Science.gov

Sample records for brown fat cell

  1. Histochemical study of brown-fat cells in the golden hamster (Mesocricetus auratus) in cultures

    SciTech Connect

    Sokolov, V.E.; Boyadzhieva-Mikhailova, A.; Koncheva, L.; Angelova, P.; Evgen'eva, T.P.

    1985-11-01

    The authors undertake the task of studying the synthesis of certain hormones by brown-fat cells. The authors used brown-fat cells from the golden hamster. The metabolism of brown-fat cells was studied on precultured cells, which made it possible to detect the synthesis of the studied substances rather than their accumulation in the organ. The authors conducted three experiments. First, fragments of brown fat were cultivated in diffusion chambers in vivo. Pieces of brown fat were cultivated in parallel in vitro on agar (organotypic cultures) and on plasma (histotypic cultures). During cultivation in diffusion chambers, the chambers were implanted in the abdominal cavity of young white rats. For in vitro cultivation, TCM 199 plus 15-20% calf serum was used. A total of 36 cultures with 12 cultures in each series of experiments were performed. The auto-radiographic studies of brown-fat cells were conducted on 24-hour cultures and on brown-fat fragments taken from the intact animal. The cultures were incubated with isotopes for 1 h. Either (/sup 3/H)lysine (87.3 Ci/mM specific activity), (/sup 3/H)arginine (16.7 Ci/mM), (/sup 3/H)glycerol (43 Ci/mM), or (/sup 3/H)cholesterol (43 Ci/mM) were added to the medium. After incubation, the cultures were washed three times in pure medium, fixed in Sierra fluid, and embedded in paraffin. The paraffin sections were covered with Ilford K/sub 2/ emulsion, and the preparations were exposed for 20 days at 4/sup 0/C temperature. Radio-immunological methods were used to study the accumulation of estradiol-17-beta in the culture medium by the Dobson method and that of testerone. The culture medium was taken on cultivation days 2,4,6,8, and 10. The medium was changed during cultivation every third day, which made it possible to judge the rates of accumulation of material with increase in the cultivation times.

  2. Dietary fat overload reprograms brown fat mitochondria

    PubMed Central

    Lettieri Barbato, Daniele; Tatulli, Giuseppe; Vegliante, Rolando; Cannata, Stefano M.; Bernardini, Sergio; Ciriolo, Maria R.; Aquilano, Katia

    2015-01-01

    Chronic nutrient overload accelerates the onset of several aging-related diseases reducing life expectancy. Although the mechanisms by which overnutrition affects metabolic processes in many tissues are known, its role on BAT physiology is still unclear. Herein, we investigated the mitochondrial responses in BAT of female mice exposed to high fat diet (HFD) at different steps of life. Although adult mice showed an unchanged mitochondrial amount, both respiration and OxPHOS subunits were strongly affected. Differently, offspring pups exposed to HFD during pregnancy and lactation displayed reduced mitochondrial mass but high oxidative efficiency that, however, resulted in increased bioenergetics state of BAT rather than augmented uncoupling respiration. Interestingly, the metabolic responses triggered by HFD were accompanied by changes in mitochondrial dynamics characterized by decreased content of the fragmentation marker Drp1 both in mothers and offspring pups. HFD-induced inactivation of the FoxO1 transcription factor seemed to be the up-stream modulator of Drp1 levels in brown fat cells. Furthermore, HFD offspring pups weaned with normal diet only partially reverted the mitochondrial dysfunctions caused by HFD. Finally these mice failed in activating the thermogenic program upon cold exposure. Collectively our findings suggest that maternal dietary fat overload irreversibly commits BAT unresponsiveness to physiological stimuli such as cool temperature and this dysfunction in the early stage of life might negatively modulate health and lifespan. PMID:26483700

  3. Brown and Beige Fat: Molecular Parts of a Thermogenic Machine.

    PubMed

    Cohen, Paul; Spiegelman, Bruce M

    2015-07-01

    The epidemic of obesity and type 2 diabetes has increased interest in pathways that affect energy balance in mammalian systems. Brown fat, in all of its dimensions, can increase energy expenditure through the dissipation of chemical energy in the form of heat, using mitochondrial uncoupling and perhaps other pathways. We discuss here some of the thermodynamic and cellular aspects of recent progress in brown fat research. This includes studies of developmental lineages of UCP1(+) adipocytes, including the discovery of beige fat cells, a new thermogenic cell type. We also discuss the physiology and transcriptional control of brown and beige cells in rodents and the state of current knowledge about human brown fat.

  4. Morphogenetics in brown, beige and white fat development.

    PubMed

    Lin, Jean Z; Farmer, Stephen R

    2016-01-01

    Brown and beige (or brite) fat cells are capable of evoking non-shivering thermogenesis in response to cold and β-adrenergic stimulation. By metabolizing lipids and carbohydrate via uncoupled respiration these cells directly convert energy to heat. The discovery of brown and brown-like adipocytes in adult humans has reinvigorated interest in stimulating brown and beige fat development to combat the obesity epidemic. This review focuses on the role that cytoskeleton dynamics play in the regulation of adipocyte biology, specifically beige and brown fat development and how newly discovered adipogenic morphogens affect these processes. PMID:27386157

  5. Alpha 1-adrenergic stimulation of phosphatidylinositol turnover and respiration of brown fat cells

    SciTech Connect

    Mohell, N.; Wallace, M.; Fain, J.N.

    1984-01-01

    The alpha-adrenergic agonist phenylephrine (in the presence of the beta-adrenergic antagonist alprenolol) stimulated respiration and incorporation of (/sup 3/H)glycerol and (/sup 32/P) P/sub i/ into phosphatidylinositol of hamster brown fat cells in a concentration-dependent manner. Both responses were preferentially inhibited by prazosin as compared with yohimbine, indicating alpha 1 specificity. Uniquely, prazosin inhibition of phenylephrine-stimulated phosphatidylinositol metabolism had two components, since 30% of the response was inhibited by less than 1 nM prazosin, 10 nM gave no further inhibition, and 100 nM prazosin completely inhibited the response. The phosphatidylinositol response was still present in Ca/sup 2/+-free buffer, although reduced in magnitude. The concentration relationships of the effects of agonists and antagonists were compared with those of previous results of (/sup 3/H)prazosin binding and with phenylephrine potency to compete for binding. On the basis of these comparisons, it is suggested that the highly prazosin-sensitive part of the phosphatidylinositol response may be closely associated with receptor occupation.

  6. 3D brown adipogenesis to create "Brown-Fat-in-Microstrands".

    PubMed

    Unser, Andrea M; Mooney, Bridget; Corr, David T; Tseng, Yu-Hua; Xie, Yubing

    2016-01-01

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. In addition, three-dimensional (3D) cell culture systems are needed to better understand the role of brown adipocytes in energy balance and treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells, and brown preadipocytes as a positive control. Brown adipocyte differentiation within microstrands was confirmed by immunocytochemistry and qPCR analysis of the expression of the brown adipocyte-defining marker uncoupling protein 1 (UCP1), as well as other general adipocyte markers. Cells within microstrands were responsive to a β-adrenergic agonist with an increase in gene expression of thermogenic UCP1, indicating that these "Brown-Fat-in-Microstrands" are functional. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  7. 3D brown adipogenesis to create "Brown-Fat-in-Microstrands".

    PubMed

    Unser, Andrea M; Mooney, Bridget; Corr, David T; Tseng, Yu-Hua; Xie, Yubing

    2016-01-01

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. In addition, three-dimensional (3D) cell culture systems are needed to better understand the role of brown adipocytes in energy balance and treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells, and brown preadipocytes as a positive control. Brown adipocyte differentiation within microstrands was confirmed by immunocytochemistry and qPCR analysis of the expression of the brown adipocyte-defining marker uncoupling protein 1 (UCP1), as well as other general adipocyte markers. Cells within microstrands were responsive to a β-adrenergic agonist with an increase in gene expression of thermogenic UCP1, indicating that these "Brown-Fat-in-Microstrands" are functional. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders. PMID:26496384

  8. The "Skinny" on brown fat, obesity, and bone.

    PubMed

    Devlin, Maureen J

    2015-02-01

    The discovery that metabolically active brown fat is present in humans throughout ontogeny raises new questions about the interactions between thermoregulatory, metabolic, and skeletal homeostasis. Brown adipose tissue (BAT) is distinct from white adipose tissue (WAT) for its ability to burn, rather than store, energy. BAT uniquely expresses uncoupling protein-1 (abbreviated as UCP1), which diverts the energy produced by cellular respiration to generate heat. While BAT is found in small mammals, hibernators, and newborns, this depot was thought to regress in humans during early postnatal life. Recent studies revealed that human BAT remains metabolically active throughout childhood and even in adulthood, particularly in response to cold exposure. In addition to the constitutive BAT depots present at birth, BAT cells can be induced within WAT depots under specific metabolic and climatic conditions. These cells, called inducible brown fat, "brite," or beige fat, are currently the focus of intense investigation as a possible treatment for obesity. Inducible brown fat is associated with higher bone mineral density, suggesting that brown fat interacts with bone growth in previously unrecognized ways. Finally, BAT may have contributed to climatic adaptation in hominins. Here, I review current findings on the role of BAT in thermoregulation, bone growth, and metabolism, describe the potential role of BAT in moderating the obesity epidemic, and outline possible functions of BAT across hominin evolutionary history.

  9. DDE in brown and white fat of hibernating bats

    USGS Publications Warehouse

    Clark, D.R.; Krynitsky, A.J.

    1983-01-01

    Samples of brown and white fat from hibernating bats (big brown bat, Eptesicus fuscus; little brown bat, Myotis lucifugus; and eastern pipistrelle, Pipistrellus subflavus) collected in western Maryland, USA, were analysed to determine lipid and DDE content. Amounts of brown fat, expressed as percentages of total bat weight, were the same for all three species. Lipid content of brown fat was significantly less than that of white fat. Lipids of brown fat contained significantly higher (28%) concentrations of DDE than did lipids of white fat. In our mixed-species sample of 14 bats, concentrations of DDE increased exponentially in both brown and white fat as white fat reserves declined. Brown fat facilitates arousal from hibernation by producing heat through rapid metabolism of triglycerides. The question is raised whether organochlorine residues, such as DDE, may be concentrated and then liberated in lethal amounts by the processes of hibernation and arousal.

  10. Brown adipogenesis of mouse embryonic stem cells in alginate microstrands

    NASA Astrophysics Data System (ADS)

    Unser, Andrea Mannarino

    The ability of brown adipocytes (fat cells) to dissipate energy as heat shows great promise for the treatment of obesity and other metabolic disorders. Employing pluripotent stem cells, with an emphasis on directed differentiation, may overcome many issues currently associated with primary fat cell cultures. However, brown adipocytes are difficult to transplant in vivo due to the instability of fat, in terms of necrosis and neovascularization, once injected. Thus, 3D cell culture systems that have the potential to mimic adipogenic microenvironments are needed, not only to advance brown fat implantation, but also to better understand the role of brown adipocytes in treating obesity. To address this need, we created 3D "Brown-Fat-in-Microstrands" by microfluidic synthesis of alginate hydrogel microstrands that encapsulated cells and directly induced cell differentiation into brown adipocytes, using mouse embryonic stem cells (ESCs) as a model of pluripotent stem cells and brown preadipocytes as a positive control. The effect of hydrogel formation parameters on brown adipogenesis was studied, leading to the establishment of "Brown-Fat-in-Microstrands". Brown adipocyte differentiation within microstrands was confirmed by lipid droplet accumulation, immunocytochemistry and qPCR analysis of gene expression of brown adipocyte marker uncoupling protein 1 (UCP1) in addition to adipocyte marker expression. Compared to a 2D approach, 3D differentiated "Brown-Fat-in-Microstrands" exhibited higher level of brown adipocyte marker expression. The functional analysis of "Brown-Fat-in-Microstrands" was attempted by measuring the mitochondrial activity of ESC-differentiated brown adipocytes in 3D using Seahorse XF24 3 Extracellular Flux Analyzer. The ability to create "Brown-Fat-in-Microstrands" from pluripotent stem cells opens up a new arena to understanding brown adipogenesis and its implications in obesity and metabolic disorders.

  11. Role of Energy Metabolism in the Brown Fat Gene Program

    PubMed Central

    Nam, Minwoo; Cooper, Marcus P.

    2015-01-01

    In murine and human brown adipose tissue (BAT), mitochondria are powerful generators of heat that safely metabolize fat, a feature that has great promise in the fight against obesity and diabetes. Recent studies suggest that the actions of mitochondria extend beyond their conventional role as generators of heat. There is mounting evidence that impaired mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1 and other BAT-selective genes, implying that mitochondria exert transcriptional control over the brown fat gene program. In this review, we discuss the current understanding of brown fat mitochondria, their potential role in transcriptional control of the brown fat gene program, and potential strategies to treat obesity in humans by leveraging thermogenesis in brown adipocytes. PMID:26175716

  12. Cell biology of fat storage.

    PubMed

    Cohen, Paul; Spiegelman, Bruce M

    2016-08-15

    The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development. PMID:27528697

  13. Cell biology of fat storage

    PubMed Central

    Cohen, Paul; Spiegelman, Bruce M.

    2016-01-01

    The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development. PMID:27528697

  14. Cell biology of fat storage.

    PubMed

    Cohen, Paul; Spiegelman, Bruce M

    2016-08-15

    The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development.

  15. Browning and Graying: Novel Transcriptional Regulators of Brown and Beige Fat Tissues and Aging.

    PubMed

    Mueller, Elisabetta

    2016-01-01

    Obesity represents a major risk factor for the development of a number of metabolic disorders, including cardiovascular disease and type 2 diabetes. Since the discovery that brown and beige fat cells exist in adult humans and contribute to energy expenditure, increasing interest has been devoted to the understanding of the molecular switches turning on calorie utilization. It has been reported that the ability of thermogenic tissues to burn energy declines during aging, possibly contributing to the development of metabolic dysfunction late in life. This review will focus on the recently identified transcriptional modulators of brown and beige cells and will discuss the potential impact of some of these thermogenic factors on age-associated metabolic disorders. PMID:26973598

  16. Browning and Graying: Novel Transcriptional Regulators of Brown and Beige Fat Tissues and Aging

    PubMed Central

    Mueller, Elisabetta

    2016-01-01

    Obesity represents a major risk factor for the development of a number of metabolic disorders, including cardiovascular disease and type 2 diabetes. Since the discovery that brown and beige fat cells exist in adult humans and contribute to energy expenditure, increasing interest has been devoted to the understanding of the molecular switches turning on calorie utilization. It has been reported that the ability of thermogenic tissues to burn energy declines during aging, possibly contributing to the development of metabolic dysfunction late in life. This review will focus on the recently identified transcriptional modulators of brown and beige cells and will discuss the potential impact of some of these thermogenic factors on age-associated metabolic disorders. PMID:26973598

  17. The brown fat secretome: metabolic functions beyond thermogenesis

    PubMed Central

    Wang, Guo-Xiao; Zhao, Xu-Yun; Lin, Jiandie D.

    2015-01-01

    Brown fat is highly active in fuel oxidation and dissipates chemical energy through uncoupling protein 1 (UCP1)-mediated heat production. Activation of brown fat leads to increased energy expenditure, reduced adiposity, and lower plasma glucose and lipid levels, thus contributing to better homeostasis. Uncoupled respiration and thermogenesis have been considered to be responsible for the metabolic benefits of brown adipose tissue. Recent studies have demonstrated that brown adipocytes also secrete factors that act locally and systemically to influence fuel and energy metabolism. This review discusses the evidence supporting a thermogenesis-independent role of brown fat, particularly through its release of secreted factors, and their implications in physiology and therapeutic development. PMID:25843910

  18. Characterization of a primary brown adipocyte culture system derived from human fetal interscapular fat

    PubMed Central

    Seiler, Sarah E; Xu, Dan; Ho, Jia-Pei; Lo, Kinyui Alice; Buehrer, Benjamin M; Ludlow, Y John W; Kovalik, Jean-Paul; Sun, Lei

    2015-01-01

    Brown fat has gained widespread attention as a potential therapeutic target to treat obesity and associated metabolic disorders. Indeed, the anti-obesity potential of multiple targets to stimulate both brown adipocyte differentiation and recruitment have been verified in rodent models. However, their therapeutic potential in humans is unknown due to the lack of a human primary brown adipocyte cell culture system. Likewise, the lack of a well-characterized human model has limited the discovery of novel targets for the activation of human brown fat. To address this current need, we aimed to identify and describe the first primary brown adipocyte cell culture system from human fetal interscapular brown adipose tissue. Pre-adipocytes isolated from non-viable human fetal interscapular tissue were expanded and cryopreserved. Cells were then thawed and plated alongside adult human subcutaneous and omental pre-adipocytes for subsequent differentiation and phenotypic characterization. Interscapular pre-adipocytes in cell culture differentiated into mature adipocytes that were morphologically indistinguishable from the adult white depots. Throughout differentiation, cultured human fetal interscapular adipocytes demonstrated increased expression of classical brown fat markers compared to subcutaneous and omental cells. Further, functional analysis revealed an elevation in fatty acid oxidation as well as maximal and uncoupled oxygen consumption in interscapular brown adipocytes compared to white control cells. These data collectively identify the brown phenotype of these cells. Thus, our primary cell culture system derived from non-viable human fetal interscapular brown adipose tissue provides a valuable tool for the study of human brown adipocyte biology and for the development of anti-obesity therapeutics. PMID:26451287

  19. Ouabain-sensitive component of brown fat thermogenesis.

    NASA Technical Reports Server (NTRS)

    Horwitz, B. A.

    1973-01-01

    The study discussed was undertaken to quantify the amount of energy utilized by the ouabain-sensitive Na(+)-K(+) membrane pump during the norepinephrine-induced thermogenesis of brown adipose tissue. The data obtained indicate that the observed inhibition of the catecholamine-induced increase in brown fat thermogenesis by ouabain does not reflect an inhibition of cyclic AMP synthesis.

  20. Mir193b-365 is essential for brown fat differentiation.

    PubMed

    Sun, Lei; Xie, Huangming; Mori, Marcelo A; Alexander, Ryan; Yuan, Bingbing; Hattangadi, Shilpa M; Liu, Qingqing; Kahn, C Ronald; Lodish, Harvey F

    2011-07-10

    Mammals have two principal types of fat. White adipose tissue primarily serves to store extra energy as triglycerides, whereas brown adipose tissue is specialized to burn lipids for heat generation and energy expenditure as a defence against cold and obesity. Recent studies have demonstrated that brown adipocytes arise in vivo from a Myf5-positive, myoblastic progenitor by the action of Prdm16 (PR domain containing 16). Here, we identified a brown-fat-enriched miRNA cluster, MiR-193b-365, as a key regulator of brown fat development. Blocking miR-193b and/or miR-365 in primary brown preadipocytes markedly impaired brown adipocyte adipogenesis by enhancing Runx1t1 (runt-related transcription factor 1; translocated to, 1) expression, whereas myogenic markers were significantly induced. Forced expression of Mir193b and/or Mir365 in C2C12 myoblasts blocked the entire programme of myogenesis, and, in adipogenic conditions, miR-193b induced myoblasts to differentiate into brown adipocytes. Mir193b-365 was upregulated by Prdm16 partially through Pparα. Our results demonstrate that Mir193b-365 serves as an essential regulator for brown fat differentiation, in part by repressing myogenesis.

  1. Beyond the sympathetic tone: the new brown fat activators.

    PubMed

    Villarroya, Francesc; Vidal-Puig, Antonio

    2013-05-01

    If we could avoid the side effects associated with global sympathetic activation, activating brown adipose tissue to increase thermogenesis would be a safe way to lose weight. The discovery of adrenergic-independent brown fat activators opens the prospect of developing this alternative way to efficiently and safely induce negative energy balance.

  2. Can Brown Fat Win the Battle Against White Fat?

    PubMed

    Elattar, Sawsan; Satyanarayana, Ande

    2015-10-01

    A rapid growth in the overweight and obese population in the last few decades suggest that the current diet, exercise, awareness or drug strategies are still not effectively restraining the obesity epidemic. Obesity results from increased energy intake, and the body's energy balance shifts towards energy abundance. Therefore, current research is focused on developing new strategies aimed at increasing energy expenditure. As a result, brown adipose tissue (BAT) is receiving tremendous attention since the major function of BAT is to dissipate energy as heat. For example, mouse models that have increased BAT activity or increased numbers of brown-like adipocytes within the white adipose tissue (WAT) are lean and protected from obesity. Alternatively, mouse models that lack BAT activity are more susceptible to age and diet-induced obesity. However, a significant loss of BAT mass during the natural growth process in humans has created enormous challenges in effectively utilizing this tissue to increase energy expenditure. New strategies are primarily focused on expanding the BAT mass and/or activating the existing BAT. In this regard, recent finding that expression of early B cell factor-2 (Ebf2) reprograms the white pre-adipocytes into brown adipocytes is a significant break-through in developing BAT-mediated strategies to treat obesity. Here we review the major biological functions of WAT and BAT, which play critical but opposing roles in the energy spectrum, energy storage versus energy expenditure, and we evaluate whether activation and/or expansion of BAT is practically achievable to treat obesity in humans.

  3. Can Brown Fat Win the Battle against White Fat?

    PubMed Central

    Elattar, Sawsan; Satyanarayana, Ande

    2015-01-01

    A rapid growth in the overweight and obese population in the last few decades suggest that the current diet, exercise, awareness or drug strategies are still not effectively restraining the obesity epidemic. Obesity results from increased energy intake, and the body’s energy balance shifts towards energy abundance. Therefore, current research is focused on developing new strategies aimed at increasing energy expenditure. As a result, brown adipose tissue (BAT) is receiving tremendous attention since the major function of BAT is to dissipate energy as heat. For example, mouse models that have increased BAT activity or increased numbers of brown-like adipocytes within the white adipose tissue (WAT) are lean and protected from obesity. Alternatively, mouse models that lack BAT activity are more susceptible to age and diet-induced obesity. However, a significant loss of BAT mass during the natural growth process in humans has created enormous challenges in effectively utilizing this tissue to increase energy expenditure. New strategies are primarily focused on expanding the BAT mass and/or activating the existing BAT. In this regard, recent finding that expression of early B cell factor-2 (Ebf2) reprograms the white pre-adipocytes into brown adipocytes is a significant break-through in developing BAT-mediated strategies to treat obesity. Here we review the major biological functions of WAT and BAT, which play critical but opposing roles in the energy spectrum, energy storage versus energy expenditure, and we evaluate whether activation and/or expansion of BAT is practically achievable to treat obesity in humans. PMID:25760392

  4. Browning of White Fat: Novel Insight Into Factors, Mechanisms, and Therapeutics.

    PubMed

    Jeremic, Nevena; Chaturvedi, Pankaj; Tyagi, Suresh C

    2017-01-01

    What is more interesting about brown adipose tissue (BAT) is its ability to provide thermogenesis, protection against obesity by clearing triglycerides, releasing batokines, and mitigating insulin resistance. White adipose tissue (WAT) on the other hand stores excess energy and secretes some endocrine factors like leptin for regulating satiety. For the last decade there has been an increasing interest in the browning of fat keeping in view its beneficial effects on metabolic disorders and protection in the form of perivascular fat. Obesity is one such metabolic disorder that leads to significant morbidity and mortality from obesity-related disorders such as type 2 diabetes mellitus (T2D) and cardiovascular disease risk. Browning of white fat paves the way to restrict obesity and obesity related disorders. Although exercise has been the most common factor for fat browning; however, there are other factors that involve: (1) beta aminoisobutyric acid (BAIBA); (2) gamma amino butyric acid (GABA); (3) PPARɣ agonists; (4) JAK inhibition; and (5) IRISIN. In this review, we propose two novel factors musclin and TFAM for fat browning. Musclin a myokine released from muscles during exercise activates PPARɣ which induces browning of WAT that has beneficial metabolic and cardiac effects. TFAM is a transcription factor that induces mitochondrial biogenesis. Since BAT is rich in mitochondria, higher expression of TFAM in WAT or TFAM treatment in WAT cells can induce browning of WAT. We propose that fat browning can be used as a therapeutic tool for metabolic disorders and cardiovascular diseases. J. Cell. Physiol. 232: 61-68, 2017. © 2016 Wiley Periodicals, Inc.

  5. Perspective: Does brown fat protect against diseases of aging?

    PubMed

    Mattson, Mark P

    2010-01-01

    The most commonly studied laboratory rodents possess a specialized form of fat called brown adipose tissue (BAT) that generates heat to help maintain body temperature in cold environments. In humans, BAT is abundant during embryonic and early postnatal development, but is absent or present in relatively small amounts in adults where it is located in paracervical and supraclavicular regions. BAT cells can 'burn' fatty acid energy substrates to generate heat because they possess large numbers of mitochondria in which oxidative phosphorylation is uncoupled from ATP production as a result of a transmembrane proton leak mediated by uncoupling protein 1 (UCP1). Studies of rodents in which BAT levels are either increased or decreased have revealed a role for BAT in protection against diet-induced obesity. Data suggest that individuals with low levels of BAT are prone to obesity, insulin resistance and cardiovascular disease, whereas those with higher levels of BAT maintain lower body weights and exhibit superior health as they age. BAT levels decrease during aging, and dietary energy restriction increases BAT activity and protects multiple organ systems including the nervous system against age-related dysfunction and degeneration. Future studies in which the effects of specific manipulations of BAT levels and thermogenic activity on disease processes in animal models (diabetes, cardiovascular disease, cancers, neurodegenerative diseases) are determined will establish if and how BAT affects the development and progression of age-related diseases. Data from animal studies suggest that BAT and mitochondrial uncoupling can be targeted for interventions to prevent and treat obesity and age-related diseases. Examples include: diet and lifestyle changes; specific regimens of mild intermittent stress; drugs that stimulate BAT formation and activity; induction of brown adipose cell progenitors in muscle and other tissues; and transplantation of brown adipose cells.

  6. [Hibernoma: brown fat retroperitoneal tumor. Report of a pediatric case].

    PubMed

    Collado, Laura; Sierre, Sergio; Bosalec, Andrea; Lipsich, José

    2011-12-01

    Hibernoma is a rare benign tumor of soft tissue, composed of brown fat. This tissue is predominant in hibernating animals and hence its name. Because of its rarity in Pediatrics and difficult diagnosis, we report a 3 month-old patient with a diagnosis consistent with an abdominal tumor. Ultrasound and computed tomography exams showed an infiltrative retroperitoneal tumor, with hypervascular and lipomatous features. After tumor excision, histopathological exam confirmed the diagnosis of hibernoma or brown fat tumor. This presentation describes the characteristics of this type of tumor, rare in children, and reviews the fatty tumors, according to their frequency in pediatric patients.

  7. Lipocytes (fat cells) (image)

    MedlinePlus

    ... to energy output, there is no expansion of fat cells (lipocytes) to accommodate excess. It is only when more calories are taken in than used that the extra fat is stored in the lipocytes and the person ...

  8. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis.

    PubMed

    Sidossis, Labros; Kajimura, Shingo

    2015-02-01

    Brown adipose tissue (BAT), a specialized fat that dissipates energy to produce heat, plays an important role in the regulation of energy balance. Two types of thermogenic adipocytes with distinct developmental and anatomical features exist in rodents and humans: classical brown adipocytes and beige (also referred to as brite) adipocytes. While classical brown adipocytes are located mainly in dedicated BAT depots of rodents and infants, beige adipocytes sporadically reside with white adipocytes and emerge in response to certain environmental cues, such as chronic cold exposure, a process often referred to as "browning" of white adipose tissue. Recent studies indicate the existence of beige adipocytes in adult humans, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, including type 2 diabetes. This Review aims to cover recent progress in our understanding of the anatomical, developmental, and functional characteristics of brown and beige adipocytes and discuss emerging questions, with a special emphasis on adult human BAT. PMID:25642708

  9. Severe Brown Fat Lipoatrophy Aggravates Atherosclerotic Process in Male Mice.

    PubMed

    Gómez-Hernández, Almudena; Beneit, Nuria; Escribano, Óscar; Díaz-Castroverde, Sabela; García-Gómez, Gema; Fernández, Silvia; Benito, Manuel

    2016-09-01

    Obesity is one of the major risk factors for the development of cardiovascular diseases and is characterized by abnormal accumulation of adipose tissue, including perivascular adipose tissue (PVAT). However, brown adipose tissue (BAT) activation reduces visceral adiposity. To demonstrate that severe brown fat lipoatrophy might accelerate atherosclerotic process, we generated a new mouse model without insulin receptor (IR) in BAT and without apolipoprotein (Apo)E (BAT-specific IR knockout [BATIRKO];ApoE(-/-) mice) and assessed vascular and metabolic alterations associated to obesity. In addition, we analyzed the contribution of the adipose organ to vascular inflammation. Brown fat lipoatrophy induces visceral adiposity, mainly in gonadal depot (gonadal white adipose tissue [gWAT]), severe glucose intolerance, high postprandial glucose levels, and a severe defect in acute insulin secretion. BATIRKO;ApoE(-/-) mice showed greater hypertriglyceridemia than the obtained in ApoE(-/-) and hypercholesterolemia similar to ApoE(-/-) mice. BATIRKO;ApoE(-/-) mice, in addition to primary insulin resistance in BAT, also showed a significant decrease in insulin signaling in liver, gWAT, heart, aorta artery, and thoracic PVAT. More importantly, our results suggest that severe brown fat lipoatrophy aggravates the atherosclerotic process, characterized by a significant increase of lipid depots, atherosclerotic coverage, lesion size and complexity, increased macrophage infiltration, and proinflammatory markers expression. Finally, an increase of TNF-α and leptin as well as a decrease of adiponectin by BAT, gWAT, and thoracic PVAT might also be responsible of vascular damage. Our results suggest that severe brown lipoatrophy aggravates atherosclerotic process. Thus, BAT activation might protect against obesity and its associated metabolic alterations. PMID:27414981

  10. Shades of Brown: A Model for Thermogenic Fat

    PubMed Central

    Dempersmier, Jon; Sul, Hei Sook

    2015-01-01

    Brown adipose tissue (BAT) is specialized to burn fuels to perform thermogenesis in defense of body temperature against cold. Recent discovery of metabolically active and relevant amounts of BAT in adult humans have made it a potentially attractive target for development of anti-obesity therapeutics. There are two types of brown adipocytes: classical brown adipocytes and brown adipocyte-like cells, so-called beige/brite cells, which arise in white adipose tissue in response to cold and hormonal stimuli. These cells may derive from distinct origins, and while functionally similar, have different gene signatures. Here, we highlight recent advances in the understanding of brown and beige/brite adipocytes as well as transcriptional regulation for development and function of murine brown and beige/brite adipocytes focusing on EBF2, IRF4, and ZFP516, in addition to PRDM16 as a coregulator. We also discuss hormonal regulation of brown and beige/brite adipocytes including several factors secreted from various tissues, including BMP7, FGF21, and irisin, as well as those from BAT itself, such as Nrg4 and adenosine. PMID:26005433

  11. Shades of brown: a model for thermogenic fat.

    PubMed

    Dempersmier, Jon; Sul, Hei Sook

    2015-01-01

    Brown adipose tissue (BAT) is specialized to burn fuels to perform thermogenesis in defense of body temperature against cold. Recent discovery of metabolically active and relevant amounts of BAT in adult humans have made it a potentially attractive target for development of anti-obesity therapeutics. There are two types of brown adipocytes: classical brown adipocytes and brown adipocyte-like cells, so-called beige/brite cells, which arise in white adipose tissue in response to cold and hormonal stimuli. These cells may derive from distinct origins, and while functionally similar, have different gene signatures. Here, we highlight recent advances in the understanding of brown and beige/brite adipocytes as well as transcriptional regulation for development and function of murine brown and beige/brite adipocytes focusing on EBF2, IRF4, and ZFP516, in addition to PRDM16 as a coregulator. We also discuss hormonal regulation of brown and beige/brite adipocytes including several factors secreted from various tissues, including BMP7, FGF21, and irisin, as well as those from BAT itself, such as Nrg4 and adenosine. PMID:26005433

  12. Brown fat in a protoendothermic mammal fuels eutherian evolution.

    PubMed

    Oelkrug, Rebecca; Goetze, Nadja; Exner, Cornelia; Lee, Yang; Ganjam, Goutham K; Kutschke, Maria; Müller, Saskia; Stöhr, Sigrid; Tschöp, Matthias H; Crichton, Paul G; Heldmaier, Gerhard; Jastroch, Martin; Meyer, Carola W

    2013-01-01

    Endothermy has facilitated mammalian species radiation, but the sequence of events leading to sustained thermogenesis is debated in multiple evolutionary models. Here we study the Lesser hedgehog tenrec (Echinops telfairi), a phylogenetically ancient, 'protoendothermic' eutherian mammal, in which constantly high body temperatures are reported only during reproduction. Evidence for nonshivering thermogenesis is found in vivo during periodic ectothermic-endothermic transitions. Anatomical studies reveal large brown fat-like structures in the proximity of the reproductive organs, suggesting physiological significance for parental care. Biochemical analysis demonstrates high mitochondrial proton leak catalysed by an uncoupling protein 1 ortholog. Strikingly, bioenergetic profiling of tenrec uncoupling protein 1 reveals similar thermogenic potency as modern mouse uncoupling protein 1, despite the large phylogenetic distance. The discovery of functional brown adipose tissue in this 'protoendothermic' mammal links nonshivering thermogenesis directly to the roots of eutherian evolution, suggesting physiological importance prior to sustained body temperatures and migration to the cold.

  13. O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat

    PubMed Central

    Ruan, Hai-Bin; Dietrich, Marcelo O.; Liu, Zhong-Wu; Zimmer, Marcelo R.; Li, Min-Dian; Singh, Jay Prakash; Zhang, Kaisi; Yin, Ruonan; Wu, Jing; Horvath, Tamas L.; Yang, Xiaoyong

    2014-01-01

    SUMMARY Induction of beige cells causes the browning of white fat and improves energy metabolism. However, the central mechanism that controls adipose tissue browning and its physiological relevance are largely unknown. Here we demonstrate that fasting and chemical-genetic activation of orexigenic AgRP neurons in the hypothalamus suppress the browning of white fat. O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins regulates fundamental cellular processes. The levels of O-GlcNAc transferase (OGT) and O-GlcNAc modification are enriched in AgRP neurons and are elevated by fasting. Genetic ablation of OGT in AgRP neurons inhibits neuronal excitability through the voltage-dependent potassium channel, promotes white adipose tissue browning, and protects mice against diet-induced obesity and insulin resistance. These data reveal adipose tissue browning as a highly dynamic physiological process under central control, in which O-GlcNAc signaling in AgRP neurons is essential for suppressing thermogenesis to conserve energy in response to fasting. PMID:25303527

  14. Human mediastinal adipose tissue displays certain characteristics of brown fat

    PubMed Central

    Cheung, L; Gertow, J; Werngren, O; Folkersen, L; Petrovic, N; Nedergaard, J; Franco-Cereceda, A; Eriksson, P; Fisher, R M

    2013-01-01

    Background: The amount of intra-thoracic fat, of which mediastinal adipose tissue comprises the major depot, is related to various cardiometabolic risk factors. Autopsy and imaging studies indicate that the mediastinal depot in adult humans could contain brown adipose tissue (BAT). To gain a better understanding of this intra-thoracic fat depot, we examined possible BAT characteristics of human mediastinal in comparison with subcutaneous adipose tissue. Materials and methods: Adipose tissue biopsies from thoracic subcutaneous and mediastinal depots were obtained during open-heart surgery from 33 subjects (26 male, 63.7±13.8 years, body mass index 29.3±5.1 kg m−2). Microarray analysis was performed on 10 patients and genes of interest confirmed by quantitative PCR (qPCR) in samples from another group of 23 patients. Adipocyte size was determined and uncoupling protein 1 (UCP1) protein expression investigated with immunohistochemistry. Results: The microarray data showed that a number of BAT-specific genes had significantly higher expression in the mediastinal depot than in the subcutaneous depot. Higher expression of UCP1 (24-fold, P<0.001) and PPARGC1A (1.7-fold, P=0.0047), and lower expression of SHOX2 (0.12-fold, P<0.001) and HOXC8 (0.14-fold, P<0.001) in the mediastinal depot was confirmed by qPCR. Gene set enrichment analysis identified two gene sets related to mitochondria, which were significantly more highly expressed in the mediastinal than in the subcutaneous depot (P<0.01). No significant changes in UCP1 gene expression were observed in the subcutaneous or mediastinal depots following lowering of body temperature during surgery. UCP1 messenger RNA levels in the mediastinal depot were lower than those in murine BAT and white adipose tissue. In some mediastinal adipose tissue biopsies, a small number of multilocular adipocytes that stained positively for UCP1 were observed. Adipocytes were significantly smaller in the mediastinal than the

  15. ULTRASTRUCTURAL AND BIOCHEMICAL CHANGES IN BROWN FAT IN COLD-EXPOSED RATS

    PubMed Central

    Thomson, John F.; Habeck, Duane A.; Nance, Sharron L.; Beetham, Karen L.

    1969-01-01

    During the first 3 days of exposure of rats to 5°C, the nitrogen concentration of interscapular brown fat increased by 50% and remained at this elevated level for the duration of the 8-wk observation period, while the mass of tissue increased fourfold. The concentration of both DNA and RNA per unit nitrogen reached a maximum after 3 days, then declined; however, the total quantity of each continued to rise. The concentration of various respiratory enzymes decreased during the first few days and then increased, but at different rates. The morphological changes in mature brown fat cells during cold acclimation were observed to be: a reduction in fat droplet size during the first 3 days, followed by a gradual increase in size through 6 wk in the cold; a continual increase in the amount of intermitochondrial ground substance during the first 3 wk, with increased granularity and glycogen content after 1 wk; initial disappearance of glycogen between mitochondria, followed by the reappearance of a few isolated particles in the intermitochondrial ground substance after 1 wk in the cold; initial increase in the density of intramitochondrial matrix for the first 3–4 days, followed by a gradual return to the control density; loss in integrity of mitochondrial outer membranes during the first 4 days, followed by gradual but incomplete restoration; temporary loss of the dense material in lipid droplets during the first 24 hr, with return after 1 wk in the cold; and a 40% increase in mitochondrial diameter within 1 day, followed by a decrease in diameter within 1 wk to a constant value about 15% larger than the controls. PMID:4304742

  16. Pharmacological Activation of Thyroid Hormone Receptors Elicits a Functional Conversion of White to Brown Fat.

    PubMed

    Lin, Jean Z; Martagón, Alexandro J; Cimini, Stephanie L; Gonzalez, Daniel D; Tinkey, David W; Biter, Amadeo; Baxter, John D; Webb, Paul; Gustafsson, Jan-Åke; Hartig, Sean M; Phillips, Kevin J

    2015-11-24

    The functional conversion of white adipose tissue (WAT) into a tissue with brown adipose tissue (BAT)-like activity, often referred to as "browning," represents an intriguing strategy for combating obesity and metabolic disease. We demonstrate that thyroid hormone receptor (TR) activation by a synthetic agonist markedly induces a program of adaptive thermogenesis in subcutaneous WAT that coincides with a restoration of cold tolerance to cold-intolerant mice. Distinct from most other browning agents, pharmacological TR activation dissociates the browning of WAT from activation of classical BAT. TR agonism also induces the browning of white adipocytes in vitro, indicating that TR-mediated browning is cell autonomous. These data establish TR agonists as a class of browning agents, implicate the TRs in the browning of WAT, and suggest a profound pharmacological potential of this action.

  17. Intravitreally Injected Anti-VEGF Antibody Reduces Brown Fat in Neonatal Mice.

    PubMed

    Jo, Dong Hyun; Park, Sung Wook; Cho, Chang Sik; Powner, Michael B; Kim, Jin Hyoung; Fruttiger, Marcus; Kim, Jeong Hun

    2015-01-01

    Anti-vascular endothelial growth factor (VEGF) agents are the mainstay treatment for various angiogenesis-related retinal diseases. Currently, bevacizumab, a recombinant humanized anti-VEGF antibody, is trailed in retinopathy of prematurity, a vasoproliferative retinal disorder in premature infants. However, the risks of systemic complications after intravitreal injection of anti-VEGF antibody in infants are not well understood. In this study, we show that intravitreally injected anti-VEGF antibody is transported into the systemic circulation into the periphery where it reduces brown fat in neonatal C57BL/6 mice. A considerable amount of anti-VEGF antibody was detected in serum after intravitreal injection. Furthermore, in interscapular brown adipose tissue, we found lipid droplet accumulation, decreased VEGF levels, loss of vascular network, and decreased expression of mitochondria-related genes, Ppargc1a and Ucp1, all of which are characteristics of "whitening" of brown fat. With increasing age and body weight, brown fat restored its morphology and vascularity. Our results show that there is a transient, but significant impact of intravitreally administered anti-VEGF antibody on brown adipose tissue in neonatal mice. We suggest that more attention should be focused on the metabolic and developmental significance of brown adipose tissue in bevacizumab treated retinopathy of prematurity infants. PMID:26226015

  18. Inducible Brown Adipose Tissue, or Beige Fat, Is Anabolic for the Skeleton

    PubMed Central

    Rahman, Sima; Lu, Yalin; Czernik, Piotr J.; Rosen, Clifford J.; Enerback, Sven

    2013-01-01

    It is known that insulin resistance and type 2 diabetes mellitus are associated with increased fractures and that brown adipose tissue (BAT) counteracts many if not all of the symptoms associated with type 2 diabetes. By the use of FoxC2AD+/Tg mice, a well-established model for induction of BAT, or beige fat, we present data extending the beneficial action of beige fat to also include a positive effect on bone. FoxC2AD+/Tg mice are lean and insulin-sensitive and have high bone mass due to increased bone formation associated with high bone turnover. Inducible BAT is linked to activation of endosteal osteoblasts whereas osteocytes have decreased expression of the Sost transcript encoding sclerostin and elevated expression of Rankl. Conditioned media (CM) collected from forkhead box c2 (FOXC2)-induced beige adipocytes activated the osteoblast phenotype and increased levels of phospho-AKT and β-catenin in recipient cells. In osteocytes, the same media decreased Sost expression. Immunodepletion of CM with antibodies against wingless related MMTV integration site 10b (WNT10b) and insulin-like growth factor binding protein 2 (IGFBP2) resulted in the loss of pro-osteoblastic activity, and the loss of increase in the levels of phospho-AKT and β-catenin. Conversely, CM derived from cells overexpressing IGFBP2 or WNT10b restored osteoblastic activity in recipient cells. In conclusion, beige fat secretes endocrine/paracrine activity that is beneficial for the skeleton. PMID:23696565

  19. Effects of chronic celiprolol treatment on brown fat, feeding, and drinking in fa/fa Zucker rats.

    PubMed

    Savontaus, E; Rouru, J; Malminiemi, K; Luukkaa, V; Pesonen, U; Koulu, M; Huupponen, R

    2000-04-01

    Celiprolol is a novel beta-adrenoceptor blocking drug that displays clinically favorable effects on glucose and lipid metabolism. Because some other atypical beta-adrenoceptor blocking drugs have been described to act as agonists on beta(3)-adrenoceptors, we aimed to investigate the effects of celiprolol on brown fat and beta(3)-adrenoceptors. Chronic treatment of obese fa/fa Zucker rats with celiprolol (50 mg/kg/day orally for 20 days) increased GDP binding to brown fat mitochondria by 1.5-fold, whereas beta(3)-adrenoceptor agonist ZD7114 ((S)-4-[2-[(2-hydroxy-3-phenoxypropyl)amino]ethoxy]-N-(2-methoxyet hyl )phenoxyacetamide, 3 mg/kg/day) increased the binding by 3.3-fold. Weight gain was reduced by 19% due to decreased water and food intakes in celiprolol-treated rats. Celiprolol did not activate lipolysis in rat adipocytes in vitro or stimulate human beta(3)-adrenoceptors expressed in Chinese hamster ovary cells as measured with Cytosensor microphysiometer. Therefore, celiprolol does not seem to activate brown fat via beta(3)-adrenoceptors. PMID:10764928

  20. Brown fat and the myth of diet-induced thermogenesis.

    PubMed

    Kozak, Leslie P

    2010-04-01

    The notion that brown adipose tissue (BAT) in mice or humans maintains energy balance by burning off excess calories seems incompatible with evolutionary biology. Studies in obese rats and mice lacking UCP1 indicate that diet-induced thermogenesis by BAT is unlikely. PMID:20374958

  1. Identification of a new supraclavicular brown fat depot in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rediscovery of brown adipose tissue (BAT) in healthy adult humans raises the possibility of utilizing BAT to combat obesity and its related metabolic disorders. Adult humans possess limited amounts of BAT with the most thermoactive depot located in the supraclavicular area of the neck. Understan...

  2. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis.

    PubMed

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-You; Huang, Hai-Yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-Ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-02-26

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces "white adipocytes" with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4's role in altering insulin sensitivity by affecting WAT development.

  3. Eicosapentaenoic acid regulates brown adipose tissue gene expression and metabolism in high fat fed mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brown adipose tissue (BAT) is a thermogenic tissue, a key regulator of energy balance and a potential therapeutic target for obesity. We previously reported that eicosapentaenoic acid (EPA) reduced high fat (HF) diet-induced obesity and insulin resistance in mice, independent of energy intake. We hy...

  4. Role of Brown Fat in Lipoprotein Metabolism and Atherosclerosis.

    PubMed

    Hoeke, Geerte; Kooijman, Sander; Boon, Mariëtte R; Rensen, Patrick C N; Berbée, Jimmy F P

    2016-01-01

    Atherosclerosis, for which hyperlipidemia is a major risk factor, is the leading cause of morbidity and mortality in Western society, and new therapeutic strategies are highly warranted. Brown adipose tissue (BAT) is metabolically active in human adults. Although positron emission tomography-computed tomography using a glucose tracer is the golden standard to visualize and quantify the volume and activity of BAT, it has become clear that activated BAT combusts fatty acids rather than glucose. Here, we review the role of brown and beige adipocytes in lipoprotein metabolism and atherosclerosis, with evidence derived from both animal and human studies. On the basis of mainly data from animal models, we propose a model in which activated brown adipocytes use their intracellular triglyceride stores to generate fatty acids for combustion. BAT rapidly replenishes these stores by internalizing primarily lipoprotein triglyceride-derived fatty acids, generated by lipoprotein lipase-mediated hydrolysis of triglycerides, rather than by holoparticle uptake. As a consequence, BAT activation leads to the generation of lipoprotein remnants that are subsequently cleared via the liver provided that an intact apoE-low-density lipoprotein receptor pathway is present. Through these mechanisms, BAT activation reduces plasma triglyceride and cholesterol levels and attenuates diet-induced atherosclerosis development. Initial studies suggest that BAT activation in humans may also reduce triglyceride and cholesterol levels, but potential antiatherogenic effects should be assessed in future studies.

  5. Role of Brown Fat in Lipoprotein Metabolism and Atherosclerosis.

    PubMed

    Hoeke, Geerte; Kooijman, Sander; Boon, Mariëtte R; Rensen, Patrick C N; Berbée, Jimmy F P

    2016-01-01

    Atherosclerosis, for which hyperlipidemia is a major risk factor, is the leading cause of morbidity and mortality in Western society, and new therapeutic strategies are highly warranted. Brown adipose tissue (BAT) is metabolically active in human adults. Although positron emission tomography-computed tomography using a glucose tracer is the golden standard to visualize and quantify the volume and activity of BAT, it has become clear that activated BAT combusts fatty acids rather than glucose. Here, we review the role of brown and beige adipocytes in lipoprotein metabolism and atherosclerosis, with evidence derived from both animal and human studies. On the basis of mainly data from animal models, we propose a model in which activated brown adipocytes use their intracellular triglyceride stores to generate fatty acids for combustion. BAT rapidly replenishes these stores by internalizing primarily lipoprotein triglyceride-derived fatty acids, generated by lipoprotein lipase-mediated hydrolysis of triglycerides, rather than by holoparticle uptake. As a consequence, BAT activation leads to the generation of lipoprotein remnants that are subsequently cleared via the liver provided that an intact apoE-low-density lipoprotein receptor pathway is present. Through these mechanisms, BAT activation reduces plasma triglyceride and cholesterol levels and attenuates diet-induced atherosclerosis development. Initial studies suggest that BAT activation in humans may also reduce triglyceride and cholesterol levels, but potential antiatherogenic effects should be assessed in future studies. PMID:26837747

  6. [Human brown adipose tissue].

    PubMed

    Virtanen, Kirsi A; Nuutila, Pirjo

    2015-01-01

    Adult humans have heat-producing and energy-consuming brown adipose tissue in the clavicular region of the neck. There are two types of brown adipose cells, the so-called classic and beige adipose cells. Brown adipose cells produce heat by means of uncoupler protein 1 (UCP1) from fatty acids and sugar. By applying positron emission tomography (PET) measuring the utilization of sugar, the metabolism of brown fat has been shown to multiply in the cold, presumably influencing energy consumption. Active brown fat is most likely present in young adults, persons of normal weight and women, least likely in obese persons.

  7. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice.

    PubMed

    Morton, Tiffany L; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya

    2016-01-01

    Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete's paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a "brown" phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD. PMID:27445983

  8. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes.

    PubMed

    Hartig, Sean M; Bader, David A; Abadie, Kathleen V; Motamed, Massoud; Hamilton, Mark P; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D; Mancini, Michael A; McGuire, Sean E

    2015-09-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis.

  9. Ubc9 Impairs Activation of the Brown Fat Energy Metabolism Program in Human White Adipocytes

    PubMed Central

    Bader, David A.; Abadie, Kathleen V.; Motamed, Massoud; Hamilton, Mark P.; Long, Weiwen; York, Brian; Mueller, Michaela; Wagner, Martin; Trauner, Michael; Chan, Lawrence; Bajaj, Mandeep; Moore, David D.; Mancini, Michael A.; McGuire, Sean E.

    2015-01-01

    Insulin resistance and type 2 diabetes mellitus (T2DM) result from an inability to efficiently store and catabolize surplus energy in adipose tissue. Subcutaneous adipocytes protect against insulin resistance and T2DM by coupling differentiation with the induction of brown fat gene programs for efficient energy metabolism. Mechanisms that disrupt these programs in adipocytes are currently poorly defined, but represent therapeutic targets for the treatment of T2DM. To gain insight into these mechanisms, we performed a high-throughput microscopy screen that identified ubiquitin carrier protein 9 (Ubc9) as a negative regulator of energy storage in human sc adipocytes. Ubc9 depletion enhanced energy storage and induced the brown fat gene program in human sc adipocytes. Induction of adipocyte differentiation resulted in decreased Ubc9 expression commensurate with increased brown fat gene expression. Thiazolidinedione treatment reduced the interaction between Ubc9 and peroxisome proliferator-activated receptor (PPAR)γ, suggesting a mechanism by which Ubc9 represses PPARγ activity. In support of this hypothesis, Ubc9 overexpression remodeled energy metabolism in human sc adipocytes by selectively inhibiting brown adipocyte-specific function. Further, Ubc9 overexpression decreased uncoupling protein 1 expression by disrupting PPARγ binding at a critical uncoupling protein 1 enhancer region. Last, Ubc9 is significantly elevated in sc adipose tissue isolated from mouse models of insulin resistance as well as diabetic and insulin-resistant humans. Taken together, our findings demonstrate a critical role for Ubc9 in the regulation of sc adipocyte energy homeostasis. PMID:26192107

  10. Capsaicin and Related Food Ingredients Reducing Body Fat Through the Activation of TRP and Brown Fat Thermogenesis.

    PubMed

    Saito, Masayuki

    2015-01-01

    Brown adipose tissue (BAT) is a site of sympathetically activated adaptive nonshivering thermogenesis, thereby being involved in the regulation of energy balance and body fatness. Recent radionuclide imaging studies have revealed the existence of metabolically active BAT in adult humans. Human BAT is activated by acute cold exposure and contributes to cold-induced increase in whole-body energy expenditure. The metabolic activity of BAT is lower in older and obese individuals. The inverse relationship between the BAT activity and body fatness suggests that BAT, because of its energy dissipating activity, is protective against body fat accumulation. In fact, repeated cold exposure recruits BAT in association with increased energy expenditure and decreased body fatness. The stimulatory effects of cold are mediated through the activation of transient receptor potential (TRP) channels, most of which are also chemesthetic receptors for various naturally occurring substances including herbal plants and food ingredients. Capsaicin and its analog capsinoids, representative agonists of TRPV1, mimic the effects of cold to decrease body fatness through the activation and recruitment of BAT. The well-known antiobesity effect of green tea catechins is also attributable to the activation of the sympathetic nerve and BAT system. Thus, BAT is a promising target for combating obesity and related metabolic disorders in humans.

  11. Exercise Increases and Browns Muscle Lipid in High-Fat Diet-Fed Mice

    PubMed Central

    Morton, Tiffany L.; Galior, Kornelia; McGrath, Cody; Wu, Xin; Uzer, Gunes; Uzer, Guniz Bas; Sen, Buer; Xie, Zhihui; Tyson, David; Rubin, Janet; Styner, Maya

    2016-01-01

    Muscle lipid increases with high-fat feeding and diabetes. In trained athletes, increased muscle lipid is not associated with insulin resistance, a phenomenon known as the athlete’s paradox. To understand if exercise altered the phenotype of muscle lipid, female C57BL/6 mice fed CTL or high-fat diet (HFD for 6 or 18 weeks) were further divided into sedentary or exercising groups (CTL-E or HFD-E) with voluntary access to running wheels for the last 6 weeks of experiments, running 6 h/night. Diet did not affect running time or distance. HFD mice weighed more than CTL after 18 weeks (p < 0.01). Quadriceps muscle TG was increased in running animals and in sedentary mice fed HFD for 18 weeks (p < 0.05). In exercised animals, markers of fat, Plin1, aP2, FSP27, and Fasn, were increased significantly in HFD groups. Ucp1 and Pgc1a, markers for brown fat, increased with exercise in the setting of high fat feeding. Fndc5, which encodes irisin, and CytC were sensitive to exercise regardless of diet. Plin5 was increased with HFD and unaffected by exercise; the respiratory exchange ratio was 15% lower in the 18-week HFD group compared with CTL (p < 0.001) and 10% lower in 18 weeks HFD-E compared with CTL-E (p < 0.001). Increased Ucp1 and Pgc1a in exercised muscle of running mice suggests that a beige/brown fat phenotype develops, which differs from the fat phenotype that induces insulin resistance in high fat feeding. This suggests that increased muscle lipid may develop a “brown” phenotype in the setting of endurance exercise training, a shift that is further promoted by HFD. PMID:27445983

  12. Brown, beige, and white: the new color code of fat and its pharmacological implications.

    PubMed

    Pfeifer, Alexander; Hoffmann, Linda S

    2015-01-01

    Brown adipose tissue (BAT) was previously regarded as a special type of fat relevant only for defending hibernating animals and newborns against a cold environment. Recently, BAT has received considerable attention following its (re)discovery in humans. Using glucose tracers, multiple laboratories independently found metabolically active BAT in adults. The enormous metabolic powers of BAT in animal models could make it an attractive target for antiobesity therapies in humans. Here, we review the present knowledge on the role of BAT in energy homeostasis and metabolism, focusing on signaling pathways and potential targets for novel therapeutics. We also shine light on ongoing debates, including those about the true color of brown fat in adults, as well as on the requirements for translation of basic research on BAT into clinical medicine.

  13. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation. PMID:27498007

  14. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes.

    PubMed

    Wang, Yung-Li; Lin, Shih-Pei; Hsieh, Patrick C H; Hung, Shih-Chieh

    2016-09-16

    The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation.

  15. Effect of Intermittent Cold Exposure on Brown Fat Activation, Obesity, and Energy Homeostasis in Mice

    PubMed Central

    Ravussin, Yann; Xiao, Cuiying; Gavrilova, Oksana; Reitman, Marc L.

    2014-01-01

    Homeotherms have specific mechanisms to maintain a constant core body temperature despite changes in thermal environment, food supply, and metabolic demand. Brown adipose tissue, the principal thermogenic organ, quickly and efficiently increases heat production by dissipating the mitochondrial proton motive force. It has been suggested that activation of brown fat, via either environmental (i.e. cold exposure) or pharmacologic means, could be used to increase metabolic rate and thus reduce body weight. Here we assess the effects of intermittent cold exposure (4°C for one to eight hours three times a week) on C57BL/6J mice fed a high fat diet. Cold exposure increased metabolic rate approximately two-fold during the challenge and activated brown fat. In response, food intake increased to compensate fully for the increased energy expenditure; thus, the mice showed no reduction in body weight or adiposity. Despite the unchanged adiposity, the cold-treated mice showed transient improvements in glucose homeostasis. Administration of the cannabinoid receptor-1 inverse agonist AM251 caused weight loss and improvements in glucose homeostasis, but showed no further improvements when combined with cold exposure. These data suggest that intermittent cold exposure causes transient, meaningful improvements in glucose homeostasis, but without synergy when combined with AM251. Since energy expenditure is significantly increased during cold exposure, a drug that dissociates food intake from metabolic demand during cold exposure may achieve weight loss and further metabolic improvements. PMID:24465761

  16. Human Brown Fat Inducible Thioesterase Variant 2 (BFIT2) Cellular Localization and Catalytic Function#

    PubMed Central

    Chen, Danqi; Latham, John; Zhao, Hong; Bisoffi, Marco; Farelli, Jeremiah; Dunaway-Mariano, Debra

    2014-01-01

    The mammalian brown fat inducible thioesterase variant 2 (BFIT2), also known as ACOT11, is a multi-modular protein containing two consecutive hotdog-fold domains and a C-terminal steroidogenic acute regulatory protein related lipid transfer (START) domain (StarD14). In this study, we demonstrate that the N-terminal region of human BFIT2 (hBFIT2) constitutes a mitochondrial location signal sequence, which undergoes mitochondria-dependent posttranslational cleavage. The mature hBFIT2 is shown to be located in the mitochondrial matrix whereas the paralog “cytoplasmic acetyl-CoA hydrolase” (CACH, also known as ACOT12) was found in the cytoplam. In-vitro activity analysis of full-length hBFIT2 isolated from stably transfected HEK293 cells demonstrates selective thioesterase activity directed towards long chain fatty acyl-CoA thioesters, thus distinguishing BFIT2 catalytic function from that of CACH. The results from a protein-lipid overlay test indicate that the hBFIT2 StarD14 domain binds phosphatidylinositol 4-phosphate. PMID:22897136

  17. Genetic Manipulation of Brown Fat Via Oral Administration of an Engineered Recombinant Adeno-associated Viral Serotype Vector.

    PubMed

    Huang, Wei; McMurphy, Travis; Liu, Xianglan; Wang, Chuansong; Cao, Lei

    2016-06-01

    Recombinant adeno-associated virus (rAAV) vectors are attractive vehicles for gene therapy. Gene delivery to the adipose tissue using naturally occurring AAV serotypes is less successful compared to liver and muscle. Here, we demonstrate that oral administration of an engineered serotype Rec2 led to preferential transduction of brown fat with absence of transduction in the gastrointestinal track. Among the six natural and engineered serotypes being compared, Rec2 was the most efficient serotype achieving high level transduction at a dose 1~2 orders lower than reported doses for systemic administration. Overexpressing vascular endothelial growth factor (VEGF) in brown fat via oral administration of Rec2-VEGF vector increased the brown fat mass and enhanced thermogenesis. In contrast, knockdown VEGF in brown fat of VEGF (loxP) mice via Rec2-Cre vector hampered cold response and decreased brown fat mass. Oral administration of Rec2 vector provides a novel tool to genetically manipulate brown fat for research and therapeutic applications. PMID:26857843

  18. Brown Rice and Its Component, γ-Oryzanol, Attenuate the Preference for High-Fat Diet by Decreasing Hypothalamic Endoplasmic Reticulum Stress in Mice

    PubMed Central

    Kozuka, Chisayo; Yabiku, Kouichi; Sunagawa, Sumito; Ueda, Rei; Taira, Shin-ichiro; Ohshiro, Hiroyuki; Ikema, Tomomi; Yamakawa, Ken; Higa, Moritake; Tanaka, Hideaki; Takayama, Chitoshi; Matsushita, Masayuki; Oyadomari, Seiichi; Shimabukuro, Michio; Masuzaki, Hiroaki

    2012-01-01

    Brown rice is known to improve glucose intolerance and prevent the onset of diabetes. However, the underlying mechanisms remain obscure. In the current study, we investigated the effect of brown rice and its major component, γ-oryzanol (Orz), on feeding behavior and fuel homeostasis in mice. When mice were allowed free access to a brown rice–containing chow diet (CD) and a high-fat diet (HFD), they significantly preferred CD to HFD. To reduce hypothalamic endoplasmic reticulum (ER) stress on an HFD, mice were administered with 4-phenylbutyric acid, a chemical chaperone, which caused them to prefer the CD. Notably, oral administration of Orz, a mixture of major bioactive components in brown rice, also improved glucose intolerance and attenuated hypothalamic ER stress in mice fed the HFD. In murine primary neuronal cells, Orz attenuated the tunicamycin-induced ER stress. In luciferase reporter assays in human embryonic kidney 293 cells, Orz suppressed the activation of ER stress–responsive cis-acting elements and unfolded protein response element, suggesting that Orz acts as a chemical chaperone in viable cells. Collectively, the current study is the first demonstration that brown rice and Orz improve glucose metabolism, reduce hypothalamic ER stress, and, consequently, attenuate the preference for dietary fat in mice fed an HFD. PMID:22826028

  19. History of fat grafting: from ram fat to stem cells.

    PubMed

    Mazzola, Riccardo F; Mazzola, Isabella C

    2015-04-01

    Fat injection empirically started 100 years ago to correct contour deformities mainly on the face and breast. The German surgeon Eugene Hollaender (1867-1932) proposed a cocktail of human and ram fat, to avoid reabsorption. Nowadays, fat injection has evolved, and it ranks among the most popular procedures, for it provides the physician with a range of aesthetic and reconstructive clinical applications with regenerative effects on the surrounding tissues. New research from all over the world has demonstrated the role of adipose-derived stem cells, present in the adipose tissue, in the repair of damaged or missing tissues.

  20. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes.

    PubMed

    Lone, Jameel; Choi, Jae Heon; Kim, Sang Woo; Yun, Jong Won

    2016-01-01

    Recent advances have been made in the understanding of pharmacological and dietary agents that contribute to browning of white adipose tissue in order to combat obesity by promoting energy expenditure. Here, we show that curcumin induces browning of 3T3-L1 and primary white adipocytes via enhanced expression of brown fat-specific genes. Curcumin-induced browning in white adipocytes was investigated by determining expression levels of brown adipocyte-specific genes/proteins by real-time reverse transcriptase polymerase chain reaction, immunoblot analysis and immunocytochemical staining. Curcumin increased mitochondrial biogenesis, as evidenced by transmission electronic microscopic detection and enhanced expression of proteins involved in fat oxidation. Cucurmin also increased protein levels of hormone-sensitive lipase and p-acyl-CoA carboxylase, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis. Increased expression of UCP1 and other brown adipocyte-specific markers was possibly mediated by curcumin-induced activation of AMP-activated protein kinase (AMPK) based on the fact that inhibition of AMPK by dorsomorphin abolished expression of PRDM16, UCP1 and peroxisome proliferator-activated receptor gamma co-activator 1-alpha while the activator 5-Aminoimidazole-4-carboxamide ribonucleotide elevated expression of these brown marker proteins. Our findings suggest that curcumin plays a dual modulatory role in inhibition of adipogenesis as well as induction of the brown fat-like phenotype and thus may have potential therapeutic implications for treatment of obesity.

  1. Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice

    PubMed Central

    Oh, Ji-Hyun; Kim, Jaehoon

    2016-01-01

    BACKGROUND/OBJECTIVES Seaweeds have been reported to have various health beneficial effects. In this study, we investigated the potential anti-obesity and anti-inflammatory effects of four types of domestic brown seaweeds in a high-fat diet-induced obese mouse model and bone marrow-derived macrophages (BMDM). MATERIALS/METHODS Male C57BL/6N mice were fed low-fat diet (LFD), high-fat diet (HFD) or HFD containing Undaria Pinnatifida, HFD containing Laminaria Japonica (LJ), HFD containing Sargassum Fulvellum, or HFD containing Hizikia Fusiforme (HF) for 16 weeks. RESULTS Brown seaweed supplementation did not affect long-term HFD-associated changes in body weight or adiposity, although mice fed HFD + LJ or HFD + HF gained slightly less body weight compared with those fed HFD at the beginning of feeding. Despite being obese, mice fed HFD + LJ appeared to show improved insulin sensitivity compared to mice fed HFD. Consistently, we observed significantly reduced blood glucose concentrations in mice fed HFD + LJ compared with those of mice fed HFD. Although no significant differences in adipocyte size were detected among the HFD-fed groups, consumption of seaweeds decreased formation of HFD-induced crown-like structures in gonadal adipose tissue as well as plasma inflammatory cytokines. BMDM from mice fed HFDs with seaweeds showed differential regulation of pro-inflammatory cytokines such as IL-1β and IL-6 compared with BMDM from mice fed HFD by LPS stimulation. CONCLUSION Although seaweed consumption did not prevent long-term HFD-induced obesity in C57BL/6N mice, it reduced insulin resistance (IR) and circulation of pro-inflammatory cytokines. Therefore, seaweeds may ameliorate systemic inflammation and IR in obesity partially due to inhibition of inflammatory signaling in adipose tissue cells as well as bone marrow-derived immune cells. PMID:26865915

  2. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice

    PubMed Central

    DiSilvestro, David J.; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L. James; Kalyanasundaram, Anuradha; Gilor, Chen L.; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  3. Leptin Production by Encapsulated Adipocytes Increases Brown Fat, Decreases Resistin, and Improves Glucose Intolerance in Obese Mice.

    PubMed

    DiSilvestro, David J; Melgar-Bermudez, Emiliano; Yasmeen, Rumana; Fadda, Paolo; Lee, L James; Kalyanasundaram, Anuradha; Gilor, Chen L; Ziouzenkova, Ouliana

    2016-01-01

    The neuroendocrine effects of leptin on metabolism hold promise to be translated into a complementary therapy to traditional insulin therapy for diabetes and obesity. However, injections of leptin can provoke inflammation. We tested the effects of leptin, produced in the physiological adipocyte location, on metabolism in mouse models of genetic and dietary obesity. We generated 3T3-L1 adipocytes constitutively secreting leptin and encapsulated them in a poly-L-lysine membrane, which protects the cells from immune rejection. Ob/ob mice (OB) were injected with capsules containing no cells (empty, OB[Emp]), adipocytes (OB[3T3]), or adipocytes overexpressing leptin (OB[Lep]) into both visceral fat depots. Leptin was found in the plasma of OB[Lep], but not OB[Emp] and OB[3T3] mice at the end of treatment (72 days). The OB[Lep] and OB[3T3] mice have transiently suppressed appetite and weight loss compared to OB[Emp]. Only OB[Lep] mice have greater brown fat mass, metabolic rate, and reduced resistin plasma levels compared to OB[Emp]. Glucose tolerance was markedly better in OB[Lep] vs. OB[Emp] and OB[3T3] mice as well as in wild type mice with high-fat diet-induced obesity and insulin resistance treated with encapsulated leptin-producing adipocytes. Our proof-of-principle study provides evidence of long-term improvement of glucose tolerance with encapsulated adipocytes producing leptin. PMID:27055280

  4. A role for phosphodiesterase 3B in acquisition of brown fat characteristics by white adipose tissue in male mice.

    PubMed

    Guirguis, Emilia; Hockman, Steven; Chung, Youn Wook; Ahmad, Faiyaz; Gavrilova, Oksana; Raghavachari, Nalini; Yang, Yanqin; Niu, Gang; Chen, Xiaoyuan; Yu, Zu Xi; Liu, Shiwei; Degerman, Eva; Manganiello, Vincent

    2013-09-01

    Obesity is linked to various diseases, including insulin resistance, diabetes, and cardiovascular disorders. The idea of inducing white adipose tissue (WAT) to assume characteristics of brown adipose tissue (BAT), and thus gearing it to fat burning instead of storage, is receiving serious consideration as potential treatment for obesity and related disorders. Phosphodiesterase 3B (PDE3B) links insulin- and cAMP-signaling networks in tissues associated with energy metabolism, including WAT. We used C57BL/6 PDE3B knockout (KO) mice to elucidate mechanisms involved in the formation of BAT in epididymal WAT (EWAT) depots. Examination of gene expression profiles in PDE3B KO EWAT revealed increased expression of several genes that block white and promote brown adipogenesis, such as C-terminal binding protein, bone morphogenetic protein 7, and PR domain containing 16, but a clear BAT-like phenotype was not completely induced. However, acute treatment of PDE3B KO mice with the β3-adrenergic agonist, CL316243, markedly increased the expression of cyclooxygenase-2, which catalyzes prostaglandin synthesis and is thought to be important in the formation of BAT in WAT and the elongation of very long-chain fatty acids 3, which is linked to BAT recruitment upon cold exposure, causing a clear shift toward fat burning and the induction of BAT in KO EWAT. These data provide insight into the mechanisms of BAT formation in mouse EWAT, suggesting that, in a C57BL/6 background, an increase in cAMP, caused by ablation of PDE3B and administration of CL316243, may promote differentiation of prostaglandin-responsive progenitor cells in the EWAT stromal vascular fraction into functional brown adipocytes.

  5. Effect of Chronic Athletic Activity on Brown Fat in Young Women

    PubMed Central

    Singhal, Vibha; Maffazioli, Giovana D.; Ackerman, Kate E.; Lee, Hang; Elia, Elisa F.; Woolley, Ryan; Kolodny, Gerald; Cypess, Aaron M.; Misra, Madhusmita

    2016-01-01

    Background The effect of chronic exercise activity on brown adipose tissue (BAT) is not clear, with some studies showing positive and others showing negative associations. Chronic exercise is associated with increased resting energy expenditure (REE) secondary to increased lean mass and a probable increase in BAT. Many athletes are in a state of relative energy deficit suggested by lower fat mass and hypothalamic amenorrhea. States of severe energy deficit such as anorexia nervosa are associated with reduced BAT. There are no data regarding the impact of chronic exercise activity on BAT volume or activity in young women and it is unclear whether relative energy deficiency modifies the effects of exercise on BAT. Purpose We assessed cold induced BAT volume and activity in young female athletes compared with non-athletes, and further evaluated associations of BAT with measures of REE, body composition and menstrual status. Methods The protocol was approved by our Institutional Review Board. Written informed consent was obtained from all participants prior to study initiation. This was a cross-sectional study of 24 women (16 athletes and8 non-athletes) between 18–25 years of age. Athletes were either oligo-amenorrheic (n = 8) or eumenorrheic (n = 8).We used PET/CT scans to determine cold induced BAT activity, VMAX Encore 29 metabolic cart to obtain measures of REE, and DXA for body composition. Results Athletes and non-athletes did not differ for age or BMI. Compared with non-athletes, athletes had lower percent body fat (p = 0.002), higher percent lean mass (p = 0.01) and trended higher in REE (p = 0.09). BAT volume and activity in athletes trended lower than in non-athletes (p = 0.06; p = 0.07, respectively). We found negative associations of BAT activity with duration of amenorrhea (r = -0.46, p = 0.02).BAT volume correlated inversely with lean mass (r = -0.46, p = 0.02), and positively with percent body fat, irisin and thyroid hormones. Conclusions Our study

  6. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex.

    PubMed

    Ohno, Haruya; Shinoda, Kosaku; Ohyama, Kana; Sharp, Louis Z; Kajimura, Shingo

    2013-12-01

    Brown adipose tissue (BAT) dissipates chemical energy in the form of heat as a defence against hypothermia and obesity. Current evidence indicates that brown adipocytes arise from Myf5(+) dermotomal precursors through the action of PR domain containing protein 16 (PRDM16) transcriptional complex. However, the enzymatic component of the molecular switch that determines lineage specification of brown adipocytes remains unknown. Here we show that euchromatic histone-lysine N-methyltransferase 1 (EHMT1) is an essential BAT-enriched lysine methyltransferase in the PRDM16 transcriptional complex and controls brown adipose cell fate. Loss of EHMT1 in brown adipocytes causes a severe loss of brown fat characteristics and induces muscle differentiation in vivo through demethylation of histone 3 lysine 9 (H3K9me2 and 3) of the muscle-selective gene promoters. Conversely, EHMT1 expression positively regulates the BAT-selective thermogenic program by stabilizing the PRDM16 protein. Notably, adipose-specific deletion of EHMT1 leads to a marked reduction of BAT-mediated adaptive thermogenesis, obesity and systemic insulin resistance. These data indicate that EHMT1 is an essential enzymatic switch that controls brown adipose cell fate and energy homeostasis.

  7. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells

    PubMed Central

    Park, Anna; Kim, Won Kon; Bae, Kwang-Hee

    2014-01-01

    Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes. PMID:24567786

  8. Brown but not white adipose cells synthesize omega-3 docosahexaenoic acid in culture.

    PubMed

    Qin, Xia; Park, Hui Gyu; Zhang, Ji Yao; Lawrence, Peter; Liu, Guowen; Subramanian, Nivetha; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-01-01

    Adipose tissue is a complex endocrine organ which coordinates several crucial biological functions including fatty acid metabolism, glucose metabolism, energy homeostasis, and immune function. Brown adipose tissue (BAT) is most abundant in young infants during the brain growth spurt when demands for omega-3 docosahexaenoic acid (DHA, 22:6n-3) is greatest for brain structure. Our aim was to characterize relative biosynthesis of omega-3 long chain polyunsaturated fatty acids (LCPUFA) from precursors in cultured white (WAT) and brown (BAT) cells and study relevant gene expression. Mouse WAT and BAT cells were grown in regular DMEM media to confluence, and differentiation was induced. At days 0 and 8 cells were treated with albumin bound d5-18:3n-3 (d5-ALA) and analyzed 24h later. d5-ALA increased cellular eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3) in undifferentiated BAT cells, whereas differentiated BAT cells accumulated 20:4n-3, EPA and DPA. DHA as a fraction of total omega-3 LCPUFA was greatest in differentiated BAT cells compared to undifferentiated cells. Undifferentiated WAT cells accumulated EPA, whereas differentiated cells accumulated DPA. WAT accumulated trace newly synthesized DHA. Zic1 a classical brown marker and Prdm16 a key driver of brown fat cell fate are expressed only in BAT cells. Ppargc1a is 15 fold higher in differentiated BAT cells. We conclude that in differentiated adipose cells accumulating fat, BAT cells but not WAT cells synthesize DHA, supporting the hypothesis that BAT is a net producer of DHA.

  9. LSD1 Interacts with Zfp516 to Promote UCP1 Transcription and Brown Fat Program.

    PubMed

    Sambeat, Audrey; Gulyaeva, Olga; Dempersmier, Jon; Tharp, Kevin M; Stahl, Andreas; Paul, Sarah M; Sul, Hei Sook

    2016-06-14

    Zfp516, a brown fat (BAT)-enriched and cold-inducible transcription factor, promotes transcription of UCP1 and other BAT-enriched genes for non-shivering thermogenesis. Here, we identify lysine-specific demethylase 1 (LSD1) as a direct binding partner of Zfp516. We show that, through interaction with Zfp516, LSD1 is recruited to UCP1 and other BAT-enriched genes, such as PGC1α, to function as a coactivator by demethylating H3K9. We also show that LSD1 is induced during brown adipogenesis and that LSD1 and its demethylase activity is required for the BAT program. Furthermore, we show that LSD1 ablation in mice using Myf5-Cre alters embryonic BAT development. Moreover, BAT-specific deletion of LSD1 via the use of UCP1-Cre impairs the BAT program and BAT development, making BAT resemble WAT, reducing thermogenic activity and promoting obesity. Finally, we demonstrate an in vivo requirement of the Zfp516-LSD1 interaction for LSD1 function in BAT gene activation. PMID:27264172

  10. Adipose-specific Lipoprotein Lipase Deficiency More Profoundly Affects Brown than White Fat Biology*

    PubMed Central

    Garcia-Arcos, Itsaso; Hiyama, Yaeko; Drosatos, Konstantinos; Bharadwaj, Kalyani G.; Hu, Yunying; Son, Ni Huiping; O'Byrne, Sheila M.; Chang, Chuchun L.; Deckelbaum, Richard J.; Takahashi, Manabu; Westerterp, Marit; Obunike, Joseph C.; Jiang, Hongfeng; Yagyu, Hiroaki; Blaner, William S.; Goldberg, Ira J.

    2013-01-01

    Adipose fat storage is thought to require uptake of circulating triglyceride (TG)-derived fatty acids via lipoprotein lipase (LpL). To determine how LpL affects the biology of adipose tissue, we created adipose-specific LpL knock-out (ATLO) mice, and we compared them with whole body LpL knock-out mice rescued with muscle LpL expression (MCK/L0) and wild type (WT) mice. ATLO LpL mRNA and activity were reduced, respectively, 75 and 70% in gonadal adipose tissue (GAT), 90 and 80% in subcutaneous tissue, and 84 and 85% in brown adipose tissue (BAT). ATLO mice had increased plasma TG levels associated with reduced chylomicron TG uptake into BAT and lung. ATLO BAT, but not GAT, had altered TG composition. GAT from MCK/L0 was smaller and contained less polyunsaturated fatty acids in TG, although GAT from ATLO was normal unless LpL was overexpressed in muscle. High fat diet feeding led to less adipose in MCK/L0 mice but TG acyl composition in subcutaneous tissue and BAT reverted to that of WT. Therefore, adipocyte LpL in BAT modulates plasma lipoprotein clearance, and the greater metabolic activity of this depot makes its lipid composition more dependent on LpL-mediated uptake. Loss of adipose LpL reduces fat accumulation only if accompanied by greater LpL activity in muscle. These data support the role of LpL as the “gatekeeper” for tissue lipid distribution. PMID:23542081

  11. Ursolic Acid Increases Skeletal Muscle and Brown Fat and Decreases Diet-Induced Obesity, Glucose Intolerance and Fatty Liver Disease

    PubMed Central

    Kunkel, Steven D.; Elmore, Christopher J.; Bongers, Kale S.; Ebert, Scott M.; Fox, Daniel K.; Dyle, Michael C.; Bullard, Steven A.; Adams, Christopher M.

    2012-01-01

    Skeletal muscle Akt activity stimulates muscle growth and imparts resistance to obesity, glucose intolerance and fatty liver disease. We recently found that ursolic acid increases skeletal muscle Akt activity and stimulates muscle growth in non-obese mice. Here, we tested the hypothesis that ursolic acid might increase skeletal muscle Akt activity in a mouse model of diet-induced obesity. We studied mice that consumed a high fat diet lacking or containing ursolic acid. In skeletal muscle, ursolic acid increased Akt activity, as well as downstream mRNAs that promote glucose utilization (hexokinase-II), blood vessel recruitment (Vegfa) and autocrine/paracrine IGF-I signaling (Igf1). As a result, ursolic acid increased skeletal muscle mass, fast and slow muscle fiber size, grip strength and exercise capacity. Interestingly, ursolic acid also increased brown fat, a tissue that shares developmental origins with skeletal muscle. Consistent with increased skeletal muscle and brown fat, ursolic acid increased energy expenditure, leading to reduced obesity, improved glucose tolerance and decreased hepatic steatosis. These data support a model in which ursolic acid reduces obesity, glucose intolerance and fatty liver disease by increasing skeletal muscle and brown fat, and suggest ursolic acid as a potential therapeutic approach for obesity and obesity-related illness. PMID:22745735

  12. MicroRNA 34a inhibits beige and brown fat formation in obesity in part by suppressing adipocyte fibroblast growth factor 21 signaling and SIRT1 function.

    PubMed

    Fu, Ting; Seok, Sunmi; Choi, Sunge; Huang, Zhang; Suino-Powell, Kelly; Xu, H Eric; Kemper, Byron; Kemper, Jongsook Kim

    2014-11-15

    Brown fat generates heat through uncoupled respiration, protecting against hypothermia and obesity. Adult humans have brown fat, but the amounts and activities are substantially decreased in obesity, by unknown mechanisms. Here we show that elevated microRNA 34a (miR-34a) in obesity inhibits fat browning in part by suppressing the browning activators fibroblast growth factor 21 (FGF21) and SIRT1. Lentivirus-mediated downregulation of miR-34a in mice with diet-induced obesity reduced adiposity, improved serum profiles, increased the mitochondrial DNA copy number, and increased oxidative function in adipose tissue in both BALB/c and C57BL/6 mice. Remarkably, downregulation of miR-34a increased coexpression of the beige fat-specific marker CD137 and the browning marker UCP1 in all types of white fat, including visceral fat, and promoted additional browning in brown fat. Mechanistically, downregulation of miR-34a increased expression of the FGF21 receptor components, FGFR1 and βKL, and also that of SIRT1, resulting in FGF21/SIRT1-dependent deacetylation of PGC-1α and induction of the browning genes Ucp1, Pgc-1α, and Prdm16. Importantly, anti-miR-34a-mediated beneficial effects, including decreased adiposity, are likely from multiple tissues, since downregulation of miR-34a also improves hepatic FGF21 signaling and lipid oxidation. This study identifies miR-34a as an inhibitor of beige and brown fat formation, providing a potential target for treating obesity-related diseases.

  13. GQ-16, a TZD-Derived Partial PPARγ Agonist, Induces the Expression of Thermogenesis-Related Genes in Brown Fat and Visceral White Fat and Decreases Visceral Adiposity in Obese and Hyperglycemic Mice

    PubMed Central

    Coelho, Michella S.; de Lima, Caroline L.; Royer, Carine; Silva, Janaina B.; Oliveira, Fernanda C. B.; Christ, Camila G.; Pereira, Sidney A.; Bao, Sonia N.; Lima, Maria C. A.; Pitta, Marina G. R.; Pitta, Ivan R.; Neves, Francisco A. R.; Amato, Angélica A.

    2016-01-01

    Background Beige adipocytes comprise a unique thermogenic cell type in the white adipose tissue (WAT) of rodents and humans, and play a critical role in energy homeostasis. In this scenario, recruitment of beige cells has been an important focus of interest for the development of novel therapeutic strategies to treat obesity. PPARγ activation by full agonists (thiazolidinediones, TZDs) drives the appearance of beige cells, a process so-called browning of WAT. However, this does not translate into increased energy expenditure, and TZDs are associated with weight gain. Partial PPARγ agonists, on the other hand, do not induce weight gain, but have not been shown to drive WAT browning. The present study was designed to investigate the effects of GQ-16 on BAT and on browning of WAT in obese mice. Methods Male Swiss mice with obesity and hyperglycemia induced by high fat diet were treated with vehicle, rosiglitazone (4 mg/kg/d) or the TZD-derived partial PPARγ agonist GQ-16 (40 mg/kg/d) for 14 days. Fasting blood glucose, aspartate aminotransferase, alanine aminotransferase and lipid profile were measured. WAT and brown adipose tissue (BAT) depots were excised for determination of adiposity, relative expression of Ucp-1, Cidea, Prdm16, Cd40 and Tmem26 by RT-qPCR, histological analysis, and UCP-1 protein expression analysis by immunohistochemistry. Liver samples were also removed for histological analysis and determination of hepatic triglyceride content. Results GQ-16 treatment reduced high fat diet-induced weight gain in mice despite increasing energy intake. This was accompanied by reduced epididymal fat mass, reduced liver triglyceride content, morphological signs of increased BAT activity, increased expression of thermogenesis-related genes in interscapular BAT and epididymal WAT, and increased UCP-1 protein expression in interscapular BAT and in epididymal and inguinal WAT. Conclusion This study suggests for the first time that a partial PPARγ agonist may

  14. Bardoxolone Methyl Prevents Fat Deposition and Inflammation in Brown Adipose Tissue and Enhances Sympathetic Activity in Mice Fed a High-Fat Diet

    PubMed Central

    Dinh, Chi H. L.; Szabo, Alexander; Yu, Yinghua; Camer, Danielle; Zhang, Qingsheng; Wang, Hongqin; Huang, Xu-Feng

    2015-01-01

    Obesity results in changes in brown adipose tissue (BAT) morphology, leading to fat deposition, inflammation, and alterations in sympathetic nerve activity. Bardoxolone methyl (BARD) has been extensively studied for the treatment of chronic diseases. We present for the first time the effects of oral BARD treatment on BAT morphology and associated changes in the brainstem. Three groups (n = 7) of C57BL/6J mice were fed either a high-fat diet (HFD), a high-fat diet supplemented with BARD (HFD/BARD), or a low-fat diet (LFD) for 21 weeks. BARD was administered daily in drinking water. Interscapular BAT, and ventrolateral medulla (VLM) and dorsal vagal complex (DVC) in the brainstem, were collected for analysis by histology, immunohistochemistry and Western blot. BARD prevented fat deposition in BAT, demonstrated by the decreased accumulation of lipid droplets. When administered BARD, HFD mice had lower numbers of F4/80 and CD11c macrophages in the BAT with an increased proportion of CD206 macrophages, suggesting an anti-inflammatory effect. BARD increased phosphorylation of tyrosine hydroxylase in BAT and VLM. In the VLM, BARD increased energy expenditure proteins, including beta 3-adrenergic receptor (β3-AR) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Overall, oral BARD prevented fat deposition and inflammation in BAT, and stimulated sympathetic nerve activity. PMID:26066016

  15. Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes

    PubMed Central

    Bordicchia, Marica; Liu, Dianxin; Amri, Ez-Zoubir; Ailhaud, Gerard; Dessì-Fulgheri, Paolo; Zhang, Chaoying; Takahashi, Nobuyuki; Sarzani, Riccardo; Collins, Sheila

    2012-01-01

    The ability of mammals to resist body fat accumulation is linked to their ability to expand the number and activity of “brown adipocytes” within white fat depots. Activation of β-adrenergic receptors (β-ARs) can induce a functional “brown-like” adipocyte phenotype. As cardiac natriuretic peptides (NPs) and β-AR agonists are similarly potent at stimulating lipolysis in human adipocytes, we investigated whether NPs could induce human and mouse adipocytes to acquire brown adipocyte features, including a capacity for thermogenic energy expenditure mediated by uncoupling protein 1 (UCP1). In human adipocytes, atrial NP (ANP) and ventricular NP (BNP) activated PPARγ coactivator-1α (PGC-1α) and UCP1 expression, induced mitochondriogenesis, and increased uncoupled and total respiration. At low concentrations, ANP and β-AR agonists additively enhanced expression of brown fat and mitochondrial markers in a p38 MAPK–dependent manner. Mice exposed to cold temperatures had increased levels of circulating NPs as well as higher expression of NP signaling receptor and lower expression of the NP clearance receptor (Nprc) in brown adipose tissue (BAT) and white adipose tissue (WAT). NPR-C–/– mice had markedly smaller WAT and BAT depots but higher expression of thermogenic genes such as Ucp1. Infusion of BNP into mice robustly increased Ucp1 and Pgc-1α expression in WAT and BAT, with corresponding elevation of respiration and energy expenditure. These results suggest that NPs promote “browning” of white adipocytes to increase energy expenditure, defining the heart as a central regulator of adipose tissue biology. PMID:22307324

  16. Lower weight gain and hepatic lipid content in hamsters fed high fat diets supplemented with white rice protein, brown rice protein, and soy protein and their hydrolysates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physiological effects of the hydrolysates from white rice, brown rice, and soy isolate were compared to the original protein source. White rice, brown rice, and soy protein were hydrolyzed with the food grade enzyme, alcalase2.4 L®. Male Syrian hamsters were fed high-fat diets containing eithe...

  17. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis

    PubMed Central

    McGlashon, Jacob M.; Gorecki, Michelle C.; Kozlowski, Amanda E.; Thirnbeck, Caitlin K.; Markan, Kathleen R.; Leslie, Kirstie L.; Kotas, Maya E.; Potthoff, Matthew J.; Richerson, George B.; Gillum, Matthew P.

    2015-01-01

    Summary Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids. Serotonin (5-HT) neurons in the central nervous system are essential for thermoregulation and accordingly may control metabolic activity of thermogenic fat. To test this, we generated mice in which the human diphtheria toxin receptor was selectively expressed in central 5-HT neurons. Treatment with diphtheria toxin eliminated 5-HT neurons and caused loss of thermoregulation, brown adipose tissue (BAT) steatosis, and a >50% decrease in uncoupling protein 1 (Ucp1) expression in BAT and inguinal white adipose tissue (WAT). In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold and triglycerides 6.5-fold. Similar BAT and beige fat defects occurred in Lmx1bf/f/p mice, in which 5-HT neurons fail to develop in utero. We conclude 5-HT neurons play a major role in regulating glucose and lipid homeostasis, in part through recruitment and metabolic activation of brown and beige adipocytes. PMID:25955206

  18. Effects of the Polysaccharide from the Sporophyll of Brown Alga Undaria Pinnatifida on Serum Lipid Profile and Fat Tissue Accumulation in Rats Fed a High-Fat Diet.

    PubMed

    Kim, Byoung-Mok; Park, Jae-Ho; Kim, Dong-Soo; Kim, Young-Myung; Jun, Joon-Young; Jeong, In-Hak; Chi, Young-Min

    2016-07-01

    We investigated the effects of the polysaccharide from the sporophyll of a selected brown alga Undaria pinnatifida on serum lipid profile, fat tissue accumulation, and gastrointestinal transit time in rats fed a high-fat diet. The algal polysaccharide (AP) was prepared by the treatment of multiple cellulase-producing fungi Trichoderma reesei and obtained from the sporophyll with a yield of 38.7% (dry basis). The AP was mostly composed of alginate and fucoidan (up to 89%) in a ratio of 3.75:1. The AP was added to the high-fat diet in concentrations of 0.6% and 1.7% and was given to male Sprague-Dawley rats (5-wk-old) for 5 wk. The 1.7% AP addition notably reduced body weight gain and fat tissue accumulation, and it improved the serum lipid profile, including triglycerides, total cholesterol, and very low-density lipoprotein-cholesterol. The effects were associated with increased feces weight and shortened gastrointestinal transit time. In addition, the lipid peroxidation of the liver was decreased in both groups.

  19. Effects of the Polysaccharide from the Sporophyll of Brown Alga Undaria Pinnatifida on Serum Lipid Profile and Fat Tissue Accumulation in Rats Fed a High-Fat Diet.

    PubMed

    Kim, Byoung-Mok; Park, Jae-Ho; Kim, Dong-Soo; Kim, Young-Myung; Jun, Joon-Young; Jeong, In-Hak; Chi, Young-Min

    2016-07-01

    We investigated the effects of the polysaccharide from the sporophyll of a selected brown alga Undaria pinnatifida on serum lipid profile, fat tissue accumulation, and gastrointestinal transit time in rats fed a high-fat diet. The algal polysaccharide (AP) was prepared by the treatment of multiple cellulase-producing fungi Trichoderma reesei and obtained from the sporophyll with a yield of 38.7% (dry basis). The AP was mostly composed of alginate and fucoidan (up to 89%) in a ratio of 3.75:1. The AP was added to the high-fat diet in concentrations of 0.6% and 1.7% and was given to male Sprague-Dawley rats (5-wk-old) for 5 wk. The 1.7% AP addition notably reduced body weight gain and fat tissue accumulation, and it improved the serum lipid profile, including triglycerides, total cholesterol, and very low-density lipoprotein-cholesterol. The effects were associated with increased feces weight and shortened gastrointestinal transit time. In addition, the lipid peroxidation of the liver was decreased in both groups. PMID:27384013

  20. Gene expression profiles reveal effect of a high-fat diet on the development of white and brown adipose tissues.

    PubMed

    Kim, Hyeng-Soo; Ryoo, Zae Young; Choi, Sang Un; Lee, Sanggyu

    2015-07-01

    Because of the recent discovery of brown adipose tissues tissue in adult humans, brown adipose tissues have garnered additional attention. Many studies have attempted to transform the precursor cells within the white adipocyte cultures to Brite (brown-in-white) cells by using genomic modification or pharmacological activation in order to determine the therapeutic effect of obesity. However, genome-scale analysis of the genetic factors governing the development of white and brown adipose tissues remains incomplete. In order to identify the key genes that regulate the development of white and brown adipose tissues in mice, a transcriptome analysis was performed on the adipose tissues. Network analysis of differentially expressed genes indicated that Trim30 and Ucp3 play pivotal roles in energy balance and glucose homeostasis. In addition, it was discovered that identical biological processes and pathways in the white and brown adipose tissues might be regulated by different genes. Trim30 and Ucp3 might be used as genetic markers to precisely represent the stage of obesity during the early and late stages of adipose tissue development, respectively. These results may provide a stepping-stone for future obesity-related studies.

  1. Metabolically Active Brown Fat Mimicking Pericardial Metastasis on PET/CT: The Discriminating Role of Cardiac Magnetic Resonance Imaging.

    PubMed

    Pagé, Maude; Quarto, Cesare; Mancuso, Enrico; Mohiaddin, Raad H

    2016-08-01

    Metabolically active mediastinal brown adipose tissue may be mistakenly diagnosed as a malignancy on 18F-fluoro-2-deoxy-D-glucose (FDG)/positron emission tomography (PET). We report the case of a patient with locally recurrent breast carcinoma in which staging PET/CT revealed a suspicious pericardial lesion for which the patient was referred to our centre. The novelty of this case resides in the fact that by tissue characterization, cardiac magnetic resonance imaging allowed the determination that the lesion corresponded to brown fat, a reassuring finding with important impact on management, because the presence of pericardial metastasis would have disqualified this patient for curative resection of her cancer recurrence. PMID:26860773

  2. Chronic activation of pattern recognition receptors suppresses brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes.

    PubMed

    Bae, Jiyoung; Chen, Jiangang; Zhao, Ling

    2015-06-01

    Brown adipose tissue (BAT) holds promise to combat obesity through energy-spending, non-shivering thermogenesis. Understanding of regulation of BAT development can lead to novel strategies to increase BAT mass and function for obesity treatment and prevention. Here, we report the effects of chronic activation of PRR on brown adipogenesis of multipotent mesodermal stem C3H10T1/2 cells and immortalized brown pre-adipocytes from the classical interscapular BAT of mice. Activation of NOD1, TLR4, or TLR2 by their respective synthetic ligand suppressed brown marker gene expression and lipid accumulation during differentiation of brown-like adipocytes of C3H10T1/2. Activation of the PRR only during the commitment was sufficient to suppress the differentiation. PRR activation suppressed PGC-1α mRNA, but induced PRDM16 mRNA at the commitment. Consistently, PRR activation suppressed the differentiation of immortalized brown pre-adipocytes. Activation of PRR induced NF-κB activation in both cells, which correlated with their abilities to suppress PPARγ transactivation, a critical event for brown adipogenesis. Taken together, our results demonstrate that chronic PRR activation suppressed brown adipogenesis of multipotent mesodermal stem cells and brown pre-adipocytes, possibly through suppression of PPARγ transactivation. The results suggest that anti- inflammatory therapies targeting PRRs may be beneficial for the BAT development.

  3. Anti-obesity effects of germinated brown rice extract through down-regulation of lipogenic genes in high fat diet-induced obese mice.

    PubMed

    Ho, Jin-Nyoung; Son, Mi-Eun; Lim, Won-Chul; Lim, Seung-Taik; Cho, Hong-Yon

    2012-01-01

    Lipid accumulation using Oil Red O dye was measured in 3T3-L1 murine adipocytes to examine the anti-obesity effect of four types of germinated rice, including germinated brown rice (GBR), germinated waxy brown rice (GWBR), germinated black rice (GB-R), and germinated waxy black rice (GWB-R). GBR methanol extract exhibited the highest suppression of lipid accumulation in the 3T3-L1 cell line and also the anti-obesity effect of GBR on high fat induced-obese mice. The mice were divided into three groups and were administered: ND, a normal diet; HFD control, a high fat diet; and GBR, a high fat diet plus 0.15% GBR methanol extract for 7 weeks. GBR administration significantly decreased body weight gain and lipid accumulation in the liver and epididymal adipose tissue as compared to the HFD control group. In addition, serum triglycerides (TGs) and total cholesterol (TC) levels were significantly decreased by following GBR administration compared with those in the HFD control group, whereas the high-density lipoprotein (HDL) cholesterol level increased. Furthermore, the mRNA levels of adipogenic transcriptional factors, such as CCAAT enhancer binding protein (C/EBP)-α, sterol regulatory element-binding protein (SREBP)-1c, and peroxisome proliferator activated receptors (PPAR)-γ, and related genes (aP2, FAS), decreased significantly. Taken together, GBR administration suppressed body weight gain and lipid accumulation in the liver and epididymal adipocytes, and improved serum lipid profiles, in part, by controlling adipogenesis through a reduction in transcriptional factors. These results suggest that GBR is a potential agent against obesity.

  4. NT-PGC-1α activation attenuates high-fat diet-induced obesity by enhancing brown fat thermogenesis and adipose tissue oxidative metabolism.

    PubMed

    Jun, Hee-Jin; Joshi, Yagini; Patil, Yuvraj; Noland, Robert C; Chang, Ji Suk

    2014-11-01

    The transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and its splice variant N terminal (NT)-PGC-1α regulate adaptive thermogenesis by transcriptional induction of thermogenic and mitochondrial genes involved in energy metabolism. We previously reported that full-length PGC-1α (FL-PGC-1α) is dispensable for cold-induced nonshivering thermogenesis in FL-PGC-1α(-/-) mice, since a slightly shorter but functionally equivalent form of NT-PGC-1α (NT-PGC-1α(254)) fully compensates for the loss of FL-PGC-1α in brown and white adipose tissue. In the current study, we challenged FL-PGC-1α(-/-) mice with a high-fat diet (HFD) to investigate the effects of diet-induced thermogenesis on HFD-induced obesity. Despite a large decrease in locomotor activity, FL-PGC-1α(-/-) mice exhibited the surprising ability to attenuate HFD-induced obesity. Reduced fat mass in FL-PGC-1α(-/-) mice was closely associated with an increase in body temperature, energy expenditure, and whole-body fatty acid oxidation (FAO). Mechanistically, FL-PGC-1α(-/-) brown adipose tissue had an increased capacity to oxidize fatty acids and dissipate energy as heat, in accordance with upregulation of thermogenic genes UCP1 and DIO2. Furthermore, augmented expression of FAO and lipolytic genes in FL-PGC-1α(-/-) white adipose tissue was highly correlated with decreased fat storage in adipose tissue. Collectively, our data highlight a protective effect of NT-PGC-1α on diet-induced obesity by enhancing diet-induced thermogenesis and FAO.

  5. Melipona quadrifasciata (Hymenoptera: Apidae) fat body persists through metamorphosis with a few apoptotic cells and an increased autophagy.

    PubMed

    Santos, Douglas Elias; Azevedo, Dihego Oliveira; Campos, Lúcio Antônio Oliveira; Zanuncio, José Cola; Serrão, José Eduardo

    2015-03-01

    Fat body, typically comprising trophocytes, provides energy during metamorphosis. The fat body can be renewed once the larval phase is complete or recycled and relocated to form the fat body of the adult insect. This study aims to identify the class of programmed cell death that occurs within the fat body cells during the metamorphosis of the stingless bee Melipona quadrifasciata. Using immunodetection techniques, the fat body of the post-defecating larvae and the white-, pink-, brown-, and black-eyed pupae were tested for cleaved caspase-3 and DNA integrity, followed by ultrastructural analysis and identification of autophagy using RT-PCR for the Atg1 gene. The fat body of M. quadrifasciata showed some apoptotic cells positive for cleaved caspase-3, although without DNA fragmentation. During development, the fat body cells revealed an increased number of mitochondria and free ribosomes, in addition to higher amounts of autophagy Atg1 mRNA, than that of the pupae. The fat body of M. quadrifasciata showed few cells which underwent apoptosis, but there was evidence of increased autophagy at the completion of the larval stage. All together, these data show that some fat body cells persist during metamorphosis in the stingless bee M. quadrifasciata.

  6. LMNA Mutations Induce a Non-Inflammatory Fibrosis and a Brown Fat-Like Dystrophy of Enlarged Cervical Adipose Tissue

    PubMed Central

    Béréziat, Véronique; Cervera, Pascale; Le Dour, Caroline; Verpont, Marie-Christine; Dumont, Sylvie; Vantyghem, Marie-Christine; Capeau, Jacqueline; Vigouroux, Corinne

    2011-01-01

    Some LMNA mutations responsible for insulin-resistant lipodystrophic syndromes are associated with peripheral subcutaneous lipoatrophy and faciocervical fat accumulation. Their pathophysiologic characteristics are unknown. We compared histologic, immunohistologic, ultrastructural, and protein expression features of enlarged cervical subcutaneous adipose tissue (scAT) obtained during plastic surgery from four patients with LMNA p.R482W, p.R439C, or p.H506D mutations versus cervical fat from eight control subjects, buffalo humps from five patients with HIV infection treated or not with protease inhibitors, and dorsocervical lipomas from two patients with mitochondrial DNA mutations. LMNA-mutated cervical scAT and HIV-related buffalo humps were dystrophic, with an increased percentage of small adipocytes, increased fibrosis without inflammatory features, and decreased number of blood vessels, as compared with control samples. Samples from patients with LMNA mutations or protease inhibitor–based therapy demonstrated accumulation of prelamin A, altered expression of adipogenic proteins and brown fat-like features, with an increased number of mitochondria and overexpression of uncoupling protein 1 (UCP1). These features were absent in samples from control subjects and from patients with HIV not treated with protease inhibitors. Mitochondrial DNA–mutated cervical lipomas demonstrated inflammatory fibrosis with distinct mitochondrial abnormalities but neither UCP1 expression nor prelamin A accumulation. In conclusion, Enlarged cervical scAT from patients with lipodystrophy demonstrated small adipocytes, fibrosis, and decreased vessel numbers. However, only cervical fat from patients with LMNA mutations or who had received protease inhibitor therapy accumulated prelamin A and exhibited similar remodeling toward a brown-like phenotype with UCP1 overexpression and mitochondrial alterations. PMID:21945321

  7. Gut Microbiota Cool-Down Burning Fat! The Immune Hypothesis.

    PubMed

    Burcelin, Remy; Pomié, Céline

    2016-02-01

    Obesity is characterized by gut microbiota dysbiosis and reduced thermogenic activity of brown adipose tissue. A recent study reveals that gut microbiota hampers the emergence of thermogenic brown fat cells named beige cells within white fat depots via a mechanism that involves the control of macrophages and eosinophil infiltration. PMID:26747615

  8. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    PubMed

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented.

  9. Mechanisms and effective control of physiological browning phenomena in plant cell cultures.

    PubMed

    Dong, Yan-Shan; Fu, Chun-Hua; Su, Peng; Xu, Xiang-Ping; Yuan, Jie; Wang, Sheng; Zhang, Meng; Zhao, Chun-Fang; Yu, Long-Jiang

    2016-01-01

    Browning phenomena are ubiquitous in plant cell cultures that severely hamper scientific research and widespread application of plant cell cultures. Up to now, this problem still has not been well controlled due to the unclear browning mechanisms in plant cell cultures. In this paper, the mechanisms were investigated using two typical materials with severe browning phenomena, Taxus chinensis and Glycyrrhiza inflata cells. Our results illustrated that the browning is attributed to a physiological enzymatic reaction, and phenolic biosynthesis regulated by sugar plays a decisive role in the browning. Furthermore, to confirm the specific compounds which participate in the enzymatic browning reaction, transcriptional profile and metabolites of T. chinensis cells, and UV scanning and high-performance liquid chromatography-mass spectrometry (HPLC-MS) profile of the browning compounds extracted from the brown-turned medium were analyzed, flavonoids derived from phenylpropanoid pathway were found to be the main compounds, and myricetin and quercetin were deduced to be the main substrates of the browning reaction. Inhibition of flavonoid biosynthesis can prevent the browning occurrence, and the browning is effectively controlled via blocking flavonoid biosynthesis by gibberellic acid (GA3 ) as an inhibitor, which further confirms that flavonoids mainly contribute to the browning. On the basis above, a model elucidating enzymatic browning mechanisms in plant cell cultures was put forward, and effective control approaches were presented. PMID:26333689

  10. Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat.

    PubMed

    Jiang, Chunhui; Kuang, Liangju; Merkel, Madeline P; Yue, Feng; Cano-Vega, Mario Alberto; Narayanan, Naagarajan; Kuang, Shihuan; Deng, Meng

    2015-01-01

    Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide) (PLGA), a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

  11. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone

    EPA Science Inventory

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...

  12. A high-fat diet impairs cooling-evoked brown adipose tissue activation via a vagal afferent mechanism.

    PubMed

    Madden, Christopher J; Morrison, Shaun F

    2016-08-01

    In dramatic contrast to rats on a control diet, rats maintained on a high-fat diet (HFD) failed to activate brown adipose tissue (BAT) during cooling despite robust increases in their BAT activity following direct activation of their BAT sympathetic premotor neurons in the raphe pallidus. Cervical vagotomy or blockade of glutamate receptors in the nucleus of the tractus solitarii (NTS) reversed the HFD-induced inhibition of cold-evoked BAT activity. Thus, a HFD does not prevent rats from mounting a robust, centrally driven BAT thermogenesis; however, a HFD does alter a vagal afferent input to NTS neurons, thereby preventing the normal activation of BAT thermogenesis to cooling. These results, paralleling the absence of cooling-evoked glucose uptake in the BAT of obese humans, reveal a neural mechanism through which consumption of a HFD contributes to reduced energy expenditure and thus to weight gain. PMID:27354235

  13. Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes.

    PubMed

    Townsend, K L; Tseng, Y-H

    2015-08-01

    Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing differentiation of brown adipocytes in white fat depots through a process termed 'browning'. Sympathetic innervation of brown and white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical perspective on the discovery of 'browning'. We also provide an overview of constitutive BAT vs rBAT in mouse and human. PMID:27152169

  14. PAZ6 Cells Constitute a Representative Model for Human Brown Pre-Adipocytes

    PubMed Central

    Kazantzis, Melissa; Takahashi, Virginia; Hinkle, Jessica; Kota, Smitha; Zilberfarb, Vladimir; Issad, Tarik; Abdelkarim, Mouaadh; Chouchane, Lotfi

    2012-01-01

    The role of brown adipose tissue (BAT) in human metabolism and its potential as an anti-obesity target organ have recently received much renewed attention. Following radiological detection of substantial amounts of BAT in adults by several independent research groups, an increasing number of studies are now dedicated to uncover BAT’s genetic, developmental, and environmental determinants. In contrast to murine BAT, human BAT is not present as a single major fat depot in a well-defined location. The distribution of BAT in several areas in the body significantly limits its availability to research. A human brown adipocyte cell line is therefore critical in broadening the options available to researchers in the field. The human BAT-cell line PAZ6 was created to address such a need and has been well characterized by several research groups around the world. In the present review, we discuss their findings and propose potential applications of the PAZ6 cells in addressing the relevant questions in the BAT field, namely for future use in therapeutic applications. PMID:22649407

  15. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice

    PubMed Central

    Liang, Xingwei; Yang, Qiyuan; Zhang, Lupei; Maricelli, Joseph W; Rodgers, Buel D.; Zhu, Mei-Jun; Du, Min

    2016-01-01

    Maternal obesity and high-fat diet (HFD) predisposes offspring to obesity and metabolic diseases. Due to uncoupling, brown adipose tissue (BAT) dissipates energy via heat generation, mitigating obesity and diabetes. The lactation stage is a manageable period for improving the health of offspring of obese mothers, but the impact of maternal HFD during lactation on offspring BAT function is unknown. To determine, female mice were fed either a control or HFD during lactation. At weaning, HFD offspring gained more body weight and had greater body fat mass compared to the control, and these differences maintained into adulthood, which correlated with glucose intolerance and insulin resistance in HFD offspring. Adaptive thermogenesis of BAT was impaired in HFD offspring at weaning. In adulthood, HFD offspring BAT had lower Ucp1 expression and thermogenic activity. Mechanistically, maternal HFD feeding during lactation elevated peripheral serotonin, which decreased the sensitivity of BAT to sympathetic β3-adrenergic signaling. Importantly, early postnatal metformin administration decreased serotonin concentration and ameliorated the impairment of offspring BAT due to maternal HFD. Our data suggest that attenuation of BAT thermogenic function may be a key mechanism linking maternal HFD during lactation to persisted metabolic disorder in the offspring. PMID:27686741

  16. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate.

    PubMed

    Pospisilik, J Andrew; Schramek, Daniel; Schnidar, Harald; Cronin, Shane J F; Nehme, Nadine T; Zhang, Xiaoyun; Knauf, Claude; Cani, Patrice D; Aumayr, Karin; Todoric, Jelena; Bayer, Martina; Haschemi, Arvand; Puviindran, Vijitha; Tar, Krisztina; Orthofer, Michael; Neely, G Gregory; Dietzl, Georg; Manoukian, Armen; Funovics, Martin; Prager, Gerhard; Wagner, Oswald; Ferrandon, Dominique; Aberger, Fritz; Hui, Chi-chung; Esterbauer, Harald; Penninger, Josef M

    2010-01-01

    Over 1 billion people are estimated to be overweight, placing them at risk for diabetes, cardiovascular disease, and cancer. We performed a systems-level genetic dissection of adiposity regulation using genome-wide RNAi screening in adult Drosophila. As a follow-up, the resulting approximately 500 candidate obesity genes were functionally classified using muscle-, oenocyte-, fat-body-, and neuronal-specific knockdown in vivo and revealed hedgehog signaling as the top-scoring fat-body-specific pathway. To extrapolate these findings into mammals, we generated fat-specific hedgehog-activation mutant mice. Intriguingly, these mice displayed near total loss of white, but not brown, fat compartments. Mechanistically, activation of hedgehog signaling irreversibly blocked differentiation of white adipocytes through direct, coordinate modulation of early adipogenic factors. These findings identify a role for hedgehog signaling in white/brown adipocyte determination and link in vivo RNAi-based scanning of the Drosophila genome to regulation of adipocyte cell fate in mammals.

  17. LSD1-a pivotal epigenetic regulator of brown and beige fat differentiation and homeostasis.

    PubMed

    Lin, Jean Z; Farmer, Stephen R

    2016-08-15

    In this issue of Genes & Development, Zeng and colleagues (pp. 1822-1836) identify lysine-specific demethylase 1 (LSD1) as a pivotal regulator of whole-body energy expenditure by controlling the oxidative and thermogenic activity of brown adipose tissue (BAT). They show that LSD1 interacts with PRDM16 to repress select white adipose tissue (WAT) genes but also represses hydroxysteroid 11-β-dehydrogenase 1 (HSD11B1) independently of PRDM16 to prevent production of glucocorticoids that impair BAT functions. Their study provides important insight into epigenetic mechanisms regulating the function of BAT. PMID:27601528

  18. The Whitening of Brown Fat and Its Implications for Weight Management in Obesity.

    PubMed

    Shimizu, Ippei; Walsh, Kenneth

    2015-06-01

    Systemic inflammation resulting from dysfunction of white adipose tissue (WAT) accelerates the pathologies of diabetes and cardiovascular diseases. In contrast to WAT, brown adipose tissue (BAT) is abundant in mitochondria that produce heat by uncoupling respiratory chain process of ATP synthesis. Besides BAT's role in thermogenesis, accumulating evidence has shown that it is involved in regulating systemic metabolism. Studies have analyzed the "browning" processes of WAT as a means to combat obesity, whereas few studies have focused on the impact and molecular mechanisms that contribute to obesity-linked BAT dysfunction--a process that is associated with the "whitening" of this tissue. Compared to WAT, a dense vascular network is required to support the high energy consumption of BAT. Recently, vascular rarefaction was shown to be a significant causal factor in the whitening of BAT in mouse models. Vascular insufficiency leads to mitochondrial dysfunction and loss in BAT and contributes to systemic insulin resistance. These data suggest that BAT "whitening," resulting from vascular dysfunction, can impact obesity and obesity-linked diseases. Conversely, agents that promote BAT function could have utility in the treatment of these conditions.

  19. The Whitening of Brown Fat and Its Implications for Weight Management in Obesity.

    PubMed

    Shimizu, Ippei; Walsh, Kenneth

    2015-06-01

    Systemic inflammation resulting from dysfunction of white adipose tissue (WAT) accelerates the pathologies of diabetes and cardiovascular diseases. In contrast to WAT, brown adipose tissue (BAT) is abundant in mitochondria that produce heat by uncoupling respiratory chain process of ATP synthesis. Besides BAT's role in thermogenesis, accumulating evidence has shown that it is involved in regulating systemic metabolism. Studies have analyzed the "browning" processes of WAT as a means to combat obesity, whereas few studies have focused on the impact and molecular mechanisms that contribute to obesity-linked BAT dysfunction--a process that is associated with the "whitening" of this tissue. Compared to WAT, a dense vascular network is required to support the high energy consumption of BAT. Recently, vascular rarefaction was shown to be a significant causal factor in the whitening of BAT in mouse models. Vascular insufficiency leads to mitochondrial dysfunction and loss in BAT and contributes to systemic insulin resistance. These data suggest that BAT "whitening," resulting from vascular dysfunction, can impact obesity and obesity-linked diseases. Conversely, agents that promote BAT function could have utility in the treatment of these conditions. PMID:26627217

  20. Allogeneic adipose-derived stem cells promote survival of fat grafts in immunocompetent diabetic rats.

    PubMed

    Zhang, Jun; Bai, Xiaozhi; Zhao, Bin; Wang, Yunchuan; Su, Linlin; Chang, Peng; Wang, Xujie; Han, Shichao; Gao, Jianxin; Hu, Xiaolong; Hu, Dahai; Liu, Xiaoyan

    2016-05-01

    Autologous adipose-derived stem cells (ADSCs) can protect fat grafts in cell-assisted lipotransfer (CAL). However, diabetes alters the intrinsic properties of ADSCs and impairs their function so that they lack these protective effects. We investigate whether allogeneic ADSCs from healthy donors could protect fat grafts in immunocompetent diabetic rats. Syngeniec adipose tissues and ADSCs were derived from diabetic Lewis (LEW) rats, whereas allogeneic ADSCs were from healthy brown-Norway rats. A grafted mixture containing 0.7 ml granule fat and 0.3 ml 6 × 10(6) allogeneic/syngeneic ADSCs was injected subcutaneously on the skulls of diabetic LEW rats. Fat samples were harvested to evaluate the levels of injury and vascularization as shown by perilipin A, CD34 and VEGF at 14 days. The immune response was evaluated with a lymphocytotoxicity test and the CD4/CD8 ratio in peripheral blood at 14 days. The volume retention of fat grafts was measured at 3 months. Healthy allogeneic ADSCs increased the expression levels of perilipin A, CD34 and VEGF at 14 days. The volume retention of fat grafts was improved by allogeneic ADSCs at 3 months. ADSCs were demonstrated to have low immunogenicity by the lymphocyte proliferation test and immunophenotype including MHC and co-stimulatory markers. The lymphocytotoxicity test and CD4/CD8 ratio indicated no obvious immune response elicited by allogeneic ADSCs. Thus, healthy allogeneic ADSCs can promote the survival of fat grafts in this immunocompetent diabetic rat model, with little or no obvious immune rejection.

  1. Disruption of insulin signaling in Myf5-expressing progenitors leads to marked paucity of brown fat but normal muscle development.

    PubMed

    Lynes, Matthew D; Schulz, Tim J; Pan, Andrew J; Tseng, Yu-Hua

    2015-05-01

    Insulin exerts pleiotropic effects on cell growth, survival, and metabolism, and its role in multiple tissues has been dissected using conditional knockout mice; however, its role in development has not been studied. Lineage tracing experiments have demonstrated that interscapular brown adipose tissue (BAT) arises from a Myf5-positive lineage shared with skeletal muscle and distinct from the majority of white adipose tissue (WAT) precursors. In this study, we sought to investigate the effects of impaired insulin signaling in the Myf5-expressing precursor cells by deleting the insulin receptor gene. Mice lacking insulin receptor in the Myf5 lineage (Myf5IRKO) have a decrease of interscapular BAT mass; however, muscle development appeared normal. Histologically, the residual BAT had decreased cell size but appeared mature and potentially functional. Expression of adipogenic inhibitors preadipocyte factor-1, Necdin, and wingless-type MMTV integration site member 10a in the residual BAT tissue was nonetheless increased compared with controls, and there was an enrichment of progenitor cells with impaired adipogenic differentiation capacity, suggesting a suppression of adipogenesis in BAT. Surprisingly, when cold challenged, Myf5IRKO mice did not show impaired thermogenesis. This resistance to cold could be attributed to an increased presence of uncoupling protein 1-positive brown adipocytes in sc WAT as well as increased expression of lipolytic activity in BAT. These data suggest a critical role of insulin signaling in the development of interscapular BAT from Myf5-positive progenitor cells, but it appears to be dispensable for muscle development. They also underscore the importance of compensatory browning of sc WAT in the absence of BAT for thermoregulation.

  2. β-arrestin-1 contributes to brown fat function and directly interacts with PPARα and PPARγ

    PubMed Central

    Wang, Congcong; Zeng, Xianglu; Zhou, Zhaocai; Zhao, Jian; Pei, Gang

    2016-01-01

    The peroxisome proliferator-activated receptor (PPAR) family plays central roles in brown adipose tissue (BAT) adipogenesis and contributes to body temperature maintenance. The transcriptional activity of PPAR family has been shown to be tightly controlled by cellular signal networks. β-arrestins function as major secondary messengers of G protein-coupled receptors (GPCR) signaling by functional interactions with diverse proteins. Here, we report that β-arrestin-1 knock-out mice show enhanced cold tolerance. We found that β-arrestin-1 directly interacts with PPARα and PPARγ through a LXXXLXXXL motif, while D371 in PPARα and L311/N312/D380 in PPARγ are required for their interactions with β-arrestin-1. Further mechanistic studies showed that β-arrestin-1 promotes PPARα- but represses PPARγ-mediated transcriptional activities, providing potential regulatory pathway for BAT function. PMID:27301785

  3. β-arrestin-1 contributes to brown fat function and directly interacts with PPARα and PPARγ.

    PubMed

    Wang, Congcong; Zeng, Xianglu; Zhou, Zhaocai; Zhao, Jian; Pei, Gang

    2016-01-01

    The peroxisome proliferator-activated receptor (PPAR) family plays central roles in brown adipose tissue (BAT) adipogenesis and contributes to body temperature maintenance. The transcriptional activity of PPAR family has been shown to be tightly controlled by cellular signal networks. β-arrestins function as major secondary messengers of G protein-coupled receptors (GPCR) signaling by functional interactions with diverse proteins. Here, we report that β-arrestin-1 knock-out mice show enhanced cold tolerance. We found that β-arrestin-1 directly interacts with PPARα and PPARγ through a LXXXLXXXL motif, while D371 in PPARα and L311/N312/D380 in PPARγ are required for their interactions with β-arrestin-1. Further mechanistic studies showed that β-arrestin-1 promotes PPARα- but represses PPARγ-mediated transcriptional activities, providing potential regulatory pathway for BAT function. PMID:27301785

  4. ICI D7114: a novel selective adrenoceptor agonist of brown fat and thermogenesis.

    PubMed

    Holloway, B R; Howe, R; Rao, B S; Stribling, D

    1992-01-01

    Increasing energy expenditure by treatment with thermogenic drugs is not new, but available drugs have suffered from the problem of lack of selectivity. In the last decade two key findings have allowed the development of selective thermogenic drugs that have promise in the treatment of obesity. 1) The recognition that brown adipose tissue (BAT) plays a role in compensatory increases in energy expenditure has allowed an approach directed at a target organ. 2) The demonstration showing that increases in the activity of BAT may be modulated by an atypical (beta 3) adrenoceptor has led to the development of a new peripherally acting beta-adrenoceptor agonist ICI D7114, which stimulates thermogenesis at doses that have little effect on beta 1 or beta 2 adrenoceptors. Treatment with the compound activates BAT and thermogenesis even in species and situations where the intrinsic capacity is low. 3) The compound has beneficial effects in animal models of obesity and disturbed glucose and lipid homeostasis. PMID:1345891

  5. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure.

    PubMed

    Wu, Michelle V; Bikopoulos, George; Hung, Steven; Ceddia, Rolando B

    2014-12-01

    This study investigated the regulation of thermogenic capacity in classical brown adipose tissue (BAT) and subcutaneous inguinal (SC Ing) white adipose tissue (WAT) and how it affects whole-body energy expenditure in sedentary and endurance-trained rats fed ad libitum either low fat or high fat (HF) diets. Analysis of tissue mass, PGC-1α and UCP-1 content, the presence of multilocular adipocytes, and palmitate oxidation revealed that a HF diet increased the thermogenic capacity of the interscapular and aortic brown adipose tissues, whereas exercise markedly suppressed it. Conversely, exercise induced browning of the SC Ing WAT. This effect was attenuated by a HF diet. Endurance training neither affected skeletal muscle FNDC5 content nor circulating irisin, but it increased FNDC5 content in SC Ing WAT. This suggests that locally produced FNDC5 rather than circulating irisin mediated the exercise-induced browning effect on this fat tissue. Importantly, despite reducing the thermogenic capacity of classical BAT, exercise increased whole-body energy expenditure during the dark cycle. Therefore, browning of subcutaneous WAT likely exerted a compensatory effect and raised whole-body energy expenditure in endurance-trained rats. Based on these novel findings, we propose that exercise-induced browning of the subcutaneous WAT provides an alternative mechanism that reduces thermogenic capacity in core areas and increases it in peripheral body regions. This could allow the organism to adjust its metabolic rate to accommodate diet-induced thermogenesis while simultaneously coping with the stress of chronically increased heat production through exercise. PMID:25344623

  6. Comparison of fatty acid, cholesterol, vitamin A and E composition, and trans fats in eggs from brown and white egg strains that were molted or nonmolted.

    PubMed

    Anderson, Kenneth E

    2013-12-01

    The impact of egg color, hen strain, and molting on the nutritional composition of eggs is limited. Therefore, this study compared nutritional composition and component percentages of cage-produced shell eggs with respect to egg color, hen strain, and molt. Four strains were selected from the North Carolina Layer Performance and Management Test: Hy-Line Brown (HB) and Bovans Brown (BB), and Hy-Line W-36 (HW) and Bovans White (BovW) were selected. Two groups from each strain were selected and 2 groups of molted HW and BovW were selected and compared with their nonmolted counterparts to examine the molt's impact. Two sets of eggs from each replicate were collected simultaneously at 101 wk of age. One sample of eggs was broken into a 12-egg pool stomached for 3 min (n = 12 samples), then divided into six 50-mL tubes, sealed, and frozen to be sent for cholesterol, n-3 fatty acids, saturated fat, monounsaturated fats, polyunsaturated fats, β-carotene, vitamin A, and vitamin E analyses. The other set of 12 eggs was then assessed for component percentages. The HW eggs had a greater (P < 0.05) percentage of yolk than the BovW eggs of 28.12 versus 27.00%, respectively; however, the BovW eggs had 1.0% more albumen. The HB and BB egg components were not different. Brown eggs were heavier (P < 0.01) than white eggs. White eggs had greater (P < 0.0001) percent yolk and the brown eggs had greater (P < 0.0001) percent albumen. The eggs from molted hens had a greater (P < 0.001) percent shell. Total fat content in the samples was (P < 0.05) higher in white eggs by 0.70% than brown eggs due to increased saturated and polyunsaturated fats. The molting of hens reduced (P < 0.01) saturated fats by 0.21% in the egg. Vitamin A levels were higher (P < 0.0001) in white eggs, and vitamin E was higher (P < 0.0001) in brown eggs. Strain and molt appear to influence nutrient composition and component percentages in eggs produced from laying hens. PMID:24235237

  7. Comparison of fatty acid, cholesterol, vitamin A and E composition, and trans fats in eggs from brown and white egg strains that were molted or nonmolted.

    PubMed

    Anderson, Kenneth E

    2013-12-01

    The impact of egg color, hen strain, and molting on the nutritional composition of eggs is limited. Therefore, this study compared nutritional composition and component percentages of cage-produced shell eggs with respect to egg color, hen strain, and molt. Four strains were selected from the North Carolina Layer Performance and Management Test: Hy-Line Brown (HB) and Bovans Brown (BB), and Hy-Line W-36 (HW) and Bovans White (BovW) were selected. Two groups from each strain were selected and 2 groups of molted HW and BovW were selected and compared with their nonmolted counterparts to examine the molt's impact. Two sets of eggs from each replicate were collected simultaneously at 101 wk of age. One sample of eggs was broken into a 12-egg pool stomached for 3 min (n = 12 samples), then divided into six 50-mL tubes, sealed, and frozen to be sent for cholesterol, n-3 fatty acids, saturated fat, monounsaturated fats, polyunsaturated fats, β-carotene, vitamin A, and vitamin E analyses. The other set of 12 eggs was then assessed for component percentages. The HW eggs had a greater (P < 0.05) percentage of yolk than the BovW eggs of 28.12 versus 27.00%, respectively; however, the BovW eggs had 1.0% more albumen. The HB and BB egg components were not different. Brown eggs were heavier (P < 0.01) than white eggs. White eggs had greater (P < 0.0001) percent yolk and the brown eggs had greater (P < 0.0001) percent albumen. The eggs from molted hens had a greater (P < 0.001) percent shell. Total fat content in the samples was (P < 0.05) higher in white eggs by 0.70% than brown eggs due to increased saturated and polyunsaturated fats. The molting of hens reduced (P < 0.01) saturated fats by 0.21% in the egg. Vitamin A levels were higher (P < 0.0001) in white eggs, and vitamin E was higher (P < 0.0001) in brown eggs. Strain and molt appear to influence nutrient composition and component percentages in eggs produced from laying hens.

  8. Do Stem Cells Have an Effect When We Fat Graft?

    PubMed

    Rinker, Brian D; Vyas, Krishna S

    2016-06-01

    Fat grafting has become a widely accepted modality of soft tissue restoration and has found applications in many areas of aesthetic and reconstructive plastic surgery. Numerous claims have been made regarding the regenerative effects of fat grafting on the recipient bed. The purpose of this paper is to survey the available literature to answer the question of whether fat grafting has a positive effect on the surrounding tissues. It has been convincingly demonstrated that fat grafts contain viable adipose-derived stem cells (ASCs). The fate of these cells is determined by the microenvironment of the recipient bed, but animal studies have shown that a large fraction of ASCs survive engraftment. Numerous clinical studies have demonstrated the positive effects of fat grafting on recipient tissues. Improvement in validated scar scores as well as scar stiffness measurements have been documented after fat grafting of burn scars. Fat grafting has also been convincingly demonstrated to improve the quality of irradiated tissues, as measured by validated clinical scales and staged histology. It is ultimately unclear whether ASCs are responsible for these effects, but the circumstantial evidence is weighty. Fat grafting is effective for volumizing and improving skin quality in the setting of radiation, burns, and other scars. The observed effects are likely due to ASCs, but the evidence does not support the routine use of ASC-enriched fat grafts.

  9. Condensation of tissue and stem cells for fat grafting.

    PubMed

    Kuno, Shinichiro; Yoshimura, Kotaro

    2015-04-01

    Aspirated fat contains unnecessary components such as water, oil, and blood cells. For better outcomes, tissue purification and condensation are useful, especially when injection volume to the recipient site is limited. Because aspirated fat is relatively poor in adipose-derived stem/stromal cells (ASCs), ASC condensation seems important for obtaining better regeneration and retention. Reducing tissue volume by removing some adipocytes or supplementation of stromal vascular fraction or ASCs can increase the ASC/adipocyte ratio in the graft. Clinical results of ASC supplementation remain controversial, but ASC condensation seems to lead to expanding applications of fat grafting into revitalization of stem cell-depleted tissue.

  10. Dedifferentiated fat cells: A cell source for regenerative medicine

    PubMed Central

    Jumabay, Medet; Boström, Kristina I

    2015-01-01

    The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration. PMID:26640620

  11. Dedifferentiated fat cells: A cell source for regenerative medicine.

    PubMed

    Jumabay, Medet; Boström, Kristina I

    2015-11-26

    The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration.

  12. Comparative study on the hypoglycemic and antioxidative effects of fermented paste (doenjang) prepared from soybean and brown rice mixed with rice bran or red ginseng marc in mice fed with high fat diet.

    PubMed

    Chung, Soo Im; Rico, Catherine W; Kang, Mi Young

    2014-10-22

    The effects of fermented paste made from soybean, brown rice, or brown rice in combination with rice bran or red ginseng marc on the glucose metabolism and antioxidative defense system in high fat-fed mice were investigated. The mice were given experimental diets for eight weeks: Normal control, high fat, and high fat supplemented with soybean fermented paste, brown rice fermented paste, brown rice-rice bran fermented paste, or brown rice-red ginseng marc fermented paste. The high fat group showed markedly higher blood glucose level and erythrocyte lipid peroxidation than the normal control group. Diet supplementation of fermented paste inhibited the high fat-induced hyperglycemia and oxidative stress via regulation of the glucose-regulating and antioxidant enzymes activities. The soybean and brown rice-red ginseng marc fermented pastes were the most effective in improving the glucose metabolism and antioxidant defense status in mice under high fat diet condition. These findings illustrate that brown rice, in combination with red ginseng marc, may be useful in the development of fermented paste with strong hypoglycemic and antioxidative activities.

  13. Comparative Study on the Hypoglycemic and Antioxidative Effects of Fermented Paste (Doenjang) Prepared from Soybean and Brown Rice Mixed with Rice Bran or Red Ginseng Marc in Mice Fed with High Fat Diet

    PubMed Central

    Chung, Soo Im; Rico, Catherine W.; Kang, Mi Young

    2014-01-01

    The effects of fermented paste made from soybean, brown rice, or brown rice in combination with rice bran or red ginseng marc on the glucose metabolism and antioxidative defense system in high fat-fed mice were investigated. The mice were given experimental diets for eight weeks: Normal control, high fat, and high fat supplemented with soybean fermented paste, brown rice fermented paste, brown rice-rice bran fermented paste, or brown rice-red ginseng marc fermented paste. The high fat group showed markedly higher blood glucose level and erythrocyte lipid peroxidation than the normal control group. Diet supplementation of fermented paste inhibited the high fat-induced hyperglycemia and oxidative stress via regulation of the glucose-regulating and antioxidant enzymes activities. The soybean and brown rice-red ginseng marc fermented pastes were the most effective in improving the glucose metabolism and antioxidant defense status in mice under high fat diet condition. These findings illustrate that brown rice, in combination with red ginseng marc, may be useful in the development of fermented paste with strong hypoglycemic and antioxidative activities. PMID:25340370

  14. Anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar in mice fed a high-fat diet

    PubMed Central

    Park, Ki-Moon

    2013-01-01

    The abnormal content of blood lipids often results in metabolic diseases, such as hyperlipidemia and obesity. Many agents, including natural sources from traditional food, have been developed to regulate the blood lipid contents. In this study, we examined the anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar (RNSpBRV), a Korean traditional pickled soybean food. Since RNSpBRV is made of R. nulubilis seeds (RNS) soaked in brown rice vinegar (BRV), we compared the anti-adipogenic activity between RNS, BRV and solid fraction of RNSpBRV (SF-RNSpBRV), liquid fraction of RNSpBRV (LF-RNSpBRV). For this, the inhibitory effect of lipid accumulation in 3T3-L1 adipocyte was checked by adding methanol extracts of mixed RNS and BRV, LF-RNSpBRV, and SF-RNSpBRV. The addition of each methanol extract up to 1 mg/ml showed no cytotoxicity on 3T3-L1 adipocyte, and approximately 20% of the lipid droplet formation was suppressed with the methanol extract of BRL or SF-RNSpBRV. The highest suppression (42.1%) was achieved with LF-RNSpBRV. In addition, mice fed a high fat diet (HFD) supplemented with 5% RNSpBRV powder led to increased high density lipoprotein (HDL) cholesterol and lower blood glucose, triglyceride, and total cholesterol compared to mice fed with a HFD diet only. Interestingly, the size of the epididymis cells gradually decreased in HFD + 1% RNSpBRV- and HFD + 5% RNSpBRV-fed mice if compared those of HFD-fed mice. Taken together, these results provide evidence that RNSpBRV has a regulatory role in lipid metabolism that is related to hyperlipidemia. PMID:24353830

  15. Anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar in mice fed a high-fat diet.

    PubMed

    Park, Ki-Moon; Lee, Seung Ho

    2013-12-01

    The abnormal content of blood lipids often results in metabolic diseases, such as hyperlipidemia and obesity. Many agents, including natural sources from traditional food, have been developed to regulate the blood lipid contents. In this study, we examined the anti-hyperlipidemic activity of Rhynchosia nulubilis seeds pickled with brown rice vinegar (RNSpBRV), a Korean traditional pickled soybean food. Since RNSpBRV is made of R. nulubilis seeds (RNS) soaked in brown rice vinegar (BRV), we compared the anti-adipogenic activity between RNS, BRV and solid fraction of RNSpBRV (SF-RNSpBRV), liquid fraction of RNSpBRV (LF-RNSpBRV). For this, the inhibitory effect of lipid accumulation in 3T3-L1 adipocyte was checked by adding methanol extracts of mixed RNS and BRV, LF-RNSpBRV, and SF-RNSpBRV. The addition of each methanol extract up to 1 mg/ml showed no cytotoxicity on 3T3-L1 adipocyte, and approximately 20% of the lipid droplet formation was suppressed with the methanol extract of BRL or SF-RNSpBRV. The highest suppression (42.1%) was achieved with LF-RNSpBRV. In addition, mice fed a high fat diet (HFD) supplemented with 5% RNSpBRV powder led to increased high density lipoprotein (HDL) cholesterol and lower blood glucose, triglyceride, and total cholesterol compared to mice fed with a HFD diet only. Interestingly, the size of the epididymis cells gradually decreased in HFD + 1% RNSpBRV- and HFD + 5% RNSpBRV-fed mice if compared those of HFD-fed mice. Taken together, these results provide evidence that RNSpBRV has a regulatory role in lipid metabolism that is related to hyperlipidemia.

  16. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    PubMed Central

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-01-01

    Background Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods A multilayer 3D computational model was created in HFSS™ with 1.5 mm skin, 3–10 mm subcutaneous fat, 200 mm muscle and a BAT region (2–6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSS™ were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results The optimized frequency band was 1.5–2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2–9 mdBm (noradrenergic stimulus) and 4–15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions Results demonstrated the ability to detect thermal radiation from small volumes (2–6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism. PMID:24244831

  17. Numerical 3D modeling of heat transfer in human tissues for microwave radiometry monitoring of brown fat metabolism

    NASA Astrophysics Data System (ADS)

    Rodrigues, Dario B.; Maccarini, Paolo F.; Salahi, Sara; Colebeck, Erin; Topsakal, Erdem; Pereira, Pedro J. S.; Limão-Vieira, Paulo; Stauffer, Paul R.

    2013-02-01

    Background: Brown adipose tissue (BAT) plays an important role in whole body metabolism and could potentially mediate weight gain and insulin sensitivity. Although some imaging techniques allow BAT detection, there are currently no viable methods for continuous acquisition of BAT energy expenditure. We present a non-invasive technique for long term monitoring of BAT metabolism using microwave radiometry. Methods: A multilayer 3D computational model was created in HFSSTM with 1.5 mm skin, 3-10 mm subcutaneous fat, 200 mm muscle and a BAT region (2-6 cm3) located between fat and muscle. Based on this model, a log-spiral antenna was designed and optimized to maximize reception of thermal emissions from the target (BAT). The power absorption patterns calculated in HFSSTM were combined with simulated thermal distributions computed in COMSOL® to predict radiometric signal measured from an ultra-low-noise microwave radiometer. The power received by the antenna was characterized as a function of different levels of BAT metabolism under cold and noradrenergic stimulation. Results: The optimized frequency band was 1.5-2.2 GHz, with averaged antenna efficiency of 19%. The simulated power received by the radiometric antenna increased 2-9 mdBm (noradrenergic stimulus) and 4-15 mdBm (cold stimulus) corresponding to increased 15-fold BAT metabolism. Conclusions: Results demonstrated the ability to detect thermal radiation from small volumes (2-6 cm3) of BAT located up to 12 mm deep and to monitor small changes (0.5 °C) in BAT metabolism. As such, the developed miniature radiometric antenna sensor appears suitable for non-invasive long term monitoring of BAT metabolism.

  18. Thermogenin amount and activity in hamster brown fat mitochondria: effect of cold acclimation

    SciTech Connect

    Sundin, U.; Moore, G.; Nedergaard, J.; Cannon, B.

    1987-05-01

    To investigate the acclimation process in a hibernator, four different parameters of thermogenin amount and activity were investigated in brown adipose tissue mitochondria from cold-exposed and cold-acclimated Syrian hamsters. Hamsters, which are hibernators, have been considered to be primed for thermogenesis and thus not to show cold-acclimation effects, but here a significant increase in (/sup 3/H)GDP-binding capacity was observed, and this increase was paralleled by an increase in thermogenin antigen amount, as measured in an enzyme-linked immunosorbent assay. The transient nature of the effect of cold exposure on (/sup 3/H)GDP binding, characteristically observed with rat mitochondria, was not observed with hamster mitochondria, and the increase in (/sup 3/H)GDP binding occurred without a change in the dissociation constant. The increase in thermogenin amount was paralleled by an increase both in GDP-sensitive Cl/sup -/ permeability of the mitochondria and in GDP-sensitive respiration. It was established that it is the maximal activity of thermogenin that is rate limiting for thermogenesis in isolated mitochondria, provided that an optimal substrate is used (such as palmitoyl carnitine). Cold acclimation also increased the total amount of mitochondria in the tissue, leading totally to a sixfold increase in thermogenin content of the hamster. It is concluded that hamsters show the expected physiological, pharmacological, and biochemical signs of cold acclimation.

  19. Porosity at photo-induced fat cell lipolysis

    NASA Astrophysics Data System (ADS)

    Doubrovsky, V. A.; Yanina, I. Y.; Tuchin, V. V.

    2012-06-01

    The "specific structures" on the fat cells' membranes in vitro as a result of photodynamic treatment was registered. These structures were identified as cytoplasm/oil microdrops flowed out through the pores in the membranes. The impact of Brilliant Green dissolved in water-ethanol solutions and irradiation by a LED lamp on the quantity and size of "specific structures" on the membranes was investigated. It was demonstrated that optical selective action on fat cells sensitized by Brilliant Green led to the growth of "specific structures" (pores) number during the time interval after light exposure. A high degree of correlation between the optical clearing of fat tissue and quantity of "specific structures" (pores) was found. This result proves our early prediction about mechanism of light-induced fat cells' lipolysis via increased cell membrane porosity.

  20. Fat, Stem Cells, and Platelet-Rich Plasma.

    PubMed

    James, Isaac B; Coleman, Sydney R; Rubin, J Peter

    2016-07-01

    The ideal filler for aesthetic surgery is inexpensive and easy to obtain, natural in appearance and texture, immunologically compatible, and long lasting without risk of infection. By most metrics, autologous fat grafts meet these criteria perfectly. Although facial fat grafting is now a commonly accepted surgical procedure, there has been a wave of activity applying stem cells and platelet-rich plasma (PRP) therapies to aesthetic practice. This article addresses technical considerations in the use of autologous fat transfer for facial rejuvenation, and also explores the current evidence for these stem cell and PRP therapies in aesthetic practice.

  1. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity.

    PubMed

    Mwangi, Simon Musyoka; Nezami, Behtash Ghazi; Obukwelu, Blessing; Anitha, Mallappa; Marri, Smitha; Fu, Ping; Epperson, Monica F; Le, Ngoc-Anh; Shanmugam, Malathy; Sitaraman, Shanthi V; Tseng, Yu-Hua; Anania, Frank A; Srinivasan, Shanthi

    2014-03-01

    Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. Its role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high-fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice that overexpress GDNF under the control of the glial fibrillary acidic protein promoter and wild-type (WT) littermates were maintained on a HFD or regular rodent diet for 11 wk, and weight gain, energy expenditure, and insulin sensitivity were monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly (P<0.001) higher energy expenditure than WT mice and increased expression in skeletal muscle and brown adipose tissue of peroxisome proliferator activated receptor-α and β1- and β3-adrenergic receptor genes, which are associated with increased lipolysis and enhanced lipid β-oxidation. In vitro, GDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high-fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.

  2. Stimulation of S14 mRNA and lipogenesis in brown fat by hypothyroidism, cold exposure, and cafeteria feeding: evidence supporting a general role for S14 in lipogenesis and lipogenesis in the maintenance of thermogenesis

    SciTech Connect

    Freake, H.C.; Oppenheimer, J.H.

    1987-05-01

    In liver, thyroid hormone rapidly induces S14 mRNA, which encodes a small acidic protein. This sequence is abundantly expressed only in lipogenic tissues and is thought to have some function in fat metabolism. In the euthyroid rat, we measured 20-fold higher levels of S14 mRNA in interscapular brown adipose tissue than liver. Furthermore, whereas in liver or epididymal fat, hypothyroidism resulted in an 80% fall in S14 mRNA, in brown fat the level of this sequence increased a further 3-fold. In all three tissues, the expression of S14 mRNA correlated well with lipogenesis, as assessed by /sup 3/H/sub 2/O incorporation. Physiological activation of brown fat by chronic cold exposure or cafeteria feeding increased the concentration of S14 mRNA in this tissue and again this was accompanied by a greater rate of fatty acid synthesis. Overall, in liver and white and brown adipose tissue, S14 mRNA and lipogenesis were well correlated and strongly suggest a function of the S14 protein related to fat synthesis. These studies suggest that the S14 protein and lipogenesis may be important for thyroid hormone-induced and brown adipose tissue thermogenesis and that stimulation of these functions in hypothyroid brown fat is a consequence of decreased thyroid hormone-induced thermogenesis elsewhere.

  3. METALATHIONEIN AND GLUTATHIONE IN AN ACUTE RESPONSE TO COPPER IN MERCENARIA MERCENARIA BROWN CELLS IN VIVO

    EPA Science Inventory

    Brown cells are found in the red glands of Mercenaria mercenaria (Bivalvia) and have been shown to accumulate, detoxify and excrete metals. Brown cell involvement in metal detoxification is due in part to endogenous glutathione (GSH) and metallothionein (MT). GSH and MT have been...

  4. Engineering Fat Cell Fate to Fight Obesity and Metabolic Diseases.

    PubMed

    Kajimura, Shingo

    2015-01-01

    All mammals harbor two types of adipose tissues that serve distinct physiological functions: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT functions mainly in the storage of excess energy, while BAT specializes in dissipating energy in the form of heat and functions as a defense against hypothermia and obesity. Since adult humans possess significant amounts of active BAT depots and it's mass inversely correlates with adiposity, BAT plays an important role in human obesity and energy homeostasis.New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Classical brown adipocytes are located mainly in dedicated BAT depots of rodents and infants. Beige adipocytes, on the other hand, reside mainly in subcutaneous WAT where they arise postnatally in response to certain external cues, such as chronic cold exposure and long-term treatment with PPAR- agonists, a process often referred to as the "browning" of WAT. Importantly, adult human BAT appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as insulin resistance and type2 diabetes. I will review recent progress in the molecular control of brown and beige adipocyte development and discuss emerging questions.(Presented at the 1912th Meeting, December 21, 2015). PMID:26727580

  5. Engineering Fat Cell Fate to Fight Obesity and Metabolic Diseases.

    PubMed

    Kajimura, Shingo

    2015-01-01

    All mammals harbor two types of adipose tissues that serve distinct physiological functions: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT functions mainly in the storage of excess energy, while BAT specializes in dissipating energy in the form of heat and functions as a defense against hypothermia and obesity. Since adult humans possess significant amounts of active BAT depots and it's mass inversely correlates with adiposity, BAT plays an important role in human obesity and energy homeostasis.New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Classical brown adipocytes are located mainly in dedicated BAT depots of rodents and infants. Beige adipocytes, on the other hand, reside mainly in subcutaneous WAT where they arise postnatally in response to certain external cues, such as chronic cold exposure and long-term treatment with PPAR- agonists, a process often referred to as the "browning" of WAT. Importantly, adult human BAT appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as insulin resistance and type2 diabetes. I will review recent progress in the molecular control of brown and beige adipocyte development and discuss emerging questions.(Presented at the 1912th Meeting, December 21, 2015).

  6. White and brown adipose stem cells: from signaling to clinical implications.

    PubMed

    Algire, Carolyn; Medrikova, Dasa; Herzig, Stephan

    2013-05-01

    Epidemiological studies estimate that by the year 2030, 2.16 billion people worldwide will be overweight and 1.12 billion will be obese [1]. Besides its now established function as an endocrine organ, adipose tissue plays a fundamental role as an energy storage compartment. As such, adipose tissue is capable of extensive expansion or retraction depending on the energy balance or disease state of the host, a plasticity that is unparalleled in other organs and - under conditions of excessive energy intake - significantly contributes to the afore mentioned obesity pandemic. Expansion of adipose tissue is driven by both hypertrophy and hyperplasia of adipocytes, which can renew frequently to compensate for cell death. This underlines the importance of adipocyte progenitor cells within the distinct adipose tissue depots to control both energy storage and endocrine functions of adipose tissue. Here we summarize recent findings on the identity and plasticity of adipose stem cells, the involved signaling cascades, and potential clinical implications of these cells for the treatment of metabolic dysfunction in obesity. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  7. The impact of dietary fats, photoperiod, temperature and season on morphological variables, torpor patterns, and brown adipose tissue fatty acid composition of hamsters, Phodopus sungorus.

    PubMed

    Geiser, F; Heldmaier, G

    1995-01-01

    We investigated how dietary fats and oils of different fatty acid composition influence the seasonal change of body mass, fur colour, testes size and torpor in Djungarian hamsters, Phodopus sungorus, maintained from autumn to winter under different photoperiods and temperature regimes. Dietary fatty acids influenced the occurrence of spontaneous torpor (food and water ad libitum) in P. sungorus maintained at 18 degrees C under natural and artificial short photoperiods. Torpor was most pronounced in individuals on a diet containing 10% safflower oil (rich in polyunsaturated fatty acids), intermediate in individuals on a diet containing 10% olive oil (rich in monounsaturated fatty acids) and least pronounced in individuals on a diet containing 10% coconut fat (rich in saturated fatty acids). Torpor in P. sungorus on chow containing no added fat or oil was intermediate between those on coconut fat and olive oil. Dietary fatty acids had little effect on torpor in animals maintained at 23 degrees C. Body mass, fur colour and testes size were also little affected by dietary fatty acids. The fatty acid composition of brown fat from hamsters maintained at 18 degrees C and under natural photoperiod strongly reflected that of the dietary fatty acids. Our study suggests that the seasonal change of body mass, fur colour and testes size are not significantly affected by dietary fatty acids. However, dietary fats influence the occurrence of torpor in individuals maintained at low temperatures and that have been photoperiodically primed for the display of torpor.

  8. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages.

    PubMed

    Cereijo, Rubén; Gallego-Escuredo, José Miguel; Moure, Ricardo; Villarroya, Joan; Domingo, Joan Carles; Fontdevila, Joan; Martínez, Esteban; Gutiérrez, Maria del Mar; Mateo, María Gracia; Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2015-01-01

    Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area ("buffalo hump") has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from "buffalo hump" and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1) and, specifically, of "classical" brown adipocytes (e.g. ZIC1) but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-"classical brown adipocyte" phenotype appears unique of

  9. The Molecular Signature of HIV-1-Associated Lipomatosis Reveals Differential Involvement of Brown and Beige/Brite Adipocyte Cell Lineages

    PubMed Central

    Cereijo, Rubén; Gallego-Escuredo, José Miguel; Moure, Ricardo; Villarroya, Joan; Domingo, Joan Carles; Fontdevila, Joan; Martínez, Esteban; Gutiérrez, Maria del Mar; Mateo, María Gracia; Giralt, Marta; Domingo, Pere; Villarroya, Francesc

    2015-01-01

    Highly active antiretroviral therapy has remarkably improved quality of life of HIV-1-infected patients. However, this treatment has been associated with the so-called lipodystrophic syndrome, which conveys a number of adverse metabolic effects and morphological alterations. Among them, lipoatrophy of subcutaneous fat in certain anatomical areas and hypertrophy of visceral depots are the most common. Less frequently, lipomatous enlargements of subcutaneous fat at distinct anatomic areas occur. Lipomatous adipose tissue in the dorso-cervical area (“buffalo hump”) has been associated with a partial white-to-brown phenotype transition and with increased cell proliferation, but, to date, lipomatous enlargements arising in other parts of the body have not been characterized. In order to establish the main molecular events associated with the appearance of lipomatosis in HIV-1 patients, we analyzed biopsies of lipomatous tissue from “buffalo hump” and from other anatomical areas in patients, in comparison with healthy subcutaneous adipose tissue, using a marker gene expression approach. Both buffalo-hump and non-buffalo-hump lipomatous adipose tissues exhibited similar patterns of non-compromised adipogenesis, unaltered inflammation, non-fibrotic phenotype and proliferative activity. Shorter telomere length, prelamin A accumulation and SA-β-Gal induction, reminiscent of adipocyte senescence, were also common to both types of lipomatous tissues. Buffalo hump biopsies showed expression of marker genes of brown adipose tissue (e.g. UCP1) and, specifically, of “classical” brown adipocytes (e.g. ZIC1) but not of beige/brite adipocytes. No such brown fat-related gene expression occurred in lipomatous tissues at other anatomical sites. In conclusion, buffalo hump and other subcutaneous adipose tissue enlargements from HIV-1-infected patients share a similar lipomatous character. However, a distorted induction of white-to-“classical brown adipocyte” phenotype

  10. Isolation of Precursor Cells from Waste Solid Fat Tissue

    NASA Technical Reports Server (NTRS)

    Byerly, Diane; Sognier, Marguerite A.

    2009-01-01

    A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.

  11. Cell-autonomous activation of Hedgehog signaling inhibits brown adipose tissue development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although recent studies have shown that brown adipose tissue (BAT) arises from progenitor cells that also give rise to skeletal muscle, the developmental signals that control the formation of BAT remain largely unknown. Here, we show that brown preadipocytes possess primary cilia and can respond to ...

  12. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone.

    PubMed

    Gordon, C J; Phillips, P M; Johnstone, A F M; Beasley, T E; Ledbetter, A D; Schladweiler, M C; Snow, S J; Kodavanti, U P

    2016-04-01

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (O3); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and then exposed to O3 (acute - air or 0.8 ppm O3 for 5 h, or subacute - air or 0.8 ppm O3 for 5 h/d 1 d/week for 4 weeks). Body composition was measured non-invasively using NMR. Ventilatory parameters and exploratory behavior were measured after the third week of subacute exposure. Bronchoalveolar lavage fluid (BALF) and blood chemistry data were collected 18 h after acute O3 and 18 h after the fourth week of subacute O3. The diets led to increased body fat in male but not female rats. O3-induced changes in ventilatory function were either unaffected or improved with the fructose and fat diets. O3-induced reduction in exploratory behavior was attenuated with fructose and fat diets in males and partially in females. O3 led to a significant decrease in body fat of males fed control diet but not the fructose or fat diet. O3 led to significant increases in BALF eosinophils, increase in albumin, and reductions in macrophages. Female rats appeared to be more affected than males to O3 regardless of diet. Overall, treatment with high-fructose and high-fat diets attenuated some O3 induced effects on pulmonary function, behavior, and metabolism. Exacerbation of toxicity was observed less frequently. PMID:27092583

  13. Pharmacological and nutritional agents promoting browning of white adipose tissue.

    PubMed

    Bonet, M Luisa; Oliver, Paula; Palou, Andreu

    2013-05-01

    The role of brown adipose tissue in the regulation of energy balance and maintenance of body weight is well known in rodents. Recently, interest in this tissue has re-emerged due to the realization of active brown-like adipose tissue in adult humans and inducible brown-like adipocytes in white adipose tissue depots in response to appropriate stimuli ("browning process"). Brown-like adipocytes that appear in white fat depots have been called "brite" (from brown-in-white) or "beige" adipocytes and have characteristics similar to brown adipocytes, in particular the capacity for uncoupled respiration. There is controversy as to the origin of these brite/beige adipocytes, but regardless of this, induction of the browning of white fat represents an attractive potential strategy for the management and treatment of obesity and related complications. Here, the different physiological, pharmacological and dietary determinants that have been linked to white-to-brown fat remodeling and the molecular mechanisms involved are reviewed in detail. In the light of available data, interesting therapeutic perspectives can be expected from the use of specific drugs or food compounds able to induce a program of brown fat differentiation including uncoupling protein 1 expression and enhancing oxidative metabolism in white adipose cells. However, additional research is needed, mainly focused on the physiological relevance of browning and its dietary control, where the use of ferrets and other non-rodent animal models with a more similar adipose tissue organization and metabolism to humans could be of much help. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  14. Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell walls.

    PubMed

    Razmkhab, Sahar; Lopez-Toledano, Azahara; Ortega, José M; Mayen, Manuel; Merida, Julieta; Medina, Manuel

    2002-12-01

    Dehydrated yeast cells at variable concentrations were used as fining agents to decrease the color of white wines with two different degrees of browning (0.153 and 0.177 au, measured at 420 nm). Both wines showed a linear decrease of browning with increasing yeast concentration. However, in terms of efficiency, the yeasts exhibited a higher color lightening at greater concentrations acting on the darker wine. This suggests a preferential retention of some types of yellow-brown compounds that could increase their concentrations at the higher degree of browning. To confirm the role of yeast cell walls in the retention of browning compounds and to evaluate their potential use as fining agents, they were applied at variable concentrations to a browned wine (0.175 au). The cell walls were found to be the active support for the adsorption of browning compounds, but their efficiency was much lower than that of an equivalent amount of the yeast cells from which they were obtained. Finally, HPLC determinations of low-molecular-weight phenolic compounds showed flavan-3-ol derivatives to be significantly retained by both yeasts and their cell walls. PMID:12452671

  15. Opportunities and Challenges in Three-dimensional Brown Adipogenesis of Stem Cells

    PubMed Central

    Unser, Andrea M.; Tian, Yangzi; Xie, Yubing

    2015-01-01

    The formation of brown adipose tissue (BAT) via brown adipogenesis has become a notable process due to its ability to expend energy as heat with implications in the treatment of metabolic disorders and obesity. With the advent of complexity within white adipose tissue (WAT) along with inducible brown adipocytes (also known as brite and beige), there has been a surge in deciphering adipocyte biology as well as in vivo adipogenic microenvironments. A therapeutic outcome would benefit from understanding early events in brown adipogenesis, which can be accomplished by studying cellular differentiation. Pluripotent stem cells are an efficient model for differentiation and have been directed towards both white adipogenic and brown adipogenic lineages. The stem cell microenvironment greatly contributes to terminal cell fate and as such, has been mimicked extensively by various polymers including those that can form 3D hydrogel constructs capable of biochemical and/or mechanical modifications and modulations. Using bioengineering approaches towards the creation of 3D cell culture arrangements is more beneficial than traditional 2D culture in that it better recapitulates the native tissue biochemically and biomechanically. In addition, such an approach could potentially protect the tissue formed from necrosis and allow for more efficient implantation. In this review, we highlight the promise of brown adipocytes with a focus on brown adipogenic differentiation of stem cells using bioengineering approaches, along with potential challenges and opportunities that arise when considering the energy expenditure of BAT for prospective therapeutics. PMID:26231586

  16. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential.

    PubMed

    Tsurumachi, Niina; Akita, Daisuke; Kano, Koichiro; Matsumoto, Taro; Toriumi, Taku; Kazama, Tomohiko; Oki, Yoshinao; Tamura, Yoko; Tonogi, Morio; Isokawa, Keitaro; Shimizu, Noriyoshi; Honda, Masaki

    2016-03-01

    Dedifferentiated fat (DFAT) cells derived from mature adipocytes have mesenchymal stem cells' (MSCs) characteristics. Generally, mature adipocytes are 60-110 μm in diameter; however, association between adipocyte size and dedifferentiation efficiency is still unknown. This study, therefore, investigated the dedifferentiation efficiency of adipocytes based on cell diameter. Buccal fat pad was harvested from five human donors and dissociated by collagenase digestion. After exclusion of unwanted stromal cells by centrifugation, floating adipocytes were collected and their size distribution was analyzed. The floating adipocytes were then separated into two groups depending on cell size using 40- and 100-μm nylon mesh filters: cell diameters less than 40 μm (small adipocytes: S-adipocytes) and cell diameters of 40-100 μm (large adipocytes: L-adipocytes). Finally, we evaluated the efficiency of adipocyte dedifferentiation and then characterized the resultant DFAT cells. The S-adipocytes showed a higher capacity to dedifferentiate into DFAT cells (S-DFAT cells) compared to the L-adipocytes (L-DFAT cells). The S-DFAT cells also showed a relatively higher proportion of CD146-positive cells than L-DFAT cells, and exhibited more osteogenic differentiation ability based on the alkaline phosphatase activity and amount of calcium deposition. These results suggested that the S- and L-DFAT cells had distinct characteristics, and that the higher dedifferentiation potential of S-adipocytes compared to L-adipocytes gives the former group an advantage in yielding DFAT cells.

  17. Burning Fat Fuels Leukemic Stem Cell Heterogeneity.

    PubMed

    Thomas, Daniel; Majeti, Ravindra

    2016-07-01

    Obese leukemia patients exhibit reduced survival after chemotherapy, suggesting an important role of adipose tissue in disease progression. In this issue of Cell Stem Cell, Ye et al. (2016) reveal metabolic heterogeneity in leukemic stem cell (LSC) subpopulations and show that chemotherapy-resistant CD36+ LSCs co-opt gonadal adipose tissue to support their metabolism and survival. PMID:27392217

  18. Beta 3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs.

    PubMed Central

    Champigny, O; Ricquier, D; Blondel, O; Mayers, R M; Briscoe, M G; Holloway, B R

    1991-01-01

    Brown adipose tissue (BAT) is present throughout life in rodents and plays an important role in energy balance. However, whereas BAT is clearly recognizable in the neonates of larger mammals (including dogs, cats, sheep, cattle, and humans), it is undetectable or present in only small quantities in adults of these species and is replaced by a tissue with the gross characteristics of white adipose tissue. Here we provide evidence that treatment of adult dogs with a beta 3-adrenergic receptor agonist (ICI D7114) that has thermogenic and antiobesity properties leads to the appearance of BAT at several anatomical sites. The presence of BAT was primarily demonstrated by monitoring the inner mitochondrial membrane uncoupling protein and its mRNA, which are unique to the tissue. Neither message nor protein was detected in adipose tissue samples from control dogs but both were detected in samples from dogs treated with ICI D7114. The data suggest that stimulation of beta 3-adrenergic receptors can reactivate nascent BAT (which has the appearance of white adipose tissue) by increasing expression of the gene coding for uncoupling protein or lead to the recruitment of fully differentiated BAT from preadipocyte precursor cells. Images PMID:1720550

  19. Beta 3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs.

    PubMed

    Champigny, O; Ricquier, D; Blondel, O; Mayers, R M; Briscoe, M G; Holloway, B R

    1991-12-01

    Brown adipose tissue (BAT) is present throughout life in rodents and plays an important role in energy balance. However, whereas BAT is clearly recognizable in the neonates of larger mammals (including dogs, cats, sheep, cattle, and humans), it is undetectable or present in only small quantities in adults of these species and is replaced by a tissue with the gross characteristics of white adipose tissue. Here we provide evidence that treatment of adult dogs with a beta 3-adrenergic receptor agonist (ICI D7114) that has thermogenic and antiobesity properties leads to the appearance of BAT at several anatomical sites. The presence of BAT was primarily demonstrated by monitoring the inner mitochondrial membrane uncoupling protein and its mRNA, which are unique to the tissue. Neither message nor protein was detected in adipose tissue samples from control dogs but both were detected in samples from dogs treated with ICI D7114. The data suggest that stimulation of beta 3-adrenergic receptors can reactivate nascent BAT (which has the appearance of white adipose tissue) by increasing expression of the gene coding for uncoupling protein or lead to the recruitment of fully differentiated BAT from preadipocyte precursor cells. PMID:1720550

  20. Characteristics and multipotency of equine dedifferentiated fat cells.

    PubMed

    Murata, Daiki; Yamasaki, Atsushi; Matsuzaki, Shouta; Sunaga, Takafumi; Fujiki, Makoto; Tokunaga, Satoshi; Misumi, Kazuhiro

    2016-01-01

    Dedifferentiated fat (DFAT) cells have been shown to be multipotent, similar to mesenchymal stem cells (MSCs). In this study, we aimed to establish and characterize equine DFAT cells. Equine adipocytes were ceiling cultured, and then dedifferentiated into DFAT cells by the seventh day of culture. The number of DFAT cells was increased to over 10 million by the fourth passage. Flow cytometry of DFAT cells showed that the cells were strongly positive for CD44, CD90, and major histocompatibility complex (MHC) class I; moderately positive for CD11a/18, CD105, and MHC class II; and negative for CD34 and CD45. Moreover, DFAT cells were positive for the expression of sex determining region Y-box 2 as a marker of multipotency. Finally, we found that DFAT cells could differentiate into osteogenic, chondrogenic, and adipogenic lineages under specific nutrient conditions. Thus, DFAT cells could have clinical applications in tissue regeneration, similar to MSCs derived from adipose tissue.

  1. The Environmental Pollutants Perfluorooctane Sulfonate and Perfluorooctanoic Acid Upregulate Uncoupling Protein 1 (UCP1) in Brown-Fat Mitochondria Through a UCP1-Dependent Reduction in Food Intake.

    PubMed

    Shabalina, Irina G; Kramarova, Tatiana V; Mattsson, Charlotte L; Petrovic, Natasa; Rahman Qazi, Mousumi; Csikasz, Robert I; Chang, Shu-Ching; Butenhoff, John; DePierre, Joseph W; Cannon, Barbara; Nedergaard, Jan

    2015-08-01

    The environmental pollutants perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) cause a dramatic reduction in the size of the major adipose tissue depots and a general body weight decrease when they are added to the food of mice. We demonstrate here that this is mainly due to a reduction in food intake; this reduction was not due to food aversion. Remarkably and unexpectedly, a large part of the effect of PFOA/PFOS on food intake was dependent on the presence of the uncoupling protein 1 (UCP1) in the mice. Correspondingly, PFOA/PFOS treatment induced recruitment of brown adipose tissue mitochondria: increased oxidative capacity and increased UCP1-mediated oxygen consumption (thermogenesis). In mice pair-fed to the food intake during PFOA/PFOS treatment in wildtype mice, brown-fat mitochondrial recruitment was also induced. We conclude that we have uncovered the existence of a regulatory component of food intake that is dependent upon brown adipose tissue thermogenic activity. The possible environmental consequences of this novel PFOA/PFOS effect (a possible decreased fitness) are noted, as well as the perspectives of this finding on the general understanding of control of food intake control and its possible extension to combatting obesity.

  2. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  3. Dietary gamma-linolenic acid in the form of borage oil causes less body fat accumulation accompanying an increase in uncoupling protein 1 mRNA level in brown adipose tissue.

    PubMed

    Takahashi, Y; Ide, T; Fujita, H

    2000-10-01

    Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid

  4. The cell biology of fat expansion

    PubMed Central

    Rutkowski, Joseph M.; Stern, Jennifer H.

    2015-01-01

    Adipose tissue is a complex, multicellular organ that profoundly influences the function of nearly all other organ systems through its diverse metabolite and adipokine secretome. Adipocytes are the primary cell type of adipose tissue and play a key role in maintaining energy homeostasis. The efficiency with which adipose tissue responds to whole-body energetic demands reflects the ability of adipocytes to adapt to an altered nutrient environment, and has profound systemic implications. Deciphering adipocyte cell biology is an important component of understanding how the aberrant physiology of expanding adipose tissue contributes to the metabolic dysregulation associated with obesity. PMID:25733711

  5. Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics

    PubMed Central

    Johlfs, Mary G.; Gorjala, Priyatham; Urasaki, Yasuyo; Le, Thuc T.; Fiscus, Ronald R.

    2015-01-01

    Profiling cellular proteome is critical to understanding signal integration during cell fate determination. In this study, the capability of capillary isoelectric focusing (cIEF) immunoassays to detect post-translational modifications (PTM) of protein isoforms is demonstrated. cIEF immunoassays exhibit protein detection sensitivity at up to 5 orders of magnitude higher than traditional methods. This detection ultra-sensitivity permits proteomic profiling of several nanograms of tissue samples. cIEF immunoassays are employed to simultaneously profile three protein kinases during fat cell differentiation: cGMP-dependent protein kinase type I (PKG-I) of the nitric oxide (NO) signaling pathway, protein kinase B (Akt) of the insulin signaling pathway, and extracellular signal-regulated kinase (ERK) of the mitogen-activated protein kinase (MAPK) signaling pathway. Interestingly, a switch in the expression level of PKG- isoforms is observed during fat cell differentiation. While both PKG-Iα and PKG-Iβ isoforms are present in preadipocytes, only PKG-Iβ isoform is expressed in adipocytes. On the other hand, the phosphorylation level increases for Akt while decreases for ERK1 and ERK2 following the maturation of preadipocytes into adipocytes. Taken together, cIEF immunoassay provides a highly sensitive means to study fat cell differentiation proteomics. cIEF immunoassay should be a powerful proteomics tool to study complex protein signal integration in biological systems. PMID:26132171

  6. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation.

    PubMed

    Pasut, Alessandra; Chang, Natasha C; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A

    2016-07-12

    Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here, we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7(-/-) satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall, these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle.

  7. Notch Signaling Rescues Loss of Satellite Cells Lacking Pax7 and Promotes Brown Adipogenic Differentiation

    PubMed Central

    Pasut, Alessandra; Chang, Natasha C.; Rodriguez, Uxia Gurriaran; Faulkes, Sharlene; Yin, Hang; Lacaria, Melanie; Ming, Hong; Rudnicki, Michael A.

    2016-01-01

    Summary Pax7 is a nodal transcription factor that is essential for regulating the maintenance, expansion, and myogenic identity of satellite cells during both neonatal and adult myogenesis. Deletion of Pax7 results in loss of satellite cells and impaired muscle regeneration. Here we show that ectopic expression of the constitutively active intracellular domain of Notch1 (NICD1) rescues the loss of Pax7-deficient satellite cells and restores their proliferative potential. Strikingly NICD1-expressing satellite cells do not undergo myogenic differentiation and instead acquire a brown adipogenic fate both in vivo and in vitro. NICD-expressing Pax7-/- satellite cells fail to upregulate MyoD and instead express the brown adipogenic marker PRDM16. Overall these results show that Notch1 activation compensates for the loss of Pax7 in the quiescent state and acts as a molecular switch to promote brown adipogenesis in adult skeletal muscle. PMID:27346341

  8. Liver X receptor β: new player in the regulatory network of thyroid hormone and 'browning' of white fat.

    PubMed

    Miao, Yifei; Warner, Margaret; Gustafsson, Jan-Ke

    2016-01-01

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type II diabetes. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride and glucose metabolism. Following our previous finding that LXRs serve as repressors of UCP1 in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyrotropin releasing hormone positive neurons in the paraventricular area of the hypothalamus, and thus stimulated secretion of thyroid-stimulating hormone from the pituitary. Consequently production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. One unexpected finding of our study is that LXRs are indispensable in the thyroid hormone negative feedback loop at the level of the hypothalamus. LXRs maintain expression of thyroid receptors in the brain and when they are inactivated there is no negative feedback of thyroid hormone in the hypothalamus. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knock-out mice and provided support for targeting LXRs in treatment of obesity. PMID:27386163

  9. Spectroscopic, scanning laser OBIC, and I-V/QE characterizations of browned EVA solar cells

    SciTech Connect

    Pern, F.J.; Eisgruber, I.L.; Micheels, R.H.

    1996-05-01

    The effects of ethylene-vinyl acetate (EVA) discoloration due to accelerated field or laboratory exposure on the encapsulated silicon (Si) solar cells or EVA/glass laminates were characterized quantitatively by using non-invasive, non-destructive ultraviolet-visible (UV-vis) spectrophotometry, spectrocolorimetry, spectrofluorometry, scanning laser OBIC (optical beam induced current) spectroscopy, and current-voltage (I-V) and quantum efficiency (QE) measurements. The results show that the yellowness index (YI) measured directly over the AR-coated solar cells under the glass superstrate increased from the range of -80 to -90 to the range of -20 to 15 as the EVA changed from clear to brown. The ratio of two fluorescence emission peak areas generally increased from 1.45 to 5.69 as browning increased, but dropped to 4.21 on a darker EVA. For a solar cell with brown EVA in the central region, small-area grating QE measurements and scanning laser OBIC analysis between the brown and clear EVA regions showed that the quantum efficiency loss at 633 nm was 42%-48% of the loss at 488 nm, due to a reduced decrease of transmittance in browned EVA at the longer wavelengths. The portion of the solar cell under the browned EVA showed a decrease of {approximately}36% in efficiency, as compared to the cell efficiency under clear EVA. Transmittance loss at 633 nm was 38% of the loss at 488 nm for a light yellow-brown EVA/glass laminate that showed a small increase of 10 in the yellowness index.

  10. Brown (BAT) and white (WAT) adipose tissue in high-fat junk food (HFJF) and chow-fed rats with dorsomedial hypothalamic lesions (DMNL rats).

    PubMed

    Bernardis, L L; Bellinger, L L

    1991-05-15

    Male weanling rats received dorsomedial hypothalamic nucleus lesions (DMNL) or sham operations and were fed for 173 postoperative days a high-fat diet and given a 32% sucrose solution as drinking fluid. This was supplemented with chocolate chip cookies, potato chips and marshmallows. Other DMNL and sham-operated controls were fed lab chow instead of the above high-fat junk food diet (HFJF) and given tap water instead of 32% sucrose solution. All animals were killed on postoperative day 174. Caloric intake per 100 g body weight was similar in all groups; however, the HFJF fed control and DMNL rats had significantly elevated carcass fat. Since HFJF-DMNL rats were not nearly as obese as the HFJF control animals, it appears that the DMNL offered some protection against the HFJF-diet-produced obesity. When their smaller body size is considered. DMN lesions had no effect on brown adipose tissue (BAT) mass in chow-fed or HFJF fed rats, whereas BAT size was significantly enlarged in HFJF-fed control animals. This suggests but does not prove that HFJF-fed controls, but not DMNL rats, may be using dietary-induced thermogenesis (DIT) to attenuate their obesity. We hypothesize that the HFJF-fed DMNL may not be enhancing DIT as reflected in normal BAT size, because they had not attained a degree of fatness to activate this system, or the DMN lesions impaired its activation. Both HFJF-fed groups showed reduced linear growth compared to their counterparts. The reason for stunting is uncertain, but may be related to their low plasma insulin concentrations.

  11. An Efficient Method to Obtain Dedifferentiated Fat Cells.

    PubMed

    Taniguchi, Hiroaki; Kazama, Tomohiko; Hagikura, Kazuhiro; Yamamoto, Chii; Kazama, Minako; Nagaoka, Yuki; Matsumoto, Taro

    2016-01-01

    Tissue engineering and cell therapy hold great promise clinically. In this regard, multipotent cells, such as mesenchymal stem cells (MSCs), may be used therapeutically, in the near future, to restore function to damaged organs. Nevertheless, several technical issues, including the highly invasive procedure of isolating MSCs and the inefficiency surrounding their amplification, currently hamper the potential clinical use of these therapeutic modalities. Herein, we introduce a highly efficient method for the generation of dedifferentiated fat cells (DFAT), MSC-like cells. Interestingly, DFAT cells can be differentiated into several cell types including adipogenic, osteogenic, and chondrogenic cells. Although other groups have previously presented various methods for generating DFAT cells from mature adipose tissue, our method allows us to produce DFAT cells more efficiently. In this regard, we demonstrate that DFAT culture medium (DCM), supplemented with 20% FBS, is more effective in generating DFAT cells than DMEM, supplemented with 20% FBS. Additionally, the DFAT cells produced by our cell culture method can be redifferentiated into several tissue types. As such, a very interesting and useful model for the study of tissue dedifferentiation is presented. PMID:27500409

  12. Concomitant deletions of tumor suppressor genes MEN1 and AIP are essential for the pathogenesis of the brown fat tumor hibernoma

    PubMed Central

    Nord, Karolin H.; Magnusson, Linda; Isaksson, Margareth; Nilsson, Jenny; Lilljebjörn, Henrik; Domanski, Henryk A.; Kindblom, Lars-Gunnar; Mandahl, Nils; Mertens, Fredrik

    2010-01-01

    Hibernomas are benign tumors with morphological features resembling brown fat. They consistently display cytogenetic rearrangements, typically translocations, involving chromosome band 11q13. Here we demonstrate that these aberrations are associated with concomitant deletions of AIP and MEN1, tumor suppressor genes that are located 3 Mb apart and that underlie the hereditary syndromes pituitary adenoma predisposition and multiple endocrine neoplasia type I. MEN1 and AIP displayed a low expression in hibernomas whereas the expression of genes up-regulated in brown fat—PPARA, PPARG, PPARGC1A, and UCP1—was high. Thus, loss of MEN1 and AIP is likely to be pathogenetically essential for hibernoma development. Simultaneous loss of two tumor suppressor genes has not previously been shown to result from a neoplasia-associated translocation. Furthermore, in contrast to the prevailing assumption that benign tumors harbor relatively few genetic aberrations, the present analyses demonstrate that a considerable number of chromosome breaks are involved in the pathogenesis of hibernoma. PMID:21078971

  13. MicroRNA Functions in Brite/Brown Fat — Novel Perspectives towards Anti-Obesity Strategies

    PubMed Central

    Karbiener, Michael; Scheideler, Marcel

    2014-01-01

    Current anti-obesity strategies are aiming at restricting energy uptake, but still, obesity treatment is far from being satisfactory. The discovery of active brown adipose tissue (BAT) in adult humans currently opens new avenues to combat obesity and follow-up complications as it tackles the other site of the energy balance: energy expenditure via non-shivering thermogenesis. This process of energy dissipation in the adipose tissue is tightly controlled, and the elucidation of its regulatory network is a key plank for therapeutic applications. MicroRNAs (miRNAs) belong to a novel class of regulatory determinants which are small non-coding RNAs with vital roles in regulating gene expression that also play a role in many human diseases. In this review we summarize miRNAs which have been shown to govern thermogenic, i.e. brite or brown, adipocyte recruitment and physiology. Notably, most miRNAs in this context have so far been characterized solely in mice, revealing a great demand for more human studies. As in the context of other diseases, RNA-based therapeutics have meanwhile entered clinical trials, further exploring the functions of miRNAs in brown and white adipose tissues could result in novel therapeutic approaches to treat obesity and its follow-up complications. PMID:25408843

  14. Exosomal microRNA miR-92a concentration in serum reflects human brown fat activity

    PubMed Central

    Chen, Yong; Buyel, Joschka J.; Hanssen, Mark J. W.; Siegel, Franziska; Pan, Ruping; Naumann, Jennifer; Schell, Michael; van der Lans, Anouk; Schlein, Christian; Froehlich, Holger; Heeren, Joerg; Virtanen, Kirsi A.; van Marken Lichtenbelt, Wouter; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates energy and its activity correlates with leanness in human adults. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography coupled with computer tomography (PET/CT) is still the standard for measuring BAT activity, but exposes subjects to ionizing radiation. To study BAT function in large human cohorts, novel diagnostic tools are needed. Here we show that brown adipocytes release exosomes and that BAT activation increases exosome release. Profiling miRNAs in exosomes released from brown adipocytes, and in exosomes isolated from mouse serum, we show that levels of miRNAs change after BAT activation in vitro and in vivo. One of these exosomal miRNAs, miR-92a, is also present in human serum exosomes. Importantly, serum concentrations of exosomal miR-92a inversely correlate with human BAT activity measured by 18F-FDG PET/CT in two unique and independent cohorts comprising 41 healthy individuals. Thus, exosomal miR-92a represents a potential serum biomarker for BAT activity in mice and humans. PMID:27117818

  15. Characteristics and multipotency of equine dedifferentiated fat cells

    PubMed Central

    MURATA, Daiki; YAMASAKI, Atsushi; MATSUZAKI, Shouta; SUNAGA, Takafumi; FUJIKI, Makoto; TOKUNAGA, Satoshi; MISUMI, Kazuhiro

    2016-01-01

    ABSTRACT Dedifferentiated fat (DFAT) cells have been shown to be multipotent, similar to mesenchymal stem cells (MSCs). In this study, we aimed to establish and characterize equine DFAT cells. Equine adipocytes were ceiling cultured, and then dedifferentiated into DFAT cells by the seventh day of culture. The number of DFAT cells was increased to over 10 million by the fourth passage. Flow cytometry of DFAT cells showed that the cells were strongly positive for CD44, CD90, and major histocompatibility complex (MHC) class I; moderately positive for CD11a/18, CD105, and MHC class II; and negative for CD34 and CD45. Moreover, DFAT cells were positive for the expression of sex determining region Y-box 2 as a marker of multipotency. Finally, we found that DFAT cells could differentiate into osteogenic, chondrogenic, and adipogenic lineages under specific nutrient conditions. Thus, DFAT cells could have clinical applications in tissue regeneration, similar to MSCs derived from adipose tissue. PMID:27330399

  16. Brown spider venom toxins interact with cell surface and are endocytosed by rabbit endothelial cells.

    PubMed

    Nowatzki, Jenifer; de Sene, Reginaldo Vieira; Paludo, Katia Sabrina; Veiga, Silvio Sanches; Oliver, Constance; Jamur, Maria Célia; Nader, Helena Bonciani; Trindade, Edvaldo S; Franco, Célia Regina C

    2010-09-15

    Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations. Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom. After treating endothelial cells with venom toxins, we observed that the venom interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates. When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells. The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L. intermedia venom on endothelial cells is not mediated by venom internalization.

  17. IN VIVO METALLATHIONEIN AND GLUTATHIONE STATUS IN AN ACUTE REPONSE TO CADMINUM IN MERCENARIA MERCENARIA BROWN CELLS

    EPA Science Inventory

    Brown cells that are found in the red glands of Mercenaria mercenaria accumulate, detoxify and excrete cadmium. Brown cell involvement in metal detoxification was due in part to endogenous glutathione (GSH) and protein sulfhydryl. Metallothionein (MT) and GSH have been shown to p...

  18. Mitochondrial Hormesis links nutrient restriction to improved metabolism in fat cell

    PubMed Central

    Barbato, Daniele Lettieri; Tatulli, Giuseppe

    2015-01-01

    Fasting promotes longevity by reprogramming metabolic and stress resistance pathways. However, although the impact on adipose tissue physiology through hormonal inputs is well established, the direct role of fasting on adipose cells is poorly understood. Herein we show that white and beige adipocytes, as well as mouse epididymal and subcutaneous adipose depots, respond to nutrient scarcity by acquiring a brown-like phenotype. Indeed, they improve oxidative metabolism through modulating the expression of mitochondrial-and nuclear-encoded oxidative phosphorylation genes as well as mitochondrial stress defensive proteins (UCP1, SOD2). Such adaptation is placed in a canonical mitohormetic response that proceeds via mitochondrial reactive oxygen species (mtROS) production and redistribution of FoxO1 transcription factor into nucleus. Nuclear FoxO1 (nFoxO1) mediates retrograde communication by inducing the expression of mitochondrial oxidative and stress defensive genes. Collectively, our findings describe an unusual white/beige fat cell response to nutrient availability highlighting another health-promoting mechanism of fasting. PMID:26540513

  19. Regional variations in HDL metabolism in human fat cells: effect of cell size

    SciTech Connect

    Despres, J.; Fong, B.S.; Julien, P.; Jimenez, J.; Angel, A.

    1987-05-01

    Abdominal obesity is related to reduced plasma high-density lipoprotein (HDL) cholesterol, and both are associated with cardiovascular disease risk. The authors have observed that plasma membranes from abdominal subcutaneous adipocytes have a greater HDL binding capacity than omental fat cell plasma membranes. The present study examined whether these binding characteristics could be due to differences in fat cell size or cholesterol concentration between the two adipose depots. Abdominal subcutaneous and deep omental fat were obtained from massively obese patients at surgery. Subcutaneous abdominal fat cells were significantly larger and their cellular cholesterol content greater than omental adipocytes. The uptake of HDL by collagenase-isolated fat cells was studied by incubating the cells for 2 h at 37/sup 0/C with 10 ..mu..g/ml /sup 125/I-HDL/sub 2/ or /sup 125/I-HDL/sub 3/. In both depots, the cellular uptake of /sup 125/I-HDL/sub 2/ and /sup 125/I-HDL/sub 3/ was specifically inhibited by addition of 25-fold excess unlabeled HDL and a close correlation was observed between the cellular uptake of /sup 125/I-HDL/sub 2/ and /sup 125/I-HDL/sub 3/. In obese patients, the uptake of /sup 125/I-HDL was higher in subcutaneous cells than in omental cells. The cellular /sup 125/I-HDL uptake was significantly correlated with adipocyte size and fat cell cholesterol content but not with adipocyte cholesterol concentration. These results suggest that the higher HDL uptake observed in subcutaneous cells compared with omental cells in obesity is the result of differences in adipocyte size rather than differences in the cholesterol concentration (cholesterol-to-triglyceride ratio). The increased interaction of HDL with hypertrophied abdominal adipocytes may play an important role in determining the lipid composition of HDL in obesity.

  20. Transcriptional and epigenetic control of brown and beige adipose cell fate and function

    PubMed Central

    Inagaki, Takeshi; Sakai, Juro; Kajimura, Shingo

    2016-01-01

    White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes. PMID:27251423

  1. Transcriptional and epigenetic control of brown and beige adipose cell fate and function.

    PubMed

    Inagaki, Takeshi; Sakai, Juro; Kajimura, Shingo

    2016-08-01

    White adipocytes store excess energy in the form of triglycerides, whereas brown and beige adipocytes dissipate energy in the form of heat. This thermogenic function relies on the activation of brown and beige adipocyte-specific gene programmes that are coordinately regulated by adipose-selective chromatin architectures and by a set of unique transcriptional and epigenetic regulators. A number of transcriptional and epigenetic regulators are also required for promoting beige adipocyte biogenesis in response to various environmental stimuli. A better understanding of the molecular mechanisms governing the generation and function of brown and beige adipocytes is necessary to allow us to control adipose cell fate and stimulate thermogenesis. This may provide a therapeutic approach for the treatment of obesity and obesity-associated diseases, such as type 2 diabetes.

  2. Derivation of epithelial-like cells from eyelid fat-derived stem cells in thermosensitive hydrogel.

    PubMed

    Heidari Keshel, Saeed; Rostampour, Maryam; Khosropour, Golbahar; Bandbon B, Atefehsadat; Baradaran-Rafii, Alireza; Biazar, Esmaeil

    2016-01-01

    Injectable hydrogel is one of the great interests for tissue engineering and cell encapsulation. In the study, the thermosensitive chitosan/gelatin/β-glycerol phosphate (C/G/GP) disodium salt hydrogels were designed and investigated by different analyses. The eye fat-derived stem cells were used to evaluate the biocompatibility of hydrogels based on their phenotypic profile, viability, proliferation, and attachment ability. The results show that the sol/gel transition temperature of the C/G/GP hydrogel was in the range of 31.1-33.8 °C at neutral pH value, the gelation time was shortened, and the gel strength also improved at body temperature when compared with the C/GP hydrogel. In vitro cell culture experiments with eyelid fat-derived stem cells in hydrogel showed beneficial effects on the cell phenotypic morphology, proliferation, and differentiation. Microscopic figures showed that the eyelid fat stem cell were firmly anchored to the substrates and were able to retain a normal stem cell phenotype. Immunocytochemistry (ICC) and real-time-PCR results revealed change in the expression profile of eyelid fat stem cells grown with hydrogels when compared to those grown on control in epithelial induction condition. This study indicates that using chitosan/gelatin/β-glycerol phosphate hydrogel for cell culture is feasible and may apply in minimal invasive surgery in the future.

  3. Browning attenuates murine white adipose tissue expansion during postnatal development.

    PubMed

    Lasar, D; Julius, A; Fromme, T; Klingenspor, M

    2013-05-01

    During postnatal development of mice distinct white adipose tissue depots display a transient appearance of brown-like adipocytes. These brite (brown in white) adipocytes share characteristics with classical brown adipocytes including a multilocular appearance and the expression of the thermogenic protein uncoupling protein 1. In this study, we compared two inbred mouse strains 129S6sv/ev and C57BL6/N known for their different propensity to diet-induced obesity. We observed transient browning in retroperitoneal and inguinal adipose tissue depots of these two strains. From postnatal day 10 to 20 the increase in the abundance of multilocular adipocytes and uncoupling protein 1 expression was higher in 129S6sv/ev than in C57BL6/N pups. The parallel increase in the mass of the two fat depots was attenuated during this browning period. Conversely, epididymal white and interscapular brown adipose tissue displayed a steady increase in mass during the first 30 days of life. In this period, 129S6sv/ev mice developed a significantly higher total body fat mass than C57BL6/N. Thus, while on a local depot level a high number of brite cells is associated with the attenuation of adipose tissue expansion the strain comparison reveals no support for a systemic impact on energy balance. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  4. Lipid profile in eggs of Araucana hens compared with Lohmann Selected Leghorn and ISA Brown hens given diets with different fat sources.

    PubMed

    Millet, S; De Ceulaer, K; Van Paemel, M; Raes, K; De Smet, S; Janssens, G P J

    2006-06-01

    1. In a cross-over trial, the egg cholesterol and fatty acid composition of Araucana hens was compared with those of two commercial breeds (Lohmann Selected Leghorn and ISA Brown) under two feeding regimes, either high (Hn-3) or low (Ln-3) in long-chain n-3 fatty acids. 2. The Hn-3 diet was formed by isocaloric substitution of animal fat in the control diet (Ln-3) by a dry product containing stabilised fish oil with standardised concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). 3. Both breed and diet had influences on egg composition, without interactions. 4. The Araucana breed showed lower feed intake and lower egg weights than the other two breeds. The yolk weight was similar, leading to a much higher yolk:albumen ratio in the Araucana eggs. 5. In comparison to commercial breeds, Araucanas produced eggs with higher cholesterol content per g of yolk, which was even more pronounced when expressed per g of egg, due to the high yolk content of the eggs. The cholesterol content of an egg remained unchanged by the diet, irrespective of the dietary fat source. 6. Changing to the Hn-3 diet led to greater concentrations of polyunsaturated fatty acids (PUFA) and lower concentrations of monounsaturated fatty acids (MUFA) contents in the yolk, without a change in the ratio of saturated (SFA) to unsaturated fatty acids (UFA). 7. Within the PUFA, the n-3 fatty acids increased at the expense of the n-6 fatty acids, indicating a competition between n-3 and n-6 fatty acids for incorporation in the yolk. PMID:16787853

  5. In vivo beta-adrenergic induction of the unmasking of the uncoupling protein in rat brown fat.

    PubMed

    Goubern, M; Chapey, M F; Laury, M C; Portet, R

    1993-09-01

    1. In 28 degrees C adapted rats (WA) both cold stress and norepinephrine (NE) led to a 4-fold increase of uncoupling protein dependent proton conductance which was abolished by propranolol (PRO). 2. In 4-day warm re-exposed rats (after 10 days at 5 degrees C) (WR) the same uncoupling by cold stress was observed but the NE effect was lower. Uncoupling by cold stress was not abolished by PRO. 3. In WR rats, uncoupling was not due to the involvement of an alpha-adrenergic pathway. 4. Both beta-agonist isoproterenol and beta 3-agonists BRL 35135A and ICI D7114 led to high levels of unmasking. 5. Interscapular brown adipose tissue surgical denervation, which abolished cold stress unmasking both in WA and, WR rats, indicates a mediation by direct sympathetic innervation. 6. Depending on the thermal history of the rat, the possibility that unmasking by cold stress could be mediated by different types of beta-receptors is discussed. PMID:7903611

  6. The skinny on Fat: an enormous cadherin that regulates cell adhesion, tissue growth, and planar cell polarity.

    PubMed

    Sopko, Richelle; McNeill, Helen

    2009-10-01

    Fat is an extremely large atypical cadherin involved in the regulation of cell adhesion, tissue growth, and planar cell polarity (PCP). Recent studies have begun to illuminate the mechanisms by which Fat performs these functions during development. Fat relays signals to the Hippo pathway to regulate tissue growth, and to PCP proteins to regulate tissue patterning. In this review we briefly cover the historical data demonstrating that Fat regulates tissue growth and tissue patterning, and then focus on advances in the past three years illuminating the mechanisms by which Fat controls growth and planar polarity in flies and mammals.

  7. miR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit

    PubMed Central

    Chen, Yong; Siegel, Franziska; Kipschull, Stefanie; Haas, Bodo; Fröhlich, Holger; Meister, Gunter; Pfeifer, Alexander

    2013-01-01

    Brown adipocytes are a primary site of energy expenditure and reside not only in classical brown adipose tissue but can also be found in white adipose tissue. Here we show that microRNA 155 is enriched in brown adipose tissue and is highly expressed in proliferating brown preadipocytes but declines after induction of differentiation. Interestingly, microRNA 155 and its target, the adipogenic transcription factor CCAAT/enhancer-binding protein β, form a bistable feedback loop integrating hormonal signals that regulate proliferation or differentiation. Inhibition of microRNA 155 enhances brown adipocyte differentiation and induces a brown adipocyte-like phenotype (‘browning’) in white adipocytes. Consequently, microRNA 155-deficient mice exhibit increased brown adipose tissue function and ‘browning’ of white fat tissue. In contrast, transgenic overexpression of microRNA 155 in mice causes a reduction of brown adipose tissue mass and impairment of brown adipose tissue function. These data demonstrate that the bistable loop involving microRNA 155 and CCAAT/enhancer-binding protein β regulates brown lineage commitment, thereby, controlling the development of brown and beige fat cells. PMID:23612310

  8. Of mice and men: novel insights regarding constitutive and recruitable brown adipocytes

    PubMed Central

    Townsend, K L; Tseng, Y-H

    2015-01-01

    Recently, there has been great attention given to the possibility of combating obesity by targeting brown fat activity or increasing differentiation of brown adipocytes in white fat depots through a process termed ‘browning'. Sympathetic innervation of brown and white adipose tissues provides adrenergic input that drives thermogenesis and regulates fatty acid metabolism, as well as stimulating adipogenesis of recruitable brown adipocyte tissue (rBAT, also known as beige or brite) in white fat. Other factors acting in an endocrine or autocrine/paracrine manner in adipose tissue may also stimulate browning. There have been significant recent advances in understanding the mechanisms of increasing adipose tissue energy expenditure, as well as how brown adipocytes appear in white fat depots, including via de novo adipogenesis from tissue precursor cells. In this article, we integrate this new knowledge with a historical perspective on the discovery of ‘browning'. We also provide an overview of constitutive BAT vs rBAT in mouse and human. PMID:27152169

  9. Pre-germinated brown rice prevented high fat diet induced hyperlipidemia through ameliorating lipid synthesis and metabolism in C57BL/6J mice.

    PubMed

    Shen, Kuo-Ping; Hao, Chi-Long; Yen, Hsueh-Wei; Chen, Chun-Yen; Chen, Jia-Hao; Chen, Fu-Chih; Lin, Hui-Li

    2016-07-01

    Pre-germinated brown rice (PGBR) can ameliorate hyperlipidemia, but the action mechanism is not clear. We focus the mechanisms of PGBR prevented hyperlipidemia. Six-week-old mice were divided into: standard-regular diet (SRD), high-fat diet (HFD) and HFD with PGBR (HFD + PGBR) groups for 16 weeks. The HFD group has higher concentrations of TG, TC, HDL and Non-HDL in the blood, and a higher atherosclerosis index (AI). The TG levels in the liver, and TG, bile acid levels in the feces were enhanced; and the total adipocytokines level in adipose tissue was reduced. The HFD group had higher protein expressions of SREBP-1, SCD-1, FAS, LDLR, and CYP7α1 in the liver. Moreover, the greater expressions of SREBP-1, SCD-1, FAS and the less expressions of PPAR-α and adiponectin were in adipose tissue. In the HFD + PGBR group, the PGBR regulated the levels of TG, TC, HDL, Non-HDL, AI and adipocytokines. PGBR increased more cholesterol and bile acid exhaust in feces. The SREBP-1, SCD-1, FAS, HMGCR, LDLR, CYP7α1 and PPAR-α proteins in the liver; and the SREBP-1, SCD-1, FAS, PPAR-α and adiponectin proteins in adipose tissue were reversed by PGBR. Taken together, PGBR can improve lipid synthesis and metabolism, and we suggest PGBR is a recommendable food for controlling hyperlipidemia. PMID:27499577

  10. Pre-germinated brown rice prevented high fat diet induced hyperlipidemia through ameliorating lipid synthesis and metabolism in C57BL/6J mice

    PubMed Central

    Shen, Kuo-Ping; Hao, Chi-Long; Yen, Hsueh-Wei; Chen, Chun-Yen; Chen, Jia-Hao; Chen, Fu-Chih; Lin, Hui-Li

    2016-01-01

    Pre-germinated brown rice (PGBR) can ameliorate hyperlipidemia, but the action mechanism is not clear. We focus the mechanisms of PGBR prevented hyperlipidemia. Six-week-old mice were divided into: standard-regular diet (SRD), high-fat diet (HFD) and HFD with PGBR (HFD + PGBR) groups for 16 weeks. The HFD group has higher concentrations of TG, TC, HDL and Non-HDL in the blood, and a higher atherosclerosis index (AI). The TG levels in the liver, and TG, bile acid levels in the feces were enhanced; and the total adipocytokines level in adipose tissue was reduced. The HFD group had higher protein expressions of SREBP-1, SCD-1, FAS, LDLR, and CYP7α1 in the liver. Moreover, the greater expressions of SREBP-1, SCD-1, FAS and the less expressions of PPAR-α and adiponectin were in adipose tissue. In the HFD + PGBR group, the PGBR regulated the levels of TG, TC, HDL, Non-HDL, AI and adipocytokines. PGBR increased more cholesterol and bile acid exhaust in feces. The SREBP-1, SCD-1, FAS, HMGCR, LDLR, CYP7α1 and PPAR-α proteins in the liver; and the SREBP-1, SCD-1, FAS, PPAR-α and adiponectin proteins in adipose tissue were reversed by PGBR. Taken together, PGBR can improve lipid synthesis and metabolism, and we suggest PGBR is a recommendable food for controlling hyperlipidemia. PMID:27499577

  11. Some aspects of fatty acid oxidation in isolated fat-cell mitochondria from rat.

    PubMed Central

    Harper, R D; Saggerson, E D

    1975-01-01

    Mitochondrial were prepared from fat-cells isolated from rat epididymal adipose tissues of fed and 48 h-starved rats to study some aspects of fatty acid oxidation in this tissue. The data were compared with values obtained in parallel experiments with liver mitochondria that were prepared and incubated under identical conditions. 2. In the presence of malonate, fluorocitrate and arsenite, malate, but not pyruvate-bicarbonate, facilitated palmitoyl-group oxidation in both types of mitochondria. In the presence of malate, fat-cell mitochondria exhibited slightly higher rates of palmitoylcarnitine oxidation than liver. Rates of octanoylcarnitine oxidation were similar in liver and fat-cell mitochondria. Uncoupling stimulated acylcarnitine oxidation in liver, but not in fat-cell mitochondria. Oxidation of palmitoyl- and octanoyl-carnitine was partially additive in fat-cell but not in liver mitochondria. Starvation for 48 h significantly decreased both palmitoylcarnitine oxidation and latent carnitine palmitoyltransferase activity in fat-cell mitochondria. Starvation increased latent carnitine palmitoyltransferase activity in liver mitochondria but did not alter palmitoylcarnitine oxidation. These results suggested that palmitoylcarnitine oxidation in fat-cell but not in liver mitochondria may be limited by carnitine palmitoyltransferase 2 activity. 3. Fat-cell mitochondria also differed from liver mitochondria in exhibiting considerably lower rates of carnitine-dependent oxidation of palmitoyl-CoA or palmitate, suggesting that carnitine palmitoyltransferase 1 activity may severely rate-limit palmitoyl-CoA oxidation in adipose tissue. PMID:1227502

  12. The Relationship of a Combination of Human Adipose Tissue-Derived Stem Cells and Frozen Fat with the Survival Rate of Transplanted Fat

    PubMed Central

    Ha, Ki-Young; Park, Hojin; Park, Seung-Ha; Lee, Byung-Il; Ji, Yi-Hwa; Kim, Tae-Yeon

    2015-01-01

    Background The survival rate of grafted fat is difficult to predict, and repeated procedures are frequently required. In this study, the effects of the freezing period of harvested adipose tissue and the addition of human adipose tissue-derived stem cells (ASCs) on the process of fat absorption were studied. Methods Adipose tissue was obtained from patients who underwent a lipoaspirated fat graft. The fat tissue was cryopreserved at -20℃ in a domestic refrigerator. A total of 40 nude mice were used. The mice in the experimental group received three different subcutaneous injections in the back: an injection of fresh fat and ASCs, an injection of fat that had been frozen for one month and ASCs, and an injection of fat that had been frozen for two months and ASCs. The control mice received fat grafts without ASCs. The mice were sacrificed at four or eight weeks after the procedure, and the grafted fat tissues were harvested. The extracted fat was evaluated using photographic analysis, volume measurements, and histological examination. Results In the control group, the fat resorption rates four weeks after transplantation in the grafts of fresh fat, fat that had been frozen for one month, and fat that had been frozen for two months were 21.14%, 22.46%, and 42.56%, respectively. In the experimental group, the corresponding resorption rates were 6.68%, 13.0%, and 33.9%, respectively. Conclusions ASCs can increase the fat graft survival rate. The use of ASCs in fat grafting can reduce the need for repeated fat grafts and provide good long term results. PMID:26618113

  13. Induction of brown cells in Venerupis philippinarum exposed to benzo(a)pyrene.

    PubMed

    Boscolo Papo, Michele; Bertotto, Daniela; Pascoli, Francesco; Locatello, Lisa; Vascellari, Marta; Poltronieri, Carlo; Quaglio, Francesco; Radaelli, Giuseppe

    2014-09-01

    Benzo(a)pyrene is an important polycyclic aromatic hydrocarbon (PAH) commonly present in the marine environment and responsible for carcinogenic, teratogenic and mutagenic effects in various animal species. In the present study, we investigated by both histochemical and immunohistochemical approaches the effect of an acute exposure to different concentrations of B(a)P in the Manila clam Venerupis philippinarum. The general morphology of the different clam tissues, which was investigated histologically, evidenced a significant increase in the number of intestinal brown cells after B(a)P exposure. An increasing trend response to B(a)P was detected. The histochemical analysis for lipofuscin revealed the presence of lipofuscin-like substances inside the cytoplasm of intestinal brown cells. The same cells exhibited a PAS positivity and a reactivity to Schmorl's solution for melanin pigment. Moreover, intestinal brown cells exhibited an immunopositivity to HSP70 antibody confirming the increasing trend response to B(a)P detected by the histochemical analysis. Our results suggest that histological tissue changes resulting from exposure to B(a)P can be an useful marker in biomonitoring studies.

  14. Synthesis of mitochondrial uncoupling protein in brown adipocytes differentiated in cell culture

    SciTech Connect

    Kopecky, J.; Baudysova, M.; Zanotti, F.; Janikova, D.; Pavelka, S.; Houstek, J. )

    1990-12-25

    In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-(35S)methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast to some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria.

  15. The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes.

    PubMed

    Penfornis, P; Viengchareun, S; Le Menuet, D; Cluzeaud, F; Zennaro, M C; Lombès, M

    2000-08-01

    By use of targeted oncogenesis, a brown adipocyte cell line was derived from a hibernoma of a transgenic mouse carrying the proximal promoter of the human mineralocorticoid receptor (MR) linked to the SV40 large T antigen. T37i cells remain capable of differentiating into brown adipocytes upon insulin and triiodothyronine treatment as judged by their ability to express uncoupling protein 1 and maintain MR expression. Aldosterone treatment of undifferentiated cells induced accumulation of intracytoplasmic lipid droplets and mitochondria. This effect was accompanied by a significant and dose-dependent increase in intracellular triglyceride content (half-maximally effective dose 10(-9) M) and involved MR, because it was unaffected by RU-38486 treatment but was totally abolished in the presence of aldosterone antagonists (spironolactone, RU-26752). The expression of early adipogenic gene markers, such as lipoprotein lipase, peroxisome proliferator-activated receptor-gamma, and adipocyte-specific fatty acid binding protein 2, was enhanced by aldosterone, confirming activation of the differentiation process. We demonstrate that, in the T37i cell line, aldosterone participates in the very early induction of brown adipocyte differentiation. Our findings may have a broader biological significance and suggest that MR is not only implicated in maintaining electrolyte homeostasis but could also play a role in metabolism and energy balance.

  16. Microbiota depletion promotes browning of white adipose tissue and reduces obesity.

    PubMed

    Suárez-Zamorano, Nicolas; Fabbiano, Salvatore; Chevalier, Claire; Stojanović, Ozren; Colin, Didier J; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-12-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity. In response to cold or exercise, brown fat cells also emerge in the white adipose tissue (WAT; also known as beige cells), a process known as browning. Here we show that the development of functional beige fat in the inguinal subcutaneous adipose tissue (ingSAT) and perigonadal visceral adipose tissue (pgVAT) is promoted by the depletion of microbiota either by means of antibiotic treatment or in germ-free mice. This leads to improved glucose tolerance and insulin sensitivity and decreased white fat and adipocyte size in lean mice, obese leptin-deficient (ob/ob) mice and high-fat diet (HFD)-fed mice. Such metabolic improvements are mediated by eosinophil infiltration, enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by the suppression of type 2 cytokine signaling, and they are reversed by recolonization of the antibiotic-treated or germ-free mice with microbes. These results provide insight into the microbiota-fat signaling axis and beige-fat development in health and metabolic disease.

  17. Microbiota depletion promotes browning of white adipose tissue and reduces obesity

    PubMed Central

    Chevalier, Claire; Stojanović, Ozren; Colin, Didier J.; Stevanović, Ana; Veyrat-Durebex, Christelle; Tarallo, Valentina; Rigo, Dorothée; Germain, Stéphane; Ilievska, Miroslava; Montet, Xavier; Seimbille, Yann; Hapfelmeier, Siegfried; Trajkovski, Mirko

    2015-01-01

    Brown adipose tissue (BAT) promotes a lean and healthy phenotype and improves insulin sensitivity1. In response to cold or exercise brown fat cells also emerge in the white adipose tissue (named beige cells), a process known as browning2,3,4. Here, we show that the development of functional beige fat is promoted by microbiota depletion either by antibiotic treatment or in germ-free mice within the inguinal subcutaneous and perigonadal visceral adipose tissues (ingSAT and pgVAT, respectively). This leads to improved glucose tolerance, insulin sensitivity and decreased white fat and adipocyte size in lean mice and obese leptin-deficient (ob/ob) and high fat diet (HFD)-fed mice. These metabolic improvements are mediated by eosinophil infiltration and enhanced type 2 cytokine signaling and M2 macrophage polarization in the subcutaneous white fat depots of microbiota-depleted animals. The metabolic phenotype and the browning of the subcutaneous fat are impaired by suppression of the type 2 signaling and are reversed by recolonization of the antibiotic-treated, or the germ-free mice with microbes. These results provide insight into microbiota-fat signaling axis and beige fat development in health and metabolic disease. PMID:26569380

  18. Regulation of neuronal migration by Dchs1-Fat4 planar cell polarity.

    PubMed

    Zakaria, Sana; Mao, Yaopan; Kuta, Anna; Ferreira de Sousa, Catia; Gaufo, Gary O; McNeill, Helen; Hindges, Robert; Guthrie, Sarah; Irvine, Kenneth D; Francis-West, Philippa H

    2014-07-21

    Planar cell polarity (PCP) describes the polarization of cell structures and behaviors within the plane of a tissue. PCP is essential for the generation of tissue architecture during embryogenesis and for postnatal growth and tissue repair, yet how it is oriented to coordinate cell polarity remains poorly understood [1]. In Drosophila, PCP is mediated via the Frizzled-Flamingo (Fz-PCP) and Dachsous-Fat (Fat-PCP) pathways [1-3]. Fz-PCP is conserved in vertebrates, but an understanding in vertebrates of whether and how Fat-PCP polarizes cells, and its relationship to Fz-PCP signaling, is lacking. Mutations in human FAT4 and DCHS1, key components of Fat-PCP signaling, cause Van Maldergem syndrome, characterized by severe neuronal abnormalities indicative of altered neuronal migration [4]. Here, we investigate the role and mechanisms of Fat-PCP during neuronal migration using the murine facial branchiomotor (FBM) neurons as a model. We find that Fat4 and Dchs1 are expressed in complementary gradients and are required for the collective tangential migration of FBM neurons and for their PCP. Fat4 and Dchs1 are required intrinsically within the FBM neurons and extrinsically within the neuroepithelium. Remarkably, Fat-PCP and Fz-PCP regulate FBM neuron migration along orthogonal axes. Disruption of the Dchs1 gradients by mosaic inactivation of Dchs1 alters FBM neuron polarity and migration. This study implies that PCP in vertebrates can be regulated via gradients of Fat4 and Dchs1 expression, which establish intracellular polarity across FBM cells during their migration. Our results also identify Fat-PCP as a novel neuronal guidance system and reveal that Fat-PCP and Fz-PCP can act along orthogonal axes. PMID:24998526

  19. Frequent Extreme Cold Exposure and Brown Fat and Cold-Induced Thermogenesis: A Study in a Monozygotic Twin

    PubMed Central

    Vosselman, Maarten J.; Vijgen, Guy H. E. J.; Kingma, Boris R. M.; Brans, Boudewijn; van Marken Lichtenbelt, Wouter D.

    2014-01-01

    Introduction Mild cold acclimation is known to increase brown adipose tissue (BAT) activity and cold-induced thermogenesis (CIT) in humans. We here tested the effect of a lifestyle with frequent exposure to extreme cold on BAT and CIT in a Dutch man known as ‘the Iceman’, who has multiple world records in withstanding extreme cold challenges. Furthermore, his monozygotic twin brother who has a ‘normal’ sedentary lifestyle without extreme cold exposures was measured. Methods The Iceman (subject A) and his brother (subject B) were studied during mild cold (13°C) and thermoneutral conditions (31°C). Measurements included BAT activity and respiratory muscle activity by [18F]FDG-PET/CT imaging and energy expenditure through indirect calorimetry. In addition, body temperatures, cardiovascular parameters, skin perfusion, and thermal sensation and comfort were measured. Finally, we determined polymorphisms for uncoupling protein-1 and β3-adrenergic receptor. Results Subjects had comparable BAT activity (A: 1144 SUVtotal and B: 1325 SUVtotal), within the range previously observed in young adult men. They were genotyped with the polymorphism for uncoupling protein-1 (G/G). CIT was relatively high (A: 40.1% and B: 41.9%), but unlike during our previous cold exposure tests in young adult men, here both subjects practiced a g-Tummo like breathing technique, which involves vigorous respiratory muscle activity. This was confirmed by high [18F]FDG-uptake in respiratory muscle. Conclusion No significant differences were found between the two subjects, indicating that a lifestyle with frequent exposures to extreme cold does not seem to affect BAT activity and CIT. In both subjects, BAT was not higher compared to earlier observations, whereas CIT was very high, suggesting that g-Tummo like breathing during cold exposure may cause additional heat production by vigorous isometric respiratory muscle contraction. The results must be interpreted with caution given the low

  20. Expression of an insulin-regulatable glucose carrier in muscle and fat endothelial cells

    NASA Astrophysics Data System (ADS)

    Vilaró, Senen; Palacín, Manuel; Pilch, Paul F.; Testar, Xavier; Zorzano, Antonio

    1989-12-01

    INSULIN rapidly stimulates glucose use in the major target tissues, muscle and fat, by modulating a tissue-specific glucose transporter isoform1-6. Access of glucose to the target tissue is restricted by endothelial cells which line the walls of nonfenestrated capillaries of fat and muscle7. Thus, we examined whether the capillary endothelial cells are actively involved in the modulation of glucose availability by these tissues. We report here the abundant expression of the muscle/fat glucose transporter isoform in endothelial cells, using an immunocytochemical analysis with a monoclonal antibody specific for this isoform1. This expression is restricted to endothelial cells from the major insulin target tissues, and it is not detected in brain and liver where insulin does not activate glucose transport. The expression of the muscle/fat transporter isoform in endothelial cells is significantly greater than in the neighbouring muscle and fat cells. Following administration of insulin to animals in vivo, there occurs a rapid increase in the number of muscle/fat transporters present in the lumenal plasma membrane of the capillary endothelial cells. These results document that insulin promotes the translocation of the muscle/fat glucose transporter in endothelial cells. It is therefore likely that endothelial cells play an important role in the regulation of glucose use by the major insulin target tissues in normal and diseased states.

  1. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows.

    PubMed

    Cecchinato, A; Ribeca, C; Chessa, S; Cipolat-Gotet, C; Maretto, F; Casellas, J; Bittante, G

    2014-07-01

    The aim of this study was to investigate 96 single-nucleotide polymorphisms (SNPs) from 54 candidate genes, and test the associations of the polymorphic SNPs with milk yield, composition, milk urea nitrogen (MUN) content and somatic cell score (SCS) in individual milk samples from Italian Brown Swiss cows. Milk and blood samples were collected from 1271 cows sampled once from 85 herds. Milk production, quality traits (i.e. protein, casein, fat and lactose percentages), MUN and SCS were measured for each milk sample. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model that considered the effects of herd, days in milk, parity, SNP genotype and additive polygenic effect was used for the association analysis. Our results showed that 14 of the 51 polymorphic SNPs had relevant additive effects on at least one of the aforementioned traits. Polymorphisms in the glucocorticoid receptor DNA-binding factor 1 (GRLF1), prolactin receptor (PRLR) and chemokine ligand 2 (CCL2) were associated with milk yield; an SNP in the stearoyl-CoA desaturase (SCD-1) was related to fat content; SNPs in the caspase recruitment domain 15 protein (CARD15) and lipin 1 (LPIN1) affected the protein and casein contents; SNPs in growth hormone 1 (GH1), lactotransferrin (LTF) and SCD-1 were relevant for casein number; variants in beta casein (CSN2), GH1, GRLF1 and LTF affected lactose content; SNPs in beta-2 adrenergic receptor (ADRB2), serpin peptidase inhibitor (PI) and SCD-1 were associated with MUN; and SNPs in acetyl-CoA carboxylase alpha (ACACA) and signal transducer and activator of transcription 5A (STAT5A) were relevant in explaining the variation of SCS. Although further research is needed to validate these SNPs in other populations and breeds, the association between these markers and milk yield, composition, MUN and SCS could be exploited in gene-assisted selection programs for genetic improvement purposes.

  2. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows.

    PubMed

    Cecchinato, A; Ribeca, C; Chessa, S; Cipolat-Gotet, C; Maretto, F; Casellas, J; Bittante, G

    2014-07-01

    The aim of this study was to investigate 96 single-nucleotide polymorphisms (SNPs) from 54 candidate genes, and test the associations of the polymorphic SNPs with milk yield, composition, milk urea nitrogen (MUN) content and somatic cell score (SCS) in individual milk samples from Italian Brown Swiss cows. Milk and blood samples were collected from 1271 cows sampled once from 85 herds. Milk production, quality traits (i.e. protein, casein, fat and lactose percentages), MUN and SCS were measured for each milk sample. Genotyping was performed using a custom Illumina VeraCode GoldenGate approach. A Bayesian linear animal model that considered the effects of herd, days in milk, parity, SNP genotype and additive polygenic effect was used for the association analysis. Our results showed that 14 of the 51 polymorphic SNPs had relevant additive effects on at least one of the aforementioned traits. Polymorphisms in the glucocorticoid receptor DNA-binding factor 1 (GRLF1), prolactin receptor (PRLR) and chemokine ligand 2 (CCL2) were associated with milk yield; an SNP in the stearoyl-CoA desaturase (SCD-1) was related to fat content; SNPs in the caspase recruitment domain 15 protein (CARD15) and lipin 1 (LPIN1) affected the protein and casein contents; SNPs in growth hormone 1 (GH1), lactotransferrin (LTF) and SCD-1 were relevant for casein number; variants in beta casein (CSN2), GH1, GRLF1 and LTF affected lactose content; SNPs in beta-2 adrenergic receptor (ADRB2), serpin peptidase inhibitor (PI) and SCD-1 were associated with MUN; and SNPs in acetyl-CoA carboxylase alpha (ACACA) and signal transducer and activator of transcription 5A (STAT5A) were relevant in explaining the variation of SCS. Although further research is needed to validate these SNPs in other populations and breeds, the association between these markers and milk yield, composition, MUN and SCS could be exploited in gene-assisted selection programs for genetic improvement purposes. PMID:24804775

  3. Effect of adrenaline on 32P incorporation into rat fat-cell phospholipids

    PubMed Central

    Stein, Janet M.; Hales, C. N.

    1972-01-01

    1. The phospholipid composition of fat-cells prepared from rat epididymal fat-pad was determined. 2. The incorporation of [32P]Pi into the phospholipids of fat-cells incubated in glucose-free medium and the effect of adrenaline and of α- and β-adrenergic blocking agents, were studied. 3. Incorporation of [32P]Pi into fat-cell phospholipid increased with time; incubation with adrenaline resulted in increased incorporation that was related to the concentration of adrenaline. 4. The pattern of incorporation of [32P]Pi into the individual phospholipids of fat-cells after incubation for 1h was determined; adrenaline (5.4μm) resulted in increased incorporation into phosphatidylcholine. 5. Incubation of fat-cells with propranolol (34μm) and adrenaline (5.4μm) resulted in abolition of adrenaline-stimulated lipolysis; there was a decrease in the specific radioactivity of phosphatidylcholine and an increase in the specific radioactivity of phosphatidylethanolamine, phosphatidic acid, phosphatidylinositol and cardiolipin compared with cells incubated with adrenaline alone. 6. Incubation of fat-cells with phenoxybenzamine (0.1mm) and adrenaline (5.4μm) resulted in stimulation of lipolysis, and in diminished specific radioactivities of phosphatidylcholine, phosphatidic acid, phosphatidylinositol, phosphatidylglycerol and choline plasmalogen compared with cells stimulated with adrenaline alone. PMID:4344003

  4. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes.

    PubMed

    Ussar, Siegfried; Lee, Kevin Y; Dankel, Simon N; Boucher, Jeremie; Haering, Max-Felix; Kleinridders, Andre; Thomou, Thomas; Xue, Ruidan; Macotela, Yazmin; Cypess, Aaron M; Tseng, Yu-Hua; Mellgren, Gunnar; Kahn, C Ronald

    2014-07-30

    White, beige, and brown adipocytes are developmentally and functionally distinct but often occur mixed together within individual depots. To target white, beige, and brown adipocytes for diagnostic or therapeutic purposes, a better understanding of the cell surface properties of these cell types is essential. Using a combination of in silico, in vitro, and in vivo methods, we have identified three new cell surface markers of adipose cell types. The amino acid transporter ASC-1 is a white adipocyte-specific cell surface protein, with little or no expression in brown adipocytes, whereas the amino acid transporter PAT2 and the purinergic receptor P2RX5 are cell surface markers expressed in classical brown and beige adipocytes in mice. These markers also selectively mark brown/beige and white adipocytes in human tissue. Thus, ASC-1, PAT2, and P2RX5 are membrane surface proteins that may serve as tools to identify and target white and brown/beige adipocytes for therapeutic purposes.

  5. Asc-1, PAT2 and P2RX5 are novel cell surface markers for white, beige and brown adipocytes

    PubMed Central

    Ussar, Siegfried; Lee, Kevin Y.; Dankel, Simon N.; Boucher, Jeremie; Haering, Max-Felix; Kleinridders, Andre; Thomou, Thomas; Xue, Ruidan; Macotela, Yazmin; Cypess, Aaron M.; Tseng, Yu-Hua; Mellgren, Gunnar; Kahn, C. Ronald

    2015-01-01

    White, beige and brown adipocytes are developmentally and functionally distinct but often occur mixed together within individual depots. To target white, beige and brown adipocytes for diagnostic or therapeutic purposes, a better understanding of the cell surface properties of these cell types is essential. Using a combination of in silico, in vitro and in vivo methods, we have identified three new cell surface markers of adipose cell types. The amino acid transporter Asc-1 is a white adipocyte-specific cell surface protein, with little or no expression in brown adipocytes, whereas the amino acid transporter PAT2 and the purinergic receptor P2RX5 are cell surface markers expressed in classical brown and beige adipocytes in mice. These markers also selectively mark brown/beige and white adipocytes in human tissue. Thus, Asc-1, PAT2 and P2RX5 are membrane surface proteins that may serve as tools to identify and target white and brown/beige adipocytes for therapeutic purposes. PMID:25080478

  6. Role of Adipose-derived Stem Cells in Fat Grafting and Reconstructive Surgery

    PubMed Central

    Tan, Shaun S; Ng, Zhi Yang; Zhan, Weiqing; Rozen, Warren

    2016-01-01

    Autologous fat grafting is commonly utilised to reconstruct soft tissue defects caused by ageing, trauma, chronic wounds and cancer resection. The benefits of fat grafting are minimal donor site morbidity and ease of availability through liposuction or lipectomy. Nonetheless, survival and longevity of fat grafts remain poor post-engraftment. Various methods to enhance fat graft survival are currently under investigation and its stem cell constituents are of particular interest. Cell-assisted lipotransfer refers to the addition of adipose-derived stem cell (ASC) rich component of stromal vascular fraction to lipoaspirate, the results of which have proven promising. This article aims to review the role of ASCs in fat grafting and reconstructive surgery. PMID:27761084

  7. 15O PET Measurement of Blood Flow and Oxygen Consumption in Cold-Activated Human Brown Fat

    PubMed Central

    Muzik, Otto; Mangner, Thomas J.; Leonard, William R.; Kumar, Ajay; Janisse, James; Granneman, James G.

    2013-01-01

    Although it has been believed that brown adipose tissue (BAT) depots disappear shortly after the perinatal period in humans, PET imaging using the glucose analog 18F-FDG has shown unequivocally the existence of functional BAT in adult humans, suggesting that many humans retain some functional BAT past infancy. The objective of this study was to determine to what extent BAT thermogenesis is activated in adults during cold stress and to establish the relationship between BAT oxidative metabolism and 18F-FDG tracer uptake. Methods Twenty-five healthy adults (15 women and 10 men; mean age ± SD, 30 ± 7 y) underwent triple-oxygen scans (H215O, C15O, and 15O2) as well as measurements of daily energy expenditure (DEE; kcal/d) both at rest and after exposure to mild cold (15.5°C [60°F]) using indirect calorimetry. The subjects were divided into 2 groups (high BAT and low BAT) based on the presence or absence of 18F-FDG tracer uptake (standardized uptake value [SUV] > 2) in cervical–supraclavicular BAT. Blood flow and oxygen extraction fraction (OEF) were calculated from dynamic PET scans at the location of BAT, muscle, and white adipose tissue. Regional blood oxygen saturation was determined by near-infrared spectroscopy. The total energy expenditure during rest and mild cold stress was measured by indirect calorimetry. Tissue-level metabolic rate of oxygen (MRO2) in BAT was determined and used to calculate the contribution of activated BAT to DEE. Results The mass of activated BAT was 59.1 ± 17.5 g (range, 32–85 g) in the high-BAT group (8 women and 1 man; mean age, 29.6 ± 5.5 y) and 2.2 ± 3.6 g (range, 0–9.3 g) in the low-BAT group (9 men and 7 women; mean age, 31.4 ± 10 y). Corresponding maximal SUVs were significantly higher in the high-BAT group than in the low-BAT group (10.7 ± 3.9 vs. 2.1 ± 0.7, P = 0.01). Blood flow values were significantly higher in the high-BAT group than in the low-BAT group for BAT (12.9 ± 4.1 vs. 5.9 ± 2.2 mL/100 g/min, P = 0

  8. You Are What You Eat: Linking High-Fat Diet to Stem Cell Dysfunction and Tumorigenesis.

    PubMed

    Haller, Samantha; Jasper, Heinrich

    2016-05-01

    A high-fat diet is linked to elevated cancer risk, yet this link remains poorly understood. New studies in mice are now beginning to obtain mechanistic insight into how high-fat diets perturb stem cell function and cause cancers. PMID:27152439

  9. You Are What You Eat: Linking High-Fat Diet to Stem Cell Dysfunction and Tumorigenesis.

    PubMed

    Haller, Samantha; Jasper, Heinrich

    2016-05-01

    A high-fat diet is linked to elevated cancer risk, yet this link remains poorly understood. New studies in mice are now beginning to obtain mechanistic insight into how high-fat diets perturb stem cell function and cause cancers.

  10. The effect of selenium-deficiency on rat fat-cell glucose oxidation.

    PubMed Central

    Souness, J E; Stouffer, J E; Chagoya de Sanchez, V

    1983-01-01

    When rats are fed a selenium-deficient diet, the glutathione peroxidase activity of epididymal fat-cells decreases to 5-9% of that of control rats fed the same diet supplemented with 0.5 p.p.m. of selenium as sodium selenite. [1-14C]Glucose oxidation in fat-cells from rats fed a selenium-deficient diet is unresponsive to the action of t-butyl hydroperoxide, which stimulates 14CO2 formation from [1-14C]glucose 4-fold in control rats. Insulin enhances [1-14C]glucose oxidation and incorporation into lipids in fat-cells from both groups of rats; however, the response elicited is reduced in fat-cells prepared from selenium-deficient animals. The 'C-1/C-6 ratio' (ratio of glucose C-1 to glucose C-6 oxidized) is enhanced by insulin to a similar degree in fat-cells from both groups of animals. The stimulatory action of Zn2+ and dithiothreitol on [1-14C]glucose oxidation observed in fat-cells from selenium-supplemented rats is greatly reduced in fat-cells from selenium-deficient rats. [1-14C]Glucose oxidation in fat-cells from both groups of animals is highly sensitive to the stimulatory action of adenosine. It is concluded that the enhanced formation and glutathione-linked destruction of H2O2 plays, at the most, only a minor role in the stimulation of the flux of glucose through the pentose phosphate pathway elicited by insulin, although elimination of glutathione peroxidase activity may influence the action of insulin on glucose oxidation. Production and subsequent destruction of H2O2 may play an important role in the stimulatory action of Zn2+ and dithiothreitol on fat-cell [1-14C]glucose oxidation. PMID:6351853

  11. Expression of the mitochondrial uncoupling protein in brown adipocytes. Absence in brown preadipocytes and BFC-1 cells. Modulation by isoproterenol in adipocytes.

    PubMed

    Forest, C; Doglio, A; Casteilla, L; Ricquier, D; Ailhaud, G

    1987-01-01

    The expression of the uncoupling protein has been compared in cells of BFC-1 clonal line established from mouse brown adipose tissue (BAT) and in preadipocytes, as well as in adipocytes from mouse BAT, both in primary culture. The results of immunoblots show that, after one week in culture, adipocytes have a reduced level of the 32 kD protein. This level can be raised 2-3.5-fold by a 24-h exposure to isoproterenol. Thus a direct modulation by a beta-agonist drug in the expression of the uncoupling protein is observed. Under the same conditions as well as under various other conditions, preadipocytes in primary culture and BFC-1 cells do not express the uncoupling protein. At the same time these cells are able both to differentiate into adipose cells, as demonstrated by the emergence of enzyme markers and triglyceride accumulation, and to respond to isoproterenol. Thus isoproterenol is not sufficient to trigger the expression of the uncoupling protein and behaves as a mere modulator once the cells have acquired the capacity to express it. Injection of undifferentiated BFC-1 cells into athymic mice bearing catecholamine-containing mini-osmotic pumps, or co-cultures of BFC-1 cells and pheochromocytoma PC-12 cells do not allow BFC-1 cells to express the uncoupling protein. Taken together, the results suggest that the formation of brown preadipocytes is critically linked during development to the release by sympathetic nerves of specific trophic factors acting locally.

  12. Red Blood Cell Dysfunction Induced by High-Fat Diet

    PubMed Central

    Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.

    2015-01-01

    Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254

  13. An infection of human adenovirus 31 affects the differentiation of preadipocytes into fat cells, its metabolic profile and fat accumulation.

    PubMed

    Bil-Lula, Iwona; Krzywonos-Zawadzka, Anna; Sawicki, Grzegorz; Woźniak, Mieczysław

    2016-03-01

    The primary issue undertaken in this study was to test the hypothesis that preadipocytes would have intrinsically elevated propensity to differentiate into mature adipocytes due to HAdV31 infection. To prove that, the metabolic and molecular mechanisms responsible for HAdV31-induced adipogenesis were examined. 3T3L1 cells (mouse embryonic fibroblast, adipose like cell line) were used as a surrogate model to analyze an increased proliferation, differentiation, and maturation of preadipocytes infected with human adenovirus. An expression of E4orf1, C/EBP-β, PPAR-γ, GAPDH, aP2, LEP, and fatty acid synthase genes, intracellular lipid accumulation as well as cytokine release from the fat cells were assessed. Data showed that HAdV31 increased an expression of C/EBP-β and PPAR-γ genes leading to an enhanced differentiation of preadipocytes into fat cells. Besides, overexpression of GAPDH and fatty acid synthase, and decreased expression of leptin caused an increased accumulation of intracellular lipids. Secretion of TNF-α and IL-6 from HAdV31-infected cells was strongly decreased, leading to unlimited virus replication. The results obtained from this study provided the evidences that HAdV31, likewise previously documented HAdV36, is a subsequent human adenovirus affecting the differentiation and lipid accumulation of 3T3L1 cells.

  14. Adipose-derived stem cells from the brown bear (Ursus arctos) spontaneously undergo chondrogenic and osteogenic differentiation in vitro.

    PubMed

    Fink, Trine; Rasmussen, Jeppe G; Emmersen, Jeppe; Pilgaard, Linda; Fahlman, Åsa; Brunberg, Sven; Josefsson, Johan; Arnemo, Jon M; Zachar, Vladimir; Swenson, Jon E; Fröbert, Ole

    2011-07-01

    In the den, hibernating brown bears do not develop tissue atrophy or organ damage, despite almost no physical activity. Mesenchymal stem cells could play an important role in tissue repair and regeneration in brown bears. Our objective was to determine if adipose tissue-derived stem cells (ASCs) can be recovered from wild Scandinavian brown bears and characterize their differentiation potential. Following immobilization of wild brown bears 7-10 days after leaving the den in mid-April, adipose tissue biopsies were obtained. ASCs were recovered from 6 bears, and shown to be able to undergo adipogenesis and osteogenesis in monolayer cultures and chondrogenesis in pellet cultures. Remarkably, when grown in standard cell culture medium in monolayer cultures, ASCs from yearlings spontaneously formed bone-like nodules surrounded by cartilaginous deposits, suggesting differentiation into osteogenic and chondrogenic lineages. This ability appears to be lost gradually with age. This is the first study to demonstrate stem cell recovery and growth from brown bears, and it is the first report of ASCs spontaneously forming extracellular matrix characteristic of bone and cartilage in the absence of specific inducers. These findings could have implications for the use of hibernating brown bears as a model to study disuse osteoporosis.

  15. Activation of Classical Brown Adipocytes in the Adult Human Perirenal Depot Is Highly Correlated with PRDM16–EHMT1 Complex Expression

    PubMed Central

    Nagano, Gaku; Ohno, Haruya; Oki, Kenji; Kobuke, Kazuhiro; Shiwa, Tsuguka; Yoneda, Masayasu; Kohno, Nobuoki

    2015-01-01

    Brown fat generates heat to protect against cold and obesity. Adrenergic stimulation activates the thermogenic program of brown adipocytes. Although the bioactivity of brown adipose tissue in adult humans had been assumed to very low, several studies using positron emission tomography–computed tomography (PET–CT) have detected bioactive brown adipose tissue in adult humans under cold exposure. In this study, we collected adipose tissues obtained from the perirenal regions of adult patients with pheochromocytoma (PHEO) or non-functioning adrenal tumors (NF). We demonstrated that perirenal brown adipocytes were activated in adult patients with PHEO. These cells had the molecular characteristics of classical brown fat rather than those of beige/brite fat. Expression of brown adipose tissue markers such as uncoupling protein 1 (UCP1) and cell death-inducing DFFA-like effector A (CIDEA) was highly correlated with the amounts of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16) – euchromatic histone-lysine N-methyltransferase 1 (EHMT1) complex, the key transcriptional switch for brown fat development. These results provide novel insights into the reconstruction of human brown adipocytes and their therapeutic application against obesity and its complications such as type 2 diabetes. PMID:25812118

  16. Exchangeable and total calcium pools in mitochondria of rat epididymal fat-pads and isolated fat-cells. Role in the regulation of pyruvate dehydrogenase activity.

    PubMed

    Severson, D L; Denton, R M; Bridges, B J; Randle, P J

    1976-01-15

    1. Isolated fat-cells and intact epididymal fat-pads were incubated in medium containing 45Ca2+ and the incorporation of 45Ca into mitochondrial and extramitochondrial fractions was studied. Redistribution of 45Ca between these fractions was essentially prevented by the addition of EGTA [ethanedioxybis(ethylamine)tetra-acetate] and Ruthenium Red to the sucrose-based extraction medium. 2. Incorporation of 45Ca into mitochondrial fractions of both fat-cells and fat-pads was found to be complete within 2-5 min, suggesting that mitochondria contain a pool of calcium in rapid isotopic exchange with extracellular Ca2+. This pool was about 20 times larger in mitochondria within fat-cells than within fat-pads. In fat-cells, 45Ca incorporation into the mitochondrial fraction accounted for about 34% of the total 45Ca incorporation into cells after 20 min and about 50% of the total mitochondrial calcium content measured by atomic absorption; values in fat-pads were about 7 and 20% respectively.

  17. ASK1 signalling regulates brown and beige adipocyte function

    PubMed Central

    Hattori, Kazuki; Naguro, Isao; Okabe, Kohki; Funatsu, Takashi; Furutani, Shotaro; Takeda, Kohsuke; Ichijo, Hidenori

    2016-01-01

    Recent studies suggest that adult humans have active brown or beige adipocytes, the activation of which might be a therapeutic strategy for the treatment of diverse metabolic diseases. Here we show that the protein kinase ASK1 regulates brown and beige adipocytes function. In brown or white adipocytes, the PKA-ASK1-p38 axis is activated in response to cAMP signalling and contributes to the cell-autonomous induction of genes, including Ucp1. Global and fat-specific ASK1 deficiency leads to impaired metabolic responses, including thermogenesis and oxygen consumption, at the cell and whole-body levels, respectively. Our data thus indicate that the ASK1 signalling axis is a regulator of brown and beige adipocyte gene expression and function. PMID:27045525

  18. Prostaglandin E2 signals white-to-brown adipogenic differentiation.

    PubMed

    García-Alonso, Verónica; Clària, Joan

    2014-01-01

    The formation of new adipocytes from precursor cells is a crucial aspect of normal adipose tissue function. During the adipogenic process, adipocytes differentiated from mesenchymal stem cells give rise to two main types of fat: white adipose tissue (WAT) characterized by the presence of adipocytes containing large unilocular lipid droplets, and brown adipose tissue (BAT) composed by multilocular brown adipocytes packed with mitochondria. WAT is not only important for energy storage but also as an endocrine organ regulating whole body homeostasis by secreting adipokines and other mediators, which directly impact metabolic functions in obesity. By contrast, BAT is specialized in dissipating energy in form of heat and has salutary effects in combating obesity and associated disorders. Unfortunately, WAT is the predominant fat type, whereas BAT is scarce and located in discrete pockets in adult humans. Luckily, another type of brown adipocytes, called beige or brite (brown-in-white) adipocytes, with similar functions to those of "classical" brown adipocytes has recently been identified in WAT. In this review, a close look is given into the role of bioactive lipid mediators in the regulation of adipogenesis, with a special emphasis on the role of the microsomal prostaglandin E (PGE) synthase-1, a terminal enzyme in PGE2 biosynthesis, as a key regulator of white-to-brown adipogenesis in WAT. PMID:26317053

  19. Neuroprotective Effects of Germinated Brown Rice against Hydrogen Peroxide Induced Cell Death in Human SH-SY5Y Cells

    PubMed Central

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H2O2) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H2O2-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis. PMID:22949825

  20. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  1. Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation

    PubMed Central

    Sugiyama, Yuki; Shelley, Elizabeth J.; Badouel, Caroline; McNeill, Helen; McAvoy, John W.

    2015-01-01

    Purpose. The Fat family of atypical cadherins, originally identified in Drosophila, play diverse roles during embryogenesis and adult tissue maintenance. Among four mammalian members, Fat1 is essential for kidney and muscle organization, and is also essential for eye development; Fat1 knockout causes partial penetrant microphthalmia or anophthalmia. To account for the partial penetrance of the Fat1 phenotype, involvement of Fat4 in eye development was assessed. Lens phenotypes in Fat1 and 4 knockouts were also examined. Methods. Fat1 and Fat4 mRNA expression was examined by in situ hybridization. Knockout phenotypes of Fat1 and Fat4 were analyzed by hematoxylin and eosin (H&E) and immunofluorescent staining. Results. We found Fat4 knockout did not affect eye induction or enhance severity of Fat1 eye defects. Although Fat1 and Fat4 mRNAs are similarly expressed in the lens epithelial cells, only Fat1 knockout caused a fully penetrant lens epithelial cell defect, which was apparent at embryonic day 14.5 (E14.5). The columnar structure of the lens epithelial cells was disrupted and in some regions cell aggregates were formed. In these multilayered regions, apical cell junctions were fragmented and the apical-basal polarity was lost. EdU incorporation assay also showed enhanced proliferation in the lens epithelial cells. Interestingly, these defects were found mainly in the central zone of the epithelial layer. The lens epithelial cells of the germinative zone maintained their normal morphology and fiber differentiation occurred normally at the equator. Conclusions. These observations indicate that Fat1 is essential for lens epithelial cell polarity and proliferation but not for terminal differentiation. PMID:26114487

  2. Safety Concern between Autologous Fat Graft, Mesenchymal Stem Cell and Osteosarcoma Recurrence

    PubMed Central

    Perrot, Pierre; Rousseau, Julie; Bouffaut, Anne-Laure; Rédini, Françoise; Cassagnau, Elisabeth; Deschaseaux, Frédéric; Heymann, Marie-Françoise; Heymann, Dominique; Duteille, Franck; Trichet, Valérie; Gouin, François

    2010-01-01

    Background Osteosarcoma is the most common malignant primary bone tumour in young adult treated by neo adjuvant chemotherapy, surgical tumor removal and adjuvant multidrug chemotherapy. For correction of soft tissue defect consecutive to surgery and/or tumor treatment, autologous fat graft has been proposed in plastic and reconstructive surgery. Principal Findings We report here a case of a late local recurrence of osteosarcoma which occurred 13 years after the initial pathology and 18 months after a lipofilling procedure. Because such recurrence was highly unexpected, we investigated the possible relationship of tumor growth with fat injections and with mesenchymal stem/stromal cell like cells which are largely found in fatty tissue. Results obtained in osteosarcoma pre-clinical models show that fat grafts or progenitor cells promoted tumor growth. Significance These observations and results raise the question of whether autologous fat grafting is a safe reconstructive procedure in a known post neoplasic context. PMID:20544017

  3. Controlled cellular energy conversion in brown adipose tissue thermogenesis

    NASA Technical Reports Server (NTRS)

    Horowitz, J. M.; Plant, R. E.

    1978-01-01

    Brown adipose tissue serves as a model system for nonshivering thermogenesis (NST) since a) it has as a primary physiological function the conversion of chemical energy to heat; and b) preliminary data from other tissues involved in NST (e.g., muscle) indicate that parallel mechanisms may be involved. Now that biochemical pathways have been proposed for brown fat thermogenesis, cellular models consistent with a thermodynamic representation can be formulated. Stated concisely, the thermogenic mechanism in a brown fat cell can be considered as an energy converter involving a sequence of cellular events controlled by signals over the autonomic nervous system. A thermodynamic description for NST is developed in terms of a nonisothermal system under steady-state conditions using network thermodynamics. Pathways simulated include mitochondrial ATP synthesis, a Na+/K+ membrane pump, and ionic diffusion through the adipocyte membrane.

  4. Function of SREBP1 in the milk fat synthesis of dairy cow mammary epithelial cells.

    PubMed

    Li, Nan; Zhao, Feng; Wei, Chenjie; Liang, Mengyao; Zhang, Na; Wang, Chunmei; Li, Qing-Zhang; Gao, Xue-Jun

    2014-09-23

    Sterol regulatory element-binding proteins (SREBPs) belong to a family of nuclear transcription factors. The question of which is the most important positive regulator in milk fat synthesis in dairy cow mammary epithelial cells (DCMECs) between SREBPs or other nuclear transcription factors, such as peroxisome proliferator-activated receptor γ (PPARγ), remains a controversial one. Recent studies have found that mTORC1 (the mammalian target of rapamycin C1) regulates SREBP1 to promote fat synthesis. Thus far, however, the interaction between the SREBP1 and mTOR (the mammalian target of rapamycin) pathways in the regulation of milk fat synthesis remains poorly understood. This study aimed to identify the function of SREBP1 in milk fat synthesis and to characterize the relationship between SREBP1 and mTOR in DCMECs. The effects of SREBP1 overexpression and gene silencing on milk fat synthesis and the effects of stearic acid and serum on SREBP1 expression in the upregulation of milk fat synthesis were investigated in DCMECs using immunostaining, Western blotting, real-time quantitative PCR, lipid droplet staining, and detection kits for triglyceride content. SREBP1 was found to be a positive regulator of milk fat synthesis and was shown to be regulated by stearic acid and serum. These findings indicate that SREBP1 is the key positive regulator in milk fat synthesis.

  5. Brown spider (Loxosceles intermedia) venom triggers endothelial cells death by anoikis.

    PubMed

    Nowatzki, Jenifer; Sene, Reginaldo Vieira; Paludo, Katia Sabrina; Rizzo, Luiz Eduardo; Souza-Fonseca-Guimarães, Fernando; Veiga, Silvio Sanches; Nader, Helena Bonciani; Franco, Célia Regina C; Trindade, Edvaldo S

    2012-09-01

    Brown spider (Loxosceles sp.) venom affects the endothelium of vessels and triggers disruptive activity in the subendothelial matrix. The vascular disorders observed after venom exposure include leukocyte and platelet activation, disseminated intravascular coagulation, an increase in vessel permeability and hemorrhage into the dermis. In this study, we report additional evidence regarding the mechanism of endothelial cell cytotoxicity induced by Loxosceles intermedia venom. Exposure to venom led to endothelial cell detachment in a time-dependent manner. Loss of cell anchorage and cell-cell adhesion following venom exposure was accompanied by changes in the distribution of the α₅β₁ integrin and VE-cadherin. An ultrastructural analysis of cells treated with venom revealed morphological alterations characteristic of apoptosis. Moreover, after venom exposure, the ratio between Bax and Bcl-2 proteins was disturbed in favor of Bax. In addition, late apoptosis was only observed in cells detached by the action of venom. Accordingly, there was no increase in apoptosis when cells were exposed to L. intermedia venom in suspension, suggesting that the loss of cell anchorage provides the signal to initiate apoptosis. Thus, L. intermedia venom likely triggers endothelial cell death indirectly through an apoptotic mechanism known as anoikis.

  6. FAT10 suppression stabilizes oxidized proteins in liver cells: Effects of HCV and ethanol.

    PubMed

    Ganesan, Murali; Hindman, Joseph; Tillman, Brittany; Jaramillo, Lee; Poluektova, Larisa I; French, Barbara A; Kharbanda, Kusum K; French, Samuel W; Osna, Natalia A

    2015-12-01

    FAT10 belongs to the ubiquitin-like modifier (ULM) family that targets proteins for degradation and is recognized by 26S proteasome. FAT10 is presented on immune cells and under the inflammatory conditions, is synergistically induced by IFNγ and TNFα in the non-immune (liver parenchymal) cells. It is not clear how viral proteins and alcohol regulate FAT10 expression on liver cells. In this study, we aimed to investigate whether FAT10 expression on liver cells is activated by the innate immunity factor, IFNα and how HCV protein expression in hepatocytes and ethanol-induced oxidative stress affect the level of FAT10 in liver cells. For this study, we used HCV(+) transgenic mice that express structural HCV proteins and their HCV(-) littermates. Mice were fed Lieber De Carli diet (control and ethanol) as specified in the NIH protocol for chronic-acute ethanol feeding. Alcohol exposure enhanced steatosis, induced oxidative stress and decreased proteasome activity in the liversof these mice, with more robust response to ethanol in HCV(+) mice. IFNα induced transcriptional activation of FAT10 in liver cells, which was dysregulated by ethanol feeding. Accordingly, IFNα-activated expression of FAT10 in hepatocytes (measured by indirect immunofluorescent of liver tissue) was also suppressed by ethanol exposure in both HCV(+) and HCV(-) mice. This suppression was accompanied with ethanol-mediated induction of lipid peroxidation marker, 4-HNE. All aforementioned effects of ethanol were attenuated by in vivo feeding of mice with the pro-methylating agent, betaine, which exhibits strong anti-oxidant properties. Based on this study, we hypothesize that FAT10 targets oxidatively modified proteins for proteasomal degradation, and that the reduction in FAT10 levels along with decreased proteasome activity may contribute to stabilization of these altered proteins in hepatocytes. In conclusion, IFNα induced FAT10 expression, which is suppressed by ethanol feeding in both HCV

  7. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy

    PubMed Central

    Fackler, Karin; Stevanic, Jasna S.; Ters, Thomas; Hinterstoisser, Barbara; Schwanninger, Manfred; Salmén, Lennart

    2010-01-01

    Spruce wood that had been degraded by brown-rot fungi (Gloeophyllum trabeum or Poria placenta) exhibiting mass losses up to 16% was investigated by transmission Fourier transform infrared (FT-IR) imaging microscopy. Here the first work on the application of FT-IR imaging microscopy and multivariate image analysis of fungal degraded wood is presented and the first report on the spatial distribution of polysaccharide degradation during incipient brown-rot of wood. Brown-rot starts to become significant in the outer cell wall regions (middle lamellae, primary cell walls, and the outer layer of the secondary cell wall S1). This pattern was detected even in a sample with non-detectable mass loss. Most significant during incipient decay was the cleavage of glycosidic bonds, i.e. depolymerisation of wood polysaccharides and the degradation of pectic substances. Accordingly, intramolecular hydrogen bonding within cellulose was reduced, while the presence of phenolic groups increased. PMID:21052475

  8. Depletion and repopulation of Leydig cells in the testes of aging brown Norway rats.

    PubMed

    Chen, H; Huhtaniemi, I; Zirkin, B R

    1996-08-01

    The capacity of Brown Norway rat Leydig cells to produce testosterone has been shown to decrease with aging. Our objectives herein were to determine 1) whether ethane dimethanesulfonate (EDS) administration would eliminate the hypofunctional Leydig cells of the aged Brown Norway rat testis; 2) if so, whether a new generation of Leydig cells subsequently would appear; and 3) if so, whether the steroidogenic capacity of the new Leydig cells would be at the relatively low level of the cells they replaced or at the high level of young adult Leydig cells. Young (3-month-old) and aged (18-month-old) rats received an injection of EDS (8.5 mg/100 g BW). One, 5, and 10 weeks thereafter, the serum testosterone concentration and the capacity of the testes and of isolated Leydig cells to produce testosterone were determined. One week after EDS treatment, Leydig cells were not seen in the testes of young or aged rats, and the serum testosterone concentration and testicular testosterone production were reduced to undetectable levels. Five weeks after EDS treatment, serum testosterone levels at both ages were restored to those in age-matched controls, and the capacity of the testes to produce testosterone was restored partially (young rats) or completely (aged rats). By 10 weeks after EDS treatment, the serum testosterone concentration in young rats and the ability of their testes to produce testosterone were at the levels of age-matched controls. In aged rats, however, serum testosterone and testicular testosterone production were at levels that significantly exceeded those of aged-matched controls and, indeed, were not significantly different from those of young control or EDS-treated rats. Consistent with this, the ability of Leydig cells isolated from the testes of young rats and that of cells from aged rats to produce testosterone 10 weeks after the rats were treated with EDS were equivalent. The enhanced ability of the Leydig cells restored to the aged testes to produce

  9. Brown Syndrome

    MedlinePlus

    ... Does Brown syndrome cause eye problems besides abnormal eye movements? Some children with Brown syndrome have poor binocular ... In the congenital form of Brown syndrome, the eye movement problem is usually constant and unlikely to resolve ...

  10. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells.

    PubMed

    Kono, Shota; Kazama, Tomohiko; Kano, Koichiro; Harada, Kayoko; Uechi, Masami; Matsumoto, Taro

    2014-01-01

    It has been reported that mature adipocyte-derived dedifferentiated fat (DFAT) cells show multilineage differentiation potential similar to that observed in mesenchymal stem cells. Since DFAT cells can be prepared from a small quantity of adipose tissue, they could facilitate cell-based therapies in small companion animals such as cats. The present study examined whether multipotent DFAT cells can be generated from feline adipose tissue, and the properties of DFAT cells were compared with those of adipose-derived stem cells (ASCs). DFAT cells and ASCs were prepared from the floating mature adipocyte fraction and the stromal vascular fraction, respectively, of collagenase-digested feline omental adipose tissue. Both cell types were evaluated for growth kinetics, colony-forming unit fibroblast (CFU-F) frequency, immunophenotypic properties, and multilineage differentiation potential. DFAT cells and ASCs could be generated from approximately 1g of adipose tissue and were grown and subcultured on laminin-coated dishes. The frequency of CFU-Fs in DFAT cells (35.8%) was significantly higher than that in ASCs (20.8%) at passage 1 (P1). DFAT cells and ASCs displayed similar immunophenotypes (CD44(+), CD90(+), CD105(+), CD14(-), CD34(-) and CD45(-)). Alpha-smooth muscle actin-positive cells were readily detected in ASCs (15.2±7.2%) but were rare in DFAT cells (2.2±3.2%) at P1. Both cell types exhibited adipogenic, osteogenic, chondrogenic, and smooth muscle cell differentiation potential in vitro. In conclusion, feline DFAT cells exhibited similar properties to ASCs but displayed higher CFU-F frequency and greater homogeneity. DFAT cells, like ASCs, may be an attractive source for cell-based therapies in cats. PMID:24300011

  11. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    PubMed

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids.

  12. Chemical and enzymatic fractionation of cell walls from Fucales: insights into the structure of the extracellular matrix of brown algae

    PubMed Central

    Deniaud-Bouët, Estelle; Kervarec, Nelly; Michel, Gurvan; Tonon, Thierry; Kloareg, Bernard; Hervé, Cécile

    2014-01-01

    Background and Aims Brown algae are photosynthetic multicellular marine organisms evolutionarily distant from land plants, with a distinctive cell wall. They feature carbohydrates shared with plants (cellulose), animals (fucose-containing sulfated polysaccharides, FCSPs) or bacteria (alginates). How these components are organized into a three-dimensional extracellular matrix (ECM) still remains unclear. Recent molecular analysis of the corresponding biosynthetic routes points toward a complex evolutionary history that shaped the ECM structure in brown algae. Methods Exhaustive sequential extractions and composition analyses of cell wall material from various brown algae of the order Fucales were performed. Dedicated enzymatic degradations were used to release and identify cell wall partners. This approach was complemented by systematic chromatographic analysis to study polymer interlinks further. An additional structural assessment of the sulfated fucan extracted from Himanthalia elongata was made. Key Results The data indicate that FCSPs are tightly associated with proteins and cellulose within the walls. Alginates are associated with most phenolic compounds. The sulfated fucans from H. elongata were shown to have a regular α-(1→3) backbone structure, while an alternating α-(1→3), (1→4) structure has been described in some brown algae from the order Fucales. Conclusions The data provide a global snapshot of the cell wall architecture in brown algae, and contribute to the understanding of the structure–function relationships of the main cell wall components. Enzymatic cross-linking of alginates by phenols may regulate the strengthening of the wall, and sulfated polysaccharides may play a key role in the adaptation to osmotic stress. The emergence and evolution of ECM components is further discussed in relation to the evolution of multicellularity in brown algae. PMID:24875633

  13. Electron microscope study on the hepatic sinusoidal wall and fat-storing cells in the bat.

    PubMed

    Tanuma, Y; Ito, T

    1978-02-01

    The three cell types known to form the hepatic sinusoidal wall were electron microscopically observed in three kinds of bats captured in winter and summer. 1. The cytoplasmic extensions of sinusoidal endothelial cells consisted of continuous thicker parts ("cytoplasmic processes") and discontinuous thinner parts ("sieve plates"). The alternate disposition of the two parts was rather irregular, and the sizes, shapes and spacings of the fenestrae were variable. In the thinner parts with numerous small fenestrae, larger gaps were also mingled. The endothelium was simple-layered and devoid of basal lamina. Interendothelial junctions were found mainly between closely apposed margins of the "cytoplasmic processes" and agreed in structure with the "junctional complex" of WISSE (1970). 2. Kupffer cells, morphologically distinct from the endothelial cells, bulged strongly into the sinusoidal lumen. Provided with many microvillous pseudopods, they were stellate in appearance. They were fixed to the endothelial lining by small junctional areas which occurred between the Kupffer cell body and the "cytoplasmic processes" of the endothelium. 3. Fat-storing cells were located in the Disse's space. They generally contained only smaller amounts of lipid in a few droplets. So-called empty fat-storing cells were numerous, especially in winter bats. The perikaryonal cytoplasm revealed a large Golgi complex and well-developed granular endoplasmic reticulum. The three mesenchymal cell types of the sinusoidal wall possessed the centriole in common within the Golgi complex, but only the fat-storing cell was provided with the single cilium. Fat-storing cells extended cytoplasmic processes ramifying beneath the endothelial lining occasionally surrounding the sinusoids almost completely, and which seemed to reinforce the endothelial lining and to bring about the constriction of the sinusoid. In hypervitaminotic bats that daily received 6,000 I.U. vitamin A for three days, remarkable increase

  14. High fat feeding affects the number of GPR120 cells and enteroendocrine cells in the mouse stomach.

    PubMed

    Widmayer, Patricia; Goldschmid, Hannah; Henkel, Helena; Küper, Markus; Königsrainer, Alfred; Breer, Heinz

    2015-01-01

    Long-term intake of dietary fat is supposed to be associated with adaptive reactions of the organism and it is assumptive that this is particularly true for fat responsive epithelial cells in the mucosa of the gastrointestinal tract. Recent studies suggest that epithelial cells expressing the receptor for medium and long chain fatty acids, GPR120 (FFAR4), may operate as fat sensors. Changes in expression level and/or cell density are supposed to be accompanied with a consumption of high fat (HF) diet. To assess whether feeding a HF diet might impact on the expression of fatty acid receptors or the number of lipid sensing cells as well as enteroendocrine cell populations, gastric tissue samples of non-obese and obese mice were compared using a real time PCR and immunohistochemical approach. In this study, we have identified GPR120 cells in the corpus region of the mouse stomach which appeared to be brush cells. Monitoring the effect of HF diet on the expression of GPR120 revealed that after 3 weeks and 6 months the level of mRNA for GPR120 in the tissue was significantly increased which coincided with and probably reflected a significant increase in the number of GPR120 positive cells in the corpus region; in contrast, within the antrum region, the number of GPR120 cells decreased. Furthermore, dietary fat intake also led to changes in the number of enteroendocrine cells producing either ghrelin or gastrin. After 3 weeks and even more pronounced after 6 months the number of ghrelin cells and gastrin cells was significantly increased. These results imply that a HF diet leads to significant changes in the cellular repertoire of the stomach mucosa. Whether these changes are a consequence of the direct exposure to HF in the luminal content or a physiological response to the high level of fat in the body remains elusive.

  15. Adaptive thermogenesis in adipocytes: Is beige the new brown?

    PubMed Central

    Wu, Jun; Cohen, Paul; Spiegelman, Bruce M.

    2013-01-01

    One of the most promising areas in the therapeutics for metabolic diseases centers around activation of the pathways of energy expenditure. Brown adipose tissue is a particularly appealing target for increasing energy expenditure, given its amazing capacity to transform chemical energy into heat. In addition to classical brown adipose tissue, the last few years have seen great advances in our understanding of inducible thermogenic adipose tissue, also referred to as beige fat. A deeper understanding of the molecular processes involved in the development and function of these cell types may lead to new therapeutics for obesity, diabetes, and other metabolic diseases. PMID:23388824

  16. A rapid immunological procedure for the isolation of hormonally sensitive rat fat-cell plasma membrane.

    PubMed Central

    Luzio, J P; Newby, A C; Hales, C N

    1976-01-01

    1. A rapid method for the isolation of hormonally sensitive rat fat-cell plasma membranes was developed by using immunological techniques. 2. Rabbit anti-(rat erythrocyte) sera were raised and shown to cross-react with isolated rat fat-cells. 3. Isolated rat fat-cells were coated with rabbit anti-(rat erythrocyte) antibodies, homogenized and the homogenate made to react with an immunoadsorbent prepared by covalently coupling donkey anti-(rabbit globulin) antibodies to aminocellulose. Uptake of plasma membrane on to the immunoadsorbent was monitored by assaying the enzymes adenylate cyclase and 5'-nucleotidase and an immunological marker consisting of a 125I-labelled anti-(immunoglobulin G)-anti-cell antibody complex bound to the cells before fractionation. Contamination of the plasma-membrane preparation by other subcellular fractions was also investigated. 4. By using this technique, a method was developed allowing 25-40% recovery of plasma membrane from fat-cell homogenates within 30 min of homogenization. 5. Adenylate cyclase in the isolated plasma-membrane preparation was stimulated by 5 mum-adrenaline. Images PLATE 1 PMID:776177

  17. AKT and AMPK activation after high-fat and high-glucose in vitro treatment of prostate epithelial cells.

    PubMed

    Ribeiro, D L; Góes, R M; Pinto-Fochi, M E; Taboga, S R; Abrahamsson, P-A; Dizeyi, N

    2014-06-01

    Considering the increasing consumption of saturated fat and glucose in diets worldwide and its possible association to carcinogenesis, this investigation analysed the proliferation profile of nonmalignant human prostate epithelial cells after exposure to elevated levels of fat and glucose. PNT1A cells were cultured with palmitate (100 or 200 μM) and/or glucose (450 mg/dl) for 24 or 48 h. Treated cells were evaluated for viability test and cell proliferation (MTS assay). AKT and AMPK phosphorylation status were analysed by Western blotting. After 24 h of high-fat alone or associated with high-glucose treatment, there was an increase in AMPK and AKT activation associated to unchanged MTS-cell proliferation. Following 48 h of high-fat but not high-glucose alone, cells decreased AMPK activation and maintained elevated AKT levels. These data were associated to increased cell proliferation after further high-fat treatment. After longer high-fat exposure, MTS revealed that cells remained proliferating. High-glucose alone or associated to high-fat treatment was not able to increase cell proliferation and AKT activation. A high-fat medium containing 100 μM of palmitate stimulates proliferation in PNT1A cells by decreasing the activation of AMPK and increasing activation of AKT after longer exposure time. These findings improve the knowledge about the negative effect of high levels of this saturated fatty acid on proliferative disorders of prostate.

  18. Abalation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show ...

  19. Mammary Fat Can Adjust Prolactin Effect on Mammary Epithelial Cells via Leptin and Estrogen.

    PubMed

    Feuermann, Yonatan; Mabjeesh, Sameer J; Shamay, Avi

    2009-01-01

    Leptin, like estrogen, is one of the endo/paracrine factors, which are synthesized in and secreted from mature adipocytes. The roles of the mammary fat pad and mammary adipocytes in the initiation of lactation are not clear. In this study, we showed that combination of prolactin, leptin and estrogen elevated the expression of the milk protein beta-lactoglobulin. We also showed that after prolactin stimulate the secretion of leptin from the mammary fat, leptin upregulated the expression of estrogen receptor alpha in the mammary epithelial cells. Also, prolactin affected aromatase mRNA expression in the bovine mammary fat and we demonstrated that leptin and prolactin can affect cholesterol secretion from explants in culture to the medium. Therefore, we suggest that prolactin initiates estrogen expression (as represented by aromatase mRNA) in the mammary fat pad, whereas leptin stimulates estrogen receptor alpha expression in the mammary epithelial cells. We hypothesize that leptin and estrogen, secreted from the mammary fat regulate lactation after stimulation of prolactin. PMID:20049155

  20. High-fat diet is associated with obesity-mediated insulin resistance and β-cell dysfunction in Mexican Americans.

    PubMed

    Black, Mary Helen; Watanabe, Richard M; Trigo, Enrique; Takayanagi, Miwa; Lawrence, Jean M; Buchanan, Thomas A; Xiang, Anny H

    2013-04-01

    Consumption of energy-dense, nutrient-poor foods has contributed to the rising incidence of obesity and may underlie insulin resistance and β-cell dysfunction. Macronutrient intake patterns were examined in relation to anthropometric and metabolic traits in participants of BetaGene, a family-based study of obesity, insulin resistance, and β-cell dysfunction in Mexican Americans. Dietary intake, body composition, insulin sensitivity (SI), and β-cell function [Disposition Index (DI)] were assessed by food-frequency questionnaires, dual-energy X-ray absorptiometry, and intravenous glucose-tolerance tests, respectively. Patterns of macronutrient intake were identified by using a K-means model based on the proportion of total energy intake per day attributable to carbohydrate, fat, and protein and were tested for association with anthropometric and metabolic traits. Among 1150 subjects aged 18-65 y (73% female), tertiles of fat intake were associated with greater adiposity and lower SI, after adjustment for age, sex, and daily energy intake. Moreover, 3 distinct dietary patterns were identified: "high fat" (35% fat, 44% carbohydrate, 21% protein; n = 238), "moderate fat" (28% fat, 54% carbohydrate, 18% protein; n = 520), and "low fat" (20% fat, 65% carbohydrate, 15% protein; n = 392). Compared with the low-fat group, the high-fat group had higher age- and sex-adjusted mean body mass index, body fat percentage, and trunk fat and lower SI and DI. Further adjustment for daily energy intake by matching individuals across dietary pattern groups yielded similar results. None of the observed associations were altered after adjustment for physical activity; however, associations with SI and DI were attenuated after adjustment for adiposity. These findings suggest that high-fat diets may contribute to increased adiposity and concomitant insulin resistance and β-cell dysfunction in Mexican Americans.

  1. Pancreatic Fat Accumulation, Fibrosis, and Acinar Cell Injury in the Zucker Diabetic Fatty Rat Fed a Chronic High-Fat Diet

    PubMed Central

    Matsuda, Akiko; Makino, Naohiko; Tozawa, Tomohiro; Shirahata, Nakao; Honda, Teiichiro; Ikeda, Yushi; Sato, Hideyuki; Ito, Miho; Kakizaki, Yasuharu; Akamatsu, Manabu; Ueno, Yoshiyuki; Kawata, Sumio

    2014-01-01

    Objective The histological alteration of the exocrine pancreas in obesity has not been clarified. In the present study, we investigated biochemical and histological changes in the exocrine pancreas of obese model rats. Methods Zucker lean rats were fed a standard diet, and Zucker diabetic fatty (ZDF) rats were divided into 2 groups fed a standard diet and a high-fat diet, respectively. These experimental groups were fed each of the diets from 6 weeks until 12, 18, 24 weeks of age. We performed blood biochemical assays and histological analysis of the pancreas. Results In the ZDF rats fed a high-fat diet, the ratio of accumulated pancreatic fat area relative to exocrine gland area was increased significantly at 18 weeks of age in comparison with the other 2 groups (P < 0.05), and lipid droplets were observed in acinar cells. Subsequently, at 24 weeks of age in this group, pancreatic fibrosis and the serum exocrine pancreatic enzyme levels were increased significantly relative to the other 2 groups (P < 0.01). Conclusions In ZDF rats fed a chronic high-fat diet, fat accumulates in pancreatic acinar cells, and this fatty change seems to be related to subsequent pancreatic fibrosis and acinar cell injury. PMID:24717823

  2. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible.

  3. The Ontogeny of Brown Adipose Tissue.

    PubMed

    Symonds, Michael E; Pope, Mark; Budge, Helen

    2015-01-01

    There are three different types of adipose tissue (AT)-brown, white, and beige-that differ with stage of development, species, and anatomical location. Of these, brown AT (BAT) is the least abundant but has the greatest potential impact on energy balance. BAT is capable of rapidly producing large amounts of heat through activation of the unique uncoupling protein 1 (UCP1) located within the inner mitochondrial membrane. White AT is an endocrine organ and site of lipid storage, whereas beige AT is primarily white but contains some cells that possess UCP1. BAT first appears in the fetus around mid-gestation and is then gradually lost through childhood, adolescence, and adulthood. We focus on the interrelationships between adipocyte classification, anatomical location, and impact of diet in early life together with the extent to which fat development differs between the major species examined. Ultimately, novel dietary interventions designed to reactivate BAT could be possible. PMID:26076904

  4. Biomimetic fat cell (BFC) preparation and for lindane removal from aqueous solution.

    PubMed

    Liyan, Song; Youcai, Zhao; Guojian, Wang; Bing, Li; Dongjie, Niu; Xiaoli, Chai

    2007-07-19

    Fat tissue of organism can accumulate hydrophobic chemicals efficiently and the accumulation level has a positive correlation with fat quantity. In this work, based on this characteristic, an innovative agent, that is, biomimetic fat cell (BFC) has been synthesized with interfacial polymerization. BFC has a hydrophobic nucleolus-triolein and hydrophilic membrane-polyamide, through which water, carrying hydrophobic organic contaminants (HOCs), can pass. This process is followed by the accumulation of HOCs. BFC has 97.39% lindane removal ability. This is close to 98.12% lindane removal by powder active carbon (PAC) in aqueous solution and 7 mg/L initial concentration of lindane. BFC can be regenerated easily by organic solvent dialysis in comparison with high temperature or pressure used for PAC regeneration. Lindane removal by BFC may occur through two mechanisms: bioaccumulation by BFC nucleolus-triolein; and adsorption by BFC membrane. Bioaccumulation is the prevailing mechanism.

  5. Our Fat Future: Translating Adipose Stem Cell Therapy

    PubMed Central

    Nordberg, Rachel C.

    2015-01-01

    Summary Human adipose stem cells (hASCs) have the potential to treat patients with a variety of clinical conditions. Recent advancements in translational research, regulatory policy, and industry have positioned hASCs on the threshold of clinical translation. We discuss the progress and challenges of bringing adipose stem cell therapy into mainstream clinical use. Significance This article details the advances made in recent years that have helped move human adipose stem cell therapy toward mainstream clinical use from a translational research, regulatory policy, and industrial standpoint. Four recurrent themes in translational technology as they pertain to human adipose stem cells are discussed: automated closed-system operations, biosensors and real-time monitoring, biomimetics, and rapid manufacturing. In light of recent FDA guidance documents, regulatory concerns about adipose stem cell therapy are discussed. Finally, an update is provided on the current state of clinical trials and the emerging industry that uses human adipose stem cells. This article is expected to stimulate future studies in translational adipose stem cell research. PMID:26185256

  6. Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro

    SciTech Connect

    Kazama, Tomohiko; Fujie, Masaki; Endo, Tuyoshi; Kano, Koichiro

    2008-12-19

    We have previously reported the establishment of preadipocyte cell lines, termed dedifferentiated fat (DFAT) cells, from mature adipocytes of various animals. DFAT cells possess long-term viability and can redifferentiate into adipocytes both in vivo and in vitro. Furthermore, DFAT cells can transdifferentiate into osteoblasts and chondrocytes under appropriate culture conditions. However, it is unclear whether DFAT cells are capable of transdifferentiating into skeletal myocytes, which is common in the mesodermal lineage. Here, we show that DFAT cells can be induced to transdifferentiate into skeletal myocytes in vitro. Myogenic induction of DFAT cells resulted in the expression of MyoD and myogenin, followed by cell fusion and formation of multinucleated cells expressing sarcomeric myosin heavy chain. These results indicate that DFAT cells derived from mature adipocytes can transdifferentiate into skeletal myocytes in vitro.

  7. Perinatal exposure to germinated brown rice and its gamma amino-butyric acid-rich extract prevents high fat diet-induced insulin resistance in first generation rat offspring

    PubMed Central

    Adamu, Hadiza Altine; Imam, Mustapha Umar; Ooi, Der-Jiun; Esa, Norhaizan Mohd; Rosli, Rozita; Ismail, Maznah

    2016-01-01

    Background Evidence suggests perinatal environments influence the risk of developing insulin resistance. Objective The present study was aimed at determining the effects of intrauterine exposure to germinated brown rice (GBR) and GBR-derived gamma (γ) aminobutyric acid (GABA) extract on epigenetically mediated high fat diet–induced insulin resistance. Design Pregnant Sprague Dawley rats were fed high-fat diet (HFD), HFD+GBR, or HFD+GABA throughout pregnancy until 4 weeks postdelivery. The pups were weighed weekly and maintained on normal pellet until 8 weeks postdelivery. After sacrifice, biochemical markers of obesity and insulin resistance including oral glucose tolerance test, adiponectin, leptin, and retinol binding protein-4 (RBP4) were measured. Hepatic gene expression changes and the global methylation and histone acetylation levels were also evaluated. Results Detailed analyses revealed that mothers given GBR and GABA extract, and their offspring had increased adiponectin levels and reduced insulin, homeostasis model assessment of insulin resistance, leptin, oxidative stress, and RBP4 levels, while their hepatic mRNA levels of GLUT2 and IPF1 were increased. Furthermore, GBR and GABA extract lowered global DNA methylation levels and modulated H3 and H4 acetylation levels. Conclusions These results showed that intrauterine exposure to GBR-influenced metabolic outcomes in offspring of rats with underlying epigenetic changes and transcriptional implications that led to improved glucose homeostasis. PMID:26842399

  8. Hematopoietic stem cells burn fat to prevent exhaustion.

    PubMed

    Lallemand-Breitenbach, Valerie; de Thé, Hugues

    2012-10-01

    Ito et al. (2012) recently report in Nature Medicine that fatty acid oxidation (FAO) regulated by PPARδ controls asymmetric division in hematopoietic stem cells (HSCs). This metabolic mechanism prevents HSC exhaustion and is downstream of the promyelocytic leukemia protein PML, suggesting therapeutic implications for HSC function and disease.

  9. Dchs1–Fat4 regulation of polarized cell behaviours during skeletal morphogenesis

    PubMed Central

    Mao, Yaopan; Kuta, Anna; Crespo-Enriquez, Ivan; Whiting, Danielle; Martin, Tina; Mulvaney, Joanna; Irvine, Kenneth D.; Francis-West, Philippa

    2016-01-01

    Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1–Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes fit a model of cell intercalation along differential Dchs1–Fat4 activity that drives a simultaneous narrowing, thickening and elongation of the sternum. Our results identify the regulation of cellular polarity within the early pre-chondrogenic mesenchyme, when skeletal shape is established, and provide the first demonstration that Fat4 and Dchs1 establish polarized cell behaviour intrinsically within the mesenchyme. Our data also reveal the first indication that cell intercalation processes occur during ventral body wall elongation and closure. PMID:27145737

  10. Comparison of brown and white adipose tissue fat fractions in ob, seipin, and Fsp27 gene knockout mice by chemical shift-selective imaging and (1)H-MR spectroscopy.

    PubMed

    Peng, Xin-Gui; Ju, Shenghong; Fang, Fang; Wang, Yu; Fang, Ke; Cui, Xin; Liu, George; Li, Peng; Mao, Hui; Teng, Gao-Jun

    2013-01-15

    Brown adipose tissue (BAT) plays a key role in thermogenesis to protect the body from cold and obesity. White adipose tissue (WAT) stores excess energy in the form of triglycerides. To better understand the genetic effect on regulation of WAT and BAT, we investigated the fat fraction (FF) in two types of adipose tissues in ob/ob, human BSCL2/seipin gene knockout (SKO), Fsp27 gene knockout (Fsp27(-/-)), and wild-type (WT) mice in vivo using chemical shift selective imaging and (1)H-MR spectroscopy. We reported that the visceral fat volume in WAT was significantly larger in ob/ob mice, but visceral fat volumes were lower in SKO and Fsp27(-/-) mice compared with WT mice. BAT FF was significantly higher in ob/ob mice than the WT group and similar to that of WAT. In contrast, WAT FFs in SKO and Fsp27(-/-) mice were lower and similar to that of BAT. The adipocyte size of WAT in ob/ob mice and the BAT adipocyte size in ob/ob, SKO, and Fsp27 mice were significantly larger compared with WT mice. However, the WAT adipocyte size was significantly smaller in SKO mice than in WT mice. Positive correlations were observed between the adipocyte size and FFs of WAT and BAT. These results suggested that smaller adipocyte size correlates with lower FFs of WAT and BAT. In addition, the differences in FFs in WAT and BAT measured by MR methods in different mouse models were related to the different regulation effects of ob, seipin, or Fsp27 gene on developing WAT and BAT.

  11. [Construction of Fat-1 eukaryotic expression vector of excision markers and the establishment of transgenic sheep cell lines].

    PubMed

    Lima, A; Zhu, Heping; Wang, Ruiyao; Yan, Tao; Su, Xiaohu; Li, Lu; Wang, Bingping; Na, Shunwendoule; Qi, Guichun; Zhou, Huanmin

    2016-02-01

    In order to establish marker-free transgenic cell lines, we cloned Fat-1 gene, attB and Loxp sequences by PCR. Then we inserted these sequences to pN1-EGFP vector and got pEGFP-N1-Fat-1 expression vector. PhiC31 integrase mRNA which was generated by in vitro transcription and a pEGFP-N1-Fat-1 expression vector co-electroporated into sheep fetal fibroblasts, and then we got transgenic cell lines expressing green fluorescence. Prokaryotic expression and purification of Cre recombinant protein was performed. Cre recombinant protein was transducted into stably-transfected cell colonies. We identified cell colonies by sequencing and established marker-free transgenic cell lines and eventually- established marker-free transgenic cell lines which were building more safely basic for producing Fat-1 transgenic animals. PMID:27382771

  12. [Construction of Fat-1 eukaryotic expression vector of excision markers and the establishment of transgenic sheep cell lines].

    PubMed

    Lima, A; Zhu, Heping; Wang, Ruiyao; Yan, Tao; Su, Xiaohu; Li, Lu; Wang, Bingping; Na, Shunwendoule; Qi, Guichun; Zhou, Huanmin

    2016-02-01

    In order to establish marker-free transgenic cell lines, we cloned Fat-1 gene, attB and Loxp sequences by PCR. Then we inserted these sequences to pN1-EGFP vector and got pEGFP-N1-Fat-1 expression vector. PhiC31 integrase mRNA which was generated by in vitro transcription and a pEGFP-N1-Fat-1 expression vector co-electroporated into sheep fetal fibroblasts, and then we got transgenic cell lines expressing green fluorescence. Prokaryotic expression and purification of Cre recombinant protein was performed. Cre recombinant protein was transducted into stably-transfected cell colonies. We identified cell colonies by sequencing and established marker-free transgenic cell lines and eventually- established marker-free transgenic cell lines which were building more safely basic for producing Fat-1 transgenic animals.

  13. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity

    PubMed Central

    Hafner, Anne-Laure; Contet, Julian; Ravaud, Christophe; Yao, Xi; Villageois, Phi; Suknuntha, Kran; Annab, Karima; Peraldi, Pascal; Binetruy, Bernard; Slukvin, Igor I.; Ladoux, Annie; Dani, Christian

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity. PMID:27577850

  14. Brown-like adipose progenitors derived from human induced pluripotent stem cells: Identification of critical pathways governing their adipogenic capacity.

    PubMed

    Hafner, Anne-Laure; Contet, Julian; Ravaud, Christophe; Yao, Xi; Villageois, Phi; Suknuntha, Kran; Annab, Karima; Peraldi, Pascal; Binetruy, Bernard; Slukvin, Igor I; Ladoux, Annie; Dani, Christian

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) show great promise for obesity treatment as they represent an unlimited source of brown/brite adipose progenitors (BAPs). However, hiPSC-BAPs display a low adipogenic capacity compared to adult-BAPs when maintained in a traditional adipogenic cocktail. The reasons of this feature are unknown and hamper their use both in cell-based therapy and basic research. Here we show that treatment with TGFβ pathway inhibitor SB431542 together with ascorbic acid and EGF were required to promote hiPSCs-BAP differentiation at a level similar to adult-BAP differentiation. hiPSC-BAPs expressed the molecular identity of adult-UCP1 expressing cells (PAX3, CIDEA, DIO2) with both brown (ZIC1) and brite (CD137) adipocyte markers. Altogether, these data highlighted the critical role of TGFβ pathway in switching off hiPSC-brown adipogenesis and revealed novel factors to unlock their differentiation. As hiPSC-BAPs display similarities with adult-BAPs, it opens new opportunities to develop alternative strategies to counteract obesity. PMID:27577850

  15. Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells.

    PubMed

    Li, Ran; Dudemaine, Pier-Luc; Zhao, Xin; Lei, Chuzhao; Ibeagha-Awemu, Eveline Mengwi

    2016-01-01

    Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an

  16. Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells

    PubMed Central

    Li, Ran; Dudemaine, Pier-Luc; Zhao, Xin; Lei, Chuzhao; Ibeagha-Awemu, Eveline Mengwi

    2016-01-01

    Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an

  17. Gamma delta T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gamma delta T cells are resident in adipose tissue and increase during diet-induced obesity. Their possible contribution to the inflammatory response that accompanies diet-induced obesity was investigated in mice after a 5-10 week high milk fat diet. The high milk fat diet resulted in significant in...

  18. Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice.

    PubMed

    Rosell, Meritxell; Kaforou, Myrsini; Frontini, Andrea; Okolo, Anthony; Chan, Yi-Wah; Nikolopoulou, Evanthia; Millership, Steven; Fenech, Matthew E; MacIntyre, David; Turner, Jeremy O; Moore, Jonathan D; Blackburn, Edith; Gullick, William J; Cinti, Saverio; Montana, Giovanni; Parker, Malcolm G; Christian, Mark

    2014-04-15

    Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.

  19. Is the Resorption of Grafted Fat Reduced in Cell-Assisted Lipotransfer for Breast Augmentation?

    PubMed

    Wang, Lin; Luo, Xuan; Lu, Yi; Fan, Zhi-Hong; Hu, Xiang

    2015-08-01

    Cell-assisted lipotransfer (CAL) is a cotransplantation of adipose tissue and stromal vascular fraction (SVF) including adipose-derived stem cells. But although CAL can get satisfactory outcomes in breast augmentation, the resorption of the grafted fat is still unclear. A total of 12 patients received breast augmentation using CAL. All of them completed 6 months of follow-up. In 1 mini-CAL case, 500-mL liposuction fluid was used to harvest the SVF cells. In 11 full-CAL cases, 250-mL aspirated fat was needed apart from 500-mL liposuction fluid. The percentage of adipose-derived stem cells in SVF cells was detected using flow cytometry and their multilineage potential ability was assessed with in vitro induction. The volumes of breasts and pectoral muscle were measured, and radiological image change was analyzed using magnetic resonance imaging before the operation and 3 and 6 months after the operation. Additionally, the subjective evaluation on the cosmetic outcomes was determined by surgeons and patients. Adipose-derived stem cells in SVF cells accounted for 40.27% and 3.34% in full-CAL cases and mini-CAL cases, respectively. Postoperative atrophy occurred within the first 3 months. At the 6 months postoperatively, breast volume is augmented, ranging from 60.71 to 197 mL, with a mean value of 125.35 (45.49) mL. The ultimate resorption of grafted fat at the 6 months postoperatively is 51.84% (16.74%). Newly formed cysts and nodules were detected in 2 cases. No calcification was found in all magnetic resonance images. Only 1 patient was unsatisfied with the cosmetic outcome. Our preliminary study displayed a satisfactory augmented volume with little complications using CAL for breast augmentation. But the resorption at the 6 months postoperatively [51.84% (16.74%)] showed no significant advantage over non-CAL technique (40%-60% reported), which suggested that SVF cells harvested from 250-mL aspirated fat and 500-mL liposuction fluid were insufficient to average 250

  20. Sustained Brown Fat Stimulation and Insulin Sensitization by a Humanized Bispecific Antibody Agonist for Fibroblast Growth Factor Receptor 1/βKlotho Complex

    PubMed Central

    Kolumam, Ganesh; Chen, Mark Z.; Tong, Raymond; Zavala-Solorio, Jose; Kates, Lance; van Bruggen, Nicholas; Ross, Jed; Wyatt, Shelby K.; Gandham, Vineela D.; Carano, Richard A.D.; Dunshee, Diana Ronai; Wu, Ai-Luen; Haley, Benjamin; Anderson, Keith; Warming, Søren; Rairdan, Xin Y.; Lewin-Koh, Nicholas; Zhang, Yingnan; Gutierrez, Johnny; Baruch, Amos; Gelzleichter, Thomas R.; Stevens, Dale; Rajan, Sharmila; Bainbridge, Travis W.; Vernes, Jean-Michel; Meng, Y. Gloria; Ziai, James; Soriano, Robert H.; Brauer, Matthew J.; Chen, Yongmei; Stawicki, Scott; Kim, Hok Seon; Comps-Agrar, Laëtitia; Luis, Elizabeth; Spiess, Christoph; Wu, Yan; Ernst, James A.; McGuinness, Owen P.; Peterson, Andrew S.; Sonoda, Junichiro

    2015-01-01

    Dissipating excess calories as heat through therapeutic stimulation of brown adipose tissues (BAT) has been proposed as a potential treatment for obesity-linked disorders. Here, we describe the generation of a humanized effector-less bispecific antibody that activates fibroblast growth factor receptor (FGFR) 1/βKlotho complex, a common receptor for FGF21 and FGF19. Using this molecule, we show that antibody-mediated activation of FGFR1/βKlotho complex in mice induces sustained energy expenditure in BAT, browning of white adipose tissue, weight loss, and improvements in obesity-associated metabolic derangements including insulin resistance, hyperglycemia, dyslipidemia and hepatosteatosis. In mice and cynomolgus monkeys, FGFR1/βKlotho activation increased serum high-molecular-weight adiponectin, which appears to contribute over time by enhancing the amplitude of the metabolic benefits. At the same time, insulin sensitization by FGFR1/βKlotho activation occurs even before the onset of weight loss in a manner that is independent of adiponectin. Together, selective activation of FGFR1/βKlotho complex with a long acting therapeutic antibody represents an attractive approach for the treatment of type 2 diabetes and other obesity-linked disorders through enhanced energy expenditure, insulin sensitization and induction of high-molecular-weight adiponectin. PMID:26288846

  1. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed

    Holloway, B R; Howe, R; Rao, B S; Stribling, D; Mayers, R M; Briscoe, M G; Jackson, J M

    1991-09-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  2. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed Central

    Holloway, B. R.; Howe, R.; Rao, B. S.; Stribling, D.; Mayers, R. M.; Briscoe, M. G.; Jackson, J. M.

    1991-01-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  3. Dietary fibers and fats alter rat colon protein kinase C activity: correlation to cell proliferation.

    PubMed

    Chapkin, R S; Gao, J; Lee, D Y; Lupton, J R

    1993-04-01

    Protein kinase C activity and cell proliferation in rat proximal colonic mucosa were determined following diet modification with select fibers and fats for 3 wk. Rats were assigned to one of nine dietary groups: three fibers (cellulose or pectin at 6 g/100 g diet or fiber free) x three fats (beef tallow, corn oil, fish oil at 15 g/100 g diet). Protein kinase C activity was determined by measuring the phosphorylation of a highly selective synthetic peptide derived from myelin basic protein. In vivo cell proliferation was measured by bromodeoxyuridine incorporation into DNA. There was a significant main effect of fat (P = 0.0008) but not fiber (P = 0.375) on the ratio of membrane to cytosolic protein kinase C with diets containing fish oils resulting in the highest ratios, corn oils in the lowest ratios and beef tallow producing an intermediate ratio. There was an interactive effect of fat and fiber on the proliferative zone (P = 0.04). Pectin resulted in a significantly greater proliferative zone than did cellulose and the fiber-free diet but only when the fat source was corn oil. There was a positive correlation between proliferative zone and both membrane protein kinase C activity (r = 0.76, P = 0.02) and protein kinase C membrane:cytosol ratio (r = 0.64, P = 0.06). Although the positive relationship between proliferative zone and protein kinase C activity has been reported previously, the high membrane protein kinase C activity found with fish oil supplementation compared to the low activity found with corn oil supplementation was unexpected.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice.

    PubMed

    Dramane, Gado; Abdoul-Azize, Souleymane; Hichami, Aziz; Vögtle, Timo; Akpona, Simon; Chouabe, Christophe; Sadou, Hassimi; Nieswandt, Bernhard; Besnard, Philippe; Khan, Naim Akhtar

    2012-06-01

    Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. The lipid-binding glycoprotein CD36, which is expressed by circumvallate papillae (CVP) of the mouse tongue, has been implicated in oro-gustatory perception of dietary lipids. Here, we demonstrate that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the endoplasmic reticulum, mediates fatty acid-induced Ca(2+) signaling in the mouse tongue and fat preference. We showed that linoleic acid (LA) induced the production of arachidonic acid (AA) and lysophosphatidylcholine (Lyso-PC) by activating multiple phospholipase A2 isoforms via CD36. This activation triggered Ca(2+) influx in CD36-positive taste bud cells (TBCs) purified from mouse CVP. LA also induced the production of Ca(2+) influx factor (CIF). STIM1 was found to regulate LA-induced CIF production and the opening of multiple store-operated Ca(2+) (SOC) channels. Furthermore, CD36-positive TBCs from Stim1-/- mice failed to release serotonin, and Stim1-/- mice lost the spontaneous preference for fat that was observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. PMID:22546859

  5. STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice

    PubMed Central

    Dramane, Gado; Abdoul-Azize, Souleymane; Hichami, Aziz; VÖgtle, Timo; Akpona, Simon; Chouabe, Christophe; Sadou, Hassimi; Nieswandt, Bernhard; Besnard, Philippe; Khan, Naim Akhtar

    2012-01-01

    Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. The lipid-binding glycoprotein CD36, which is expressed by circumvallate papillae (CVP) of the mouse tongue, has been implicated in oro-gustatory perception of dietary lipids. Here, we demonstrate that stromal interaction molecule 1 (STIM1), a sensor of Ca2+ depletion in the endoplasmic reticulum, mediates fatty acid–induced Ca2+ signaling in the mouse tongue and fat preference. We showed that linoleic acid (LA) induced the production of arachidonic acid (AA) and lysophosphatidylcholine (Lyso-PC) by activating multiple phospholipase A2 isoforms via CD36. This activation triggered Ca2+ influx in CD36-positive taste bud cells (TBCs) purified from mouse CVP. LA also induced the production of Ca2+ influx factor (CIF). STIM1 was found to regulate LA-induced CIF production and the opening of multiple store-operated Ca2+ (SOC) channels. Furthermore, CD36-positive TBCs from Stim1–/– mice failed to release serotonin, and Stim1–/– mice lost the spontaneous preference for fat that was observed in wild-type animals. Our results suggest that fatty acid–induced Ca2+ signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. PMID:22546859

  6. Methanolic extracts from brown seaweeds Dictyota cilliolata and Dictyota menstrualis induce apoptosis in human cervical adenocarcinoma HeLa cells.

    PubMed

    Gomes, Dayanne Lopes; Telles, Cinthia Beatrice Silva; Costa, Mariana Santana Santos Pereira; Almeida-Lima, Jailma; Costa, Leandro Silva; Keesen, Tatjana Souza Lima; Rocha, Hugo Alexandre Oliveira

    2015-01-01

    Carcinoma of the uterine cervix is the second most common female tumor worldwide, surpassed only by breast cancer. Natural products from seaweeds evidencing apoptotic activity have attracted a great deal of attention as new leads for alternative and complementary preventive or therapeutic anticancer agents. Here, methanol extracts from 13 species of tropical seaweeds (Rhodophytas, Phaeophyta and Chlorophyta) collected from the Northeast of Brazil were assessed as apoptosis-inducing agents on human cervical adenocarcinoma (HeLa). All extracts showed different levels of cytotoxicity against HeLa cells; the most potent were obtained from the brown alga Dictyota cilliolata (MEDC) and Dictyota menstrualis (MEDM). In addition, MEDC and MEDM also inhibits SiHa (cervix carcinoma) cell proliferation. Studies with these two extracts using flow cytometry and fluorescence microscopy showed that HeLa cells exposed to MEDM and MEDC exhibit morphological and biochemical changes that characterize apoptosis as shown by loss of cell viability, chromatin condensation, phosphatidylserine externalization, and sub-G1 cell cycle phase accumulation, also MEDC induces cell cycle arrest in cell cycle phase S. Moreover, the activation of caspases 3 and 9 by these extracts suggests a mitochondria-dependent apoptosis route. However, other routes cannot be ruled out. Together, these results point out the methanol extracts of the brown algae D. mentrualis and D. cilliolata as potential sources of molecules with antitumor activity. PMID:25871374

  7. Fat3 and Ena/VASP proteins influence the emergence of asymmetric cell morphology in the developing retina.

    PubMed

    Krol, Alexandra; Henle, Steven J; Goodrich, Lisa V

    2016-06-15

    Neurons exhibit asymmetric morphologies throughout development - from migration to the elaboration of axons and dendrites - that are correctly oriented for the flow of information. For instance, retinal amacrine cells migrate towards the inner plexiform layer (IPL) and then retract their trailing processes, thereby acquiring a unipolar morphology with a single dendritic arbor restricted to the IPL. Here, we provide evidence that the Fat-like cadherin Fat3 acts during multiple stages of amacrine cell development in mice to orient overall changes in cell shape towards the IPL. Using a time-lapse imaging assay, we found that developing amacrine cells are less directed towards the IPL in the absence of Fat3, during both migration and retraction. Consistent with its predicted role as a cell-surface receptor, Fat3 functions cell-autonomously and is able to influence the cytoskeleton directly through its intracellular domain, which can bind and localize Ena/VASP family actin regulators. Indeed, a change in Ena/VASP protein distribution is sufficient to recapitulate the Fat3 mutant amacrine cell phenotype. Thus, Fat-like proteins might control the polarized development of tissues by sculpting the cytoskeleton of individual cells.

  8. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching.

    PubMed

    Mao, Yaopan; Francis-West, Philippa; Irvine, Kenneth D

    2015-08-01

    Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo. PMID:26116666

  9. Renin-angiotensin system blockers regulate the metabolism of isolated fat cells in vitro

    PubMed Central

    Caminhotto, R de O.; Sertié, R.A.L.; Andreotti, S.; Campaãa, A.B.; Lima, F.B.

    2016-01-01

    Due to the presence of the renin-angiotensin system (RAS) in tissues and its specific influence on white adipose tissue, fat cells are possible targets of pharmacological RAS blockers commonly used as anti-hypertensive drugs. In the present study, we investigated the effects of different RAS blockers on fat cell metabolism, more specifically on lipolysis, lipogenesis and oxidation of energy substrates. Isolated primary adipocytes were incubated with different RAS blockers (aliskiren, captopril and losartan) in vitro for 24 h and lipolysis, lipogenesis and glucose oxidation capacities were determined in dose-response assays to a β-adrenergic agonist and to insulin. Although no change was found in lipolytic capacity, the RAS blockers modulated lipogenesis and glucose oxidation in a different way. While captopril decreased insulin-stimulated lipogenesis (−19% of maximal response and −60% of insulin responsiveness) due to reduced glucose derived glycerol synthesis (−19% of maximal response and 64% of insulin responsiveness), aliskiren increased insulin-stimulated glucose oxidation (+49% of maximal response and +292% of insulin responsiveness) in fat cells. Our experiments demonstrate that RAS blockers can differentially induce metabolic alterations in adipocyte metabolism, characterized by a reduction in lipogenic responsiveness or an increase in glucose oxidation. The impact of RAS blockers on adipocyte metabolism may have beneficial implications on metabolic disorders during their therapeutic use in hypertensive patients. PMID:27487419

  10. Renin-angiotensin system blockers regulate the metabolism of isolated fat cells in vitro.

    PubMed

    Caminhotto, R de O; Sertié, R A L; Andreotti, S; Campaãa, A B; Lima, F B

    2016-07-28

    Due to the presence of the renin-angiotensin system (RAS) in tissues and its specific influence on white adipose tissue, fat cells are possible targets of pharmacological RAS blockers commonly used as anti-hypertensive drugs. In the present study, we investigated the effects of different RAS blockers on fat cell metabolism, more specifically on lipolysis, lipogenesis and oxidation of energy substrates. Isolated primary adipocytes were incubated with different RAS blockers (aliskiren, captopril and losartan) in vitro for 24 h and lipolysis, lipogenesis and glucose oxidation capacities were determined in dose-response assays to a β-adrenergic agonist and to insulin. Although no change was found in lipolytic capacity, the RAS blockers modulated lipogenesis and glucose oxidation in a different way. While captopril decreased insulin-stimulated lipogenesis (-19% of maximal response and -60% of insulin responsiveness) due to reduced glucose derived glycerol synthesis (-19% of maximal response and 64% of insulin responsiveness), aliskiren increased insulin-stimulated glucose oxidation (+49% of maximal response and +292% of insulin responsiveness) in fat cells. Our experiments demonstrate that RAS blockers can differentially induce metabolic alterations in adipocyte metabolism, characterized by a reduction in lipogenic responsiveness or an increase in glucose oxidation. The impact of RAS blockers on adipocyte metabolism may have beneficial implications on metabolic disorders during their therapeutic use in hypertensive patients. PMID:27487419

  11. Renin-angiotensin system blockers regulate the metabolism of isolated fat cells in vitro.

    PubMed

    Caminhotto, R de O; Sertié, R A L; Andreotti, S; Campaãa, A B; Lima, F B

    2016-07-28

    Due to the presence of the renin-angiotensin system (RAS) in tissues and its specific influence on white adipose tissue, fat cells are possible targets of pharmacological RAS blockers commonly used as anti-hypertensive drugs. In the present study, we investigated the effects of different RAS blockers on fat cell metabolism, more specifically on lipolysis, lipogenesis and oxidation of energy substrates. Isolated primary adipocytes were incubated with different RAS blockers (aliskiren, captopril and losartan) in vitro for 24 h and lipolysis, lipogenesis and glucose oxidation capacities were determined in dose-response assays to a β-adrenergic agonist and to insulin. Although no change was found in lipolytic capacity, the RAS blockers modulated lipogenesis and glucose oxidation in a different way. While captopril decreased insulin-stimulated lipogenesis (-19% of maximal response and -60% of insulin responsiveness) due to reduced glucose derived glycerol synthesis (-19% of maximal response and 64% of insulin responsiveness), aliskiren increased insulin-stimulated glucose oxidation (+49% of maximal response and +292% of insulin responsiveness) in fat cells. Our experiments demonstrate that RAS blockers can differentially induce metabolic alterations in adipocyte metabolism, characterized by a reduction in lipogenic responsiveness or an increase in glucose oxidation. The impact of RAS blockers on adipocyte metabolism may have beneficial implications on metabolic disorders during their therapeutic use in hypertensive patients.

  12. Transcriptional control and hormonal response of thermogenic fat

    PubMed Central

    Emont, Margo P.; Yu, Hui; Wu, Jun

    2015-01-01

    Obesity and its associated metabolic diseases present a major public health problem around the world. The discovery that thermogenic fat is active in adult humans has sparked a renewal of interest in the study of its development and function and in the feasibility of using modulators of thermogenesis to work against obesity. In recent years it has been shown that there are at least two distinct types of thermogenic fat cells; brown and beige fat. In this review we discuss the transcriptional mediators of thermogenesis and the signaling molecules that regulate thermogenic cells. We also review the effects of thermogenic fat activation on whole body metabolic parameters and evaluate the increasing evidence that activating thermogenesis in humans can be a viable method of ameliorating obesity. In these discussions we highlight targets that can potentially be stimulated or modified in anti-obesity treatments. PMID:25804606

  13. Oncocytic Renal Cell Carcinoma with Tubulopapillary Growth Having a Fat Component.

    PubMed

    Kim, Na Rae; Cho, Hyun Yee

    2015-09-01

    We report a rare case of oncocytic renal cell carcinoma (RCC) with tubulopapillary growth in the background of tuberculous end-stage kidney disease. Histology of the renal mass consisted of oncocytic cells forming solid, thin tubules and rare papillae. The tumor had abundant eosinophilic oncocytic cells containing occasional cytoplasmic Mallory body-like hyaline globules and a tiny focus of clear cells with intervening mature fat. Both the oncocytic cells and clear cells were immunoreactive for a-methylacyl-CoA racemase, vimentin, pancytokeratin, and CD10, and negative for transcription factor E3, CD15, human melanoma black 45, and c-kit. Mallory body-like hyaline globules were positive for CAM 5.2 and periodic acid-Schiff with or without diastase. Ultrastructurally, the tumor cells had abundant cytoplasmic mitochondria. The present case is a rare case of oncocytic RCC with tubulopapillary growth pattern. The case is unique in that the tumor was mixed with fat component, which is not common in RCC and thus can lead to misdiagnosis. PMID:26265689

  14. Parkin is a lipid-responsive regulator of fat uptake in mice and mutant human cells

    PubMed Central

    Kim, Kye-Young; Stevens, Mark V.; Akter, M. Hasina; Rusk, Sarah E.; Huang, Robert J.; Cohen, Alexandra; Noguchi, Audrey; Springer, Danielle; Bocharov, Alexander V.; Eggerman, Tomas L.; Suen, Der-Fen; Youle, Richard J.; Amar, Marcelo; Remaley, Alan T.; Sack, Michael N.

    2011-01-01

    It has long been hypothesized that abnormalities in lipid biology contribute to degenerative brain diseases. Consistent with this, emerging epidemiologic evidence links lipid alterations with Parkinson disease (PD), and disruption of lipid metabolism has been found to predispose to α-synuclein toxicity. We therefore investigated whether Parkin, an E3 ubiquitin ligase found to be defective in patients with early onset PD, regulates systemic lipid metabolism. We perturbed lipid levels by exposing Parkin+/+ and Parkin–/– mice to a high-fat and -cholesterol diet (HFD). Parkin–/– mice resisted weight gain, steatohepatitis, and insulin resistance. In wild-type mice, the HFD markedly increased hepatic Parkin levels in parallel with lipid transport proteins, including CD36, Sr-B1, and FABP. These lipid transport proteins were not induced in Parkin–/– mice. The role of Parkin in fat uptake was confirmed by increased oleate accumulation in hepatocytes overexpressing Parkin and decreased uptake in Parkin–/– mouse embryonic fibroblasts and patient cells harboring complex heterozygous mutations in the Parkin-encoding gene PARK2. Parkin conferred this effect, in part, via ubiquitin-mediated stabilization of the lipid transporter CD36. Reconstitution of Parkin restored hepatic fat uptake and CD36 levels in Parkin–/– mice, and Parkin augmented fat accumulation during adipocyte differentiation. These results demonstrate that Parkin is regulated in a lipid-dependent manner and modulates systemic fat uptake via ubiquitin ligase–dependent effects. Whether this metabolic regulation contributes to premature Parkinsonism warrants investigation. PMID:21865652

  15. Expression of beta 1- and beta 3-adrenergic-receptor messages and adenylate cyclase beta-adrenergic response in bovine perirenal adipose tissue during its transformation from brown into white fat.

    PubMed Central

    Casteilla, L; Muzzin, P; Revelli, J P; Ricquier, D; Giacobino, J P

    1994-01-01

    Possible modifications of the beta-adrenergic effector system during the development of bovine perirenal brown adipose tissue (BAT) in utero and its transformation into white-like adipose tissue after birth were studied. The parameters assessed were the level of expression of beta 1-, beta 2- and beta 3-adrenergic receptor (AR) mRNAs and the response of the plasma-membrane adenylate cyclase to (-)-isoprenaline and to the beta 3-agonist BRL 37344. The beta 3-AR mRNA was found to be expressed very early in utero, i.e. before the third month of foetal life. Then it increased dramatically (9-fold) between month 6 of foetal life and birth. A high beta 3-AR mRNA level was maintained after birth up to an age of 3 months. After conversion of BAT into white-like adipose tissue, i.e. in the adult bovine, the beta 3-AR mRNA expression became small or not detectable, and the beta 1-AR mRNA, which was expressed much less than the beta 3-AR mRNA in foetal life, became predominant. A response of the adenylate cyclase to (-)-isoprenaline was observed in foetal life (3.1-fold stimulation). It decreased after birth (1.8-fold stimulation) and then remained constant until adulthood. A response to BRL 37344 was also observed in foetal life (1.8-fold stimulation). It was maintained after birth, but disappeared in the adult. A possible relationship between the beta-AR expression and the adenylate cyclase response to (-)-isoprenaline on the one hand and the uncoupling-protein expression on the other is discussed. The bovine might represent a good model to understand the transition from brown to white fat in the human. Images Figure 3 PMID:7904157

  16. MicroRNAs synergistically regulate milk fat synthesis in mammary gland epithelial cells of dairy goats.

    PubMed

    Lin, Xianzi; Luo, Jun; Zhang, Liping; Zhu, Jiangjiang

    2013-01-01

    Synergistic regulation among microRNAs (miRNAs) is important to understand the mechanisms underlying the complex molecular regulatory networks in goats. Goat milk fat synthesis is driven by a gene network that involves many biological processes in the mammary gland. These biological processes are affected by several miRNAs rather than a single miRNA. Therefore, identifying synergistic miRNAs is necessary to further understand the functions of miRNAs and the metabolism of goat milk fat synthesis. Using qRT-PCR, we assessed the expression of 11 miRNAs that have the potential to regulate milk fat synthesis in the goat mammary gland. Six of these miRNAs exhibited expression during the lactation cycle. Additionally, we also found that prolactin, the key hormone that regulates lactation, promotes the expression of four miRNAs (miR-23a, miR-27b, miR-103, and miR-200a). Further functional analysis showed that overexpression of all four miRNAs by using recombinant adenovirus in goat mammary gland epithelial cells can affect gene mRNA expression associated with milk fat synthesis. Specifically, elevated miR-200a expression suppressed the mRNA expression of genes involved in fat droplet formation. To analyze the synergistic regulation among these four miRNAs (miR-23a, miR-27b, miR-103, and miR-200a), we used the Pearson correlation coefficient to evaluate the correlation between their expression levels in 30 lactating goats. As a result, we found a strong correlation and mutual regulation between three miRNA pairs (miR-23a and miR-27b, miR-103 and miR-200a, miR-27b and miR-200a). This study provides the first experimental evidence that miRNA expression is synergistically regulated in the goat mammary gland and has identified the potential biological role of miRNAs in goat milk fat synthesis. The identification of synergistic miRNAs is a crucial step for further understanding the molecular network of milk fat synthesis at a system-wide level.

  17. FAT10 is associated with the malignancy and drug resistance of non-small-cell lung cancer

    PubMed Central

    Xue, Feng; Zhu, Lin; Meng, Qing-wei; Wang, Liyan; Chen, Xue-song; Zhao, Yan-bin; Xing, Ying; Wang, Xiao-yun; Cai, Li

    2016-01-01

    Lung cancer has become one of the leading causes of cancer mortality worldwide, and non-small-cell lung cancer (NSCLC) accounts for ~85% of all lung cancer cases. Currently, platinum-based chemotherapy drugs, including cisplatin and carboplatin, are the most effective treatment for NSCLC. However, the clinical efficacy of chemotherapy is markedly reduced later in the treatment because drug resistance develops during the treatment. Recently, a series of studies has suggested the involvement of FAT10 in the development and malignancy of multiple cancer types. In this study, we focused our research on the function of FAT10 in NSCLC, which has not been previously reported in the literature. We found that the expression levels of FAT10 were elevated in quick chemoresistance NSCLC tissues, and we demonstrated that FAT10 promotes NSCLC cell proliferation, migration, and invasion. Furthermore, the protein levels of FAT10 were elevated in cisplatin- and carboplatin-resistant NSCLC cells, and knockdown of FAT10 reduced the drug resistance of NSCLC cells. In addition, we gained evidence that FAT10 regulates NSCLC malignancy and drug resistance by modulating the activity of the nuclear factor kappa B signaling pathway. PMID:27499634

  18. Oxygen deprivation and the cellular response to hypoxia in adipocytes - perspectives on white and brown adipose tissues in obesity.

    PubMed

    Trayhurn, Paul; Alomar, Suliman Yousef

    2015-01-01

    Relative hypoxia has been shown to develop in white adipose tissue depots of different types of obese mouse (genetic, dietary), and this leads to substantial changes in white adipocyte function. These changes include increased production of inflammation-related adipokines (such as IL-6, leptin, Angptl4, and VEGF), an increase in glucose utilization and lactate production, and the induction of fibrosis and insulin resistance. Whether hypoxia also occurs in brown adipose tissue depots in obesity has been little considered. However, a recent study has reported low pO2 in brown fat of obese mice, this involving mitochondrial loss and dysfunction. We suggest that obesity-linked hypoxia may lead to similar alterations in brown adipocytes as in white fat cells - particularly changes in adipokine production, increased glucose uptake and lactate release, and insulin resistance. This would be expected to compromise thermogenic activity and the role of brown fat in glucose homeostasis and triglyceride clearance, underpinning the development of the metabolic syndrome. Hypoxia-induced augmentation of lactate production may also stimulate the "browning" of white fat depots through recruitment of UCP1 and the development of brite adipocytes.

  19. Human fat cell alpha-2 adrenoceptors. I. Functional exploration and pharmacological definition with selected alpha-2 agonists and antagonists

    SciTech Connect

    Galitzky, J.; Mauriege, P.; Berlan, M.; Lafontan, M.

    1989-05-01

    This study was undertaken to investigate more fully the pharmacological characteristics of the human fat cell alpha-2 adrenoceptor. Biological assays were performed on intact isolated fat cells while radioligand binding studies were carried out with (/sup 3/H)yohimbine in membranes. These pharmacological studies brought: (1) a critical definition of the limits of the experimental conditions required for the exploration of alpha-2 adrenergic responsiveness on human fat cells and membranes; (2) an improvement in the pharmacological definition of the human fat cell postsynaptic alpha-2 adrenoceptor. Among alpha-2 agonists, UK-14,304 was the most potent and the relative order of potency was: UK-14,304 greater than p-aminoclonidine greater than clonidine = B-HT 920 greater than rilmenidine. For alpha-2 antagonists, the potency order was: yohimbine greater than idazoxan greater than SK F-86,466 much greater than benextramine; (3) a description of the impact of benextramine (irreversible alpha-1/alpha-2 antagonist) on human fat cell alpha-2 adrenergic receptors and on human fat cell function; the drug inactivates the alpha-2 adrenergic receptors with a minor impact on beta adrenergic receptors and without noticeable alterations of fat cell function as assessed by preservation of beta adrenergic and Al-adenosine receptor-mediated lipolytic responses; and (4) a definition of the relationship existing between alpha-2 adrenergic receptor occupancy, inhibition of adenylate cyclase activity and antilipolysis with full and partial agonists. The existence of a receptor reserve must be taken into account when evaluating alpha-2 adrenergic receptor distribution and regulation of human fat cells.

  20. Nutritional dependence of the effect of estrogen on fat cell lipoprotein lipase.

    PubMed

    Valette, A; Mercier, L; Benoit, V; Meignen, J M; Boyer, J

    1987-10-01

    We investigated the effects of ethynylestradiol (EE) at low dose (1.2 micrograms/day) injected s.c. for 10 days on lipoprotein lipase (LPL) in fat cells of female rats fed a standard diet (5% lipid, 49.5% glucid, 23.5% protein) as a function of the nutritional state. EE caused a 150% increase in LPL activity in the fed state, and a 65% decrease in the fasting state, resulting in a large increment in the physiological feeding-fasting difference. Feeding the rats a diet supplemented with 20% lard reversed the estrogen-dependent LPL increase in the fed state. Under all experimental conditions, EE caused a depletion of fat stores and an increase in plasma levels of triacyglycerol. PMID:3669666

  1. Competition in newborn rabbits for thermally advantageous positions in the litter huddle is associated with individual differences in brown fat metabolism.

    PubMed

    Bautista, Amando; Castelán, Francisco; Pérez-Roldán, Humberto; Martínez-Gómez, Margarita; Hudson, Robyn

    2013-06-13

    The altricial young of the European rabbit (Oryctolagus cuniculus) are not brooded by the mother, and although they are born into an underground nest, depend importantly on the warmth and insulation provided by littermates for their early growth and survival. Consistent with previous studies, heavier pups occupied more central, thermally advantageous positions in the litter huddle, maintained higher body temperatures, obtained more milk, were more efficient at converting it to body mass, and consequently grew faster than their lighter sibs occupying the periphery of the huddle. In the present study we measured the expression of uncoupling protein 1 (UCP-1), which is essential for the metabolism of brown adipose tissue to generate body heat in response to cold. In nine litters of domestic rabbits maintained for the first four postnatal days at temperatures below their critical thermoneutral temperature, peripheral pups showed greater expression of UCP-1 than intermediate pups, and these greater expression than central pups. This suggests that during early development littermates of the rabbit experience differing degrees of activation of the sympathetic nervous system as a consequence of exposure to different thermal environments associated with different positions in the litter huddle. Whether this is associated with long term differences in the physiological response to cold and perhaps in the manner of responding to other environmental challenges is currently under investigation. PMID:23711568

  2. Genetic background impacts soluble and cell wall-bound aromatics in brown midrib mutants of sorghum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To evaluate the effects that genetic background has on two sorghum brown midrib (bmr) mutants, plant phenolics, lignin biosynthetic enzymes and stem anatomy were evaluated in wild-type (WT), bmr-6, bmr-12 and double-mutants (bmr-6 and bmr-12) in near isogenic , RTx430 and Wheatland backgrounds. The...

  3. Thermogenic activity of UCP1 in human white fat-derived beige adipocytes.

    PubMed

    Bartesaghi, Stefano; Hallen, Stefan; Huang, Li; Svensson, Per-Arne; Momo, Remi A; Wallin, Simonetta; Carlsson, Eva K; Forslöw, Anna; Seale, Patrick; Peng, Xiao-Rong

    2015-01-01

    Heat-producing beige/brite (brown-in-white) adipocytes in white adipose tissue have the potential to suppress metabolic disease in mice and hold great promise for the treatment of obesity and type 2 diabetes in humans. Here, we demonstrate that human adipose-derived stromal/progenitor cells (hASCs) from subcutaneous white adipose tissue can be efficiently converted into beige adipocytes. Upon pharmacological activation of peroxisome proliferator-activated receptor-γ, hASC-derived adipocytes activated beige fat-selective genes and a brown/beige fat-selective electron transport chain gene program. Importantly, hASC-derived beige fat cells displayed the bioenergetic characteristics of genuine brown fat cells, including a capacity for increased respiratory uncoupling in response to β-adrenergic agonists. Furthermore, knock-down experiments reveal that the thermogenic capacity of human beige fat cells was entirely dependent on the presence of Uncoupling protein 1. In summary, this study reveals that hASCs can be readily differentiated into beige adipocytes that, upon activation, undergo uncoupling protein 1-dependent thermogenesis.

  4. Chondrogenic Potency Analyses of Donor-Matched Chondrocytes and Mesenchymal Stem Cells Derived from Bone Marrow, Infrapatellar Fat Pad, and Subcutaneous Fat

    PubMed Central

    Garcia, John; McCarthy, Helen S.; Roberts, Sally; Richardson, James B.

    2016-01-01

    Autologous chondrocyte implantation (ACI) is a cell-based therapy that has been used clinically for over 20 years to treat cartilage injuries more efficiently in order to negate or delay the need for joint replacement surgery. In this time, very little has changed in the ACI procedure, but now many centres are considering or using alternative cell sources for cartilage repair, in particular mesenchymal stem cells (MSCs). In this study, we have tested the chondrogenic potential of donor-matched MSCs derived from bone marrow (BM), infrapatellar fat pad (FP), and subcutaneous fat (SCF), compared to chondrocytes. We have confirmed that there is a chondrogenic potency hierarchy ranging across these cell types, with the most potent being chondrocytes, followed by FP-MSCs, BM-MSCs, and lastly SCF-MSCs. We have also examined gene expression and surface marker profiles in a predictive model to identify cells with enhanced chondrogenic potential. In doing so, we have shown that Sox-9, Alk-1, and Coll X expressions, as well as immunopositivity for CD49c and CD39, have predictive value for all of the cell types tested in indicating chondrogenic potency. The findings from this study have significant clinical implications for the refinement and development of novel cell-based cartilage repair strategies.

  5. Fat Necrosis and Oil Cysts

    MedlinePlus

    ... Previous Topic Granular cell tumors Next Topic Mastitis Fat necrosis and oil cysts Fat necrosis happens when ... lumpy area if it becomes bothersome. How do fat necrosis and oil cysts affect your risk for ...

  6. High Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22

    PubMed Central

    Gulhane, Max; Murray, Lydia; Lourie, Rohan; Tong, Hui; Sheng, Yong H.; Wang, Ran; Kang, Alicia; Schreiber, Veronika; Wong, Kuan Yau; Magor, Graham; Denman, Stuart; Begun, Jakob; Florin, Timothy H.; Perkins, Andrew; Cuív, Páraic Ó.; McGuckin, Michael A.; Hasnain, Sumaira Z.

    2016-01-01

    Prolonged high fat diets (HFD) induce low-grade chronic intestinal inflammation in mice, and diets high in saturated fat are a risk factor for the development of human inflammatory bowel diseases. We hypothesized that HFD-induced endoplasmic reticulum (ER)/oxidative stress occur in intestinal secretory goblet cells, triggering inflammatory signaling and reducing synthesis/secretion of proteins that form the protective mucus barrier. In cultured intestinal cells non-esterified long-chain saturated fatty acids directly increased oxidative/ER stress leading to protein misfolding. A prolonged HFD elevated the intestinal inflammatory cytokine signature, alongside compromised mucosal barrier integrity with a decrease in goblet cell differentiation and Muc2, a loss in the tight junction protein, claudin-1 and increased serum endotoxin levels. In Winnie mice, that develop spontaneous colitis, HFD-feeding increased ER stress, further compromised the mucosal barrier and increased the severity of colitis. In obese mice IL-22 reduced ER/oxidative stress and improved the integrity of the mucosal barrier, and reversed microbial changes associated with obesity with an increase in Akkermansia muciniphila. Consistent with epidemiological studies, our experiments suggest that HFDs are likely to impair intestinal barrier function, particularly in early life, which partially involves direct effects of free-fatty acids on intestinal cells, and this can be reversed by IL-22 therapy. PMID:27350069

  7. Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges.

    PubMed

    Gilbertson, Timothy A; Khan, Naim A

    2014-01-01

    CD36 and two G-protein coupled receptors (GPCR), i.e., GPR120 and GPR40, have been implicated in the gustatory perception of dietary fats in rodents. These glycoproteins are coupled to increases in free intracellular Ca²⁺ concentrations, [Ca²⁺](i), during their activation by dietary long-chain fatty acids (LCFA). The transient receptor potential type M5 (TRPM5) channel, activated by [Ca²⁺](i), participates in downstream signaling in taste bud cells (TBC). The mice, knocked-out for expression of CD36, GPR120, GPR40 or TRPM5 have a reduced spontaneous preference for fat. The delayed rectifying K⁺ (DRK) channels believed to lie downstream of these receptors are also important players in fat taste transduction. The trigeminal neurons by triggering increases in [Ca²⁺](i) may influence the taste signal to afferent nerve fibers. Why are there so many taste receptor candidates for one taste modality? We discuss the recent advances on the role of CD36, GPR120, GPR40, TRPM5 and DRK channels, in signal transduction in TBC. We shed light on their cross-talk and delineate their roles in obesity as a better understanding of the molecular mechanisms behind their regulation could eventually lead to new strategies to fight against this condition.

  8. Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges.

    PubMed

    Gilbertson, Timothy A; Khan, Naim A

    2014-01-01

    CD36 and two G-protein coupled receptors (GPCR), i.e., GPR120 and GPR40, have been implicated in the gustatory perception of dietary fats in rodents. These glycoproteins are coupled to increases in free intracellular Ca²⁺ concentrations, [Ca²⁺](i), during their activation by dietary long-chain fatty acids (LCFA). The transient receptor potential type M5 (TRPM5) channel, activated by [Ca²⁺](i), participates in downstream signaling in taste bud cells (TBC). The mice, knocked-out for expression of CD36, GPR120, GPR40 or TRPM5 have a reduced spontaneous preference for fat. The delayed rectifying K⁺ (DRK) channels believed to lie downstream of these receptors are also important players in fat taste transduction. The trigeminal neurons by triggering increases in [Ca²⁺](i) may influence the taste signal to afferent nerve fibers. Why are there so many taste receptor candidates for one taste modality? We discuss the recent advances on the role of CD36, GPR120, GPR40, TRPM5 and DRK channels, in signal transduction in TBC. We shed light on their cross-talk and delineate their roles in obesity as a better understanding of the molecular mechanisms behind their regulation could eventually lead to new strategies to fight against this condition. PMID:24269201

  9. Regulatory circuits controlling white versus brown adipocyte differentiation

    PubMed Central

    Hansen, Jacob B.; Kristiansen, Karsten

    2006-01-01

    Adipose tissue is a major endocrine organ that exerts a profound influence on whole-body homoeostasis. Two types of adipose tissue exist in mammals: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT stores energy and is the largest energy reserve in mammals, whereas BAT, expressing UCP1 (uncoupling protein 1), can dissipate energy through adaptive thermogenesis. In rodents, ample evidence supports BAT as an organ counteracting obesity, whereas less is known about the presence and significance of BAT in humans. Despite the different functions of white and brown adipocytes, knowledge of factors differentially influencing the formation of white and brown fat cells is sparse. Here we summarize recent progress in the molecular understanding of white versus brown adipocyte differentiation, including novel insights into transcriptional and signal transduction pathways. Since expression of UCP1 is the hallmark of BAT and a key factor determining energy expenditure, we also review conditions associated with enhanced energy expenditure and UCP1 expression in WAT that may provide information on processes involved in brown adipocyte differentiation. PMID:16898874

  10. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.

  11. Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

    PubMed

    Al-Massadi, Omar; Porteiro, Begoña; Kuhlow, Doreen; Köhler, Markus; Gonzalez-Rellan, María J; Garcia-Lavandeira, Montserrat; Díaz-Rodríguez, Esther; Quiñones, Mar; Senra, Ana; Alvarez, Clara V; López, Miguel; Diéguez, Carlos; Schulz, Tim J; Nogueiras, Rubén

    2016-07-01

    p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage. PMID:27183316

  12. Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells.

    PubMed

    Choi, Hyuck; Myung, Kyuho

    2014-08-01

    We have conducted an in vitro experiment to determine whether calcitriol can act as a fat synthesizer and/or meat tenderizer when skeletal muscle cells, adipose tissue, and macrophages are co-cultured. When co-cultured, pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression increased, whereas decreased anti-inflammatory cytokine (IL-10 and IL-15) expression decreased in both C2C12 and 3T3-L1 cells. Calcitriol increased reactive oxygen species (ROS) production in the media. While adiponectin gene expression decreased, leptin, resistin, CCAAT-enhancer-binding protein-beta (C/EBP-β), and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression was significantly (P < 0.047) increased with calcitriol in 3T3-L1 cells co-cultured with two different cell types. Inducible nitric oxide synthase (iNOS) protein levels were also stimulated in the C2C12 and 3T3-L1 cells, but arginase l was attenuated by calcitriol. Cacitriol highly amplified (P = 0.008) µ-calpain gene expression in co-cultured C2C12 cells. The results showed an overall increase in pro-inflammatory cytokines and a decrease in anti-inflammatory cytokines of C2C12 and 3T3-L1 cells with calcitriol in co-culture systems. µ-Calpain protein was also augmented in differentiated C2C12 cells with calcitriol. These findings suggest that calcitriol can be used as not only fat synthesizer, but meat tenderizer, in meat-producing animals.

  13. Calcitriol enhances fat synthesis factors and calpain activity in co-cultured cells.

    PubMed

    Choi, Hyuck; Myung, Kyuho

    2014-08-01

    We have conducted an in vitro experiment to determine whether calcitriol can act as a fat synthesizer and/or meat tenderizer when skeletal muscle cells, adipose tissue, and macrophages are co-cultured. When co-cultured, pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) expression increased, whereas decreased anti-inflammatory cytokine (IL-10 and IL-15) expression decreased in both C2C12 and 3T3-L1 cells. Calcitriol increased reactive oxygen species (ROS) production in the media. While adiponectin gene expression decreased, leptin, resistin, CCAAT-enhancer-binding protein-beta (C/EBP-β), and peroxisome proliferator-activated receptor gamma (PPAR-γ) gene expression was significantly (P < 0.047) increased with calcitriol in 3T3-L1 cells co-cultured with two different cell types. Inducible nitric oxide synthase (iNOS) protein levels were also stimulated in the C2C12 and 3T3-L1 cells, but arginase l was attenuated by calcitriol. Cacitriol highly amplified (P = 0.008) µ-calpain gene expression in co-cultured C2C12 cells. The results showed an overall increase in pro-inflammatory cytokines and a decrease in anti-inflammatory cytokines of C2C12 and 3T3-L1 cells with calcitriol in co-culture systems. µ-Calpain protein was also augmented in differentiated C2C12 cells with calcitriol. These findings suggest that calcitriol can be used as not only fat synthesizer, but meat tenderizer, in meat-producing animals. PMID:24687633

  14. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance.

    PubMed

    Pizzolla, Angela; Oh, Ding Yuan; Luong, Suzanne; Prickett, Sara R; Henstridge, Darren C; Febbraio, Mark A; O'Hehir, Robyn E; Rolland, Jennifer M; Hardy, Charles L

    2016-01-01

    The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a 'western' diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD) for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND). Respiratory tolerance was induced by repeated intranasal (i.n.) administration of ovalbumin (OVA), prior to induction of allergic airway inflammation (AAI) by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation. PMID:27483441

  15. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance

    PubMed Central

    Pizzolla, Angela; Oh, Ding Yuan; Luong, Suzanne; Prickett, Sara R.; Henstridge, Darren C.; Febbraio, Mark A.; O’Hehir, Robyn E.; Rolland, Jennifer M.; Hardy, Charles L.

    2016-01-01

    The incidence of obesity has risen to epidemic proportions in recent decades, most commonly attributed to an increasingly sedentary lifestyle, and a ‘western’ diet high in fat and low in fibre. Although non-allergic asthma is a well-established co-morbidity of obesity, the influence of obesity on allergic asthma is still under debate. Allergic asthma is thought to result from impaired tolerance to airborne antigens, so-called respiratory tolerance. We sought to investigate whether a diet high in fats affects the development of respiratory tolerance. Mice fed a high fat diet (HFD) for 8 weeks showed weight gain, metabolic disease, and alteration in gut microbiota, metabolites and glucose metabolism compared to age-matched mice fed normal chow diet (ND). Respiratory tolerance was induced by repeated intranasal (i.n.) administration of ovalbumin (OVA), prior to induction of allergic airway inflammation (AAI) by sensitization with OVA in alum i.p. and subsequent i.n. OVA challenge. Surprisingly, respiratory tolerance was induced equally well in HFD and ND mice, as evidenced by decreased lung eosinophilia and serum OVA-specific IgE production. However, in a pilot study, HFD mice showed a tendency for impaired activation of airway dendritic cells and regulatory T cells compared with ND mice after induction of respiratory tolerance. Moreover, the capacity of lymph node cells to produce IL-5 and IL-13 after AAI was drastically diminished in HFD mice compared to ND mice. These results indicate that HFD does not affect the inflammatory or B cell response to an allergen, but inhibits priming of Th2 cells and possibly dendritic cell and regulatory T cell activation. PMID:27483441

  16. Comparative integromics on FAT1, FAT2, FAT3 and FAT4.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2006-09-01

    WNT5A, WNT5B, WNT11, FZD3, FZD6, VANGL1, VANGL2, DVL1, DVL2, DVL3, PRICKLE1, PRICKLE2, ANKRD6, NKD1, NKD2, DAAM1, DAAM2, CELSR1, CELSR2, CELSR3, ROR1 and ROR2 are planar cell polarity (PCP) signaling molecules implicated in the regulation of cellular polarity, convergent extension, and invasion. FAT1, FAT2, FAT3 and FAT4 are Cadherin superfamily members homologous to Drosophila Fat, functioning as a positive regulator of PCP in the Drosophila wing. Complete coding sequence (CDS) for human FAT1 (NM_005245.3) and FAT2 (NM_001447.1) are available, while artificial CDS for human FAT3 (XM_926199 and XM_936538) and partial CDS for FAT4 (NM_024582.2). Here, complete CDS of human FAT3 and FAT4 were determined by using bioinformatics and human intelligence (Humint). FAT3 gene, consisting of 26 exons, encoded a 4557-aa protein with extracellular 33 Cadherin repeats, one Laminin G (LamG) domain and two EGF domains. FAT4 gene encoded a 4924-aa protein with extracellular 34 Cadherin repeats, two LamG domains and three EGF domains. Cytoplasmic VCSVxPxLP and SDYxS motifs were identified as novel motifs conserved among FAT1, FAT2 and FAT3 orthologs. Domain architecture comparison and phylogenetic analysis revealed that FAT1, FAT2 and FAR3 were divergent from FAT4. FAT1-MTNR1A locus at 4q35.2 and FAT3-MTNR1B locus at 11q14.3-q21 were paralogous regions within the human genome. FAT1 mRNA was expressed in embryonic stem (ES) cells, neural tissues, gastric cancer, pancreatic cancer, colorectal cancer, breast cancer, lung cancer and brain tumors. FAT2 mRNA was expressed in infant brain, cerebellum, gastric cancer, pancreatic cancer, ovarian cancer, esophageal cancer, skin squamous cell carcinoma, head and neck cancer. FAT3 mRNA was expressed in ES cells, primitive neuroectoderm, fetal brain, infant brain, adult neural tissues and prostate. FAT4 mRNA was expressed in fetal brain, infant brain, brain tumor and colorectal cancer. FAT family members were revealed to be targets of systems

  17. Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells.

    PubMed

    Okita, Naoya; Honda, Yoshitomo; Kishimoto, Naotaka; Liao, Wen; Azumi, Eiko; Hashimoto, Yoshiya; Matsumoto, Naoyuki

    2015-05-01

    Dedifferentiated fat cells (DFAT cells) isolated from adipose tissue have been demonstrated to differentiate into chondrogenic cells in vitro. Nevertheless, an efficient method to facilitate its chondrogenic differentiation is still unexplored, hampering the extensive application of these cells in cartilage regeneration therapies. Here we provide the evidence that supplementation of strontium ions (Sr) in a chondrogenic medium (CM) significantly promotes early chondrogenic differentiation of DFAT cells. Human DFAT cells and the mesenchymal stem cell line (RCB2153) were subjected to the CM supplemented with/without Sr. After 14 days, alcian blue staining intensity significantly increased in DFAT cells, but not in RCB2153, subjected to CM with Sr. mRNA expression analysis revealed that the CM with 1.5 mM Sr increased the expression of chondrogenic marker, collagen type 2 alpha 1, whereas there was no significant change in osteogenic markers, collagen type 1 alpha 1, runt-related transcription factor 2, and osteocalcin, and hypertrophic chondrogenic marker, collagen type 10 alpha 1. Inhibitors for extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and calcium-sensing receptor (CaSR) pathways significantly diminished the alcian blue staining intensity, providing the first evidence that these signal pathways are associated with chondrogenic differentiation of DFAT cells. CaSR and ERK1/2 pathways independently induced Sr-mediated early chondrogenic differentiation. These results suggest that Sr supplementation into the CM may provide a powerful platform for preparing chondrogenically differentiated DFAT cells for cartilage regeneration.

  18. Ectopic brown adipose tissue in muscle provides a mechanism for differences in risk of metabolic syndrome in mice

    PubMed Central

    Almind, Katrine; Manieri, Monia; Sivitz, William I.; Cinti, Saverio; Kahn, C. Ronald

    2007-01-01

    C57BL/6 (B6) mice subjected to a high-fat diet develop metabolic syndrome with obesity, hyperglycemia, and insulin resistance, whereas 129S6/SvEvTac (129) mice are relatively protected from this disorder because of differences in higher basal energy expenditure in 129 mice, leading to lower weight gain. At a molecular level, this difference correlates with a marked higher expression of uncoupling protein 1 (UCP1) and a higher degree of uncoupling in vitro in mitochondria isolated from muscle of 129 versus B6 mice. Detailed histological examination, however, reveals that this UCP1 is in mitochondria of brown adipocytes interspersed between muscle bundles. Indeed, the number of UCP1-positive brown fat cells in intermuscular fat in 129 mice is >700-fold higher than in B6 mice. These brown fat cells are subject to further up-regulation of UCP1 after stimulation with a β3-adrenergic receptor agonist. Thus, ectopic deposits of brown adipose tissue in intermuscular depots with regulatable expression of UCP1 provide a genetically based mechanism of protection from weight gain and metabolic syndrome between strains of mice. PMID:17283342

  19. Evaluation of Effective MMP Inhibitors from Eight Different Brown Algae in Human Fibrosarcoma HT1080 Cells

    PubMed Central

    Bae, Min Joo; Karadeniz, Fatih; Ahn, Byul-Nim; Kong, Chang-Suk

    2015-01-01

    Matrix metalloproteinases (MMPs) are crucial extracellular matrices degrading enzymes that have important roles in metastasis of cancer progression as well as other significant conditions such as oxidative stress and hepatic fibrosis. Marine plants are on the rise for their potential to provide natural products that exhibit remarkable health benefits. In this context, brown algae species have been of much interest in the pharmaceutical field with reported instances of isolation of bioactive compounds against tumor growth and MMP activity. In this study, eight different brown algae species were harvested, and their extracts were compared in regard to their anti-MMP effects. According to gelatin zymography results, Ecklonia cava, Ecklonia bicyclis, and Ishige okamurae showed higher inhibitory effects than the other samples on MMP-2 and -9 activity at the concentrations of 10, 50, and 100 μg/mL. However, only I. okamurae was able to regulate the MMP activity through the expression of MMP and tissue inhibitor of MMP observed by mRNA levels. Overall, brown algae species showed to be good sources for anti-MMP agents, while I. okamurae needs to be further studied for its potential to yield pharmaceutical molecules that can regulate MMP-activity through cellular pathways as well as enzymatic inhibition. PMID:26451351

  20. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas

    PubMed Central

    Furukawa, Toru; Sakamoto, Hitomi; Takeuchi, Shoko; Ameri, Mitra; Kuboki, Yuko; Yamamoto, Toshiyuki; Hatori, Takashi; Yamamoto, Masakazu; Sugiyama, Masanori; Ohike, Nobuyuki; Yamaguchi, Hiroshi; Shimizu, Michio; Shibata, Noriyuki; Shimizu, Kyoko; Shiratori, Keiko

    2015-01-01

    Acinar cell carcinoma of the pancreas is a rare tumor with a poor prognosis. Compared to pancreatic ductal adenocarcinoma, its molecular features are poorly known. We studied a total of 11 acinar cell carcinomas, including 3 by exome and 4 by target sequencing. Exome sequencing revealed 65 nonsynonymous mutations and 22 indels with a mutation rate of 3.4 mutations/Mb per tumor, on average. By accounting for not only somatic but also germline mutations with loss of the wild-type allele, we identified recurrent mutations of BRCA2 and FAT genes. BRCA2 showed somatic or germline premature termination mutations, with loss of the wild-type allele in 3 of 7 tumors. FAT1, FAT3, and FAT4 showed somatic or germline missense mutations in 4 of 7 tumors. The germline FAT mutations were with loss of the wild-type allele. Loss of BRCA2 expression was observed in 5 of 11 tumors. One patient with a BRCA2-mutated tumor experienced complete remission of liver metastasis following cisplatinum chemotherapy. In conclusion, acinar cell carcinomas show a distinct mutation pattern and often harbor somatic or germline mutations of BRCA2 and FAT genes. This result may warrant assessment of BRCA2 abrogation in patients with the carcinoma to determine their sensitivity to chemotherapy. PMID:25743105

  1. Differentiation of stem cells from human infrapatellar fat pad: characterization of cells undergoing chondrogenesis.

    PubMed

    Felimban, Raed; Ye, Ken; Traianedes, Kathy; Di Bella, Claudia; Crook, Jeremy; Wallace, Gordon G; Quigley, Anita; Choong, Peter F M; Myers, Damian E

    2014-08-01

    Hyaline cartilage repair is a significant challenge in orthopedics and current techniques result in formation of fibrocartilage. Human infrapatellar fat pad (hIPFP)-derived mesenchymal stem cells (MSCs) are capable of differentiation into multiple tissue lineages, including cartilage and bone. Chondrogenesis is a crucial part of normal skeletal development but the molecular mechanisms are yet to be completely defined. In this study we sourced hIPFP-derived MSCs utilizing chondrogenic growth factors, transforming growth factor beta-3, and bone morphogenetic protein-6, to form hyaline-like cartilage in micromass cultures and we studied chondrogenic development of 7, 14, and 28 days. The purpose of this study was (1) to characterize chondrogenesis from MSCs derived from hIPFP tissue by conventional techniques and (2) to characterize temporal changes of key molecular components during chondrogenesis using microarray gene expression. Endpoints included histology, immunohistochemistry (IHC), gene expression profiles using a microarray technique, and changes in expression of specific genes using quantitative real-time polymerase chain reaction. Over 14-28 days, clusters of encapsulated chondrocytes formed surrounded by collagen type II and aggrecan in the extracellular matrix (ECM). Collagen type II and aggrecan production was confirmed using IHC and chondrogenic lineage markers were studied; SRY-related transcription factor (SOX9), collagen type II alpha 1 (COL2A1), and aggrecan gene expression increased significantly over the time course. Normalized microarray highlighted 608 differentially expressed genes; 10 chondrogenic genes were upregulated (2- to 87-fold), including COL2A1, COL10A1, COL9A1, COL11A1, COL9A2, COL11A2, COL1A1, COMP, SOX9, and COL3A1. We found that the upregulated genes (twofold or greater) represent significant level of expression (enrichment score) for the ECM structural constituent of the molecular functional at days 7, 14, and 28 during

  2. Brown's syndrome.

    PubMed

    Wilson, M E; Eustis, H S; Parks, M M

    1989-01-01

    Brown's syndrome is a well-recognized clinical disorder of ocular motility manifesting most notably a restriction of active and passive elevation in adduction. The original name, "superior oblique tendon sheath syndrome," is no longer appropriate, since it has been shown that the tissue surrounding the anterior superior oblique tendon is blameless as a restrictive force. "True" and "simulated" as descriptive modifiers should also be discarded, as they relate to the disproven sheath concept. Brown's syndrome occurs as a congenital or acquired, constant or intermittent condition; the common link is restriction of free movement through the trochlea pulley mechanism. The various etiologic theories are reviewed and the spectrum of medical and surgical treatments are described and evaluated. Evidence suggests that subtypes of Brown's syndrome lie on a single continuum and that spontaneous resolution occurs in each group, probably more often than previously recognized. A simplified classification scheme is encouraged and possible future directions in Brown's syndrome research are introduced.

  3. Cell mechanisms of gustatory lipids perception and modulation of the dietary fat preference.

    PubMed

    Dramane, Gado; Akpona, Simon; Besnard, Philippe; Khan, Naim A

    2014-12-01

    Dietary lipids are usually responsible of several metabolic disorders. Recent compelling evidences suggest that there is a sixth taste modality, destined for the detection of oro-gustatory fats. The lipid-binding glycoprotein CD36, expressed by circumvallate papillae (CVP) of the mouse tongue, has been shown to be implicated in oro-gustatory perception of dietary lipids. We demonstrate that linoleic acid (LA) by activating sPLA2, cPLA2 and iPLA2 via CD36, produced arachidonic acid (AA) and lyso-phosphatidylcholine (Lyso-PC) which triggered Ca(2+) influx in CD36-positive taste bud cells (TBC), purified from mouse CVP. LA induced the production of Ca(2+) influx factor (CIF). CIF, AA and Lyso-PC exerted different actions on the opening of store-operated Ca2+ (SOC) channels, constituted of Orai proteins and regulated by STIM1, a sensor of Ca(2+) depletion in the endoplasmic reticulum. We observed that CIF and Lyso-PC opened Orai1 channels whereas AA-opened Ca(2+) channels were composed of Orai1/Orai3. STIM1 was found to regulate LA-induced CIF production and opening of both kinds of Ca(2+) channels. Furthermore, Stim1(-/-) mice lost the spontaneous preference for fat, observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. Other cell types are involved in, and external factors can influence this preference. PMID:24997404

  4. Cell mechanisms of gustatory lipids perception and modulation of the dietary fat preference.

    PubMed

    Dramane, Gado; Akpona, Simon; Besnard, Philippe; Khan, Naim A

    2014-12-01

    Dietary lipids are usually responsible of several metabolic disorders. Recent compelling evidences suggest that there is a sixth taste modality, destined for the detection of oro-gustatory fats. The lipid-binding glycoprotein CD36, expressed by circumvallate papillae (CVP) of the mouse tongue, has been shown to be implicated in oro-gustatory perception of dietary lipids. We demonstrate that linoleic acid (LA) by activating sPLA2, cPLA2 and iPLA2 via CD36, produced arachidonic acid (AA) and lyso-phosphatidylcholine (Lyso-PC) which triggered Ca(2+) influx in CD36-positive taste bud cells (TBC), purified from mouse CVP. LA induced the production of Ca(2+) influx factor (CIF). CIF, AA and Lyso-PC exerted different actions on the opening of store-operated Ca2+ (SOC) channels, constituted of Orai proteins and regulated by STIM1, a sensor of Ca(2+) depletion in the endoplasmic reticulum. We observed that CIF and Lyso-PC opened Orai1 channels whereas AA-opened Ca(2+) channels were composed of Orai1/Orai3. STIM1 was found to regulate LA-induced CIF production and opening of both kinds of Ca(2+) channels. Furthermore, Stim1(-/-) mice lost the spontaneous preference for fat, observed in wild-type animals. Our results suggest that fatty acid-induced Ca(2+) signaling, regulated by STIM1 via CD36, might be implicated in oro-gustatory perception of dietary lipids and the spontaneous preference for fat. Other cell types are involved in, and external factors can influence this preference.

  5. The role of brown adipose tissue in temperature regulation. [of hibernating and hypothermic mammals

    NASA Technical Reports Server (NTRS)

    Smith, R. E.

    1973-01-01

    The thermogenetic capacities of brown adipose tissue were studied on marmots, rats and monkeys in response to cold exposure. All experiments indicated that the brown fat produced heat and slowed the cooling of tissues.

  6. Effects of the type of dietary fatty acid on the insulin receptor function in rat epididymal fat cells.

    PubMed

    van Amelsvoort, J M; van der Beek, A; Stam, J J

    1986-01-01

    Feeding young rats diets containing sunflowerseed oil (SSO) or palm oil (PO) induced several differences in the properties of the isolated epididymal fat cells: insulin stimulated deoxyglucose uptake 127% over the basal value in cells of the SSO group but only 47% in those of the PO group; the insulin concentration giving half maximal stimulation differing only slightly; insulin binding to the cells was higher in the SSO group; Scatchard analysis revealed that this was due to a significantly higher number of low-affinity binding sites, and the epididymal fat pad showed a concomitant change in the fatty acid pattern of the phospholipids, reflecting to a limited extent the differences in the composition of the diets. Neither the average diameters of the isolated fat cells, nor the serum insulin level at the time of sacrifice of the rats differed for the two types of dietary fat. These results indicate that a diet high in linoleic acid (SSO) induces a better response of fat cells to insulin than a diet high in saturated fatty acids (PO). PMID:3530111

  7. Fat2 acts through the WAVE regulatory complex to drive collective cell migration during tissue rotation

    PubMed Central

    Squarr, Anna Julia; Brinkmann, Klaus; Chen, Baoyu; Steinbacher, Tim; Ebnet, Klaus; Rosen, Michael K.

    2016-01-01

    Directional cell movements during morphogenesis require the coordinated interplay between membrane receptors and the actin cytoskeleton. The WAVE regulatory complex (WRC) is a conserved actin regulator. Here, we found that the atypical cadherin Fat2 recruits the WRC to basal membranes of tricellular contacts where a new type of planar-polarized whip-like actin protrusion is formed. Loss of either Fat2 function or its interaction with the WRC disrupts tricellular protrusions and results in the formation of nonpolarized filopodia. We provide further evidence for a molecular network in which the receptor tyrosine phosphatase Dlar interacts with the WRC to couple the extracellular matrix, the membrane, and the actin cytoskeleton during egg elongation. Our data uncover a mechanism by which polarity information can be transduced from a membrane receptor to a key actin regulator to control collective follicle cell migration during egg elongation. 4D-live imaging of rotating MCF10A mammary acini further suggests an evolutionary conserved mechanism driving rotational motions in epithelial morphogenesis. PMID:26903538

  8. Fat2 acts through the WAVE regulatory complex to drive collective cell migration during tissue rotation.

    PubMed

    Squarr, Anna Julia; Brinkmann, Klaus; Chen, Baoyu; Steinbacher, Tim; Ebnet, Klaus; Rosen, Michael K; Bogdan, Sven

    2016-02-29

    Directional cell movements during morphogenesis require the coordinated interplay between membrane receptors and the actin cytoskeleton. The WAVE regulatory complex (WRC) is a conserved actin regulator. Here, we found that the atypical cadherin Fat2 recruits the WRC to basal membranes of tricellular contacts where a new type of planar-polarized whip-like actin protrusion is formed. Loss of either Fat2 function or its interaction with the WRC disrupts tricellular protrusions and results in the formation of nonpolarized filopodia. We provide further evidence for a molecular network in which the receptor tyrosine phosphatase Dlar interacts with the WRC to couple the extracellular matrix, the membrane, and the actin cytoskeleton during egg elongation. Our data uncover a mechanism by which polarity information can be transduced from a membrane receptor to a key actin regulator to control collective follicle cell migration during egg elongation. 4D-live imaging of rotating MCF10A mammary acini further suggests an evolutionary conserved mechanism driving rotational motions in epithelial morphogenesis. PMID:26903538

  9. Biomimetic fat cell (BFC) modification and for lindane removal from aqueous solution.

    PubMed

    Liyan, Song; Youcai, Zhao; Guojian, Wang; Bing, Li; Dongjie, Niu; Xiaoli, Chai

    2008-03-01

    To improve the regeneration ability of biomimetic fat cell (BFC), an innovative agent for hydrophobic organic contaminants (HOCs) removal, BFC was modified through introducing 1, 3, 5-benzenetricarboxyl trichloride with trifunctional group and heterocyclic piperazine in this research. Modified biomimetic fat cell (MBFC) has a good lindane removal capacity close to that of BFC and powder activated carbon (PAC), and the lindane removal is 97.68, 96.65 and 98.36% with 7 mg/L lindane initial concentration, respectively. At the same time, 20 mg/L MBFC or PAC is sufficient for 10 microg/L lindane removal, and in 20-60 mg/L doses range the lindane removal by both MBFC and PAC can reach 99.0%; When the doses is below 10 mg/L, MBFC showed better lindane removal than PAC and MBFC even could reach 96.8% lindane removal in 5 mg/L dose. Lindane removal by MBFC could be held on 95% above in first 6-time reuse. Though the lindane removal by MBFC decreased with the reuse time increasing, MBFC still could remove 80 % lindane after 9 times regeneration. In contract with BFC, MBFC showed obvious advantage on the regeneration. The lindane removal mechanism by MBFC, similar with BFC, includes bioaccumulation by MBFC nucleolus-triolein and adsorption by MBFC membrane, and the bioaccumulation is the main way.

  10. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease.

    PubMed

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M; Hanani, Menachem; Scherer, Philipp E; Tanowitz, Herbert B; Spray, David C

    2014-11-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions.

  11. Adipocytes in both brown and white adipose tissue of adult mice are functionally connected via gap junctions: implications for Chagas disease

    PubMed Central

    Burke, Shoshana; Nagajyothi, Fnu; Thi, Mia M.; Hanani, Menachem; Scherer, Philipp E.; Tanowitz, Herbert B.; Spray, David C.

    2015-01-01

    Adipose tissue serves as a host reservoir for the protozoan Trypanosoma cruzi, the causative organism in Chagas disease. Gap junctions interconnect cells of most tissues, serving to synchronize cell activities including secretion in glandular tissue, and we have previously demonstrated that gap junctions are altered in various tissues and cells infected with T. cruzi. Herein, we examined the gap junction protein connexin 43 (Cx43) expression in infected adipose tissues. Adipose tissue is the largest endocrine organ of the body and is also involved in other physiological functions. In mammals, it is primarily composed of white adipocytes. Although gap junctions are a prominent feature of brown adipocytes, they have not been explored extensively in white adipocytes, especially in the setting of infection. Thus, we examined functional coupling in both white and brown adipocytes in mice. Injection of electrical current or the dye Lucifer Yellow into adipocytes within fat tissue spread to adjacent cells, which was reduced by treatment with agents known to block gap junctions. Moreover, Cx43 was detected in both brown and white fat tissue. At thirty and ninety days post-infection, Cx43 was downregulated in brown adipocytes and upregulated in white adipocytes. Gap junction-mediated intercellular communication likely contributes to hormone secretion and other functions in white adipose tissue and to nonshivering thermogenesis in brown fat, and modulation of the coupling by T. cruzi infection is expected to impact these functions. PMID:25150689

  12. Identification of Specific Cell-Surface Markers of Adipose-Derived Stem Cells from Subcutaneous and Visceral Fat Depots

    PubMed Central

    Ong, Wee Kiat; Tan, Chuen Seng; Chan, Kai Li; Goesantoso, Grace Gandi; Chan, Xin Hui Derryn; Chan, Edmund; Yin, Jocelyn; Yeo, Chia Rou; Khoo, Chin Meng; So, Jimmy Bok Yan; Shabbir, Asim; Toh, Sue-Anne; Han, Weiping; Sugii, Shigeki

    2014-01-01

    Summary Adipose-derived stem/stromal cells (ASCs) from the anatomically distinct subcutaneous and visceral depots of white adipose tissue (WAT) differ in their inherent properties. However, little is known about the molecular identity and definitive markers of ASCs from these depots. In this study, ASCs from subcutaneous fat (SC-ASCs) and visceral fat (VS-ASCs) of omental region were isolated and studied. High-content image screening of over 240 cell-surface markers identified several potential depot-specific markers of ASCs. Subsequent studies revealed consistent predominant expression of CD10 in SC-ASCs and CD200 in VS-ASCs across 12 human subjects and in mice. CD10-high-expressing cells sorted from SC-ASCs differentiated better than their CD10-low-expressing counterparts, whereas CD200-low VS-ASCs differentiated better than CD200-high VS-ASCs. The expression of CD10 and CD200 is thus depot-dependent and associates with adipogenic capacities. These markers will offer a valuable tool for tracking and screening of depot-specific stem cell populations. PMID:24527391

  13. In situ detection of apoptotic cells by TUNEL in the gill epithelium of the developing brown trout (Salmo trutta)

    PubMed Central

    ROJO, M. C.; GONZALEZ, M. E.

    1998-01-01

    Apoptosis is a form of naturally occurring cell death during development and it is characterised by extensive DNA fragmentation. Apoptosis is easily detected in the gill epithelium of brown trout embryos in ultrathin sections (Rojo et al. 1997). Here we provide the first biochemical evidence for apoptosis in the gill epithelium of brown trout embryos, using in situ end-labelling of DNA breaks (Gavrieli et al. 1992). Embryos at d 57 of development as well as those at hatching, were processed to analyse the distribution of apoptotic cells in the gills. The extent of apoptosis revealed by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labelling method technique is considerably greater than apoptosis detected by nuclear morphology. This method revealed that apoptosis was frequent at hatching, although it was also present during embryonic development. The presence and distribution of stained nuclei were different depending on the developmental stage. In embryos of 57 d, apoptotic flattened nuclei were dispersed in the gill epithelium, whereas at hatching, they were mainly grouped in the tips of the filaments and in the gill arches. TUNEL also revealed a distinct pattern of nuclear staining: at hatching, the intense staining covered the entire cell, but in embryos it was restricted to the nucleus. These results show the functional relevance of apoptosis at hatching, when apoptosis seems to be the unique process by which cell numbers in the gill epithelium are adjusted, in order to prepare for the new extrinsic conditions affecting the free-living life of alevins. PMID:9877294

  14. Depletion of fat-resident Treg cells prevents age-associated insulin resistance.

    PubMed

    Bapat, Sagar P; Myoung Suh, Jae; Fang, Sungsoon; Liu, Sihao; Zhang, Yang; Cheng, Albert; Zhou, Carmen; Liang, Yuqiong; LeBlanc, Mathias; Liddle, Christopher; Atkins, Annette R; Yu, Ruth T; Downes, Michael; Evans, Ronald M; Zheng, Ye

    2015-12-01

    Age-associated insulin resistance (IR) and obesity-associated IR are two physiologically distinct forms of adult-onset diabetes. While macrophage-driven inflammation is a core driver of obesity-associated IR, the underlying mechanisms of the obesity-independent yet highly prevalent age-associated IR are largely unexplored. Here we show, using comparative adipo-immune profiling in mice, that fat-resident regulatory T cells, termed fTreg cells, accumulate in adipose tissue as a function of age, but not obesity. Supporting the existence of two distinct mechanisms underlying IR, mice deficient in fTreg cells are protected against age-associated IR, yet remain susceptible to obesity-associated IR and metabolic disease. By contrast, selective depletion of fTreg cells via anti-ST2 antibody treatment increases adipose tissue insulin sensitivity. These findings establish that distinct immune cell populations within adipose tissue underlie ageing- and obesity-associated IR, and implicate fTreg cells as adipo-immune drivers and potential therapeutic targets in the treatment of age-associated IR.

  15. CDP-diacylglycerol synthetase coordinates cell growth and fat storage through phosphatidylinositol metabolism and the insulin pathway.

    PubMed

    Liu, Yuan; Wang, Wei; Shui, Guanghou; Huang, Xun

    2014-03-01

    During development, animals usually undergo a rapid growth phase followed by a homeostatic stage when growth has ceased. The increase in cell size and number during the growth phase requires a large amount of lipids; while in the static state, excess lipids are usually stored in adipose tissues in preparation for nutrient-limited conditions. How cells coordinate growth and fat storage is not fully understood. Through a genetic screen we identified Drosophila melanogaster CDP-diacylglycerol synthetase (CDS/CdsA), which diverts phosphatidic acid from triacylglycerol synthesis to phosphatidylinositol (PI) synthesis and coordinates cell growth and fat storage. Loss of CdsA function causes significant accumulation of neutral lipids in many tissues along with reduced cell/organ size. These phenotypes can be traced back to reduced PI levels and, subsequently, low insulin pathway activity. Overexpressing CdsA rescues the fat storage and cell growth phenotypes of insulin pathway mutants, suggesting that CdsA coordinates cell/tissue growth and lipid storage through the insulin pathway. We also revealed that a DAG-to-PE route mediated by the choline/ethanolamine phosphotransferase Bbc may contribute to the growth of fat cells in CdsA RNAi.

  16. Seipin deficiency alters brown adipose tissue thermogenesis and insulin sensitivity in a non-cell autonomous mode

    PubMed Central

    Dollet, L.; Magré, J.; Joubert, M.; Le May, C.; Ayer, A.; Arnaud, L.; Pecqueur, C.; Blouin, V.; Cariou, B.; Prieur, X.

    2016-01-01

    Loss-of-function mutations in BSCL2 are responsible for Berardinelli-Seip congenital lipodystrophy, a rare disorder characterized by near absence of adipose tissue associated with insulin resistance. Seipin-deficient (Bscl2−/−) mice display an almost total loss of white adipose tissue (WAT) with residual brown adipose tissue (BAT). Previous cellular studies have shown that seipin deficiency alters white adipocyte differentiation. In this study, we aimed to decipher the consequences of seipin deficiency in BAT. Using a brown adipocyte cell-line, we show that seipin knockdown had very little effect on adipocyte differentiation without affecting insulin sensitivity and oxygen consumption. However, when submitted to cold acclimation or chronic β3 agonist treatment, Bscl2−/− mice displayed altered thermogenic capacity, despite several signs of BAT remodeling. Under cold activation, Bscl2−/− mice were able to maintain their body temperature when fed ad libitum, but not under short fasting. At control temperature (i.e. 21 °C), fasting worsened Bscl2−/− BAT properties. Finally, Bscl2−/− BAT displayed obvious signs of insulin resistance. Our results in these lipodystrophic mice strongly suggest that BAT activity relies on WAT as an energetic substrate provider and adipokine-producing organ. Therefore, the WAT/BAT dialogue is a key component of BAT integrity in guaranteeing its response to insulin and cold-activated adrenergic signals. PMID:27748422

  17. Fecal fat

    MedlinePlus

    Quantitative stool fat determination; Fat absorption ... This test evaluates fat absorption to tell how well the liver, gallbladder, pancreas, and intestines are working. Fat malabsorption can cause a change in your ...

  18. Oxygen Deprivation and the Cellular Response to Hypoxia in Adipocytes – Perspectives on White and Brown Adipose Tissues in Obesity

    PubMed Central

    Trayhurn, Paul; Alomar, Suliman Yousef

    2015-01-01

    Relative hypoxia has been shown to develop in white adipose tissue depots of different types of obese mouse (genetic, dietary), and this leads to substantial changes in white adipocyte function. These changes include increased production of inflammation-related adipokines (such as IL-6, leptin, Angptl4, and VEGF), an increase in glucose utilization and lactate production, and the induction of fibrosis and insulin resistance. Whether hypoxia also occurs in brown adipose tissue depots in obesity has been little considered. However, a recent study has reported low pO2 in brown fat of obese mice, this involving mitochondrial loss and dysfunction. We suggest that obesity-linked hypoxia may lead to similar alterations in brown adipocytes as in white fat cells – particularly changes in adipokine production, increased glucose uptake and lactate release, and insulin resistance. This would be expected to compromise thermogenic activity and the role of brown fat in glucose homeostasis and triglyceride clearance, underpinning the development of the metabolic syndrome. Hypoxia-induced augmentation of lactate production may also stimulate the “browning” of white fat depots through recruitment of UCP1 and the development of brite adipocytes. PMID:25745415

  19. Use of Rat Mature Adipocyte-Derived Dedifferentiated Fat Cells as a Cell Source for Periodontal Tissue Regeneration

    PubMed Central

    Akita, Daisuke; Kano, Koichiro; Saito-Tamura, Yoko; Mashimo, Takayuki; Sato-Shionome, Momoko; Tsurumachi, Niina; Yamanaka, Katsuyuki; Kaneko, Tadashi; Toriumi, Taku; Arai, Yoshinori; Tsukimura, Naoki; Matsumoto, Taro; Ishigami, Tomohiko; Isokawa, Keitaro; Honda, Masaki

    2016-01-01

    Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT) cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs) on mesenchymal stem cells. We obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid) on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA) and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3, and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration. PMID:26941649

  20. Use of Rat Mature Adipocyte-Derived Dedifferentiated Fat Cells as a Cell Source for Periodontal Tissue Regeneration.

    PubMed

    Akita, Daisuke; Kano, Koichiro; Saito-Tamura, Yoko; Mashimo, Takayuki; Sato-Shionome, Momoko; Tsurumachi, Niina; Yamanaka, Katsuyuki; Kaneko, Tadashi; Toriumi, Taku; Arai, Yoshinori; Tsukimura, Naoki; Matsumoto, Taro; Ishigami, Tomohiko; Isokawa, Keitaro; Honda, Masaki

    2016-01-01

    Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT) cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs) on mesenchymal stem cells. We obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid) on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA) and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3, and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  1. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    PubMed

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease.

  2. MiR130b-Regulation of PPARγ Coactivator- 1α Suppresses Fat Metabolism in Goat Mammary Epithelial Cells.

    PubMed

    Chen, Zhi; Luo, Jun; Ma, LiuAn; Wang, Hui; Cao, WenTing; Xu, HuiFei; Zhu, JiangJiang; Sun, YuTing; Li, Jun; Yao, DaWei; Kang, Kang; Gou, Deming

    2015-01-01

    Fat metabolism is a complicated process regulated by a series of factors. microRNAs (miRNAs) are a class of negative regulator of proteins and play crucial roles in many biological processes; including fat metabolism. Although there have been some researches indicating that miRNAs could influence the milk fat metabolism through targeting some factors, little is known about the effect of miRNAs on goat milk fat metabolism. Here we utilized an improved miRNA detection assay, S-Poly-(T), to profile the expression of miRNAs in the goat mammary gland in different periods, and found that miR-130b was abundantly and differentially expressed in goat mammary gland. Additionally, overexpressing miR-130b impaired adipogenesis while inhibiting miR-130b enhanced adipogenesis in goat mammary epithelial cells. Utilizing 3'-UTR assay and Western Blot analusis, the protein peroxisome proliferator-activated receptor coactivator-1α (PGC1α), a major regulator of fat metabolism, was demonstrated to be a potential target of miR-130b. Interestingly, miR-130b potently repressed PGC1α expression by targeting both the PGC1α mRNA coding and 3' untranslated regions. These findings have some insight of miR-130b in mediating adipocyte differentiation by repressing PGC1α expression and this contributes to further understanding about the functional significance of miRNAs in milk fat synthesis. PMID:26579707

  3. Mechanisms of fat-induced gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide secretion from K cells.

    PubMed

    Yamane, Shunsuke; Harada, Norio; Inagaki, Nobuya

    2016-04-01

    Gastric inhibitory polypeptide/glucose-dependent insulinotropic polypeptide (GIP) is one of the incretins, which are gastrointestinal hormones released in response to nutrient ingestion and potentiate glucose-stimulated insulin secretion. Single fat ingestion stimulates GIP secretion from enteroendocrine K cells; chronic high-fat diet (HFD) loading enhances GIP secretion and induces obesity in mice in a GIP-dependent manner. However, the mechanisms of GIP secretion from K cells in response to fat ingestion and GIP hypersecretion in HFD-induced obesity are not well understood. We generated GIP-green fluorescent protein knock-in (GIP (gfp/+)) mice, in which K cells are labeled by enhanced GIP-green fluorescent protein. Microarray analysis of isolated K cells from GIP (gfp/+) mice showed that both fatty acid-binding protein 5 and G protein-coupled receptor 120 are highly expressed in K cells. Single oral administration of fat resulted in significant reduction of GIP secretion in both fatty acid-binding protein 5- and G protein-coupled receptor 120-deficient mice, showing that fatty acid-binding protein 5 and G protein-coupled receptor 120 are involved in acute fat-induced GIP secretion. Furthermore, the transcriptional factor, regulatory factor X6 (Rfx6), is highly expressed in K cells. In vitro experiments using the mouse enteroendocrine cell line, STC-1, showed that GIP messenger ribonucleic acid levels are upregulated by Rfx6. Expression levels of Rfx6 messenger ribonucleic acid as well as that of GIP messenger ribonucleic acid were augmented in the K cells of HFD-induced obese mice, in which GIP content in the small intestine is increased compared with that in lean mice fed a control diet. These results suggest that Rfx6 is involved in hypersecretion of GIP in HFD-induced obese conditions by increasing GIP gene expression.

  4. α/β-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes.

    PubMed

    Zhao, Shangang; Mugabo, Yves; Ballentine, Gwynne; Attane, Camille; Iglesias, Jose; Poursharifi, Pegah; Zhang, Dongwei; Nguyen, Thuy Anne; Erb, Heidi; Prentki, Raphael; Peyot, Marie-Line; Joly, Erik; Tobin, Stephanie; Fulton, Stephanie; Brown, J Mark; Madiraju, S R Murthy; Prentki, Marc

    2016-03-29

    Suppression of α/β-domain hydrolase-6 (ABHD6), a monoacylglycerol (MAG) hydrolase, promotes glucose-stimulated insulin secretion by pancreatic β cells. We report here that high-fat-diet-fed ABHD6-KO mice show modestly reduced food intake, decreased body weight gain and glycemia, improved glucose tolerance and insulin sensitivity, and enhanced locomotor activity. ABHD6-KO mice also show increased energy expenditure, cold-induced thermogenesis, brown adipose UCP1 expression, fatty acid oxidation, and white adipose browning. Adipose browning and cold-induced thermogenesis are replicated by the ABHD6 inhibitor WWL70 and by antisense oligonucleotides targeting ABHD6. Our evidence suggests that one mechanism by which the lipolysis derived 1-MAG signals intrinsic and cell-autonomous adipose browning is via PPARα and PPARγ activation, and that ABHD6 regulates adipose browning by controlling signal competent 1-MAG levels. Thus, ABHD6 regulates energy homeostasis, brown adipose function, and white adipose browning and is a potential therapeutic target for obesity and type 2 diabetes.

  5. Differentiation of rat brown adipocytes during late foetal development: role of insulin-like growth factor I.

    PubMed Central

    Teruel, T; Valverde, A M; Alvarez, A; Benito, M; Lorenzo, M

    1995-01-01

    Rat brown adipocytes at day 22 of foetal development showed greater size, higher mitochondria content and larger amounts of lipids, as determined by flow cytometry, than 20-day foetal cells. Simultaneously, an inhibition on the percentage of brown adipocytes into S+G2/M phases of the cell cycle was observed between days 20 and 22 of foetal development. The expression of several adipogenesis-related genes, such as fatty acid synthase, malic enzyme, glucose-6-phosphate dehydrogenase and insulin-regulated glucose transporter, increased at the end of foetal life in brown adipose tissue. In addition, the lipogenic enzyme activities and the lipogenic flux increased during late foetal development, resulting in mature brown adipocytes showing a multilocular fat droplet phenotype. Concurrently, brown adipocytes induced the expression of the uncoupling protein (UP) mRNA and UP protein, as visualized by immunofluorescence. The three isoforms of CCAAT enhancer-binding proteins (C/EBPs) were expressed at the mRNA level in brown adipose tissue at day 20. C/EBP alpha decreased and C/EBP beta and delta increased their expression between days 20 and 22 of foetal development, respectively. Brown adipose tissue constitutively expressed insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR) mRNAs. Moreover, IGF-IR mRNA content increased between days 20 and 22 in parallel with the occurrence of tissue differentiation. Images Figure 2 Figure 3 Figure 4 PMID:7575409

  6. Mucous cell responses in gill and skin of brown trout Salmo trutta fario in acidic, aluminium-containing stream water.

    PubMed

    Ledy, K; Giambérini, L; Pihan, J C

    2003-10-24

    Morphometric examination was carried out on the gills and skin of wild and caged hatchery brown trout Salmo trutta fario in an acidic (pH 4.9 to 5.4; Al 203 to 250 microg l(-1)) and in a non-acidic (pH 6.7 to 7.0; Al 27 to 67 microg l(-1)) stream in the Vosges Mountains (NE France) to assess the sublethal effects of acidic water on the mucous cell response. The caged fish were randomly collected after 2, 4, 7 and 11 d and the wild fish were obtained by electrofishing. After 2 d, a reduction of both mucous cell (MC) number and size was observed in the gills of fish held in the acidic stream, suggesting a massive mucus discharge. Hyperplasia and hypertrophy of cells immediately followed this mucus secretion. In the same fish population, skin examination showed a slight and delayed decrease of MC number but a significant increase of cell size. The number of mucous cells of gills and skin was similar in both wild trout populations, whereas a significant MC hypertrophy was observed in the wild fish of the acidic stream. The present field experiment indicates that caged fish could be useful as early indicators of acidification. In addition, the examination of wild populations suggested the occurrence of adaptive mechanisms, information that might be of importance in the context of river recovery programs.

  7. p13 overexpression in pancreatic β-cells ameliorates type 2 diabetes in high-fat-fed mice.

    PubMed

    Higashi, Shintaro; Katagi, Kazuhiko; Shintani, Norihito; Ikeda, Kazuya; Sugimoto, Yukihiko; Tsuchiya, Soken; Inoue, Naoki; Tanaka, Shota; Koumoto, Mai; Kasai, Atsushi; Nakazawa, Takanobu; Hayata-Takano, Atsuko; Hamagami, Ken-Ichi; Tomimoto, Shuhei; Yoshida, Takuya; Ohkubo, Tadayasu; Nagayasu, Kazuki; Ago, Yukio; Onaka, Yusuke; Hashimoto, Ryota; Ichikawa, Atsushi; Baba, Akemichi; Hashimoto, Hitoshi

    2015-06-12

    We examined the pancreatic function of p13 encoded by 1110001J03Rik, whose expression is decreased in pancreatic islets in high-fat-fed diabetic mice, by generating transgenic mice overexpressing p13 (p13-Tg) in pancreatic β-cells. p13-Tg mice showed normal basal glucose metabolism; however, under high-fat feeding, these animals showed augmented glucose-induced first-phase and total insulin secretion, improved glucose disposal, greater islet area and increased mitotic insulin-positive cells. In addition, high-fat diet-induced 4-hydroxynonenal immunoreactivity, a reliable marker and causative agent of lipid peroxidative stress, was significantly decreased in p13-Tg mouse islets. These results indicate that p13 is a novel pancreatic factor exerting multiple beneficial effects against type 2 diabetes.

  8. Dynamic changes in lipid droplet-associated proteins in the "browning" of white adipose tissues.

    PubMed

    Barneda, David; Frontini, Andrea; Cinti, Saverio; Christian, Mark

    2013-05-01

    The morphological and functional differences between lipid droplets (LDs) in brown (BAT) and white (WAT) adipose tissues will largely be determined by their associated proteins. Analysing mRNA expression in mice fat depots we have found that most LD protein genes are expressed at higher levels in BAT, with the greatest differences observed for Cidea and Plin5. Prolonged cold exposure, which induces the appearance of brown-like adipocytes in mice WAT depots, was accompanied with the potentiation of the lipolytic machinery, with changes in ATGL, CGI-58 and G0S2 gene expression. However the major change detected in WAT was the enhancement of Cidea mRNA. Together with the increase in Cidec, it indicates that LD enlargement through LD-LD transference of fat is an important process during WAT browning. To study the dynamics of this phenotypic change, we have applied 4D confocal microscopy in differentiated 3T3-L1 cells under sustained β-adrenergic stimulation. Under these conditions the cells experienced a LD remodelling cycle, with progressive reduction on the LD size by lipolysis, followed by the formation of new LDs, which were subjected to an enlargement process, likely to be CIDE-triggered, until the cell returned to the basal state. This transformation would be triggered by the activation of a thermogenic futile cycle of lipolysis/lipogenesis and could facilitate the molecular mechanism for the unilocular to multilocular transformation during WAT browning. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.

  9. Brown seaweed pigment as a dye source for photoelectrochemical solar cells.

    PubMed

    Calogero, Giuseppe; Citro, Ilaria; Di Marco, Gaetano; Armeli Minicante, Simona; Morabito, Marina; Genovese, Giuseppa

    2014-01-01

    Chlorophylls based-dyes obtained from seaweeds represent attractive alternatives to the expensive and polluting pyridil based Ru complexes because of their abundance in nature. Another important characteristic is that the algae do not subtract either cropland or agricultural water, therefore do not conflict with agro-food sector. This pigment shows a typical intense absorption in the UV/blue (Soret band) and a less intense band in the red/near IR (Q band) spectral regions and for these reasons appear very promising as sensitizer dyes for DSSC. In the present study, we utilized chlorophylls from samples of the brown alga Undaria pinnatifida as sensitizer in DSSCs. The dye, extracted by frozen seaweeds and used without any chemical purification, showed a very good fill factor (0.69). Even the photelectrochemical parameters if compared with the existent literature are very interesting.

  10. Brown seaweed pigment as a dye source for photoelectrochemical solar cells

    NASA Astrophysics Data System (ADS)

    Calogero, Giuseppe; Citro, Ilaria; Di Marco, Gaetano; Armeli Minicante, Simona; Morabito, Marina; Genovese, Giuseppa

    2014-01-01

    Chlorophylls based-dyes obtained from seaweeds represent attractive alternatives to the expensive and polluting pyridil based Ru complexes because of their abundance in nature. Another important characteristic is that the algae do not subtract either cropland or agricultural water, therefore do not conflict with agro-food sector. This pigment shows a typical intense absorption in the UV/blue (Soret band) and a less intense band in the red/near IR (Q band) spectral regions and for these reasons appear very promising as sensitizer dyes for DSSC. In the present study, we utilized chlorophylls from samples of the brown alga Undaria pinnatifida as sensitizer in DSSCs. The dye, extracted by frozen seaweeds and used without any chemical purification, showed a very good fill factor (0.69). Even the photelectrochemical parameters if compared with the existent literature are very interesting.

  11. Immunomagnetic Separation of Fat Depot-Specific Sca1high Adipose-Derived Stem Cells (Ascs)

    PubMed Central

    Barnes, Richard H; Chun, Tae-Hwa

    2016-01-01

    The isolation of adipose-derived stem cells (ASCs) is an important method in the field of adipose tissue biology, adipogenesis, and extracellular matrix (ECM) remodeling. In vivo, ECM-rich environment consisting of fibrillar collagens provides a structural support to adipose tissues during the progression and regression of obesity. Physiological ECM remodeling mediated by matrix metalloproteinases (MMPs) plays a major role in regulating adipose tissue size and function1, 2. The loss of physiological collagenolytic ECM remodeling may lead to excessive collagen accumulation (tissue fibrosis), macrophage infiltration, and ultimately, a loss of metabolic homeostasis including insulin resistance3, 4. When a phenotypic change of the adipose tissue is observed in gene-targeted mouse models, isolating primary ASCs from fat depots for in vitro studies is an effective approach to define the role of the specific gene in regulating the function of ASCs. In the following, we define an immunomagnetic separation of Sca1high ASCs. PMID:27583550

  12. Immunomagnetic Separation of Fat Depot-specific Sca1high Adipose-derived Stem Cells (ASCs).

    PubMed

    Barnes, Richard H; Chun, Tae-Hwa

    2016-01-01

    The isolation of adipose-derived stem cells (ASCs) is an important method in the field of adipose tissue biology, adipogenesis, and extracellular matrix (ECM) remodeling. In vivo, ECM-rich environment consisting of fibrillar collagens provides a structural support to adipose tissues during the progression and regression of obesity. Physiological ECM remodeling mediated by matrix metalloproteinases (MMPs) plays a major role in regulating adipose tissue size and function(1,2). The loss of physiological collagenolytic ECM remodeling may lead to excessive collagen accumulation (tissue fibrosis), macrophage infiltration, and ultimately, a loss of metabolic homeostasis including insulin resistance(3,4). When a phenotypic change of the adipose tissue is observed in gene-targeted mouse models, isolating primary ASCs from fat depots for in vitro studies is an effective approach to define the role of the specific gene in regulating the function of ASCs. In the following, we define an immunomagnetic separation of Sca1(high) ASCs. PMID:27583550

  13. Obesity induced by a high-fat diet is associated with increased immune cell entry into the central nervous system.

    PubMed

    Buckman, Laura B; Hasty, Alyssa H; Flaherty, David K; Buckman, Christopher T; Thompson, Misty M; Matlock, Brittany K; Weller, Kevin; Ellacott, Kate L J

    2014-01-01

    Obesity is associated with chronic low-grade inflammation in peripheral tissues caused, in part, by the recruitment of inflammatory monocytes into adipose tissue. Studies in rodent models have also shown increased inflammation in the central nervous system (CNS) during obesity. The goal of this study was to determine whether obesity is associated with recruitment of peripheral immune cells into the CNS. To do this we used a bone marrow chimerism model to track the entry of green-fluorescent protein (GFP) labeled peripheral immune cells into the CNS. Flow cytometry was used to quantify the number of GFP(+) immune cells recruited into the CNS of mice fed a high-fat diet compared to standard chow fed controls. High-fat feeding resulted in obesity associated with a 30% increase in the number of GFP(+) cells in the CNS compared to control mice. Greater than 80% of the GFP(+) cells recruited to the CNS were also CD45(+) CD11b(+) indicating that the GFP(+) cells displayed characteristics of microglia/macrophages. Immunohistochemistry further confirmed the increase in GFP(+) cells in the CNS of the high-fat fed group and also indicated that 93% of the recruited cells were found in the parenchyma and had a stellate morphology. These findings indicate that peripheral immune cells can be recruited to the CNS in obesity and may contribute to the inflammatory response.

  14. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages.

  15. M1-M2 balancing act in white adipose tissue browning - a new role for RIP140.

    PubMed

    Liu, Pu-Ste; Lin, Yi-Wei; Burton, Frank H; Wei, Li-Na

    2015-01-01

    A "Holy Grail" sought in medical treatment of obesity is to be able to biologically reprogram their adipose tissues to burn fat rather than store it. White adipose tissue (WAT) stores fuel and its expansion underlines insulin resistance (IR) whereas brown adipose tissue (BAT) burns fuel and stimulates insulin sensitivity. These two types of fats seesaw within our bodies via a regulatory mechanism that involves intricate communication between adipocytes and blood cells, particularly macrophages that migrate into adipose deposits. The coregulator, Receptor Interacting Protein 140 (RIP140), plays a key role in regulating this communication. In mice on a high-fat diet, the level of RIP140 in macrophages is dramatically elevated to activate their inflammatory M1 polarization and enhance their recruitment into WAT, facilitating IR. Conversely, lowering the level of RIP140 in macrophages not only reduces M1 macrophages but also expands alternatively polarized, anti-inflammatory M2 macrophages, triggering white adipose tissue browning, fat burning, and restoration of insulin sensitivity. This suggests a potential therapeutic strategy for reversing IR, obesity, and atherosclerotic or even cosmetic fat deposits: therapeutic browning of white adipose deposits by diminishing RIP140 levels in macrophages. PMID:26167418

  16. Unmaking Brown

    ERIC Educational Resources Information Center

    Lockette, Tim

    2010-01-01

    America's schools are more segregated now than they were in the late 1960s. More than 50 years after "Brown v. Board of Education," educators need to radically rethink the meaning of "school choice." For decades at Wake County, buses would pick up public school students in largely minority communities along the Raleigh Beltline. This system won…

  17. A hybrid-membrane migration method to isolate high-purity adipose-derived stem cells from fat tissues

    PubMed Central

    Higuchi, Akon; Wang, Ching-Tang; Ling, Qing-Dong; Lee, Henry Hsin-chung; Kumar, S. Suresh; Chang, Yung; Alarfaj, Abdullah A.; Munusamy, Murugan A.; Hsu, Shih-Tien; Wu, Gwo-Jang; Umezawa, Akihiko

    2015-01-01

    Human adipose-derived stem cells (hADSCs) exhibit heterogeneous characteristics, indicating various genotypes and differentiation abilities. The isolated hADSCs can possess different purity levels and divergent properties depending on the purification methods used. We developed a hybrid-membrane migration method that purifies hADSCs from a fat tissue solution with extremely high purity and pluripotency. A primary fat-tissue solution was permeated through the porous membranes with a pore size from 8 to 25 μm, and the membranes were incubated in cell culture medium for 15-18 days. The hADSCs that migrated from the membranes contained an extremely high percentage (e.g., >98%) of cells positive for mesenchymal stem cell markers and showed almost one order of magnitude higher expression of some pluripotency genes (Oct4, Sox2, Klf4 and Nanog) compared with cells isolated using the conventional culture method. PMID:25970301

  18. Anti-Proliferative Activity of Meroditerpenoids Isolated from the Brown Alga Stypopodium flabelliforme against Several Cancer Cell Lines

    PubMed Central

    Pereira, David M.; Cheel, Jose; Areche, Carlos; San-Martin, Aurelio; Rovirosa, Juana; Silva, Luis R.; Valentao, Patricia; Andrade, Paula B.

    2011-01-01

    The sea constitutes one of the most promising sources of novel compounds with potential application in human therapeutics. In particular, algae have proved to be an interesting source of new bioactive compounds. In this work, six meroditerpenoids (epitaondiol, epitaondiol diacetate, epitaondiol monoacetate, stypotriol triacetate, 14-ketostypodiol diacetate and stypodiol) isolated from the brown alga Stypopodium flabelliforme were tested for their cell proliferation inhibitory activity in five cell lines. Cell lines tested included human colon adenocarcinoma (Caco-2), human neuroblastoma (SH-SY5Y), rat basophilic leukemia (RBL-2H3), murine macrophages (RAW.267) and Chinese hamster fibroblasts (V79). Antimicrobial activity of the compounds was also evaluated against Staphylococcus aureus, Salmonella typhimurium, Proteus mirabilis, Bacillus cereus, Enterococcus faecalis and Micrococcus luteus. Overall, the compounds showed good activity against all cell lines, with SH-SY5Y and RAW.267 being the most susceptible. Antimicrobial capacity was observed for epitaondiol monoacetate, stypotriol triacetate and stypodiol, with the first being the most active. The results suggest that these molecules deserve further studies in order to evaluate their potential as therapeutic agents. PMID:21673894

  19. Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fat-specific protein 27 (FSP27), a member of the cell death-inducing DNA fragmentation factor a-like effector (Cide) family, is highly expressed in adipose tissues and is a lipid droplet (LD)-associated protein that induces the accumulation of LDs. Using a yeast two-hybrid system to examine potentia...

  20. Fat harvesting site is an important determinant of proliferation and pluripotency of adipose-derived stem cells.

    PubMed

    Ardeshirylajimi, Abdolreza; Rafeie, Farjad; Zandi-Karimi, Ali; Jaffarabadi, Ghobad Asgari; Mohammadi-Sangcheshmeh, Abdollah; Samiei, Rahmat; Toghdory, Abdolhakim; Seyedjafari, Ehsan; Hashemi, Seyed Mahmoud; Cinar, Mehmet Ulas; Gastal, Eduardo L

    2016-01-01

    To define the optimal fat harvest site and detect any potential differences in adipose-derived stem cells (ASCs) proliferation properties in camels, aspirates from the abdomen and hump sites were compared. Obtained results revealed that ASCs from both abdomen and hump exhibited spindle-shaped and fibroblast-like morphology with hump-derived ASCs being smaller in size and narrower in overall appearance than abdominal ASCs. Abdominal ASCs required a greater time for proliferation than the hump-derived cells. These results were further confirmed with a tetrazolium-based colorimetric assay (MTT) which showed a greater cell proliferation rate for hump ASCs than for the abdomen. Under inductive conditions, ASCs from both abdominal and hump fat deposits maintained their lineage differentiation potential into adipogenic, chondrogenic, and osteogenic lineages during subsequent passages without any qualitative difference. However, expression of alkaline phosphatase was higher in osteogenic differentiated cells from the hump compared with those of the abdomen. Moreover, the increase in calcium content in hump-derived stem cells was higher than that in abdominal-derived stem cells. In conclusion, our findings revealed that ASCs can be obtained from different anatomical locations, although ASCs from the hump fat region may be the ideal stem cell sources for use in cell-based therapies.

  1. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix.

    PubMed

    Ye, Ken; Traianedes, Kathy; Choong, Peter F M; Myers, Damian E

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  2. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix.

    PubMed

    Ye, Ken; Traianedes, Kathy; Choong, Peter F M; Myers, Damian E

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell-matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair.

  3. Lipid Droplet Accumulation and Impaired Fat Efflux in Polarized Hepatic Cells: Consequences of Ethanol Metabolism

    PubMed Central

    McVicker, Benita L.; Rasineni, Karuna; Tuma, Dean J.; McNiven, Mark A.; Casey, Carol A.

    2012-01-01

    Steatosis, an early manifestation in alcoholic liver disease, is associated with the accumulation of hepatocellular lipid droplets (LDs). However, the role ethanol metabolism has in LD formation and turnover remains undefined. Here, we assessed LD dynamics following ethanol and oleic acid treatment to ethanol-metabolizing WIF-B cells (a hybrid of human fibroblasts (WI 38) and Fao rat hepatoma cells). An OA dose-dependent increase in triglyceride and stained lipids was identified which doubled (P < 0.05) in the presence of ethanol. This effect was blunted with the inclusion of an alcohol metabolism inhibitor. The ethanol/ OA combination also induced adipophilin, LD coat protein involved in the attenuation of lipolysis. Additionally, ethanol treatment resulted in a significant reduction in lipid efflux. These data demonstrate that the metabolism of ethanol in hepatic cells is related to LD accumulation, impaired fat efflux, and enhancements in LD-associated proteins. These alterations in LD dynamics may contribute to ethanol-mediated defects in hepatocellular LD regulation and the formation of steatosis. PMID:22506128

  4. Induction and differentiation of adipose-derived stem cells from human buccal fat pads into salivary gland cells.

    PubMed

    Kawakami, Miyuki; Ishikawa, Hiroshi; Tanaka, Akira; Mataga, Izumi

    2016-07-01

    Atrophy or hypofunction of the salivary gland because of aging or disease leads to hyposalivation that affects patient quality of life by causing dry mouth, deterioration of mastication/deglutition, and poor oral hygiene status. Current therapy for atrophy or hypofunction of the salivary gland in clinical practice focuses on symptom relief using drugs and artificial saliva; therefore, there is still a need to develop new therapies. To investigate potential novel therapeutic targets, we induced the differentiation of salivary gland cells by co-culturing human adipose-derived stem cells isolated from buccal fat pads (hBFP-ASCs) with human salivary-gland-derived fibroblasts (hSG-fibros). We examined their potential for transplantation and tissue neogenesis. Following the culture of hBFP-ASCs and hSG-fibros, differentiated cells were transplanted into the submandibular glands of SCID mice, and their degree of differentiation in tissues was determined. We also examined their potential for functional tissue reconstitution using a three-dimensional (3D) culture system. Co-cultured cells expressed salivary-glandrelated markers and generated new tissues following transplantation in vivo. Moreover, cell reconstituted glandular structures in the 3D culture system. In conclusion, coculture of hSG-fibros with hBFP-ASCs led to successful differentiation into salivary gland cells that could be transplanted to generate new tissues.

  5. Drug Ligand-Induced Activation of Translocator Protein (TSPO) Stimulates Steroid Production by Aged Brown Norway Rat Leydig Cells

    PubMed Central

    Chung, J.-Y.; Chen, H.; Midzak, A.; Burnett, A. L.; Papadopoulos, V.

    2013-01-01

    Translocator protein (TSPO; 18 kDA) is a high-affinity cholesterol-binding protein that is integrally involved in cholesterol transfer from intracellular stores into mitochondria, the rate-determining step in steroid formation. Previous studies have shown that TSPO drug ligands are able to activate steroid production by MA-10 mouse Leydig tumor cells and by mitochondria isolated from steroidogenic cells. We hypothesized herein that the direct, pharmacological activation of TSPO might induce aged Leydig cells, which are characterized by reduced T production, to produce significantly higher levels of T both in vitro and in vivo. To test this, we first examined the in vitro effects of the TSPO selective and structurally distinct drug ligands N,N-dihexyl-2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27) and benzodiazepine 4′-chlorodiazepam (Ro5-4864) on steroidogenesis by Leydig cells isolated from aged (21-24 months old) and young adult (3-6 months old) Brown Norway rats. The ligands stimulated Leydig cell T production significantly, and equivalently, in cells of both ages, an effect that was significantly inhibited by the specific TSPO inhibitor 5-androsten-3,17,19-triol (19-Atriol). Additionally, we examined the in vivo effects of administering FGIN-1-27 to young and aged rats. In both cases, serum T levels increased significantly, consistent with the in vitro results. Indeed, serum T levels in aged rats administered FGIN-1-27 were equivalent to T levels in the serum of control young rats. Taken together, these results indicate that although there are reduced amounts of TSPO in aged Leydig cells, its direct activation is able to increase T production. We suggest that this approach might serve as a therapeutic means to increase steroid levels in vivo in cases of primary hypogonadism. PMID:23525219

  6. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    PubMed

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.

  7. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    PubMed

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis. PMID:26494623

  8. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction

    PubMed Central

    Kim, Jong-Ho; Hong, Soon Jun; Park, Chi-Yeon; Park, Jae Hyung; Choi, Seung-Cheol; Woo, Sang-Keun; Yu, Jung Woo; Cheon, Gi Jeong; Joo, Hyung Joon; Lim, Do-Sun

    2016-01-01

    Intramyocardial injection of adipose-derived stem cells (ASC) with other cell types in acute myocardial infarction (AMI) animal models has consistently shown promising clinical regenerative capacities. We investigated the effects of intramyocardial injections of mouse ASC (mASC) with mouse endothelial cells (mEC) on left ventricular function and generation of pericardial fat in AMI rats. AMI rat models were created by ligating left anterior descending coronary artery and were randomly assigned into four groups: control (n = 10), mASC (n = 10), mEC (n = 10) and mASC+mEC (n = 10) via direct intramyocardial injections, and each rat received 1x106 cells around three peri-infarct areas. Echocardiography and cardiac positron emission tomography (PET) were compared at baseline and on 28 days after AMI. Changes in left ventricular ejection fraction measured by PET, increased significantly in mASC and mASC+mEC groups compared to mEC and control groups. Furthermore, significant decreases in fibrosis were confirmed after sacrifice on 28 days in mASC and mASC+mEC groups. Successful cell engraftment was confirmed by positive Y-Chromosome staining in the transplantation region. Pericardial fat increased significantly in mASC and mASC+mEC groups compared to control group, and pericardial fat was shown to originate from the AMI rat. mASC group expressed higher adiponectin and lower leptin levels in plasma than control group. In addition, pericardial fat from AMI rats demonstrated increased phospho-AMPK levels and reduced phospho-ACC levels. Intramyocardial mASC transplantation after AMI in rats increased pericardial fat, which might play a protective role in the recovery of myocardial function after ischemic myocardial damage. PMID:27336402

  9. Protein kinase A-mediated cell proliferation in brown preadipocytes is independent of Erk1/2, PI{sub 3}K and mTOR

    SciTech Connect

    Wang, Yanling; Sato, Masaaki; Guo, Yuan; Bengtsson, Tore; Nedergaard, Jan

    2014-10-15

    The physiological agonist norepinephrine promotes cell proliferation of brown preadipocytes during the process of tissue recruitment. In a primary culture system, cAMP mediates these adrenergic effects. In the present study, we demonstrated that, in contrast to other systems where the mitogenic effect of cAMP requires the synergistic action of (serum) growth factors, especially insulin/IGF, the cAMP effect in brown preadipocytes was independent of serum and insulin. Protein kinase A, rather than Epac, mediated the cAMP mitogenic effect. The Erk 1/2 family of MAPK, the PI{sub 3}K system and the mTOR complexes were all activated by cAMP, but these activations were not necessary for cAMP-induced cell proliferation; a protein kinase C isoform may be involved in mediating cAMP-activated cell proliferation. We conclude that the generally acknowledged cellular mediators for induction of cell proliferation are not involved in this process in the brown preadipocyte system; this conclusion may be of relevance both for examination of mechanisms for induction of brown adipose tissue recruitment but also for understanding the mechanism behind e.g. certain endocrine neoplasias. - Highlights: • cAMP can mimick norepinephrine-induced proliferation of brown preadipocytes. • The cAMP-induced proliferation can occur in the absence of serum, of any other growth factors, and of insulin. • Erk1/2, PI{sub 3}K and mTOR are cAMP activated but not involved in induction of proliferation. • A Protein Kinase C member may be in the signalling cascade. • This pathway analysis may also be of importance for certain endocrine hyper- and neoplasias.

  10. Chondrogenesis of Human Infrapatellar Fat Pad Stem Cells on Acellular Dermal Matrix

    PubMed Central

    Ye, Ken; Traianedes, Kathy; Choong, Peter F. M.; Myers, Damian E.

    2016-01-01

    Acellular dermal matrix (ADM) has been in clinical use for decades in numerous surgical applications. The ability for ADM to promote cellular repopulation, revascularisation and tissue regeneration is well documented. Adipose stem cells have the ability to differentiate into mesenchymal tissue types, including bone and cartilage. The aim of this study was to investigate the potential interaction between ADM and adipose stem cells in vitro using TGFβ3 and BMP6. Human infrapatellar fat pad-derived adipose stem cells (IPFP-ASC) were cultured with ADM derived from rat dermis in chondrogenic (TGFβ3 and BMP6) medium in vitro for 2 and 4 weeks. Histology, qPCR, and immunohistochemistry were performed to assess for markers of chondrogenesis (collagen Type II, SOX9 and proteoglycans). At 4 weeks, cell-scaffold constructs displayed cellular changes consistent with chondrogenesis, with evidence of stratification of cell layers and development of a hyaline-like cartilage layer superficially, which stained positively for collagen Type II and proteoglycans. Significant cell–matrix interaction was seen between the cartilage layer and the ADM itself with seamless integration between each layer. Real time qPCR showed significantly increased COL2A1, SOX9, and ACAN gene expression over 4 weeks when compared to control. COL1A2 gene expression remained unchanged over 4 weeks. We believe that the principles that make ADM versatile and successful for tissue regeneration are applicable to cartilage regeneration. This study demonstrates in vitro the ability for IPFP-ASCs to undergo chondrogenesis, infiltrate, and interact with ADM. These outcomes serve as a platform for in vivo modelling of ADM for cartilage repair. PMID:26858950

  11. Fat-poor angiomyolipoma with cyst-like changes mimicking a cystic renal cell carcinoma: a case report.

    PubMed

    Kobari, Yuki; Takagi, Toshio; Kondo, Tsunenori; Tachibana, Hidekazu; Iida, Shoichi; Nishina, Yu; Omae, Kenji; Morita, Satoru; Yamamoto, Tomoko; Iizuka, Junpei; Nagashima, Yoji; Tanabe, Kazunari

    2015-01-01

    Angiomyolipoma is a common benign renal tumor. It is typically composed of adipose tissue and hence is easily diagnosed by using imaging methods such as ultrasonography, computed tomography, and magnetic resonance imaging. However, it is difficult to differentiate an atypical angiomyolipoma such as a fat-poor angiomyolipoma from a malignant tumor by using these imaging methods. We report a case of a fat-poor angiomyolipoma with cyst-like changes in a 35-year-old man. The angiomyolipoma was initially suspected to be a cystic renal cell carcinoma according to preoperative imaging studies. A 5-cm cystic tumor with an enhanced septal wall and exophytic formation was present in the middle section of the left kidney. The patient underwent partial nephrectomy. Pathological findings showed necrosis and hematoma in almost the entire lesion, with a small amount of adipose and muscle tissue. Finally, a fat-poor angiomyolipoma was diagnosed.

  12. High fat diet triggers cell cycle arrest and excessive apoptosis of granulosa cells during the follicular development.

    PubMed

    Wu, Yanqing; Zhang, Zhenghong; Liao, Xinghui; Wang, Zhengchao

    2015-10-23

    The regulatory mechanism of granulosa cells (GCs) proliferation during the follicular development is complicated and multifactorial, which is essential for the oocyte growth and normal ovarian functions. To investigate the role of high fat diet (HFD) on the proliferation of GCs, 4-week old female mice were fed with HFD or normal control diet (NC) for 15 weeks or 20 weeks and then detected the expression level of some regulatory molecules of cell cycle and apoptosis. The abnormal ovarian morphology was observed at 20 weeks. Further mechanistic studies indicated that HFD induced-obesity caused elevated apoptotic levels in GCs of the ovaries in a time-dependent manner. Moreover, cell cycle progress was also impacted after HFD fed. The cell cycle inhibitors, p27(Kip1) and p21(Cip1), were significantly induced in the ovaries from the mice in HFD group when compared with that in the ovaries from the mice in NC group. Subsequently, the expression levels of Cyclin D1, D3 and CDK4 were also significantly influenced in the ovaries from the mice fed with HFD in a time-dependent manner. The present results suggested that HFD induced-obesity may trigger cell cycle arrest and excessive apoptosis of GCs, causing the abnormal follicular development and ovarian function failure.

  13. A rapid sonication based method for preparation of stromal vascular fraction and mesenchymal stem cells from fat tissue

    PubMed Central

    Amirkhani, Mohammad Amir; Mohseni, Rashin; Soleimani, Masoud; Shoae-Hassani, Alireza; Nilforoushzadeh, Mohammad Ali

    2016-01-01

    Introduction: Much attention has been paid to the idea of cell therapy using stem cells from different sources of the body. Fat-derived stem cells that are called adipose derived stem cells (ADSCs) from stromal vascular fraction (SVF) are the subject of many studies in several cell therapy clinical trials. Despite production of some GMP-grade enzymes to isolate SVF for clinical trials, there are critical conditions like inconsistency in lot-to-lot enzyme activity, endotoxin residues, other protease activities and cleavage of some cell surface markers which significantly narrow the options. So we decided to develop a new method via sonication cavitation to homogenize fat tissue and disrupt partially adipose cells to obtain SVF and finally ADSCs at a minimum of time and expenses. Methods: The fat tissue was chopped in a sterile condition by a blender mixer and then sonicated for 2 s before centrifugation. The next steps were performed as the regular methods of SVF harvesting, and then it was characterized using flow cytometry. Results: Analysis of the surface markers of the cells revealed similar sets of surface antigens. The cells showed slightly high expression of CD34, CD73 and CD105. The differentiation capacity of these cells indicates that multipotent properties of the cells are not compromised after sonication. But we had the less osteogenic potential of cells when compared with the enzymatic method. Conclusion: The current protocol based on the sonication-mediated cavitation is a rapid, safe and cost-effective method, which is proposed for isolation of SVF and of course ADSCs cultures in a large scale for the clinical trials or therapeutic purposes. PMID:27525227

  14. Insulin-stimulated intracellular hydrogen peroxide production in rat epididymal fat cells.

    PubMed

    May, J M; de Haën, C

    1979-04-10

    Insulin stimulation of hydrogen peroxide production by rat epididymal fat cells was investigated by studying the oxidation of formate to CO2 by endogenous catalase. Under optimal concentrations of formate (0.1 to 1 mM) and glucose (0.275 mM), insulin stimulated formate oxidation 1.5- to 2.0-fold. Inhibitors of catalase activity, including nitrite and azide, inhibited both basal and insulin-stimulated formate oxidation at concentrations that did not interfere with insulin effects on glucose C-1 oxidation or glucose H-3 incorporation into lipids. The addition of exogenous catalase increased formate oxidation only slightly, while exogenous H2O2 (0.5 mM) stimulated formate oxidation by endogenous catalase strongly. These data indicate that the insulin-stimulated H2O2 production was intracellular. Insulin dose-response curves for formate oxidation were identical with those for glucose H-3 incorporation into lipids. The dependence of relative insulin effects on the logarithm of the glucose concentration was bell-shaped for formate oxidation and correlated highly with the coresponding dependences of glucose C-1 oxidation and glucose H-3 incorporation into lipids. This suggests that insulin stimulation of intracellular H2O2 production is linked to glucose metabolism. Since it is known that extracellular H2O2 can mimic insulin in several respects, these observations suggest that H2O2 may act as a "second messenger" for the observed effects of insulin.

  15. Sensorial pedagogies, hungry fat cells and the limits of nutritional health education

    PubMed Central

    Sanabria, Emilia

    2015-01-01

    This article examines the way the category of ‘the sensorial' is mobilised across obesity research and care practices for overweight persons in France. The ‘natural' body is understood to have developed mechanisms that motivate eaters to seek out energy-dense foods, a hardwiring that is maladaptive in today's plethoric food environment. The article analyses the feedback models mobilised in scientific literature on the neuroendocrine processes regulating appetite. The analysis of how ‘the sensorial' is studied and used to treat patients provides a vantage point onto the ways foods and bodies transform each other. Recent findings show that fat cells influence metabolism by secreting hormones, revealing that eaters are affected by the materiality of the foods they ingest. ‘The sensorial' functions as a regulator in the feedback mechanisms where social norms regulating foodscapes become enfolded in the molecular processes that control appetite regulation. The article traces the work that the category of ‘the sensorial' does as it flows through the loops and feedbacks between scientific evidence, policy and care. It examines the way pleasure and the sensations of eaters are increasingly foregrounded in French nutritional health promotion strategies in a context where informing eaters is increasingly deemed ineffective. PMID:26157470

  16. A high fat diet containing saturated but not unsaturated fatty acids enhances T cell receptor clustering on the nanoscale

    PubMed Central

    Shaikh, Saame Raza; Boyle, Sarah; Edidin, Michael

    2015-01-01

    Cell culture studies show that the nanoscale lateral organization of surface receptors, their clustering or dispersion, can be altered by changing the lipid composition of the membrane bilayer. However, little is known about similar changes in vivo, which can be effected by changing dietary lipids. We describe the use of a newly developed method, k-space image correlation spectroscopy, kICS, for analysis of quantum dot fluorescence to show that a high fat diet can alter the nanometer-scale cluster of the murine T cell receptor, TCR on the surface of naïve CD4+ T cells. We found that diets enriched primarily in saturated fatty acids increased TCR nanoscale clustering to a level usually seen only on activated cells. Diets enriched in monounsaturated or n-3 polyunsaturated fatty acids had no effect on TCR clustering. Also none of the high fat diets affected TCR clustering on the micrometer scale. Furthermore, the effect of the diets was similar in young and middle aged mice. Our data establish proof-of-principle that TCR nanoscale clustering is sensitive to the composition of dietary fat. PMID:26143085

  17. Role of macropore flow in the transport of Escherichia coli cells in undisturbed cores of a brown leached soil.

    PubMed

    Martins, Jean M F; Majdalani, Samer; Vitorge, Elsa; Desaunay, Aurélien; Navel, Aline; Guiné, Véronique; Daïan, Jean François; Vince, Erwann; Denis, Hervé; Gaudet, Jean Paul

    2013-02-01

    The objective of this work was to evaluate the transport of Escherichia coli cells in undisturbed cores of a brown leached soil collected at La Côte St André (France). Two undisturbed soil cores subjected to repeated injections of bacterial cells and/or bromide tracer were used to investigate the effect of soil hydrodynamics and ionic strength on cell mobility. Under the tested experimental conditions, E. coli cells were shown to be transported at the water velocity (retardation factor close to 1) and their retention appeared almost insensitive to water flow and ionic strength variations, both factors being known to control bacterial transport in model saturated porous media. In contrast, E. coli breakthrough curves evolved significantly along with the repetition of the cell injections in each soil core, with a progressive acceleration of their transport. The evolution of E. coli cells BTCs was shown to be due to the evolution of the structure of soil hydraulic pathways caused by the repeated water infiltrations and drainage as may occur in the field. This evolution was demonstrated through mercury intrusion porosimetry (MIP) performed on soil aggregates before and after the repeated infiltrations of bacteria. MIP revealed a progressive and important reduction of the soil aggregate porosity, n, that decreased from approximately 0.5 to 0.3, along with a decrease of the soil percolating step from 27 to 2 μm. From this result a clear compaction of soil aggregates was evidenced that concerned preferentially the pores larger than 2 μm equivalent diameter, i.e. those allowing bacterial cell passage. Since no significant reduction of the global soil volume was observed at the core scale, this aggregate compaction was accompanied by macropore formation that became progressively the preferential hydraulic pathway in the soil cores, leading to transiently bi-modal bacterial BTCs. The evolution of the soil pore structure induced a modification of the main hydrodynamic

  18. Brown recluse spider (image)

    MedlinePlus

    The brown recluse is a venomous spider most commonly found in midwestern and southern states of the United States. ... inch overall and has long skinny legs. The brown recluse is brown with a characteristic dark violin- ...

  19. Resveratrol Protects against High-Fat Diet Induced Renal Pathological Damage and Cell Senescence by Activating SIRT1.

    PubMed

    Zhang, Nannan; Li, Zhongchi; Xu, Kang; Wang, Yanying; Wang, Zhao

    2016-01-01

    Obesity-related renal diseases have been a worldwide issue. Effective strategy that prevents high fat-diet induced renal damage is of great significance. Resveratrol, a natural plant polyphenol, is famous for its antioxidant activity, cardioprotective effects and anticancer properties. However whether resveratrol can play a role in the treatment of renal diseases is unknown. In this study, we added resveratrol in normal glucose or high glucose medium and provide evidences that resveratrol protects against high-glucose triggered oxidative stress and cell senescence. Moreover, mice were fed with standard diet, standard diet plus resveratrol, high-fat diet or high-fat diet plus resveratrol for 3 months, and results show that resveratrol treatment prevents high-fat diet induced renal pathological damage by activating SIRT1, a key member in the mammalian sirtuin family that response to calorie restriction life-extension method. This research confirms the potential role of resveratrol in the treatment of renal diseases and may provide an effective and convenient method to mimic the beneficial effects of calorie restriction. PMID:27582325

  20. An immunohistochemical study on the gastrointestinal endocrine cells of three honeyeaters: singing honeyeater (Meliphaga virescens), spiny-cheeked honeyeater (Acanthogenys rufogularis) and brown honeyeater (Lichmera indistincta).

    PubMed

    Hashimoto, N; Yamada, J; Richardson, K C; Kitamura, N; Yamashita, T

    1993-01-01

    The gastrointestinal endocrine cells of the singing honeyeater (Meliphaga virescens), spiny-cheeked honeyeater (Acanthogenys rufogularis) and brown honeyeater (Lichmera indistincta) were studied immunohistochemically with special reference to their degree of dependency upon nectar. The nine types of immunoreactive endocrine cells were detected in their gastrointestinal mucosa. Coexistence of motilin and serotonin in the same cells was confirmed in the pyloric region. In the duodenum and jejunum, a few peptide tyrosin tyrosin (PYY)-immunoreactive cells were detected. The clear difference in the distribution and frequency of the gastrointestinal endocrine cells among three types of honeyeaters, which differ in the degree of dependency upon the nectar, could not be confirmed. However, some differences were found that serotonin-, somatostatin- and gastrin-releasing peptide (GRP)-immunoreactive cells in the gizzard, gastrin-immunoreactive cells in the duodenum and jejunum, enteroglucagon-immunoreactive cells in the caeca and in the colon, and pancreatic glucagon-immunoreactive cells in the ileum of brown honeyeaters were more numerous (p < 0.05) than other two species.

  1. An immunohistochemical study on the gastrointestinal endocrine cells of three honeyeaters: singing honeyeater (Meliphaga virescens), spiny-cheeked honeyeater (Acanthogenys rufogularis) and brown honeyeater (Lichmera indistincta).

    PubMed

    Hashimoto, N; Yamada, J; Richardson, K C; Kitamura, N; Yamashita, T

    1993-01-01

    The gastrointestinal endocrine cells of the singing honeyeater (Meliphaga virescens), spiny-cheeked honeyeater (Acanthogenys rufogularis) and brown honeyeater (Lichmera indistincta) were studied immunohistochemically with special reference to their degree of dependency upon nectar. The nine types of immunoreactive endocrine cells were detected in their gastrointestinal mucosa. Coexistence of motilin and serotonin in the same cells was confirmed in the pyloric region. In the duodenum and jejunum, a few peptide tyrosin tyrosin (PYY)-immunoreactive cells were detected. The clear difference in the distribution and frequency of the gastrointestinal endocrine cells among three types of honeyeaters, which differ in the degree of dependency upon the nectar, could not be confirmed. However, some differences were found that serotonin-, somatostatin- and gastrin-releasing peptide (GRP)-immunoreactive cells in the gizzard, gastrin-immunoreactive cells in the duodenum and jejunum, enteroglucagon-immunoreactive cells in the caeca and in the colon, and pancreatic glucagon-immunoreactive cells in the ileum of brown honeyeaters were more numerous (p < 0.05) than other two species. PMID:7693061

  2. Effect of bacterial lectin on acceleration of fat cell lipolysis at in vitro diode laser treatment using encapsulated ICG

    NASA Astrophysics Data System (ADS)

    Yanina, Irina Yu.; Kochubey, Vyacheslav I.; Tuchin, Valery V.; Portnov, Sergey A.; Svenskaya, Yuliya I.; Gorin, Dmitry A.; Ponomareva, Elena G.; Nikitina, Valentina E.

    2012-03-01

    The influence of bacterial lectin on photochemically induced fat cell lipolysis was studied. Resulting capsules were tested for ICG absorption by optical spectra measurements. To separate released and encapsulated ICG supernatant was removed and capsules were redispered in pure deionized water. Supernatant and capsule suspension spectra were measured separately. It was also found that pretreatment of tissue by lectin leads to acceleration of lipolysis at photochemical treatment. The data obtained can be used to enhance efficiency of photochemical therapy.

  3. Effect of bacterial lectin on acceleration of fat cell lipolysis at in vitro diode laser treatment using encapsulated ICG

    NASA Astrophysics Data System (ADS)

    Yanina, Irina Yu.; Kochubey, Vyacheslav I.; Tuchin, Valery V.; Portnov, Sergey A.; Svenskaya, Yuliya I.; Gorin, Dmitry A.; Ponomareva, Elena G.; Nikitina, Valentina E.

    2011-10-01

    The influence of bacterial lectin on photochemically induced fat cell lipolysis was studied. Resulting capsules were tested for ICG absorption by optical spectra measurements. To separate released and encapsulated ICG supernatant was removed and capsules were redispered in pure deionized water. Supernatant and capsule suspension spectra were measured separately. It was also found that pretreatment of tissue by lectin leads to acceleration of lipolysis at photochemical treatment. The data obtained can be used to enhance efficiency of photochemical therapy.

  4. Cannabidiol promotes browning in 3T3-L1 adipocytes.

    PubMed

    Parray, Hilal Ahmad; Yun, Jong Won

    2016-05-01

    Recruitment of the brown-like phenotype in white adipocytes (browning) and activation of existing brown adipocytes are currently being investigated as a means to combat obesity. Thus, a wide variety of dietary agents that contribute to browning of white adipocytes have been identified. The present study was designed to investigate the effects of cannabidiol (CBD), a major nonpsychotropic phytocannabinoid of Cannabis sativa, on induction of browning in 3T3-L1 adipocytes. CBD enhanced expression of a core set of brown fat-specific marker genes (Ucp1, Cited1, Tmem26, Prdm16, Cidea, Tbx1, Fgf21, and Pgc-1α) and proteins (UCP1, PRDM16, and PGC-1α). Increased expression of UCP1 and other brown fat-specific markers contributed to the browning of 3T3-L1 adipocytes possibly via activation of PPARγ and PI3K. In addition, CBD increased protein expression levels of CPT1, ACSL, SIRT1, and PLIN while down-regulating JNK2, SREBP1, and LPL. These data suggest possible roles for CBD in browning of white adipocytes, augmentation of lipolysis, thermogenesis, and reduction of lipogenesis. In conclusion, the current data suggest that CBD plays dual modulatory roles in the form of inducing the brown-like phenotype as well as promoting lipid metabolism. Thus, CBD may be explored as a potentially promising therapeutic agent for the prevention of obesity. PMID:27067870

  5. 14-3-3γ regulates cell viability and milk fat synthesis in lipopolysaccharide-induced dairy cow mammary epithelial cells

    PubMed Central

    LIU, LIXIN; ZHANG, LI; LIN, YE; BIAN, YANJIE; GAO, XUEJUN; QU, BO; LI, QINGZHANG

    2016-01-01

    Our previous study demonstrated that 14-3-3γ overexpression was able to inhibit the production of lipopolysaccharide (LPS)-induced cytokines in dairy cow mammary epithelial cells (DCMECs) by inhibiting the activation of nuclear factor-κB (NF-κB) signaling pathways. However, the association between 14-3-3γ overexpression and milk fat synthesis in LPS-induced DCMECs remains unclear. Therefore, the present study investigated the effect of 14-3-3γ on cell viability and milk fat synthesis in LPS-induced DCMECs. The results of the MTT assay and lactate dehydrogenase activity assay demonstrated that 14-3-3γ overexpression was able to attenuate LPS-induced cytotoxicity in DCMECs, and increase the viability of the cells. In addition, the results of reverse transcription-quantitative polymerase chain reaction suggested that mRNA expression levels of genes associated with milk fat synthesis, including sterol regulatory element binding protein (SREBP1), peroxisome proliferator-activated receptor-γ (PPARG), cluster of differentiation 36, acetyl-coA carboxylase (ACC), fatty acid synthase (FAS) and fatty acid binding protein-3, were significantly upregulated in cells overexpressing the 14-3-3γ protein. In addition, as compared with the LPS-treated group, the activities of FAS and ACC were significantly increased. Furthermore, western blotting demonstrated that 14-3-3γ overexpression enhanced the protein expression levels of phosphorylated SREBP1 and PPARG. These results suggested that high levels of 14-3-3γ protein were able to attenuate LPS-induced cell damage and promote milk fat synthesis in LPS-induced DCMECs by increasing the cell viability and upregulating the expression levels of transcription factors associated with milk fat synthesis. PMID:27073437

  6. MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes.

    PubMed

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J; Nguyen, Long N; Chai, Xiaoran; Huang, Cher X; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L; Lodish, Harvey; Sun, Lei

    2014-12-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.

  7. MicroRNAs Are Required for the Feature Maintenance and Differentiation of Brown Adipocytes

    PubMed Central

    Kim, Hye-Jin; Cho, Hyunjii; Alexander, Ryan; Patterson, Heide Christine; Gu, Minxia; Lo, Kinyui Alice; Xu, Dan; Goh, Vera J.; Nguyen, Long N.; Chai, Xiaoran; Huang, Cher X.; Kovalik, Jean-Paul; Ghosh, Sujoy; Trajkovski, Mirko; Silver, David L.; Lodish, Harvey

    2014-01-01

    Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue–specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes. PMID:25008181

  8. Reproducible Volume Restoration and Efficient Long-term Volume Retention after Point-of-care Standardized Cell-enhanced Fat Grafting in Breast Surgery

    PubMed Central

    Dos Anjos, Severiano; Matas-Palau, Aina; Mercader, Josep; Katz, Adam J.

    2015-01-01

    Background: Lipoaspirated fat grafts are used to reconstruct volume defects in breast surgery. Although intraoperative treatment decisions are influenced by volume changes observed immediately after grafting, clinical effect and patient satisfaction are dependent on volume retention over time. The study objectives were to determine how immediate breast volume changes correlate to implanted graft volumes, to understand long-term adipose graft volume changes, and to study the “dose” effect of adding autologous stromal vascular fraction (SVF) cells to fat grafts on long-term volume retention. Methods: A total of 74 patients underwent 77 cell-enhanced fat grafting procedures to restore breast volume deficits associated with cosmetic and reconstructive indications. Although all procedures used standardized fat grafts, 21 of the fat grafts were enriched with a low dose of SVF cells and 56 were enriched with a high SVF cell dose. Three-dimensional imaging was used to quantify volume retention over time Results: For each milliliter of injected fat graft, immediate changes in breast volume were shown to be lower than the actual volume implanted for all methods and clinical indications treated. Long-term breast volume changes stabilize by 90–120 days after grafting. Final volume retention in the long-term was higher with high cell-enhanced fat grafts. Conclusions: Intraoperative immediate breast volume changes do not correspond with implanted fat graft volumes. In the early postoperative period (7–21 days), breast volume increases more than the implanted volume and then rapidly decreases in the subsequent 30–60 days. High-dose cell-enhanced fat grafts decrease early postsurgical breast edema and significantly improve long-term volume retention. PMID:26579353

  9. High-fat Diet Accelerates Intestinal Tumorigenesis Through Disrupting Intestinal Cell Membrane Integrity

    PubMed Central

    Park, Mi-Young; Kim, Min Young; Seo, Young Rok; Kim, Jong-Sang; Sung, Mi-Kyung

    2016-01-01

    Background: Excess energy supply induces chronic low-grade inflammation in association with oxidative stress in various tissues including intestinal epithelium. The objective of this study was to investigate the effect of high-fat diet (HFD) on intestinal cell membrane integrity and intestinal tumorigenesis in ApcMin/+ mice. Methods: Mice were fed with either normal diet (ND) or HFD for 12 weeks. The number of intestinal tumors were counted and biomarkers of endotoxemia, oxidative stress, and inflammation were determined. Changes in intestinal integrity was measured by fluorescein isothiocyanate (FITC)-dextran penetration and membrane gap junction protein expression. Results: HFD group had significantly higher number of tumors compared to ND group (P < 0.05). Blood total antioxidant capacity was lower in HFD group, while colonic 8-hydroxy-2′-deoxyguanosine level, a marker of oxidative damage, was higher in HFD group compared to that of ND group (P < 0.05). The penetration of FITC-dextran was substantially increased in HFD group (P < 0.05) while the expressions of membrane gap junction proteins including zonula occludens-1, claudin-1, and occludin were lower in HFD group (P < 0.05) compared to those in ND group. Serum concentration of lipopolysaccharide (LPS) receptor (CD14) and colonic toll-like receptor 4 (a LPS receptor) mRNA expression were significantly higher in HFD group than in ND group (P < 0.05), suggesting that significant endotoxemia may occur in HFD group due to the increased membrane permeability. Serum interleukin-6 concentration and myeloperoxidase activity were also higher in HFD group compared to those of ND group (P < 0.05). Conclusions: HFD increases oxidative stress disrupting intestinal gap junction proteins, thereby accelerating membrane permeability endotoxemia, inflammation, and intestinal tumorigenesis. PMID:27390738

  10. Transcriptional Pathways in cPGI2-Induced Adipocyte Progenitor Activation for Browning

    PubMed Central

    Bayindir, Irem; Babaeikelishomi, Rohollah; Kocanova, Silvia; Sousa, Isabel Sofia; Lerch, Sarah; Hardt, Olaf; Wild, Stefan; Bosio, Andreas; Bystricky, Kerstin; Herzig, Stephan; Vegiopoulos, Alexandros

    2015-01-01

    De novo formation of beige/brite adipocytes from progenitor cells contributes to the thermogenic adaptation of adipose tissue and holds great potential for the therapeutic remodeling of fat as a treatment for obesity. Despite the recent identification of several factors regulating browning of white fat, there is a lack of physiological cell models for the mechanistic investigation of progenitor-mediated beige/brite differentiation. We have previously revealed prostacyclin (PGI2) as one of the few known endogenous extracellular mediators promoting de novo beige/brite formation by relaying β-adrenergic stimulation to the progenitor level. Here, we present a cell model based on murine primary progenitor cells defined by markers previously shown to be relevant for in vivo browning, including a simplified isolation procedure. We demonstrate the specific and broad induction of thermogenic gene expression by PGI2 signaling in the absence of lineage conversion, and reveal the previously unidentified nuclear relocalization of the Ucp1 gene locus in association with transcriptional activation. By profiling the time course of the progenitor response, we show that PGI2 signaling promoted progenitor cell activation through cell cycle and adhesion pathways prior to metabolic maturation toward an oxidative cell phenotype. Our results highlight the importance of core progenitor activation pathways for the recruitment of thermogenic cells and provide a resource for further mechanistic investigation. PMID:26347713

  11. Reverse-D-4F Increases the Number of Endothelial Progenitor Cells and Improves Endothelial Progenitor Cell Dysfunctions in High Fat Diet Mice.

    PubMed

    Nana, Yang; Peng, Jiao; Jianlin, Zhang; Xiangjian, Zhang; Shutong, Yao; Enxin, Zhan; Bin, Li; Chuanlong, Zong; Hua, Tian; Yanhong, Si; Yunsai, Du; Shucun, Qin; Hui, Wang

    2015-01-01

    Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.

  12. Fighting obesity: When muscle meets fat

    PubMed Central

    Yang, Xin; Bi, Pengpeng; Kuang, Shihuan

    2014-01-01

    The prevalence of obesity has risen to an unprecedented level. According to World Health Organization, over 500 million adults, equivalent to 10%–14% of the world population, were obese with a body mass index (BMI) of 30 kg/m2 or greater in 2008.1 This rising prevalence and earlier onset of obesity is believed to be resulted from an interplay of genetic factors, over-nutrition and physical inactivity in modern lifestyles. Obesity also increases the susceptibility to metabolic syndromes, hypertension, cardiovascular diseases, Type 2 diabetes mellitus (T2DM) and cancer.2-4 The global obesity epidemic has sparked substantial interests in the biology of adipose tissue (fat). In addition, the skeletal muscle and its secretive factors (myokines) have also been shown to play a critical role in controlling body energy balance, adipose homeostasis and inflammation status.5 Interestingly, skeletal muscle cells share a common developmental origin with brown adipocytes,6,7 which breaks down lipids to generate heat – thus reducing obesity. Here, we provide a brief overview of the basics and recent progress in muscle-fat crosstalk in the context of body energy metabolism, obesity, and diabetes. We summarize the different types of adipocytes, their developmental origins and implications in body composition. We highlight the role of several novel myokines in regulating fat mass and systemic energy balance, and evaluate the potential of skeletal muscles as a therapeutic target to treat obesity. PMID:26317052

  13. Deletion of Inducible Nitric-Oxide Synthase in Leptin-Deficient Mice Improves Brown Adipose Tissue Function

    PubMed Central

    Becerril, Sara; Rodríguez, Amaia; Catalán, Victoria; Sáinz, Neira; Ramírez, Beatriz; Collantes, María; Peñuelas, Iván; Gómez-Ambrosi, Javier; Frühbeck, Gema

    2010-01-01

    Background Leptin and nitric oxide (NO) on their own participate in the control of non-shivering thermogenesis. However, the functional interplay between both factors in this process has not been explored so far. Therefore, the aim of the present study was to analyze the impact of the absence of the inducible NO synthase (iNOS) gene in the regulation of energy balance in ob/ob mice. Methods and Findings Double knockout (DBKO) mice simultaneously lacking the ob and iNOS genes were generated, and the expression of molecules involved in the control of brown fat cell function was analyzed by real-time PCR, western-blot and immunohistochemistry. Twelve week-old DBKO mice exhibited reduced body weight (p<0.05), decreased amounts of total fat pads (p<0.05), lower food efficiency rates (p<0.05) and higher rectal temperature (p<0.05) than ob/ob mice. Ablation of iNOS also improved the carbohydrate and lipid metabolism of ob/ob mice. DBKO showed a marked reduction in the size of brown adipocytes compared to ob/ob mutants. In this sense, in comparison to ob/ob mice, DBKO rodents showed an increase in the expression of PR domain containing 16 (Prdm16), a transcriptional regulator of brown adipogenesis. Moreover, iNOS deletion enhanced the expression of mitochondria-related proteins, such as peroxisome proliferator-activated receptor γ coactivator-1 α (Pgc-1α), sirtuin-1 (Sirt-1) and sirtuin-3 (Sirt-3). Accordingly, mitochondrial uncoupling proteins 1 and 3 (Ucp-1 and Ucp-3) were upregulated in brown adipose tissue (BAT) of DBKO mice as compared to ob/ob rodents. Conclusion Ablation of iNOS improved the energy balance of ob/ob mice by decreasing food efficiency through an increase in thermogenesis. These effects may be mediated, in part, through the recovery of the BAT phenotype and brown fat cell function improvement. PMID:20532036

  14. Artepillin C, a Typical Brazilian Propolis-Derived Component, Induces Brown-Like Adipocyte Formation in C3H10T1/2 Cells, Primary Inguinal White Adipose Tissue-Derived Adipocytes, and Mice.

    PubMed

    Nishikawa, Sho; Aoyama, Hiroki; Kamiya, Misa; Higuchi, Jun; Kato, Aiko; Soga, Minoru; Kawai, Taeko; Yoshimura, Kazuki; Kumazawa, Shigenori; Tsuda, Takanori

    2016-01-01

    Induction of brown-like adipocytes (beige/brite cells) in white adipose tissue (WAT) suggests a new approach for preventing and treating obesity via induction of thermogenesis associated with uncoupling protein 1 (UCP1). However, whether diet-derived factors can directly induce browning of white adipocytes has not been well established. In addition, the underlying mechanism of induction of brown-like adipocytes by diet-derived factors has been unclear. Here, we demonstrate that artepillin C (ArtC), which is a typical Brazilian propolis-derived component, significantly induces brown-like adipocytes in murine C3H10T1/2 cells and primary inguinal WAT (iWAT)-derived adipocytes. This significant induction is due to activation of peroxisome proliferator-activated receptor γ and stabilization of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16). Furthermore, the oral administration of ArtC (10 mg/kg) for 4 weeks significantly induced brown-like adipocytes accompanied by significant expression of UCP1 and PRDM16 proteins in iWAT of mice, and was independent of the β3-adrenergic signaling pathway via the sympathetic nervous system. These findings may provide insight into browning of white adipocytes including the molecular mechanism mediated by dietary factors and demonstrate that ArtC has a novel biological function with regard to increasing energy expenditure by browning of white adipocytes. PMID:27598888

  15. Artepillin C, a Typical Brazilian Propolis-Derived Component, Induces Brown-Like Adipocyte Formation in C3H10T1/2 Cells, Primary Inguinal White Adipose Tissue-Derived Adipocytes, and Mice

    PubMed Central

    Nishikawa, Sho; Aoyama, Hiroki; Kamiya, Misa; Higuchi, Jun; Kato, Aiko; Soga, Minoru; Kawai, Taeko; Yoshimura, Kazuki; Kumazawa, Shigenori; Tsuda, Takanori

    2016-01-01

    Induction of brown-like adipocytes (beige/brite cells) in white adipose tissue (WAT) suggests a new approach for preventing and treating obesity via induction of thermogenesis associated with uncoupling protein 1 (UCP1). However, whether diet-derived factors can directly induce browning of white adipocytes has not been well established. In addition, the underlying mechanism of induction of brown-like adipocytes by diet-derived factors has been unclear. Here, we demonstrate that artepillin C (ArtC), which is a typical Brazilian propolis-derived component, significantly induces brown-like adipocytes in murine C3H10T1/2 cells and primary inguinal WAT (iWAT)-derived adipocytes. This significant induction is due to activation of peroxisome proliferator-activated receptor γ and stabilization of PRD1-BF-1-RIZ1 homologous domain-containing protein-16 (PRDM16). Furthermore, the oral administration of ArtC (10 mg/kg) for 4 weeks significantly induced brown-like adipocytes accompanied by significant expression of UCP1 and PRDM16 proteins in iWAT of mice, and was independent of the β3-adrenergic signaling pathway via the sympathetic nervous system. These findings may provide insight into browning of white adipocytes including the molecular mechanism mediated by dietary factors and demonstrate that ArtC has a novel biological function with regard to increasing energy expenditure by browning of white adipocytes. PMID:27598888

  16. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues.

    PubMed

    Hansen, Ida R; Jansson, Kim M; Cannon, Barbara; Nedergaard, Jan

    2014-12-01

    Based on results from a signal sequence trap, we investigated chemerin gene expression in brown adipose tissue. Male NMRI mice were exposed to 30, 22 or 4 °C for 3 weeks, or were fed control (chow) diet, cafeteria diet or high-fat diet at thermoneutrality for the same time. In brown adipose tissue, cold acclimation strongly diminished chemerin gene expression, whereas obesogenic diets augmented expression. Qualitatively, changes in expression were paralleled in brite/beige adipose tissues (e.g. inguinal), whereas white adipose tissue (epididymal) and muscle did not react to these cues. Changes in tissue expression were not directly paralleled by alterations in plasma levels. Both these intact animal studies and brown adipocyte cell culture studies indicated that the gene expression regulation was not congruent with a sympathetic/adrenergic control. The data are discussed in relation to suggested endocrine, paracrine and autocrine effects of chemerin.

  17. Fat-cell mass, serum leptin and adiponectin changes during weight gain and loss in yellow-bellied marmots (Marmota flaviventris).

    PubMed

    Florant, Gregory L; Porst, Heather; Peiffer, Aubrey; Hudachek, Susan F; Pittman, Chris; Summers, Scott A; Rajala, Michael W; Scherer, Philipp E

    2004-11-01

    Leptin and adiponectin are proteins produced and secreted from white adipose tissue and are important regulators of energy balance and insulin sensitivity. Seasonal changes in leptin and adiponectin have not been investigated in mammalian hibernators in relationship to changes in fat cell and fat mass. We sought to determine the relationship between serum leptin and adiponectin levels with seasonal changes in lipid mass. We collected serum and tissue samples from marmots (Marmota flaviventris) in different seasons while measuring changes in fat mass, including fat-cell size. We found that leptin is positively associated with increasing fat mass and fat-cell size, while adiponectin is negatively associated with increasing lipid mass. These findings are consistent with the putative roles of these adipokines: leptin increases with fat mass and is involved in enhancing lipid oxidation while adiponectin appears to be higher in summer when hepatic insulin sensitivity should be maintained since the animals are eating. Our data suggest that during autumn/winter animals have switched from a lipogenic condition to a lipolytic state, which may include leptin resistance.

  18. Utilizing muscle-derived stem cells to enhance long-term retention and aesthetic outcome of autologous fat grafting: pilot study in mice.

    PubMed

    Ma, Zhiqiang; Han, Duanyang; Zhang, Peipei; Yang, Jenny F; Wang, Yiqiang; Zhang, Yingbo; Yang, Daping; Liu, Jianyu

    2012-02-01

    Autologous fat grafting has been regarded as the ideal soft tissue filler for more than a century. Low long-term retention rate and unpredictability limit it from widespread clinical practice. Many theories for this have been proposed: lack of sufficient blood supply and subsequent necrosis is the most accepted. In this pilot study, we showed both macroscopically and microscopically the viability of muscle-derived stem cells (MDSCs) cotransplanted with fat placed intramuscularly for 3 months. MRI scanning showed a stronger fat signal in the MDSC-treated group than that of the control group. Moreover, histological evaluation exhibited well-preserved and intact fat cells in the MDSC-treated group. In contrast, the control group showed extensive fibrosis and fat graft loss. Furthermore, the MDSC-treated group possessed almost threefold greater capillary density than the control group. We conclude that cotransplantation of muscle-derived stem cells and autologous fat tissue improves the long-term survival of intramuscular fat transplants by promoting neovascularization. PMID:21607534

  19. Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues.

    PubMed

    Ramseyer, Vanesa D; Granneman, James G

    2016-01-01

    The discovery of brown adipose tissue in adult humans along with the recognition of adipocyte heterogeneity and plasticity of white fat depots has renewed the interest in targeting adipose tissue for therapeutic benefit. Adrenergic activation is a well-established means of recruiting catabolic adipocyte phenotypes in brown and white adipose tissues. In this article, we review mechanisms of brown adipocyte recruitment by the sympathetic nervous system and by direct β-adrenergic receptor activation. We highlight the distinct modes of brown adipocyte recruitment in brown, beige/brite, and white adipose tissues, UCP1-independent thermogenesis, and potential non-thermogenic, metabolically beneficial effects of brown adipocytes.

  20. Differences in Hematopoietic Stem Cells Contribute to Sexually Dimorphic Inflammatory Responses to High Fat Diet-induced Obesity.

    PubMed

    Singer, Kanakadurga; Maley, Nidhi; Mergian, Taleen; DelProposto, Jennifer; Cho, Kae Won; Zamarron, Brian F; Martinez-Santibanez, Gabriel; Geletka, Lynn; Muir, Lindsey; Wachowiak, Phillip; Demirjian, Chaghig; Lumeng, Carey N

    2015-05-22

    Women of reproductive age are protected from metabolic disease relative to postmenopausal women and men. Most preclinical rodent studies are skewed toward the use of male mice to study obesity-induced metabolic dysfunction because of a similar protection observed in female mice. How sex differences in obesity-induced inflammatory responses contribute to these observations is unknown. We have compared and contrasted the effects of high fat diet-induced obesity on glucose metabolism and leukocyte activation in multiple depots in male and female C57Bl/6 mice. With both short term and long term high fat diet, male mice demonstrated increased weight gain and CD11c(+) adipose tissue macrophage content compared with female mice despite similar degrees of adipocyte hypertrophy. Competitive bone marrow transplant studies demonstrated that obesity induced a preferential contribution of male hematopoietic cells to circulating leukocytes and adipose tissue macrophages compared with female cells independent of the sex of the recipient. Sex differences in macrophage and hematopoietic cell in vitro activation in response to obesogenic cues were observed to explain these results. In summary, this report demonstrates that male and female leukocytes and hematopoietic stem cells have cell-autonomous differences in their response to obesity that contribute to an amplified response in males compared with females.

  1. Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion.

    PubMed

    Shibue, Kimitaka; Yamane, Shunsuke; Harada, Norio; Hamasaki, Akihiro; Suzuki, Kazuyo; Joo, Erina; Iwasaki, Kanako; Nasteska, Daniela; Harada, Takanari; Hayashi, Yoshitaka; Adachi, Yasuhiro; Owada, Yuji; Takayanagi, Ryoichi; Inagaki, Nobuya

    2015-04-01

    Gastric inhibitory polypeptide (GIP) is an incretin released from enteroendocrine K cells in response to nutrient intake, especially fat. GIP is one of the contributing factors inducing fat accumulation that results in obesity. A recent study shows that fatty acid-binding protein 5 (FABP5) is expressed in murine K cells and is involved in fat-induced GIP secretion. We investigated the mechanism of fat-induced GIP secretion and the impact of FABP5-related GIP response on diet-induced obesity (DIO). Single oral administration of glucose and fat resulted in a 40% reduction of GIP response to fat but not to glucose in whole body FABP5-knockout (FABP5(-/-)) mice, with no change in K cell count or GIP content in K cells. In an ex vivo experiment using isolated upper small intestine, oleic acid induced only a slight increase in GIP release, which was markedly enhanced by coadministration of bile and oleic acid together with attenuated GIP response in the FABP5(-/-) sample. FABP5(-/-) mice exhibited a 24% reduction in body weight gain and body fat mass under a high-fat diet compared with wild-type (FABP5(+/+)) mice; the difference was not observed between GIP-GFP homozygous knock-in (GIP(gfp/gfp))-FABP5(+/+) mice and GIP(gfp/gfp)-FABP5(-/-) mice, in which GIP is genetically deleted. These results demonstrate that bile efficiently amplifies fat-induced GIP secretion and that FABP5 contributes to the development of DIO in a GIP-dependent manner.

  2. Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation

    PubMed Central

    Bruder-Nascimento, T; Chinnasamy, P; Riascos-Bernal, DF; Cau, SB; Callera, GE; Touyz, RM; Tostes, RC; Sibinga, NES

    2013-01-01

    Fat1 is an atypical cadherin that controls vascular smooth muscle cell (VSMC) proliferation and migration. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1) is an important source of reactive oxygen species (ROS) in VSMCs. Angiotensin II (Ang II) induces the expression and/or activation of both Fat1 and Nox1 proteins. This study tested the hypothesis that Ang II-induced Fat1 activation and VSMC migration are mediated by Nox1-dependent ROS generation and redox signaling. Studies were performed in cultured VSMCs from Sprague-Dawley rats. Cells were treated with Ang II (1 μmol/L) for short (5 to 30 min) or long term stimulations (3 to 12 h) in the absence or presence of the antioxidant apocynin (10 μmol/L), extracellular-signal-regulated kinases 1/2 (Erk1/2) inhibitor PD98059 (1 μmol/L), or Ang II type 1 receptor (AT1R) valsartan (1 μmol/L). siRNA was used to knockdown Nox1 or Fat1. Cell migration was determined by Boyden chamber assay. Ang II increased Fat1 mRNA and protein levels and promoted Fat1 translocation to the cell membrane, responses that were inhibited by AT1R antagonist and antioxidant treatment. Downregulation of Nox1 inhibited the effects of Ang II on Fat1 protein expression. Nox1 protein induction, ROS generation, and p44/p42 MAPK phosphorylation in response to Ang II were prevented by valsartan and apocynin, and Nox1 siRNA inhibited Ang II-induced ROS generation. Knockdown of Fat1 did not affect Ang II-mediated increases in Nox1 expression or ROS. Inhibition of p44/p42 MAPK phosphorylation by PD98059 abrogated the Ang II-induced increase in Fat1 expression and membrane translocation. Knockdown of Fat1 inhibited Ang II-induced VSMC migration, which was also prevented by valsartan, apocynin, PD98059, and Nox1 siRNA. Our findings indicate that Ang II regulates Fat1 expression and activity and induces Fat1-dependent VSMC migration via activation of AT1R, ERK1/2, and Nox1-derived ROS, suggesting a role for Fat1 downstream of Ang II

  3. The Impact of Maturity Stage on Cell Membrane Integrity and Enzymatic Browning Reactions in High Pressure Processed Peaches (Prunus persica).

    PubMed

    Techakanon, Chukwan; Gradziel, Thomas M; Zhang, Lu; Barrett, Diane M

    2016-09-28

    Fruit maturity is an important factor associated with final product quality, and it may have an effect on the level of browning in peaches that are high pressure processed (HPP). Peaches from three different maturities, as determined by firmness (M1 = 50-55 N, M2 = 35-40 N, and M3 = 15-20 N), were subjected to pressure levels at 0.1, 200, and 400 MPa for 10 min. The damage from HPP treatment results in loss of fruit integrity and the development of browning during storage. Increasing pressure levels of HPP treatment resulted in greater damage, particularly in the more mature peaches, as determined by shifts in transverse relaxation time (T2) of the vacuolar component and by light microscopy. The discoloration of peach slices of different maturities processed at the same pressure was comparable, indicating that the effect of pressure level is greater than that of maturity in the development of browning. PMID:27556337

  4. The Impact of Maturity Stage on Cell Membrane Integrity and Enzymatic Browning Reactions in High Pressure Processed Peaches (Prunus persica).

    PubMed

    Techakanon, Chukwan; Gradziel, Thomas M; Zhang, Lu; Barrett, Diane M

    2016-09-28

    Fruit maturity is an important factor associated with final product quality, and it may have an effect on the level of browning in peaches that are high pressure processed (HPP). Peaches from three different maturities, as determined by firmness (M1 = 50-55 N, M2 = 35-40 N, and M3 = 15-20 N), were subjected to pressure levels at 0.1, 200, and 400 MPa for 10 min. The damage from HPP treatment results in loss of fruit integrity and the development of browning during storage. Increasing pressure levels of HPP treatment resulted in greater damage, particularly in the more mature peaches, as determined by shifts in transverse relaxation time (T2) of the vacuolar component and by light microscopy. The discoloration of peach slices of different maturities processed at the same pressure was comparable, indicating that the effect of pressure level is greater than that of maturity in the development of browning.

  5. Transfer of allergic airway responses with antigen-primed CD4+ but not CD8+ T cells in brown Norway rats.

    PubMed Central

    Watanabe, A; Mishima, H; Renzi, P M; Xu, L J; Hamid, Q; Martin, J G

    1995-01-01

    Activated CD4+ helper T cells have been demonstrated in asthmatic airways and postulated to play a central role in eliciting allergic inflammation; direct evidence of their involvement seems to be lacking. We hypothesized that CD4+ T cells have the potential to induce allergic responses to antigen challenge, and tested this hypothesis in a model of allergic bronchoconstriction, the Brown Norway rat, using the approach of adoptive transfer. Animals were actively sensitized to either ovalbumin (OVA) or BSA and were used as donors of T cells. W3/25(CD4)+ or OX8(CD8)+ T cells were isolated from the cervical lymph nodes of sensitized donors and transferred to naive BN rats. 2 d after adoptive transfer recipient rats were challenged by OVA inhalation, and changes in lung resistance (RL), bronchoalveolar lavage (BAL) cells, and serum levels of antigen-specific IgE were studied. After OVA challenge recipients of OVA-primed W3/25+ T cells exhibited sustained increases in RL throughout the entire 8-h observation period and had significant bronchoalveolar lavage eosinophilia, which was detected by immunocytochemistry using an antimajor basic protein mAb. Recipients of BSA-primed W3/25+ T cells or OVA-primed OX8+ T cells failed to respond to inhaled OVA. OVA-specific immunoglobulin E was undetectable by ELISA or skin testing in any of the recipient rats after adoptive transfer. In conclusion, antigen-induced airway bronchoconstriction and eosinophilia were successfully transferred by antigen-specific W3/25+ T cells in Brown Norway rats. These responses were dependent on antigen-primed W3/25+ T cells and appeared to be independent of IgE-mediated mast cell activation. This study provides clear evidence for T cell mediated immune mechanisms in allergic airway responses in this experimental model. Images PMID:7657805

  6. Coconut fats.

    PubMed

    Amarasiri, W A L D; Dissanayake, A S

    2006-06-01

    In many areas of Sri Lanka the coconut tree and its products have for centuries been an integral part of life, and it has come to be called the "Tree of life". However, in the last few decades, the relationship between coconut fats and health has been the subject of much debate and misinformation. Coconut fats account for 80% of the fat intake among Sri Lankans. Around 92% of these fats are saturated fats. This has lead to the belief that coconut fats are 'bad for health', particularly in relation to ischaemic heart disease. Yet most of the saturated fats in coconut are medium chain fatty acids whose properties and metabolism are different to those of animal origin. Medium chain fatty acids do not undergo degradation and re-esterification processes and are directly used in the body to produce energy. They are not as 'bad for health' as saturated fats. There is the need to clarify issues relating to intake of coconut fats and health, more particularly for populations that still depend on coconut fats for much of their fat intake. This paper describes the metabolism of coconut fats and its potential benefits, and attempts to highlight its benefits to remove certain misconceptions regarding its use.

  7. Brown adipose tissue growth and development.

    PubMed

    Symonds, Michael E

    2013-01-01

    Brown adipose tissue is uniquely able to rapidly produce large amounts of heat through activation of uncoupling protein (UCP) 1. Maximally stimulated brown fat can produce 300 watts/kg of heat compared to 1 watt/kg in all other tissues. UCP1 is only present in small amounts in the fetus and in precocious mammals, such as sheep and humans; it is rapidly activated around the time of birth following the substantial rise in endocrine stimulatory factors. Brown adipose tissue is then lost and/or replaced with white adipose tissue with age but may still contain small depots of beige adipocytes that have the potential to be reactivated. In humans brown adipose tissue is retained into adulthood, retains the capacity to have a significant role in energy balance, and is currently a primary target organ in obesity prevention strategies. Thermogenesis in brown fat humans is environmentally regulated and can be stimulated by cold exposure and diet, responses that may be further modulated by photoperiod. Increased understanding of the primary factors that regulate both the appearance and the disappearance of UCP1 in early life may therefore enable sustainable strategies in order to prevent excess white adipose tissue deposition through the life cycle.

  8. Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of Drosophila

    PubMed Central

    Saavedra, Pedro; Brittle, Amy; Palacios, Isabel M.; Strutt, David; Casal, José; Lawrence, Peter A.

    2016-01-01

    ABSTRACT The epidermal patterns of all three larval instars (L1–L3) of Drosophila are made by one unchanging set of cells. The seven rows of cuticular denticles of all larval stages are consistently planar polarised, some pointing forwards, others backwards. In L1 all the predenticles originate at the back of the cells but, in L2 and L3, they form at the front or the back of the cell depending on the polarity of the forthcoming denticles. We find that, to polarise all rows, the Dachsous/Fat system is differentially utilised; in L1 it is active in the placement of the actin-based predenticles but is not crucial for the final orientation of the cuticular denticles, in L2 and L3 it is needed for placement and polarity. We find Four-jointed to be strongly expressed in the tendon cells and show how this might explain the orientation of all seven rows. Unexpectedly, we find that L3 that lack Dachsous differ from larvae lacking Fat and we present evidence that this is due to differently mislocalised Dachs. We make some progress in understanding how Dachs contributes to phenotypes of wildtype and mutant larvae and adults. PMID:26935392

  9. Interaction of Fat-stimulated Gastric Inhibitory Polypeptide on Pancreatic Alpha and Beta Cell Function

    PubMed Central

    Verdonk, C. A.; Rizza, R. A.; Nelson, R. L.; Go, V. L. W.; Gerich, J. E.; Service, F. J.

    1980-01-01

    Gastric inhibitory polypeptide (GIP) is considered to be the principal mediator of the enteroinsular axis. A glucose-insulin clamp technique was used to study the effects of differing blood glucose levels on the insulinotropic and glucagonotropic actions of fat-stimulated GIP in seven healthy subjects, as well as the effect of physiologic hyperinsulinemia on GIP secretion. Blood glucose levels were clamped for 4 h at 43±2 mg/dl (hypoglycemic clamp), 88±1 mg/dl (euglycemic clamp), and 141±2 mg/dl (hyperglycemic clamp) in the presence of a constant insulin infusion (100 m U/kg per h). Under hypoglycemic clamp conditions there was no increase in C-peptide nor glucagon after Lipomul ingestion, despite an increase of GIP of 51.7±8.7 ng/ml per 120 min. Under euglycemic clamp conditions, small and inconsistent increases in C-peptide and glucagon were observed after fat ingestion and a concomitant increase of GIP of 35.2±9.4 ng/ml per 120 min. Under hyperglycemic clamp conditions after fat ingestion and a GIP increase of 24.0±5.7 ng/ml per 120 min, C-peptide increased from 6.4±5 ng/ml to 11.0±1.1 ng/ml (P < 0.01) but glucagon did not change. These findings confirm that in healthy man GIP exerts its insulinotropic properties only under hyperglycemic conditions and indicate that GIP is not glucagonotropic. Under euglycemic clamp conditions (plasma glucose, 89±1 mg/dl) and physiologic hyperinsulinemia (serum immunoreactive insulin, 137±3 μU/ml) GIP responses to fat ingestion (39.7±9.8 ng/ml per 120 min) were not different from the GIP responses to fat ingestion in the absence of hyperinsulinemia (39.7±11.1 ng/ml per 120 min). Therefore, insulin under normoglycemic conditions does not exert an inhibitory effect on fat-stimulated GIP secretion. The higher GIP response to oral fat in the hypoglycemic clamp, and the lower GIP response in the hyperglycemic clamp compared to the response in the euglycemic clamp suggests an effect of glycemia itself on GIP secretion in

  10. Functional and anatomical characteristics of the nerve-brown adipose interaction in the rat

    NASA Technical Reports Server (NTRS)

    Flaim, K. E.; Horowitz, J. M.; Horwitz, B. A.

    1976-01-01

    Experiments were conducted on 12 male rats to study the coupling of signals from the sympathetic nervous system to the brown adipose tissue. Analysis of electron photomicrographs revealed considerable morphological heterogeneity among the nerves entering and leaving the interscapular fat pad. In response to electrical simulation of the nerves, the temperature of the brown fat increased following a rapid but transient temperature drop. Such changes were observed only on the ipsilateral side, indicating that the innervation to the interscapular brown fat of the rat is functionally bilateral rather than diffuse. The finding that brown fat is capable of responding in a graded fashion correlates well with observations suggesting that clusters of brown adipocytes may be electrically coupled.

  11. Transgenesis of humanized fat1 promotes n-3 polyunsaturated fatty acid synthesis and expression of genes involved in lipid metabolism in goat cells.

    PubMed

    Fan, Yixuan; Ren, Caifang; Wang, Zhibo; Jia, Ruoxin; Wang, Dan; Zhang, Yanli; Zhang, Guomin; Wan, Yongjie; Huang, Mingrui; Wang, Feng

    2016-01-15

    The n-3 fatty acid desaturase gene fat1 codes for the n-3 desaturase enzyme, which can convert n-6 polyunsaturated fatty acids (PUFAs) to n-3 PUFAs. The n-3 PUFAs are essential components required for normal cellular function and have preventive and therapeutic effects on many diseases. Goat is an important domestic animal for human consumption of meat and milk. To elevate the concentrations of n-3 PUFAs and examine the regulatory mechanism of fat1 in PUFA metabolism in goat cells, we successfully constructed a humanized fat1 expression vector and confirmed the efficient expression of fat1 in goat ear skin-derived fibroblast cells (GEFCs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that fat1 overexpression significantly increased the levels of total n-3 PUFAs and decreased the levels of total n-6 PUFAs in GEFCs. In addition, qRT-PCR results indicate that the FADS1 and FADS2 desaturase genes, ELOV2 and ELOV5 elongase genes, ACO and CPT1 oxidation genes, and PPARa and PPARγ transcription factors are up-regulated, and transcription factors of SREBP-1c gene are down-regulated in the fat1 transgenic goat cells. Overall, fat1-overexpression resulted in an increase in the n-3 fatty acids and altered expression of PUFA synthesis related genes in GEFCs. This work lays a foundation for both the production of fat1 transgenic goats and further study of the mechanism of fat1 function in the PUFAs metabolism. PMID:26474750

  12. Transgenesis of humanized fat1 promotes n-3 polyunsaturated fatty acid synthesis and expression of genes involved in lipid metabolism in goat cells.

    PubMed

    Fan, Yixuan; Ren, Caifang; Wang, Zhibo; Jia, Ruoxin; Wang, Dan; Zhang, Yanli; Zhang, Guomin; Wan, Yongjie; Huang, Mingrui; Wang, Feng

    2016-01-15

    The n-3 fatty acid desaturase gene fat1 codes for the n-3 desaturase enzyme, which can convert n-6 polyunsaturated fatty acids (PUFAs) to n-3 PUFAs. The n-3 PUFAs are essential components required for normal cellular function and have preventive and therapeutic effects on many diseases. Goat is an important domestic animal for human consumption of meat and milk. To elevate the concentrations of n-3 PUFAs and examine the regulatory mechanism of fat1 in PUFA metabolism in goat cells, we successfully constructed a humanized fat1 expression vector and confirmed the efficient expression of fat1 in goat ear skin-derived fibroblast cells (GEFCs) by qRT-PCR and Western blot analysis. Fatty acid analysis showed that fat1 overexpression significantly increased the levels of total n-3 PUFAs and decreased the levels of total n-6 PUFAs in GEFCs. In addition, qRT-PCR results indicate that the FADS1 and FADS2 desaturase genes, ELOV2 and ELOV5 elongase genes, ACO and CPT1 oxidation genes, and PPARa and PPARγ transcription factors are up-regulated, and transcription factors of SREBP-1c gene are down-regulated in the fat1 transgenic goat cells. Overall, fat1-overexpression resulted in an increase in the n-3 fatty acids and altered expression of PUFA synthesis related genes in GEFCs. This work lays a foundation for both the production of fat1 transgenic goats and further study of the mechanism of fat1 function in the PUFAs metabolism.

  13. Low concentration of ethanol favors progenitor cell differentiation and neovascularization in high-fat diet-fed mice model.

    PubMed

    Vergori, Luisa; Lauret, Emilie; Soleti, Raffaella; Martinez, Maria Carmen; Andriantsitohaina, Ramaroson

    2016-09-01

    Endothelial progenitor cells (EPCs) and monocytic cells from bone marrow (BM) can be recruited to the injured endothelium and contribute to its regeneration. During metabolic diseases such as obesity and diabetes, progenitor cell function is impaired. Several studies have shown that moderate alcohol consumption prevents the development and progression of atherosclerosis in a variety of animal/mouse models and increases mobilization of progenitor cells. Along with these studies, we identify ethanol at low concentration as therapeutic tool to in vitro expand progenitor cells in order to obtain an adequate number of cells for their use in the treatment of cardiovascular diseases. We evaluated the effects of ethanol on the phenotype of BM-derived cells from mice fed with high-fat diet (HFD). HFD did not induce changes in weight of mice but induced metabolic alterations. HFD feeding increased the differentiation of monocytic progenitors but not EPCs. Whereas ethanol at 0.6% is able to increase monocytic progenitor differentiation, 1% ethanol diminished it. Furthermore, ethanol at 0.6% increased the ability of progenitor cells to promote in vivo angiogenesis as well as secretome of BM-derived cells from mice fed with HFD, but not in mice fed normal diet. In conclusion, ethanol at low concentration is able to increase angiogenic abilities of progenitor cells from animals with early metabolic alterations.

  14. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice

    PubMed Central

    Ferrere, Gladys; Leroux, Anne; Wrzosek, Laura; Puchois, Virginie; Gaudin, Françoise; Ciocan, Dragos; Renoud, Marie-Laure; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie

    2016-01-01

    The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different. PMID:26731543

  15. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice.

    PubMed

    Ferrere, Gladys; Leroux, Anne; Wrzosek, Laura; Puchois, Virginie; Gaudin, Françoise; Ciocan, Dragos; Renoud, Marie-Laure; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie

    2016-01-01

    The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.

  16. Castration induced browning in subcutaneous white adipose tissue in male mice.

    PubMed

    Hashimoto, Osamu; Noda, Tatsuya; Morita, Atsushi; Morita, Masahiro; Ohtsuki, Hirofumi; Sugiyama, Makoto; Funaba, Masayuki

    2016-09-30

    We demonstrated that castration enhanced the expression of uncoupling protein 1 (Ucp1), a thermogenic protein, in brown adipose tissue (BAT) and subcutaneous (sc) white adipose tissue (WAT) in male mice. Castration of male mice increased body temperature and reduced body weight gain compared with those of sham-operated mice. BAT Ucp1 mRNA expression in castrated male mice was significantly higher than that in sham-operated mice. Histologically, cells with multilocular fat droplets were observed in the castrated inguinal scWAT. Immunohistochemical staining revealed that these cells positively reacted with the anti-Ucp1 antibody. The Ucp1-positive area near the inguinal lymph node in the castrated WAT was extensive compared with that of the sham-operated WAT. Castration-induced Ucp1 up-regulation in scWAT was suppressed by high-fat diet feeding. These findings suggest that thermogenesis by BAT activation and scWAT browning contribute to castration-induced inhibition of body weight gain. However, considering that the effect of castration was blunted by high-fat diet consumption, thermogenesis stimulation in response to castration is inhibited by chronic over-nutrition. PMID:27608598

  17. Inhibition of Sam68 triggers adipose tissue browning

    PubMed Central

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam Mina; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A.; Tang, Yao-Liang; Zhao, Ting C.; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-01-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms promoting energy expenditure may be utilized for effective therapy. Src-associated-in-mitosis-of-68kDa (Sam68) is potentially significant because knockout (KO) of Sam68 leads to markedly-reduced adiposity. Here we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We firstly found in Sam68-KO mice a significantly-reduced body weight with the difference explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake, but rather associated with enhanced physical activity. When fed high-fat diet, Sam68-KO mice gained much lesser body weight and fat mass as compared to wild-type (WT) littermates and displayed an improved glucose and insulin tolerance. The brown adipose tissue (BAT), inguinal and epididymal depots are smaller and their adipocytes less hypertrophy in Sam68-KO mice than in WT littermates. The BAT of Sam68-KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty-acid-oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68-KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16 and Ppargc1a genes was greater as compared to WT controls, suggesting that loss of Sam68 also promotes WAT browning. Furthermore, in all fat depots of Sam68-KO mice, the expression of M2 macrophage markers were upregulated and M1 markers downregulated. Thus Sam68 plays a crucial role in the control of thermogenesis and may be targeted to combat obesity and associated disorders. PMID:25934704

  18. Inhibition of Sam68 triggers adipose tissue browning.

    PubMed

    Zhou, Junlan; Cheng, Min; Boriboun, Chan; Ardehali, Mariam M; Jiang, Changfei; Liu, Qinghua; Han, Shuling; Goukassian, David A; Tang, Yao-Liang; Zhao, Ting C; Zhao, Ming; Cai, Lu; Richard, Stéphane; Kishore, Raj; Qin, Gangjian

    2015-06-01

    Obesity is associated with insulin resistance and type 2 diabetes; molecular mechanisms that promote energy expenditure can be utilized for effective therapy. Src-associated in mitosis of 68 kDa (Sam68) is potentially significant, because knockout (KO) of Sam68 leads to markedly reduced adiposity. In the present study, we sought to determine the mechanism by which Sam68 regulates adiposity and energy homeostasis. We first found that Sam68 KO mice have a significantly reduced body weight as compared to controls, and the difference is explained entirely by decreased adiposity. Interestingly, these effects were not mediated by a difference in food intake; rather, they were associated with enhanced physical activity. When they were fed a high-fat diet, Sam68 KO mice gained much less body weight and fat mass than their WT littermates did, and they displayed an improved glucose and insulin tolerance. In Sam68 KO mice, the brown adipose tissue (BAT), inguinal, and epididymal depots were smaller, and their adipocytes were less hypertrophied as compared to their WT littermates. The BAT of Sam68 KO mice exhibited reduced lipid stores and expressed higher levels of Ucp1 and key thermogenic and fatty acid oxidation genes. Similarly, depots of inguinal and epididymal white adipose tissue (WAT) in Sam68 KO mice appeared browner, their multilocular Ucp1-positive cells were much more abundant, and the expression of Ucp1, Cidea, Prdm16, and Ppargc1a genes was greater as compared to WT controls, which suggests that the loss of Sam68 also promotes WAT browning. Furthermore, in all of the fat depots of the Sam68 KO mice, the expression of M2 macrophage markers was up-regulated, and that of M1 markers was down-regulated. Thus, Sam68 plays a crucial role in controlling thermogenesis and may be targeted to combat obesity and associated disorders.

  19. Genetic parameters for lactation traits of milking ewes: protein content and composition, fat, somatic cells and individual laboratory cheese yield

    PubMed Central

    Othmane, Med Houcine; Carriedo, Juan Antonio; San Primitivo, Fermin; De la Fuente, Luis Fernando

    2002-01-01

    The effects of some environmental variation factors and the genetic parameters for total milk traits (fat content, protein content, casein content, serum protein content, lactation mean of individual laboratory cheese yield (LILCY), lactation mean of somatic cell count (LSCC), and milk yield) were estimated from the records of 1 111 Churra ewes. Genetic parameters were estimated by multivariate REML. Heritability for fat content was low (0.10) as is usually found in the Churra breed. Heritabilities for protein content, casein content, serum protein content, LILCY, milk yield and somatic cell count were 0.31, 0.30, 0.22, 0.09, 0.26 and 0.11, respectively. The highest heritability estimates were for protein and casein contents. Casein content is not advisable as an alternative to protein content as a selection criterion for cheese yield improvement; it does not have any compelling advantages and its measurement is costly. Our results for LSCC indicated that efforts should focus on improving the level of management rather than selecting for somatic cells, in the actual conditions of the Churra breed. PMID:12427387

  20. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  1. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes.

    PubMed

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M; Serra, Dolors; Herrero, Laura

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  2. Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro.

    PubMed

    Kaida, Koji; Honda, Yoshitomo; Hashimoto, Yoshiya; Tanaka, Masahiro; Baba, Shunsuke

    2015-11-25

    Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25-10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy.

  3. Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro

    PubMed Central

    Kaida, Koji; Honda, Yoshitomo; Hashimoto, Yoshiya; Tanaka, Masahiro; Baba, Shunsuke

    2015-01-01

    Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25–10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy. PMID:26602917

  4. Autologous Bone-Marrow-Derived-Mononuclear-Cells-Enriched Fat Transplantation in Breast Augmentation: Evaluation of Clinical Outcomes and Aesthetic Results in a 30-Year-Old Female

    PubMed Central

    Vrabic, Erik; Hodzic, Enes

    2013-01-01

    Autologous fat transfer (lipofilling) is becoming an invaluable tool for breast augmentation as well as for breast reconstruction. Autologous lipofilling has several advantages, including biocompatibility, versatility, natural appearance, and low donor site morbidity. The main limitation is unpredictable fat graft resorption, which ranges from 25% to 80%, probably as a result of ischaemia and lack of neoangiogenesis. To obviate these disadvantages, several studies have searched for new ways of increasing the viability of the transplanted fat tissue. One promising approach is to enrich the fat graft with autologous bone-marrow-derived mononuclear cells (BMMNCs) before transplantation. BMMNCs produce many angiogenic and antiapoptotic growth factors, and their secretion is significantly enhanced by hypoxia. All of these mechanisms of actions could be beneficial for the stimulation of angiogenesis in ischemic tissues by BMMNCs administration. In our aesthetic surgery practice, we use fat transplantation enriched with BMMNCs, which caused a significant improvement in survival of fat grafts, compared with that of traditional lipofilling. Our experience with freshly isolated autologous fat enriched with BMMNCs for breast augmentation procedures is presented. The concept of this surgical and tissue handling technique is based on ability of BMMNCs to stimulate blood vessel growth. PMID:24024064

  5. Association between FAT1 mutation and overall survival in patients with human papillomavirus–negative head and neck squamous cell carcinoma

    PubMed Central

    Kim, Ki Tae; Kim, Bo‐Sung

    2016-01-01

    Abstract Background The purpose of this study was to characterize the mutation profile of FAT atypical cadherin 1 (FAT1) and determine the prognostic significance of FAT1 mutation for overall survival in patients with human papillomavirus (HPV)‐negative head and neck squamous cell carcinoma (HNSCC). Methods Data were downloaded from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) data portals and used as discovery and validation sets. FAT1 mutational status was determined in 234 and 37 patients with HPV‐negative HNSCC, respectively, and overall survival analysis was performed. For comparison, HPV‐positive patients were also analyzed for overall survival. Results Most of the identified nonsynonymous somatic FAT1 mutations were loss‐of‐function mutations. FAT1 mutation was significantly associated with better overall survival in HPV‐negative patients from both the TCGA cohort (p = .026) and the ICGC cohort (p = .047), but not in HPV‐positive patients. Conclusion FAT1 mutational status is a strong independent prognostic factor in patients with HPV‐negative HNSCC. © 2016 The Authors Head & Neck Published by Wiley Periodicals, Inc. Head Neck 38: E2021–E2029, 2016 PMID:26876381

  6. Resveratrol Prevents β-Cell Dedifferentiation in Nonhuman Primates Given a High-Fat/High-Sugar Diet

    PubMed Central

    Fiori, Jennifer L.; Shin, Yu-Kyong; Kim, Wook; Krzysik-Walker, Susan M.; González-Mariscal, Isabel; Carlson, Olga D.; Sanghvi, Mitesh; Moaddel, Ruin; Farhang, Kathleen; Gadkaree, Shekhar K.; Doyle, Maire E.; Pearson, Kevin J.; Mattison, Julie A.; de Cabo, Rafael; Egan, Josephine M.

    2013-01-01

    Eating a “Westernized” diet high in fat and sugar leads to weight gain and numerous health problems, including the development of type 2 diabetes mellitus (T2DM). Rodent studies have shown that resveratrol supplementation reduces blood glucose levels, preserves β-cells in islets of Langerhans, and improves insulin action. Although rodent models are helpful for understanding β-cell biology and certain aspects of T2DM pathology, they fail to reproduce the complexity of the human disease as well as that of nonhuman primates. Rhesus monkeys were fed a standard diet (SD), or a high-fat/high-sugar diet in combination with either placebo (HFS) or resveratrol (HFS+Resv) for 24 months, and pancreata were examined before overt dysglycemia occurred. Increased glucose-stimulated insulin secretion and insulin resistance occurred in both HFS and HFS+Resv diets compared with SD. Although islet size was unaffected, there was a significant decrease in β-cells and an increase in α-cells containing glucagon and glucagon-like peptide 1 with HFS diets. Islets from HFS+Resv monkeys were morphologically similar to SD. HFS diets also resulted in decreased expression of essential β-cell transcription factors forkhead box O1 (FOXO1), NKX6–1, NKX2–2, and PDX1, which did not occur with resveratrol supplementation. Similar changes were observed in human islets where the effects of resveratrol were mediated through Sirtuin 1. These findings have implications for the management of humans with insulin resistance, prediabetes, and diabetes. PMID:23884882

  7. Fat Characterization

    NASA Astrophysics Data System (ADS)

    O'Keefe, Sean F.; Pike, Oscar A.

    Methods for characterizing edible lipids, fats, and oils can be separated into two categories: those developed to analyze bulk oils and fats, and those focusing on analysis of foodstuffs and their lipid extracts. In evaluating foodstuffs, it is usually necessary to extract the lipids prior to analysis. In these cases, if sufficient quantities of lipids are available, methods developed for bulk fats and oils can be utilized.

  8. The structure and development of dopaminergic interplexiform cells in the retina of the brown trout, Salmo trutta fario: a tyrosine hydroxylase immunocytochemical study.

    PubMed Central

    Becerra, M; Manso, M J; Rodriguez-Moldes, M I; Anadón, R

    1994-01-01

    The organisation and development of the dopaminergic (DA) system in the retina of the adult brown trout were studied with tyrosine hydroxylase immunocytochemical techniques. Adult DA cells are rather homogeneous in appearance and possess thick dendritic processes running to the ganglion cell layer and thinner axonal processes which run to the horizontal cell layer, where they form a rich plexus of varicose fibres closely associated with the surface of these cells. Contact of DA fibres with photoreceptor processes was not observed. We therefore consider this DA population to consist mainly of interplexiform cells. These cells appear late in development, being first observed in prehatching (16 mm) embryos (after photoreceptors have begun to differentiate). DA cells increased in number throughout the fry and juvenile stages, but even in the largest juveniles studied (30-35 mm) the size of the DA cell population was only about 20% of that in adults. DA cells appear to arise in the marginal retina. In developing stages (embryos and fry) only inner nuclear layer processes were observed, the horizontal cell layer DA plexus appearing late in development (28 mm juveniles). Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14 PMID:7961143

  9. Inhibitory effect of rose hip (Rosa canina L.) on melanogenesis in mouse melanoma cells and on pigmentation in brown guinea pigs.

    PubMed

    Fujii, Takashi; Ikeda, Katsumi; Saito, Morio

    2011-01-01

    The compounds present in rose hips exerting an inhibitory action against melanogenesis in B16 mouse melanoma cells were investigated by dividing an aqueous extract of rose hips (RE) into four fractions. The 50% ethanol eluate from a DIAION HP-20 column significantly reduced the production of melanin and was mainly composed of procyanidin glycosides. We also found that this 50% ethanol eluate reduced the intracellular tyrosinase activity and also had a direct inhibitory effect on tyrosinase obtained as a protein mixture from the melanoma cell lysate. We also investigated the effect of orally administering RE on skin pigmentation in brown guinea pigs, and found that the pigmentation was inhibited together with the tyrosinase activity in the skin. These data collectively suggest that proanthocyanidins from RE inhibited melanogenesis in mouse melanoma cells and guinea pig skin, and could be useful as a skin-whitening agent when taken orally.

  10. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    SciTech Connect

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira; Wang, Shao-Chun

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Proliferating Cell Nuclear Antigen (PCNA) is phosphorylated at Y114. Black-Right-Pointing-Pointer Phospho-Y114 of PCNA is not required for cell proliferation for normal growth. Black-Right-Pointing-Pointer MCE during adipogenesis is abolished in the lack of the phosphorylation. Black-Right-Pointing-Pointer Homozygous Y114F mice are resistant to high fat diet induced obesity. Black-Right-Pointing-Pointer Our results shed light on the interface between proliferation and differentiation. -- Abstract: Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA{sup F/F}) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA{sup F/F} MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT

  11. Muscle derived stem cell contains the potential to enhance long term retention as well as an aesthetic outcome of autologous fat grafting.

    PubMed

    Han, Duanyang; Ma, Zhiqiang; Zhang, Peipei; Yang, Jenny F; Zhang, Yingbo; Yang, Daping; Liu, Jianyu

    2011-06-01

    Autologous fat graft has been mentioned as a prospective source of soft-tissue filler for decades. It gives a natural consistency, is easy and safe to harvest, exhibits no hypersensitivity or foreign body reactions, and is readily available. However, the traditional fat grafting has its limitations in long term process, such as partial necrosis, loss of volume, and internal calcification. They all compromise the functional and aesthetic outcome of this procedure. In recent studies, the best results were obtained by transplanting fat tissue inside muscle, thus benefiting from its better blood supply. Muscle-derived stem cells have recently emerged as a promising source of multipotent cells which give rise to muscle fibers within muscular environment. Previous studies have also proved that muscle-derived stem cells are capable of releasing various kinds of angiogenesis agents, such as VEGF, HGF, and FGF. These cytokines are known to promote revascularization. Based on the foregoing facts, we postulate that co-transplant of autologous fat and muscle derived stem cells may enhance the long term retention and aesthetic outcome of fat grafting. PMID:21419577

  12. Significance of brown dwarfs

    NASA Technical Reports Server (NTRS)

    Black, D. C.

    1986-01-01

    The significance of brown dwarfs for resolving some major problems in astronomy is discussed. The importance of brown dwarfs for models of star formation by fragmentation of molecular clouds and for obtaining independent measurements of the ages of stars in binary systems is addressed. The relationship of brown dwarfs to planets is considered.

  13. Effects of sulfated fucan, ascophyllan, from the brown Alga Ascophyllum nodosum on various cell lines: a comparative study on ascophyllan and fucoidan.

    PubMed

    Jiang, Zedong; Okimura, Takasi; Yokose, Takeshi; Yamasaki, Yasuhiro; Yamaguchi, Kenichi; Oda, Tatsuya

    2010-07-01

    The effects of fucose-containing sulfated polysaccharides, ascophyllan and fucoidan, isolated from the brown alga Ascophyllum nodosum, on the growth of various cell lines (MDCK, Vero, PtK(1), CHO, HeLa, and XC) were investigated. In a colony formation assay, ascophyllan and fucoidan showed potent cytotoxic effects on Vero and XC cells, while other cell lines were relatively resistant to these polysaccharides. Almost no significant effects of these polysaccharides were observed in the cell lines tested using the Alamar blue cytotoxicity assay over 48 h with varying initial cell densities (2500-20,000 cells/well) in growth medium. Interestingly, a significant growth promoting effect of ascophyllan on MDCK cells was observed, whereas treatment with fucoidan showed growth suppressive effects on this cell line under the same experimental conditions. These results suggest that ascophyllan is distinguishable from fucoidan in terms of their bioactivities. This is the first report of the growth promoting effects of a sulfated fucan on a mammalian cell line under normal growth conditions. PMID:20541128

  14. Wound Healing Immediately Post-Thermal Injury Is Improved by Fat and Adipose Derived Stem Cell Isografts

    PubMed Central

    Loder, Shawn; Peterson, Jonathan R.; Agarwal, Shailesh; Eboda, Oluwatobi; Brownley, Cameron; DeLaRosa, Sara; Ranganathan, Kavitha; Cederna, Paul; Wang, Stewart C.; Levi, Benjamin

    2014-01-01

    Objectives Patients with severe burns suffer functional, structural, and aesthetic complications. It is important to explore reconstructive options given that no ideal treatment exists. Transfer of adipose and adipose-derived stem cells (ASCs) has been shown to improve healing in various models. We hypothesize that use of fat isografts and/or ASCs will improve healing in a mouse model of burn injury. Methods Twenty 6–8 week old C57BL/6 male mice received a 30% surface area partial-thickness scald burn. Adipose tissue and ASCs from inguinal fat pads were harvested from a second group of C57BL/6 mice. Burned mice received 500μl subcutaneous injection at burn site of 1) processed adipose, 2) ASCs, 3) mixed adipose (adipose and ASCs), or 4) sham (saline) injection (n=5/group) on the first day post-injury. Mice were followed by serial photography until sacrifice at days 5 and 14. Wounds were assessed for burn depth and healing by Hematoxylin and Eosin (H&E) and immunohistochemistry. Results All treated groups showed improved healing over controls defined by decreased wound depth, area, and apoptotic activity. After 5 days, mice receiving ASCs or mixed adipose displayed a non-significant improvement in vascularization. No significant changes in proliferation were noted at 5 days. Conclusions Adipose isografts improve some early markers of healing post-burn injury. We demonstrate that addition of these grafts improve specific structural markers of healing. This improvement may be due to an increase in early wound vascularity post-graft. Further studies are needed to optimize use of fat or ASC grafts in acute and reconstructive surgery. PMID:25185931

  15. Parallel Profiles of Inflammatory and Effector Memory T Cells in Visceral Fat and Liver of Obesity-Associated Cancer Patients.

    PubMed

    Conroy, Melissa J; Galvin, Karen C; Doyle, Suzanne L; Kavanagh, Maria E; Mongan, Ann-Marie; Cannon, Aoife; Moore, Gillian Y; Reynolds, John V; Lysaght, Joanne

    2016-10-01

    In the midst of a worsening obesity epidemic, the incidence of obesity-associated morbidities, including cancer, diabetes, cardiac and liver disease is increasing. Insights into mechanisms underlying pathological obesity-associated inflammation are lacking. Both the omentum, the principal component of visceral fat, and liver of obese individuals are sites of excessive inflammation, but to date the T cell profiles of both compartments have not been assessed or compared in a patient cohort with obesity-associated disease. We have previously identified that omentum is enriched with inflammatory cytokines, chemokines and T cells. Here, we compared the inflammatory profile of T cells in the omentum and liver of patients with the obesity-associated malignancy oesophageal adenocarcinoma (OAC). Furthermore, we assessed the secreted cytokine profile in OAC patient serum, omentum and liver to assess systemic and local inflammation. We observed parallel T cell cytokine profiles and phenotypes in the omentum and liver of OAC patients, in particular CD69(+) and inflammatory effector memory T cells. This study reflects similar processes of inflammation and T cell activation in the omentum and liver, and may suggest common targets to modulate pathological inflammation at these sites.

  16. Characterisation of synovial fluid and infrapatellar fat pad derived mesenchymal stromal cells: The influence of tissue source and inflammatory stimulus

    PubMed Central

    Garcia, John; Wright, Karina; Roberts, Sally; Kuiper, Jan Herman; Mangham, Chas; Richardson, James; Mennan, Claire

    2016-01-01

    The infrapatellar fat pad (FP) and synovial fluid (SF) in the knee serve as reservoirs of mesenchymal stromal cells (MSCs) with potential therapeutic benefit. We determined the influence of the donor on the phenotype of donor matched FP and SF derived MSCs and examined their immunogenic and immunomodulatory properties before and after stimulation with the pro-inflammatory cytokine interferon-gamma (IFN-γ). Both cell populations were positive for MSC markers CD73, CD90 and CD105, and displayed multipotency. FP-MSCs had a significantly faster proliferation rate than SF-MSCs. CD14 positivity was seen in both FP-MSCs and SF-MSCs, and was positively correlated to donor age but only for SF-MSCs. Neither cell population was positive for the co-stimulatory markers CD40, CD80 and CD86, but both demonstrated increased levels of human leukocyte antigen-DR (HLA-DR) following IFN-γ stimulation. HLA-DR production was positively correlated with donor age for FP-MSCs but not SF-MSCs. The immunomodulatory molecule, HLA-G, was constitutively produced by both cell populations, unlike indoleamine 2, 3-dioxygenase which was only produced following IFN-γ stimulation. FP and SF are accessible cell sources which could be utilised in the treatment of cartilage injuries, either by transplantation following ex-vivo expansion or endogenous targeting and mobilisation of cells close to the site of injury. PMID:27073003

  17. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6

    PubMed Central

    Chen, Guang-Liang; Luo, Yubin; Eriksson, Daniel; Meng, Xianyi; Qian, Cheng; Bäuerle, Tobias; Chen, Xiao-Xiang; Schett, Georg; Bozec, Aline

    2016-01-01

    The impact of metabolic stress induced by obesity on the bone marrow melanoma niche is largely unknown. Here we employed diet induced obese mice model, where mice received high-fat (HFD) or normal diet (ND) for 6 weeks before challenge with B16F10 melanoma cells. Tumor size, bone loss and osteoclasts numbers were assessed histologically in the tibial bones. For defining the molecular pathway, osteopontin knock-out mice, interleukin 6 neutralizing antibody or Janus kinase 2 inhibition were carried out in the same model. Mechanistic studies such as adipocyte-melanoma co-cultures for defining adipocyte induced changes of tumor cell proliferation and expression profiles were also performed. As results, HFD enhanced melanoma burden in bone by increasing tumor area and osteoclast numbers. This process was associated with higher numbers of bone marrow adipocytes expressing IL-6 in direct vicinity to tumor cells. Inhibition of IL-6 or of downstream JAK2 blocked HFD-induced tumor progression. Furthermore, the phenotypic changes of melanoma cells triggered macrophage and osteoclast accumulation accompanied by increased osteopontin expression. Osteopontin triggered osteoclastogenesis and also exerted a positive feedback loop to tumor cells, which was abrogated in its absence. Metabolic stress by HFD promotes melanoma growth in the bone marrow by an increase in bone marrow adipocytes and IL-6-JAK2-osteopontin mediated activation of tumor cells and osteoclast differentiation. PMID:27049717

  18. Caloric Restriction Leads to Browning of White Adipose Tissue through Type 2 Immune Signaling.

    PubMed

    Fabbiano, Salvatore; Suárez-Zamorano, Nicolas; Rigo, Dorothée; Veyrat-Durebex, Christelle; Stevanovic Dokic, Ana; Colin, Didier J; Trajkovski, Mirko

    2016-09-13

    Caloric restriction (CR) extends lifespan from yeast to mammals, delays onset of age-associated diseases, and improves metabolic health. We show that CR stimulates development of functional beige fat within the subcutaneous and visceral adipose tissue, contributing to decreased white fat and adipocyte size in lean C57BL/6 and BALB/c mice kept at room temperature or at thermoneutrality and in obese leptin-deficient mice. These metabolic changes are mediated by increased eosinophil infiltration, type 2 cytokine signaling, and M2 macrophage polarization in fat of CR animals. Suppression of the type 2 signaling, using Il4ra(-/-), Stat6(-/-), or mice transplanted with Stat6(-/-) bone marrow-derived hematopoietic cells, prevents the CR-induced browning and abrogates the subcutaneous fat loss and the metabolic improvements induced by CR. These results provide insights into the overall energy homeostasis during CR, and they suggest beige fat development as a common feature in conditions of negative energy balance. PMID:27568549

  19. Browning of white adipose tissue uncouples glucose uptake from insulin signaling.

    PubMed

    Mössenböck, Karin; Vegiopoulos, Alexandros; Rose, Adam J; Sijmonsma, Tjeerd P; Herzig, Stephan; Schafmeier, Tobias

    2014-01-01

    Presence of thermogenically active adipose tissue in adult humans has been inversely associated with obesity and type 2 diabetes. While it had been shown that insulin is crucial for the development of classical brown fat, its role in development and function of inducible brown-in-white (brite) adipose tissue is less clear. Here we show that insulin deficiency impaired differentiation of brite adipocytes. However, adrenergic stimulation almost fully induced the thermogenic program under these settings. Although brite differentiation of adipocytes as well as browning of white adipose tissue entailed substantially elevated glucose uptake by adipose tissue, the capacity of insulin to stimulate glucose uptake surprisingly was not higher in the brite state. Notably, in line with the insulin-independent stimulation of glucose uptake, our data revealed that brite recruitment results in induction of solute carrier family 2 (GLUT-1) expression in adipocytes and inguinal WAT. These results for the first time demonstrate that insulin signaling is neither essential for brite recruitment, nor is it improved in cells or tissues upon browning.

  20. The brown and brite adipocyte marker Cox7a1 is not required for non-shivering thermogenesis in mice

    PubMed Central

    Maurer, Stefanie F.; Fromme, Tobias; Grossman, Lawrence I.; Hüttemann, Maik; Klingenspor, Martin

    2015-01-01

    The cytochrome c oxidase subunit isoform Cox7a1 is highly abundant in skeletal muscle and heart and influences enzyme activity in these tissues characterised by high oxidative capacity. We identified Cox7a1, well-known as brown adipocyte marker gene, as a cold-responsive protein of brown adipose tissue. We hypothesised a mechanistic relationship between cytochrome c oxidase activity and Cox7a1 protein levels affecting the oxidative capacity of brown adipose tissue and thus non-shivering thermogenesis. We subjected wildtype and Cox7a1 knockout mice to different temperature regimens and tested characteristics of brown adipose tissue activation. Cytochrome c oxidase activity, uncoupling protein 1 expression and maximal norepinephrine-induced heat production were gradually increased during cold-acclimation, but unaffected by Cox7a1 knockout. Moreover, the abundance of uncoupling protein 1 competent brite cells in white adipose tissue was not influenced by presence or absence of Cox7a1. Skin temperature in the interscapular region of neonates was lower in uncoupling protein 1 knockout pups employed as a positive control, but not in Cox7a1 knockout pups. Body mass gain and glucose tolerance did not differ between wildtype and Cox7a1 knockout mice fed with high fat or control diet. We conclude that brown adipose tissue function in mice does not require the presence of Cox7a1. PMID:26635001

  1. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2.

    PubMed

    Zhou, Ying; Yang, Jinzeng; Huang, Jinliang; Li, Ting; Xu, Dequan; Zuo, Bo; Hou, Liming; Wu, Wangjun; Zhang, Lin; Xia, Xiaoliang; Ma, Zhiyuan; Ren, Zhuqing; Xiong, Yuanzhu

    2014-04-18

    Brown adipose tissue (BAT) is specialized to dissipate energy as heat, therefore reducing fat deposition and counteracting obesity. Brown adipocytes arise from myoblastic progenitors during embryonic development by the action of transcription regulator PRDM16 binding to PPARγ, which promotes BAT-like phenotype in white adipose tissue. To investigate the capability of converting white adipose tissue to BAT or browning by PPARγ in vivo, we generated transgenic mice with over-expressed PPARγ2. The transgenic mice showed strong brown fat features in subcutaneous fat in morphology and histology. To provide molecular evidences on browning characteristics of the adipose tissue, we employed quantitative real-time PCR to determine BAT-specific gene expressions. The transgenic mice had remarkably elevated mRNA level of UCP1, Elovl3, PGC1α and Cebpα in subcutaneous fat. Compared with wild-type mice, UCP1 protein levels were increased significantly in transgenic mice. ATP concentration was slightly decreased in the subcutaneous fat of transgenic mice. Western blotting analysis also confirmed that phosphorylated AMPK and ACC proteins were significantly (P<0.01) increased in the transgenic mice. Therefore, this study demonstrated that over-expression of PPARγ2 in skeletal muscle can promote conversion of subcutaneous fat to brown fat formation, which can have beneficial effects on increasing energy metabolisms and combating obesity.

  2. Dietary Fats

    MedlinePlus

    ... PHOs to food. Try to replace them with oils such as canola, olive, safflower, sesame, or sunflower. Of course, eating too much fat will put on the pounds. Fat has twice as many calories as proteins or carbohydrates. NIH: National Heart, Lung, and Blood Institute

  3. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.

    PubMed

    Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona

    2015-11-01

    Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern

  4. Short communication: Altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells.

    PubMed

    Zhu, J J; Luo, J; Xu, H F; Wang, H; Loor, J J

    2016-06-01

    Specificity protein 1 (encoded by SP1) is a novel transcription factor important for the regulation of lipid metabolism and the normal function of various hormones in model organisms. Its potential role, if any, on ruminant milk fat is unknown. Despite the lower expression of the lipolysis-related gene ATGL (by 44 and 37% respectively), both the adenoviral overexpression and the silencing of SP1 [via short interfering (si)RNA] markedly reduced cellular triacylglycerol (TAG) content (by 28 and 25%, respectively), at least in part by decreasing the expression of DGAT1 (-36% in adenovirus treatment) and DGAT2 (-81 and -87%, respectively) that are involved in TAG synthesis. Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47 by 19 and 32%, and ADFP by 25 and 25%, respectively), cellular lipid droplet content was also decreased sharply, by 9 and 8.5%, respectively, after adenoviral overexpression of SP1 or its silencing via siRNA. Overall, the results underscored a potentially important role of SP1 in maintaining milk-fat droplet synthesis in goat mammary epithelial cells. PMID:26995134

  5. Short communication: Altered expression of specificity protein 1 impairs milk fat synthesis in goat mammary epithelial cells.

    PubMed

    Zhu, J J; Luo, J; Xu, H F; Wang, H; Loor, J J

    2016-06-01

    Specificity protein 1 (encoded by SP1) is a novel transcription factor important for the regulation of lipid metabolism and the normal function of various hormones in model organisms. Its potential role, if any, on ruminant milk fat is unknown. Despite the lower expression of the lipolysis-related gene ATGL (by 44 and 37% respectively), both the adenoviral overexpression and the silencing of SP1 [via short interfering (si)RNA] markedly reduced cellular triacylglycerol (TAG) content (by 28 and 25%, respectively), at least in part by decreasing the expression of DGAT1 (-36% in adenovirus treatment) and DGAT2 (-81 and -87%, respectively) that are involved in TAG synthesis. Consistent with the markedly lower expression of genes related to lipid droplet formation and secretion (TIP47 by 19 and 32%, and ADFP by 25 and 25%, respectively), cellular lipid droplet content was also decreased sharply, by 9 and 8.5%, respectively, after adenoviral overexpression of SP1 or its silencing via siRNA. Overall, the results underscored a potentially important role of SP1 in maintaining milk-fat droplet synthesis in goat mammary epithelial cells.

  6. Simulated hyperglycemic hyperosmolar syndrome. Impaired insulin and epinephrine effects upon lipolysis in the isolated rat fat cell.

    PubMed

    Turpin, B P; Duckworth, W C; Solomon, S S

    1979-03-01

    These investigations were designed to evaluate the effect of excess glucose and sodium chloride on lipolysis in the isolated adipocyte under normal and modelled pathological conditions simulating the hyperglycemic hyperosmolar syndrome. Isolated rat fat cells were incubated in the presence of various combinations of sodium chloride, glucose, epinephrine, and insulin. Lipolysis was measured as glycerol and free fatty acid release, and total medium osmolarity as milliosmoles per liter by freezing point depression. Basal lipolysis was unaffected by changes in osmolarity with sodium chloride, but glucose and glucose plus sodium chloride increased basal glycerol release. Increasing osmolarity with sodium chloride diminished the lipolytic response to epinephrine. Increasing osmolarity with glucose augmented the lipolytic response to epinephrine up to a total medium osmolarity of 550 mosmol. Higher osmolarities produced with glucose suppressed the epinephrine-induced lipolytic response.When the hyperglycemic hyperosmolar syndrome was simulated with 100 mM glucose and 50 mM sodium chloride (total osmolarity = 460 mosmol) the epinephrine-stimulated lipolysis dose-response curve in the isolated fat cell was shifted to the right. Furthermore, in the presence of 100 mM glucose + 50 mM sodium chloride, physiological concentrations of insulin were less effective in opposing epinephrine-stimulated lipolysis. In the presence of 50 mM glucose and 25 mM sodium chloride (total osmolarity = 370 mosmol) epinephrine-stimulated lipolysis measured as free fatty acid release was decreased by 50%. Under conditions simulating the hyperglycemic hyperosmolar syndrome in the isolated rat adipocyte, altered lipolysis reflects impaired effectiveness of both insulin and epinephrine as antilipolytic and lipolytic hormones, respectively. Furthermore, the attenuated response to both hormones appears to be primarily a function of extracellular solute composition. The lack of ketosis is the result of

  7. Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet

    PubMed Central

    Lo, Yuan-Hung; Ho, Po-Chun; Chen, Min-Shan; Hugo, Eric; Ben-Jonathan, Nira; Wang, Shao-Chun

    2013-01-01

    Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (proliferating cell nuclear antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNAF/F) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNAF/F MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT mice contain significantly more adipocytes than those isolated from PCNAF/F mice. This study identifies a critical role for PCNA in adipose tissue development, and for the first time identifies a role of the core DNA replication machinery at the interface between proliferation and differentiation. PMID:23201573

  8. Rat fat-cells have three types of adenosine receptors (Ra, Ri and P). Differential effects of pertussis toxin.

    PubMed Central

    García-Sáinz, J A; Torner, M L

    1985-01-01

    Activation of rat adipocyte R1 adenosine receptors by phenylisopropyladenosine (PIA) decreased cyclic AMP and lipolysis; this effect was blocked in cells from pertussis-toxin-treated rats. In contrast, the ability of 2',5'-dideoxyadenosine to decrease cyclic AMP was not affected by pertussis-toxin treatment. Addition of adenosine deaminase to the medium in which adipocytes from control animals were incubated resulted in activation of lipolysis. Interestingly, adipocytes from toxin-treated rats (which had an already increased basal lipolysis) responded in an opposite fashion to the addition of adenosine deaminase, i.e. the enzyme decreased lipolysis, which suggested that adenosine might be increasing lipolysis in these cells. Studies with the selective agonists N-ethylcarboxamidoadenosine (NECA) and PIA indicated that adenosine increases lipolysis and cyclic AMP accumulation in these cells and that these actions are mediated through Ra adenosine receptors. Adenosine-mediated accumulation of cyclic AMP was also observed in cells preincubated with pertussis toxin (2 micrograms/ml) for 3 h. In these studies NECA was also more effective than PIA. Our results indicate that there are three types of adenosine receptors in fat-cells, whose actions are affected differently by pertussis toxin, i.e. Ri-mediated actions are abolished, Ra-mediated actions are revealed and P-mediated actions are not affected. PMID:3004405

  9. Identification of Hipk2 as an essential regulator of white fat development.

    PubMed

    Sjölund, Jonas; Pelorosso, Facundo G; Quigley, David A; DelRosario, Reyno; Balmain, Allan

    2014-05-20

    Homeodomain-interacting protein kinase 2 (Hipk2) has previously been implicated in the control of several transcription factors involved in embryonic development, apoptosis, cell proliferation, and tumor development, but very little is understood about the exact mechanisms through which Hipk2 influences these processes. Analysis of gene expression in normal tissues from genetically heterogeneous mouse or human populations can reveal network motifs associated with the structural or functional components of the tissue, and may predict roles for genes of unknown function. Here we have applied this network strategy to uncover a role for the Hipk2 gene in the transcriptional system controlling adipogenesis. Both in vitro and in vivo models were used to show that knockdown or loss of Hipk2 specifically inhibits white adipose cell differentiation and tissue development. In addition, loss of Hipk2 leads to induction of pockets of multilocular brown fat-like cells in remaining white adipose depots, which express markers of brown and beige fat such as uncoupling protein 1 and transmembrane protein 26. These changes are accompanied by increased insulin sensitivity in Hipk2 knockout mice and reduced high-fat diet-induced weight gain, highlighting a potential role for this kinase in diseases such as diabetes and obesity. Our study underscores the versatility and power of a readily available tissue, such as skin, for network modeling of systemic transcriptional programs involved in multiple pathways, including lipid metabolism and adipogenesis.

  10. Reducing Compounds Equivocally Influence Oxidation during Digestion of a High-Fat Beef Product, which Promotes Cytotoxicity in Colorectal Carcinoma Cell Lines.

    PubMed

    Van Hecke, Thomas; Wouters, An; Rombouts, Caroline; Izzati, Tazkiyah; Berardo, Alberto; Vossen, Els; Claeys, Erik; Van Camp, John; Raes, Katleen; Vanhaecke, Lynn; Peeters, Marc; De Vos, Winnok H; De Smet, Stefaan

    2016-02-24

    We studied the formation of malondialdehyde, 4-hydroxy-nonenal, and hexanal (lipid oxidation products, LOP) during in vitro digestion of a cooked low-fat and high-fat beef product in response to the addition of reducing compounds. We also investigated whether higher LOP in the digests resulted in a higher cyto- and genotoxicity in Caco-2, HT-29 and HCT-116 cell lines. High-fat compared to low-fat beef digests contained approximately 10-fold higher LOP concentrations (all P < 0.001), and induced higher cytotoxicity (P < 0.001). During digestion of the high-fat product, phenolic acids (gallic, ferulic, chlorogenic, and caffeic acid) displayed either pro-oxidant or antioxidant behavior at lower and higher doses respectively, whereas ascorbic acid was pro-oxidant at all doses, and the lipophilic reducing compounds (α-tocopherol, quercetin, and silibinin) all exerted a clear antioxidant effect. During digestion of the low-fat product, the hydrophilic compounds and quercetin were antioxidant. Decreases or increases in LOP concentrations amounted to 100% change versus controls.

  11. A central role for the mast cell in early phase vasculitis in the Brown Norway rat model of vasculitis: a histological study

    PubMed Central

    Vinen, Catherine S; Turner, David R; Oliveira, David B G

    2004-01-01

    Administration of mercuric chloride (HgCl2) to Brown Norway rats causes Th2-dominated autoimmunity with raised immunoglobulin E concentrations and gut vasculitis, both of which are T-cell dependent, peak at 14 days after starting HgCl2 and then spontaneously resolve. If animals are re-challenged with HgCl2 6 weeks after initial exposure, they are resistant to autoimmunity, developing only attenuated disease. Recently, a separate phase of early caecal vasculitis was described beginning 24 h after initiating HgCl2 and prior to caecal entry of T cells. Previous work suggested this early vasculitis was αβ T-cell independent and implied a role for mast cells. We further tested this hypothesis by performing a histological study during the first 93 h following HgCl2 challenge defining the precise relationship between gut mast cell degranulation and appearing caecal vasculitis. We also studied whether early caecal vasculitis enters a resistant phase upon re-challenge with HgCl2. We show a direct correlation between mast cell degranulation and early caecal vasculitis following initial HgCl2 challenge. We demonstrate resistance to re-challenge in this phase of injury, with results at re-challenge also showing a correlation between mast cell degranulation and early caecal injury. PMID:15255970

  12. Fermented Brown Rice and Rice Bran with Aspergillus oryzae (FBRA) Prevents Inflammation-Related Carcinogenesis in Mice, through Inhibition of Inflammatory Cell Infiltration

    PubMed Central

    Onuma, Kunishige; Kanda, Yusuke; Suzuki Ikeda, Saori; Sakaki, Ryuta; Nonomura, Takuya; Kobayashi, Masanobu; Osaki, Mitsuhiko; Shikanai, Masataka; Kobayashi, Hiroshi; Okada, Futoshi

    2015-01-01

    We have established an inflammation-related carcinogenesis model in mouse, in which regressive QR-32 cells subcutaneously co-implanted with a foreign body—gelatin sponge—convert themselves into lethal tumors due to massive infiltration of inflammatory cells into the sponge. Animals were fed with a diet containing 5% or 10% fermented brown rice and rice bran with Aspergillus oryzae (FBRA). In 5% and 10% FBRA diet groups, tumor incidences were lower (35% and 20%, respectively) than in the non-treated group (70%). We found that FBRA reduced the number of inflammatory cells infiltrating into the sponge. FBRA administration did not cause myelosuppression, which indicated that the anti-inflammatory effects of FBRA took place at the inflammatory lesion. FBRA did not have antitumor effects on the implanted QRsP-11 tumor cells, which is a tumorigenic cell line established from a tumor arisen after co-implantation of QR-32 cells with sponge. FBRA did not reduce formation of 8-hydroxy-2′-deoxyguanine adducts, a marker of oxidative DNA damage in the inflammatory lesion; however, it reduced expression of inflammation-related genes such as TNF-α, Mac-1, CCL3 and CXCL2. These results suggest that FBRA will be an effective chemopreventive agent against inflammation-related carcinogenesis that acts by inhibiting inflammatory cell infiltration into inflammatory lesions. PMID:26670250

  13. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro.

    PubMed

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu; Mikkelsen, Jørn D; Meyer, Anne S

    2011-12-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  14. Ghrelin receptor controls obesity by fat burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence show that brown fat in the body produces heat to burn energy, thus prompting weight loss. Ghrelin is the only known hormone which increases appetite and promotes weight gain. We have reported that mice that lack the receptor which mediates the functions of ghrelin are lean. Our fu...

  15. Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans.

    PubMed

    McLaughlin, Tracey; Craig, Colleen; Liu, Li-Fen; Perelman, Dalia; Allister, Candice; Spielman, Daniel; Cushman, Samuel W

    2016-05-01

    Obesity is associated with insulin resistance, but significant variability exists between similarly obese individuals, pointing to qualitative characteristics of body fat as potential mediators. To test the hypothesis that obese, insulin-sensitive (IS) individuals possess adaptive adipose cell/tissue responses, we measured subcutaneous adipose cell size, insulin suppression of lipolysis, and regional fat responses to short-term overfeeding in BMI-matched overweight/obese individuals classified as IS or insulin resistant (IR). At baseline, IR subjects exhibited significantly greater visceral adipose tissue (VAT), intrahepatic lipid (IHL), plasma free fatty acids, adipose cell diameter, and percentage of small adipose cells. With weight gain (3.1 ± 1.4 kg), IR subjects demonstrated no significant change in adipose cell size, VAT, or insulin suppression of lipolysis and only 8% worsening of insulin-mediated glucose uptake (IMGU). Alternatively, IS subjects demonstrated significant adipose cell enlargement; decrease in the percentage of small adipose cells; increase in VAT, IHL, and lipolysis; 45% worsening of IMGU; and decreased expression of lipid metabolism genes. Smaller baseline adipose cell size and greater enlargement with weight gain predicted decline in IMGU, as did increase in IHL and VAT and decrease in insulin suppression of lipolysis. Weight gain in IS humans causes maladaptive changes in adipose cells, regional fat distribution, and insulin resistance. The correlation between development of insulin resistance and changes in adipose cell size, VAT, IHL, and insulin suppression of lipolysis highlight these factors as potential mediators between obesity and insulin resistance. PMID:26884438

  16. Adipose Cell Size and Regional Fat Deposition as Predictors of Metabolic Response to Overfeeding in Insulin-Resistant and Insulin-Sensitive Humans.

    PubMed

    McLaughlin, Tracey; Craig, Colleen; Liu, Li-Fen; Perelman, Dalia; Allister, Candice; Spielman, Daniel; Cushman, Samuel W

    2016-05-01

    Obesity is associated with insulin resistance, but significant variability exists between similarly obese individuals, pointing to qualitative characteristics of body fat as potential mediators. To test the hypothesis that obese, insulin-sensitive (IS) individuals possess adaptive adipose cell/tissue responses, we measured subcutaneous adipose cell size, insulin suppression of lipolysis, and regional fat responses to short-term overfeeding in BMI-matched overweight/obese individuals classified as IS or insulin resistant (IR). At baseline, IR subjects exhibited significantly greater visceral adipose tissue (VAT), intrahepatic lipid (IHL), plasma free fatty acids, adipose cell diameter, and percentage of small adipose cells. With weight gain (3.1 ± 1.4 kg), IR subjects demonstrated no significant change in adipose cell size, VAT, or insulin suppression of lipolysis and only 8% worsening of insulin-mediated glucose uptake (IMGU). Alternatively, IS subjects demonstrated significant adipose cell enlargement; decrease in the percentage of small adipose cells; increase in VAT, IHL, and lipolysis; 45% worsening of IMGU; and decreased expression of lipid metabolism genes. Smaller baseline adipose cell size and greater enlargement with weight gain predicted decline in IMGU, as did increase in IHL and VAT and decrease in insulin suppression of lipolysis. Weight gain in IS humans causes maladaptive changes in adipose cells, regional fat distribution, and insulin resistance. The correlation between development of insulin resistance and changes in adipose cell size, VAT, IHL, and insulin suppression of lipolysis highlight these factors as potential mediators between obesity and insulin resistance.

  17. White-to-brown metabolic conversion of human adipocytes by JAK inhibition.

    PubMed

    Moisan, Annie; Lee, Youn-Kyoung; Zhang, Jitao David; Hudak, Carolyn S; Meyer, Claas A; Prummer, Michael; Zoffmann, Sannah; Truong, Hoa Hue; Ebeling, Martin; Kiialainen, Anna; Gérard, Régine; Xia, Fang; Schinzel, Robert T; Amrein, Kurt E; Cowan, Chad A

    2015-01-01

    The rising incidence of obesity and related disorders such as diabetes and heart disease has focused considerable attention on the discovery of new therapeutics. One promising approach has been to increase the number or activity of brown-like adipocytes in white adipose depots, as this has been shown to prevent diet-induced obesity and reduce the incidence and severity of type 2 diabetes. Thus, the conversion of fat-storing cells into metabolically active thermogenic cells has become an appealing therapeutic strategy to combat obesity. Here, we report a screening platform for the identification of small molecules capable of promoting a white-to-brown metabolic conversion in human adipocytes. We identified two inhibitors of Janus kinase (JAK) activity with no precedent in adipose tissue biology that stably confer brown-like metabolic activity to white adipocytes. Importantly, these metabolically converted adipocytes exhibit elevated UCP1 expression and increased mitochondrial activity. We further found that repression of interferon signalling and activation of hedgehog signalling in JAK-inactivated adipocytes contributes to the metabolic conversion observed in these cells. Our findings highlight a previously unknown role for the JAK-STAT pathway in the control of adipocyte function and establish a platform to identify compounds for the treatment of obesity.

  18. High-fat diet exacerbates inflammation and cell survival signals in the skin of ultraviolet B-irradiated C57BL/6 mice

    SciTech Connect

    Meeran, Syed M.; Singh, Tripti; Nagy, Tim R.; Katiyar, Santosh K.

    2009-12-15

    Inflammation induced by chronic exposure to ultraviolet (UV) radiation has been implicated in various skin diseases. We formulated the hypothesis that a high-fat diet may influence the UV-induced inflammatory responses in the skin. C57BL/6 mice were fed a high-fat diet or control diet and exposed to UVB radiation (120 mJ/cm{sup 2}) three times/week for 10 weeks. The mice were then sacrificed and skin and plasma samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. We found that the levels of inflammatory biomarkers were increased in the UVB-exposed skin of the mice fed the high-fat diet than the UVB-exposed skin of the mice fed the control diet. The levels of inflammatory biomarkers of early responses to UVB exposure (e.g., myeloperoxidase, cyclooxygenase-2, prostaglandin-E{sub 2}), proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in high-fat-diet-fed mouse skin than control-diet-fed mouse skin. The plasma levels of insulin growth factor-1 were greater in the UVB-irradiated mice fed the high-fat diet than the UVB-irradiated mice fed the control diet, whereas the levels of plasma adiponectin were significantly lower. This pronounced exacerbation of the UVB-induced inflammatory responses in the skin of mice fed a high-fat diet suggests that high-fat diet may increase susceptibility to inflammation-associated skin diseases, including the risk of skin cancer.

  19. Analyzing Serum-Stimulated Prostate Cancer Cell Lines After Low-Fat, High-Fiber Diet and Exercise Intervention

    PubMed Central

    Soliman, Sherry; Aronson, William J.; Barnard, R. James

    2011-01-01

    Serum from men undergoing a low-fat, high-fiber diet and exercise intervention has previously been shown to decrease growth and increase apoptosis in serum-stimulated, androgen-dependent LNCaP cells associated with a reduction in serum IGF-I. Here we sought to determine the underlying mechanisms for these anticancer effects. Again, the intervention slowed growth and increased apoptosis in LNCaP cells; responses that were eliminated when IGF-I was added back to the post-intervention samples. The p53 protein content was increased and NFκB activation reduced in the post serum-stimulated LNCaP cells. Similar results were observed when the IGF-I receptor was blocked in the pre-intervention serum. In androgen-independent PC-3 cells, growth was reduced while none of the other factors were changed by the intervention. We conclude that diet and exercise intervention might help prevent clinical PCa as well as aid in the treatment of PCa during the early stages of development. PMID:19376839

  20. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization

    PubMed Central

    Resemann, Henrike K.; Ramos-Montoya, Antonio; Skepper, Jeremy; Watson, Christine J.

    2014-01-01

    We have previously demonstrated that Stat3 regulates lysosomal mediated-programmed cell death (LM-PCD) during mouse mammary gland involution in vivo. However, the mechanism that controls the release of lysosomal cathepsins to initiate cell death in this context has not been elucidated. We show here that Stat3 regulates the formation of large lysosomal vacuoles that contain triglyceride. Furthermore, we demonstrate that milk fat globules (MFGs) are toxic to epithelial cells and that, when applied to purified lysosomes, the MFG hydrolysate oleic acid potently induces lysosomal leakiness. Additionally, uptake of secreted MFGs coated in butyrophilin 1A1 is diminished in Stat3 ablated mammary glands while loss of the phagocytosis bridging molecule MFG-E8 results in reduced leakage of cathepsins in vivo. We propose that Stat3 regulates LM-PCD in mouse mammary gland by switching cellular function from secretion to uptake of MFGs. Thereafter, perturbation of lysosomal vesicle membranes by high levels of free fatty acids results in controlled leakage of cathepsins culminating in cell death. PMID:25283994

  1. Major gender differences in the lipolytic capacity of abdominal subcutaneous fat cells in obesity observed before and after long-term weight reduction.

    PubMed

    Löfgren, Patrik; Hoffstedt, Johan; Rydén, Mikael; Thörne, Anders; Holm, Cecilia; Wahrenberg, Hans; Arner, Peter

    2002-02-01

    The influence of obesity on the lipolytic capacity of isolated sc fat cells was studied prospectively in 13 women and 10 men, all obese, but otherwise healthy, before and 2 and 3 yr after weight reduction by bariatric surgery. Nonobese subjects (25 women and 17 men) without a family history of obesity served as the control group. Lipolytic capacity was determined after stimulation at different steps of the lipolytic cascade with noradrenaline, isoprenaline, forskolin, and (Bu)(2)AMP. Bariatric surgery was followed by a marked and similar reduction of body mass index and fat cell volume (approximately 40%) in both genders. Before weight loss, lipolytic capacity per cell was elevated in obese women and decreased to normal levels after weight reduction at 2 and 3 yr. However, lipolytic capacity per fat cell surface area was not changed in obese women. In obese men, lipolytic capacity per cell was almost the same as in lean men and was not influenced by weight reduction. Lipolytic capacity was related to fat cell size in women (P = 0.0008; r = 0.58), but not in men (P = 0.67; r = 0.086). The protein content of hormone-sensitive lipase, which determines lipolytic capacity, was significantly lower in obese men and women and increased slightly after weight reduction in men only. Thus, in women, but not in men, the adipocyte lipolytic capacity is influenced by obesity and weight reduction, probably due to changes in fat cell size. These gender differences are not related to the amount of hormone-sensitive lipase protein in adipocytes. PMID:11836318

  2. Ontogenetic changes in retinal ganglion cell distribution and spatial resolving power in the brown-banded bamboo shark Chiloscyllium punctatum (Elasmobranchii).

    PubMed

    Harahush, Blake K; Hart, Nathan S; Collin, Shaun P

    2014-01-01

    The development of the visual system in anamniotic vertebrates is a continual process, allowing for ontogenetic changes in retinal topography and spatial resolving power. We examined the number and distribution of retinal ganglion cells in wholemounted retinae throughout the protracted embryonic development (∼5 months) of a chondrichthyan, i.e. the brown-banded bamboo shark Chiloscyllium punctatum, from the beginning of retinal cell differentiation (approximately halfway through embryogenesis) to adulthood. We also identified and quantified the number of apoptosed cells within the ganglion cell layer to evaluate the contribution of apoptosis to changes in retinal topography. C. punctatum undergoes rapid changes in ganglion cell distribution during embryogenesis, where high levels of apoptosis, especially around the retinal periphery, result in relative increases in ganglion cell density in the central retina which progressively extend nasally and temporally to form a meridional band at hatching. After hatching, C. punctatum forms and maintains a horizontal streak, showing only minor changes in topography during growth, with basal levels of apoptosis. The total number of retinal ganglion cells reaches 547,881 in adult sharks, but the mean (3,228 cells·mm(-2)) and peak (4,983 cells·mm(-2)) retinal ganglion cell densities are highest around the time of hatching. Calculated estimates of spatial resolving power, based on ganglion cell spacing (assuming a hexagonal mosaic) and assessment of the focal length from cryosections of the eye, increase from 1.47 cycles·degree(-1) during embryogenesis to 4.29 cycles·degree(-1) in adults. The increase in spatial resolving power across the retinal meridian would allow this species to hunt and track faster, more mobile prey as it reaches maturity. PMID:24993335

  3. High fat diet promotes prostatic basal-to-luminal differentiation and accelerates initiation of prostate epithelial hyperplasia originated from basal cells.

    PubMed

    Kwon, Oh-Joon; Zhang, Boyu; Zhang, Li; Xin, Li

    2016-05-01

    Recent lineage tracing studies showed that the prostate basal and luminal cells in adult mice are two independent lineages under the physiological condition, but basal cells are capable of generating luminal progenies during bacterial infection-induced prostatitis. Because acute bacterial infection in human prostate tissues is relatively rare, the disease relevance of the bacterial infection-induced basal-to-luminal differentiation is uncertain. Herein we employ a high fat diet-induced sterile prostate inflammation model to determine whether basal-to-luminal differentiation can be induced by inflammation irrespective of the underlying etiologies. A K14-CreER model and a fluorescent report line are utilized to specifically label basal cells with the green fluorescent protein. We show that high fat diet promotes immune cell infiltration into the prostate tissues and basal-to-luminal differentiation. Increased cell proliferation accompanies basal-to-luminal differentiation, suggesting a concurrent regulation of basal cell proliferation and differentiation. This study demonstrates that basal-to-luminal differentiation can be induced by different types of prostate inflammation evolved with distinct etiologies. Finally, high fat diet also accelerates initiation and progression of prostatic intraepithelial neoplasia that are originated from basal cells with loss-of-function of the tumor suppressor Pten. Because prostate cancer originated from basal cells tends to be invasive, our study also provides an alternative explanation for the association between obesity and aggressive prostate cancer.

  4. Mechanisms of Fat Graft Survival.

    PubMed

    Pu, Lee L Q

    2016-02-01

    Although more fat grafting procedures have been performed by plastic surgeons with the primary goal to restore soft tissue loss, the actual mechanism on how fat graft survives remains less completely understood. An established old theory on fat graft survival is still based on the cell survival theory proposed by Peer in the early 1950s. On the basis of his preliminary experimental study, he proposed that the mechanism of fat graft survival is based on established early blood circulation through anastomosis of the fat graft and host blood vessels. Recently, several investigators have demonstrated new concepts of the fat graft survival: One further advanced the old Peer cell survival theory and another based on new discovery and understanding of adipose-derived stem cells. This article serves as a scientific review on how fat graft survives after in vivo transplantation based on a number of well-conducted experimental studies. Both the graft survival and graft replacement theories on how fat graft survives are true based on the previously mentioned well-conducted experimental studies. Each theory may play a role in fat graft survival. It is possible that graft survival may be more dominant in some patients but the graft replacement may be more dominant in other patients.

  5. Cell suspension culture of Eriobotrya japonica regulates the diabetic and hyperlipidemic signs of high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Ciou, Jiun-Lin; Lin, Cheng-Hsiu; Wu, Jin-Bin; Ho, Hui-Ya

    2013-01-01

    The present study investigates the anti-hyperlipidemic and antihyperglycemic effects and mechanism in high-fat (HF)-fed mice of cell suspension culture of Eriobotrya japonica (TA), which contains a great number of pentacyclic terpenoids. Firstly, C57BL/6J mice were randomly divided into two groups: the control (CON) group was fed with a low-fat diet (n = 9), whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was orally given TA or rosiglitazone or not for 4 weeks. Blood and visceral adipose tissue, liver tissue and skeletal muscle were examined. Treatment with TA reduced body weight gain, weights of white adipose tissue (WAT) (including epididymal, perirenal, mesenteric WAT and visceral fat), and hepatic triacylglycerol content significantly without affecting food intake in diet-induced diabetic mice. TA effectively prevented HF diet-induced increases in the levels of blood glucose, insulin, leptin and HOMA-IR index (p < 0.001, p < 0.05, p < 0.05, p < 0.01, respectively) and attenuated insulin resistance. Treatment with TA, adipocytes in the visceral depots showed a reduction in size. TA effectively significantly increased the protein contents of phosphorylation of AMPK-α (Thr172) both in liver and adipose tissue. It is shown that TA exhibits hypolipidemic effect in HF-fed mice by decreasing gene expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) 2, which catalyzes the final step in the synthesis of triglycerides, and antidiabetic properties occurred as a result of decreased hepatic glucose production via phosphenolpyruvate carboxykinase (PEPCK) down- regulation, improved insulin sensitization and TA (at 1.0 g/kg dose) decreased expression of hepatic and adipose 11-β-hydroxysteroid dehydroxygenase (11β-HSD1) gene, which contributed in attenuating diabetic state. Futhermore, TA at doses of 0

  6. Cell suspension culture of Eriobotrya japonica regulates the diabetic and hyperlipidemic signs of high-fat-fed mice.

    PubMed

    Shih, Chun-Ching; Ciou, Jiun-Lin; Lin, Cheng-Hsiu; Wu, Jin-Bin; Ho, Hui-Ya

    2013-03-01

    The present study investigates the anti-hyperlipidemic and antihyperglycemic effects and mechanism in high-fat (HF)-fed mice of cell suspension culture of Eriobotrya japonica (TA), which contains a great number of pentacyclic terpenoids. Firstly, C57BL/6J mice were randomly divided into two groups: the control (CON) group was fed with a low-fat diet (n = 9), whereas the experimental group was fed a 45% HF diet for 8 weeks. Afterwards, the CON group was treated with vehicle, whereas the HF group was subdivided into five groups and was orally given TA or rosiglitazone or not for 4 weeks. Blood and visceral adipose tissue, liver tissue and skeletal muscle were examined. Treatment with TA reduced body weight gain, weights of white adipose tissue (WAT) (including epididymal, perirenal, mesenteric WAT and visceral fat), and hepatic triacylglycerol content significantly without affecting food intake in diet-induced diabetic mice. TA effectively prevented HF diet-induced increases in the levels of blood glucose, insulin, leptin and HOMA-IR index (p < 0.001, p < 0.05, p < 0.05, p < 0.01, respectively) and attenuated insulin resistance. Treatment with TA, adipocytes in the visceral depots showed a reduction in size. TA effectively significantly increased the protein contents of phosphorylation of AMPK-α (Thr172) both in liver and adipose tissue. It is shown that TA exhibits hypolipidemic effect in HF-fed mice by decreasing gene expressions of fatty acid synthesis, including acyl-coenzyme A: diacylglycerol acyltransferase (DGAT) 2, which catalyzes the final step in the synthesis of triglycerides, and antidiabetic properties occurred as a result of decreased hepatic glucose production via phosphenolpyruvate carboxykinase (PEPCK) down- regulation, improved insulin sensitization and TA (at 1.0 g/kg dose) decreased expression of hepatic and adipose 11-β-hydroxysteroid dehydroxygenase (11β-HSD1) gene, which contributed in attenuating diabetic state. Futhermore, TA at doses of 0

  7. Short-term high-fat diet alters postprandial glucose metabolism and circulating vascular cell adhesion molecule-1 in healthy males.

    PubMed

    Numao, Shigeharu; Kawano, Hiroshi; Endo, Naoya; Yamada, Yuka; Takahashi, Masaki; Konishi, Masayuki; Sakamoto, Shizuo

    2016-08-01

    Short-term intake of a high-fat diet aggravates postprandial glucose metabolism; however, the dose-response relationship has not been investigated. We hypothesized that short-term intake of a eucaloric low-carbohydrate/high-fat diet (LCHF) would aggravate postprandial glucose metabolism and circulating adhesion molecules in healthy males. Seven healthy young males (mean ± SE; age: 26 ± 1 years) consumed either a eucaloric control diet (C, approximately 25% fats), a eucaloric intermediate-carbohydrate/intermediate-fat diet (ICIF, approximately 50% fats), or an LCHF (approximately 70% fats) for 3 days. An oral meal tolerance test (MTT) was performed after the 3-day dietary intervention. The concentrations of plasma glucose, insulin, glucagon-like peptide-1 (GLP-1), intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 (VCAM-1) were determined at rest and during MTT. The incremental area under the curve (iAUC) of plasma glucose concentration during MTT was significantly higher in LCHF than in C (P = 0.009). The first-phase insulin secretion indexes were significantly lower in LCHF than in C (P = 0.04). Moreover, the iAUC of GLP-1 and VCAM-1 concentrations was significantly higher in LCHF than in C (P = 0.014 and P = 0.04, respectively). The metabolites from ICIF and C were not significantly different. In conclusion, short-term intake of eucaloric diet containing a high percentage of fats in healthy males excessively increased postprandial glucose and VCAM-1 concentrations and attenuated first-phase insulin release.

  8. Interactions of dietary fats and proteins on fatty acid composition of immune cells and LTB4 production by peritoneal exudate cells of rats.

    PubMed

    Kaku, S; Yunoki, S; Ohkura, K; Sugano, M; Nonaka, M; Tachibana, H; Yamada, K

    2001-02-01

    The interaction of dietary fats and proteins on lipid parameters of rats was studied using safflower oil (linoleic acid-rich), borage oil (gamma-linolenic acid-rich) or perilla oil (alpha-linolenic acid-rich) in combination with casein or soybean protein. The experiment was focused on the fatty acid composition of immune cells and the leukotriene B4 production by peritoneal exudate cells. Serum total cholesterol, triglyceride, and phospholipid levels were low in perilla oil-fed or soybean protein-fed rats. Fatty acid compositions of serum and liver phospholipids reflected those of dietary fats. However, feeding borage oil resulted in a marked increase in the proportion of dihomo-gamma-linolenic acid in phospholipids of peritoneal exudate cells, spleen lymphocytes, and mesenteric lymph node lymphocytes in relation to those of liver and serum. It is suggested that activities of metabolic n-6 polyunsaturated fatty acids are different between immune and other tissues. In addition, the magnitude of the reduction of the proportion of linoleic acid of perilla oil in immune cells was considerably more moderate than serum and liver, indicating a different degree of interference of alpha-linolenic acid with linoleic acid metabolism. Leukotriene release from peritoneal exudate cells was in the order of safflower oil > borage oil > perilla oil groups as reflecting the proportion of arachidonic acid, and tended to be lower in soybean protein-fed groups. These suggest an anti-inflammatory property of gamma-linolenic acid as well as alpha-linolenic acid tended to be strengthened when they were combined with soybean protein than with casein. PMID:11302164

  9. Interactions of Dietary Fats and Proteins on Fatty Acid Composition of Immune Cells and LTB4 Production by Peritoneal Exudate Cells of Rats.

    PubMed

    Kaku, S; Yunoki, S; Ohkura, K; Sugano, M; Nonaka, M; Tachibana, H; Yamada, K

    2001-01-01

    The interaction of dietary fats and proteins on lipid parameters of rats was studied using safflower oil (linoleic acid-rich), borage oil (γ-linolenic acid-rich) or perilla oil (α-linolenic acid-rich) in combination with casein or soybean protein. The experiment was focused on the fatty acid composition of immune cells and the leukotriene B4 production by peritoneal exudate cells. Serum total cholesterol, triglyceride, and phospholipid levels were low in perilla oil-fed or soybean protein-fed rats. Fatty acid compositions of serum and liver phospholipids reflected those of dietary fats. However, feeding borage oil resulted in a marked increase in the proportion of dihomo-γ-linolenic acid in phospholipids of peritoneal exudate cells, spleen lymphocytes, and mesenteric lymph node lymphocytes in relation to those of liver and serum. It is suggested that activities of metabolic n-6 polyunsaturated fatty acids are different between immune and other tissues. In addition, the magnitude of the reduction of the proportion of linoleic acid of perilla oil in immune cells was considerably more moderate than serum and liver, indicating a different degree of interference of α-linolenic acid with linoleic acid metabolism. Leukotriene B4 release from peritoneal exudate cells was in the order of safflower oil>borage oil>perilla oil groups as reflecting the proportion of arachidonic acid, and tended to be lower in soybean protein-fed groups. These suggest an anti-inflammatory property of γ-linolenic acid as well as α-linolenic acid tended to be strengthened when they were combined with soybean protein than with casein. PMID:27374271

  10. Myocardial Ischemic Subject’s Thymus Fat: A Novel Source of Multipotent Stromal Cells

    PubMed Central

    Salas, Julián; Lhamyani, Said; Gentile, Adriana-Mariel; Sarria García, Esteban; Hmadcha, Abdelkrim; Zayed, Hatem; Vega-Rioja, Antonio; Tinahones, Francisco J.; El Bekay, Rajaa

    2015-01-01

    Objective Adipose Tissue Stromal Cells (ASCs) have important clinical applications in the regenerative medicine, cell replacement and gene therapies. Subcutaneous Adipose Tissue (SAT) is the most common source of these cells. The adult human thymus degenerates into adipose tissue (TAT). However, it has never been studied before as a source of stem cells. Material and Methods We performed a comparative characterization of TAT-ASCs and SAT-ASCs from myocardial ischemic subjects (n = 32) according to the age of the subjects. Results TAT-ASCs and SAT-ASCs showed similar features regarding their adherence, morphology and in their capacity to form CFU-F. Moreover, they have the capacity to differentiate into osteocyte and adipocyte lineages; and they present a surface marker profile corresponding with stem cells derived from AT; CD73+CD90+CD105+CD14-CD19-CD45-HLA-DR. Interestingly, and in opposition to SAT-ASCs, TAT-ASCs have CD14+CD34+CD133+CD45- cells. Moreover, TAT-ASCs from elderly subjects showed higher adipogenic and osteogenic capacities compared to middle aged subjects, indicating that, rather than impairing; aging seems to increase adipogenic and osteogenic capacities of TAT-ASCs. Conclusions This study describes the human TAT as a source of mesenchymal stem cells, which may have an enormous potential for regenerative medicine. PMID:26657132

  11. Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway

    PubMed Central

    Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2016-01-01

    Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine.

  12. Carbon nanotube-based substrates promote cardiogenesis in brown adipose-derived stem cells via β1-integrin-dependent TGF-β1 signaling pathway

    PubMed Central

    Sun, Hongyu; Mou, Yongchao; Li, Yi; Li, Xia; Chen, Zi; Duval, Kayla; Huang, Zhu; Dai, Ruiwu; Tang, Lijun; Tian, Fuzhou

    2016-01-01

    Stem cell-based therapy remains one of the promising approaches for cardiac repair and regeneration. However, its applications are restricted by the limited efficacy of cardiac differentiation. To address this issue, we examined whether carbon nanotubes (CNTs) would provide an instructive extracellular microenvironment to facilitate cardiogenesis in brown adipose-derived stem cells (BASCs) and to elucidate the underlying signaling pathways. In this study, we systematically investigated a series of cellular responses of BASCs due to the incorporation of CNTs into collagen (CNT-Col) substrates that promoted cell adhesion, spreading, and growth. Moreover, we found that CNT-Col substrates remarkably improved the efficiency of BASCs cardiogenesis by using fluorescence staining and quantitative real-time reverse transcription-polymerase chain reaction. Critically, CNTs in the substrates accelerated the maturation of BASCs-derived cardiomyocytes. Furthermore, the underlying mechanism for promotion of BASCs cardiac differentiation by CNTs was determined by immunostaining, quantitative real-time reverse transcription-polymerase chain reaction, and Western blotting assay. It is notable that β1-integrin-dependent TGF-β1 signaling pathway modulates the facilitative effect of CNTs in cardiac differentiation of BASCs. Therefore, it is an efficient approach to regulate cardiac differentiation of BASCs by the incorporation of CNTs into the native matrix. Importantly, our findings can not only facilitate the mechanistic understanding of molecular events initiating cardiac differentiation in stem cells, but also offer a potentially safer source for cardiac regenerative medicine. PMID:27660434

  13. Intermitochondrial bridge junctions in fat body cells of the pre-hatch larvae of the forest tent caterpillar Malacosoma disstria HBN.

    PubMed

    Harris, J D

    1979-06-01

    An electron microscopic feature of fat body cells of diapausing Malacosoma disstria pre-hatch caterpillars, experimentally held at certain controlled time-and-temperature conditions, is an elaborate bridge junction, between mitochondria, strikingly similar in appearance to the septate junction which has frequently been described as occurring between cells of many invertebrate species. It is suggested that the intermitochondrial unctions may well represent elaborate forms of interaction between organelles in order to enhance metabolic efficiency in times of stress.

  14. Heterologous expression of C. elegans fat-1 decreases the n-6/n-3 fatty acid ratio and inhibits adipogenesis in 3T3-L1 cells

    SciTech Connect

    An, Lei; Pang, Yun-Wei; Gao, Hong-Mei; Tao, Li; Miao, Kai; Wu, Zhong-Hong; and others

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer Expression of C. elegans fat-1 reduces the n-6/n-3 PUFA ratio in 3T3-L1 cells. Black-Right-Pointing-Pointer fat-1 inhibits the proliferation and differentiation of 3T3-L1 preadipocytes. Black-Right-Pointing-Pointer fat-1 reduces lipid deposition in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The lower n-6/n-3 ratio induces apoptosis in 3T3-L1 adipocytes. -- Abstract: In general, a diet enriched in polyunsaturated fatty acids (PUFAs) inhibits the development of obesity and decreases adipose tissue. The specific impacts of n-3 and n-6 PUFAs on adipogenesis, however, have not been definitively determined. Traditional in vivo and in vitro supplementation studies have yielded inconsistent or even contradictory results, which likely reflect insufficiently controlled experimental systems. Caenorhabditiselegans fat-1 gene encodes an n-3 fatty acid desaturase, and its heterologous expression represents an effective method both for altering the n-6/n-3 PUFA ratio and for evaluating the biological effects of n-3 and n-6 PUFAs. We sought to determine whether a reduced n-6/n-3 ratio could influence adipogenesis in 3T3-L1 cells. Lentivirus-mediated introduction of the fat-1 gene into 3T3-L1 preadipocytes significantly reduced the n-6/n-3 ratio and inhibited preadipocyte proliferation and differentiation. In mature adipocytes, fat-1 expression reduced lipid deposition, as measured by Oil Red O staining, and induced apoptosis. Our results indicate that a reduced n-6/n-3 ratio inhibits adipogenesis through several mechanisms and that n-3 PUFAs more effectively inhibit adipogenesis (but not lipogenesis) than do n-6 PUFAs.

  15. Adenosine 3':5'-cyclic monophosphate-dependent protein kinase in brown fat from newborn rabbits. Changes in the binding of adenosine 3':5'-cyclic monophosphate after preincubation of the tissue with noradrenaline or incubation of the enzyme with adenosine triphosphate.

    PubMed Central

    Knight, B L

    1975-01-01

    The equilibrium binding of cyclic AMP to a 150-fold purified preparation of protein kinase, when expressed as the reciprocal of bound against the reciprocal of free cyclic AMP, gave a plot consisting of two straight lines. The values of apparent Kb given by these lines were lowered by preincubating the intact tissue with noradrenaline or incubating the enzyme preparation with Mg2+ plus ATP. This effect was reversed by incubating the preparation (which contained some phosphatase impurities) with Mg2+ alone. None of these procedures affected the maximal binding of cyclic AMP. During incubation of the enzyme with Mg2+ plus ATP, the terminal phosphoryl group was incorporated into protein, over 40% being present in the kinase itself. This phosphate was removed during incubation of the preparation with Mg2+ alone. The validity of expressing cyclic AMP binding as a double-reciprocal plot is discussed, and the experimental plots are compared with those derived theoretically. The results suggest that protein kinase in brown fat is present in two forms, one with an apparent Kb for cyclic AMP or approx. 250 nM (dephosphorylation) and one with an apparent Kb of approx. 14 nM (phosphorylated). Preincubation of the tissue with noradrenaline results in phosphorylation of the kinase and an increase from 15 to 45% in the proportion of the higher-affinity form. PMID:179526

  16. Treatment of "en coup de sabre" deformity with adipose-derived regenerative cell-enriched fat graft.

    PubMed

    Karaaltin, Mehmet Veli; Akpinar, Ali Cem; Baghaki, Semih; Akpinar, Fatma

    2012-03-01

    Linear scleroderma "en coup de sabre" is characterized by atrophy and furrowing of the skin of the front parietal region above the level of the eyebrow. In most cases, it occurs as a single paramedian line that may be associated with hypoplasia of underlying structures and hemiatrophy of the face. The affected region is a depression that may be associated with hypoplasia of the underlying soft tissues and bone that results in facial hemiatrophy. If the lesion is narrow, it can be resected and directly sutured; in the case of a wide lesion, many different reconstructive techniques, directed at augmentation of deficient soft tissue volume, have been proposed such as autologous tissue grafts, biomaterials, pedicled flaps, and free flaps. Adipose-derived regenerative cells (ADRCs) can be easily processed from lipoaspirated fat and can provide a significant quantity of multipotent cells for a variety of therapeutic regenerative medicine therapies. There is an increasing interest in a possible therapeutic role of ADRCs from processed lipoaspirate for many applications, including their use as soft-tissue fillers. We introduce the application of a successful ADRC therapy for a linear scleroderma en coup de sabre deformity.

  17. Ascorbate-dependent impact on cell-derived matrix in modulation of stiffness and rejuvenation of infrapatellar fat derived stem cells toward chondrogenesis.

    PubMed

    Pizzute, Tyler; Zhang, Ying; He, Fan; Pei, Ming

    2016-08-10

    Developing an in vitro microenvironment using cell-derived decellularized extracellular matrix (dECM) is a promising approach to efficiently expand adult stem cells for cartilage engineering and regeneration. Ascorbic acid serves as a critical stimulus for cells to synthesize collagens, which constitute the major component of dECM. In this study, we hypothesized that optimization of ascorbate treatment would maximize the rejuvenation effect of dECM on expanded stem cells from human infrapatellar fat pad in both proliferation and chondrogenic differentiation. In the duration regimen study, we found that dECM without L-ascorbic acid phosphate (AA) treatment, exhibiting lower stiffness measured by atomic force microscopy, yielded expanded cells with higher proliferation capacity but lower chondrogenic potential when compared to those with varied durations of AA treatment. dECM with 250 µM of AA treatment for 10 d had better rejuvenation in chondrogenic capacity if the deposited cells were from passage 2 rather than passage 5, despite no significant difference in matrix stiffness. In the dose regimen study, we found that dECMs deposited by varied concentrations of AA yielded expanded cells with higher proliferation capacity despite lower expression levels of stem cell related surface markers. Compared to cells expanded on tissue culture polystyrene, those on dECM exhibited greater chondrogenic potential, particularly for the dECMs with 50 µM and 250 µM of AA treatment. With the supplementation of ethyl-3,4-dihydroxybenzoate (EDHB), an inhibitor targeting procollagen synthesis, the dECM with 50 µM of AA treatment exhibited a dramatic decrease in the rejuvenation effect of expanded cell chondrogenic potential at both mRNA and protein levels despite no significant difference in matrix stiffness. Defined AA treatments during matrix preparation will benefit dECM-mediated stem cell engineering and future treatments for cartilage defects.

  18. Ascorbate-dependent impact on cell-derived matrix in modulation of stiffness and rejuvenation of infrapatellar fat derived stem cells toward chondrogenesis.

    PubMed

    Pizzute, Tyler; Zhang, Ying; He, Fan; Pei, Ming

    2016-01-01

    Developing an in vitro microenvironment using cell-derived decellularized extracellular matrix (dECM) is a promising approach to efficiently expand adult stem cells for cartilage engineering and regeneration. Ascorbic acid serves as a critical stimulus for cells to synthesize collagens, which constitute the major component of dECM. In this study, we hypothesized that optimization of ascorbate treatment would maximize the rejuvenation effect of dECM on expanded stem cells from human infrapatellar fat pad in both proliferation and chondrogenic differentiation. In the duration regimen study, we found that dECM without L-ascorbic acid phosphate (AA) treatment, exhibiting lower stiffness measured by atomic force microscopy, yielded expanded cells with higher proliferation capacity but lower chondrogenic potential when compared to those with varied durations of AA treatment. dECM with 250 µM of AA treatment for 10 d had better rejuvenation in chondrogenic capacity if the deposited cells were from passage 2 rather than passage 5, despite no significant difference in matrix stiffness. In the dose regimen study, we found that dECMs deposited by varied concentrations of AA yielded expanded cells with higher proliferation capacity despite lower expression levels of stem cell related surface markers. Compared to cells expanded on tissue culture polystyrene, those on dECM exhibited greater chondrogenic potential, particularly for the dECMs with 50 µM and 250 µM of AA treatment. With the supplementation of ethyl-3,4-dihydroxybenzoate (EDHB), an inhibitor targeting procollagen synthesis, the dECM with 50 µM of AA treatment exhibited a dramatic decrease in the rejuvenation effect of expanded cell chondrogenic potential at both mRNA and protein levels despite no significant difference in matrix stiffness. Defined AA treatments during matrix preparation will benefit dECM-mediated stem cell engineering and future treatments for cartilage defects. PMID:27508528

  19. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways

    PubMed Central

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4−/− and Nrf2−/− mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  20. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways.

    PubMed

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-09-08

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4(-/-) and Nrf2(-/-) mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy.

  1. Adipose-derived mesenchymal stem cells promote the survival of fat grafts via crosstalk between the Nrf2 and TLR4 pathways.

    PubMed

    Chen, Xiaosong; Yan, Liu; Guo, Zhihui; Chen, Zhaohong; Chen, Ying; Li, Ming; Huang, Chushan; Zhang, Xiaoping; Chen, Liangwan

    2016-01-01

    Autologous fat grafting is an effective reconstructive surgery technique; however, its success is limited by inconsistent graft retention and an environment characterized by high oxidative stress and inflammation. Adipose-derived stem cells (ADSCs) increase the survival of fat grafts, although the underlying mechanisms remain unclear. Here, TLR4(-/-) and Nrf2(-/-) mice were used to explore the effects of oxidative stress and inflammation on the viability and function of ADSCs in vitro and in vivo. Enrichment of fat grafts with ADSCs inhibited inflammatory cytokine production, enhanced growth factor levels, increased fat graft survival, downregulated NADPH oxidase (NOX)1 and 4 expression, increased vascularization and reduced ROS production in a manner dependent on toll-like receptor (TLR)-4 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Immunohistochemical analysis showed that exposure to hypoxia enhanced ADSC growth and promoted the differentiation of ADSCs into vascular endothelial cells. Hypoxia-induced inflammatory cytokine, growth factor and NOX1/4 upregulation, as well as increased ROS production and apoptosis in ADSCs were dependent on TLR4 and Nrf2, which also modulated the effect of ADSCs on promoting endothelial progenitor cell migration and angiogenesis. Western blot analyses showed that the effects of hypoxia on ADSCs were regulated by crosstalk between Nrf2 antioxidant responses and NF-κB- and TLR4-mediated inflammatory responses. Taken together, our results indicate that ADSCs can increase the survival of fat transplants through the modulation of inflammatory and oxidative responses via Nrf2 and TLR4, suggesting potential strategies to improve the use of ADSCs for cell therapy. PMID:27607584

  2. Eicosapentaenoic Acid Potentiates Brown Thermogenesis through FFAR4-dependent Up-regulation of miR-30b and miR-378.

    PubMed

    Kim, Jiyoung; Okla, Meshail; Erickson, Anjeza; Carr, Timothy; Natarajan, Sathish Kumar; Chung, Soonkyu

    2016-09-23

    Emerging evidence suggests that n-3 polyunsaturated fatty acids (PUFA) promote brown adipose tissue thermogenesis. However, the underlying mechanisms remain elusive. Here, we hypothesize that n-3 PUFA promotes brown adipogenesis by modulating miRNAs. To test this hypothesis, murine brown preadipocytes were induced to differentiate the fatty acids of palmitic, oleate, or eicosapentaenoic acid (EPA). The increases of brown-specific signature genes and oxygen consumption rate by EPA were concurrent with up-regulation of miR-30b and 378 but not by oleate or palmitic acid. Next, we hypothesize that free fatty acid receptor 4 (Ffar4), a functional receptor for n-3 PUFA, modulates miR-30b and 378. Treatment of Ffar4 agonist (GW9508) recapitulated the thermogenic activation of EPA by increasing oxygen consumption rate, brown-specific marker genes, and miR-30b and 378, which were abrogated in Ffar4-silenced cells. Intriguingly, addition of the miR-30b mimic was unable to restore EPA-induced Ucp1 expression in Ffar4-depleted cells, implicating that Ffar4 signaling activity is required for up-regulating the brown adipogenic program. Moreover, blockage of miR-30b or 378 by locked nucleic acid inhibitors significantly attenuated Ffar4 as well as brown-specific signature gene expression, suggesting the signaling interplay between Ffar4 and miR-30b/378. The association between miR-30b/378 and brown thermogenesis was also confirmed in fish oil-fed C57/BL6 mice. Interestingly, the Ffar4 agonism-mediated signaling axis of Ffar4-miR-30b/378-Ucp1 was linked with an elevation of cAMP in brown adipocytes, similar to cold-exposed or fish oil-fed brown fat. Taken together, our work identifies a novel function of Ffar4 in modulating brown adipogenesis partly through a mechanism involving cAMP activation and up-regulation of miR-30b and miR-378. PMID:27489163

  3. The effect of immunoglobulins and somatic cells on the gravity separation of fat, bacteria, and spores in pasteurized whole milk.

    PubMed

    Geer, S R; Barbano, D M

    2014-01-01

    Our objective was to determine the role that immunoglobulins and somatic cells (SC) play in the gravity separation of milk. The experiment comprised 9 treatments: (1) low-temperature pasteurized (LTP; 72°C for 17.31s) whole milk; (2) LTP (72°C for 17.31s) whole milk with added bacteria and spores; (3) recombined LTP (72°C for 17.31s) whole milk with added bacteria and spores; (4) high-temperature pasteurized (HTP; 76°C for 7min) whole milk with added bacteria and spores; (5) HTP (76°C for 7min) whole milk with added bacteria and spores and added colostrum; (6) HTP (76°C for 7min) centrifugally separated, gravity-separated (CS GS) skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores; (7) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores; (8) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) low-SC cream with added bacteria and spores and added colostrum; and (9) HTP (76°C for 7min) CS GS skim milk with HTP (76°C for 7min) high-SC cream with added bacteria and spores and added colostrum. The milks in the 9 treatments were gravity separated at 4°C for 23h in glass columns. Five fractions were collected by weight from each of the column treatments, starting from the bottom of the glass column: 0 to 5%, 5 to 90%, 90 to 96%, 96 to 98%, and 98 to 100%. The SC, fat, bacteria, and spores were measured in each of the fractions. The experiment was replicated 3 times in different weeks using a different batch of milk and different colostrum. Portions of the same batch of the frozen bacteria and spore solutions were used for all 3 replicates. The presence of both SC and immunoglobulins were necessary for normal gravity separation (i.e., rising to the top) of fat, bacteria, and spores in whole milk. The presence of immunoglobulins alone without SC was not sufficient to cause bacteria, fat, and spores to rise to the top. The interaction between SC and immunoglobulins was

  4. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells.

    PubMed Central

    Häring, H U; White, M F; Machicao, F; Ermel, B; Schleicher, E; Obermaier, B

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, we labeled intact rat fat cells with [32P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, we found, in addition to the 95-kDa beta-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor beta-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. The insulin effect starts after 30 sec, is maximal at 150 sec, and declines to almost basal values by 5 min. Furthermore, the antiphosphotyrosine antibody precipitated at least five proteins in the soluble fraction of the fat cell. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32P incorporation into a 116-kDa band, a 62-kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. We suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission. Images PMID:3540953

  5. Brown as Personal Narrative

    ERIC Educational Resources Information Center

    Clark, Walter

    2004-01-01

    The Brown v. Board of Education decision was not specifically focused on postsecondary education; however, it helped facilitate minority admissions into predominantly White colleges and universities from the late 1950s onward. The Brown decision made many colleges and universities question whether diversity is a legitimate educational goal in…

  6. Astrophysics: Illuminating brown dwarfs

    NASA Astrophysics Data System (ADS)

    Showman, Adam P.

    2016-05-01

    Objects known as brown dwarfs are midway between stars and planets in mass. Observations of a hot brown dwarf irradiated by a nearby star will help to fill a gap in our knowledge of the atmospheres of fluid planetary objects. See Letter p.366

  7. WISE and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. Davy; WISE Team

    2009-05-01

    The search for the nearest and coolest brown dwarfs will use WISE's two short-wavelength channels (W1 and W2), which are optimized for brown dwarf detection. W1 samples the methane fundamental absorption band at 3.3 microns, and W2 measures the relatively opacity-free portion of the brown dwarf atmosphere near 4.7 microns. Cool brown dwarfs will thus have very red [W1]-[W2] colors, maximizing our chances of identifying them. Extrapolating preferred mass functions to very low masses and assuming that the star formation rate has been constant over the last 10 Gyr, we can predict the number of brown dwarfs WISE is expected to image. At spectral types later than T7 (Teff > 850K), WISE is expected to find 500 brown dwarfs, which makes WISE uniquely suited among future surveys to measure the low-mass limit of star formation for the first time. This sample will also show whether a new spectral class beyond T, dubbed "Y", is needed at the lowest temperatures. Although the primary six-month WISE mission will cover the entire sky once, WISE should have sufficient cryogen to perform a second, complete pass of the sky. In this case, the identification of nearby brown dwarfs need not rely solely on color selection. Kinematics (proper motion) and geometry (parallax) can also be used to distinguish our closest brown dwarf neighbors, one of which may lie less distant than Proxima Centauri or even fall within our own Oort Cloud.

  8. A fat option for the pig: Hepatocytic differentiated mesenchymal stem cells for translational research

    SciTech Connect

    Brückner, Sandra; Tautenhahn, Hans-Michael; Winkler, Sandra; Stock, Peggy; Dollinger, Matthias; Christ, Bruno

    2014-02-15

    Study background: Extended liver resection is the only curative treatment option of liver cancer. Yet, the residual liver may not accomplish the high metabolic and regenerative capacity needed, which frequently leads to acute liver failure. Because of their anti-inflammatory and -apoptotic as well as pro-proliferative features, mesenchymal stem cells differentiated into hepatocyte-like cells might provide functional and regenerative compensation. Clinical translation of basic research requires pre-clinical approval in large animals. Therefore, we characterized porcine mesenchymal stem cells (MSC) from adipose tissue and bone marrow and their hepatocyte differentiation potential for future assessment of functional liver support after surgical intervention in the pig model. Methods: Mesenchymal surface antigens and multi-lineage differentiation potential of porcine MSC isolated by collagenase digestion either from bone marrow or adipose tissue (subcutaneous/visceral) were assessed by flow cytometry. Morphology and functional properties (urea-, glycogen synthesis and cytochrome P450 activity) were determined during culture under differentiation conditions and compared with primary porcine hepatocytes. Results: MSC from porcine adipose tissue and from bone marrow express the typical mesenchymal markers CD44, CD29, CD90 and CD105 but not haematopoietic markers. MSC from both sources displayed differentiation into the osteogenic as well as adipogenic lineage. After hepatocyte differentiation, expression of CD105 decreased significantly and cells adopted the typical polygonal morphology of hepatocytes. Glycogen storage was comparable in adipose tissue- and bone marrow-derived cells. Urea synthesis was about 35% lower in visceral than in subcutaneous adipose tissue-derived MSC. Cytochrome P450 activity increased significantly during differentiation and was twice as high in hepatocyte-like cells generated from bone marrow as from adipose tissue. Conclusion: The hepatocyte

  9. The regulation of glucose on milk fat synthesis is mediated by the ubiquitin-proteasome system in bovine mammary epithelial cells.

    PubMed

    Liu, Lily; Jiang, Li; Ding, Xiang-dong; Liu, Jian-feng; Zhang, Qin

    2015-09-11

    Glucose as one of the nutrition factors plays a vital role in the regulation of milk fat synthesis. Ubiquitin-proteasome system (UPS) is a vital proteolytic pathway in all eukaryotic cells through timely marking, recognizing and degrading the poly-ubiquitinated protein substrates. Previous studies indicated that UPS plays a considerable role in controlling the triglyceride (TG) synthesis. Therefore, the aim of this study is to confirm the link between high-glucose and UPS and its regulation mechanism on milk fat synthesis in BMEC (bovine mammary epithelial cells). We incubated BMEC with normal (17.5 mm/L) and high-glucose (25 mm/L) with and without proteasome inhibitor epoxomicin and found that, compared with the control (normal glucose and without proteasome inhibitor), both high-glucose concentration and proteasome inhibitor epoxomicin could increase the accumulation of TG and poly-ubiquitinated proteins, and reduce significantly three proteasome activities (chymotrypsin-like, caspase-like, and trypsin-like). In addition, high-glucose concentration combined with proteasome inhibitor further enhanced the increase of the poly-ubiquitinated protein level and the decrease of proteasome activities. Our results suggest that the regulation of high-glucose on milk fat synthesis is mediated by UPS in BMEC, and high-glucose exposure could lead to a hypersensitization of BMEC to UPS inhibition which in turn results in increased milk fat synthesis.

  10. Tangeritin inhibits adipogenesis by down-regulating C/EBPα, C/EBPβ, and PPARγ expression in 3T3-L1 fat cells.

    PubMed

    He, Y F; Liu, F Y; Zhang, W X

    2015-10-29

    The treatment of obese patients is a topic investigated by an increasing number of researchers. This study aimed to elucidate the possible inhibitory effect of tangeritin on the development and function of fat cells. 3T3-L1 fat cells were grown to confluence and subjected to different concentrations of tangeritin. The most effective tangeritin inhibition concentration was determined by the MTT assay. The treated cells were subjected to real-time reverse transcriptase PCR and western blot analysis, to detect changes in the CCAAT/enhancer binding protein (C/EBP)α, C/EBPβ, and peroxisome proliferator activated receptor (PPAR)γ expression levels. The MTT assay revealed that the fat cell growth was inhibited at a 20 ng/mL concentration of tangeritin. The results of real-time PCR revealed a significant decrease in the expression of C/EBPα, C/EBPβ, and PPARγ mRNA, following the treatment with tangeritin. Western blot analysis also presented similar results at a protein level. Therefore, we concluded that tangeritin inhibits adipogenesis via the down-regulation of C/EBPα, C/EBPβ, and PPARγ mRNA and protein expression in 3T3-L1 cells.

  11. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy.

    PubMed

    Mori, Marcelo A; Thomou, Thomas; Boucher, Jeremie; Lee, Kevin Y; Lallukka, Susanna; Kim, Jason K; Torriani, Martin; Yki-Järvinen, Hannele; Grinspoon, Steven K; Cypess, Aaron M; Kahn, C Ronald

    2014-08-01

    miRNAs are important regulators of biological processes in many tissues, including the differentiation and function of brown and white adipocytes. The endoribonuclease dicer is a major component of the miRNA-processing pathway, and in adipose tissue, levels of dicer have been shown to decrease with age, increase with caloric restriction, and influence stress resistance. Here, we demonstrated that mice with a fat-specific KO of dicer develop a form of lipodystrophy that is characterized by loss of intra-abdominal and subcutaneous white fat, severe insulin resistance, and enlargement and "whitening" of interscapular brown fat. Additionally, KO of dicer in cultured brown preadipocytes promoted a white adipocyte-like phenotype and reduced expression of several miRNAs. Brown preadipocyte whitening was partially reversed by expression of miR-365, a miRNA known to promote brown fat differentiation; however, introduction of other miRNAs, including miR-346 and miR-362, also contributed to reversal of the loss of the dicer phenotype. Interestingly, fat samples from patients with HIV-related lipodystrophy exhibited a substantial downregulation of dicer mRNA expression. Together, these findings indicate the importance of miRNA processing in white and brown adipose tissue determination and provide a potential link between this process and HIV-related lipodystrophy.

  12. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy

    PubMed Central

    Mori, Marcelo A.; Thomou, Thomas; Boucher, Jeremie; Lee, Kevin Y.; Lallukka, Susanna; Kim, Jason K.; Torriani, Martin; Yki-Järvinen, Hannele; Grinspoon, Steven K.; Cypess, Aaron M.; Kahn, C. Ronald

    2014-01-01

    miRNAs are important regulators of biological processes in many tissues, including the differentiation and function of brown and white adipocytes. The endoribonuclease dicer is a major component of the miRNA-processing pathway, and in adipose tissue, levels of dicer have been shown to decrease with age, increase with caloric restriction, and influence stress resistance. Here, we demonstrated that mice with a fat-specific KO of dicer develop a form of lipodystrophy that is characterized by loss of intra-abdominal and subcutaneous white fat, severe insulin resistance, and enlargement and “whitening” of interscapular brown fat. Additionally, KO of dicer in cultured brown preadipocytes promoted a white adipocyte–like phenotype and reduced expression of several miRNAs. Brown preadipocyte whitening was partially reversed by expression of miR-365, a miRNA known to promote brown fat differentiation; however, introduction of other miRNAs, including miR-346 and miR-362, also contributed to reversal of the loss of the dicer phenotype. Interestingly, fat samples from patients with HIV-related lipodystrophy exhibited a substantial downregulation of dicer mRNA expression. Together, these findings indicate the importance of miRNA processing in white and brown adipose tissue determination and provide a potential link between this process and HIV-related lipodystrophy. PMID:24983316

  13. Not all fats are created equal: adipose vs. ectopic fat, implication in cardiometabolic diseases.

    PubMed

    Gaggini, Melania; Saponaro, Chiara; Gastaldelli, Amalia

    2015-04-01

    Adipose tissue is a recognized endocrine organ that acts not only as a fuel storage but also is able to secrete adipokines that can modulate inflammation. Most of the fat is composed of white adipocytes (WAT), although also brown/beige adipocytes (BAT/BeAT) have been found in humans. BAT is located close to the neck but also among WAT in the epicardial fat and perivascular fat. Adipocyte hypertrophy and infiltration of macrophages impair adipose tissue metabolism determining "adiposopathy" (i.e., sick fat) and increasing the risk to develop metabolic and cardiovascular diseases. The purpose of this review was to search and discuss the available literature on the impact of different types of fat and fat distribution on cardiometabolic risk. Visceral fat, but also ectopic fat, either in liver, muscle and heart, can increase the risk to develop insulin resistance, type 2 diabetes and cardiovascular diseases. Results recently published showed that BAT could have an impact on cardiometabolic risk, not only because it is implicated in energy metabolism but also because it can modulate glucose and lipid metabolism. Therapeutical interventions that can increase energy expenditure, successfully change fat distribution and reduce ectopic fat, also through BAT activation, were discussed. PMID:25816312

  14. Fat Characterization

    NASA Astrophysics Data System (ADS)

    Qian, Michael C.; Pike, Oscar A.

    Lipids in food are subjected to many chemical reactions during processing and storage. While some of these reactions are desirable, others are undesirable; so, efforts are made to minimize the reactions and their effects. The laboratory deals with the characterization of fats and oils with respect to composition, structure, and reactivity.

  15. Fat burn X: burning more than fat.

    PubMed

    Hannabass, Kyle; Olsen, Kevin Robert

    2016-01-01

    A 50-year-old man presented with a 2-day history of bilateral lower extremity cramping and dark urine. The patient was found to have a creatine phosphokinase (CPK) elevated of up to 2306 U/L, a serum uric acid of 9.7 mg/dL and 101 red blood cell's per high-powered field on urinalysis. On questioning, the patient endorsed daily exercise with free weights. There were no changes in his regular exercise and medication regimen, no muscle trauma, no recent drug use and no illness. The patient did mention using a new fat burner known as 'Fat Burn X', which he had begun taking 2 days prior to the onset of his muscle cramps. The patient was given normal saline intravenous fluid resuscitation for 48 h with resultant normalisation of his CPK and creatinine, and was discharged with primary care follow-up.

  16. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81.

    PubMed

    Liu, Changlu; Wu, Jiejun; Zhu, Jessica; Kuei, Chester; Yu, Jingxue; Shelton, Jonathan; Sutton, Steven W; Li, Xiaorong; Yun, Su Jin; Mirzadegan, Taraneh; Mazur, Curt; Kamme, Fredrik; Lovenberg, Timothy W

    2009-01-30

    Lactic acid is a well known metabolic by-product of intense exercise, particularly under anaerobic conditions. Lactate is also a key source of energy and an important metabolic substrate, and it has also been hypothesized to be a signaling molecule directing metabolic activity. Here we show that GPR81, an orphan G-protein-coupled receptor highly expressed in fat, is in fact a sensor for lactate. Lactate activates GPR81 in its physiological concentration range of 1-20 mM and suppresses lipolysis in mouse, rat, and human adipocytes as well as in differentiated 3T3-L1 cells. Adipocytes from GPR81-deficient mice lack an antilipolytic response to lactate but are responsive to other antilipolytic agents. Lactate specifically induces internalization of GPR81 after receptor activation. Site-directed mutagenesis of GPR81 coupled with homology modeling demonstrates that classically conserved key residues in the transmembrane binding domains are responsible for interacting with lactate. Our results indicate that lactate suppresses lipolysis in adipose tissue through a direct activation of GPR81. GPR81 may thus be an attractive target for the treatment of dyslipidemia and other metabolic disorders.

  17. The effect of an alendronate-eluting titanium system to induce osteogenic differentiation in human buccal fat cells (HBFCs)

    NASA Astrophysics Data System (ADS)

    Kim, Sung Eun; Lee, Su-Young; Yun, Young-Pil; Lee, Jae Yong; Park, Kyeongsoon; Lee, Deok-Won; Song, Hae-Ryong

    2012-10-01

    The purpose of this study was to develop alendronate (Aln)-eluting Ti substrates to induce osteogenic differentiation of human buccal fat cells (HBFCs). The surface of pristine Ti was modified by dopamine (DOPA) and then heparin was grafted onto the aminated Ti surfaces to achieve the Aln-eluting Ti system. Aln was subsequently immobilized on the surface of heparinized Ti (Hep-Ti). Pristine Ti and surface-modified-Ti were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. Osteogenic differentiation of HBFCs on the surface of pristine-Ti, Hep-Ti, Aln (1 mg)/Hep-Ti, and Aln (5 mg)/Hep-Ti was demonstrated by alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin and osteopontin mRNA expression. Successful immobilization of Aln on Hep-Ti was confirmed by XPS and contact angle. Aln/Hep-Ti showed the sustained release for up to 28 days. Additionally, HBFCs cultured on Aln/Hep-Ti substrates showed significantly induced ALP activity, calcium deposition, and osteocalcin and osteopontin mRNA expression. These results suggest that Aln-eluting Ti substrates have a potential effect on osteogenic differentiation of HBFCs and will be a promising material for bone regeneration.

  18. Hypoxia Promotes the Inflammatory Response and Stemness Features in Visceral Fat Stem Cells From Obese Subjects.

    PubMed

    Petrangeli, Elisa; Coroniti, Giuseppe; Brini, Anna T; de Girolamo, Laura; Stanco, Deborah; Niada, Stefania; Silecchia, Gianfranco; Morgante, Emanuela; Lubrano, Carla; Russo, Matteo A; Salvatori, Luisa

    2016-03-01

    Low-grade chronic inflammation is a salient feature of obesity and many associated disorders. This condition frequently occurs in central obesity and is connected to alterations of the visceral adipose tissue (AT) microenvironment. Understanding how obesity is related to inflammation may allow the development of therapeutics aimed at improving metabolic parameters in obese patients. To achieve this aim, we compared the features of two subpopulations of adipose-derived stem cells (ASC) isolated from both subcutaneous and visceral AT of obese patients with the features of two subpopulations of ASC from the same isolation sites of non-obese individuals. In particular, the behavior of ASC of obese versus non-obese subjects during hypoxia, which occurs in obese AT and is an inducer of the inflammatory response, was evaluated. Obesity deeply influenced ASC from visceral AT (obV-ASC); these cells appeared to exhibit clearly distinguishable morphology and ultrastructure as well as reduced proliferation, clonogenicity and expression of stemness, differentiation and inflammation-related genes. These cells also exhibited a deregulated response to hypoxia, which induced strong tissue-specific NF-kB activation and an NF-kB-mediated increase in inflammatory and fibrogenic responses. Moreover, obV-ASC, which showed a less stem-like phenotype, recovered stemness features after hypoxia. Our findings demonstrated the peculiar behavior of obV-ASC, their influence on the obese visceral AT microenvironment and the therapeutic potential of NF-kB inhibitors. These novel findings suggest that the deregulated hyper-responsiveness to hypoxic stimulus of ASC from visceral AT of obese subjects may contribute via paracrine mechanisms to low-grade chronic inflammation, which has been implicated in obesity-related morbidity.

  19. NOX1-induced accumulation of reactive oxygen species in abdominal fat-derived mesenchymal stromal cells impinges on long-term proliferation.

    PubMed

    Sela, M; Tirza, G; Ravid, O; Volovitz, I; Solodeev, I; Friedman, O; Z