively, the present results suggest that the ethanol extract of Caesalpinia pyramidalis displays gastroprotective actions, supporting the folkloric usage of the plant to treat various gastrointestinal disturbances. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Nahui Palomino, Rogers Alberto; Gallina Toschi, Tullia; Vitali, Beatrice; Camarda, Luca; Mandrioli, Mara; De Giorgio, Marta; Aldini, Rita; Corazza, Ivan; Chiarini, Alberto; Cevenini, Roberto; Budriesi, Roberta
2017-01-01
The high incidence of vulvo-vaginal candidiasis, combined with the growing problems about azole resistance and toxicity of antifungal drugs, highlights the need for the development of new effective strategies for the treatment of this condition. In this context, natural compounds represent promising alternatives. The cyanobacterium Spirulina platensis, a blue-green alga, exhibits antimicrobial activities against several microorganisms. Nevertheless, only few data about the antifungal properties of Spirulina platensis are available and its potential toxic effects have not been largely investigated. The aim of this study was to evaluate the in vitro activity of a fully-characterized water extract of Spirulina platensis against 22 strains of Candida spp. Prior to considering its potential topical use, we both investigated whether the extract exerted target activities on guinea pig uterine smooth muscle, and the impact of Spirulina platensis on the dominant microorganisms of the vaginal microbiota (i.e., lactobacilli), in order to exclude possible adverse events. By means of a broth microdilution assay, we found that the microalga extract possesses good antifungal properties (MIC: 0.125–0.5 mg/ml), against all the Candida species with a fungicidal activity. At the concentrations active against candida, Spirulina platensis did not modify the spontaneous basic waves pattern of uterine myometrium as underlined by the absence of aberrant contractions, and did not affect the main health-promoting bacteria of the vaginal ecosystem. Finally, we evaluated the selectivity index of our extract by testing its cytotoxicity on three different cell lines and it showed values ranging between 2 and 16. Further in vivo studies are needed, in particular to evaluate the use of control-release formulations in order to maintain Spirulina platensis concentrations at anti-Candida active doses but below the toxic levels found in the present work. PMID:29190763
Use of natural antimicrobials to increase antibiotic susceptibility of drug resistant bacteria.
Palaniappan, Kavitha; Holley, Richard A
2010-06-15
Plant-derived antibacterial compounds may be of value as a novel means for controlling antibiotic resistant zoonotic pathogens which contaminate food animals and their products. Individual activity of natural antimicrobials (eugenol, thymol, carvacrol, cinnamaldehyde, allyl isothiocyanate (AIT)) and activity when paired with an antibiotic was studied using broth microdilution and checkerboard methods. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interactions between the inhibitors. Bacteria tested were chosen because of their resistance to at least one antibiotic which had a known genetic basis. Substantial susceptibility of these bacteria toward the natural antimicrobials and a considerable reduction in the minimum inhibitory concentrations (MIC's) of the antibiotics were noted when paired combinations of antimicrobial and antibiotic were used. In the interaction study, thymol and carvacrol were found to be highly effective in reducing the resistance of Salmonella Typhimurium SGI 1 (tet A) to ampicillin, tetracycline, penicillin, bacitracin, erythromycin and novobiocin (FIC<0.4) and resistance of Streptococcus pyogenes ermB to erythromycin (FIC<0.5). With Escherichia coli N00 666, thymol and cinnamaldehyde were found to have a similar effect (FIC<0.4) in reducing the MIC's of ampicillin, tetracycline, penicillin, erythromycin and novobiocin. Carvacrol, thymol (FIC<0.3) and cinnamaldehyde (FIC<0.4) were effective against Staphylococcus aureus blaZ and in reducing the MIC's of ampicillin, penicillin and bacitracin. Allyl isothiocyanate (AIT) was effective in reducing the MIC of erythromycin (FIC<0.3) when tested against S. pyogenes. Fewer combinations were found to be synergistic when the decrease in viable population (log DP) was calculated. Together, fractional inhibitory concentrations < or = 0.5 and log DP<-1 indicated synergistic action between four natural antimicrobials and as many as three antibiotics to which these bacteria were normally resistant. Copyright 2010 Elsevier B.V. All rights reserved.
Prüller, Sandra; Rensch, Ulrike; Meemken, Diana; Kaspar, Heike; Kopp, Peter A.; Klein, Günter; Kehrenberg, Corinna
2015-01-01
Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1–2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes bla BOR-1 (n = 147), bla OXA-2, (n = 4), strA and strB (n = 17), sul1 (n = 10), sul2 (n = 73), dfrA7 (n = 3) and tet(A) (n = 8) were detected and a plasmid localisation was identified for several of the resistance genes. PMID:26275219
Shah, A; Rather, M A; Hassan, Q P; Aga, M A; Mushtaq, S; Shah, A M; Hussain, A; Baba, S A; Ahmad, Z
2017-05-01
Glycyrrhiza glabra is a high-value medicinal plant thriving in biodiversity rich Kashmir Himalaya. The present study was designed to explore the fungal endophytes from G. glabra as a source of bioactive molecules. The extracts prepared from the isolated endophytes were evaluated for anti-microbial activities using broth micro-dilution assay. The endophytic strain coded as A2 exhibiting promising anti-bacterial as well as anti-tuberculosis activity was identified as Fusarium solani by ITS-5.8S ribosomal gene sequencing technique. This strain was subjected to large-scale fermentation followed by isolation of its bioactive compounds using column chromatography. From the results of spectral data analysis and comparison with literature, the molecules were identified as 3,6,9-trihydroxy-7-methoxy-4,4-dimethyl-3,4-dihydro-1H-benzo[g]isochromene-5,10-dione (1), fusarubin (2), 3-O-methylfusarubin (3) and javanicin (4). Compound 1 is reported for the first time from this strain. All the four compounds inhibited the growth of various tested bacterial strains with MIC values in the range of <1 to 256 μg ml -1 . Fusarubin showed good activity against Mycobacterium tuberculosis strain H37Rv with MIC value of 8 μg ml -1 , whereas compounds 1, 3 and 4 exhibited moderate activity with MIC values of 256, 64, 32 μg ml -1 , respectively. To the best of our knowledge, this is the first study that reports significant anti-tuberculosis potential of bioactive molecules from endophytic F. solani evaluated against the virulent strain of M. tuberculosis. This study sets background towards their synthetic intervention for activity enhancement experiments in anti-microbial drug discovery programme. Due to the chemoprofile variation of same endophyte with respect to source plant and ecoregions, further studies are required to explore endophytes of medicinal plants of all unusual biodiversity rich ecoregions for important and or novel bioactive molecules. © 2017 The Society for Applied Microbiology.
Ishida, Kelly; Rozental, Sonia; de Mello, João Carlos Palazzo; Nakamura, Celso Vataru
2009-11-05
Stryphnodendron adstringens (Mart.) Coville, Leguminosae, also known in Brazil as barbatimão, is rich in tannins and many flavan-3-ols and proanthocyanidins such as prodelphinidins and prorobinetinidins. Previous studies have demonstrated several pharmacological properties of tannins from barbatimão, including anti-candidal activity. The antifungal activity of proanthocyanidin polymeric tannins from Stryphnodendron adstringens (subfraction F2.4) was evaluated against three strains of Cryptococcus neoformans with different capsule expressions, using the broth microdilution technique, light microscopy and transmission electron microscopy. The effect of subfraction F2.4 on C. neoformans and melanoma mammalian cells pigmentation was also evaluated. Although susceptibility assays revealed MIC values quite similar (between 2.5 and 5.0 microg/ml), analyses of MFC values revealing that the acapsular mutant Cap 67 was more susceptible to be killed by the subfraction F2.4 (MFC = 20 microg/ml) than the two tested capsular strains (T1-444 and ATCC 28957) (MFC > 160 microg/ml). Optical and electron microscopy experiments revealed relevant alterations in cell shape and size in all strains treated with 1 and 2.5 microg/ml of subfraction F2.4. Capsule size of the capsular strains decreased drastically after subfraction F2.4 treatment. In addition, ultrastructural alterations such as cell wall disruption, cytoplasm extraction, mitochondria swelling, increase in the number of cytoplasmic vacuoles and formation of membranous structures in the cytoplasm were also observed in treated yeasts. Incubation with subfraction F2.4 also decreased C. neoformans pigmentation, however, did not interfere in melanization of B16F10 mammalian cells. Our data indicate that tannins extracted from S. adstringens interfered with growth, capsule size and pigmentation, all important virulence factors of C. neoformans, and may be considered as a putative candidate for the development of new antifungal agents.
Caviedes, Luz; Lee, Tien-Shun; Gilman, Robert H.; Sheen, Patricia; Spellman, Emily; Lee, Ellen H.; Berg, Douglas E.; Montenegro-James, Sonia
2000-01-01
Inexpensive, rapid, and reliable methods of detecting infection by and drug susceptibility of Mycobacterium tuberculosis (MTB) are crucial to the control of tuberculosis. The novel microscopic observation broth-drug susceptibility assay (MODS) detects early growth of MTB in liquid medium, allowing more timely diagnosis and drug susceptibility testing. Sputum samples from hospitalized patients in Peru were analyzed by using stains, culture, and PCR. Sensitivity of MODS (92%) compared favorably with the most sensitive of the other culture methods (93%). Sputum samples positive for tuberculosis were tested for susceptibility to isoniazid and rifampin with the microwell alamar blue assay (MABA) and MODS. In 89% of cases, there was concordance between MODS and MABA. Of the diagnostic and susceptibility testing methods used, MODS yielded results most rapidly (median, 9.0 and 9.5 days, respectively). MODS is a rapid, inexpensive, sensitive, and specific method for MTB detection and susceptibility testing; it is particularly appropriate for use in developing countries burdened by significant infection rates and increasing numbers of multiple-drug-resistant cases. PMID:10699023
Caviedes, L; Lee, T S; Gilman, R H; Sheen, P; Spellman, E; Lee, E H; Berg, D E; Montenegro-James, S
2000-03-01
Inexpensive, rapid, and reliable methods of detecting infection by and drug susceptibility of Mycobacterium tuberculosis (MTB) are crucial to the control of tuberculosis. The novel microscopic observation broth-drug susceptibility assay (MODS) detects early growth of MTB in liquid medium, allowing more timely diagnosis and drug susceptibility testing. Sputum samples from hospitalized patients in Peru were analyzed by using stains, culture, and PCR. Sensitivity of MODS (92%) compared favorably with the most sensitive of the other culture methods (93%). Sputum samples positive for tuberculosis were tested for susceptibility to isoniazid and rifampin with the microwell alamar blue assay (MABA) and MODS. In 89% of cases, there was concordance between MODS and MABA. Of the diagnostic and susceptibility testing methods used, MODS yielded results most rapidly (median, 9.0 and 9.5 days, respectively). MODS is a rapid, inexpensive, sensitive, and specific method for MTB detection and susceptibility testing; it is particularly appropriate for use in developing countries burdened by significant infection rates and increasing numbers of multiple-drug-resistant cases.
Pereira, Nara L F; Aquino, Pedro E A; Júnior, José G A S; Cristo, Janyketchuly S; Vieira Filho, Marcos A; Moura, Flávio F; Ferreira, Najla M N; Silva, Maria K N; Nascimento, Eloiza M; Correia, Fabrina M A; Cunha, Francisco A B; Boligon, Aline A; Coutinho, Henrique D M; Ribeiro-Filho, Jaime; Matias, Edinardo F F; Guedes, Maria I F
2017-09-01
Bacterial resistance has risen as an important health problem with impact on the pharmaceutical industry because many antibiotics have become ineffective, which has affected their commercialization. The Brazilian biodiversity is marked by a vast variety of natural products with significant therapeutic potential, which could bring new perspectives in the treatment of infections caused by resistant microorganisms. The present study aimed to evaluate the antibacterial effect of the essential oil obtained from Eugenia jambolana (EjEO) using the method of microdilution method to determine the Minimum Inhibitory Concentration (MIC). The modulatory effect of this oil on antibiotic activity was determined using both the broth microdilution and gaseous contact methods. The antibacterial effect of the association of the gaseous contact and the use of a LED unit with red and blue lights was also determined. The chemical components of the EjEO were characterized by HPLC, which revealed the presence of α-pinene as a major constituent. The EjEO presented a MIC≥128μg/mL against S. aureus and ≥1024μg/mL against E. coli. The combination of the EjEO with antibiotics presented synergism against E. coli and antagonism against S. aureus. An antagonistic effect was obtained from the association of EjEO with amikacin and erythromycin by the method of gaseous contact. On the other hand, the association of EjEO with ciprofloxacin presented a synergistic effect against S. aureus and E. coli exposed to LED lights. A similar effect was observed in the association of the EjEO with norfloxacin presented synergism against S. aureus in the same conditions. In conclusion, our results demonstrated that the essential oil obtained from Eugenia jambolana interfere with the action of antibiotics against bacteria exposed to LED lights. Thus, further researches are required to elucidate the mechanisms underlying these effects, which could open new perspectives in the development of new antibacterial therapies. Copyright © 2017 Elsevier B.V. All rights reserved.
Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael
2015-02-15
The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three-drug combinations exhibited a powerful bactericidal synergistic effect against MRSA NCTC 10442, VRE ATCC 51299, and E. coli ATCC 25922 with a reduction of more than 3log10 in the colony count after 24 h. Our findings suggest that bee venom and melittin synergistically enhanced the bactericidal effect of several antimicrobial agents when applied in combination especially when the drugs affect several and differing molecular targets. These results could lead to the development of novel or complementary antibacterial drugs against MDR pathogens. Copyright © 2015 Elsevier GmbH. All rights reserved.
Scalas, Daniela; Mandras, Narcisa; Roana, Janira; Tardugno, Roberta; Cuffini, Anna Maria; Ghisetti, Valeria; Benvenuti, Stefania; Tullio, Vivian
2018-05-03
Cryptococcal infections, besides being a problem for immunocompromised patients, are occasionally being a problem for immunocompetent patients. In addition, the lower susceptibility of this yeast to azoles is a growing problem in health care. To date, there are very few molecules with any activity towards Cryptococcus neoformans, leading to heightened interest in finding new alternatives or adjuvants to conventional drugs for the treatment of mycosis caused by this yeast. Since the essential oils (EOs) are considered as a potential rich source of bioactive antimicrobial compounds, we evaluated the antifungal activity of Origanum vulgare (oregano), Pinus sylvestris (pine), and Thymus vulgaris (thyme red) EOs, and their components (α-pinene, carvacrol, thymol) compared with fluconazole, itraconazole, and voriconazole, against C.neoformans clinical strains. Then, we investigated the effect of EOs and components in combination with itraconazole. EO composition was analysed by Gas chromatography-mass spectrometry (GC-MS). A broth microdilution method was used to evaluate the susceptibility of C.neoformans to azoles, EOs and components. Checkerboard tests, isobolograms and time-kill assays were carried out for combination studies. Six C.neoformans isolates were susceptible to azoles, while one C.neoformans exhibited a reduced susceptibility to all tested azole drugs. All EOs exerted a good inhibitory activity against all C.neoformans strains. Pine EO was the most effective. Among components, thymol exerted the most remarkable activity. By checkerboard testing and isobolographic analysis, combinations of itraconazole with oregano, pine, or thyme EOs, and carvacrol were found to be synergistic (FICI≤0.5) against azole susceptible C.neoformans. Regarding the azole not susceptible C.neoformans strain, the synergistic effect with itraconazole was observed with thyme EO (chemotype: thymol 26.52%; carvacrol 7.85%), and carvacrol. Time-kill assays confirmed the synergistic effects of itraconazole and oregano or thyme EO against azole susceptible C.neoformans. Binary mixtures of itraconazole/thyme EO or carvacrol yielded additive effects on the azole not susceptible C.neoformans. Our findings highlight the potential effectiveness of thyme, oregano EOs, and carvacrol as natural and cost-effective adjuvants when used in combination with itraconazole. Identification of EOs exerting these effects could be one of the feasible ways to overcome drug resistance, reducing drug concentration and side effects.
Jaradat, Nidal; Al-Lahham, Saad
2018-02-28
Background Many recent studies have shown that medicinal plants, which have been used worldwide through the past history in the folkloric medicine, harbor a significant number of novel metabolic compounds with potent pharmacological properties. In several countries, the aerial parts of the Scolymus angiospermus plant have been used as a food supply and as a folkloric medicinal plant. The current study aimed is to investigate the antimicrobial, antilipase, antioxidant activities and phytochemical profile of methanolic, hexane, aqueous and ethyl acetate fractions obtained from the aerial parts of S. angiospermus. Methods Phytochemical assessments were based on standard analytical methods. The obtained fractions were evaluated for their antioxidant capacity and their antilipase activity using 2,2-diphenyl-1-picrylhydrazyl and porcine pancreatic lipase inhibitory tests, respectively. Antimicrobial activity of the obtained fractions was evaluated using broth microdilution assay against several American Type Culture Collection bacterial and fungal strains and Methicillin-Resistant Staphylococcus aureus clinical isolate. Results Our data showed that of all obtained fractions used in the above-mentioned assays, both of methanolic and aqueous fractions, had the highest content of flavonoids (24.93 ± 2.11 and 12.21 ± 2.11 mg QUE/g, respectively) and phenolic compounds (96.28 ± 2.87 and 91.25 ± 2.63 mg of GAEq/g, respectively) as well as the best levels of both antioxidant (half maximal inhibitory concentration (IC50) 13.67 ± 1.44 and 14.69 ± 1.97 µg/ml, respectively) and antilipase (IC50 134.89 ± 1.65 and 269.15 ± 2.33 µg/ml, respectively) activities. In addition, these fractions exhibited various levels of both antibacterial and antifungal activities. Hydrophilic fractions were more potent against the investigated bacterial strains, while hydrophobic fractions were more potent against the investigated fungal strains. Conclusions The hydrophilic fractions derived from S. angiospermus have shown the best antioxidant and antilipase effects. This is may be due to the high contents of phenols and/or flavonoids. However, further investigations are essential to isolate and identify the antioxidant, antilipase and antimicrobial compounds. Our data provide significant evidence that S. angiospermus can be very useful in the prevention and treatment of various infectious and non-infectious chronic diseases and as natural food preservatives.