Sample records for brown trout complex

  1. Complex interaction between proliferative kidney disease, water temperature and concurrent nematode infection in brown trout.

    PubMed

    Schmidt-Posthaus, Heike; Steiner, Pascale; Müller, Barbara; Casanova-Nakayama, Ayako

    2013-04-29

    Proliferative kidney disease (PKD) is a temperature-dependent disease caused by the myxozoan Tetracapsuloides bryosalmonae. It is an emerging threat to wild brown trout Salmo trutta fario populations in Switzerland. Here we examined (1) how PKD prevalence and pathology in young-of-the-year (YOY) brown trout relate to water temperature, (2) whether wild brown trout can completely recover from T. bryosalmonae-induced renal lesions and eliminate T. bryosalmonae over the winter months, and (3) whether this rate and/or extent of the recovery is influenced by concurrent infection. A longitudinal field study on a wild brown trout cohort was conducted over 16 mo. YOY and age 1+ fish were sampled from 7 different field sites with various temperature regimes, and monitored for infection with T. bryosalmonae and the nematode Raphidascaris acus. T. bryosamonae was detectable in brown trout YOY from all sampling sites, with similar renal pathology, independent of water temperature. During winter months, recovery was mainly influenced by the presence or absence of concurrent infection with R. acus larvae. While brown trout without R. acus regenerated completely, concurrently infected brown trout showed incomplete recovery, with chronic renal lesions and incomplete translocation of T. bryosalmonae from the renal interstitium into the tubular lumen. Water temperature seemed to influence complete excretion of T. bryosalmonae, with spores remaining in trout from summer-warm rivers, but absent in trout from summer-cool rivers. In the following summer months, we found PKD infections in 1+ brown trout from all investigated river sites. The pathological lesions indicated a re-infection rather than a proliferation of remaining T. bryosalmonae. However, disease prevalence in 1+ trout was lower than in YOY.

  2. Does the introduced brook trout ( Salvelinus fontinalis) affect growth of the native brown trout ( Salmo trutta)?

    NASA Astrophysics Data System (ADS)

    Korsu, Kai; Huusko, Ari; Muotka, Timo

    2009-03-01

    Non-native brook trout have become widely established in North European streams. We combined evidence from an artificial-stream experiment and drainage-scale field surveys to examine whether brook trout suppressed the growth of the native brown trout (age 0 to age 2). Our experimental results demonstrated that brown trout were unaffected by the presence of brook trout but that brook trout showed reduced growth in the presence of brown trout. However, the growth reduction only appeared in the experimental setting, indicating that the reduced spatial constraint of the experimental system may have forced the fish to unnaturally intense interactions. Indeed, in the field, no effect of either species on the growth of the putative competitor was detected. These results caution against uncritical acceptance of findings from small-scale experiments because they rarely scale up to more complex field situations. This and earlier work suggest that the establishment of brook trout in North European streams has taken place mainly because of the availability of unoccupied (or underutilized) niche space, rather than as a result of species trait combinations or interspecific competition per se.

  3. Differential modulation of host genes in the kidney of brown trout Salmo trutta during sporogenesis of Tetracapsuloides bryosalmonae (Myxozoa).

    PubMed

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour

    2014-10-04

    Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. In Europe, spores of T. bryosalmonae develop in the kidney of infected brown trout Salmo trutta and are released via urine to infect the freshwater bryozoan Fredericella sultana. The transcriptomes of kidneys of infected and non-infected brown trout were compared by suppressive subtractive hybridization. Differential screening and a subsequent NCBI BLAST analysis of expressed sequence tags revealed 21 transcripts with functions that included cell stress and cell growth, ribonucleoprotein, signal transduction, ion transporter, immune response, hemoglobin and calcium metabolisms. Quantitative real time PCR was used to verify the presence of these selected transcripts in brown trout kidney at sporogonic stages of T. bryosalmonae development. Expression of cold-inducible RNA-binding protein, cyclin-dependent kinase inhibitor 2A, prothymosin alpha, transforming protein RhoA, immunoglobulin light chain and major histocompatibility complex class I were up-regulated significantly in infected brown trout. Expression of both the hemoglobin subunit beta and stanniocalcin precursor were down-regulated significantly in infected brown trout. This study suggests that cell stress and cell growth processes, signal transduction activities, erythropoiesis and calcium homeostasis of the host are modulated during sporogonic stages of parasite development, which may support the sporogenesis of T. bryosalmonae in the kidney of brown trout.

  4. Broad-scale patterns of Brook Trout responses to introduced Brown Trout in New York

    USGS Publications Warehouse

    McKenna, James E.; Slattery, Michael T.; Kean M. Clifford,

    2013-01-01

    Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta are valuable sport fish that coexist in many parts of the world due to stocking introductions. Causes for the decline of Brook Trout within their native range are not clear but include competition with Brown Trout, habitat alteration, and repetitive stocking practices. New York State contains a large portion of the Brook Trout's native range, where both species are maintained by stocking and other management actions. We used artificial neural network models, regression, principal components analysis, and simulation to evaluate the effects of Brown Trout, environmental conditions, and stocking on the distribution of Brook Trout in the center of their native range. We found evidence for the decline of Brook Trout in the presence of Brown Trout across many watersheds; 22% of sampled reaches where both species were expected to occur contained only Brown Trout. However, a model of the direct relationship between Brook Trout and Brown Trout abundance explained less than 1% of data variation. Ordination showed extensive overlap of Brook Trout and Brown Trout habitat conditions, with only small components of the hypervolume (multidimensional space) being distinctive. Subsequent analysis indicated higher abundances of Brook Trout in highly forested areas, while Brown Trout were more abundant in areas with relatively high proportions of agriculture. Simulation results indicated that direct interactions and habitat conditions were relatively minor factors compared with the effects of repeated stocking of Brown Trout into Brook Trout habitat. Intensive annual stocking of Brown Trout could eliminate resident Brook Trout in less than a decade. Ecological differences, harvest behavior, and other habitat changes can exacerbate Brook Trout losses. Custom stocking scenarios with Brown Trout introductions at relatively low proportions of resident Brook Trout populations may be able to sustain healthy populations of both species within their present range.

  5. Range and movement of resident holdover and hatchery brown trout tagged with radio transmitters in the Farmington River, Connecticut

    USGS Publications Warehouse

    Popoff, N.D.; Neumann, Robert M.

    2005-01-01

    The 5.8-km West Branch Farmington River Trout Management Area (TMA) is one of Connecticut's premier catch-and-release fisheries for brown trout Salmo trutta. However, little is known about the behavior of brown trout in this system and to what extent brown trout emigrate from the TMA. The objectives of this study were to determine the movement, range, and emigration of resident holdover and newly stocked brown trout tagged with radio transmitters in the TMA. Transmitters were implanted into 22 first-year (mean total length = 314 mm) and 25 second-year (mean total length = 432 mm) holdover brown trout. Twenty catchable-size (mean total length = 290 mm) brown trout were also implanted with transmitters and released into the TMA. The mean range (distance between the extreme upstream and downstream locations) was greater for second-year holdover brown trout than for first-year holdover brown trout, and it was greater in fall than in winter. The movement (distance moved between successive locations) of holdover brown trout was greater in fall than in winter. Movement of first-year holdover brown trout was significantly related to discharge, water temperature, and the number of days between successive locations. Newly stocked brown trout exhibited the two largest ranges (5.3 and 4.7 km). The range of newly stocked brown trout was not different between seasons, but movement was greater in spring than in summer. Through 16 weeks poststocking, there was no discernable difference in the percentage of stocked brown trout dispersing in a predominantly upstream or downstream direction. Mean dispersal distances from the stocking location were 0.5 and 0.9 km at 2 and 12 weeks poststocking, respectively. Movement of newly stocked brown trout was positively related to discharge and negatively related to water temperature. A known 6% (4 of 67) of the tagged brown trout emigrated from the TMA, but up to 21% (14 of 67) of tagged fish could have left the study area if all missing fish were emigrants. ?? Copyright by the American Fisheries Society 2005.

  6. Brown Trout removal effects on short-term survival and movement of Myxobolus cerebralis-resistant rainbow trout

    USGS Publications Warehouse

    Fetherman, Eric R.; Winkelman, Dana L.; Bailey, Larissa L.; Schisler, George J.; Davies, K.

    2015-01-01

    Following establishment of Myxobolus cerebralis (the parasite responsible for salmonid whirling disease) in Colorado, populations of Rainbow Trout Oncorhynchus mykissexperienced significant declines, whereas Brown Trout Salmo trutta densities increased in many locations across the state, potentially influencing the success of M. cerebralis-resistant Rainbow Trout reintroductions. We examined the effects of Brown Trout removal on the short-term (3-month) survival and movement of two crosses of reintroduced, M. cerebralis-resistant Rainbow Trout in the Cache la Poudre River, Colorado. Radio frequency identification passive integrated transponder tags and antennas were used to track movements of wild Brown Trout and stocked Rainbow Trout in reaches where Brown Trout had or had not been removed. Multistate mark–recapture models were used to estimate tagged fish apparent survival and movement in these sections 3 months following Brown Trout removal. A cross between the German Rainbow Trout and Colorado River Rainbow Trout strains exhibited similar survival and movement probabilities in the reaches, suggesting that the presence of Brown Trout did not affect its survival or movement. However, a cross between the German Rainbow Trout and Harrison Lake Rainbow Trout exhibited less movement from the reach in which Brown Trout had been removed. Despite this, the overall short-term benefits of the removal were equivocal, suggesting that Brown Trout removal may not be beneficial for the reintroduction of Rainbow Trout. Additionally, the logistical constraints of conducting removals in large river systems are substantial and may not be a viable management option in many rivers.

  7. A Dense Brown Trout (Salmo trutta) Linkage Map Reveals Recent Chromosomal Rearrangements in the Salmo Genus and the Impact of Selection on Linked Neutral Diversity

    PubMed Central

    Leitwein, Maeva; Guinand, Bruno; Pouzadoux, Juliette; Desmarais, Erick; Berrebi, Patrick; Gagnaire, Pierre-Alexandre

    2017-01-01

    High-density linkage maps are valuable tools for conservation and eco-evolutionary issues. In salmonids, a complex rediploidization process consecutive to an ancient whole genome duplication event makes linkage maps of prime importance for investigating the evolutionary history of chromosome rearrangements. Here, we developed a high-density consensus linkage map for the brown trout (Salmo trutta), a socioeconomically important species heavily impacted by human activities. A total of 3977 ddRAD markers were mapped and ordered in 40 linkage groups using sex- and lineage-averaged recombination distances obtained from two family crosses. Performing map comparison between S. trutta and its sister species, S. salar, revealed extensive chromosomal rearrangements. Strikingly, all of the fusion and fission events that occurred after the S. salar/S. trutta speciation happened in the Atlantic salmon branch, whereas the brown trout remained closer to the ancestral chromosome structure. Using the strongly conserved synteny within chromosome arms, we aligned the brown trout linkage map to the Atlantic salmon genome sequence to estimate the local recombination rate in S. trutta at 3721 loci. A significant positive correlation between recombination rate and within-population nucleotide diversity (π) was found, indicating that selection constrains variation at linked neutral sites in brown trout. This new high-density linkage map provides a useful genomic resource for future aquaculture, conservation, and eco-evolutionary studies in brown trout. PMID:28235829

  8. Interactions of slimy sculpin (Cottus cognatus) with native and nonnative trout: Consequences for growth

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Vondracek, B.

    2006-01-01

    We examined growth of native slimy sculpin (Cottus cognatus), native brook trout (Salvelinus fontinalis), and nonnative brown trout (Salmo trutta) to investigate potential interactions of a native nongame fish with native and nonnative trout. Enclosures (1 m2) were stocked with five treatments (juvenile brown trout with sculpin, juvenile brook trout with sculpin, and single species controls) at three densities. Treatments (with replication) were placed in riffles in Valley Creek, Minnesota, and growth rates were measured for six experiments. We examined the difference in growth of each species in combined species treatments compared with each species alone. We did not find evidence of interactions between brook trout and sculpin, regardless of density or fish size. However, sculpin gained greater mass when alone than with brown trout when sculpin were >16 g. Likewise, brown trout grew more when alone than with sculpin when brown trout were >24 g. In contrast, brown trout ???5 g grew more with sculpin compared with treatments alone. We suggest that native brook trout and sculpin coexist without evidence of competition, whereas nonnative brown trout may compete with sculpin. ?? 2006 NRC.

  9. Fate of Tetracapsuloides bryosalmonae (Myxozoa) after infection of brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss.

    PubMed

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; Saleh, Mona; El-Matbouli, Mansour

    2013-11-25

    Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in salmonids. We assessed differences in intensity of T. bryosalmonae infection between brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss from the clinical phase of infection onwards. Specific pathogen-free fish were exposed to T. bryosalmonae spores under controlled laboratory conditions and sampled at 6, 8, 10, 12, 14, and 17 wk post exposure (wpe), and the transmission of T. bryosalmonae from infected fish to the bryozoan Fredericella sultana was observed. Parasite load was determined in fish kidneys by quantitative real-time PCR (qRT-PCR), and parasite stages were detected in kidney, liver, and spleen tissues at different time points by immunohistochemistry. T. bryosalmonae was successfully transmitted from infected brown trout to F. sultana colonies but not from infected rainbow trout. Body length and weight of infected brown trout did not differ significantly from control brown trout during all time points, while length and weight of infected rainbow trout differed significantly compared to controls from 10 to 17 wpe. qRT-PCR revealed that parasite load was significantly higher in kidneys of brown trout compared with rainbow trout. Immunohistochemistry showed high numbers of intra-luminal stages (sporogonic stages) in kidneys of brown trout with low numbers of pre-sporogonic stages. Sporogonic stages were not seen in kidneys of rainbow trout; only high numbers of pre-sporogonic stages were detected. Numbers of pre-sporogonic stages were low in the spleen and liver of brown trout but high in rainbow trout. These data confirmed that there are differences in the development and infection progress of T. bryosalmonae between brown trout and rainbow trout.

  10. Fate of Tetracapsuloides bryosalmonae (Myxozoa) after infection of brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss

    PubMed Central

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; Saleh, Mona; El-Matbouli, Mansour

    2014-01-01

    Tetracapsuloides bryosalmonae (Myxozoa) is the causative agent of proliferative kidney disease in salmonids. We assessed differences in intensity of T. bryosalmonae infection between brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss from the clinical phase of infection onwards. Specific pathogen-free fish were exposed to T. bryosalmonae spores under controlled laboratory conditions and sampled at 6, 8, 10, 12, 14, and 17 wk post exposure (wpe), and the transmission of T. bryosalmonae from infected fish to the bryozoan Fredericella sultana was observed. Parasite load was determined in fish kidneys by quantitative real-time PCR (qRT-PCR), and parasite stages were detected in kidney, liver, and spleen tissues at different time points by immunohistochemistry. T. bryosalmonae was successfully transmitted from infected brown trout to F. sultana colonies but not from infected rainbow trout. Body length and weight of infected brown trout did not differ significantly from control brown trout during all time points, while length and weight of infected rainbow trout differed significantly compared to controls from 10 to 17 wpe. qRT-PCR revealed that parasite load was significantly higher in kidneys of brown trout compared with rainbow trout. Immunohistochemistry showed high numbers of intra-luminal stages (sporogonic stages) in kidneys of brown trout with low numbers of pre-sporogonic stages. Sporogonic stages were not seen in kidneys of rainbow trout; only high numbers of pre-sporogonic stages were detected. Numbers of pre-sporogonic stages were low in the spleen and liver of brown trout but high in rainbow trout. These data confirmed that there are differences in the development and infection progress of T. bryosalmonae between brown trout and rainbow trout. PMID:24270019

  11. Regulation of an unexploited brown trout population in Spruce Creek, Pennsylvania

    USGS Publications Warehouse

    Carline, R.F.

    2006-01-01

    The purpose of this paper is to describe the annual variations in the density of an unexploited population of lotic brown trout Salmo trutta that has been censused annually for 19 years and to explore the importance of density-independent and density-dependent processes in regulating population size. Brown trout density and indices of stream discharge and water temperature were related to annual variations in natural mortality, recruitment, and growth. Annual mortality of age-1 and older (age-1+) brown trout ranged from 0.30 to 0.75 and was best explained by discharge during spring and by brown trout density. Recruitment to age 1 varied fivefold. Density of age-1 brown trout was inversely related to spawner density and positively related to discharge during the fall spawning period. The median length of age-1 brown trout was positively related to discharge during summer and fall. Relative weight was inversely related to the density of age-2+ brown trout. The interactive effects of discharge and brown trout density accounted for most of the annual variation in mortality, recruitment, and growth during the first year of life. Annual trends in the abundance of age-1+ brown trout were largely dictated by natural mortality. ?? Copyright by the American Fisheries Society 2006.

  12. Are brown trout replacing or displacing bull trout populations in a changing climate?

    USGS Publications Warehouse

    Al-Chokhachy, Robert K.; Schmetterling, David A.; Clancy, Chris; Saffel, Pat; Kovach, Ryan; Nyce, Leslie; Liermann, Brad; Fredenberg, Wade A.; Pierce, Ron

    2016-01-01

    Understanding how climate change may facilitate species turnover is an important step in identifying potential conservation strategies. We used data from 33 sites in western Montana to quantify climate associations with native bull trout (Salvelinus confluentus) and non-native brown trout (Salmo trutta) abundance and population growth rates (λ). We estimated λ using exponential growth state space models and delineated study sites based on bull trout use for either Spawning and Rearing (SR) or Foraging, Migrating, and Overwintering (FMO) habitat. Bull trout abundance was negatively associated with mean August stream temperatures within SR habitat (r = -0.75). Brown trout abundance was generally highest at temperatures between 12 and 14°C. We found bull trout λ were generally stable at sites with mean August temperature below 10°C but significantly decreasing, rare, or extirpated at 58% of the sites with temperatures exceeding 10°C. Brown trout λ were highest in SR and sites with temperatures exceeding 12°C. Declining bull trout λs at sites where brown trout were absent suggests brown trout are likely replacing bull trout in a warming climate.

  13. Relative Weight of Brown Trout and Lake Trout in Blue Mesa Reservoir, Colorado

    DTIC Science & Technology

    2012-01-27

    Published data concerning the standard weight in lake trout (Salvelinus namaycush) and brown trout (salmo trutta) have been established. The...standard weights can be used to compute relative weights for data collected in the spring and summer of 2011 for brown trout and lake trout in the Blue Mesa...Reservoir, Colorado. The mean relative weight of a sample of 100 brown trout ranging in length from 260 to 432 mm was 80.01 +/- 0.74, showing that the

  14. Fall and winter survival of brook trout and brown trout in a north-central Pennsylvania watershed

    USGS Publications Warehouse

    Sweka, John A.; Davis, Lori A.; Wagner, Tyler

    2017-01-01

    Stream-dwelling salmonids that spawn in the fall generally experience their lowest survival during the fall and winter due to behavioral changes associated with spawning and energetic deficiencies during this time of year. We used data from Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta implanted with radio transmitters in tributaries of the Hunts Run watershed of north-central Pennsylvania to estimate survival from the fall into the winter seasons (September 2012–February 2013). We examined the effects that individual-level covariates (trout species, size, and movement rates) and stream-level covariates (individual stream and cumulative drainage area of a stream) have on survival. Brook Trout experienced significantly lower survival than Brown Trout, especially in the early fall during their peak spawning period. Besides a significant species effect, none of the other covariates examined influenced survival for either species. A difference in life history between these species, with Brook Trout having a shorter life expectancy than Brown Trout, is likely the primary reason for the lower survival of Brook Trout. However, Brook Trout also spawn earlier in the fall than Brown Trout and low flows during Brook Trout spawning may have resulted in a greater risk of predation for Brook Trout compared with Brown Trout, thereby also contributing to the observed differences in survival between these species. Our estimates of survival can aid parameterization of future population models for Brook Trout and Brown Trout through the spawning season and into winter.

  15. Interspecific interactions between brown trout and slimy sculpin in stream enclosures

    USGS Publications Warehouse

    Ruetz, C. R.; Hurford, A.L.; Vondracek, B.

    2003-01-01

    We conducted a 30-d manipulative experiment in Valley Creek, Minnesota, to examine interspecific interactions between juvenile brown trout Salmo trutta and adult slimy sculpin Cottus cognatus. We measured the instantaneous growth of each species in the presence and absence of the other in 1-m2 enclosures. We tested single-species (three slimy sculpins/m2 or three brown trout/m2) and combined-species (three sculpins/m2 and three trout/m2) combinations in each of six riffles. We placed a clay tile in each enclosure to evaluate the effects of fish combinations on benthic macroinvertebrates. Growth of brown trout was unaffected by the presence of slimy sculpins (P = 0.647, power [to detect 50% increase in growth] = 0.92), whereas slimy sculpin growth was less in the presence of brown trout (P = 0.038). Densities of total benthic macroinvertebrates, Chironomidae, Trichoptera, and Physa did not differ among fish combinations (P > 0.3). However, densities of Gammarus pseudolimnaeus were significantly less in the presence of brown trout irrespective of the presence of slimy sculpins (P = 0.024), which could be a causal factor underlying the interaction between brown trout and slimy sculpins. We found asymmetrical competition between brown trout and slimy sculpins in stream enclosures, with brown trout being the superior competitor. Nevertheless, the size of enclosures may have biased our results, making it more likely to detect an effect of brown trout on slimy sculpins than vice versa.

  16. Mink predation on brown trout in a Black Hills stream

    USGS Publications Warehouse

    Davis, Jacob L.; Wilhite, Jerry W.; Chipps, Steven R.

    2016-01-01

    In the early 2000’s, declines in the brown trout (Salmo trutta) fishery in Rapid Creek, South Dakota, caused concern for anglers and fisheries managers. We conducted a radio telemetry study in 2010 and 2011 to identify predation mortality associated with mink, using hatchery-reared (2010) or wild (2011) brown trout. Estimated predation rates by mink (Mustela vison) on radio-tagged brown trout were 30% for hatchery fish and 32% for wild fish. Size frequency analysis revealed that the size distribution of brown trout lost to predation was similar to that of other, radio-tagged brown trout. In both years, a higher proportion of predation mortality (83–92%) occurred during spring, consistent with seasonal fish consumption by mink. Predation by mink appeared to be a significant source of brown trout mortality in our study.

  17. Brown trout as an invader: A synthesis of problems and perspectives in western North America: Chapter 20

    USGS Publications Warehouse

    Budy, Phaedra; Gaeta, Jereme W.; Lobón-Cerviá, Javier; Sanz, Nuria

    2017-01-01

    Brown trout are one of the most pervasive and successful invaders worldwide and are ubiquitous across the Intermountain West, USA (IMW). This species is the foundation of extremely popular and economically significant sport fisheries despite well-established negative effects on native fishes and ecosystems, resulting in very challenging, and often opposing, conservation and management goals. Herein, we review the direct (e.g., competition and predation) and indirect (e.g., disease vectors) pathways through which brown trout across the IMW have posed a threat to native species. We discuss the importance of brown trout as economically and culturally important fisheries, especially in novel tailwater ecosystems created by damming. To this end, we surveyed 24 experts from eight states across the IMW to document the relevance of novel brown trout fisheries in 51 tailwaters and found brown trout are thriving in these novel ecosystems, which are often unsuitable for native fishes. We discuss the challenging interplay between protecting native species and managing novel brown trout fisheries. Notably, the future of exotic brown trout in the IMW is shifting as the prestige of native fisheries is growing and many non-native eradication efforts have occurred. The future of exotic brown trout in the IMW, will depend on the nexus of public sentiment and policy, the effectiveness of eradication efforts, and the effect of climate change on both the native fishes and exotic brown trout. Regardless, because brown trout are pervasive and have a broad distribution through the IMW, populations of this species will likely persist at least in some locations into the future.

  18. Spatial and temporal movement dynamics of brook Salvelinus fontinalis and brown trout Salmo trutta

    USGS Publications Warehouse

    Davis, L.A.; Wagner, Tyler; Barton, Meredith L.

    2015-01-01

    Native eastern brook trout Salvelinus fontinalis and naturalized brown trout Salmo trutta occur sympatrically in many streams across the brook trout’s native range in the eastern United States. Understanding within- among-species variability in movement, including correlates of movement, has implications for management and conservation. We radio tracked 55 brook trout and 45 brown trout in five streams in a north-central Pennsylvania, USA watershed to quantify the movement of brook trout and brown trout during the fall and early winter to (1) evaluate the late-summer, early winter movement patterns of brook trout and brown trout, (2) determine correlates of movement and if movement patterns varied between brook trout and brown trout, and (3) evaluate genetic diversity of brook trout within and among study streams, and relate findings to telemetry-based observations of movement. Average total movement was greater for brown trout (mean ± SD = 2,924 ± 4,187 m) than for brook trout (mean ± SD = 1,769 ± 2,194 m). Although there was a large amount of among-fish variability in the movement of both species, the majority of movement coincided with the onset of the spawning season, and a threshold effect was detected between stream flow and movement: where movement increased abruptly for both species during positive flow events. Microsatellite analysis of brook trout revealed consistent findings to those found using radio-tracking, indicating a moderate to high degree of gene flow among brook trout populations. Seasonal movement patterns and the potential for relatively large movements of brook and brown trout highlight the importance of considering stream connectivity when restoring and protecting fish populations and their habitats.

  19. Brook trout use of thermal refugia and foraging habitat influenced by brown trout

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Snook, Erin; Massie, Danielle L.

    2017-01-01

    The distribution of native brook trout (Salvelinus fontinalis) in eastern North America is often limited by temperature and introduced brown trout (Salmo trutta), the relative importance of which is poorly understood but critical for conservation and restoration planning. We evaluated effects of brown trout on brook trout behavior and habitat use in experimental streams across increasing temperatures (14–23 °C) with simulated groundwater upwelling zones providing thermal refugia (6–9 °C below ambient temperatures). Allopatric and sympatric trout populations increased their use of upwelling zones as ambient temperatures increased, demonstrating the importance of groundwater as thermal refugia in warming streams. Allopatric brook trout showed greater movement rates and more even spatial distributions within streams than sympatric brook trout, suggesting interference competition by brown trout for access to forage habitats located outside thermal refugia. Our results indicate that removal of introduced brown trout may facilitate native brook trout expansion and population viability in downstream reaches depending in part on the spatial configuration of groundwater upwelling zones.

  20. Influence of Didymosphenia geminata blooms on prey composition and associated diet and growth of Brown Trout

    USGS Publications Warehouse

    James, Daniel A.; Chipps, Steven R.

    2016-01-01

    We compared diet, stomach fullness, condition, and growth of Brown Trout Salmo trutta among streams with or without blooms of the benthic diatom Didymosphenia geminata in the Black Hills, South Dakota. In Rapid Creek, where D. geminata blooms covered ∼30% of the stream bottom, Brown Trout consumed fewer ephemeropterans (6–8% by weight) than individuals from two stream sections that have not had D. geminatablooms (Castle and Spearfish creeks; 13–39% by weight). In contrast, dipterans (primarily Chironomidae) represented a larger percentage of Brown Trout diets from Rapid Creek (D. geminata blooms present; 16–28% dry weight) compared with diets of trout from streams without D. geminata blooms (6–19% dry weight). Diets of small Brown Trout (100–199 mm TL) reflected the invertebrate species composition in benthic stream samples; in Rapid Creek, ephemeropterans were less abundant whereas dipterans were more abundant than in streams without D. geminata blooms. Stomach fullness and condition of Brown Trout from Rapid Creek were generally greater than those of Brown Trout from other populations. Linkages among invertebrate availability, diet composition, and condition of Brown Trout support the hypothesis that changes in invertebrate assemblages associated with D. geminata (i.e., more Chironomidae) could be contributing to high recruitment success for small Brown Trout in Rapid Creek.

  1. Comparative study of proliferative kidney disease in grayling Thymallus thymallus and brown trout Salmo trutta fario: an exposure experiment.

    PubMed

    Schmidt-Posthaus, Heike; Ros, Albert; Hirschi, Regula; Schneider, Ernst

    2017-03-21

    Proliferative kidney disease (PKD) is an emerging disease threatening wild salmonid populations, with the myxozoan parasite Tetracapsuloides bryosalmonae as the causative agent. Species differences in parasite susceptibility and disease-induced mortality seem to exist. The aim of the present study was to compare incidence, pathology and mortality of PKD in grayling Thymallus thymallus and brown trout Salmo trutta under identical semi-natural conditions. Young-of-the-year grayling and brown trout, free of T. bryosalmonae, were jointly exposed in cage compartments in a river in the northeast of Switzerland during 3 summer months. Wild brown trout were caught by electrofishing near the cage, and PKD status was compared with that of caged animals. Cage-exposed grayling showed a PKD incidence of 1%, regardless of whether parasite infection was determined by means of real-time PCR or histopathology/immunohistochemistry. In contrast, PKD incidence of caged brown trout was 77%. This value was not significantly different to PKD prevalence of wild brown trout caught above and below the cage (60 and 91%, respectively). Mortality in grayling was significantly higher compared with that of brown trout (40 versus 23%); however, grayling mortality was not considered to be associated with PKD. Mortality of caged and infected brown trout was significantly higher than mortality of non-infected caged trout. Histopathology indicated an ongoing mostly acute or chronic active infection in brown trout, which survived until the end of exposure. The results suggest that grayling are less susceptible to infection with T. bryosalmonae compared with brown trout under the tested field conditions.

  2. Responses of tadpoles to hybrid predator odours: strong maternal signatures and the potential risk/response mismatch

    PubMed Central

    Chivers, Douglas P.; Mathiron, Anthony; Sloychuk, Janelle R.; Ferrari, Maud C. O.

    2015-01-01

    Previous studies have established that when a prey animal knows the identity of a particular predator, it can use this knowledge to make an ‘educated guess' about similar novel predators. Such generalization of predator recognition may be particularly beneficial when prey are exposed to introduced and invasive species of predators or hybrids. Here, we examined generalization of predator recognition for woodfrog tadpoles exposed to novel trout predators. Tadpoles conditioned to recognize tiger trout, a hybrid derived from brown trout and brook trout, showed generalization of recognition of several unknown trout odours. Interestingly, the tadpoles showed stronger responses to odours of brown trout than brook trout. In a second experiment, we found that tadpoles trained to recognize brown trout showed stronger responses to tiger trout than those tadpoles trained to recognize brook trout. Given that tiger trout always have a brown trout mother and a brook trout father, these results suggest a strong maternal signature in trout odours. Tadpoles that were trained to recognize both brown trout and brook trout showed stronger response to novel tiger trout than those trained to recognize only brown trout or only brook trout. This is consistent with a peak shift in recognition, whereby cues that are intermediate between two known cues evoke stronger responses than either known cue. Given that our woodfrog tadpoles have no evolutionary or individual experience with trout, they have no way of knowing whether or not brook trout, brown trout or tiger trout are more dangerous. The differential intensity of responses that we observed to hybrid trout cues and each of the parental species indicates that there is a likely mismatch between risk and anti-predator response intensity. Future work needs to address the critical role of prey naivety on responses to invasive and introduced hybrid predators. PMID:26041358

  3. Landscape-scale evaluation of asymmetric interactions between Brown Trout and Brook Trout using two-species occupancy models

    USGS Publications Warehouse

    Wagner, Tyler; Jefferson T. Deweber,; Jason Detar,; John A. Sweka,

    2013-01-01

    Predicting the distribution of native stream fishes is fundamental to the management and conservation of many species. Modeling species distributions often consists of quantifying relationships between species occurrence and abundance data at known locations with environmental data at those locations. However, it is well documented that native stream fish distributions can be altered as a result of asymmetric interactions between dominant exotic and subordinate native species. For example, the naturalized exotic Brown Trout Salmo trutta has been identified as a threat to native Brook Trout Salvelinus fontinalis in the eastern United States. To evaluate large-scale patterns of co-occurrence and to quantify the potential effects of Brown Trout presence on Brook Trout occupancy, we used data from 624 stream sites to fit two-species occupancy models. These models assumed that asymmetric interactions occurred between the two species. In addition, we examined natural and anthropogenic landscape characteristics we hypothesized would be important predictors of occurrence of both species. Estimated occupancy for Brook Trout, from a co-occurrence model with no landscape covariates, at sites with Brown Trout present was substantially lower than sites where Brown Trout were absent. We also observed opposing patterns for Brook and Brown Trout occurrence in relation to percentage forest, impervious surface, and agriculture within the network catchment. Our results are consistent with other studies and suggest that alterations to the landscape, and specifically the transition from a forested catchment to one that contains impervious surface or agriculture, reduces the occurrence probability of wild Brook Trout. Our results, however, also suggest that the presence of Brown Trout results in lower occurrence probability of Brook Trout over a range of anthropogenic landscape characteristics, compared with streams where Brown Trout were absent.

  4. Identification of differentially expressed genes of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in response to Tetracapsuloides bryosalmonae (Myxozoa).

    PubMed

    Kumar, Gokhlesh; Abd-Elfattah, Ahmed; El-Matbouli, Mansour

    2015-03-01

    Tetracapsuloides bryosalmonae Canning et al., 1999 (Myxozoa) is the causative agent of proliferative kidney disease in various species of salmonids in Europe and North America. We have shown previously that the development and distribution of the European strain of T. bryosalmonae differs in the kidney of brown trout (Salmo trutta) Linnaeus, 1758 and rainbow trout (Oncorhynchus mykiss) Walbaum, 1792, and that intra-luminal sporogonic stages were found in brown trout but not in rainbow trout. We have now compared transcriptomes from kidneys of brown trout and rainbow trout infected with T. bryosalmonae using suppressive subtractive hybridization (SSH). The differentially expressed transcripts produced by SSH were cloned, transformed, and tested by colony PCR. Differential expression screening of PCR products was validated using dot blot, and positive clones having different signal intensities were sequenced. Differential screening and a subsequent NCBI-BLAST analysis of expressed sequence tags revealed nine clones expressed differently between both fish species. These differentially expressed genes were validated by quantitative real-time PCR of kidney samples from both fish species at different time points of infection. Expression of anti-inflammatory (TSC22 domain family protein 3) and cell proliferation (Prothymin alpha) genes were upregulated significantly in brown trout but downregulated in rainbow trout. The expression of humoral immune response (immunoglobulin mu) and endocytic pathway (Ras-related protein Rab-11b) genes were significantly upregulated in rainbow trout but downregulated in brown trout. This study suggests that differential expression of host anti-inflammatory, humoral immune and endocytic pathway responses, cell proliferation, and cell growth processes do not inhibit the development of intra-luminal sporogonic stages of the European strain of T. bryosalmonae in brown trout but may suppress it in rainbow trout.

  5. Relying on fin erosion to identify hatchery-reared brown trout in a Tennessee river

    USGS Publications Warehouse

    Meerbeek, Jonathan R.; Bettoli, Phillip William

    2012-01-01

    Hatchery-induced fin erosion can be used to identify recently stocked catchable-size brown trout Salmo trutta during annual surveys to qualitatively estimate contributions to a fishery. However, little is known about the longevity of this mark and its effectiveness as a short-term (≤ 1 year) mass-marking technique. We evaluated hatchery-induced pectoral fin erosion as a mass-marking technique for short-term stocking evaluations by stocking microtagged brown trout in a tailwater and repeatedly sampling those fish to observe and measure their pectoral fins. At Dale Hollow National Fish Hatchery, 99.1% (228 of 230) of microtagged brown trout in outdoor concrete raceways had eroded pectoral fins 1 d prior to stocking. Between 34 and 68 microtagged and 26-35 wild brown trout were collected during eight subsequent electrofishing samples. In a blind test based on visual examination of pectoral fins at up to 322 d poststocking, one observer correctly identified 91.7% to 100.0% (mean of 96.9%) of microtagged brown trout prior to checking for microtags. In the laboratory, pectoral fin length and width measurements were recorded to statistically compare the fin measurements of wild and microtagged hatchery brown trout. With only one exception, all pectoral fin measurements on each date averaged significantly larger for wild trout than for microtagged brown trout. Based on the number of pectoral fin measurements falling below 95% prediction intervals, 93.7% (148 of 158) of microtagged trout were correctly identified as hatchery fish based on regression models up to 160 d poststocking. Only 72.2% (70 of 97) of microtagged trout were identified correctly after 160 d based on pectoral fin measurements and the regression models. We concluded that visual examination of pectoral fin erosion was a very effective way to identify stocked brown trout for up to 322 d poststocking.

  6. Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations.

    PubMed

    MacHordom, A; Suárez, J; Almodóvar, A; Bautista, J M

    2000-09-01

    The biogeographical distribution of brown trout mitochondrial DNA haplotypes throughout the Iberian Peninsula was established by polymerase chain reaction-restriction fragment polymorphism analysis. The study of 507 specimens from 58 localities representing eight widely separated Atlantic-slope (north and west Iberian coasts) and six Mediterranean drainage systems served to identify five main groups of mitochondrial haplotypes: (i) haplotypes corresponding to non-native, hatchery-reared brown trout that were widely distributed but also found in wild populations of northern Spain (Cantabrian slope); (ii) a widespread Atlantic haplotype group; (iii) a haplotype restricted to the Duero Basin; (iv) a haplotype shown by southern Iberian populations; and (v) a Mediterranean haplotype. The Iberian distribution of these haplotypes reflects both the current fishery management policy of introducing non-native brown trout, and Messinian palaeobiogeography. Our findings complement and extend previous allozyme studies on Iberian brown trout and improve present knowledge of glacial refugia and postglacial movement of brown trout lineages.

  7. Brown trout and food web interactions in a Minnesota stream

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Vondracek, B.

    2007-01-01

    1. We examined indirect, community-level interactions in a stream that contained non-native brown trout (Salmo trutta Linnaeus), native brook trout (Salvelinus fontinalis Mitchill) and native slimy sculpin (Cottus cognatus Richardson). Our objectives were to examine benthic invertebrate composition and prey selection of fishes (measured by total invertebrate dry mass, dry mass of individual invertebrate taxa and relative proportion of invertebrate taxa in the benthos and diet) among treatments (no fish, juvenile brook trout alone, juvenile brown trout alone, sculpin with brook trout and sculpin with brown trout). 2. We assigned treatments to 1 m2 enclosures/exclosures placed in riffles in Valley Creek, Minnesota, and conducted six experimental trials. We used three designs of fish densities (addition of trout to a constant number of sculpin with unequal numbers of trout and sculpin; addition of trout to a constant number of sculpin with equal numbers of trout and sculpin; and replacement of half the sculpin with an equal number of trout) to investigate the relative strength of interspecific versus intraspecific interactions. 3. Presence of fish (all three species, alone or in combined-species treatments) was not associated with changes in total dry mass of benthic invertebrates or shifts in relative abundance of benthic invertebrate taxa, regardless of fish density design. 4. Brook trout and sculpin diets did not change when each species was alone compared with treatments of both species together. Likewise, we did not find evidence for shifts in brown trout or sculpin diets when each species was alone or together. 5. We suggest that native brook trout and non-native brown trout fill similar niches in Valley Creek. We did not find evidence that either species had an effect on stream communities, potentially due to high invertebrate productivity in Valley Creek. ?? 2007 Blackwell Publishing Ltd.

  8. Hydropower impacts on reservoir fish populations are modified by environmental variation.

    PubMed

    Eloranta, Antti P; Finstad, Anders G; Helland, Ingeborg P; Ugedal, Ola; Power, Michael

    2018-03-15

    Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Proliferative kidney disease in brown trout: infection level, pathology and mortality under field conditions.

    PubMed

    Schmidt-Posthaus, Heike; Hirschi, Regula; Schneider, Ernst

    2015-05-21

    Proliferative kidney disease (PKD) is an emerging disease threatening wild salmonid populations. In temperature-controlled aquaria, PKD can cause mortality rates of up to 85% in rainbow trout. So far, no data about PKD-related mortality in wild brown trout Salmo trutta fario are available. The aim of this study was to investigate mortality rates and pathology in brown trout kept in a cage within a natural river habitat known to harbor Tetracapsuloides bryosalmonae. Young-of-the-year (YOY) brown trout, free of T. bryosalmonae, were exposed in the River Wutach, in the northeast of Switzerland, during 3 summer months. Samples of wild brown trout caught by electrofishing near the cage location were examined in parallel. The incidence of PKD in cage-exposed animals (69%) was not significantly different to the disease prevalence of wild fish (82 and 80% in the upstream and downstream locations, respectively). The mortality in cage-exposed animals, however, was as low as 15%. At the termination of the exposure experiment, surviving fish showed histological lesions typical for PKD regression, suggesting that many YOY brown trout survive the initial infection. Our results at the River Wutach suggest that PKD in brown trout does not always result in high mortality under natural conditions.

  10. Movement and survival of brown trout and rainbow trout in an ozark tailwater river

    USGS Publications Warehouse

    Quinn, J.W.; Kwak, T.J.

    2011-01-01

    We evaluated the movement of adult brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss in relation to a catch-andrelease area in the White River downstream from Beaver Dam, Arkansas. Nine fish of each species were implanted with radio transmitters and monitored from July 1996 to July 1997. The 1.5- km river length of a catch-and-release area (closed to angler harvest) was greater than the total linear range of 72% of the trout (13 of 18 fish), but it did not include two brown trout spawning riffles, suggesting that it effectively protects resident fish within the catch-and-release area except during spawning. The total detected linear range of movement varied from 172 to 3,559 m for brown trout and from 205 to 3,023mfor rainbow trout. The movements of both species appeared to be generally similar to that in unregulated river systems. The annual apparent survival of both trout species was less than 0.40, and exploitation was 44%.Management to protect fish on spawning riffles may be considered if management for wild brown trout becomes a priority. ?? American Fisheries Society 2011.

  11. The physiological basis of the migration continuum in brown trout (Salmo trutta).

    PubMed

    Boel, Mikkel; Aarestrup, Kim; Baktoft, Henrik; Larsen, Torben; Søndergaard Madsen, Steffen; Malte, Hans; Skov, Christian; Svendsen, Jon C; Koed, Anders

    2014-01-01

    Partial migration is common in many animal taxa; however, the physiological variation underpinning migration strategies remains poorly understood. Among salmonid fishes, brown trout (Salmo trutta) is one of the species that exhibits the most complex variation in sympatric migration strategies, expressed as a migration continuum, ranging from residency to anadromy. In looking at brown trout, our objective with this study was to test the hypothesis that variation in migration strategies is underpinned by physiological variation. Prior to migration, physiological samples were taken from fish in the stream and then released at the capture site. Using telemetry, we subsequently classified fish as resident, short-distance migrants (potamodromous), or long-distance migrants (potentially anadromous). Our results revealed that fish belonging to the resident strategy differed from those exhibiting any of the two migratory strategies. Gill Na,K-ATPase activity, condition factor, and indicators of nutritional status suggested that trout from the two migratory strategies were smoltified and energetically depleted before leaving the stream, compared to those in the resident strategy. The trout belonging to the two migratory strategies were generally similar; however, lower triacylglycerides levels in the short-distance migrants indicated that they were more lipid depleted prior to migration compared with the long-distance migrants. In the context of migration cost, we suggest that additional lipid depletion makes migrants more inclined to terminate migration at the first given feeding opportunity, whereas individuals that are less lipid depleted will migrate farther. Collectively, our data suggest that the energetic state of individual fish provides a possible mechanism underpinning the migration continuum in brown trout.

  12. Ice-cover effects on competitive interactions between two fish species.

    PubMed

    Helland, Ingeborg P; Finstad, Anders G; Forseth, Torbjørn; Hesthagen, Trygve; Ugedal, Ola

    2011-05-01

    1. Variations in the strength of ecological interactions between seasons have received little attention, despite an increased focus on climate alterations on ecosystems. Particularly, the winter situation is often neglected when studying competitive interactions. In northern temperate freshwaters, winter implies low temperatures and reduced food availability, but also strong reduction in ambient light because of ice and snow cover. Here, we study how brown trout [Salmo trutta (L.)] respond to variations in ice-cover duration and competition with Arctic charr [Salvelinus alpinus (L.)], by linking laboratory-derived physiological performance and field data on variation in abundance among and within natural brown trout populations. 2. Both Arctic charr and brown trout reduced resting metabolic rate under simulated ice-cover (darkness) in the laboratory, compared to no ice (6-h daylight). However, in contrast to brown trout, Arctic charr was able to obtain positive growth rate in darkness and had higher food intake in tank experiments than brown trout. Arctic charr also performed better (lower energy loss) under simulated ice-cover in a semi-natural environment with natural food supply. 3. When comparing brown trout biomass across 190 Norwegian lakes along a climate gradient, longer ice-covered duration decreased the biomass only in lakes where brown trout lived together with Arctic charr. We were not able to detect any effect of ice-cover on brown trout biomass in lakes where brown trout was the only fish species. 4. Similarly, a 25-year time series from a lake with both brown trout and Arctic charr showed that brown trout population growth rate depended on the interaction between ice breakup date and Arctic charr abundance. High charr abundance was correlated with low trout population growth rate only in combination with long winters. 5. In conclusion, the two species differed in performance under ice, and the observed outcome of competition in natural populations was strongly dependent on duration of the ice-covered period. Our study shows that changes in ice phenology may alter species interactions in Northern aquatic systems. Increased knowledge of how adaptations to winter conditions differ among coexisting species is therefore vital for our understanding of ecological impacts of climate change. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  13. A trial of two trouts: Comparing the impacts of rainbow and brown trout on a native galaxiid

    USGS Publications Warehouse

    Young, K.A.; Dunham, J.B.; Stephenson, J.F.; Terreau, A.; Thailly, A.F.; Gajardo, G.; de Leaniz, C. G.

    2010-01-01

    Rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are the world's two most widespread exotic fishes, dominate the fish communities of most cold-temperate waters in the southern hemisphere and are implicated in the decline and extirpation of native fish species. Here, we provide the first direct comparison of the impacts of rainbow and brown trout on populations of a native fish by quantifying three components of exotic species impact: range, abundance and effect. We surveyed 54 small streams on the island of Chilo?? in Chilean Patagonia and found that the rainbow trout has colonized significantly more streams and has a wider geographic range than brown trout. The two species had similar post-yearling abundances in allopatry and sympatry, and their abundances depended similarly on reach-level variation in the physical habitat. The species appeared to have dramatically different effects on native drift-feeding Aplochiton spp., which were virtually absent from streams invaded by brown trout but shared a broad sympatric range with rainbow trout. Within this range, the species' post-yearling abundances varied independently before and after controlling for variation in the physical habitat. In the north of the island, Aplochiton spp. inhabited streams uninvaded by exotic trouts. Our results provide a context for investigating the mechanisms responsible for apparent differences in rainbow and brown trout invasion biology and can help inform conservation strategies for native fishes in Chilo?? and elsewhere. ?? 2010 The Authors. Journal compilation ?? 2010 The Zoological Society of London.

  14. Determination of the effects of fine-grained sediment and other limiting variables on trout habitat for selected streams in Wisconsin

    USGS Publications Warehouse

    Scudder, Barbara C.; Selbig, J.W.; Waschbusch, R.J.

    2000-01-01

    Two Habitat Suitability Index (HSI) models, developed by the U.S. Fish and Wildlife Service, were used to evaluate the effects of fine-grained (less than 2 millimeters) sediment on brook trout (Salvelinusfontinalis, Mitchill) and brown trout (Salmo trutta, Linnaeus) in 11 streams in west-central and southwestern Wisconsin. Our results indicated that fine-grained sediment limited brook trout habitat in 8 of 11 streams and brown trout habitat in only one stream. Lack of winter and escape cover for fry was the primary limiting variable for brown trout at 61 percent of the sites, and this factor also limited brook trout at several stations. Pool area or quality, in stream cover, streambank vegetation for erosion control, minimum flow, thalweg depth maximum, water temperature, spawning substrate, riffle dominant substrate, and dissolved oxygen also were limiting to trout in the study streams. Brook trout appeared to be more sensitive to the effects of fine-grained sediment than brown trout. The models for brook trout and brown trout appeared to be useful and objective screening tools for identifying variables limiting trout habitat in these streams. The models predicted that reduction in the amount of fine-grained sediment would improve brook trout habitat. These models may be valuable for establishing instream sediment-reduction goals; however, the decrease in sediment delivery needed to meet these goals cannot be estimated without quantitative data on land use practices and their effects on sediment delivery and retention by streams.

  15. The abiotic environment of the interstitial of a small Swiss river in the foothills of the Alps and its influence on gravel spawning brown trout (Salmo trutta L.)

    NASA Astrophysics Data System (ADS)

    Schindler, Yael; Michel, Christian; Holm, Patricia; Alewell, Christine

    2010-05-01

    The hyporheic zone can be characterized by multiple abiotic parameters (e.g. bulk density, texture, temperature, oxygen, ammonium, nitrate) which are all influenced directly or indirectly by the exchange processes between surface water and groundwater. These processes can vary both in time and space and are mainly driven by river discharge, ground water level and flow patterns. The input of fine sediment particles can change water-riverbed interactions through river bed clogging potentially affecting the embryonal development and survival of gravel spawning fish, such as brown trout (Salmo trutta L.). With our investigations we aim to understand these complex interactions spatially and temporally on a relevant small scale, i.e. within individual artificial brown trout redds. We designed an experimental field setup to directly investigate i) the influence of the abiotic river and redd environment on brown trout embryo development and ii) the hydrological dynamics affecting the abiotic environment in artificial brown trout. Additionally, our setup allows investigating the temporal dynamics of i) fine-sediment infiltration into the artificial redds and ii) embryo survival to two distinct developmental stages (i.e. eyed stage and hatch) The experiment was conducted in three sites of a typical Swiss river (Enziwigger, Canton of Luzern) with a strongly modified morphology. Individual sites represented a high, medium and low fine-sediment load. In each site, six artificial redds (18 in total) were built and data were collected during the entire incubation phase. Redds were located in places where natural spawning of brown trout is present. We adapted multiple established methods to the smaller scale of our river to study the dynamics of the most relevant abiotic parameters potentially affecting embryo development: Oxygen content and temperature was monitored continuously in different depths, fine sediment (bedload, suspended sediment load and its input in the river bed) was measured weekly and water samples for DOC and nitrogen components analysis were collected regularly. In addition, all redds were equipped with mini piezometers to measure the hydraulic gradient through the redds. Finally, water stage and turbidity were monitored continuously. Results of the first spawning season will be presented. Dynamic of abiotic parameters and their influence on spawning of brown trout will be discussed.

  16. Stream pH as an abiotic gradient influencing distributions of trout in Pennsylvania streams

    USGS Publications Warehouse

    Kocovsky, P.M.; Carline, R.F.

    2005-01-01

    Elevation and stream slope are abiotic gradients that limit upstream distributions of brook trout Salvelinus fontinalis and brown trout Salmo trutta in streams. We sought to determine whether another abiotic gradient, base-flow pH, may also affect distributions of these two species in eastern North America streams. We used historical data from the Pennsylvania Fish and Boat Commission's fisheries management database to explore the effects of reach elevation, slope, and base-flow pH on distributional limits to brook trout and brown trout in Pennsylvania streams in the Appalachian Plateaus and Ridge and Valley physiographic provinces. Discriminant function analysis (DFA) was used to calculate a canonical axis that separated allopatric brook trout populations from allopatric brown trout populations and allowed us to assess which of the three independent variables were important gradients along which communities graded from allopatric brook trout to allopatric brown trout. Canonical structure coefficients from DFA indicated that in both physiographic provinces, stream base-flow pH and slope were important factors in distributional limits; elevation was also an important factor in the Ridge and Valley Province but not the Appalachian Plateaus Province. Graphs of each variable against the proportion of brook trout in a community also identified apparent zones of allopatry for both species on the basis of pH and stream slope. We hypothesize that pH-mediated interspecific competition that favors brook trout in competition with brown trout at lower pH is the most plausible mechanism for segregation of these two species along pH gradients. Our discovery that trout distributions in Pennsylvania are related to stream base-flow pH has important implications for brook trout conservation in acidified regions. Carefully designed laboratory and field studies will be required to test our hypothesis and elucidate the mechanisms responsible for the partitioning of brook trout and brown trout along pH gradients. ?? Copyright by the American Fisheries Society 2005.

  17. Changes in Wisconsin's Lake Michigan salmonid sport fishery, 1969-1985

    USGS Publications Warehouse

    Hansen, Michael J.; Schultz, Paul T.; Lasee, Becky A.

    1990-01-01

    The modern sport fishery for salmonids in Wisconsin waters of Lake Michigan was begun during 1963-1969 with the stocking of rainbow trout (Oncorhynchus mykiss), lake trout (Salvelinus namaycush), brook trout (S. fontinalis), brown trout (Salmo trutta), coho salmon (O. kisutch), and chinook salmon (O. tshawytscha). The fishery grew rapidly during 1969-1985 as angler effort increased 10-fold, catch rate doubled, and catch increased 20-fold. The stocking and catch became increasingly dominated by chinook salmon, with coho salmon and lake trout of secondary importance and brown, rainbow, and brook trout of least importance. Trolling dominated the fishery, particularly by launched-boat anglers and, more recently, by moored-boat anglers. Charter boat trolling grew the most continuously and had the highest catch rates. The catch by trollers was dominated by chinook and coho salmon and lake trout. Pier, stream, and shore anglers fished less overall, but had catch rates that were similar to launched-boat anglers. The catch by pier and shore anglers was spread among chinook and coho salmon, and lake, brown and rainbow trout. The catch by stream anglers was dominated by chinook salmon. The percentage of stocked fish that were subsequently caught (catch ratio) was highest for fingerling chinook salmon (12.9%). Yearling brook trout, brown trout, coho salmon, lake trout, and rainbow trout had intermediate catch ratios (5.1-9.8%). Fingerling brook trout, brown trout, and lake trout had the lowest catch ratios (2.5-3.5%). The catch ratio for rainbow trout dropped from 9.8 to 5.1% after stocking with a different strain (the Shasta strain). Fingerling rainbow trout produced the lowest returns (<0.5%). We derived stocking recommendations for each species and life stage based on these catch ratios, and catch objectives based on maintaining catch levels recorded during 1983-1985.

  18. Brown trout in the Lees Ferry reach of the Colorado River—Evaluation of causal hypotheses and potential interventions

    USGS Publications Warehouse

    Runge, Michael C.; Yackulic, Charles B.; Bair, Lucas S.; Kennedy, Theodore A.; Valdez, Richard A.; Ellsworth, Craig; Kershner, Jeffrey L.; Rogers, R. Scott; Trammell, Melissa A.; Young, Kirk L.

    2018-04-17

    Over the period 2014–2016, the number of nonnative brown trout (Salmo trutta) captured during routine monitoring in the Lees Ferry reach of the Colorado River, downstream of Glen Canyon Dam, began increasing. Management agencies and stakeholders have questioned whether the increase in brown trout in the Lees Ferry reach represents a threat to the endangered humpback chub (Gila cypha), to the rainbow trout (Oncorhynchus mykiss) sport fishery, or to other resources of concern. In this report, we evaluate the evidence for the expansion of brown trout in the Lees Ferry reach, consider a range of causal hypotheses for this expansion, examine the likely efficacy of several potential management interventions to reduce brown trout, and analyze the effects of those interventions on other resources of concern.The brown trout population at Lees Ferry historically consisted of a small number of large fish supported by low levels of immigration from downstream reaches. This population is now showing signs of sustained successful reproduction and is on the cusp of recruiting locally hatched fish into the spawning class, based on analysis with a new integrated population model. The proximate causes of this change in status are a large pulse of immigration in the fall of 2014 and higher reproductive rates in 2015–2017. The ultimate causes of this change are not clear. The pulse of immigrants from downstream reaches in fall 2014 may have been induced by three sequential high-flow releases from the dam in November of 2012–2014, but may also have been the result of a unique set of circumstances unrelated to dam operations. The increase in reproduction may have been the result of any number of changes, including an Allee effect, warmer water temperatures, a decrease in competition from rainbow trout, or fall high-flow releases. Correlations over space and time among predictor variables do not allow us to make a clear inference about the cause of the changes. Under a null causal model, and without any changes to management, we predict there is a 36-percent chance the brown trout population at Lees Ferry will not show sustained growth, and will remain around a mean size of 5,800 adults, near its current size; in contrast, we predict there is a 64-percent chance that the population has a positive intrinsic growth rate and will increase 3–10 fold over the next 20 years. A humpback chub population model linked to the brown trout model suggests an increase of brown trout of this magnitude could lead to declines in the minimum adult humpback chub population over the same time period. Forecasts of rainbow trout abundance, however, suggest that increased abundance of brown trout in the Lees Ferry reach does not pose a threat to the rainbow trout fishery there. There are interventions that may be effective in moderating the growth of the brown trout population in the Lees Ferry reach of the Colorado River. Across causal hypotheses, we predict that removal strategies (for example, a concerted electrofishing effort or an incentivized take program targeted at large brown trout) could reduce brown trout abundance by approximately 50 percent relative to status quo management. Reductions in the frequency or a change in the seasonal timing of high-flow releases from Glen Canyon Dam could be even more effective, but only under the causal hypotheses that involve effects of such releases on immigration or reproduction. Brown trout management flows— dam releases designed to strand young fish at a vulnerable stage—may be able to reduce brown trout abundance to some degree, but are not forecast to be the most effective strategy under any causal hypothesis. We predict that the alternative management interventions would have effects on other resource goals as well, and the pattern of these effects differs across causal hypotheses. The removal strategies would incur direct costs (on the order of $7 million over 20 years) and the mechanical removal strategy is unethical from the perspective of several tribes. The strategies that involve reducing the frequency of high-flow releases from Glen Canyon Dam would decrease the ability to transport and store sediment in the ecosystem, potentially undermining goals associated with sandbar building, recreation, and riparian vegetation, but would increase hydropower revenue. Trout management flows would reduce hydropower revenue. From the standpoint of humpback chub, the alternative strategies largely follow the effect on brown trout; when brown trout abundance is reduced, predation pressure decreases, and humpback chub viability is predicted to increase, but the variation in predicted chub viability is not large across strategies or causal hypotheses.To design a response to brown trout, management agencies will need to navigate both the tradeoffs among resources goals and the uncertainty in the causes of the brown trout expansion. Continued monitoring, possibly coupled with new research or experimental management actions that better inform demographic and ecological dynamics, can help to reduce the causal uncertainty.

  19. Trout piscivory in the Colorado River, Grand Canyon: Effects of turbidity, temperature, and fish prey availability

    USGS Publications Warehouse

    Yard, Michael D.; Coggins,, Lewis G.; Baxter, Colden V.; Bennett, Glenn E.; Korman, Josh

    2011-01-01

    Introductions of nonnative salmonids, such as rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta, have affected native fishes worldwide in unforeseen and undesirable ways. Predation and other interactions with nonnative rainbow trout and brown trout have been hypothesized as contributing to the decline of native fishes (including the endangered humpback chub Gila cypha) in the Colorado River, Grand Canyon. A multiyear study was conducted to remove nonnative fish from a 15-km segment of the Colorado River near the Little Colorado River confluence. We evaluated how sediment, temperature, fish prey availability, and predator abundance influenced the incidence of piscivory (IP) by nonnative salmonids. Study objectives were addressed through spatial (upstream and downstream of the Little Colorado River confluence) and temporal (seasonal and annual) comparisons of prey availability and predator abundance. Data were then evaluated by modeling the quantity of fish prey ingested by trout during the first 2 years (2003–2004) of the mechanical removal period. Field effort resulted in the capture of 20,000 nonnative fish, of which 90% were salmonids. Results indicated that the brown trout IP was higher (8–70%) than the rainbow trout IP (0.5–3.3%); however, rainbow trout were 50 times more abundant than brown trout in the study area. We estimated that during the study period, over 30,000 fish (native and nonnative species combined) were consumed by rainbow trout (21,641 fish) and brown trout (11,797 fish). On average, rainbow trout and brown trout ingested 85% more native fish than nonnative fish in spite of the fact that native fish constituted less than 30% of the small fish available in the study area. Turbidity may mediate piscivory directly by reducing prey detection, but this effect was not apparent in our data, as rainbow trout IP was greater when suspended sediment levels (range = 5.9–20,000 mg/L) were higher.

  20. Spatial and temporal consumption dynamics of trout in catch-and-release areas in Arkansas tailwaters

    USGS Publications Warehouse

    Flinders, John M.; Magoulick, Daniel D.

    2017-01-01

    Restrictive angling regulations in tailwater trout fisheries may be unsuccessful if food availability limits energy for fish to grow. We examined spatial and temporal variation in energy intake and growth in populations of Brown Trout Salmo trutta and Rainbow Trout Oncorhynchus mykiss within three catch-and-release (C-R) areas in Arkansas tailwaters to evaluate food availability compared with consumption. Based on bioenergetic simulations, Rainbow Trout fed at submaintenance levels in both size-classes (≤400 mm TL, >400 mm TL) throughout most seasons. A particular bottleneck in food availability occurred in the winter for Rainbow Trout when the daily ration was substantially below the minimum required for maintenance, despite reduced metabolic costs associated with lower water temperatures. Rainbow Trout growth rates followed a similar pattern to consumption with negative growth rates during the winter periods. All three size-classes (<250 mm TL, 250–400 mm TL, >400 mm TL) of Brown Trout experienced high growth rates and limited temporal bottlenecks in food availability. We observed higher mean densities for Rainbow Trout (47–342 fish/ha) than for Brown Trout (3–84 fish/ha) in all C-R areas. Lower densities of Brown Trout coupled with an ontogenetic shift towards piscivory may have allowed for higher growth rates and sufficient consumption rates to meet energetic demands. Brown Trout at current densities were more effective in maintaining adequate growth rates and larger sizes in C-R areas than were Rainbow Trout. Bioenergetic simulations suggest that reducing stocking levels of Rainbow Trout in the tailwaters may be necessary in order to achieve increased catch rates of larger trout in the C-R areas.

  1. Habitat shifts in rainbow trout: competitive influences of brown trout.

    PubMed

    Gatz, A J; Sale, M J; Loar, J M

    1987-11-01

    We compared habitat use by rainbow trout sympatric (three streams) and allopatric (two streams) with brown trout to determine whether competition occurred between these two species in the southern Appalachian Mountains. We measured water depth, water velocity, substrate, distance to overhead vegetation, sunlight, and surface turbulence both where we collected trout and for the streams in general. This enabled us to separate the effects of habitat availability from possible competitive effects. The results provided strong evidence for asymmetrical interspecific competition. Habitat use varied significantly between allopatric and sympatric rainbow trout in 68% of the comparisons made. Portions of some differences refelected differences in habitats available in the several streams. However, for all habitat variables measured except sunlight, rainbow trout used their preferred habitats less in sympatry with brown trout than in allopatry if brown trout also preferred the same habitats. Multivariate analysis indicated that water velocity and its correlates (substrate particle size and surface turbulence) were the most critical habitat variables in the interaction between the species, cover in the form of shade and close overhead vegetation was second most important, and water depth was least important.

  2. Diel resource partitioning among juvenile Atlantic Salmon, Brown Trout, and Rainbow Trout during summer

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.

    2015-01-01

    Interspecific partitioning of food and habitat resources has been widely studied in stream salmonids. Most studies have examined resource partitioning between two native species or between a native species and one that has been introduced. In this study we examine the diel feeding ecology and habitat use of three species of juvenile salmonids (i.e., Atlantic Salmon Salmo salar, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss) in a tributary of Skaneateles Lake, New York. Subyearling Brown Trout and Rainbow Trout fed more heavily from the drift than the benthos, whereas subyearling Atlantic Salmon fed more from the benthos than either species of trout. Feeding activity of Atlantic Salmon and Rainbow Trout was similar, with both species increasing feeding at dusk, whereas Brown Trout had no discernable feeding peak or trough. Habitat availability was important in determining site-specific habitat use by juvenile salmonids. Habitat selection was greater during the day than at night. The intrastream, diel, intraspecific, and interspecific variation we observed in salmonid habitat use in Grout Brook illustrates the difficulty of acquiring habitat use information for widespread management applications.

  3. Efficiency of Portable Antennas for Detecting Passive Integrated Transponder Tags in Stream-Dwelling Salmonids

    PubMed Central

    Moyer, Katherine R.

    2016-01-01

    Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species. PMID:26901317

  4. Efficiency of portable antennas for detecting passive integrated transponder tags in stream-dwelling salmonids

    USGS Publications Warehouse

    Banish, Nolan P.; Burdick, Summer M.; Moyer, Katherine R.

    2016-01-01

    Portable antennas have become an increasingly common technique for tracking fish marked with passive integrated transponder (PIT) tags. We used logistic regression to evaluate how species, fish length, and physical habitat characteristics influence portable antenna detection efficiency in stream-dwelling brown trout (Salmo trutta), bull trout (Salvelinus confluentus), and redband trout (Oncorhynchus mykiss newberrii) marked with 12-mm PIT tags. We redetected 56% (20/36) of brown trout, 34% (68/202) of bull trout, and 33% (20/61) of redband trout after a recovery period of 21 to 46 hours. Models indicate support for length and species and minor support for percent boulder, large woody debris, and percent cobble as parameters important for describing variation in detection efficiency, although 95% confidence intervals for estimates were large. The odds of detecting brown trout (1.5 ± 2.2 [mean ± SE]) are approximately four times as high as bull trout (0.4 ± 1.6) or redband trout (0.3 ± 1.8) and species-specific differences may be related to length. Our reported detection efficiency for brown trout falls within the range of other studies, but is the first reported for bull trout and redband trout. Portable antennas may be a relatively unbiased way of redetecting varying sizes of all three salmonid species.

  5. Metals-contaminated benthic invertebrates in the Clark Fork River, Montana: Effects on age-0 brown trout and rainbow trout

    USGS Publications Warehouse

    Woodward, Daniel F.; Farag, Aïda M.; Bergman, Harold L.; Delonay, Aaron J.; Little, Edward E.; Smiths, Charlie E.; Barrows, Frederic T.

    1995-01-01

    Benthic organisms in the upper Clark Fork River have recently been implicated as a dietary source of metals that may be a chronic problem for young-of-the-year rainbow trout (Oncorhynchus mykiss). In this present study, early life stage brown trout (Salmo trutta) and rainbow trout were exposed for 88 d to simulated Clark Fork River water and a diet of benthic invertebrates collected from the river. These exposures resulted in reduced growth and elevated levels of metals in the whole body of both species. Concentrations of As, Cd, Cu, and Pb increased in whole brown trout; in rainbow trout, As and Cd increased in whole fish, and As also increased in liver. Brown trout on the metals-contaminated diets exhibited constipation, gut impaction, increased cell membrane damage (lipid peroxidation), decreased digestive enzyme production (zymogen), and a sloughing of intestinal mucosal epithelial cells. Rainbow trout fed the contaminated diets exhibited constipation and reduced feeding activity. We believe that the reduced standing crop of trout in the Clark Fork River results partly from chronic effects of metals contamination in benthic invertebrates that are important as food for young-of-the-year fish.

  6. Seasonal movement of brown trout in a southern Appalachian river

    Treesearch

    Kyle H. Burrell; J. Jeffery Isely; David B. Bunnell; David H. Van Lear; C. Andrew Dolloff

    2000-01-01

    Radio telemetry was used to evaluate the seasonal movement, activity level, and home range size of adult brown trout Salmo trutta in the Chattooga River watershed, one of the southernmost coldwater stream systems in the United States. In all, 27 adult brown trout (262-452 mm total length) were successfully monitored from 16 November 1995 to 15...

  7. An environmental DNA marker for detecting nonnative brown trout (Salmo trutta)

    Treesearch

    K. J. Carim; T. M. Wilcox; M. Anderson; D. Lawrence; Michael Young; Kevin McKelvey; Michael Schwartz

    2016-01-01

    Brown trout (Salmo trutta) are widely introduced in western North America where their presence has led to declines of several native species. To assist conservation efforts aimed at early detection and eradication of this species, we developed a quantitative PCR marker to detect the presence of brown trout DNA in environmental samples. The marker strongly...

  8. Phylogeographic structure and demographic patterns of brown trout in North-West Africa.

    PubMed

    Snoj, Aleš; Marić, Saša; Bajec, Simona Sušnik; Berrebi, Patrick; Janjani, Said; Schöffmann, Johannes

    2011-10-01

    The objectives of the study were to determine the phylogeographic structure of brown trout (Salmo trutta) in Morocco, elucidate their colonization patterns in North-West Africa and identify the mtDNA lineages involved in this process. We also aimed to resolve whether certain brown trout entities are also genetically distinct. Sixty-two brown trout from eleven locations across the Mediterranean and the Atlantic drainages in Morocco were surveyed using sequence analysis of the mtDNA control region and nuclear gene LDH, and by genotyping twelve microsatellite loci. Our study confirms that in Morocco both the Atlantic and Mediterranean basins are populated by Atlantic mtDNA lineage brown trout only, demonstrating that the Atlantic lineage (especially its southern clade) invaded initially not only the western part of the Mediterranean basin in Morocco but also expanded deep into the central area. Atlantic haplotypes identified here sort into three distinct groups suggesting Morocco was colonized in at least three successive waves (1.2, 0.4 and 0.2-0.1 MY ago). This notion becomes more pronounced with the finding of a distinct haplotype in the Dades river system, whose origin appears to coalesce with the nascent stage of the basal mtDNA evolutionary lineages of brown trout. According to our results, Salmo akairos, Salmo pellegrini and "green trout" from Lake Isli do not exhibited any character states that distinctively separate them from the other brown trout populations studied. Therefore, their status as distinct species was not confirmed. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Tetracapsuloides bryosalmonae persists in brown trout Salmo trutta for five years post exposure.

    PubMed

    Soliman, Hatem; Kumar, Gokhlesh; El-Matbouli, Mansour

    2018-01-31

    Tetracapsuloides bryosalmonae is a malacosporean parasite and the causative agent of proliferative kidney disease (PKD) that seriously impacts farmed and wild salmonids. The parasite's life cycle includes an invertebrate host, the bryozoan Fredericella sultana, and a vertebrate host, salmonid fish. The persistence of T. bryosalmonae in brown trout Salmo trutta for up to 2 yr following exposure is well documented. Results from the present study confirmed that one brown trout that had recovered from PKD did not completely clear the parasite from its tissues and that T. bryosalmonae could persist in brown trout for up to 5 yr post exposure. Furthermore, recovered infected brown trout can release viable T. bryosalmonae spores that are able to infect specific pathogen-free F. sultana colonies. T. bryosalmonae DNA was detected by PCR in every organ, and parasite stages were observed in the kidney, spleen and liver following immunohistochemistry. This finding indicates that T. bryosalmonae-infected brown trout can act as asymptomatic carriers and release the parasite for several years after the initial infection, acting as a reservoir of infection, and contributing to the dissemination of the parasite to new areas.

  10. Effects of water temperature and fish size on predation vulnerability of juvenile humpback chub to rainbow trout and brown trout

    USGS Publications Warehouse

    Ward, David L.; Morton-Starner, Rylan

    2015-01-01

    Predation on juvenile native fish by introduced Rainbow Trout and Brown Trout is considered a significant threat to the persistence of endangered Humpback Chub Gila cypha in the Colorado River in the Grand Canyon. Diet studies of Rainbow Trout and Brown Trout in Glen and Grand canyons indicate that these species do eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable, depending on prey size, predator size, and the water temperatures under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile native fish changes in response to fish size and water temperature using captivity-reared Humpback Chub, Bonytail, and Roundtail Chub. Juvenile chub 45–90 mm total length (TL) were exposed to adult Rainbow and Brown trouts at 10, 15, and 20°C to measure predation vulnerability as a function of water temperature and fish size. A 1°C increase in water temperature decreased short-term predation vulnerability of Humpback Chub to Rainbow Trout by about 5%, although the relationship is not linear. Brown Trout were highly piscivorous in the laboratory at any size > 220 mm TL and at all water temperatures we tested. Understanding the effects of predation by trout on endangered Humpback Chub is critical in evaluating management options aimed at preserving native fishes in Grand Canyon National Park.

  11. Diel resource partitioning among juvenile Atlantic Salmon, Brown Trout, and Rainbow Trout during summer

    USGS Publications Warehouse

    Johnson, James H.; McKenna, James E.

    2015-01-01

    Interspecific partitioning of food and habitat resources has been widely studied in stream salmonids. Most studies have examined resource partitioning between two native species or between a native species and one that has been introduced. In this study we examine the diel feeding ecology and habitat use of three species of juvenile salmonids (i.e., Atlantic Salmon Salmo salar, Brown Trout Salmo trutta, and Rainbow Trout Oncorhynchus mykiss) in a tributary of Skaneateles Lake, New York. Subyearling Brown Trout and Rainbow Trout fed more heavily from the drift than the benthos, whereas subyearling Atlantic Salmon fed more from the benthos than either species of trout. Feeding activity of Atlantic Salmon and Rainbow Trout was similar, with both species increasing feeding at dusk, whereas Brown Trout had no discernable feeding peak or trough. Habitat availability was important in determining site-specific habitat use by juvenile salmonids. Habitat selection was greater during the day than at night. The intrastream, diel, intraspecific, and interspecific variation we observed in salmonid habitat use in Grout Brook illustrates the difficulty of acquiring habitat use information for widespread management applications.

  12. Scale-dependent seasonal pool habitat use by sympatric Wild Brook Trout and Brown Trout populations

    USGS Publications Warehouse

    Davis, Lori A.; Wagner, Tyler

    2016-01-01

    Sympatric populations of native Brook Trout Salvelinus fontinalis and naturalized Brown Trout Salmo truttaexist throughout the eastern USA. An understanding of habitat use by sympatric populations is of importance for fisheries management agencies because of the close association between habitat and population dynamics. Moreover, habitat use by stream-dwelling salmonids may be further complicated by several factors, including the potential for fish to display scale-dependent habitat use. Discrete-choice models were used to (1) evaluate fall and early winter daytime habitat use by sympatric Brook Trout and Brown Trout populations based on available residual pool habitat within a stream network and (2) assess the sensitivity of inferred habitat use to changes in the spatial scale of the assumed available habitat. Trout exhibited an overall preference for pool habitats over nonpool habitats; however, the use of pools was nonlinear over time. Brook Trout displayed a greater preference for deep residual pool habitats than for shallow pool and nonpool habitats, whereas Brown Trout selected for all pool habitat categories similarly. Habitat use by both species was found to be scale dependent. At the smallest spatial scale (50 m), habitat use was primarily related to the time of year and fish weight. However, at larger spatial scales (250 and 450 m), habitat use varied over time according to the study stream in which a fish was located. Scale-dependent relationships in seasonal habitat use by Brook Trout and Brown Trout highlight the importance of considering scale when attempting to make inferences about habitat use; fisheries managers may want to consider identifying the appropriate spatial scale when devising actions to restore and protect Brook Trout populations and their habitats.

  13. Biomarker analyses in caged and wild fish suggest exposure to pollutants in an urban area with a landfill.

    PubMed

    Hanson, Niklas; Larsson, Åke

    2011-06-01

    An unexpectedly high frequency of skeletal deformations in brown trout has previously been observed in the brook Vallkärrabäcken in southern Sweden. Environmental pollutants from storm water and leachate from an old landfill have been suggested as responsible for the observed deformations. Biomarkers in farmed rainbow trout, placed in tanks with water supplied from the brook, were used to investigate if exposure to pollutants may induce toxic responses in fish. Furthermore, biomarkers were also measured in wild brown trout that were caught in the brook. The most important finding was that the hepatic ethoxyresorufin-O-deethylase (EROD) activity was five to seven times higher for rainbow trout and brown trout in exposed areas compared to reference sites (P<0.001). Analyses of bile in rainbow trout showed that the concentration of PAH-metabolites was two to three times higher (P<0.001) in the exposed areas. However, due to their smaller size and the feeding status, only insufficient amounts of bile could be retrieved from the wild brown trout. The study provides evidence for pollution in parts of Vallkärrabäcken. It is therefore possible that the previously observed high frequency of skeletal damage have been caused by pollutants. The methodology with farmed rainbow trout in flow through tanks worked well and provided more information about the occurrence of pollutants in Vallkärrabäcken than the data from brown trout. The main reasons for this were that the size and the feeding status of the fish could be controlled. This allowed a total of 21 biomarkers to be analyzed in farmed rainbow trout compared to only five in wild brown trout. Furthermore, the use of farmed fish eliminates the risk of migration, which may otherwise bias the data when wild fish are used. © 2010 Wiley Periodicals, Inc.

  14. Museum samples could help to reconstruct the original distribution of Salmo trutta complex in Italy.

    PubMed

    Splendiani, A; Fioravanti, T; Giovannotti, M; Olivieri, L; Ruggeri, P; Nisi Cerioni, P; Vanni, S; Enrichetti, F; Caputo Barucchi, V

    2017-06-01

    Partial D-loop sequences of museum specimens of brown trout and marble trout (Salmo trutta species complex) collected from Mediterranean rivers in the late 19th century were analysed to help to describe the native distribution of these species. All the individuals studied carried native haplotypes, the geographic distribution of which is consistent with published data. These results indicate that museum specimens from the 19th century could represent an opportunity to get a picture of the original genetic diversity distribution of this species complex. © 2017 The Fisheries Society of the British Isles.

  15. Demographic changes following mechanical removal of exotic brown trout in an Intermountain West (USA), high-elevation stream

    USGS Publications Warehouse

    Saunders, W. Carl; Budy, Phaedra E.; Thiede, Gary P.

    2015-01-01

    Exotic species present a great threat to native fish conservation; however, eradicating exotics is expensive and often impractical. Mechanical removal can be ineffective for eradication, but nonetheless may increase management effectiveness by identifying portions of a watershed that are strong sources of exotics. We used mechanical removal to understand processes driving exotic brown trout (Salmo trutta) populations in the Logan River, Utah. Our goals were to: (i) evaluate the demographic response of brown trout to mechanical removal, (ii) identify sources of brown trout recruitment at a watershed scale and (iii) evaluate whether mechanical removal can reduce brown trout densities. We removed brown trout from 2 km of the Logan River (4174 fish), and 5.6 km of Right Hand Fork (RHF, 15,245 fish), a low-elevation tributary, using single-pass electrofishing. We compared fish abundance and size distributions prior to, and after 2 years of mechanical removal. In the Logan River, immigration to the removal reach and high natural variability in fish abundances limited the response to mechanical removal. In contrast, mechanical removal in RHF resulted in a strong recruitment pulse, shifting the size distribution towards smaller fish. These results suggest that, before removal, density-dependent mortality or emigration of juvenile fish stabilised adult populations and may have provided a source of juveniles to the main stem. Overall, in sites demonstrating strong density-dependent population regulation, or near sources of exotics, short-term mechanical removal has limited effects on brown trout populations but may help identify factors governing populations and inform large-scale management of exotic species.

  16. Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta.

    PubMed

    Kumar, Gokhlesh; Sarker, Subhodeep; Menanteau-Ledouble, Simon; El-Matbouli, Mansour

    2015-06-01

    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan.

  17. Seasonal comparison of wild and farmed brown trout (Salmo trutta forma fario L., 1758): crude lipid, gonadosomatic index and fatty acids.

    PubMed

    Kaya, Yalçin; Erdem, Mehmet Emіn

    2009-08-01

    Brown trout is one of the most preferred wild freshwater fish species in the east Black Sea region (Turkey) due to its nutritional value and palatable aroma as well as being popular for sport fishing. In this research, seasonal variations in the crude lipid, gonadosomatic index and fatty acid composition of wild and farmed brown trout were investigated. The spawning period of wild and farmed brown trout appears to be from August to October and from October to January, respectively. The mean crude lipid content in farmed brown trout (3.62%) was significantly higher (P≤0.05) than that of wild brown trout (2.80%). Significant seasonal differences (P≤0.05) in crude lipid content were observed in both fish. The percentage of total saturated fatty acids was similar (P≥0.05) in both fish. Total polyunsaturated fatty acids were higher (P≤0.05) in the wild brown trout compared with the farmed brown trout, while its total monounsaturated fatty acids content was lower (P≤0.05). The muscle lipids of wild fish contained significantly (P≤0.05) higher percentages of C16:1n-7, C17:1n-7, C18:3n-3, C20:2n-6, C20:4n-6, C20:5n-3 and C22:2n-6 fatty acids and contained lower percentages of C14:0, C18:1n-9, C18:2n-6, C20:1n-9, C24:1n-9 and C22:6n-3 fatty acids than farmed fish. The total amounts of n-3 fatty acids in wild fish were higher than in farmed fish, but total amounts of n-6 fatty acids in farmed fish were higher than in wild fish. The n3/n6 proportion in wild fish was higher than that of farmed fish.

  18. The Diet of the Brown Trout Salmo trutta (L.) during the Reproductive Period: Size-Related and Sexual Effects

    NASA Astrophysics Data System (ADS)

    Montori, Albert; Tierno de Figueroa, J. Manuel; Santos, Xavier

    2006-10-01

    We investigated the autumnal diet of the brown trout Salmo trutta, in a Prepyrenean stream (NW Iberian Peninsula) focusing on intraspecific dietary differences related to size and sex. The diet of trout included 18 types of prey, with Plecoptera and Ephemeroptera nymphs and Diptera larvae as the most consumed taxa. Large trout ate larger prey, than did small trout, and also increased the consumption of terrestrial-surface prey with respect to aquatic-benthic prey. As terrestrial-surface preys were larger than aquatic-benthic prey, the size-related differences in the diet of trout were related to gape-limitations. Although male and female trout did not differ in size, we found that males foraged on a more diverse type of prey than females, probably owing to male territoriality during the reproductive period. This study provides new evidence of dietary plasticity in the brown trout and confirms the importance of local dietary studies to better understand factors which drive trophic ecology of predators.

  19. Forest-stream linkages: effects of terrestrial invertebrate input and light on diet and growth of brown trout (Salmo trutta) in a boreal forest stream.

    PubMed

    Erős, Tibor; Gustafsson, Pär; Greenberg, Larry A; Bergman, Eva

    2012-01-01

    Subsidies of energy and material from the riparian zone have large impacts on recipient stream habitats. Human-induced changes, such as deforestation, may profoundly affect these pathways. However, the strength of individual factors on stream ecosystems is poorly understood since the factors involved often interact in complex ways. We isolated two of these factors, manipulating the flux of terrestrial input and the intensity of light in a 2×2 factorial design, where we followed the growth and diet of two size-classes of brown trout (Salmo trutta) and the development of periphyton, grazer macroinvertebrates, terrestrial invertebrate inputs, and drift in twelve 20 m long enclosed stream reaches in a five-month-long experiment in a boreal coniferous forest stream. We found that light intensity, which was artificially increased 2.5 times above ambient levels, had an effect on grazer density, but no detectable effect on chlorophyll a biomass. We also found a seasonal effect on the amount of drift and that the reduction of terrestrial prey input, accomplished by covering enclosures with transparent plastic, had a negative impact on the amount of terrestrial invertebrates in the drift. Further, trout growth was strongly seasonal and followed the same pattern as drift biomass, and the reduction of terrestrial prey input had a negative effect on trout growth. Diet analysis was consistent with growth differences, showing that trout in open enclosures consumed relatively more terrestrial prey in summer than trout living in covered enclosures. We also predicted ontogenetic differences in the diet and growth of old and young trout, where we expected old fish to be more affected by the terrestrial prey reduction, but we found little evidence of ontogenetic differences. Overall, our results showed that reduced terrestrial prey inputs, as would be expected from forest harvesting, shaped differences in the growth and diet of the top predator, brown trout.

  20. Forest-Stream Linkages: Effects of Terrestrial Invertebrate Input and Light on Diet and Growth of Brown Trout (Salmo trutta) in a Boreal Forest Stream

    PubMed Central

    Erős, Tibor; Gustafsson, Pär; Greenberg, Larry A.; Bergman, Eva

    2012-01-01

    Subsidies of energy and material from the riparian zone have large impacts on recipient stream habitats. Human-induced changes, such as deforestation, may profoundly affect these pathways. However, the strength of individual factors on stream ecosystems is poorly understood since the factors involved often interact in complex ways. We isolated two of these factors, manipulating the flux of terrestrial input and the intensity of light in a 2×2 factorial design, where we followed the growth and diet of two size-classes of brown trout (Salmo trutta) and the development of periphyton, grazer macroinvertebrates, terrestrial invertebrate inputs, and drift in twelve 20 m long enclosed stream reaches in a five-month-long experiment in a boreal coniferous forest stream. We found that light intensity, which was artificially increased 2.5 times above ambient levels, had an effect on grazer density, but no detectable effect on chlorophyll a biomass. We also found a seasonal effect on the amount of drift and that the reduction of terrestrial prey input, accomplished by covering enclosures with transparent plastic, had a negative impact on the amount of terrestrial invertebrates in the drift. Further, trout growth was strongly seasonal and followed the same pattern as drift biomass, and the reduction of terrestrial prey input had a negative effect on trout growth. Diet analysis was consistent with growth differences, showing that trout in open enclosures consumed relatively more terrestrial prey in summer than trout living in covered enclosures. We also predicted ontogenetic differences in the diet and growth of old and young trout, where we expected old fish to be more affected by the terrestrial prey reduction, but we found little evidence of ontogenetic differences. Overall, our results showed that reduced terrestrial prey inputs, as would be expected from forest harvesting, shaped differences in the growth and diet of the top predator, brown trout. PMID:22574164

  1. Are brown trout Salmo trutta fario and rainbow trout Oncorhynchus mykiss two of a kind? A comparative study of salmonids to temperature-influenced Tetracapsuloides bryosalmonae infection.

    PubMed

    Bailey, C; Schmidt-Posthaus, H; Segner, H; Wahli, T; Strepparava, N

    2018-02-01

    Proliferative kidney disease (PKD) of salmonids caused by Tetracapsuloides bryosalmonae causes high mortalities of wild brown trout (Salmo trutta fario) and farmed rainbow trout (Oncorhynchus mykiss) at elevated water temperatures. Here the aim was to compare the temperature-dependent modulation of T. bryosalmonae in the two salmonid host species, which display different temperature optima. We used a novel experimental set-up in which we exposed brown trout and rainbow trout to an identical quantified low concentration of T. bryosalmonae for a short time period (1 hr). We followed the development of the parasite in the fish hosts for 70 days. PKD prevalence and parasite kinetics were assessed using qPCR. Exposures were performed at temperatures (12°C and 15°C) that reflect an environmental scenario that may occur in the natural habitat of salmonids. T. bryosalmonae infection was confirmed earliest in brown trout kept at 15°C (day 7 post-exposure) while, in all other groups, T. bryosalmonae was not confirmed until day 15 post-exposure. Moreover, significantly greater infection prevalence and a faster increase of parasite intensity were observed in brown trout kept at 15°C than in all other groups. These results indicate that PKD is differentially modulated by water temperature in related host species. © 2017 John Wiley & Sons Ltd.

  2. Resource Partitioning in Food, Space and Time between Arctic Charr (Salvelinus alpinus), Brown Trout (Salmo trutta) and European Whitefish (Coregonus lavaretus) at the Southern Edge of Their Continuous Coexistence.

    PubMed

    Jensen, Hallvard; Kiljunen, Mikko; Knudsen, Rune; Amundsen, Per-Arne

    2017-01-01

    Arctic charr and European whitefish are considered to be strong competitors in lakes, with the latter usually being the superior species. However, high niche plasticity and lake morphometry may suggestively facilitate resource partitioning and coexistence between charr and whitefish. Here, we explore the trophic niche utilization (diet and habitat use) of charr and whitefish co-occurring with brown trout in the deep and oligotrophic Lake Fyresvatnet, southern Norway (59°05'N, 8°10'E). Using CPUE, stomach contents and stable isotope analyses, a distinct resource partitioning was revealed between brown trout and the other two species. Brown trout typically occupied the littoral zone, feeding on benthic invertebrates, surface insects and small-sized whitefish. In contrast, charr and whitefish were predominantly zooplanktivorous, but diverged somewhat in habitat utilization as charr shifted seasonally between the profundal and the littoral zone, whereas whitefish were found in the upper water layers (littoral and pelagic habitats). Accordingly, the stable isotope values of carbon (δ13C) reflected a pelagic orientated prey resource use for both charr and whitefish, whereas brown trout had elevated carbon and nitrogen (δ15N) signatures that reflected their benthivore and piscivore diet, respectively. The findings suggest that charr may not rely upon the profundal zone as a feeding habitat but as a refuge area, and may coexist with whitefish if a third competitive and predatory species like brown trout co-occur in the lake. The study indicates that a general high habitat plasticity of Arctic charr may be essential in the presently observed coexistence with a competitively superior fish species like whitefish, and that a third fish species like brown trout may facilitate this particular fish community structure.

  3. Fractional parentage analysis and a scale-free reproductive network of brown trout.

    PubMed

    Koyano, Hitoshi; Serbezov, Dimitar; Kishino, Hirohisa; Schweder, Tore

    2013-11-07

    In this study, we developed a method of fractional parentage analysis using microsatellite markers. We propose a method for calculating parentage probability, which considers missing data and genotyping errors due to null alleles and other causes, by regarding observed alleles as realizations of random variables which take values in the set of alleles at the locus and developing a method for simultaneously estimating the true and null allele frequencies of all alleles at each locus. We then applied our proposed method to a large sample collected from a wild population of brown trout (Salmo trutta). On analyzing the data using our method, we found that the reproductive success of brown trout obeyed a power law, indicating that when the parent-offspring relationship is regarded as a link, the reproductive system of brown trout is a scale-free network. Characteristics of the reproductive network of brown trout include individuals with large bodies as hubs in the network and different power exponents of degree distributions between males and females. © 2013 Elsevier Ltd. All rights reserved.

  4. Effect of Maillard browning reaction on protein utilization and plasma amino acid response by rainbow trout (Salmo gairdneri).

    PubMed

    Plakas, S M; Lee, T C; Wolke, R E; Meade, T L

    1985-12-01

    The effect of the Maillard browning reaction in the diet of rainbow trout (Salmo gairdneri) on growth and amino acid availability was investigated. Chemical and enzymatic hydrolysis methods were applied for the detection of the losses of amino acids in a model protein browning system. Arginine and lysine exhibited the greatest losses in the mixture of fish protein isolate and glucose stored for 40 d at 37 degrees C. The apparent digestibility and absorption of individual amino acids, particularly lysine, was lower in trout fed browned protein than in those fed the control protein. Plasma lysine levels were significantly depressed, while the plasma levels of glucose and most other amino acids were elevated in relation to the loss in nutritive value of dietary protein after browning. The early Maillard reaction derivative of lysine, epsilon-deoxy-fructosyl-lysine, was recovered from browned protein (by using the in vitro enzymatic hydrolysis procedure) and from the plasma of trout fed browned protein. Analysis of plasma free amino acids provided an indication of lysine bioavailability and identified lysine as the first-limiting amino acid in the diets containing browned protein.

  5. Recovery of Hafnia alvei from diseased brown trout, Salmo trutta L., and healthy noble crayfish, Astacus astacus (L.), in Bulgaria.

    PubMed

    Orozova, P; Sirakov, I; Chikova, V; Popova, R; Al-Harbi, A H; Crumlish, M; Austin, B

    2014-10-01

    Hafnia alvei was isolated in Bulgaria from healthy noble crayfish, Astacus astacus (L.), and then from farmed diseased brown trout, Salmo trutta L., with signs of haemorrhagic septicaemia. The isolates were identified initially with conventional phenotyping and commercial Merlin Micronaut and API 20E rapid identification systems, followed by sequencing of the 16S rRNA gene. Hafnia alvei Bt1, Bt2 and Aa4 were of low virulence to rainbow trout and brown trout, although cytotoxicity was demonstrated by Bt1 and Bt2, but not by Aa4. © 2014 John Wiley & Sons Ltd.

  6. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.

    PubMed

    Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia

    2009-03-01

    Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show that suspended sediments affect the health and behaviour of fish when available in high amounts. Point measurements in large rivers indicate no common lethal threat and suspended sediment is rarely measured continuously in small rivers. However, effects on fish can be expected under environmentally relevant conditions. River bed clogging impairs the reproductive performance of gravel-spawning fish. Overall, higher erosion and increased levels of fine sediment going into rivers are expected in future. Additionally, sediment loads in rivers are suspected to have considerably impaired gravel bed structure and brown trout spawning is impeded. Timing of discharge is put forward and is now more likely to affect brown trout spawning than in previous decades. Reports on riverbed clogging from changes in erosion and fine sediment deposition patterns, caused by climate change and land-use change are rare. This review identifies both a risk of increases in climate erosive forces and fine sediment loads in rivers of alpine countries. Increased river discharge and sediment loads in winter and early spring could be especially harmful for brown trout reproduction and development of young life stages. Recently published studies indicate a decline in trout reproduction from riverbed clogging in many rivers in lowlands and alpine regions. However, the multitude of factors in natural complex ecosystems makes it difficult to address a single causative factor. Further investigations into the consequences of climate change and land-use change on river systems are needed. Small rivers, of high importance for the recruitment of gravel-spawning fish, are often neglected. Studies on river bed clogging are rare and the few existing studies are not comparable. Thus, there is a strong need for the development of methods to assess sediment input and river bed clogging. As well, studies on the effects to fish from suspended sediments and consequences of gravel beds clogging under natural conditions are urgently needed.

  7. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    USGS Publications Warehouse

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.

  8. Seasonal and sex-related variations in serum steroid hormone levels in wild and farmed brown trout Salmo trutta L. in the north-west of Spain.

    PubMed

    Fregeneda-Grandes, Juan M; Hernández-Navarro, Salvador; Fernandez-Coppel, Ignacio A; Correa-Guimaraes, Adriana; Ruíz-Potosme, Norlan; Navas-Gracia, Luis M; Aller-Gancedo, J Miguel; Martín-Gil, Francisco J; Martín-Gil, Jesús

    2013-12-01

    Serum steroid profiles were investigated in order to evaluate the potential use of circulating sex steroid levels as a tool for sex identification in brown trout. Changes in the serum concentrations of testosterone (T), progesterone (P), 17-β-estradiol (E2), and cortisol (F) in wild and farmed mature female and male brown trout, Salmo trutta L., were measured in each season (January, May, July, and October) in six rivers and four hatcheries located in the north-west of Spain. Serum cortisol levels in farmed brown trout were significantly higher and showed a seasonal pattern opposite to that found in wild trout. Because levels of the hormones under study can be affected by disruptive factors such as exposure to phytoestrogens (which alters the hypothalamic-pituitary-gonadal axis) and infection with Saprolegnia parasitica (which alters the hypothalamic-pituitary-adrenal axis), both factors are taken into account.

  9. Application of heteroduplex analysis for detecting variation within the growth hormone 2 gene in Salmo trutta L. (brown trout).

    PubMed

    Gross, R; Nilsson, J

    1995-03-01

    A new method to detect variation at a single copy nuclear gene in brown trout, Salmo trutta L., is provided. The technique entails (i) selective gene amplification by the polymerase chain reaction (PCR), (ii) digestion of amplification products by restriction endonucleases to obtain fragments of suitable size, (iii) hybridization with heterologous DNA followed by denaturation and reannealing to obtain heteroduplex molecules, and (iv) screening for variation in polyacrylamide gels. Variation was studied within a growth hormone 2 gene 1489 bp segment and polymorphism was detected in two HinfI-digested fragments. Formation of different heteroduplex patterns in experimental mixtures of digested amplification products from brown trout and Atlantic salmon, Salmo salar L., allowed us to determine the genotype of the brown trout. Polymorphism was observed in four out of six studied populations.

  10. The albumin of the brown trout (Salmo trutta) is a glycoprotein.

    PubMed

    Metcalf, V J; Brennan, S O; Chambers, G K; George, P M

    1998-07-28

    The albumin from an Atlantic salmonid, the brown trout (Salmo trutta), is 1730 Da higher in molecular mass than the albumin from a Pacific salmonid, the chinook salmon (Oncorhynchus tshawytscha), at 65230 Da. Digestion with neuraminidase revealed that purified brown trout albumin contained sialic acid while chinook salmon albumin did not. Concanavalin A-sepharose affinity chromatography was used to purify a glycopeptide from a total tryptic digest of brown trout albumin. The mass of this glycopeptide (3815 Da) was determined by mass spectrometry, and the sequence largely confirmed by N-terminal sequencing. The identified sequence of IAHCCNQSYSM-, contains an Asn-Gln-Ser glycosylation site and is identical to residues 475-485 derived from the cDNA of the albumin from the Atlantic salmon, the closest relative of the brown trout. Glycosylation of albumin is very unusual, and has not been identified in either reptilian or mammalian albumins. The finding of a glycoalbumin in salmonids, ancient members of the teleost fish subclass, coupled with evidence of albumin glycosylation in the oldest vertebrates, agnathans, as well as amphibians, suggests that albumin was originally a glycoprotein, but lost this modification sometime between the divergence of amphibians and reptiles.

  11. Protein degradation systems in the skeletal muscles of parr and smolt Atlantic salmon Salmo salar L. and brown trout Salmo trutta L.

    PubMed

    Kantserova, Nadezda P; Lysenko, Liudmila A; Veselov, Alexey E; Nemova, Nina N

    2017-08-01

    Although protein degradation limits the rate of muscle growth in fish, the role of proteolytic systems responsible for degrading myofibrillar proteins in skeletal muscle is not well defined. The study herein aims to evaluate the role of calpains (calcium-activated proteases) and proteasomes (ATP-dependent proteases) in mediating muscle protein turnover at different life stages in wild salmonids. Protease activities were estimated in Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.) parr and smolts from the Indera River (Kola Peninsula, Russia). Calpain and proteasome activities in Atlantic salmon skeletal muscles were lower in smolts as compared with parr. Reduced muscle protein degradation accompanying Atlantic salmon parr-smolt transformation appeared to provide intense muscle growth essential for a minimum threshold size achievement that is required for smoltification. Calpain and proteasome activities in brown trout parr and smolts at age 3+ did not significantly differ. However, calpain activity was higher in smolts brown trout 4+ as compared with parr, while proteasome activity was lower. Results suggest that brown trout smoltification does not correspond with intense muscle growth and is more facultative and plastic in comparison with Atlantic salmon smoltification. Obtained data on muscle protein degradation capacity as well as length-weight parameters of fish reflect differences between salmon and trout in growth and smoltification strategies.

  12. Resource Partitioning in Food, Space and Time between Arctic Charr (Salvelinus alpinus), Brown Trout (Salmo trutta) and European Whitefish (Coregonus lavaretus) at the Southern Edge of Their Continuous Coexistence

    PubMed Central

    Kiljunen, Mikko; Knudsen, Rune; Amundsen, Per-Arne

    2017-01-01

    Arctic charr and European whitefish are considered to be strong competitors in lakes, with the latter usually being the superior species. However, high niche plasticity and lake morphometry may suggestively facilitate resource partitioning and coexistence between charr and whitefish. Here, we explore the trophic niche utilization (diet and habitat use) of charr and whitefish co-occurring with brown trout in the deep and oligotrophic Lake Fyresvatnet, southern Norway (59°05’N, 8°10’E). Using CPUE, stomach contents and stable isotope analyses, a distinct resource partitioning was revealed between brown trout and the other two species. Brown trout typically occupied the littoral zone, feeding on benthic invertebrates, surface insects and small-sized whitefish. In contrast, charr and whitefish were predominantly zooplanktivorous, but diverged somewhat in habitat utilization as charr shifted seasonally between the profundal and the littoral zone, whereas whitefish were found in the upper water layers (littoral and pelagic habitats). Accordingly, the stable isotope values of carbon (δ13C) reflected a pelagic orientated prey resource use for both charr and whitefish, whereas brown trout had elevated carbon and nitrogen (δ15N) signatures that reflected their benthivore and piscivore diet, respectively. The findings suggest that charr may not rely upon the profundal zone as a feeding habitat but as a refuge area, and may coexist with whitefish if a third competitive and predatory species like brown trout co-occur in the lake. The study indicates that a general high habitat plasticity of Arctic charr may be essential in the presently observed coexistence with a competitively superior fish species like whitefish, and that a third fish species like brown trout may facilitate this particular fish community structure. PMID:28122061

  13. Influence of drought conditions on brown trout biomass and size structure in the Black Hills, South Dakota

    USGS Publications Warehouse

    James, Daniel A.; Wilhite, Jerry W.; Chipps, Steven R.

    2010-01-01

    We evaluated the influence of drought conditions on the biomass of brown trout Salmo trutta in Spearfish Creek, upper Rapid Creek, and lower Rapid Creek in the Black Hills of western South Dakota. Stream discharge, mean summer water temperature, the biomass of juvenile and adult brown trout, and brown trout size structure were compared between two time periods: early (2000–2002) and late drought (2005–2007). Mean summer water temperatures were similar between the early- and late-drought periods in Spearfish Creek (12.4°C versus 11.5°C), lower Rapid Creek (19.2°C versus 19.3°C), and upper Rapid Creek (9.8°C in both periods). In contrast, mean annual discharge differed significantly between the two time periods in Spearfish Creek (1.95 versus 1.50 m3/s), lower Rapid Creek (2.01 versus 0.94 m3/s), and upper Rapid Creek (1.41 versus 0.84 m3/s). The mean biomass of adult brown trout in all three stream sections was significantly higher in the early-drought than in the late-drought period (238 versus 69 kg/ha in Spearfish Creek, 272 versus 91 kg/ha in lower Rapid Creek, and 159 versus 32 kg/ha in upper Rapid Creek). The biomass of juvenile brown trout was similar (43 versus 23 kg/ha) in Spearfish Creek in the two periods, declined from 136 to 45 kg/ha in lower Rapid Creek, and increased from 14 to 73 kg/ha in upper Rapid Creek. Size structure did not differ between the early- and late-drought periods in lower Rapid and Spearfish creeks, but it did in upper Rapid Creek. In addition to drought conditions, factors such as angler harvest, fish movements, and the nuisance algal species Didymosphenia geminata are discussed as possible contributors to the observed changes in brown trout biomass and size structure in Black Hills streams.

  14. A monoclonal antibody distinguishes between two IgM heavy chain isotypes in Atlantic salmon and brown trout: protein characterization, 3D modeling and epitope mapping.

    PubMed

    Kamil, Atif; Falk, Knut; Sharma, Animesh; Raae, Arnt; Berven, Frode; Koppang, Erling Olaf; Hordvik, Ivar

    2011-09-01

    Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) possess two distinct subpopulations of IgM which can be separated by anion exchange chromatography. Accordingly, there are two isotypic μ genes in these species, related to ancestral tetraploidy. In the present work it was verified by mass spectrometry that IgM of peak 1 (subpopulation 1) have heavy chains previously designated as μB type whereas IgM of peak 2 (subpopulation 2) have heavy chains of μA type. Two adjacent cysteine residues are present near the C-terminal part of μB, in contrast to one cysteine residue in μA. Salmon IgM of both peak 1 and peak 2 contain light chains of the two most common isotypes: IgL1 and IgL3. In contrast to salmon and brown trout, IgM of rainbow trout (Oncorhynchus mykiss) is eluted in a single peak when subjected to anion exchange chromatography. Surprisingly, a monoclonal antibody MAb4C10 against rainbow trout IgM, reacted with μA in salmon, whereas in brown trout it reacted with μB. It is plausible to assume that DNA has been exchanged between the paralogous A and B loci during evolution while maintaining the two sub-variants, with and without the extra cysteine. MAb4C10 was conjugated to magnetic beads and used to separate cells, demonstrating that μ transcripts residing from captured cells were primarily of A type in salmon and B type in brown trout. An analysis of amino acid substitutions in μA and μB of salmon and brown trout indicated that the third constant domain is essential for MAb4C10 binding. This was supported by 3D modeling and was finally verified by studies of MAb4C10 reactivity with a series of recombinant μ3 constructs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Late summer and fall use of stream margins by young-of year brown trout in a high-elevation stream

    USGS Publications Warehouse

    La Voie, W. J.; Hubert, W.A.

    1997-01-01

    We determined the relative abundance of young-of-year (YOY) brown trout (Salmo trutta) from late summer to fall during day and night in stream margin habitats of Douglas Creek, Wyoming. No significant differences in relative abundance were observed from August 14 through October 26. Few YOY brown trout were observed during the day over the entire sampling period, but significantly greater numbers were seen at night. Within stream margins, YOY brown trout of 36-75 mm total length primarily resided in concealment cover among interstices of cobbie during the day and emerged at night. Because no significant change in relative abundance was observed throughout the study period, we conclude that a shift to winter habitat did not occur up until three days prior to ice formation when the diurnal range in water temperature was 2.5-7.5??C.

  16. Motility and fertilizing ability of cryopreserved Caspian brown trout (Salmo trutta caspius) sperm: Effect of post-thaw storage time and different sperm-to-egg ratios.

    PubMed

    Golshahi, Karim; Shabani, Nariman; Aramli, Mohammad Sadegh; Noori, Elnaz

    2015-10-01

    This study was designed to test the effect of post-thaw storage time on sperm motility parameters of Caspian brown trout (n=7). Furthermore, we investigated the effect of sperm-to-egg ratios of 100,000:1, 300,000:1 and 600,000:1 on fertility of cryopreserved Caspian brown semen. Quality was assessed by measuring sperm motility parameters and fertilization rates at the eyed and hatching stages. The percentage of post-thawed sperm motility, curvilinear velocity (VCL) and amplitude of lateral head displacement (ALH) were not affected by 60 min of storage, whereas a decrease in straight line velocity (VSL), average path velocity (VAP) and linearity (LIN) were found in cryopreserved semen. Thus, the cryopreserved sperm of Caspian brown trout could be stored up to 60 min without loss of the percentage of sperm motility. The fertilization rate was not affected by 60 min of post-thaw storage and was over 70% for sperm-to-egg ratios of both 300,000 and 600,000:1. To our knowledge, this study is the first to report the high post-thaw fertilization ability of Caspian brown trout semen at a sperm-to-egg ratio as low as 300,000:1. This procedure after scaling up can be recommended for routine Caspian brown trout sperm cryopreservation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Assessing conditions influencing the longitudinal distribution of exotic brown trout (Salmo trutta) in a mountain stream: a spatially-explicit modeling approach

    USGS Publications Warehouse

    Meredith, Christy S.; Budy, Phaedra; Hooten, Mevin B.; Oliveira Prates, Marcos

    2017-01-01

    Trout species often segregate along elevational gradients, yet the mechanisms driving this pattern are not fully understood. On the Logan River, Utah, USA, exotic brown trout (Salmo trutta) dominate at low elevations but are near-absent from high elevations with native Bonneville cutthroat trout (Onchorhynchus clarkii utah). We used a spatially-explicit Bayesian modeling approach to evaluate how abiotic conditions (describing mechanisms related to temperature and physical habitat) as well as propagule pressure explained the distribution of brown trout in this system. Many covariates strongly explained redd abundance based on model performance and coefficient strength, including average annual temperature, average summer temperature, gravel availability, distance from a concentrated stocking area, and anchor ice-impeded distance from a concentrated stocking area. In contrast, covariates that exhibited low performance in models and/or a weak relationship to redd abundance included reach-average water depth, stocking intensity to the reach, average winter temperature, and number of days with anchor ice. Even if climate change creates more suitable summer temperature conditions for brown trout at high elevations, our findings suggest their success may be limited by other conditions. The potential role of anchor ice in limiting movement upstream is compelling considering evidence suggesting anchor ice prevalence on the Logan River has decreased significantly over the last several decades, likely in response to climatic changes. Further experimental and field research is needed to explore the role of anchor ice, spawning gravel availability, and locations of historical stocking in structuring brown trout distributions on the Logan River and elsewhere.

  18. Flow management and fish density regulate salmonid recruitment and adult size in tailwaters across western North America

    USGS Publications Warehouse

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.; Budy, Phaedra E.

    2015-01-01

    The mean lengths of adult rainbow and brown trout were influenced by similar flow and catch metrics. Length in both species was positively correlated with high annual flow but declined in tailwaters with high daily fluctuations in flow, high catch rates of conspecifics, and when large cohorts recruited to adult size. Whereas brown trout did not respond to the proportion of water allocated between seasons, rainbow trout length increased in rivers that released more water during winter than in spring. Rainbow trout length was primarily related to high catch rates of conspecifics, whereas brown trout length was mainly related to large cohorts recruiting to the adult size class. Species-specific responses to flow management are likely attributable to differences in seasonal timing of key life history events such as spawning, egg hatching, and fry emergence.

  19. Statistical evaluation of the effects of fall and winter flows on the spring condition of rainbow and brown trout in the green river downstream of Flaming Gorge Dam.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.

    2009-01-09

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. In recent years, single peak releases each day or steady flows have been the operational pattern during the winter period. A double-peak pattern (two flow peaks each day) was implemented during the winter of 2006-2007 by Reclamation. Because there is no recent history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on the body condition of trout in the dam's tailwater are not known. A study plan was developed that identified researchmore » activities to evaluate potential effects from double-peaking operations during winter months. Along with other tasks, the study plan identified the need to conduct a statistical analysis of existing data on trout condition and macroinvertebrate abundance to evaluate potential effects of hydropower operations. This report presents the results of this analysis. We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam and (2) to evaluate the degree to which flow characteristics (i.e., flow volumes and flow variability) and benthic macroinvertebrate abundance affect the condition of trout in this area. This information, together with further analyses of size-stratified trout data, may also serve as baseline data to which the effects of potential future double-peaking flows can be compared. The condition (length, weight and/or relative weight) of rainbow trout (Oncorhynchus mykiss) at two sites in the Green River downstream of Flaming Gorge Dam (Tailrace and Little Hole) and weight of brown trout (Salmo trutta) at the Little Hole site has been decreasing since 1990 while the abundance of brown trout has been increasing at the two sites. At the same time, flow variability in the river has decreased and the abundance of total benthic macroinvertebrates at the Tailrace site has increased. The condition of trout in spring (averaged across all sampled trout) was positively correlated with fall and winter flow variability (including within-day skewness, within-season skewness and/or change in flow between days) at both locations. No negative correlations between trout condition and any measure of flow variability were detected. The length and weight of rainbow trout at the Little Hole site were negatively correlated with increasing fall and winter flow volume. The condition of brown trout at Little Hole and the condition of brown and rainbow trout at Tailrace were not correlated with flow volume. Macroinvertebrate variables during October were either positively correlated or not correlated with measures of trout condition at the Tailrace and Little Hole sites. With the exception of a positive correlation between taxa richness of macroinvertebrates in January and the relative weight of brown trout at Tailrace, the macroinvertebrate variables during January and April were either not correlated or negatively correlated with measures of trout condition. We hypothesize that high flow variability increased drift by dislodging benthic macroinvertebrates, and that the drift, in turn, resulted in mostly lower densities of benthic macroinvertebrates, which benefited the trout by giving them more feeding opportunities. This was supported by negative correlations between benthic macroinvertebrates and flow variability. Macroinvertebrate abundance (with the exception of ephemeropterans) was also negatively correlated with flow volume. The change in trout condition from fall to spring, as measured by the ratio of spring to fall relative weight, was evaluated to determine their usefulness as a standardized index to control for the initial condition of the fish as they enter the winter period. The ratio values were less correlated with the fall condition values than the spring condition values and did not show the same relationships to flows, to macroinvertebrates, or across years as the above-mentioned spring relative weight values. We found that the condition ratio of rainbow trout at Tailrace was positively correlated with within-day flow variability but was not correlated with flow volume, between-day-, or within-season flow variability. The condition ratios of rainbow trout at Little Hole and of both trout species at Tailrace were not correlated to any of the measured flow variables. The condition ratios of both trout species were positively correlated with the abundance of January benthic macroinvertebrates at the Little Hole site and with January dipterans (brown trout) or total coleopterans (rainbow trout) at the Tailrace site. The relationships among flows, macroinvertebrates, and trout condition were varied among species and locations.« less

  20. Investigations into the temporal development of epitheliocystis infections in brown trout: a histological study.

    PubMed

    Guevara Soto, M; Vidondo, B; Vaughan, L; Rubin, J-F; Segner, H; Samartin, S; Schmidt-Posthaus, H

    2017-06-01

    Epitheliocystis in Swiss brown trout (Salmo trutta) is a chlamydial infection, mainly caused by Candidatus Piscichlamydia salmonis and Candidatus Clavichlamydia salmonicola. To gain a better understanding of the temporal development of infections in wild brown trout, we investigated epitheliocystis infections during the course of the summer and autumn months of a single year (2015), and compared this to sampling points over the span of the years 2012-2014. The survey focused on tributaries (Venoge and Boiron) of the Rhone flowing in to Lake Geneva. When evaluated histologically, epitheliocystis infections were found throughout the period of investigation with the exception of the month of June. Fifty to 86 animals per sampling were investigated. Highest prevalence and infection intensities were seen in September. A correlation between epitheliocystis infection and water temperatures was not evident. Interyear comparison revealed consistent levels of prevalence and infection intensities in late summer. The absence of infections in June, combined with the consistent interyear results, indicates seasonal fluctuation of epitheliocystis infections in brown trout with a reservoir persisting during winter months from which infections can re-initiate each year. This could either be at levels below detection limits within the brown trout population itself or in an alternative host. © 2016 John Wiley & Sons Ltd.

  1. Predicting presence and absence of trout (Salmo trutta) in Iran

    PubMed Central

    Mostafavi, Hossein; Pletterbauer, Florian; Coad, Brian W.; Mahini, Abdolrassoul Salman; Schinegger, Rafaela; Unfer, Günther; Trautwein, Clemens; Schmutz, Stefan

    2014-01-01

    Species distribution modelling, as a central issue in freshwater ecology, is an important tool for conservation and management of aquatic ecosystems. The brown trout (Salmo trutta) is a sensitive species which reacts to habitat changes induced by human impacts. Therefore, the identification of suitable habitats is essential. This study explores the potential distribution of brown trout by a species distribution modelling approach for Iran. Furthermore, modelling results are compared to the distribution described in the literature. Areas outside the currently known distribution which may offer potential habitats for brown trout are identified. The species distribution modelling was based on five different modelling techniques: Generalised Linear Model, Generalised Additive Model, Generalised Boosting Model, Classification Tree Analysis and Random Forests, which are finally summarised in an ensemble forecasting approach. We considered four environmental descriptors at the local scale (slope, bankfull width, wetted width, and elevation) and three climatic parameters (mean air temperature, range of air temperature and annual precipitation) which were extracted on three different spatial extents (1/5/10 km). The performance of all models was excellent (≥0.8) according to the TSS (True Skill Statistic) criterion. Slope, mean and range of air temperature were the most important variables in predicting brown trout occurrence. Presented results deepen the knowledge about distribution patterns of brown trout in Iran. Moreover, this study gives a basic background for the future development of assessment methods for riverine ecosystems in Iran. PMID:24707064

  2. Mini-P-gp and P-gp Co-Expression in Brown Trout Erythrocytes: A Prospective Blood Biomarker of Aquatic Pollution

    PubMed Central

    Valton, Emeline; Amblard, Christian; Desmolles, François; Combourieu, Bruno; Penault-Llorca, Frédérique; Bamdad, Mahchid

    2015-01-01

    In aquatic organisms, such as fish, blood is continually exposed to aquatic contaminants. Multidrug Resistance (MDR) proteins are ubiquitous detoxification membrane pumps, which recognize various xenobiotics. Moreover, their expression is induced by a large class of drugs and pollutants. We have highlighted the co-expression of a mini P-gp of 75 kDa and a P-gp of 140 kDa in the primary culture of brown trout erythrocytes and in the erythrocytes of wild brown trout collected from three rivers in the Auvergne region of France. In vitro experiments showed that benzo[a]pyrene, a highly toxic pollutant model, induced the co-expression of mini-P-gp and P-gp in trout erythrocytes in a dose-dependent manner and relay type response. Similarly, in the erythrocytes of wild brown trout collected from rivers contaminated by a mixture of PAH and other multi-residues of pesticides, mini-P-gp and P-gp were able to modulate their expression, according to the nature of the pollutants. The differential and complementary responses of mini-P-gp and P-gp in trout erythrocytes suggest the existence in blood cells of a real protective network against xenobiotics/drugs. This property could be exploited to develop a blood biomarker of river pollution. PMID:26854141

  3. Brook trout movement in response to temperature, flow, and thermal refugia within a complex Appalachian riverscape

    USGS Publications Warehouse

    Petty, J. Todd; Hansbarger, Jeff L.; Huntsman, Brock M.; Mazik, Patricia M.

    2012-01-01

    We quantified movements of brook trout Salvelinus fontinalis and brown trout Salmo trutta in a complex riverscape characterized by a large, open-canopy main stem and a small, closed-canopy tributary in eastern West Virginia, USA. Our objectives were to quantify the overall rate of trout movement and relate movement behaviors to variation in streamflow, water temperature, and access to coldwater refugia. The study area experienced extremely high seasonal, yearly, and among-stream variability in water temperature and flow. The relative mobility of brook trout within the upper Shavers Fork watershed varied significantly depending on whether individuals resided within the larger main stem or the smaller tributary. The movement rate of trout inhabiting the main stem during summer months (50 m/d) was an order of magnitude higher than that of tributary fish (2 m/d). Movement rates of main-stem-resident brook trout during summer were correlated with the maximum water temperature experienced by the fish and with the fish's initial distance from a known coldwater source. For main-stem trout, use of microhabitats closer to cover was higher during extremely warm periods than during cooler periods; use of microhabitats closer to cover during warm periods was also greater for main-stem trout than for tributary inhabitants. Main-stem-resident trout were never observed in water exceeding 19.5°C. Our study provides some of the first data on brook trout movements in a large Appalachian river system and underscores the importance of managing trout fisheries in a riverscape context. Brook trout conservation in this region will depend on restoration and protection of coldwater refugia in larger river main stems as well as removal of barriers to trout movement near tributary and main-stem confluences.

  4. Assessing the suitable habitat for reintroduction of brown trout (Salmo trutta forma fario) in a lowland river: A modeling approach.

    PubMed

    Boets, Pieter; Gobeyn, Sacha; Dillen, Alain; Poelman, Eddy; Goethals, Peter L M

    2018-05-01

    Huge efforts have been made during the past decades to improve the water quality and to restore the physical habitat of rivers and streams in western Europe. This has led to an improvement in biological water quality and an increase in fish stocks in many countries. However, several rheophilic fish species such as brown trout are still categorized as vulnerable in lowland streams in Flanders (Belgium). In order to support cost-efficient restoration programs, habitat suitability modeling can be used. In this study, we developed an ensemble of habitat suitability models using metaheuristic algorithms to explore the importance of a large number of environmental variables, including chemical, physical, and hydromorphological characteristics to determine the suitable habitat for reintroduction of brown trout in the Zwalm River basin (Flanders, Belgium), which is included in the Habitats Directive. Mean stream velocity, water temperature, hiding opportunities, and presence of pools or riffles were identified as the most important variables determining the habitat suitability. Brown trout mainly preferred streams with a relatively high mean reach stream velocity (0.2-1 m/s), a low water temperature (7-15°C), and the presence of pools. The ensemble of models indicated that most of the tributaries and headwaters were suitable for the species. Synthesis and applications . Our results indicate that this modeling approach can be used to support river management, not only for brown trout but also for other species in similar geographical regions. Specifically for the Zwalm River basin, future restoration of the physical habitat, removal of the remaining migration barriers and the development of suitable spawning grounds could promote the successful restoration of brown trout.

  5. Thermal regimes, nonnative trout, and their influences on native Bull Trout in the Upper Klamath River Basin, Oregon

    USGS Publications Warehouse

    Benjamin, Joseph R.; Heltzel, Jeannie; Dunham, Jason B.; Heck, Michael; Banish, Nolan P.

    2016-01-01

    The occurrence of fish species may be strongly influenced by a stream’s thermal regime (magnitude, frequency, variation, and timing). For instance, magnitude and frequency provide information about sublethal temperatures, variability in temperature can affect behavioral thermoregulation and bioenergetics, and timing of thermal events may cue life history events, such as spawning and migration. We explored the relationship between thermal regimes and the occurrences of native Bull Trout Salvelinus confluentus and nonnative Brook Trout Salvelinus fontinalis and Brown Trout Salmo trutta across 87 sites in the upper Klamath River basin, Oregon. Our objectives were to associate descriptors of the thermal regime with trout occurrence, predict the probability of Bull Trout occurrence, and estimate upper thermal tolerances of the trout species. We found that each species was associated with a different suite of thermal regime descriptors. Bull Trout were present at sites that were cooler, had fewer high-temperature events, had less variability, and took longer to warm. Brook Trout were also observed at cooler sites with fewer high-temperature events, but the sites were more variable and Brook Trout occurrence was not associated with a timing descriptor. In contrast, Brown Trout were present at sites that were warmer and reached higher temperatures faster, but they were not associated with frequency or variability descriptors. Among the descriptors considered, magnitude (specifically June degree-days) was the most important in predicting the probability of Bull Trout occurrence, and model predictions were strengthened by including Brook Trout occurrence. Last, all three trout species exhibited contrasting patterns of tolerating longer exposures to lower temperatures. Tolerance limits for Bull Trout were lower than those for Brook Trout and Brown Trout, with contrasts especially evident for thermal maxima. Our results confirm the value of exploring a suite of thermal regime descriptors for understanding the distribution and occurrence of fishes. Moreover, these descriptors and their relationships to fish should be considered with future changes in land use, water use, or climate.

  6. Diurnal stream habitat use of juvenile Atlantic salmon, brown trout and rainbow trout in winter

    USGS Publications Warehouse

    Johnson, J. H.; Douglass, K.A.

    2009-01-01

    The diurnal winter habitat of three species of juvenile salmonids was examined in a tributary of Skaneateles Lake, NY to compare habitat differences among species and to determine if species/age classes were selecting specific habitats. A total of 792 observations were made on the depth, velocity, substrate and cover (amount and type) used by sympatric subyearling Atlantic salmon, subyearling brown trout and subyearling and yearling rainbow trout. Subyearling Atlantic salmon occurred in shallower areas with faster velocities and less cover than the other salmonid groups. Subyearling salmon was also the only group associated with substrate of a size larger than the average size substrate in the study reach during both winters. Subyearling brown trout exhibited a preference for vegetative cover. Compared with available habitat, yearling rainbow trout were the most selective in their habitat use. All salmonid groups were associated with more substrate cover in 2002 under high flow conditions. Differences in the winter habitat use of these salmonid groups have important management implications in terms of both habitat protection and habitat enhancement.

  7. Growth rate differences between resident native brook trout and non-native brown trout

    USGS Publications Warehouse

    Carlson, S.M.; Hendry, A.P.; Letcher, B.H.

    2007-01-01

    Between species and across season variation in growth was examined by tagging and recapturing individual brook trout Salvelinus fontinalis and brown trout Salmo trutta across seasons in a small stream (West Brook, Massachusetts, U.S.A.). Detailed information on body size and growth are presented to (1) test whether the two species differed in growth within seasons and (2) characterize the seasonal growth patterns for two age classes of each species. Growth differed between species in nearly half of the season- and age-specific comparisons. When growth differed, non-native brown trout grew faster than native brook trout in all but one comparison. Moreover, species differences were most pronounced when overall growth was high during the spring and early summer. These growth differences resulted in size asymmetries that were sustained over the duration of the study. A literature survey also indicated that non-native salmonids typically grow faster than native salmonids when the two occur in sympatry. Taken together, these results suggest that differences in growth are not uncommon for coexisting native and non-native salmonids. ?? 2007 The Authors.

  8. Genetic variation in brown trout Salmo trutta across the Danube, Rhine, and Elbe headwaters: a failure of the phylogeographic paradigm?

    PubMed

    Lerceteau-Köhler, Estelle; Schliewen, Ulrich; Kopun, Theodora; Weiss, Steven

    2013-08-26

    Brown trout Salmo trutta have been described in terms of five major mtDNA lineages, four of which correspond to major ocean basins, and one, according to some authors, to a distinct taxon, marbled trout Salmo marmoratus. The Atlantic and Danubian lineages of brown trout meet in a poorly documented contact zone in Central Europe. The natural versus human mediated origin of the Atlantic lineage in the upper Danube is a question of both theoretical and practical importance with respect to conservation management. We provide a comprehensive population genetic analysis of brown trout in the region with the aim of evaluating the geographic distribution and genetic integrity of these two lineages in and around their contact zone. Genetic screening of 114 populations of brown trout across the Danube/Rhine/Elbe catchments revealed a counter-intuitive phylogeographic structure with near fixation of the Atlantic lineage in the sampled portions of the Bavarian Danube. Along the Austrian Danube, phylogeographic informative markers revealed increasing percentages of Danube-specific alleles with downstream distance. Pure Danube lineage populations were restricted to peri-alpine isolates within previously glaciated regions. Both empirical data and simulated hybrid comparisons support that trout in non-glaciated regions north and northeast of the Alps have an admixed origin largely based on natural colonization. In contrast, the presence of Atlantic basin alleles south and southeast of the Alps stems from hatchery introductions and subsequent introgression. Despite extensive stocking of the Atlantic lineage, little evidence of first generation stocked fish or F1 hybrids were found implying that admixture has been established over time. A purely phylogeographic paradigm fails to describe the distribution of genetic lineages of Salmo in Central Europe. The distribution pattern of the Atlantic and Danube lineages is extremely difficult to explain without invoking very strong biological mechanisms.The peri-alpine distribution of relict populations of pure Danubian lineage brown trout implies that they colonized headwater river courses post-glacially ahead of the expansion of the Atlantic lineage. The recognition of natural as opposed to anthropogenic introgression of the Atlantic lineage into Danubian gene pools is of fundamental importance to management strategies.

  9. Genome-wide methylation study of diploid and triploid brown trout (Salmo trutta L.).

    PubMed

    Covelo-Soto, L; Leunda, P M; Pérez-Figueroa, A; Morán, P

    2015-06-01

    The induction of triploidization in fish is a very common practice in aquaculture. Although triploidization has been applied successfully in many salmonid species, little is known about the epigenetic mechanisms implicated in the maintenance of the normal functions of the new polyploid genome. By means of methylation-sensitive amplified polymorphism (MSAP) techniques, genome-wide methylation changes associated with triploidization were assessed in DNA samples obtained from diploid and triploid siblings of brown trout (Salmo trutta). Simple comparative body measurements showed that the triploid trout used in the study were statistically bigger, however, not heavier than their diploid counterparts. The statistical analysis of the MSAP data showed no significant differences between diploid and triploid brown trout in respect to brain, gill, heart, liver, kidney or muscle samples. Nonetheless, local analysis pointed to the possibility of differences in connection with concrete loci. This is the first study that has investigated DNA methylation alterations associated with triploidization in brown trout. Our results set the basis for new studies to be undertaken and provide a new approach concerning triploidization effects of the salmonid genome while also contributing to the better understanding of the genome-wide methylation processes. © 2015 Stichting International Foundation for Animal Genetics.

  10. Spatial modeling to project Southern Appalachian Trout distribution in warmer climate

    Treesearch

    Patrica A. Flebbe; Laura D. Roghair; Jennifer L. Bruggink

    2006-01-01

    In the southern Appalachian Mountains, the distributions of native brook trout Salvelinus fontinalis and introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are presently limited by temperature and are expected to be limited further by a warmer climate. To estimate trout habitat in a future...

  11. Cannibalism in non-native brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss stream-dwelling populations.

    PubMed

    Musseau, C; Vincenzi, S; Jesenšek, D; Crivelli, A J

    2017-12-01

    Introduced and allopatric populations of brown trout Salmo trutta and rainbow trout Oncorhynchus mykiss were sampled in Slovenia for stable isotope analysis to assess dietary niche shifts through ontogeny and estimate the propensity for cannibalism. Both S. trutta and O. mykiss are cannibals, with higher average relative contribution of conspecific assimilated energy for S. trutta (27·9%) compared with O. mykiss (7·7%). The smallest cannibal was 166 mm in the S. trutta population and 247 mm in the O. mykiss population. © 2017 The Fisheries Society of the British Isles.

  12. The effects of chronological age and size on toxicity of zinc to juvenile brown trout

    EPA Science Inventory

    A series of toxicity tests were conducted to investigate the role of chronological age and organism weight on zinc tolerance in juvenile brown trout (Salmo trutta). Four different incubation temperatures were used to control the maturation of the juveniles prior to zinc exposure...

  13. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids

    PubMed Central

    Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona

    2015-01-01

    Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed. PMID:26467239

  14. Comparison of pigment cell ultrastructure and organisation in the dermis of marble trout and brown trout, and first description of erythrophore ultrastructure in salmonids.

    PubMed

    Djurdjevič, Ida; Kreft, Mateja Erdani; Sušnik Bajec, Simona

    2015-11-01

    Skin pigmentation in animals is an important trait with many functions. The present study focused on two closely related salmonid species, marble trout (Salmo marmoratus) and brown trout (S. trutta), which display an uncommon labyrinthine (marble-like) and spot skin pattern, respectively. To determine the role of chromatophore type in the different formation of skin pigment patterns in the two species, the distribution and ultrastructure of chromatophores was examined with light microscopy and transmission electron microscopy. The presence of three types of chromatophores in trout skin was confirmed: melanophores; xanthophores; and iridophores. In addition, using correlative microscopy, erythrophore ultrastructure in salmonids was described for the first time. Two types of erythrophores are distinguished, both located exclusively in the skin of brown trout: type 1 in black spot skin sections similar to xanthophores; and type 2 with a unique ultrastructure, located only in red spot skin sections. Morphologically, the difference between the light and dark pigmentation of trout skin depends primarily on the position and density of melanophores, in the dark region covering other chromatophores, and in the light region with the iridophores and xanthophores usually exposed. With larger amounts of melanophores, absence of xanthophores and presence of erythrophores type 1 and type L iridophores in the black spot compared with the light regions and the presence of erythrophores type 2 in the red spot, a higher level of pigment cell organisation in the skin of brown trout compared with that of marble trout was demonstrated. Even though the skin regions with chromatophores were well defined, not all the chromatophores were in direct contact, either homophilically or heterophilically, with each other. In addition to short-range interactions, an important role of the cellular environment and long-range interactions between chromatophores in promoting adult pigment pattern formation of trout are proposed. © 2015 Anatomical Society.

  15. Adhesion to brown trout skin mucus, antagonism against cyst adhesion and pathogenicity to rainbow trout of some inhibitory bacteria against Saprolegnia parasitica .

    PubMed

    Carbajal-González, M T; Fregeneda-Grandes, J M; González-Palacios, C; Aller-Gancedo, J M

    2013-04-29

    Biological control of saprolegniosis with bacteria might be an alternative to the use of chemical compounds. Among criteria for the selection of such bacteria are their absence of pathogenicity to fish and their ability to prevent adhesion of the pathogen to the skin mucus. The pathogenicity to rainbow trout of 21 bacterial isolates with in vitro inhibitory activity against Saprolegnia parasitica was studied. Fifteen of the isolates, identified as Aeromonas sobria, Pantoea agglomerans, Pseudomonas fluorescens, Serratia fonticola, Xanthomonas retroflexus and Yersinia kristensenii, were non-pathogenic when injected into rainbow trout. Their capacity to adhere to the skin mucus of male and female brown trout and to reduce the adhesion of S. parasitica cysts under exclusion, competition and displacement conditions was tested. The 15 bacterial isolates showed a low adhesion rate, ranging between 1.7% (for an A. sobria isolate) and 15.3% (a P. fluorescens isolate). This adhesion was greater in the case of mucus from male brown trout than from females. Similarities in the adhesion to male mucus and other substrates and correlation to that observed to polystyrene suggest that adhesion to skin mucus does not depend on the substrate. A high percentage (88.9%) of the S. parasitica cysts adhered to the skin mucus of male brown trout. Almost all of the bacteria reduced this adhesion ratio significantly under exclusion and competition conditions. However, only half of the isolates displaced cysts from skin mucus, and more bacterial cells were necessary for this effect. A novel method to study the adhesion of S. parasitica cysts to skin mucus of trout and their interactions with inhibitory bacteria is described.

  16. Sea growth of anadromous brown trout ( Salmo trutta)

    NASA Astrophysics Data System (ADS)

    de Leeuw, J. J.; ter Hofstede, R.; Winter, H. V.

    2007-08-01

    Sea growth rates were studied in anadromous brown trout caught in Lake IJsselmeer, The Netherlands. Growth in the first year at sea was estimated at 26 cm from length-frequency distributions, and at 21 cm from back-calculated growth rates from scale readings. These estimates are considerably higher than sea growth rates observed in populations at higher latitudes (Norway, Sweden), but compare well with the limited information on sea growth rates estimated for anadromous trout in the River Rhine and rivers in Normandy (France).

  17. The Genetic Architecture Underlying the Evolution of a Rare Piscivorous Life History Form in Brown Trout after Secondary Contact and Strong Introgression.

    PubMed

    Jacobs, Arne; Hughes, Martin R; Robinson, Paige C; Adams, Colin E; Elmer, Kathryn R

    2018-05-31

    Identifying the genetic basis underlying phenotypic divergence and reproductive isolation is a longstanding problem in evolutionary biology. Genetic signals of adaptation and reproductive isolation are often confounded by a wide range of factors, such as variation in demographic history or genomic features. Brown trout ( Salmo trutta ) in the Loch Maree catchment, Scotland, exhibit reproductively isolated divergent life history morphs, including a rare piscivorous (ferox) life history form displaying larger body size, greater longevity and delayed maturation compared to sympatric benthivorous brown trout. Using a dataset of 16,066 SNPs, we analyzed the evolutionary history and genetic architecture underlying this divergence. We found that ferox trout and benthivorous brown trout most likely evolved after recent secondary contact of two distinct glacial lineages, and identified 33 genomic outlier windows across the genome, of which several have most likely formed through selection. We further identified twelve candidate genes and biological pathways related to growth, development and immune response potentially underpinning the observed phenotypic differences. The identification of clear genomic signals divergent between life history phenotypes and potentially linked to reproductive isolation, through size assortative mating, as well as the identification of the underlying demographic history, highlights the power of genomic studies of young species pairs for understanding the factors shaping genetic differentiation.

  18. Global transcriptome profiling reveals molecular mechanisms of metal tolerance in a chronically exposed wild population of brown trout.

    PubMed

    Uren Webster, T M; Bury, N; van Aerle, R; Santos, E M

    2013-08-06

    Worldwide, a number of viable populations of fish are found in environments heavily contaminated with metals, including brown trout (Salmo trutta) inhabiting the River Hayle in South-West of England. This population is chronically exposed to a water-borne mixture of metals, including copper and zinc, at concentrations lethal to naïve fish. We aimed to investigate the molecular mechanisms employed by the River Hayle brown trout to tolerate high metal concentrations. To achieve this, we combined tissue metal analysis with whole-transcriptome profiling using RNA-seq on an Illumina platform. Metal concentrations in the Hayle trout, compared to fish from a relatively unimpacted river, were significantly increased in the gills, liver and kidney (63-, 34- and 19-fold respectively), but not the gut. This confirms that these fish can tolerate considerable metal accumulation, highlighting the importance of these tissues in metal uptake (gill), storage and detoxification (liver, kidney). We sequenced, assembled and annotated the brown trout transcriptome using a de novo approach. Subsequent gene expression analysis identified 998 differentially expressed transcripts and functional analysis revealed that metal- and ion-homeostasis pathways are likely to be the most important mechanisms contributing to the metal tolerance exhibited by this population.

  19. Global Transcriptome Profiling Reveals Molecular Mechanisms of Metal Tolerance in a Chronically Exposed Wild Population of Brown Trout

    PubMed Central

    2013-01-01

    Worldwide, a number of viable populations of fish are found in environments heavily contaminated with metals, including brown trout (Salmo trutta) inhabiting the River Hayle in South-West of England. This population is chronically exposed to a water-borne mixture of metals, including copper and zinc, at concentrations lethal to naïve fish. We aimed to investigate the molecular mechanisms employed by the River Hayle brown trout to tolerate high metal concentrations. To achieve this, we combined tissue metal analysis with whole-transcriptome profiling using RNA-seq on an Illumina platform. Metal concentrations in the Hayle trout, compared to fish from a relatively unimpacted river, were significantly increased in the gills, liver and kidney (63-, 34- and 19-fold respectively), but not the gut. This confirms that these fish can tolerate considerable metal accumulation, highlighting the importance of these tissues in metal uptake (gill), storage and detoxification (liver, kidney). We sequenced, assembled and annotated the brown trout transcriptome using a de novo approach. Subsequent gene expression analysis identified 998 differentially expressed transcripts and functional analysis revealed that metal- and ion-homeostasis pathways are likely to be the most important mechanisms contributing to the metal tolerance exhibited by this population. PMID:23834071

  20. P-gp expression levels in the erythrocytes of brown trout: a new tool for aquatic sentinel biomarker development.

    PubMed

    Valton, Emeline; Wawrzyniak, Ivan; Amblard, Christian; Combourieu, Bruno; Bayle, Marie-Laure; Desmolles, François; Kwiatkowski, Fabrice; Penault-Llorca, Frédérique; Bamdad, Mahchid

    2017-09-01

    P-glycoprotein (P-gp) is a ubiquitous membrane detoxification pump involved in cellular defence against xenobiotics. Blood is a hub for the trade and transport of physiological molecules and xenobiotics. Our recent studies have highlighted the expression of a 140-kDa P-gp in brown trout erythrocytes in primary cell culture and its dose-dependent response to Benzo[a]pyrene pollutant. The purpose of this study was focused on using P-gp expression in brown trout erythrocytes as a biomarker for detecting the degree of river pollution. abcb1 gene and P-gp expression level were analysed by reverse transcriptase-PCR and Western blot, in the erythrocytes of brown trouts. The latter were collected in upstream and downstream of four rivers in which 17 polycyclic aromatic hydrocarbons and 348 varieties of pesticides micro-residues were analysed by liquid chromatography and mass spectrometry. The abcb1 gene and the 140-kDa P-gp were not expressed in trout erythrocytes from uncontaminated river. In contrast, they are clearly expressed in contaminated rivers, in correlation with the river pollution degree and the nature of the pollutants. This biological tool may offer considerable advantages since it provides an effective response to the increasing need for an early biomarker.

  1. Induction of gynogenetic and androgenetic haploid and doubled haploid development in the brown trout (Salmo trutta Linnaeus 1758).

    PubMed

    Michalik, O; Dobosz, S; Zalewski, T; Sapota, M; Ocalewicz, K

    2015-04-01

    Gynogenetic and androgenetic brown trout (Salmo trutta Linnaeus 1758) haploids (Hs) and doubled haploids (DHs) were produced in the present research. Haploid development was induced by radiation-induced genetic inactivation of spermatozoa (gynogenesis) or eggs (androgenesis) before insemination. To provide DHs, gynogenetic and androgenetic haploid zygotes were subjected to the high pressure shock to suppress the first mitotic cleavage. Among haploids, gynogenetic embryos were showing lower mortality when compared to the androgenetic embryos; however, most of them die before the first feeding stage. Gynogenetic doubled haploids provided in the course of the brown trout eggs activation performed by homologous and heterologous sperm (rainbow trout) were developing equally showing hatching rates of 14.76 ± 2.4% and 16.14 ± 2.90% and the survival rates at the first feeding stage of 10.48 ± 3.48% and 12.78 ± 2.18%, respectively. Significantly, lower survival rate was observed among androgenetic progenies from the diploid groups with only few specimens that survived to the first feeding stage. Cytogenetic survey showed that among embryos from the diploid variants of the research, only gynogenetic individuals possessed doubled sets of chromosomes. Thus, it is reasonable to assume that radiation employed for the genetic inactivation of the brown trout eggs misaligned mechanism responsible for the cell divisions and might have delayed or even arrested the first mitotic cleavage in the androgenetic brown trout zygotes. Moreover, protocol for the radiation-induced inactivation of the paternal and maternal genome should be adjusted as some of the cytogenetically surveyed gynogenetic and androgenetic embryos exhibited fragments of the irradiated chromosomes. © 2015 Blackwell Verlag GmbH.

  2. Parental genetic diversity of brown trout (Salmo trutta m. fario) brood stock affects offspring susceptibility to whirling disease.

    PubMed

    Eszterbauer, Edit; Forró, Barbara; Tolnai, Zoltán; Guti, Csaba Ferenc; Zsigmond, Gergely; Hoitsy, György; Kallert, Dennis Marc

    2015-03-03

    Whirling disease, caused by the myxozoan parasite Myxobolus cerebralis, has high economical and ecological importance worldwide. Susceptibility to the disease varies considerably among salmonid species. In brown trout (Salmo trutta) the infection is usually subclinical with low mortality, which increases the risk of parasite dissemination, especially when farm fish are used for stocking natural habitats. The influence of intraspecific genetic differences (especially the level of homozygosity) on susceptibility is unknown. Therefore, we examined the possible correlations between parental genetic diversity and offspring susceptibility of brown trout stocks to whirling disease. Two brown trout brood stocks from a German and a Hungarian fish farm were genetically characterized using microsatellite and lineage-specific genetic markers. The individual inbreeding coefficient f and pairwise relatedness factor r were estimated based on eight microsatellite markers. Brood stock populations were divided into groups according to low and high f and r value estimates and subjected to selective fertilization. The offspring from these separate groups were exposed to M. cerebralis actinospores, and the infection prevalence and intensity was measured and statistically analysed. The analysis of phylogeographic lineage heritage revealed high heterogeneity in the Hungarian brood stock since > 50% of individuals were Atlantic-Danubian hybrids, while only pure Atlantic-descending specimens were detected in the German population. Based on f msat and r msat estimations, classified non-inbred (NIB), inbred (IB) and a group of closely related fish (REL) were created. The susceptibility of their offspring varied considerably. Although there was no significant difference in the prevalence of M. cerebralis infection, the mean intensity of infection differed significantly between NIB and IB groups. In REL and IB groups, a high variability was observed in infection intensity. No external clinical signs were observed in the exposed brown trout groups. Our findings indicate that the allelic diversity of brown trout brood stock may constitute a significant factor in disease susceptibility, i.e. the intensity of parasite infection in the subsequent generation.

  3. Proliferative kidney disease (PKD) agent Tetracapsuloides bryosalmonae in brown trout populations in Estonia.

    PubMed

    Dash, Megha; Vasemägi, Anti

    2014-05-13

    Proliferative kidney disease (PKD) caused by the myxozoan parasite Tetracapsuloides bryosalmonae is a serious parasitic disease threatening both farmed and wild salmonid populations, but very little is currently known about the distribution of the parasite in the Baltic Sea region. In this study we (1) report the development of a novel multiplex PCR method for fast and reliable screening of T. bryosalmonae; (2) use this multiplex PCR method to show that the PKD agent T. bryosalmonae is widespread in natural brown trout Salmo trutta L. populations in Estonia; (3) evaluate monthly and yearly variation of T. bryosalmonae prevalence in juvenile trout; (4) assess T. bryosalmonae prevalence in different age-classes of fish (0+ vs. 1+ and older) and report the presence of the PKD agent in the kidneys of returning sea trout spawners; and (5) suggest the freshwater bryozoan Plumatella fungosa as a putative invertebrate host of T. bryosalmonae in Estonia. Our results demonstrate a highly heterogeneous distribution of T. bryosalmonae at the micro-geographic scale, indicating that PKD could have an important negative effect on recruitment in Estonian brown trout populations.

  4. Do native brown trout and non-native brook trout interact reproductively?

    NASA Astrophysics Data System (ADS)

    Cucherousset, J.; Aymes, J. C.; Poulet, N.; Santoul, F.; Céréghino, R.

    2008-07-01

    Reproductive interactions between native and non-native species of fish have received little attention compared to other types of interactions such as predation or competition for food and habitat. We studied the reproductive interactions between non-native brook trout ( Salvelinus fontinalis) and native brown trout ( Salmo trutta) in a Pyrenees Mountain stream (SW France). We found evidence of significant interspecific interactions owing to consistent spatial and temporal overlap in redd localizations and spawning periods. We observed mixed spawning groups composed of the two species, interspecific subordinate males, and presence of natural hybrids (tiger trout). These reproductive interactions could be detrimental to the reproduction success of both species. Our study shows that non-native species might have detrimental effects on native species via subtle hybridization behavior.

  5. Preference and avoidance pH of brook trout Salvelinus fontinalis and brown trout Salmo trutta exposed to different holding pH.

    PubMed

    Fost, B A; Ferreri, C P

    2015-08-01

    The goal of this study was to determine if short-term exposure of brook trout Salvelinus fontinalis and brown trout Salmo trutta to a lower pH than found in their source stream results in a shift in preference or avoidance pH. The lack of a shift in preference or avoidance pH of adult S. fontinalis and S. trutta suggests that these species can be held at a pH different from the source waterbody for a short period of time without altering preference or avoidance pH behaviour. © 2015 The Fisheries Society of the British Isles.

  6. Ultrastructural changes in the hepatocytes of juvenile rainbow trout and mature brown trout exposed to copper or zinc

    USGS Publications Warehouse

    Leland, H.V.

    1983-01-01

    Morphological changes in hepatocytes of mature brown trout (Salmo trutta Linnaeus) and juvenile rainbow trout (Salmo gairdneri Richardson), accompanying chronic exposures to copper and zinc, were examined by transmission electron microscopy. At a concentration of copper not inhibitory to the final stages of gonadal development or spawning of brown trout, structural alterations included contraction of mitochondria and a tendency for nuclei to be slightly enlarged. Concentrations of copper or zinc lethal to a small fraction (10% and 4%, respectively) of a population of juvenile rainbow trout exposed for 42 d during larval and early juvenile development caused hepatocyte changes in survivors indicative of a reduction in ability to maintain intracellular water and cation balance and possible intranuclear metal sequestering. Specific structural alterations included increased vesiculation of rough endoplasmic reticulum, an increase in the abundance of electron-dense particles in the nucleus, increases in the numbers of multilaminar and globular inclusions, pooling of glycogen, increased autophagocytic activity and an increase in the number of necrotic cells. At advanced stages of toxicosis (concentrations of copper or zinc lethal to approximately 50% of the juveniles exposed for 42 d during development), loss in integrity of mitochondrial membranes, rupturing of plasma and nuclear membranes, separation of granular and fibrillar nuclear components, fragmentation of endoplasmic reticulum, and extensive autophagic vacuolization were significant features of hepatocytes of surviving juvenile rainbow trout. ?? 1983.

  7. Introduced brown trout alter native acanthocephalan infections in native fish.

    PubMed

    Paterson, Rachel A; Townsend, Colin R; Poulin, Robert; Tompkins, Daniel M

    2011-09-01

    1. Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the 'spillback' of infection increasing the parasite burdens of native hosts) or sinks (with the 'dilution' of infection decreasing the parasite burdens of native hosts) of infection. 2. In New Zealand, negative correlations between the presence of introduced brown trout (Salmo trutta) and native parasite burdens of the native roundhead galaxias (Galaxias anomalus) have been observed, suggesting that parasite dilution is occurring. 3. We used a multiple-scale approach combining field observations, experimental infections and dynamic population modelling to investigate whether native Acanthocephalus galaxii acquisition by brown trout alters host-parasite dynamics in native roundhead galaxias. 4. Field observations demonstrated higher infection intensity in introduced trout than in native galaxias, but only small, immature A. galaxii were present in trout. Experimental infections also demonstrated that A. galaxii does not mature in trout, although parasite establishment and initial growth were similar in the two hosts. Taken together, these results support the hypothesis that trout may serve as an infection sink for the native parasite. 5. However, dynamic population modelling predicts that A. galaxii infections in native galaxias should at most only be slightly reduced by dilution in the presence of trout. Rather, model exploration indicates parasite densities in galaxias are highly sensitive to galaxias predation on infected amphipods, and to relative abundances of galaxias and trout. Hence, trout presence may instead reduce parasite burdens in galaxias by either reducing galaxias density or by altering galaxias foraging behaviour. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  8. A case of isolation by distance and short-term temporal stability of population structure in brown trout (Salmo trutta) within the River Dart, southwest England

    PubMed Central

    Griffiths, Andrew M; Koizumi, Itsuro; Bright, Dylan; Stevens, Jamie R

    2009-01-01

    Salmonid fishes exhibit high levels of population differentiation. In particular, the brown trout (Salmo trutta L.) demonstrates complex within river drainage genetic structure. Increasingly, these patterns can be related to the underlying evolutionary models, of which three scenarios (member-vagrant hypothesis, metapopulation model and panmixia) facilitate testable predictions for investigations into population structure. We analysed 1225 trout collected from the River Dart, a 75 km long river located in southwest England. Specimens were collected from 22 sample sites across three consecutive summers (2001–2003) and genetic variation was examined at nine microsatellite loci. A hierarchical analysis of molecular variance revealed that negligible genetic variation was attributed among temporal samples. The highest levels of differentiation occurred among samples isolated above barriers to fish movement, and once these samples were removed, a significant effect of isolation-by-distance was observed. These results suggest that, at least in the short-term, ecological events are more important in shaping the population structure of Dart trout than stochastic extinction events, and certainly do not contradict the expectations of a member-vagrant hypothesis. Furthermore, individual-level spatial autocorrelation analyses support previous recommendations for the preservation of a number of spawning sites spaced throughout the tributary system to conserve the high levels of genetic variation identified in salmonid species. PMID:25567897

  9. Global climate change and fragmentation of native brook trout distribution in the southern Appalachian Mountains

    Treesearch

    Patricia A. Flebbe

    1997-01-01

    Current distributions of native brook trout (Salvelinus fontinalis) in the Southern Appalachians are restricted to upper elevations by multiple factors, including habitat requirements, introduced rainbow (Oncorhynchus mykiss) and brown (Salmo trutta) trout, and other human activities. Present-day distribution of brook trout habitat is already fragmented. Increased...

  10. Brook trout movement within a high-elevation watershed: Consequences for watershed restoration

    Treesearch

    Jeff L. Hansbarger; J. Todd Petty; Patricia M. Mazik

    2010-01-01

    We used radio-telemetry to quantify brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) movements in the Shavers Fork of the Cheat River, West Virginia, and an adjacent second-order tributary (Rocky Run). Our objectives were to quantify the overall rate of trout movement, assess spatial and temporal variation in...

  11. Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles.

    PubMed

    McMeel, O M; Hoey, E M; Ferguson, A

    2001-01-01

    The cDNA nucleotide sequences of the lactate dehydrogenase alleles LDH-C1*90 and *100 of brown trout (Salmo trutta) were found to differ at position 308 where an A is present in the *100 allele but a G is present in the *90 allele. This base substitution results in an amino acid change from aspartic acid at position 82 in the LDH-C1 100 allozyme to a glycine in the 90 allozyme. Since aspartic acid has a net negative charge whilst glycine is uncharged, this is consistent with the electrophoretic observation that the LDH-C1 100 allozyme has a more anodal mobility relative to the LDH-C1 90 allozyme. Based on alignment of the cDNA sequence with the mouse genomic sequence, a local primer set was designed, incorporating the variable position, and was found to give very good amplification with brown trout genomic DNA. Sequencing of this fragment confirmed the difference in both homozygous and heterozygous individuals. Digestion of the polymerase chain reaction products with BslI, a restriction enzyme specific for the site difference, gave one, two and three fragments for the two homozygotes and the heterozygote, respectively, following electrophoretic separation. This provides a DNA-based means of routine screening of the highly informative LDH-C1* polymorphism in brown trout population genetic studies. Primer sets presented could be used to sequence cDNA of other LDH* genes of brown trout and other species.

  12. Estrogenic effect of the phytoestrogen biochanin A in zebrafish, Danio rerio, and brown trout, Salmo trutta.

    PubMed

    Holbech, Henrik; Schröder, Kristoffer D; Nielsen, Marie L; Brande-Lavridsen, Nanna; Holbech, Bente Frost; Bjerregaard, Poul

    2013-11-15

    Isoflavones with estrogenic activity produced in Fabaceae plants are known to leach from agricultural areas to freshwater systems, but the effect of waterborne isoflavones in fish has not been thoroughly characterized. Therefore, the estrogenic effect of waterborne biochanin A was investigated in zebrafish (Danio rerio) and juvenile brown trout (Salmo trutta). Exposure of juvenile brown trout to 10 μg biochanin AL(-1) or higher caused marked vitellogenin induction after 9-10 days of exposure and so did exposure to 186 μg biochanin AL(-1) for 6h. Following 8d of exposure, a NOEC for induction of vitellogenin production in male zebrafish was 70 and LOEC 114 μg biochanin AL(-1). Exposure to 209 μg biochanin AL(-1) from hatch to 60 days post hatch (dph) caused a skewing of the sex ratio toward more phenotypic female zebrafish, but did not cause induction of vitellogenin in male and undifferentiated fish. (1) biochanin A elicits estrogenic effects in trout at environmentally realistic concentrations, (2) brown trout plasma vitellogenin concentrations respond to lower biochanin A exposure concentrations than vitellogenin concentrations in zebrafish homogenates and (3) concerning vitellogenin induction, the hypothesis should be tested if short term tests with zebrafish may show a higher sensitivity than partial life cycle tests. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Displacement of native white-spotted charr Salvelinus leucomaenis by non-native brown trout Salmo trutta after resolution of habitat fragmentation by a migration barrier.

    PubMed

    Hasegawa, K

    2017-06-01

    After resolution of habitat fragmentation by an erosion-control dam, non-native brown trout Salmo trutta invaded the upstream side of the dam and displaced native white-spotted charr Salvelinus leucomaenis in Monbetsu stream, Hokkaido, northern Japan. © 2017 The Fisheries Society of the British Isles.

  14. Livestock and elk grazing effects on stream morphology, brown trout population dynamics, movement, and growth rate, Valles Caldera National Preserve, New Mexico

    Treesearch

    Michael C. Anderson

    2009-01-01

    Ungulate grazing in riparian areas has been shown to detrimentally impact stream morphology and fish populations. Goals of this research were to assess changes in stream morphology and responses of a brown trout (Salmo trutta) population to exclusion of cattle (Bos taurus) and elk (Cervus elaphus) from riparian...

  15. First record of proliferative kidney disease agent Tetracapsuloides bryosalmonae in wild brown trout and European grayling in Finland.

    PubMed

    Vasemägi, Anti; Nousiainen, Ilkka; Saura, Ari; Vähä, Juha-Pekka; Valjus, Jorma; Huusko, Ari

    2017-06-19

    The myxozoan endoparasite Tetracapsuloides bryosalmonae causes temperature-driven proliferative kidney disease (PKD) in salmonid fishes. Despite the economic and ecological importance of PKD, information about the distribution of the parasite is still scarce. Here, we report for the first time the occurrence of T. bryosalmonae in wild brown trout Salmo trutta and European grayling Thymallus thymallus populations in Finland. We detected T. bryosalmonae at high prevalence in both brown trout and European grayling from the transboundary Finnish-Russian River Koutajoki system (Rivers Oulankajoki, Kuusinkijoki, Kitkajoki, Maaninkajoki, and Juumajoki) in north-eastern Finland. In southern Finland, T. bryosalmonae was detected in River Siuntionjoki young-of-the-year brown trout collected both in 2015 and 2016 (100% prevalence), while the parasite was not observed in fish from 3 other rivers (Ingarskila, Mustajoki, and Vantaanjoki) flowing to the Gulf of Finland. Our results, together with those from recent studies of Atlantic salmon, indicate that T. bryosalmonae is distributed over much higher latitudes in northern Europe than previously appreciated. We expect that increasing water temperatures will likely cause new PKD outbreaks in these more northerly regions in the future.

  16. Fish introductions reveal the temperature dependence of species interactions

    PubMed Central

    Hein, Catherine L.; Öhlund, Gunnar; Englund, Göran

    2014-01-01

    A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout (Salmo trutta) and pike (Esox lucius). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km2), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity. PMID:24307673

  17. Fish assemblages in the Upper Esopus Creek, NY: Current status, variability, and controlling factors

    USGS Publications Warehouse

    Baldigo, Barry P.; George, Scott D.; Keller, Walter T

    2015-01-01

    The Upper Esopus Creek receives water diversions from a neighboring basin through the Shandaken Tunnel (the portal) from the Schoharie Reservoir. Although the portal is closed during floods, mean flows and turbidity of portal waters are generally greater than in Esopus Creek above their confluence. These conditions could potentially affect local fish assemblages, yet such effects have not been assessed in this highly regulated stream. We studied water quality, hydrology, temperature, and fish assemblages at 18 sites in the Upper Esopus Creek during 2009–2011 to characterize the effects of the portal input on resident-fish assemblages and to document the status of the fishery resource. In general, fish-community richness increased by 2–3 species at mainstem sites near the portal, and median density and biomass of fish communities at sites downstream of the portal were significantly lower than they were at sites upstream of the portal. Median densities of Salmo trutta (Brown Trout) and all trout species were significantly lower than at mainstem sites downstream from the portal—25.1 fish/0.1 ha and 148.9 fish/0.1 ha, respectively—than at mainstem sites upstream from the portal—68.8 fish/0.1 ha and 357.7 fish/0.1 ha, respectively—yet median biomass for Brown Trout and all trout did not differ between sites from both reaches. The median density of young-of-year Brown Trout at downstream sites (9.3 fish/0.1 ha) was significantly lower than at upstream sites (33.9 fish/0.1 ha). Waters from the portal appeared to adversely affect the density and biomass of young-of-year Brown Trout, but lower temperatures and increased flows also improved habitat quality for mature trout at downstream sites during summer. These findings, and those from companion studies, indicate that moderately turbid waters from the portal had few if any adverse impacts on trout populations and overall fish communities in the Upper Esopus Creek during this study.

  18. P-gp expression in brown trout erythrocytes: evidence of a detoxification mechanism in fish erythrocytes.

    PubMed

    Valton, Emeline; Amblard, Christian; Wawrzyniak, Ivan; Penault-Llorca, Frederique; Bamdad, Mahchid

    2013-12-05

    Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous "membrane detoxification proteins" implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.

  19. Importance of fish behaviour in modelling conservation problems: food limitation as an example

    Treesearch

    Steven Railsback; Bret Harvey

    2011-01-01

    Simulation experiments using the inSTREAM individual-based brown trout Salmo trutta population model explored the role of individual adaptive behaviour in food limitation, as an example of how behaviour can affect managers’ understanding of conservation problems. The model includes many natural complexities in habitat (spatial and temporal variation in characteristics...

  20. Potential population and assemblage influences of non-native trout on native nongame fish in Nebraska headwater streams

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.; Schainost, Steve

    2014-01-01

    Non-native trout are currently stocked to support recreational fisheries in headwater streams throughout Nebraska. The influence of non-native trout introductions on native fish populations and their role in structuring fish assemblages in these systems is unknown. The objectives of this study were to determine (i) if the size structure or relative abundance of native fish differs in the presence and absence of non-native trout, (ii) if native fish-assemblage structure differs in the presence and absence of non-native trout and (iii) if native fish-assemblage structure differs across a gradient in abundances of non-native trout. Longnose dace Rhinichthys cataractae were larger in the presence of brown trout Salmo trutta and smaller in the presence of rainbow trout Oncorhynchus mykiss compared to sites without trout. There was also a greater proportion of larger white suckers Catostomus commersonii in the presence of brown trout. Creek chub Semotilus atromaculatus and fathead minnow Pimephales promelas size structures were similar in the presence and absence of trout. Relative abundances of longnose dace, white sucker, creek chub and fathead minnow were similar in the presence and absence of trout, but there was greater distinction in native fish-assemblage structure between sites with trout compared to sites without trout as trout abundances increased. These results suggest increased risk to native fish assemblages in sites with high abundances of trout. However, more research is needed to determine the role of non-native trout in structuring native fish assemblages in streams, and the mechanisms through which introduced trout may influence native fish populations.

  1. Measurement of total Zn and Zn isotope ratios by quadrupole ICP-MS for evaluation of Zn uptake in gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss)

    USGS Publications Warehouse

    Wolf, R.E.; Todd, A.S.; Brinkman, S.; Lamothe, P.J.; Smith, K.S.; Ranville, J.F.

    2009-01-01

    This study evaluates the potential use of stable zinc isotopes in toxicity studies measuring zinc uptake by the gills of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The use of stable isotopes in such studies has several advantages over the use of radioisotopes, including cost, ease of handling, elimination of permit requirements, and waste disposal. A pilot study using brown trout was performed to evaluate sample preparation methods and the ability of a quadrupole inductively coupled plasma mass spectrometer (ICP-MS) system to successfully measure changes in the 67Zn/66Zn ratios for planned exposure levels and duration. After completion of the pilot study, a full-scale zinc exposure study using rainbow trout was performed. The results of these studies indicate that there are several factors that affect the precision of the measured 67Zn/66Zn ratios in the sample digests, including variations in sample size, endogenous zinc levels, and zinc uptake rates by individual fish. However, since these factors were incorporated in the calculation of the total zinc accumulated by the gills during the exposures, the data obtained were adequate for their intended use in calculating zinc binding and evaluating the influences of differences in water quality parameters.

  2. Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation

    NASA Astrophysics Data System (ADS)

    Bridcut, E. E.; McNish, J.; Harriman, R.

    2004-06-01

    Critical Load (CL) methodology is currently used throughout Europe to assess the risks of ecological damage due to sulphur and nitrogen emissions. Critical acid neutralising capacity (ANCCRIT) is used in CL estimates for freshwater systems as a surrogate for biological damage. Although UK CL maps presently use an ANC value of 0 μeq l-1, this value has been based largely on Norwegian lake studies, in which brown trout is chosen as a representative indicator organism. In this study, an ANC value specific for brown trout in Scottish streams was determined and issues were addressed such as salmon and trout sensitivity in streams, episodicity, afforestation and complicating factors such as dissolved organic carbon (DOC) and labile aluminium (Al-L). Catchments with significant forest cover were selected to provide fishless sites and to provide catchment comparisons in unpolluted areas. Chemical factors were the primary determinant with land use a secondary determinant of the distribution of salmonid populations at the twenty-six study sites. ANC explained more variance in brown trout density than pH. The most significant index of episodicity was percent of time spent below an ANC of 0 μeq l-1. An ANCCRIT value of 39 μeq l-1 was obtained based on a 50% probability of brown trout occurrence. The use of this revised ANCCRIT value in the CL equation improved the relationship between trout status and exceedance of CLs. Uncertainties associated with variations in Al-L at any fixed ANCCRIT, particularly within forested catchments, and the role of DOC in modifying the toxicity of Al-L are discussed.

  3. Density-dependent effects of non-native brown trout Salmo trutta on the species-area relationship in stream fish assemblages.

    PubMed

    Hasegawa, K; Mori, T; Yamazaki, C

    2017-01-01

    The spatial scale and density-dependent effects of non-native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence-absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments. © 2016 The Fisheries Society of the British Isles.

  4. Modelling approaches for relating effects of change in river flow to populations of Atlantic salmon and brown trout

    Treesearch

    John D. Armstrong; Keith H. Nislow

    2012-01-01

    Modelling approaches for relating discharge to the biology of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., growing in rivers are reviewed. Process-based and empirical models are set within a common framework of input of water flow and output of characteristics of fish, such as growth and survival, which relate directly to population dynamics. A...

  5. Persistence of Tetracapsuloides bryosalmonae (Myxozoa) in chronically infected brown trout Salmo trutta.

    PubMed

    Abd-Elfattah, Ahmed; Kumar, Gokhlesh; Soliman, Hatem; El-Matbouli, Mansour

    2014-08-21

    Proliferative kidney disease (PKD) is a widespread disease of farmed and wild salmonid populations in Europe and North America, caused by the myxozoan parasite Tetracapsuloides bryosalmonae. Limited studies have been performed on the epidemiological role in spread of the disease played by fish that survive infection with T. bryosalmonae. The aim of the present study was to evaluate the persistence of T. bryosalmonae developmental stages in chronically infected brown trout Salmo trutta up to 2 yr after initial exposure to laboratory-infected colonies of the parasite's alternate host, the bryozoan Fredericella sultana. Kidney, liver, spleen, intestine, brain, gills and blood were sampled 24, 52, 78 and 104 wk post-exposure (wpe) and tested for T. bryosalmonae by PCR and immunohistochemistry (IHC). Cohabitation trials with specific pathogen free (SPF) F. sultana colonies were conducted to test the viability of T. bryosalmonae. PCR detected T. bryosalmonae DNA in all tissue samples collected at the 4 time points. Developmental stages of T. bryosalmonae were demonstrated by IHC in most samples at the 4 time points. Cohabitation of SPF F. sultana with chronically infected brown trout resulted in successful transmission of T. bryosalmonae to the bryozoan. This study verified the persistence of T. bryosalmonae in chronically infected brown trout and their ability to infect the bryozoan F. sultana up to 104 wpe.

  6. Ontogenetic dynamics of infection with Diphyllobothrium spp. cestodes in sympatric Arctic charr Salvelinus alpinus (L.) and brown trout Salmo trutta L.

    USGS Publications Warehouse

    Henrickson, Eirik H.; Knudsen, Rune; Kristoffersen, Roar; Kuris, Armand M.; Lafferty, Kevin D.; Siwertsson, Anna; Amundsen, Per-Arne

    2016-01-01

    The trophic niches of Arctic charr and brown trout differ when the species occur in sympatry. Their trophically transmitted parasites are expected to reflect these differences. Here, we investigate how the infections of Diphyllobothrium dendriticum and D. ditremum differ between charr and trout. These tapeworms use copepods as their first intermediate hosts and fish can become infected as second intermediate hosts by consuming either infected copepods or infected fish. We examined 767 charr and 368 trout for Diphyllobothrium plerocercoids in a subarctic lake. The prevalence of D. ditremum was higher in charr (61.5%) than in trout, (39.5%), but the prevalence of D. dendriticum was higher in trout (31.2%) than in charr (19.3%). Diphyllobothrium spp. intensities were elevated in trout compared to charr, particularly for D. dendriticum. Large fish with massive parasite burdens were responsible for the high Diphyllobothrium spp. loads in trout. We hypothesize that fish prey may be the most important source for the Diphyllobothrium spp. infections in trout, whereas charr predominantly acquire Diphyllobothrium spp. by feeding on copepods. Our findings support previous suggestions that the ability to establish in a second piscine host is greater for D. dendriticum than for D. ditremum.

  7. Peroxisome proliferator-activated receptor gamma (PPARγ) in brown trout: Interference of estrogenic and androgenic inputs in primary hepatocytes.

    PubMed

    Lopes, Célia; Madureira, Tânia Vieira; Ferreira, Nádia; Pinheiro, Ivone; Castro, L Filipe C; Rocha, Eduardo

    2016-09-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a pivotal regulator of lipid and glucose metabolism in vertebrates. Here, we isolated and characterized for the first time the PPARγ gene from brown trout (Salmo trutta f. fario). Hormones have been reported to interfere with the regulatory function of PPARγ in various organisms, albeit with little focus on fish. Thus, primary hepatocytes isolated from juveniles of brown trout were exposed to 1, 10 and 50μM of ethinylestradiol (EE2) or testosterone (T). A significant (3 fold) decrease was obtained in response to 50μM of EE2 and to 10 and 50μM of T (13 and 14 folds), while a 3 fold increase was observed at 1μM of EE2. Therefore, trout PPARγ seems a target for natural/synthetic compounds with estrogenic or androgenic properties and so, we advocate considering PPARγ as another alert sensor gene when assessing the effects of sex-steroid endocrine disruptors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Differential metabolic profiles associated to movement behaviour of stream-resident brown trout (Salmo trutta).

    PubMed

    Oromi, Neus; Jové, Mariona; Pascual-Pons, Mariona; Royo, Jose Luis; Rocaspana, Rafel; Aparicio, Enric; Pamplona, Reinald; Palau, Antoni; Sanuy, Delfi; Fibla, Joan; Portero-Otin, Manuel

    2017-01-01

    The mechanisms that can contribute in the fish movement strategies and the associated behaviour can be complex and related to the physiology, genetic and ecology of each species. In the case of the brown trout (Salmo trutta), in recent research works, individual differences in mobility have been observed in a population living in a high mountain river reach (Pyrenees, NE Spain). The population is mostly sedentary but a small percentage of individuals exhibit a mobile behavior, mainly upstream movements. Metabolomics can reflect changes in the physiological process and can determine different profiles depending on behaviour. Here, a non-targeted metabolomics approach was used to find possible changes in the blood metabolomic profile of S. trutta related to its movement behaviour, using a minimally invasive sampling. Results showed a differentiation in the metabolomic profiles of the trouts and different level concentrations of some metabolites (e.g. cortisol) according to the home range classification (pattern of movements: sedentary or mobile). The change in metabolomic profiles can generally occur during the upstream movement and probably reflects the changes in metabolite profile from the non-mobile season to mobile season. This study reveals the contribution of the metabolomic analyses to better understand the behaviour of organisms.

  9. Cool Water Formation and Trout Habitat Use in a Deep Pool in the Sierra Nevada, California

    Treesearch

    KATHLEEN R. MATTHEWS; NEIL H. BERG; AZUMA DAVID L.

    1994-01-01

    We documented temperature stratification in a deep bedrock pool in the North Fork of the American River, described the diel movement of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta. and determined whether these trout used cooler portions of the pool.From July 30 to October 10, 1992, the main study pool and an adjacent pool were stratified(temperature...

  10. Contrasting patterns of genetic and phenotypic differentiation in two invasive salmonids in the southern hemisphere

    PubMed Central

    Monzón-Argüello, Catalina; Consuegra, Sofia; Gajardo, Gonzalo; Marco-Rius, Francisco; Fowler, Daniel M; DeFaveri, Jacquelin; Garcia de Leaniz, Carlos

    2014-01-01

    Invasion success may be expected to increase with residence time (i.e., time since first introduction) and secondary releases (i.e., those that follow the original introduction), but this has rarely been tested in natural fish populations. We compared genetic and phenotypic divergence in rainbow trout and brown trout in Chile and the Falkland Islands to test the prediction that adaptive divergence, measured as PST/FST, would increase with residence time and secondary releases. We also explored whether interspecific competition between invaders could drive phenotypic divergence. Residence time had no significant effect on genetic diversity, phenotypic divergence, effective population size, or signatures of expansion of invasive trout. In contrast, secondary releases had a major effect on trout invasions, and rainbow trout populations mostly affected by aquaculture escapees showed significant divergence from less affected populations. Coexistence with brown trout had a positive effect on phenotypic divergence of rainbow trout. Our results highlight an important role of secondary releases in shaping fish invasions, but do not support the contention that older invaders are more differentiated than younger ones. They also suggest that exotic trout may not have yet developed local adaptations in these recently invaded habitats, at least with respect to growth-related traits. PMID:25469171

  11. Regional prediction of basin-scale brown trout habitat suitability

    NASA Astrophysics Data System (ADS)

    Ceola, S.; Pugliese, A.

    2014-09-01

    In this study we propose a novel method for the estimation of ecological indices describing the habitat suitability of brown trout (Salmo trutta). Traditional hydrological tools are coupled with an innovative regional geostatistical technique, aiming at the prediction of the brown trout habitat suitability index where partial or totally ungauged conditions occur. Several methods for the assessment of ecological indices are already proposed in the scientific literature, but the possibility of exploiting a geostatistical prediction model, such as Topological Kriging, has never been investigated before. In order to develop a regional habitat suitability model we use the habitat suitability curve, obtained from measured data of brown trout adult individuals collected in several river basins across the USA. The Top-kriging prediction model is then employed to assess the spatial correlation between upstream and downstream habitat suitability indices. The study area is the Metauro River basin, located in the central part of Italy (Marche region), for which both water depth and streamflow data were collected. The present analysis focuses on discharge values corresponding to the 0.1-, 0.5-, 0.9-empirical quantiles derived from flow-duration curves available for seven gauging stations located within the study area, for which three different suitability indices (i.e. ψ10, ψ50 and ψ90) are evaluated. The results of this preliminary analysis are encouraging showing Nash-Sutcliffe efficiencies equal to 0.52, 0.65, and 0.69, respectively.

  12. Pex11α in brown trout (Salmo trutta f. fario): Expression dynamics during the reproductive cycle reveals sex-specific seasonal patterns.

    PubMed

    Castro, L Filipe C; Lobo-da-Cunha, Alexandre; Rocha, Maria J; Urbatzka, Ralph; Rocha, Eduardo

    2013-01-01

    A negative correlation between female gonadal maturation kinetics and size variations of hepatic peroxisomes was earlier documented in brown trout, as a probable impact of serum estrogen changes during the reproductive cycle. Herein, we investigated whether the organelle volume/surface dynamics seen in female brown trout liver peroxisomes - without numerical changes within each hepatocyte - is followed by variations in the expression of the membrane peroxisome protein Pex11α gene. For comparison, we also studied males. We find in females a seasonal variation with the highest Pex11α expression in February, which was statistically different from all other tested periods. Overall, the expression of PEX11α had over a fivefold decrease from February to September. This period coincides with the reproductive transition between the earlier post-spawning gonadal remodeling and preparatory staging and the pre-spawning period. Males did not show changes. Our approach allowed the first characterization of a peroxin gene in a teleost, the Pex11α, while offering a correlation scenario were, as we hypothesized, the peroxisomal size kinetics is paralleled by membrane-related gene alterations (measured herein as proxy of Pex11α gene expression). Our data support and expand previous results on the regulation, function and morphology of peroxisome dynamics in brown trout, with a broader interest. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Persistence of Tetracapsuloides bryosalmonae (Myxozoa) in chronically infected brown trout Salmo trutta

    PubMed Central

    Abd-Elfattah, Ahmed; Kumar, Gokhlesh; Soliman, Hatem; El-Matbouli, Mansour

    2014-01-01

    Proliferative kidney disease (PKD) is a widespread disease of farmed and wild salmonid populations in Europe and North America, caused by the myxozoan parasite Tetracapsuloides bryosalmonae. Limited studies have been performed on the epidemiological role in spread of the disease played by fish that survive infection with T. bryosalmonae. The aim of the present study was to evaluate the persistence of T. bryosalmonae developmental stages in chronically infected brown trout Salmo trutta up to 2 yr after initial exposure to laboratory-infected colonies of the parasite’s alternate host, the bryozoan Fredericella sultana. Kidney, liver, spleen, intestine, brain, gills and blood were sampled 24, 52, 78 and 104 wk post-exposure (wpe) and tested for T. bryosalmonae by PCR and immunohistochemistry (IHC). Cohabitation trials with specific pathogen free (SPF) F. sultana colonies were conducted to test the viability of T. bryosalmonae. PCR detected T. bryosalmonae DNA in all tissue samples collected at the 4 time points. Developmental stages of T. bryosalmonae were demonstrated by IHC in most samples at the 4 time points. Cohabitation of SPF F. sultana with chronically infected brown trout resulted in successful transmission of T. bryosalmonae to the bryozoan. This study verified the persistence of T. bryosalmonae in chronically infected brown trout and their ability to infect the bryozoan F. sultana up to 104 wpe. PMID:25144116

  14. Ascent ability of brown trout, Salmo trutta, and two Iberian cyprinids − Iberian barbel, Luciobarbus bocagei, and northern straight-mouth nase, Pseudochondrostoma duriense − in a vertical slot fishway

    USGS Publications Warehouse

    Sanz-Ronda, Fco. Javier; Bravo-Cordoba, F.J.; Fuentes-Perez, J.F.; Castro-Santos, Theodore R.

    2016-01-01

    Passage performance of brown trout (Salmo trutta), Iberian barbel (Luciobarbus bocagei), and northern straight-mouth nase (Pseudochondrostoma duriense) was investigated in a vertical slot fishway in the Porma River (Duero River basin, Spain) using PIT telemetry. We analysed the effects of different fishway discharges on motivation and passage success. Both cyprinid species ascended the fishway easily, performing better than the trout despite their theoretically weaker swimming performance. Fishway discharge affected fish motivation although it did not clearly influence passage success. Observed results can guide design and operation criteria of vertical slot fishways for native Iberian fish.

  15. A Regional View of the Margin: Salmonid Abundance and Distribution in the Southern Appalachian Mountains of North Carolina and Virginia

    Treesearch

    Patricia A. Flebbe

    1994-01-01

    In the southern Appalachian Mountains, native brook trout Salvelinus fontinalis and introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta are at the southern extremes of their distributions, an often overlooked kind of marginal habitat. At a regional scale composed of the states of Virginia...

  16. Final Environmental Assessment Prescribed Burning for Weed Management on F. E. Warren Air Force Base, Wyoming

    DTIC Science & Technology

    2012-04-01

    most prevalent noxious weeds found at F. E. Warren AFB. · Fish and Wildlife Fish species that have been stocked in the Pearson Lakes include brown ... trout , rainbow trout , lake trout , catfish , perch , and fathead minnow. Aquatic furbearers on the base include beaver and muskrat. Beavers are found

  17. The scotopic visual sensitivity of four species of trout: A comparative study

    Treesearch

    Russel B. Rader; Timberley Belish; Michael K. Young; John Rothlisberger

    2007-01-01

    We compared the maximum scotopic visual sensitivity of 4 species of trout from twilight (mesotopic) to fully dark-adapted vision. Scotopic vision is the minimum number of photons to which a fully dark-adapted animal will show a behavioral response. A comparison of visual sensitivity under controlled laboratory conditions showed that brown trout (Salmo trutta...

  18. Morphological and molecular confirmation of Myxobolus cerebralis myxospores infecting wild‑caught and cultured trout in North Carolina (SE USA).

    PubMed

    Ruiz, Carlos F; Rash, Jacob M; Arias, Cova R; Besler, Doug A; Orélis-Ribeiro, Raphael; Womble, Matthew R; Roberts, Jackson R; Warren, Micah B; Ray, Candis L; Lafrentz, Stacey; Bullard, Stephen A

    2017-11-21

    We used microscopy and molecular biology to provide the first documentation of infections of Myxobolus cerebralis (Myxozoa: Myxobolidae), the etiological agent of whirling disease, in trout (Salmonidae) from North Carolina (USA) river basins. A total of 1085 rainbow trout Oncorhynchus mykiss, 696 brown trout Salmo trutta, and 319 brook trout Salvelinus fontinalis from 43 localities across 9 river basins were screened. Myxospores were observed microscopically in pepsin-trypsin digested heads of rainbow and brown trout from the Watauga River Basin. Those infections were confirmed using the prescribed nested polymerase chain reaction (PCR; 18S rDNA), which also detected infections in rainbow, brown, and brook trout from the French Broad River Basin and the Yadkin Pee-Dee River Basin. Myxospores were 9.0-10.0 µm (mean ± SD = 9.6 ± 0.4; N = 119) long, 8.0-10.0 µm (8.8 ± 0.6; 104) wide, and 6.0-7.5 µm (6.9 ± 0.5; 15) thick and had polar capsules 4.0-6.0 µm (5.0 ± 0.5; 104) long, 2.5-3.5 µm (3.1 ± 0.3; 104) wide, and with 5 or 6 polar filament coils. Myxospores from these hosts and rivers were morphologically indistinguishable and molecularly identical, indicating conspecificity, and the resulting 18S rDNA and ITS-1 sequences derived from these myxospores were 99.5-100% and 99.3-99.8% similar, respectively, to published GenBank sequences ascribed to M. cerebralis. This report comprises the first taxonomic circumscription and molecular confirmation of M. cerebralis in the southeastern USA south of Virginia.

  19. Changes in patterns of persistent halogenated compounds through a pelagic food web in the Baltic Sea.

    PubMed

    Stephansen, Diana A; Svendsen, Tore C; Vorkamp, Katrin; Frier, Jens-Ole

    2012-02-01

    The concentrations and patterns of persistent halogenated compounds (PHCs), including polychlorinated biphenyls (PCBs), DDT, hexachlorocyclohexanes (HCHs), hexachlorobenzene (HCB) and polybrominated diphenyl ethers (PBDEs) were examined in a pelagic food web from the southern Baltic Sea consisting of sediment, zooplankton, sprat, Atlantic salmon and anadromous brown trout. Lipid-normalized concentrations generally increased from low trophic levels to high trophic levels, with the exception of HCHs. Due to high concentrations of PBDEs in some zooplankton samples, biomagnification of BDE-47 was only observed for salmon/sprat and trout/sprat. Sprat collected individually and from salmon stomach had significantly different lipid-normalized concentrations and varied in their PHC pattern as well, possibly indicating a large natural variation within the Baltic Sea. The highest lipid-normalized concentrations were found in brown trout. Salmon and brown trout were similar in their PHC pattern suggesting similar food sources. Variation in PHC patterns among trophic levels was not smaller than that among geographically distinct locations, confirming the importance of comparable trophic levels for the assessment of PHC patterns, e.g. for tracing migratory fish. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Wild brown trout affected by historical mining in the Cévennes National Park, France.

    PubMed

    Monna, F; Camizuli, E; Revelli, P; Biville, C; Thomas, C; Losno, R; Scheifler, R; Bruguier, O; Baron, S; Chateau, C; Ploquin, A; Alibert, P

    2011-08-15

    In the protected area of the Cévennes National Park (Southern France), 114 wild brown trout (Salmo trutta fario) were captured at six locations affected to different extents by historical mining and metallurgy dating from the Iron Age to Modern Times. Cadmium and lead in trout livers and muscles reflect high sediment contamination, although an age-related effect was also detected for hepatic metal concentrations. Lead isotope signatures confirm exposure to drainage from mining and metallurgical waste. Developmental instability, assessed by fluctuating asymmetry, is significantly correlated with cadmium and lead concentrations in trout tissues, suggesting that local contamination may have affected fish development. Nowadays, the area is among the least industrialized in France. However, our results show that 60% of the specimens at one site exceed EU maximum allowed cadmium or lead concentration in foodstuffs. The mining heritage should not be neglected when establishing strategies for long-term environmental management.

  1. Effects of temperature on feed intake and plasma chemistry after exhaustive exercise in triploid brown trout (Salmo trutta L).

    PubMed

    Preston, Andrew C; Taylor, John F; Fjelldal, Per Gunnar; Hansen, Tom; Migaud, Hervé

    2017-04-01

    The physiological effect of temperature on feed intake and haematological parameters after exhaustive swimming in diploid and triploid brown trout (Salmo trutta) was investigated. Trout were exposed to an incremental temperature challenge (2 °C/day) from ambient (6 °C) to either 10 or 19 °C. Feed intake profiles did not differ between ploidy at 10 °C; however, triploids had a significantly higher total feed intake at 19 °C. After 24 days, each temperature-ploidy group was exposed to exhaustive swimming for 10 min. The haematological response differed between ploidy, with the magnitude of the response affected by temperature and ploidy. Post-exercise, acid-base and ionic differences were observed. Plasma lactate increased significantly from rest for both temperature and ploidy groups, but glucose increased significantly at higher temperature. Post-exercise, triploids at 19 °C had significantly higher osmolality and cholesterol than diploids, but differences were resumed within 4 h. Elevated alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in fish at higher temperature suggested greater tissue damage; however, both ploidy responded similarly. Despite no significant differences in deformity prevalence, the type and location of deformities observed differed between ploidy (decreased intervertebral space with higher prevalence in tail area and fin regions for diploids, while vertebral compression, fusion in cranial and caudal trunks for triploids). These results suggest triploids have greater appetite than diploids at elevated temperature and that triploids suffer similar blood disturbances after exercise as diploids. These findings have implications for the management of freshwater ecosystems and suggest that stocking triploid brown trout may offer an alternative to diploid brown trout.

  2. Ecotoxicology and spatial modeling in population dynamics: an illustration with brown trout.

    PubMed

    Chaumot, Arnaud; Charles, Sandrine; Flammarion, Patrick; Auger, Pierre

    2003-05-01

    We developed a multiregion matrix population model to explore how the demography of a hypothetical brown trout population living in a river network varies in response to different spatial scenarios of cadmium contamination. Age structure, spatial distribution, and demographic and migration processes are taken into account in the model. Chronic or acute cadmium concentrations affect the demographic parameters at the scale of the river range. The outputs of the model constitute population-level end points (the asymptotic population growth rate, the stable age structure, and the asymptotic spatial distribution) that allow comparing the different spatial scenarios of contamination regarding the demographic response at the scale of the whole river network. An analysis of the sensitivity of these end points to lower order parameters enables us to link the local effects of cadmium to the global demographic behavior of the brown trout population. Such a link is of broad interest in the point of view of ecotoxicological management.

  3. Assessing hydrodynamic space use of brown trout, Salmo trutta, in a complex flow environment: a return to first principles.

    PubMed

    Kerr, James R; Manes, Costantino; Kemp, Paul S

    2016-11-01

    It is commonly assumed that stream-dwelling fish should select positions where they can reduce energetic costs relative to benefits gained and enhance fitness. However, the selection of appropriate hydrodynamic metrics that predict space use is the subject of recent debate and a cause of controversy. This is for three reasons: (1) flow characteristics are often oversimplified, (2) confounding variables are not always controlled and (3) there is limited understanding of the explanatory mechanisms that underpin the biophysical interactions between fish and their hydrodynamic environment. This study investigated the space use of brown trout, Salmo trutta, in a complex hydrodynamic flow field created using an array of different sized vertically oriented cylinders in a large open-channel flume in which confounding variables were controlled. A hydrodynamic drag function (D) based on single-point time-averaged velocity statistics that incorporates the influence of turbulent fluctuations was used to infer the energetic cost of steady swimming. Novel hydrodynamic preference curves were developed and used to assess the appropriateness of D as a descriptor of space use compared with other commonly used metrics. Zones in which performance-enhancing swimming behaviours (e.g. Kármán gaiting, entraining and bow riding) that enable fish to hold position while reducing energetic costs (termed 'specialised behaviours') were identified and occupancy was recorded. We demonstrate that energy conservation strategies play a key role in space use in an energetically taxing environment with the majority of trout groups choosing to frequently occupy areas in which specialised behaviours may be adopted or by selecting low-drag regions. © 2016. Published by The Company of Biologists Ltd.

  4. Seawater tolerance in Atlantic salmon, Salmo salar L., brown trout, Salmo trutta L., and S. salar × S. trutta hybrids smolt.

    PubMed

    Urke, H A; Koksvik, J; Arnekleiv, J V; Hindar, K; Kroglund, F; Kristensen, T

    2010-12-01

    High levels of hybridization between Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) have been reported in the Gyrodactylus salaris infected Rivers Vefsna and Driva in Norway. The survival and behaviour during the sea phase of such hybrids is unknown. The reported work documents ionoregulatory status after 24 h seawater challenge tests (24hSW) and gill Na+/K+-ATPase (NKA) activity of migrating wild smolts of Atlantic salmon, brown trout and hybrids at two sampling dates during the 2006 smolt run in River Driva. Salmon, trout and hybrids contributed to 27, 52 and 21% of the catches, respectively. The large contribution of hybrids suggests both a high hybridization rate and a high survival rate from fry to smolt. Both salmon and hybrids had a well-developed seawater tolerance at the time of downstream migration, revealed by small ionoregulatory effects and no or low mortality rates during the 24hSW tests. The trout were not fully adapted to seawater, and high mortality rates were observed (71 and 92%) during the 24hSW tests. The NKA activity was not significantly different between salmon and hybrids. Most of the hybrids were physiologically capable of direct entry to full strength seawater. The incomplete seawater tolerance in trout compared to salmon corresponds well with differences in life-history patterns between these two species. The life history strategy of the hybrids during the sea phase is not known, and further investigations on the marine behaviour and survival is needed to evaluate the role of hybrids in the risk of spreading G. salaris to nearby river systems.

  5. Direct and indirect climatic drivers of biotic interactions: ice-cover and carbon runoff shaping Arctic char Salvelinus alpinus and brown trout Salmo trutta competitive asymmetries.

    PubMed

    Ulvan, Eva M; Finstad, Anders G; Ugedal, Ola; Berg, Ole Kristian

    2012-01-01

    One of the major challenges in ecological climate change impact science is to untangle the climatic effects on biological interactions and indirect cascading effects through different ecosystems. Here, we test for direct and indirect climatic drivers on competitive impact of Arctic char (Salvelinus alpinus L.) on brown trout (Salmo trutta L.) along a climate gradient in central Scandinavia, spanning from coastal to high-alpine environments. As a measure of competitive impact, trout food consumption was measured using (137)Cs tracer methodology both during the ice-covered and ice-free periods, and contrasted between lakes with or without char coexistence along the climate gradient. Variation in food consumption between lakes was best described by a linear mixed effect model including a three-way interaction between the presence/absence of Arctic char, season and Secchi depth. The latter is proxy for terrestrial dissolved organic carbon run-off, strongly governed by climatic properties of the catchment. The presence of Arctic char had a negative impact on trout food consumption. However, this effect was stronger during ice-cover and in lakes receiving high carbon load from the catchment, whereas no effect of water temperature was evident. In conclusion, the length of the ice-covered period and the export of allochthonous material from the catchment are likely major, but contrasting, climatic drivers of the competitive interaction between two freshwater lake top predators. While future climatic scenarios predict shorter ice-cover duration, they also predict increased carbon run-off. The present study therefore emphasizes the complexity of cascading ecosystem effects in future effects of climate change on freshwater ecosystems.

  6. Effects of a floodwater-retarding structure on the hydrology and ecology of Trout Creek in southwestern Wisconsin

    USGS Publications Warehouse

    Wentz, Dennis A.; Graczyk, David J.

    1982-01-01

    From 1960 to 1979, winter floods seem to have had the greatest adverse effect on the survival of brown trout eggs and sac fry. Although construction of the FRS has eliminated some spawning gravels in the flood pool owing to sedimentation, the wild trout have adapted by using spawning grounds above the flood pool more extensively and intensively. The FRS has not blocked the upstream migration of spawning trout, but it has eliminated similar migrations of fish that compete with and prey on the trout. Controlled streamflows downstream from the FRS have had a stabilizing influence on the limited trout reproduction in this region.

  7. Effects of fish species composition on Diphyllobothrium spp. infections in brown trout - is three-spined stickleback a key species?

    PubMed

    Kuhn, J A; Frainer, A; Knudsen, R; Kristoffersen, R; Amundsen, P-A

    2016-11-01

    Subarctic populations of brown trout (Salmo trutta) are often heavily infected with cestodes of the genus Diphyllobothrium, assumedly because of their piscivorous behaviour. This study explores possible associations between availability of fish prey and Diphyllobothrium spp. infections in lacustrine trout populations. Trout in (i) allopatry (group T); (ii) sympatry with Arctic charr (Salvelinus alpinus) (group TC); and (iii) sympatry with charr and three-spined stickleback (Gasterosteus aculeatus) (group TCS) were contrasted. Mean abundance and intensity of Diphyllobothrium spp. were higher in group TCS compared to groups TC and T. Prevalence, however, was similarly higher in groups TCS and TC compared to group T. Zero-altered negative binomial modelling identified the lowest probability of infection in group T and similar probabilities of infection in groups TC and TCS, whereas the highest intensity was predicted in group TCS. The most infected trout were from the group co-occurring with stickleback (TCS), possibly due to a higher availability of fish prey. In conclusion, our study demonstrates elevated Diphyllobothrium spp. infections in lacustrine trout populations where fish prey are available and suggests that highly available and easily caught stickleback prey may play a key role in the transmission of Diphyllobothrium spp. parasite larvae. © 2016 John Wiley & Sons Ltd.

  8. Human mining activity across the ages determines the genetic structure of modern brown trout (Salmo trutta L.) populations

    PubMed Central

    Paris, Josephine R; King, R Andrew; Stevens, Jamie R

    2015-01-01

    Humans have exploited the earth's metal resources for thousands of years leaving behind a legacy of toxic metal contamination and poor water quality. The southwest of England provides a well-defined example, with a rich history of metal mining dating to the Bronze Age. Mine water washout continues to negatively impact water quality across the region where brown trout (Salmo trutta L.) populations exist in both metal-impacted and relatively clean rivers. We used microsatellites to assess the genetic impact of mining practices on trout populations in this region. Our analyses demonstrated that metal-impacted trout populations have low genetic diversity and have experienced severe population declines. Metal-river trout populations are genetically distinct from clean-river populations, and also from one another, despite being geographically proximate. Using approximate Bayesian computation (ABC), we dated the origins of these genetic patterns to periods of intensive mining activity. The historical split of contemporary metal-impacted populations from clean-river fish dated to the Medieval period. Moreover, we observed two distinct genetic populations of trout within a single catchment and dated their divergence to the Industrial Revolution. Our investigation thus provides an evaluation of contemporary population genetics in showing how human-altered landscapes can change the genetic makeup of a species. PMID:26136823

  9. Limitation and facilitation of one of the world's most invasive fish: an intercontinental comparison

    USGS Publications Warehouse

    Budy, Phaedra E.; Thiede, Gary P.; Lobón-Cerviá, Javier; Fernandez, Gustavo Gonzolez; McHugh, Peter; McIntosh, Angus; Vøllestad, Lief Asbjørn; Becares, Eloy; Jellyman, Phillip

    2013-01-01

    Purposeful species introductions offer opportunities to inform our understanding of both invasion success and conservation hurdles. We evaluated factors determining the energetic limitations of brown trout (Salmo trutta) in both their native and introduced ranges. Our focus was on brown trout because they are nearly globally distributed, considered one of the world's worst invaders, yet imperiled in much of their native habitat. We synthesized and compared data describing temperature regime, diet, growth, and maximum body size across multiple spatial and temporal scales, from country (both exotic and native habitats) and major geographic area (MGA) to rivers and years within MGA. Using these data as inputs, we next used bioenergetic efficiency (BioEff), a relative scalar representing a realized percentage of maximum possible consumption (0–100%) as our primary response variable and a multi-scale, nested, mixed statistical model (GLIMMIX) to evaluate variation among and within spatial scales and as a function of density and elevation. MGA and year (the residual) explained the greatest proportion of variance in BioEff. Temperature varied widely among MGA and was a strong driver of variation in BioEff. We observed surprisingly little variation in the diet of brown trout, except the overwhelming influence of the switch to piscivory observed only in exotic MGA. We observed only a weak signal of density-dependent effects on BioEff; however, BioEff remained 2.5 fish/m2. The trajectory of BioEff across the life span of the fish elucidated the substantial variation in performance among MGAs; the maximum body size attained by brown trout was consistently below 400 mm in native habitat but reached 600 mm outside their native range, where brown trout grew rapidly, feeding in part on naive prey fishes. The integrative, physiological approach, in combination with the intercontinental and comparative nature of our study, allowed us to overcome challenges associated with context-dependent variation in determining invasion success. Overall our results indicate “growth plasticity across the life span” was important for facilitating invasion, and should be added to lists of factors characterizing successful invaders.

  10. The effects of chronic cadmium exposure on repeat swimming performance and anaerobic metabolism in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis).

    PubMed

    Cunningham, Jessie L; McGeer, James C

    2016-04-01

    This study investigates the effect of chronic Cd exposure on the ability to perform repeat swim challenges in brown trout (Salmo trutta) and lake whitefish (Coregonus clupeaformis). Fish were exposed to waterborne Cd (18nM) in moderately hard water (120mgL(-1) CaCO3) for 30 days. This level of exposure has been shown to cause sublethal physiological disruption and acclimation responses but no impairment of sustained swimming capacity (Ucrit) in single swim challenges. Swim trials were done over the course of the exposure and each one consisted of an initial swim to 85% of the Ucrit of control fish, a 30min recovery period and finally a second swim challenge to determine Ucrit. Plasma and tissue samples were collected before and after each of the swim periods. As expected from previous studies, Cd exposure resulted in significant accumulation of Cd in gills, liver and kidney but not in white muscle. Exposure also induced a loss of plasma Ca followed by subsequent recovery (in lake whitefish but not brown trout) with few mortalities (100% survival for lake whitefish and 93% for brown trout). Both control and exposed fish swam to 85% of the single swim Ucrit and no differences in performance were seen. The Ucrit of unexposed controls in the second swim challenges were not different from the single swim Ucrit. However, second swim performance was significantly reduced in Cd exposed fish, particularly after a week of exposure where 31% and 38% reductions were observed for brown trout and lake whitefish respectively. Swimming to 85% Ucrit resulted in metabolic expenditure with little recovery after 30min. Few differences were observed between control and Cd exposed fish with the exception of a reduction in resting white muscle ATP stores of Cd exposed fish after 1 week of exposure. The results show that chronic sublethal Cd exposure results in an impairment of swimming ability in repeat swim challenges but this impairment is generally not related to metabolic processes in white muscle. Copyright © 2016. Published by Elsevier B.V.

  11. The Combined Efficiency of Dietary Isomaltooligosaccharides and Bacillus spp. on the Growth, Hemato-Serological, and Intestinal Microbiota Indices of Caspian Brown Trout (Salmo trutta caspius Kessler, 1877).

    PubMed

    Aftabgard, Maryam; Salarzadeh, Alireza; Mohseni, Mahmoud; Bahri Shabanipour, Amir Houshang; Zorriehzahra, Mohammad Ebrahim Jalil

    2017-12-01

    The combined effects of a commercial probiotic, BetaPlus®, and a prebiotic, isomaltooligosaccharides (IMOS) on the growth, survival rate, intestinal microbiota, and hemato-immunological parameters were evaluated in Caspian brown trout (Salmo trutta caspius Kessler, 1877). Caspian brown trout fingerlings (~ 9 g) were fed a control diet (basal diet) or a synbiotic diet (the basal diet + 2 g kg -1 IMOS + 1 g kg -1 BetaPlus®) for 7 weeks. At the end of this trial, fish fed the synbiotic diet showed significant improvements in body weight increase, feed conversion ratio, and survival rate compared with fish fed the control diet (P < 0.05). In addition, fish fed the synbiotic diet had the highest levels of white blood cells, monocytes, and neutrophils (P < 0.05), while the red blood cells, hemoglobin, hematrocrit, mean corpuscular volume, and lymphocytes were significantly higher in the control group (P < 0.05). The serum triglycerides, cholesterol, total protein, albumin, albumin/globulin ratio, and immunoglobulin M levels, as well as alanine aminotransferase and lactate dehydrogenase activities were higher in the synbiotic group than in the control group (P < 0.05). In addition, fish fed the synbiotic diet showed significantly higher gut total viable aerobic bacterial counts and lactic acid bacteria (P < 0.05). The results demonstrated that BetaPlus® in combination with IMOS enhanced the growth, survival rate, intestinal microbiota, and some haemato-immunological parameters in Caspian brown trout fingerlings.

  12. The sexually dimorphic adipose fin is an androgen target tissue in the brown trout (Salmo trutta fario).

    PubMed

    Hisar, Olcay; Sönmez, Adem Yavuz; Hisar, Şükriye Aras; Budak, Harun; Gültepe, Nejdet

    2013-04-01

    An investigation has been described on the relationship of body length, age and sex with adipose fin length and the number of androgen receptor (AR)-containing cells in the adipose fin as a secondary sexual characteristic for brown trout (Salmo trutta fario). Firstly, body and adipose fin lengths of 2- to 5-year-old brown trout were measured. Thereafter, these fish were killed by decapitation, then their sexes were determined, and adipose fins were excised. The cellular bases of AR binding activities in the adipose fins were analyzed with an antibody against human/rat AR peptide. Immunocytochemistry and western blotting techniques were performed with this antibody. Analysis of morphological measurements indicated that body length and age had a linear relationship with adipose fin length. The coefficients of determination for the body length and age were 0.92 and 0.85 in the male fish and 0.76 and 0.73 in the female fish against the adipose fin length, respectively. At 2 years of age, cells in the adipose fin did not exhibit AR immunoreactivity. However, AR-immunopositive cells were abundant in the adipose fin of 3- to 5-year-old fish. Moreover, the number of AR-immunopositive cells was significantly (P < 0.05) high in males and increased with age. These observations indicate that the adipose fin in the brown trout is a probable target for androgen action and that tissue function or development may to some extent be androgen dependent. In addition, it is likely that such an effect will be mediated by specific androgen receptors.

  13. Genome specific PPARαB duplicates in salmonids and insights into estrogenic regulation in brown trout.

    PubMed

    Madureira, Tânia Vieira; Pinheiro, Ivone; de Paula Freire, Rafaelle; Rocha, Eduardo; Castro, Luis Filipe; Urbatzka, Ralph

    2017-06-01

    Peroxisome proliferator-activated receptors (PPARs) are key regulators of many processes in vertebrates, such as carbohydrate and lipid metabolism. PPARα, a member of the PPAR nuclear receptor gene subfamily (NR1C1), is involved in fatty acid metabolism, namely in peroxisomal β-oxidation. Two gene paralogues, pparαA and pparαB, were described in several teleost species with their origin dating back to the teleost-specific genome duplication (3R). Given the additional salmonid-specific genome duplication (4R), four genes could be theoretically anticipated for this gene subfamily. In this work, we examined the pparα gene repertoire in brown trout, Salmo trutta f. fario. Data disclosed two pparα-like sequences in brown trout. Phylogenetic analyses further revealed that the isolated genes are most likely genome pparαB duplicates, pparαBa and pparαBb, while pparαA is apparently absent in salmonids. Both genes showed a ubiquitous mRNA expression across a panel of 11 different organs. In vitro exposed primary brown trout hepatocytes strongly suggest that pparα gene paralogues are differently regulated by ethinylestradiol (EE2). PparαBb mRNA expression significantly decreased with dosage, reaching significance after exposure to 50μM EE2, while pparαBa mRNA increased, significant at 1μM EE2. The present data enhances the understanding of pparα function and evolution in teleost, and reinforces the evidence of a potential crosstalk between estrogenic and pparα signaling pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dietary peppermint (Mentha piperita) extracts promote growth performance and increase the main humoral immune parameters (both at mucosal and systemic level) of Caspian brown trout (Salmo trutta caspius Kessler, 1877).

    PubMed

    Adel, Milad; Safari, Reza; Pourgholam, Reza; Zorriehzahra, Jalil; Esteban, Maria Ángeles

    2015-11-01

    The effects of dietary administration of peppermint (Mentha piperita L.) on Caspian brown trout fish (Salmo trutta caspius) were studied. Fish were divided into 4 groups before being fed diets supplemented with 0% (control), 1%, 2% and 3% of peppermint extracts for 8 weeks. Dose-dependent increases in growth, immune (both in skin mucus and blood serum) and hematological parameters (number of white cells, hematocrit and hemoglobin content), as well as in amylase activity and in the number of lactic acid bacteria on intestine were recorded in fish fed supplemented diets compared to control fish. However, the dietary peppermint supplements have different effects on the number of blood leucocytes depending on the leukocyte cell type. While no significant differences were observed in the number of blood monocytes and eosinophils, the number of lymphocytes was decreased, respectively, on fish fed peppermint enriched diets, respect to the values found in control fish. Furthermore, dietary peppermint supplements have no significant effect on blood biochemical parameters, enzymatic activities of liver determined in serum and total viable aerobic bacterial count on intestine of Caspian brown trout. Present results support that dietary administration of peppermint promotes growth performance and increases the main humoral immune parameters (both at mucosal and systemic level) and the number of the endogenous lactic acid bacteria of Caspian brown trout. This study underlying several positive effects of dietary administration of peppermint to farmed fish. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Winter feeding, growth and condition of brown trout Salmo trutta in a groundwater-dominated stream

    USGS Publications Warehouse

    French, William E.; Vondracek, Bruce C.; Ferrington, Leonard C.; Finlay, Jacques C.; Dieterman, Douglas J.

    2014-01-01

    Winter can be a stressful period for stream-dwelling salmonid populations, often resulting in reduced growth and survival. Stream water temperatures have been identified as a primary mechanism driving reductions in fitness during winter. However, groundwater inputs can moderate water temperature and may reduce winter severity. Additionally, seasonal reductions in prey availability may contribute to decreased growth and survival, although few studies have examined food webs supporting salmonids under winter conditions. This study employed diet, stable isotope, and mark-recapture techniques to examine winter (November through March) feeding, growth, and condition of brown troutSalmo trutta in a groundwater-dominated stream (Badger Creek, Minnesota, USA). Growth was greater for fish ≤ 150 mm (mean = 4.1 mg g−1 day−1) than for those 151–276 mm (mean = 1.0 mg g−1 day−1) during the winter season. Overall condition from early winter to late winter did not vary for fish ≤150 mm (mean relative weight (Wr) = 89.5) and increased for those 151–276 mm (mean Wr = 85.8 early and 89.4 late). Although composition varied both temporally and by individual, brown trout diets were dominated by aquatic invertebrates, primarily Amphipods, Dipterans, and Trichopterans. Stable isotope analysis supported the observations of the dominant prey taxa in stomach contents and indicated the winter food web was supported by a combination of allochthonous inputs and aquatic macrophytes. Brown trout in Badger Creek likely benefited from the thermal regime and increased prey abundance present in this groundwater-dominated stream during winter.

  16. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake.

    PubMed

    Faulks, Leanne; Östman, Örjan

    2016-01-01

    Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H'T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species.

  17. An Evaluation of Molybdenum Toxicity to the Oligochaete, Tubifex tubifex, and Early-Life Stages of Brown Trout, Salmo trutta.

    PubMed

    Lucas, Brett T; Quinteros, Claudio; Burnett-Seidel, Charlene; Elphick, James R

    2017-06-01

    Limited data are available describing the aquatic toxicity of molybdenum in freshwater environments, making it difficult to assess the aquatic risk to freshwater organisms. In order to increase available information on the aquatic toxicity of molybdenum, a 96-h LC50 test with the oligochaete Tubifex tubifex and an 85-day development test using brown trout, Salmo trutta, were conducted. The T. tubifex test resulted in an LC50 value of 2782 mg/L. No adverse effects were observed on brown trout survival or length in the concentrations tested, however an IC10 value for growth (wet weight) was determined to be 202 mg/L. Whole body fish tissue concentrations for molybdenum increased in all treatment concentrations tested, although bioconcentration factors decreased at greater exposure concentrations, and ranged from 0.13 at an exposure concentration of 20 mg/L to 0.04 at an exposure of 1247 mg/L. A body burden of 26.0 mg/kg was associated with reduced wet weight.

  18. Ethyl-p-aminobenzoate (Benzocaine): efficacy as an anesthetic for five species of freshwater fish

    USGS Publications Warehouse

    Dawson, V.K.; Gilderhus, P.A.

    1979-01-01

    Ethyl-p-aminobenzoate (benzocaine) was tested for its efficacy as an anesthetic for rainbow trout (Salmo gairdnerii, brown trout (Salmo truttas, northern pike (Esox lucius). carp (Cyprinus carpio), and largemouth bass (Mieropterus salmoidesi. Since benzocaine is not water soluble, it was applied with acetone as a carrier. Concentrations of 100 to 200 mg!l were required for large adult northern pike, compared with 50 to 100 mg/l for small fish. Rates of sedation and recovery were slower in cold water than in warm water. Water hardness had little influence on the activity of benzocaine. Fish were anesthetized faster and recovered more slowly in acid than in alkaline water. Benzocaine produced deep anesthesia, but concentrations that rendered the fish handleable within 5 min were generally not safe for exposures longer than 15 min. Concentrations of benzocaine efficacious for fish were not acutely toxic to eggs of coho salmon (Oncorhynchus kisutch), chinook salmon (Oncorhynchus tshauiytschas, rainbow trout, brown trout, or lake trout (Salvelinus namaycush). Benzocaine is not registered for fishery use and is neither more effective nor safer than the registered anesthetic, tricaine methanesulfonate (MS-222l.

  19. Breaking the speed limit--comparative sprinting performance of brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta)

    USGS Publications Warehouse

    Castro-Santos, Theodore; Sanz-Ronda, Francisco Javier; Ruiz-Legazpi, Jorge

    2013-01-01

    Sprinting behavior of free-ranging fish has long been thought to exceed that of captive fish. Here we present data from wild-caught brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta), volitionally entering and sprinting against high-velocity flows in an open-channel flume. Performance of the two species was nearly identical, with the species attaining absolute speeds > 25 body lengths·s−1. These speeds far exceed previously published observations for any salmonid species and contribute to the mounting evidence that commonly accepted estimates of swimming performance are low. Brook trout demonstrated two distinct modes in the relationship between swim speed and fatigue time, similar to the shift from prolonged to sprint mode described by other authors, but in this case occurring at speeds > 19 body lengths·s−1. This is the first demonstration of multiple modes of sprint swimming at such high swim speeds. Neither species optimized for distance maximization, however, indicating that physiological limits alone are poor predictors of swimming performance. By combining distributions of volitional swim speeds with endurance, we were able to account for >80% of the variation in distance traversed by both species.

  20. An experimental field evaluation of winter carryover effects in semi-anadromous brown trout (Salmo trutta).

    PubMed

    Midwood, Jonathan D; Larsen, Martin H; Boel, Mikkel; Aarestrup, Kim; Cooke, Steven J

    2015-11-01

    For semi-anadromous brown trout, the decision whether or not to smoltify and migrate to the sea is believed to be made at the end of the preceding summer in response to both local environmental conditions and individual physiological status. Stressors experienced during the fall may therefore influence their propensity to migrate as well as carry over into the winter resulting in mortality when fish face challenging environmental conditions. To evaluate this possibility, we artificially elevated cortisol levels in juvenile trout (via intracoelomic injection of cortisol in the fall) and used passive integrated transponder tags to compare their overwinter and spring survival, growth, and migration success relative to a control group. Results suggest that overwinter mortality is high for individuals in this population regardless of treatment. However, survival rates were 2.5 times lower for cortisol-treated fish and they experienced significantly greater loss in mass. In addition, less than half as many cortisol-treated individuals made it downstream to a stationary antenna over the winter and also during the spring migration compared to the control treatment. These results suggest that a fall stressor can reduce overwinter survival of juvenile brown trout, negatively impact growth of individuals that survive, and ultimately result in a reduction in the number of migratory trout. Carryover effects such as those documented here reveal the cryptic manner in which natural and anthropogenic stressors can influence fish populations. J. Exp. Zool. 323A: 645-654, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  1. Temperature-induced sex reversal is not responsible for sex-ratio distortions in grayling Thymallus thymallus or brown trout Salmo trutta.

    PubMed

    Pompini, M; Buser, A M; Thali, M R; Von Siebenthal, B A; Nusslé, S; Guduff, S; Wedekind, C

    2013-08-01

    On the basis of the experiments carried out over various years, it was concluded that (1) grayling Thymallus thymallus and brown trout Salmo trutta are resistant to temperature-induced sex reversal at ecologically relevant temperatures, (2) environmental sex reversal is unlikely to cause the persistent sex ratio distortion observed in at least one of the study populations and (3) sex-specific tolerance of temperature-related stress may be the cause of distorted sex ratios in populations of T. thymallus or S. trutta. © 2013 The Fisheries Society of the British Isles.

  2. Significance of river-aquifer interactions for reach-scale thermal patterns and trout growth potential in the Motueka River, New Zealand

    NASA Astrophysics Data System (ADS)

    Olsen, Dean A.; Young, Roger G.

    2009-02-01

    To assess whether reaches of the Motueka River (New Zealand) that gain water from groundwater were likely to represent significant cold-water refugia for brown trout during periods of high water temperatures, water temperature was monitored for more than 18 months in two gaining reaches of the Motueka River and three reaches that were predicted to be losing water to groundwater. These data were used to predict brown trout ( Salmo trutta) growth in gaining and losing reaches. Groundwater inputs had a small effect on water temperature at the reach-scale and modelling suggests that the differences observed were unlikely to result in appreciable differences in trout growth. Several coldwater patches were identified within the study reach that were up to 3.5°C cooler than the mainstem, but these were generally shallow and were unlikely to provide refuge for adult trout. The exception was Hinetai Spring, which had a mean water temperature of close to 16°C during the period January-March, when temperatures in the mainstem regularly exceeded 19°C. Trout were observed within the cold-water plume at the mouth of Hinetai Stream, which would allow them to thermoregulate when mainstem temperatures are unfavourable while still being able to capitalise on food resources available in the mainstem.

  3. Screening procedure to assess the impact of urban stormwater temperature to populations of brown trout in receiving water.

    PubMed

    Rossi, Luca; Hari, Renata E

    2007-07-01

    The discharge of urban stormwater may cause a sudden temperature increase in receiving waters that may be harmful to fish and other aquatic organisms. A screening procedure is proposed with temperature thresholds for the runoff from roofs and roads as well as for the receiving water system to protect brown trout from thermal damage. The stormwater temperature is calculated on the basis of a simple thermodynamic estimate for different latitudes. Only receiving waters with maximum daily mean temperatures of 22 degrees C (T1) are considered potential habitats for brown trout. The maximum temperature for a 1-h exposure time with a safety margin for 100% survival is 25 degrees C (T2), the sudden temperature change at the beginning of a rain event must not exceed 7 degrees C (T3), and fish-egg development requires the daily maximum temperature in winter to be below 12 degrees C (T4). Examples of stormwater runoff from roof or road surfaces from Switzerland validate our approach within +/-0.5 degrees C. Effects of runoff into receiving waters without detailed data can be predicted within +/-0.8 degrees C. With the restriction by T1, T2 seems not to be an acute problem at Swiss latitudes. T3 could play a role, especially if a large amount of runoff is discharged in small and rather cool rivers and streams. Finally, T4 deserves more attention than hitherto given. The proposed procedure may be a useful tool for assessing the influence of urban stormwater on the temperature of the receiving waters, particularly with regard to predicting the thermal impacts of urban or suburban runoff to populations of brown trout.

  4. Ontogenetic profile of innate immune related genes and their tissue-specific expression in brown trout, Salmo trutta (Linnaeus, 1758).

    PubMed

    Cecchini, Stefano; Paciolla, Mariateresa; Biffali, Elio; Borra, Marco; Ursini, Matilde V; Lioi, Maria B

    2013-09-01

    The innate immune system is a fundamental defense weapon of fish, especially during early stages of development when acquired immunity is still far from being completely developed. The present study aims at looking into ontogeny of innate immune system in the brown trout, Salmo trutta, using RT-PCR based approach. Total RNA extracted from unfertilized and fertilized eggs and hatchlings at 0, 1 h and 1, 2, 3, 4, 5, 6, 7 weeks post-fertilization was subjected to RT-PCR using self-designed primers to amplify some innate immune relevant genes (TNF-α, IL-1β, TGF-β and lysozyme c-type). The constitutive expression of β-actin was detected in all developmental stages. IL-1β and TNF-α transcripts were detected from 4 week post-fertilization onwards, whereas TGF-β transcript was detected only from 7 week post-fertilization onwards. Lysozyme c-type transcript was detected early from unfertilized egg stage onwards. Similarly, tissues such as muscle, ovary, heart, brain, gill, testis, liver, intestine, spleen, skin, posterior kidney, anterior kidney and blood collected from adult brown trout were subjected to detection of all selected genes by RT-PCR. TNF-α and lysozyme c-type transcripts were expressed in all tissues. IL-1β and TGF-β transcripts were expressed in all tissues except for the brain and liver, respectively. Taken together, our results show a spatial-temporal expression of some key innate immune-related genes, improving the basic knowledge of the function of innate immune system at early stage of brown trout. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Use of sibling relationship reconstruction to complement traditional monitoring in fisheries management and conservation of brown trout.

    PubMed

    Ozerov, Mikhail; Jürgenstein, Tauno; Aykanat, Tutku; Vasemägi, Anti

    2015-08-01

    Declining trends in the abundance of many fish urgently call for more efficient and informative monitoring methods that would provide necessary demographic data for the evaluation of existing conservation, restoration, and management actions. We investigated how genetic sibship reconstruction from young-of-the-year brown trout (Salmo trutta L.) juveniles provides valuable, complementary demographic information that allowed us to disentangle the effects of habitat quality and number of breeders on juvenile density. We studied restored (n = 15) and control (n = 15) spawning and nursery habitats in 16 brown trout rivers and streams over 2 consecutive years to evaluate the effectiveness of habitat restoration activities. Similar juvenile densities both in restored and control spawning and nursery grounds were observed. Similarly, no differences in the effective number of breeders, Nb(SA) , were detected between habitats, indicating that brown trout readily used recently restored spawning grounds. Only a weak relationship between the Nb(SA) and juvenile density was observed, suggesting that multiple factors affect juvenile abundance. In some areas, very low estimates of Nb(SA) were found at sites with high juvenile density, indicating that a small number of breeders can produce a high number of progeny in favorable conditions. In other sites, high Nb(SA) estimates were associated with low juvenile density, suggesting low habitat quality or lack of suitable spawning substrate in relation to available breeders. Based on these results, we recommend the incorporation of genetic sibship reconstruction to ongoing and future fish evaluation and monitoring programs to gain novel insights into local demographic and evolutionary processes relevant for fisheries management, habitat restoration, and conservation. © 2015 Society for Conservation Biology.

  6. Cytosolic distributions of highly toxic metals Cd and Tl and several essential elements in the liver of brown trout (Salmo trutta L.) analyzed by size exclusion chromatography and inductively coupled plasma mass spectrometry.

    PubMed

    Dragun, Zrinka; Krasnići, Nesrete; Kolar, Nicol; Filipović Marijić, Vlatka; Ivanković, Dušica; Erk, Marijana

    2018-05-15

    Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. INCREASE OF METALLOTHIONEIN-IMMUNOPOSITIVE CHLORIDE CELLS IN THE GILLS OF BROWN TROUT AND RAINBOW TROUT AFTER EXPOSURE TO SEWAGE TREATMENT PLANT EFFLUENT. (R826104)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Age- and stage-dependent variations of muscle-specific gene expression in brown trout Salmo trutta L.

    PubMed

    Churova, Maria V; Meshcheryakova, Olga V; Ruchev, Mikhail; Nemova, Nina N

    2017-09-01

    This study was conducted to characterize the features of muscle-specific genes expression during development of brown trout Salmo trutta inhabiting the river Krivoy ruchey (Kola Peninsula, Russia). Gene expression levels of myogenic regulatory factors (MRFs - MyoD1 paralogs (MyoD1a, MyoD1b, MyoD1c), Myf5, myogenin), myostatin paralogs (MSTN-1a, MSTN-1b, MSTN-2a), fast skeletal myosin heavy chain (MyHC) were measured in the white muscles of brown trout parr of ages 0+ (under-yearling), 1+ (yearling) and 2+ (two year old) and smolts of age 2+. Multidirectional changes in MyoD1 and MSTN paralogs expression along with myogenin, Myf 5 and MyHC expression levels in white muscles in parr of trout with age were revealed. The expression of MyoD1c, myogenin, MSTN-2a was the highest in 0+ parr and then decreased. MyoD1a/b expression levels didn't differ between age groups. The simultaneous elevation of MyHC, Myf5, MSTN-1a, and MSTN-1b was found in trout yearlings. In smolts, expression levels of MSTN paralogs, MyHC, Myf5, MyoD1a was lower than in parr. But in contrast, the MyoD1c and myogenin mRNA levels was higher in smolts. The study revealed that there are definite patterns in simultaneous muscle-specific genes expression in age groups of parr and smolts. As MyoD and MSTN paralogs expression changed differently in dependence on age and stage, it was suggested that paralogs of the same gene complementarily control myogenesis during development. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Intercohort density dependence drives brown trout habitat selection

    NASA Astrophysics Data System (ADS)

    Ayllón, Daniel; Nicola, Graciela G.; Parra, Irene; Elvira, Benigno; Almodóvar, Ana

    2013-01-01

    Habitat selection can be viewed as an emergent property of the quality and availability of habitat but also of the number of individuals and the way they compete for its use. Consequently, habitat selection can change across years due to fluctuating resources or to changes in population numbers. However, habitat selection predictive models often do not account for ecological dynamics, especially density dependent processes. In stage-structured population, the strength of density dependent interactions between individuals of different age classes can exert a profound influence on population trajectories and evolutionary processes. In this study, we aimed to assess the effects of fluctuating densities of both older and younger competing life stages on the habitat selection patterns (described as univariate and multivariate resource selection functions) of young-of-the-year, juvenile and adult brown trout Salmo trutta. We observed all age classes were selective in habitat choice but changed their selection patterns across years consistently with variations in the densities of older but not of younger age classes. Trout of an age increased selectivity for positions highly selected by older individuals when their density decreased, but this pattern did not hold when the density of younger age classes varied. It suggests that younger individuals are dominated by older ones but can expand their range of selected habitats when density of competitors decreases, while older trout do not seem to consider the density of younger individuals when distributing themselves even though they can negatively affect their final performance. Since these results may entail critical implications for conservation and management practices based on habitat selection models, further research should involve a wider range of river typologies and/or longer time frames to fully understand the patterns of and the mechanisms underlying the operation of density dependence on brown trout habitat selection.

  10. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures.

    PubMed

    Wilkins, Laetitia G E; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus

    2015-11-27

    The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area.

  11. The concentration of plasma metabolites varies throughout reproduction and affects offspring number in wild brown trout (Salmo trutta).

    PubMed

    Gauthey, Zoé; Freychet, Marine; Manicki, Aurélie; Herman, Alexandre; Lepais, Olivier; Panserat, Stéphane; Elosegi, Arturo; Tentelier, Cédric; Labonne, Jacques

    2015-06-01

    In wild populations, measuring energy invested in the reproduction and disentangling investment in gametes versus investment in reproductive behavior (such as intrasexual competition or intersexual preference) remain challenging. In this study, we investigated the energy expenditure in brown trout reproductive behavior by using two proxies: variation in weight and variation of plasma metabolites involved in energy production, over the course of reproductive season in a semi natural experimental river. We estimated overall reproductive success using genetic assignment at the end of the reproductive season. Results show that triglycerides and free fatty acid concentrations vary negatively during reproduction, while amino-acids and glucose concentrations remain stable. Decrease in triglyceride and free fatty acid concentrations during reproduction is not related to initial concentration levels or to weight variation. Both metabolite concentration variations and weight variations are correlated to the number of offspring produced, which could indicate that gametic and behavioral reproductive investments substantially contribute to reproductive success in wild brown trout. This study opens a path to further investigate variations in reproductive investment in wild populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Increased diversity of egg-associated bacteria on brown trout (Salmo trutta) at elevated temperatures

    PubMed Central

    Wilkins, Laetitia G. E.; Rogivue, Aude; Schütz, Frédéric; Fumagalli, Luca; Wedekind, Claus

    2015-01-01

    The taxonomic composition of egg-associated microbial communities can play a crucial role in the development of fish embryos. In response, hosts increasingly influence the composition of their associated microbial communities during embryogenesis, as concluded from recent field studies and laboratory experiments. However, little is known about the taxonomic composition and the diversity of egg-associated microbial communities within ecosystems; e.g., river networks. We sampled late embryonic stages of naturally spawned brown trout at nine locations within two different river networks and applied 16S rRNA pyrosequencing to describe their bacterial communities. We found no evidence for a significant isolation-by-distance effect on the composition of bacterial communities, and no association between neutral genetic divergence of fish host (based on 11 microsatellites) and phylogenetic distances of the composition of their associated bacterial communities. We characterized core bacterial communities on brown trout eggs and compared them to corresponding water samples with regard to bacterial composition and its presumptive function. Bacterial diversity was positively correlated with water temperature at the spawning locations. We discuss this finding in the context of the increased water temperatures that have been recorded during the last 25 years in the study area. PMID:26611640

  13. Habitat modeling for brown trout population in alpine region of Slovenia with focus on determination of preference functions, fuzzy rules and fuzzy sets

    NASA Astrophysics Data System (ADS)

    Santl, Saso; Carf, Masa; Preseren, Tanja; Jenic, Aljaz

    2013-04-01

    Water withdrawals and consequently reduction of discharges in river streams for different water uses (hydro power, irrigation, etc.) usually impoverish habitat suitability for naturally present river fish fauna. In Slovenia reduction of suitable habitats resulting from water abstractions frequently impacts local brown trout (Salmo truta) populations. This is the reason for establishment of habitat modeling which can qualitatively and quantitatively support decision making for determination of the environmental flow and other mitigation measures. Paper introduces applied methodology for habitat modeling where input data preparation and elaboration with required accuracy has to be considered. For model development four (4) representative and heterogeneous sampling sites were chosen. Two (2) sampling sections were located within the sections with small hydropower plants and were considered as sections affected by water abstractions. The other two (2) sampling sections were chosen where there are no existing water abstractions. Precise bathymetric mapping for chosen river sections has been performed. Topographic data and series of discharge and water level measurements enabled establishment of calibrated hydraulic models, which provide data on water velocities and depths for analyzed discharges. Brief field measurements were also performed to gather required data on dominant and subdominant substrate size and cover type. Since the accuracy of fish distribution on small scale is very important for habitat modeling, a fish sampling method had to be selected and modified for existing river microhabitats. The brown trout specimen's locations were collected with two (2) different sampling methods. A method of riverbank observation which is suitable for adult fish in pools and a method of electro fishing for locating small fish and fish in riffles or hiding in cover. Ecological and habitat requirements for fish species vary regarding different fish populations as well as eco and hydro morphological types of streams. Therefore, if habitat modeling for brown trout in Slovenia should be applied, it is necessary to determine preference requirements for the locally present brown trout populations. For efficient determination of applied preference functions and linked fuzzy sets/rules, beside expert determination, calibration according to field sampling must also be performed. After this final step a model is prepared for the analysis to support decision making in the field of environmental flow and other mitigation measures determination.

  14. Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta).

    PubMed

    Filipsson, Karl; Brijs, Jeroen; Näslund, Joacim; Wengström, Niklas; Adamsson, Marie; Závorka, Libor; Österling, E Martin; Höjesjö, Johan

    2017-04-01

    Gill parasites on fish are likely to negatively influence their host by inhibiting respiration, oxygen transport capacity and overall fitness. The glochidia larvae of the endangered freshwater pearl mussel (FPM, Margaritifera margaritifera (Linnaeus, 1758)) are obligate parasites on the gills of juvenile salmonid fish. We investigated the effects of FPM glochidia encystment on the metabolism and haematology of brown trout (Salmo trutta Linnaeus, 1758). Specifically, we measured whole-animal oxygen uptake rates at rest and following an exhaustive exercise protocol using intermittent flow-through respirometry, as well as haematocrit, in infested and uninfested trout. Glochidia encystment significantly affected whole-animal metabolic rate, as infested trout exhibited higher standard and maximum metabolic rates. Furthermore, glochidia-infested trout also had elevated levels of haematocrit. The combination of an increased metabolism and haematocrit in infested fish indicates that glochidia encystment has a physiological effect on the trout, perhaps as a compensatory response to the potential respiratory stress caused by the glochidia. When relating glochidia load to metabolism and haematocrit, fish with low numbers of encysted glochidia were the ones with particularly elevated metabolism and haematocrit. Standard metabolic rate decreased with substantial glochidia loads towards levels similar to those of uninfested fish. This suggests that initial effects visible at low levels of encystment may be countered by additional physiological effects at high loads, e.g. potential changes in energy utilization, and also that high numbers of glochidia may restrict oxygen uptake by the gills.

  15. Early mortality syndrome in Great Lakes salmonines

    USGS Publications Warehouse

    Honeyfield, Dale C.; Brown, Scott B.; Fitzsimons, John D.; Tillitt, Donald E.

    2005-01-01

    Early mortality syndrome (EMS) is the termused to describe an embryonic mortality affectingthe offspring of salmonines (coho salmonOnco-rhynchus kisutch, Chinook salmonOncorhynchustshawytscha, steelhead [anadromous rainbow troutOncorhynchus mykiss], brown troutSalmo trutta,and lake trout,Salvelinus namaycush) in LakesMichigan and Ontario and, to a lesser extent, LakesHuron and Erie (Marcquenski and Brown 1997).Clinical signs of EMS include loss of equilibrium,a spiral swimming pattern, lethargy, hyperexcit-ability, hemorrhage, and death between hatch andfirst feeding. Early mortality syndrome was ob-served as far back as the 1960s in Great Lakessalmonines (Marcquenski and Brown 1997; Fitz-simons et al. 1999) and is of concern because mor-tality has been high in recent years (Wolgamoodet al. 2005; all 2005 citations are this issue). Stocksof Atlantic salmonSalmo salarfrom the FingerLakes and the Baltic Sea also exhibit a similarearly life stage mortality, called Cayuga syndrome(Fisher et al. 1995) and M74 (Bo ̈ rjeson and Norr-gren 1997), respectively. Low egg thiamine levelsand enhanced survival following thiamine treat-ments are common characteristics of EMS, CayugaSyndrome, and M74 (Fitzsimons et al. 1999). Be-cause the deficiency does not appear to be the re-sult of inadequate dietary thiamine (Fitzsimons and Brown 1998), investigators have hypothesizedthat the presence of some thiaminolytic factors inthe diet may reduce the bioavailability of thiamine,either by destroying it or converting it to an in-active analog or thiamine antagonist (Fisher et al.1996; Fitzsimons et al. 1999).

  16. Hybridization between genetically modified Atlantic salmon and wild brown trout reveals novel ecological interactions

    PubMed Central

    Oke, Krista B.; Westley, Peter A. H.; Moreau, Darek T. R.; Fleming, Ian A.

    2013-01-01

    Interspecific hybridization is a route for transgenes from genetically modified (GM) animals to invade wild populations, yet the ecological effects and potential risks that may emerge from such hybridization are unknown. Through experimental crosses, we demonstrate transmission of a growth hormone transgene via hybridization between a candidate for commercial aquaculture production, GM Atlantic salmon (Salmo salar) and closely related wild brown trout (Salmo trutta). Transgenic hybrids were viable and grew more rapidly than transgenic salmon and other non-transgenic crosses in hatchery-like conditions. In stream mesocosms designed to more closely emulate natural conditions, transgenic hybrids appeared to express competitive dominance and suppressed the growth of transgenic and non-transgenic (wild-type) salmon by 82 and 54 per cent, respectively. To the best of our knowledge, this is the first demonstration of environmental impacts of hybridization between a GM animal and a closely related species. These results provide empirical evidence of the first steps towards introgression of foreign transgenes into the genomes of new species and contribute to the growing evidence that transgenic animals have complex and context-specific interactions with wild populations. We suggest that interspecific hybridization be explicitly considered when assessing the environmental consequences should transgenic animals escape to nature. PMID:23720549

  17. Effects of extreme floods on trout populations and fish communities in a Catskill Mountain river

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.; Smith, Alexander J.; Robinson, George

    2015-01-01

    5. Late summer floods may be less damaging to stream fish communities than winter or spring floods as spawning activity is negligible and early life stages of many species are generally larger and less susceptible to displacement and mortality. Additionally, post-flood conditions may be advantageous for brown trout recruitment.

  18. The effects of overwinter flowson the spring condition of rainbow and brown trout size classes in the Green River downstream of Flaming Gorge Dam, Utah.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magnusson, A. K.; LaGory, K. E.; Hayse, J. W.

    2010-06-25

    Flaming Gorge Dam, a hydroelectric facility operated by the Bureau of Reclamation (Reclamation), is located on the Green River in Daggett County, northeastern Utah. Until recently, and since the early 1990s, single daily peak releases or steady flows have been the operational pattern of the dam during the winter period. However, releases from Flaming Gorge Reservoir followed a double-peak pattern (two daily flow peaks) during the winters of 2006-2007 and 2008-2009. Because there is little recent long-term history of double-peaking at Flaming Gorge Dam, the potential effects of double-peaking operations on trout body condition in the dam's tailwater are notmore » known. A study plan was developed that identified research activities to evaluate potential effects from winter double-peaking operations (Hayse et al. 2009). Along with other tasks, the study plan identified the need to conduct a statistical analysis of historical trout condition and macroinvertebrate abundance to evaluate the potential effects of hydropower operations. The results from analyses based on the combined size classes of trout (85-630 mm) were presented in Magnusson et al. (2008). The results of this earlier analysis suggested possible relationships between trout condition and flow, but concern that some of the relationships resulted from size-based effects (e.g., apparent changes in condition may have been related to concomitant changes in size distribution, because small trout may have responded differently to flow than large trout) prompted additional analysis of within-size class relationships. This report presents the results of analyses of three different size classes of trout (small: 200-299 mm, medium: 300-399 mm, and large: {ge}400 mm body length). We analyzed historical data to (1) describe temporal patterns and relationships among flows, benthic macroinvertebrate abundance, and condition of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) in the tailwaters of Flaming Gorge Dam, and to (2) evaluate the relative importance of the effects of flow (i.e., flow volumes and flow variability), trout abundance (catch per unit effort [CPUE]), and benthic macroinvertebrate abundance on trout condition for different size classes of trout.« less

  19. Food of salmonine predators in Lake Superior, 1981-87

    USGS Publications Warehouse

    Conner, David J.; Bronte, Charles R.; Selgeby, James H.; Collins, Hollie L.

    1993-01-01

    Diets of ten species of Lake Superior salmonines are described. Rainbow smelt (Osmerus mordax) were the primary prey during all seasons and years for inshore lake trout (Salvelinus namaycush), Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (S. trutta), brook trout (Salvelinus fontinalis), and splake (lake trout x brook trout hybrid). Coregonines were the second most-important prey for chinook salmon (O. tshawytscha), siscowet trout (S. namaycush siscowet), and splake. Invertebrates were important to rainbow trout (O. mykiss), coho salmon (O. kisutch), and pink salmon (O. gorbuscha), especially during the summer. Diets of lake trout from inshore and offshore locations differed markedly. Rainbow smelt were the primary food of inshore lake trout, and coregonines were the main food of offshore lake trout. Chinook salmon and inshore lake trout had the most similar diets because they ate similar proportions of rainbow smelt and coregonines. Salmonines generally ate more rainbow smelt and less coregonines in proportion to the abundance of these prey in the lake. If rainbow smelt populations collapse, the ability of salmonines to convert to a diet based on lake herring (Coregonus artedi) could be important to the stability of predator populations.

  20. Effects of immobilization by electricity and MS-222 on brown trout broodstock and their progeny

    USGS Publications Warehouse

    Redman, S.D.; Meinertz, J.R.; Gaikowski, M.P.

    1998-01-01

    To determine the effects of electrically and chemically induced immobilization on postspawn broodstock and their progeny, age-2 and age-3 female broodstock and age-2 male broodstock of brown trout Salmo trutta were immobilized with electricity or tricaine methanesulfonate (MS-222), stripped of their eggs or milt, and weighed. Eggs taken from electrically immobilized females were fertilized with milt taken from age-2 males that were immobilized with electricity, and eggs taken from females immobilized with MS-222 were fertilized with milt taken from age-2 males that were immobilized with MS-222. After spawning, the mortality and weight of broodstock were compared twice over a 6-month period. Egg viability and growth of offspring fry from each treatment group were also compared. Electricity induced complete and consistent immobilization in brown trout broodstock. Electrically immobilized fish were more easily handled than fish immobilized with MS-222; however, electrically immobilized fish survival (70%) was significantly less than fish immobilized with MS-222 (83%). Broodstock growth differences were only noted at 6 months postexposure, when the mean weight of electrically immobilized fish was slightly less than the weight of fish immobilized with MS-222. Broodstock immobilization by electricity did not reduce egg viability or fry growth.

  1. Detecting Renibacterium salmoninarum in wild brown trout by use of multiple organ samples and diagnostic methods

    USGS Publications Warehouse

    Guomundsdottir, S.; Applegate, Lynn M.; Arnason, I.O.; Kristmundsson, A.; Purcell, Maureen K.; Elliott, Diane G.

    2017-01-01

    Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease (BKD), is endemic in many wild trout species in northerly regions. The aim of the present study was to determine the optimal R. salmoninarum sampling/testing strategy for wild brown trout (Salmo trutta L.) populations in Iceland. Fish were netted in a lake and multiple organs—kidney, spleen, gills, oesophagus and mid-gut—were sampled and subjected to five detection tests i.e. culture, polyclonal enzyme-linked immunosorbent assay (pELISA) and three different PCR tests. The results showed that each fish had encountered R. salmoninarum but there were marked differences between results obtained depending on organ and test. The bacterium was not cultured from any kidney sample while all kidney samples were positive by pELISA. At least one organ from 92.9% of the fish tested positive by PCR. The results demonstrated that the choice of tissue and diagnostic method can dramatically influence the outcome of R. salmoninarum surveys.

  2. Pesticide impacts on predator-prey interactions across two levels of organisation.

    PubMed

    Rasmussen, Jes Jessen; Nørum, Ulrik; Jerris, Morten Rygaard; Wiberg-Larsen, Peter; Kristensen, Esben Astrup; Friberg, Nikolai

    2013-09-15

    In this study, we aimed to evaluate the effects of a short pulse exposure of the pyrethroid lambda-cyhalothrin (LC) on the predator and anti-predator behaviour of the same species; Gammarus pulex. Predator behaviour, at the level of the individual, was studied in indoor microcosms using video tracking equipment during simultaneous exposure of the predator (G. pulex) and its prey (Leuctra nigra) during 90 min exposure of 1, 6.6 or 62.1 ngL(-1) LC. During an initial 30 min of exposure, the predator and prey organisms were maintained physically separated, and the actual interaction was studied through the subsequent 60 min of exposure. The anti-predator behaviour of G. pulex (drift suppression in response to the presence of brown trout) was studied in outdoor stream channels during a 90 min pulse exposure to LC (7.4 or 79.5 ngL(-1)) with, or without, brown trout. Based on survival curves for L. nigra we found that the mortality rate for L. nigra significantly decreased during exposure to 6.6 and 62.1 ngL(-1) LC (P<0.05 and P<0.001, respectively). We found no significant effects suggesting that G. pulex was repelled by contaminated prey items (P>0.05). We found that the exposure of G. pulex to 7.4 and 79.5 ngL(-1) LC significantly increased drift (from ∼0% to ∼100% in both treatments; P<0.001) independent of the presence of brown trout (P<0.05). In other words, the natural anti-predator behaviour of G. pulex was overruled by the stress response to LC exposure increasing G. pulex predation risk from drift feeding brown trouts. Our results show that the anti-predator and predator behaviour of G. pulex were significantly changed during exposure to very low and environmentally realistic LC concentrations and exposure duration. The potential implications for the field scenario are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Accumulation of lead (Pb) in brown trout (Salmo trutta) from a lake downstream a former shooting range.

    PubMed

    Mariussen, Espen; Heier, Lene Sørlie; Teien, Hans Christian; Pettersen, Marit Nandrup; Holth, Tor Fredrik; Salbu, Brit; Rosseland, Bjørn Olav

    2017-01-01

    An environmental survey was performed in Lake Kyrtjønn, a small lake within an abandoned shooting range in the south of Norway. In Lake Kyrtjønn the total water concentrations of Pb (14µg/L), Cu (6.1µg/L) and Sb (1.3µg/L) were elevated compared to the nearby reference Lake Stitjønn, where the total concentrations of Pb, Cu and Sb were 0.76, 1.8 and 0.12µg/L, respectively. Brown trout (Salmo trutta) from Lake Kyrtjønn had very high levels of Pb in bone (104mg/kg w.w.), kidney (161mg/kg w.w.) and the gills (137mg/kg d.w), and a strong inhibition of the ALA-D enzyme activity were observed in the blood (24% of control). Dry fertilized brown trout eggs were placed in the small outlet streams from Lake Kyrtjønn and the reference lake for 6 months, and the concentrations of Pb and Cu in eggs from the Lake Kyrtjønn stream were significantly higher than in eggs from the reference. More than 90% of Pb accumulated in the egg shell, whereas more than 80% of the Cu and Zn accumulated in the egg interior. Pb in the lake sediments was elevated in the upper 2-5cm layer (410-2700mg/kg d.w), and was predominantly associated with redox sensitive fractions (e.g., organic materials, hydroxides) indicating low potential mobility and bioavailability of the deposited Pb. Only minor amounts of Cu and Sb were deposited in the sediments. The present work showed that the adult brown trout, as well as fertilized eggs and alevins, may be subjected to increased stress due to chronic exposure to Pb, whereas exposure to Cu, Zn and Sb were of less importance. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Global transcriptomic profiling demonstrates induction of oxidative stress and of compensatory cellular stress responses in brown trout exposed to glyphosate and Roundup.

    PubMed

    Uren Webster, Tamsyn M; Santos, Eduarda M

    2015-01-31

    Glyphosate, the active ingredient in Roundup formulations, is the most widely used herbicide worldwide, and as a result contaminates surface waters and has been detected in food residues, drinking water and human urine, raising concerns for potential environmental and human health impacts. Research has shown that glyphosate and Roundup can induce a broad range of biological effects in exposed organisms, particularly via generation of oxidative stress. However, there has been no comprehensive investigation of the global molecular mechanisms of toxicity of glyphosate and Roundup for any species. We aimed to characterise and compare the global mechanisms of toxicity of glyphosate and Roundup in the liver of brown trout (Salmo trutta), an ecologically and economically important vertebrate species, using RNA-seq on an Illumina HiSeq 2500 platform. To do this, we exposed juvenile female brown trout to 0, 0.01, 0.5 and 10 mg/L of glyphosate and Roundup (glyphosate acid equivalent) for 14 days, and sequenced 6 replicate liver samples from each treatment. We assembled the brown trout transcriptome using an optimised de novo approach, and subsequent differential expression analysis identified a total of 1020 differentially-regulated transcripts across all treatments. These included transcripts encoding components of the antioxidant system, a number of stress-response proteins and pro-apoptotic signalling molecules. Functional analysis also revealed over-representation of pathways involved in regulating of cell-proliferation and turnover, and up-regulation of energy metabolism and other metabolic processes. These transcriptional changes are consistent with generation of oxidative stress and the widespread induction of compensatory cellular stress response pathways. The mechanisms of toxicity identified were similar across both glyphosate and Roundup treatments, including for environmentally relevant concentrations. The significant alterations in transcript expression observed at the lowest concentrations tested raises concerns for the potential toxicity of this herbicide to fish populations inhabiting contaminated rivers.

  5. Effects of Catch-and-Release Angling on Salmonids at Elevated Water Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, James W.; Guy, Christopher S.; Horton, Travis

    2010-08-01

    Few studies have assessed catch and release mortality of salmonids at water temperatures ≥23°C, despite predictions of warming stream temperatures due to climate change. In addition, the effects of diel temperature fluctuations on salmonid mortality have largely been ignored in catch and release angling studies. The primary objective of this study was to measure catch and release mortality of rainbow trout Oncorhynchus mykiss, brown trout Salmo trutta, and mountain whitefish Prosopium williamsoni in three water temperature treatments; when daily maximum water temperatures were cool (<20°C), warm (20 to 22.9°C), and hot ( 23°C). A secondary objective was to assess catchmore » and release mortality of salmonids angled in morning and evening within water-temperature treatments. These objectives were related to Montana Fish, Wildlife and Parks’ Drought Fishing Closure Policy (DFCP). Angling (fly-fishing only) occurred in the Gallatin and Smith rivers. All angled fish were confined to in-stream holding cages and monitored for mortality for 72 h. Mortality of rainbow trout peaked at 16% in the Gallatin River and 9% in the Smith River during the hot treatment. Mortality of brown trout was less than 5% in all water-temperature treatments in both rivers. Mountain whitefish mortality peaked at 28% in the hot treatment in the Smith River. No mortality for any species occurred in either river when daily maximum water temperatures were <20°C. Mortality of rainbow trout peaked at 16% in the evening hot treatment in the Smith River. Mortality of brown trout and mountain whitefish was not related to time of day. The catch and release mortality values presented here likely represent fishing mortality given that most anglers in southwest Montana practice catch and release angling. The mortality values we observed were lower than predicted (< 30%), given reports in the literature. The difference is likely related to the in situ nature of the study and periods of cooler water temperatures between peaks facilitating recovery from thermal stress.« less

  6. Analysis of Microhabitat Use for Two Trout Species Using a Combination of Remote Sensing and Passive Integrated transponder Tags

    NASA Astrophysics Data System (ADS)

    Lokteff, R.; Wheaton, J. M.; Roper, B.; DeMeurichy, K.; Randall, J.

    2011-12-01

    The Logan River and its tributaries in northern Utah sustain a significant population of the imperiled Bonneville cutthroat trout (Oncorhynchus clarki Utah) as well as invasive brown trout (Salmo trutta). In general, the upper reaches of the system are populated by cutthroat trout and the lower reaches by brown trout. Spawn Creek is a unique tributary in that it supports both of these species throughout the year. The purpose of this study is to identify differences in fine-scale microhabitat that explain utilization patterns of each species of fish. Passive integrated transponder (PIT) tags have been placed in trout over the last 3 years throughout Spawn Creek. Repeat GPS observations of these fish in their habitat during both spawning and non-spawning periods have been acquired over the last 4 years. Non-spawning activity has been captured using mobile PIT tag antennae. GPS observations of cutthroat trout spawning locations have also been recorded. From these observations both spawning and non-spawning "hotspots" have emerged, which appear to be highly correlated with specific microhabitat characteristics. The entire 2.5 km study reach on lower Spawn Creek has been scanned using ground-based light detection and ranging (LiDAR) which covers all observed "hotspots." LiDAR data provides sub-centimeter resolution point clouds from which detailed geometric measurements and topographic analyses can be used to reveal specific aspects of trout habitat. Where bathymetric data is needed, total station bathymetric surveys have been completed at sub-meter resolution. The combination of these data types at known "hotspot" locations provides an opportunity to quantify aspects of the physical environment at a uniquely fine scale relevant to individual fish. New metrics, as well as old metrics resolved at finer scales, will be presented to explain species and life-stage specific habitat "hotspots" in mountain streams.

  7. Environmental DNA for freshwater fish monitoring: insights for conservation within a protected area.

    PubMed

    Fernandez, Sara; Sandin, Miguel M; Beaulieu, Paul G; Clusa, Laura; Martinez, Jose L; Ardura, Alba; García-Vázquez, Eva

    2018-01-01

    Many fish species have been introduced in wild ecosystems around the world to provide food or leisure, deliberately or from farm escapes. Some of those introductions have had large ecological effects. The north American native rainbow trout ( Oncorhynchus mykiss Walbaum, 1792) is one of the most widely farmed fish species in the world. It was first introduced in Spain in the late 19th century for sport fishing (Elvira 1995) and nowadays is used there for both fishing and aquaculture. On the other hand, the European native brown trout ( Salmo trutta L.) is catalogued as vulnerable in Spain. Detecting native and invasive fish populations in ecosystem monitoring is crucial, but it may be difficult from conventional sampling methods such as electrofishing. These techniques encompass some mortality, thus are not adequate for some ecosystems as the case of protected areas. Environmental DNA (eDNA) analysis is a sensitive and non-invasive method that can be especially useful for rare and low-density species detection and inventory in water bodies. In this study we employed two eDNA based methods (qPCR and nested PCR-RFLP) to detect salmonid species from mountain streams within a protected area, The Biosphere Reserve and Natural Park of Redes (Upper Nalón Basin, Asturias, Northern Spain), where brown trout is the only native salmonid. We also measured some habitat variables to see how appropriate for salmonids the area is. The sampling area is located upstream impassable dams and contains one rainbow trout fish farm. Employing qPCR methodology, brown trout eDNA was detected in all the nine sampling sites surveyed, while nested PCR-RFLP method failed to detect it in two sampling points. Rainbow trout eDNA was detected with both techniques at all sites in the Nalón River' (n1, n2 and n3). Salmonid habitat units and water quality were high from the area studied. In this study, a high quantity of rainbow trout eDNA was found upstream and downstream of a fish farm located inside a Biosphere Reserve. Unreported escapes from the fish farm are a likely explanation of these results. Since salmonid habitat is abundant and the water quality high, the establishment of rainbow trout populations would be favored should escapes occur. Environmental DNA has here proved to be a valuable tool for species detection in freshwater environments, and the probe-based qPCR highly sensitive technique for detection of scarce species. We would recommend this method for routine monitoring and early detection of introduced species within natural reserves.

  8. Predation on stocked Atlantic salmon (Salmo salar) fry

    USGS Publications Warehouse

    Henderson, J.N.; Letcher, B.H.

    2003-01-01

    We studied predator-prey interactions between juvenile Atlantic salmon (Salmo salar) and trout in three Massachusetts, U.S.A., streams and in artificial streams. We sampled stomach contents of age-1+ and older salmon and trout (Salvelinus fontinalis, Salmo trutta) following salmon fry stocking in the spring of 1997 and 1998. Between 4.3 and 48.6% of the stocked fry were consumed within the first 2 days after stocking, and total fry mortality from predation varied from 4.3 to 60.7%. No significant differences were found between stomach weights of predators (without fry weight) that consumed fry and those that did not. Artificial stream experiments testing effects of habitat complexity and predator species on predator consumption rates revealed that consumption rates were not different between brook (S. fontinalis) and brown (S. trutta) trout (p = 0.59). Predation rate tended to decrease as the percentage of riffle habitat increased but the decrease was not significant (p = 0.22). Our results indicate that predation on stocked Atlantic salmon fry can be substantial (up to 60%), appears to be short lived (2 days), and is not related in a simple way to abiotic and biotic factors.

  9. Acyl-coenzyme A oxidases 1 and 3 in brown trout (Salmo trutta f. fario): Can peroxisomal fatty acid β-oxidation be regulated by estrogen signaling?

    PubMed

    Madureira, Tânia Vieira; Castro, L Filipe C; Rocha, Eduardo

    2016-02-01

    Acyl-coenzyme A oxidases 1 (Acox1) and 3 (Acox3) are key enzymes in the regulation of lipid homeostasis. Endogenous and exogenous factors can disrupt their normal expression/activity. This study presents for the first time the isolation and characterization of Acox1 and Acox3 in brown trout (Salmo trutta f. fario). Additionally, as previous data point to the existence of a cross-talk between two nuclear receptors, namely peroxisome proliferator-activated receptors and estrogen receptors, it was here evaluated after in vitro exposures of trout hepatocytes the interference caused by ethynylestradiol in the mRNA levels of an inducible (by peroxisome proliferators) and a non-inducible oxidase. The isolated Acox1 and Acox3 show high levels of sequence conservation compared to those of other teleosts. Additionally, it was found that Acox1 has two alternative splicing isoforms, corresponding to 3I and 3II isoforms of exon 3 splicing variants. Both isoforms display tissue specificity, with Acox1-3II presenting a more ubiquitous expression in comparison with Acox1-3I. Acox3 was expressed in almost all brown trout tissues. According to real-time PCR data, the highest estrogenic stimulus was able to cause a down-regulation of Acox1 and an up-regulation of Acox3. So, for Acox1 we found a negative association between an estrogenic input and a directly activated PPARα target gene. In conclusion, changes in hormonal estrogenic stimulus may impact the mobilization of hepatic lipids to the gonads, with ultimate consequences in reproduction. Further studies using in vivo assays will be fundamental to clarify these issues.

  10. Patterns of natural mortality in stream-living brown trout (Salmo trutta)

    USGS Publications Warehouse

    Lobon-Cervia, J.; Budy, P.; Mortensen, E.

    2012-01-01

    We tested the hypothesis that lifetime mortality patterns and their corresponding rates and causal factors differ among populations of stream-living salmonids. To this end, we examined the lifetime mortality patterns of several successive cohorts of two stream-living brown trout (Salmo trutta) populations in Spain and Denmark. In the southern population, we observed a consistent two-phase pattern, in which mortality was negligible during the first half of the lifetime and severe during the rest of the lifetime. In contrast, the northern population demonstrated a three-phase pattern with an earlier phase varying from negligible to severe, followed by a second stage of weak mortality, and lastly by a third life stage of severe mortality. Despite substantial differences in the mortality patterns between the two populations, the combined effect of recruitment (as a proxy of the density-dependent processes occurring during the lifetime) and mean body mass (as a proxy of growth experienced by individuals in a given cohort) explained c. 89% of the total lifetime mortality rates across cohorts and populations. A comparison with other published data on populations of stream-living brown trout within its native range highlighted lifetime mortality patterns of one, two, three and four phases, but also suggested that common patterns may occur in populations that experience similar individual growth and population density. ?? 2011 Blackwell Publishing Ltd.

  11. Telomere dynamics in wild brown trout: effects of compensatory growth and early growth investment.

    PubMed

    Näslund, Joacim; Pauliny, Angela; Blomqvist, Donald; Johnsson, Jörgen I

    2015-04-01

    After a period of food deprivation, animals often respond with a period of faster than normal growth. Such responses have been suggested to result in decreased chromosomal maintenance, which in turn may affect the future fitness of an individual. Here, we present a field experiment in which a food deprivation period of 24 days was enforced on fish from a natural population of juvenile brown trout (Salmo trutta) at the start of the high-growth season in spring. The growth of the food-deprived fish and a non-deprived control group was then monitored in the wild during 1 year. Fin tissue samples were taken at the start of the experiment and 1 year after food deprivation to monitor the telomere dynamics, using reduced telomere length as an indicator of maintenance cost. The food-deprived fish showed partial compensatory growth in both mass and length relative to the control group. However, we found no treatment effects on telomere dynamics, suggesting that growth-compensating brown trout juveniles are able to maintain their telomeres during their second year in the stream. However, body size at the start of the experiment, reflecting growth rate during their first year of life, was negatively correlated with change in telomere length over the following year. This result raises the possibility that rapid growth early in life induces delayed costs in cellular maintenance.

  12. Experimental tests for heritable morphological color plasticity in non-native brown trout (Salmo trutta) populations.

    PubMed

    Westley, Peter A H; Stanley, Ryan; Fleming, Ian A

    2013-01-01

    The success of invasive species is frequently attributed to phenotypic plasticity, which facilitates persistence in novel environments. Here we report on experimental tests to determine whether the intensity of cryptic coloration patterns in a global invader (brown trout, Salmo trutta) was primarily the result of plasticity or heritable variation. Juvenile F1 offspring were created through experimental crosses of wild-caught parents and reared for 30 days in the laboratory in a split-brood design on either light or dark-colored gravel substrate. Skin and fin coloration quantified with digital photography and image analysis indicated strong plastic effects in response to substrate color; individuals reared on dark substrate had both darker melanin-based skin color and carotenoid-based fin colors than other members of their population reared on light substrate. Slopes of skin and fin color reaction norms were parallel between environments, which is not consistent with heritable population-level plasticity to substrate color. Similarly, we observed weak differences in population-level color within an environment, again suggesting little genetic control on the intensity of skin and fin colors. Taken as whole, our results are consistent with the hypothesis that phenotypic plasticity may have facilitated the success of brown trout invasions and suggests that plasticity is the most likely explanation for the variation in color intensity observed among these populations in nature.

  13. Effects of stream enclosures on drifting invertebrates and fish growth

    USGS Publications Warehouse

    Zimmerman, J.K.H.; Vondracek, B.

    2006-01-01

    Stream ecologists often use enclosure experiments to investigate predator-prey interactions and competition within and among fish species. The design of enclosures, manipulation of species densities, and method of replication may influence experimental results. We designed an experiment with enclosure cages (1 m2, 6-mm mesh) to examine the relative influence of fish size, density, and prey availability on growth of brown trout (Salmo trutta), brook trout (Salvelinus fontinalis), and slimy sculpin (Cottus cognatus) within enclosures in Valley Creek, Minnesota. In addition, we examined water flow and invertebrate drift entering enclosures and in open riffles to investigate whether enclosures reduced the supply of invertebrate prey. Growth of small (age-0) brook and brown trout was not influenced by fish density, but growth of larger (age-1) trout generally decreased as density increased. Sculpin growth was not related to fish size or density, but increased with mean size of invertebrates in the drift. Enclosures reduced water flow and tended to reduce invertebrate drift rate, although total drift rate (ind./min), total drift density (ind./m3), and mean size of invertebrates were not significantly different inside enclosures compared to adjacent stream riffles. Enclosures had no effect on drift rate or size of Gammarus pseudolimnaeus, the main prey item for trout and sculpin in Valley Creek. Overall, our analyses indicated that reductions of prey availability by enclosures did not influence fish growth. Trout growth may have been limited at larger sizes and densities because of increased activity costs of establishing and defending territories, whereas sculpin growth was related to availability of large prey, a factor not influenced by enclosures. ?? 2006 by The North American Benthological Society.

  14. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations

    PubMed Central

    2014-01-01

    Background Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600–800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Results Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600–800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. Conclusions We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600–800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed. PMID:24903056

  15. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations.

    PubMed

    Hansen, Michael M; Limborg, Morten T; Ferchaud, Anne-Laure; Pujolar, José-Martin

    2014-06-05

    Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600-800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600-800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600-800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed.

  16. Aquatic biology in Nederlo Creek, southwestern Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.; Lidwin, R.A.; Mason, J.W.; Narf, R.P.

    1982-01-01

    The aquatic community is diverse and reasonably stable with little indication of environmental disturbance. Aquatic macrophyte population (dominated by Ranunculus aquatilis L., Veronica catenata Penn., and Nasturtium offlcinale) varies little from spring to fall. Periphytic and planktonic algae are predominantly diatoms, with the genus Achnanthes dominating both communities. Most genera of planktonic algae originate in the periphyton, but some true planktonic algae were identified. The benthic invertebrate population is dominated by Trichoptera and is a major food source for trout and forage fish. Biotic index values calculated from benthic invertebrate data indicate that water quality is very good to excellent. The trout population is low and represents only a small part of the total fish population both in biomass and numbers. Brown trout are usually stocked annually in the spring to enhance sport fishing, but by fall most trout are wild. The major environmental factors limiting trout population seem to be insufficient cover, insufficient pool depth and volume, and small spawning areas. The wild trout population is highly dependent on spawning success the previous fall.

  17. Long-term trends in naturalized rainbow trout (Oncorhynchus mykiss) populations in the upper Esopus Creek, Ulster County, New York, 2009–15

    USGS Publications Warehouse

    George, Scott D.; Baldigo, Barry P.

    2016-05-13

    The U.S. Geological Survey, in cooperation with Cornell Cooperative Extension of Ulster County, New York State Energy Research and Development Authority, the New York State Department of Environmental Conservation, and the New York City Department of Environmental Protection, surveyed fish communities annually on the main stem and tributaries of the upper Esopus Creek, Ulster County, New York, from 2009 to 2015. This report summarizes the density, biomass, and size structure of rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) populations from the 2015 surveys along with data from the preceding 6 years. The mean density of rainbow trout populations in 2015 was 98 fish per 0.1 hectare, which was the highest value observed since 2010, and the mean biomass of rainbow trout populations in 2015 was 864 grams per 0.1 hectare, which was the highest value observed since 2012.

  18. Content and chemical form of mercury and selenium in Lake Ontario salmon and trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cappon, C.J.

    1984-01-01

    The content and chemical form of mercury and selenium were determined in the edible tissue of salmon (coho, chinook) and trout (lake, brown) taken offshore from Lake Ontario near Rochester, New York. For all species, total mercury content ranged from 0.3 to 0.8 micro g/g (fresh-weight), which is similar to concentrations commonly found in canned tuna. Most of the total mercury (63 to 79%) was present as methylmercury, the remainder being divalent inorganic mercury. For all species, 6 to 45% of the total selenium content was present as selenate (SeVI), the remainder being selenite (SeIV) and selenide (SEII). On amore » molar basis, total selenium content usually exceeded that of total mercury. Samples of smoked and unsmoked brown trout fillets were also examined. Based on the results of this study there is no immediate human health hazard from mercury and selenium. However, there is a need to report specific forms of these metals in Lake Ontario salmonid fish so that elevated concentrations can be better evaluated. 42 references, 1 figure, 4 tables.« less

  19. Agonistic behavior among three stocked trout species in a novel reservoir fish community

    USGS Publications Warehouse

    Budy, Phaedra; Hafen, Konrad

    2015-01-01

    The popularity of reservoirs to support sport fisheries has led to the stocking of species that did not co-evolve, creating novel reservoir fish communities. In Utah, the Bear Lake strain of Bonneville Cutthroat Trout Oncorhynchus clarkii utah and tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) are being more frequently added to a traditional stocking regimen consisting primarily of Rainbow TroutO. mykiss. Interactions between these three predatory species are not well understood, and studies evaluating community interactions have raised concern for an overall decrease of trout condition. To evaluate the potential for negative interactions among these species, we tested aggression in laboratory aquaria using three-species and pairwise combinations at three densities. Treatments were replicated before and after feeding. During the three-species trials Rainbow Trout initiated 24.8 times more aggressive interactions than Cutthroat Trout and 10.2 times more aggressive interactions than tiger trout, and tiger trout exhibited slightly (1.9 times) more aggressive initiations than Cutthroat Trout. There was no significant difference in behavior before versus after feeding for any species, and no indication of increased aggression at higher densities. Although Rainbow Trout in aquaria may benefit from their bold, aggressive behavior, given observations of decreased relative survival in the field, these benefits may be outweighed in reservoirs, possibly through unnecessary energy expenditure and exposure to predators.

  20. Recovery of young brown trout (Salmo trutta) in acidified streams: What are the critical values for acid-neutralizing capacity?

    NASA Astrophysics Data System (ADS)

    Hesthagen, T.; Fiske, P.; Saksgård, R.

    2016-12-01

    The recovery of young allopatric brown trout (Salmo trutta) grouped into YoY (age 0+) and older parr (age ≥1+) fish, was studied in acid-sensitive streams in a Norwegian watershed during a 24-year-period (1987-2010). Their abundance was assessed by electrofishing. Most sites typically had 5.0-5.5 in pH, 0.4-0.7 mg L-1 Ca, 10-20 μg L-1 inorganic toxic aluminum (Ali) and acid-neutralizing capacity adjusted for organic acids (ANCOAA) of - 15 to +25 μeq L-1. Densities of both YoY and older parr increased significantly during the study period. Water quality also improved in recent years with respect to pH (5.8-6.0), Ali (5-15 μg L-1) and ANCOAA (10-20 μeq L-1). However, some negative trends in both fish density and water chemistry were found during both the first (1987-1993) and last years (2004-2008) of the study. Initially, YoY densities remained at about 16-20 specimens 100 m-2 (1987-1990), declined to 10-15 specimens 100 m-2 in the early/mid 1990s, and rosed to 30-50 specimens 100 m-2 in recent years (1997-2010). Their densities correlated significantly with ANCOAA, and at least three stages in the recovery process were recognised: (i) Low density with 10-20 specimens 100 m-2 at -18 to -5 μeq L-1, (ii) medium and unstable density with 20-30 specimens 100 m-2 at -5 to 10 μeq L-1, and (iii) increasing density to 40-50 specimens 100 m-2 at 10-25 μeq L-1. The decline in brown trout density in the early-mid 1990s coincided with high sea salt depositions, which caused increased acidification. Component 1 in a PCA explained 51% of the variation in fish densities, including conductivity, Mg, Ca, Na, alkalinity and TOC. Component 2 explained an additional 31% of the variation, including pH, Ali and ANCOAA. Multiple regression analysis coefficients showed that the two components explained 41% of the variance in total fish density. Young brown trout suffered a high mortality during the initial phase of the study in spite of relative low levels of Ali. This is probabaly because the study streams have very diluted water. The densities of young brown trout have levelled off in recent years, indicating a development towards reaching carrying capacity and hence full recovery. However, still some annual fluctuations in density are recorded, which may be related to an unstable water chemistry.

  1. Organochlorine residues in three bat species from four localities in Maryland and West Virginia, 1973

    USGS Publications Warehouse

    Clark, D.R.; Prouty, R.M.

    1976-01-01

    In 1973, 119 bats of three species were collected from four localities in Maryland and West Virginia. The collection included 43 big brown bats (Eptesicus fuscus), 43 little brown brown bats (Myotis lucifugus), and 33 eastern pipistrelles (Pipistrellus subflavus). The bats were collected from Round Top Mountain, Washington Co., Md.; Trout Cave, Pendleton Co., W. Va.; Montpelier Barn, Prince Georges Co., Md. Residues of sigmaDDT were highest in carcasses of bats from Round Top Mountain, which is surrounded by apple orchards. Bats from Trout Cave had the lowest residues, a circumstance which probably reflects the absence of agriculture and industry in the area. A polychlorinated biphenyl (PCB) and oxychlordane were highest at Montpelier Barn. Sources of the PCB are unknown, but chlordane is used against termites and in gardening at nearby housing developments. Residues in bats from North East Methodist Church were low except for dieldrin. Among species, little brown bats usually had the highest residue concentrations in their carcasses, whereas big brown bats had the lowest. When DDE in carcass fat of all species was above 60-90 ppm, it became measurable in brain tissue. Above 60-90 ppm, DDE levels in brains rose with increasing levels in carcass lipids. Residues of the PCB tended to respond similarly. Residue levels in brains were greatest in little brown bats; the maximum level of the PCB, 7.9 Ppm, was more than twice that of DDE.

  2. Environmental DNA for freshwater fish monitoring: insights for conservation within a protected area

    PubMed Central

    Sandin, Miguel M.; Beaulieu, Paul G.; Clusa, Laura; Martinez, Jose L.; Ardura, Alba; García-Vázquez, Eva

    2018-01-01

    Background Many fish species have been introduced in wild ecosystems around the world to provide food or leisure, deliberately or from farm escapes. Some of those introductions have had large ecological effects. The north American native rainbow trout (Oncorhynchus mykiss Walbaum, 1792) is one of the most widely farmed fish species in the world. It was first introduced in Spain in the late 19th century for sport fishing (Elvira 1995) and nowadays is used there for both fishing and aquaculture. On the other hand, the European native brown trout (Salmo trutta L.) is catalogued as vulnerable in Spain. Detecting native and invasive fish populations in ecosystem monitoring is crucial, but it may be difficult from conventional sampling methods such as electrofishing. These techniques encompass some mortality, thus are not adequate for some ecosystems as the case of protected areas. Environmental DNA (eDNA) analysis is a sensitive and non-invasive method that can be especially useful for rare and low-density species detection and inventory in water bodies. Methods In this study we employed two eDNA based methods (qPCR and nested PCR-RFLP) to detect salmonid species from mountain streams within a protected area, The Biosphere Reserve and Natural Park of Redes (Upper Nalón Basin, Asturias, Northern Spain), where brown trout is the only native salmonid. We also measured some habitat variables to see how appropriate for salmonids the area is. The sampling area is located upstream impassable dams and contains one rainbow trout fish farm. Results Employing qPCR methodology, brown trout eDNA was detected in all the nine sampling sites surveyed, while nested PCR-RFLP method failed to detect it in two sampling points. Rainbow trout eDNA was detected with both techniques at all sites in the Nalón River’ (n1, n2 and n3). Salmonid habitat units and water quality were high from the area studied. Discussion In this study, a high quantity of rainbow trout eDNA was found upstream and downstream of a fish farm located inside a Biosphere Reserve. Unreported escapes from the fish farm are a likely explanation of these results. Since salmonid habitat is abundant and the water quality high, the establishment of rainbow trout populations would be favored should escapes occur. Environmental DNA has here proved to be a valuable tool for species detection in freshwater environments, and the probe-based qPCR highly sensitive technique for detection of scarce species. We would recommend this method for routine monitoring and early detection of introduced species within natural reserves. PMID:29527421

  3. Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts.

    PubMed

    Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti

    2017-12-01

    Funny current ( I f ), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout ( Salmo trutta fario ) sinoatrial (SA) pacemaker cells and their putative role in heart rate ( f H ) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small I f with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for I f activity. I f was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large I f currents. In contrast, HCN3 (+MiRP1) failed to produce I f in the same expression system. Cs + (2 mM), which blocked 84 ± 12% of the native I f , reversibly reduced f H 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min ( P < 0.05). However, this effect was probably due to the reduction of I Kr , which was also inhibited (63.5 ± 4.6%) by Cs + These results strongly suggest that f H regulation in the brown trout heart is largely independent on I f . Copyright © 2017 the American Physiological Society.

  4. Molecular and cellular effects of chemicals disrupting steroidogenesis during early ovarian development of brown trout (Salmo trutta fario).

    PubMed

    a Marca Pereira, M L; Eppler, E; Thorpe, K L; Wheeler, J R; Burkhardt-Holm, P

    2014-02-01

    A range of chemicals found in the aquatic environment have the potential to influence endocrine function and affect sexual development by mimicking or antagonizing the effects of hormones, or by altering the synthesis and metabolism of hormones. The aim of this study was to evaluate whether the effects of chemicals interfering with sex hormone synthesis may affect the regulation of early ovarian development via the modulation of sex steroid and insulin-like growth factor (IGF) systems. To this end, ex vivo ovary cultures of juvenile brown trout (Salmo trutta fario) were exposed for 2 days to either 1,4,6-androstatriene-3,17-dione (ATD, a specific aromatase inhibitor), prochloraz (an imidazole fungicide), or tributyltin (TBT, a persistent organic pollutant). Further, juvenile female brown trout were exposed in vivo for 2 days to prochloraz or TBT. The ex vivo and in vivo ovarian gene expression of the aromatase (CYP19), responsible for estrogen production, and of IGF1 and 2 were compared. Moreover, 17β-estradiol (E2) and testosterone (T) production from ex vivo ovary cultures was assessed. Ex vivo exposure to ATD inhibited ovarian E2 synthesis, while T levels accumulated. However, ATD did not affect ex vivo expression of cyp19, igf1, or igf2. Ex vivo exposure to prochloraz inhibited ovarian E2 production, but did not affect T levels. Further prochloraz up-regulated igf1 expression in both ex vivo and in vivo exposures. TBT exposure did not modify ex vivo synthesis of either E2 or T. However, in vivo exposure to TBT down-regulated igf2 expression. The results indicate that ovarian inhibition of E2 production in juvenile brown trout might not directly affect cyp19 and igf gene expression. Thus, we suggest that the test chemicals may interfere with both sex steroid and IGF systems in an independent manner, and based on published literature, potentially lead to endocrine dysfunction and altered sexual development. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  5. Proposed standard-weight (Ws) equation and length-categorization standards for brown trout (Salmo trutta) in lentic habitats

    USGS Publications Warehouse

    Hyatt, M.W.; Hubert, W.A.

    2001-01-01

    We developed a standard-weight (Ws) equation for brown trout (Salmo trutta) in lentic habitats by applying the regression-line-percentile technique to samples from 49 populations in North America. The proposed Ws equation is log10 Ws = -5.422 + 3.194 log10 TL, when Ws is in grams and TL is total length in millimeters. The English-unit equivalent is log10 Ws = -3.592 + 3.194 log10 TL, when Ws is in pounds and TL is total length in inches. The equation is applicable for fish of 140-750 mm TL. Proposed length-category standards to evaluate fish within populations are: stock, 200 mm (8 in); quality, 300 mm (12 in); preferred, 400 mm (16 in); memorable, 500 mm (20 in); and trophy, 600 mm (24 in).

  6. The effects of chronological age and size on toxicity of zinc to juvenile brown trout.

    PubMed

    Diedrich, Daniel J; Sofield, Ruth M; Ranville, James F; Hoff, Dale J; Wall, V Dan; Brinkman, Stephen F

    2015-07-01

    A series of toxicity tests were conducted to investigate the role of chronological age on zinc tolerance in juvenile brown trout (Salmo trutta). Four different incubation temperatures were used to control the maturation of the juveniles before zinc exposures. These 96-h exposures used flow-through conditions and four chronological ages of fish with weights ranging from 0.148 to 1.432 g. Time-to-death (TTD) data were collected throughout the exposure along with the final mortality. The results indicate that chronological age does not play a predictable role in zinc tolerance for juvenile brown trout. However, a relationship between zinc tolerance and fish size was observed in all chronological age populations, which prompted us to conduct additional exploratory data analysis to quantify how much of an effect size had during this stage of development. The smallest fish (0.148-0.423 g) were shown to be less sensitive than the largest fish (0.639-1.432 g) with LC50 values of 868 and 354 µg Zn/L, respectively. The Kaplan-Meier product estimation method was used to determine survival functions from the TTD data and supports the LC50 results with a greater median TTD for smaller fish than larger juvenile fish. These results indicate that fish size or a related characteristic may be a significant determinant of susceptibility and should be considered in acute zinc toxicity tests with specific attention paid to the expected exposure scenario in the field.

  7. Reliable collection of Caspian brown trout (Salmo trutta caspius) sperm using a catheter.

    PubMed

    Aramli, M S; Golshahi, K; Banan, A; Sotoudeh, E

    2016-10-01

    The traditional stripping procedure for collecting fish semen is associated with the risk of urine contamination, which may significantly affect semen quality and quantity. The use of a catheter as an alternative method for semen collection may overcome this problem. Therefore, this study compared Caspian brown trout (Salmo trutta caspius) semen parameters (i.e. sperm density, seminal plasma osmolality, motility parameters of spermatozoa analysed using computer-assisted sperm analysis and fertility) between the traditional stripping method and the use of a catheter. All parameter values of the semen collected with a catheter were significantly higher (p < .05; density = 7.67 ± 1.02 × 10(9)  ml(-1) and osmolality = 279.28 ± 32.84 mOsm kg(-1) ) than those collected with stripping method (density = 4.85 ± 0.47 × 10(9)  ml(-1) and osmolality = 216.42 ± 20.75 mOsm kg(-1) ). Semen collected with a catheter was characterized by higher spermatozoa motility compared with sperm collected via stripping. Similarly, the fertilization ability of sperm collected with a catheter was significantly greater (p < .05) than sperm collected with the traditional stripping method. In conclusion, collection of sperm with a catheter was shown to effectively reduce urine contamination and is therefore recommended for the collection of Caspian brown trout sperm. © 2016 Blackwell Verlag GmbH.

  8. Maximum heart rate in brown trout (Salmo trutta fario) is not limited by firing rate of pacemaker cells.

    PubMed

    Haverinen, Jaakko; Abramochkin, Denis V; Kamkin, Andre; Vornanen, Matti

    2017-02-01

    Temperature-induced changes in cardiac output (Q̇) in fish are largely dependent on thermal modulation of heart rate (f H ), and at high temperatures Q̇ collapses due to heat-dependent depression of f H This study tests the hypothesis that firing rate of sinoatrial pacemaker cells sets the upper thermal limit of f H in vivo. To this end, temperature dependence of action potential (AP) frequency of enzymatically isolated pacemaker cells (pacemaker rate, f PM ), spontaneous beating rate of isolated sinoatrial preparations (f SA ), and in vivo f H of the cold-acclimated (4°C) brown trout (Salmo trutta fario) were compared under acute thermal challenges. With rising temperature, f PM steadily increased because of the acceleration of diastolic depolarization and shortening of AP duration up to the break point temperature (T BP ) of 24.0 ± 0.37°C, at which point the electrical activity abruptly ceased. The maximum f PM at T BP was much higher [193 ± 21.0 beats per minute (bpm)] than the peak f SA (94.3 ± 6.0 bpm at 24.1°C) or peak f H (76.7 ± 2.4 at 15.7 ± 0.82°C) (P < 0.05). These findings strongly suggest that the frequency generator of the sinoatrial pacemaker cells does not limit f H at high temperatures in the brown trout in vivo. Copyright © 2017 the American Physiological Society.

  9. Long term trends of fish after liming of Swedish streams and lakes

    NASA Astrophysics Data System (ADS)

    Holmgren, Kerstin; Degerman, Erik; Petersson, Erik; Bergquist, Björn

    2016-12-01

    Thousands of Swedish acidified lakes and streams have been regularly limed for about 30 years. Standard sampling of fish assemblages in lakes and streams was an important part of monitoring the trends after liming, i.e. sampling with multi-mesh gillnets in lakes (EN 14757) and electrofishing in streams (EN 14011). Monitoring data are nationally managed, in the National Register of Survey test-fishing and the Swedish Electrofishing Register. We evaluated long-term data from 1029 electrofishing sites in limed streams and gillnet sampling in 750 limed lakes, along with reference data from 195 stream sites and 101 lakes with no upstream liming in their catchments. The median year of first liming was 1986 for both streams and lakes. The proportion of limed stream sites with no fish clearly decreased with time, mean species richness and proportion of sites with brown trout (Salmo trutta) recruits increased. There were no consistent trends in fish occurrence or species richness at non-limed sites, but occurrence of brown trout recruits also increased in acid as well as neutral reference streams. Abundance of brown trout, perch (Perca fluviatilis) and roach (Rutilus rutilus) increased significantly more at limed sites than at non-limed reference sites sampled before and after 1986. The mean species richness did not change consistently in limed lakes, but decreased in low alkalinity reference lakes, and fish abundance decreased significantly in limed as well as in non-limed lakes.

  10. Comparative study of CXC chemokines modulation in brown trout (Salmo trutta) following infection with a bacterial or viral pathogen.

    PubMed

    Gorgoglione, Bartolomeo; Zahran, Eman; Taylor, Nick G H; Feist, Stephen W; Zou, Jun; Secombes, Christopher J

    2016-03-01

    Chemokine modulation in response to pathogens still needs to be fully characterised in fish, in view of the recently described novel chemokines present. This paper reports the first comparative study of CXC chemokine genes transcription in salmonids (brown trout), with a particular focus on the fish specific CXC chemokines (CXCL_F). Adopting new primer sets, optimised to specifically target mRNA, a RT-qPCR gene screening was carried out. Constitutive gene expression was assessed first in six tissues from SPF brown trout. Transcription modulation was next investigated in kidney and spleen during septicaemic infection induced by a RNA virus (Viral Haemorrhagic Septicaemia virus, genotype Ia) or by a Gram negative bacterium (Yersinia ruckeri, ser. O1/biot. 2). From each target organ specific pathogen burden, measured detecting VHSV-glycoprotein or Y. ruckeri 16S rRNA, and IFN-γ gene expression were analysed for their correlation to chemokine transcription. Both pathogens modulated CXC chemokine gene transcript levels, with marked up-regulation seen in some cases, and with both temporal and tissue specific effects apparent. For example, Y. ruckeri strongly induced chemokine transcription in spleen within 24h, whilst VHS generally induced the largest increases at 3d.p.i. in both tissues. This study gives clues to the role of the novel CXC chemokines, in comparison to the other known CXC chemokines in salmonids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Comparative susceptibilities and immune reactions of wild and cultured populations of Caspian trout Salmo trutta caspius to VHSV.

    PubMed

    Karami, Asma Mohammad; Bani, Ali; Pourkazemi, Mohammad; Ghasemi, Mohades; Kania, Per Walter; Buchmann, Kurt

    2018-06-04

    Caspian trout Salmo trutta caspius is an endangered subspecies of brown trout Salmo trutta which is native to the Caspian Sea. Restocking programmes have been established, but recent introduction of the rhabdovirus viral haemorrhagic septicaemia virus (VHSV) into Iranian rainbow trout farms connected to waterbodies supporting wild Caspian trout may represent an additional threat to the declining stock. The susceptibility of wild and cultured populations of this endemic subspecies was demonstrated by performing controlled VHSV infection experiments (both by bath and injection challenges). Subsequently, VHSV infection in exposed fish was confirmed (CPE and quantitative PCR), virus levels were measured, and regulation of immune genes in exposed fish was investigated with a focus on the genes encoding IL-8, IFNγ, TGFβ, TNFα, SAA, C3-4, CD8α, IgM, MHC I, MHC II, iNOS and IGF-1. The presence of IgM-, CD8α- and MHC II-positive cells in host organs was visualized by immunohistochemistry. Both wild and cultured trout strains proved to be VHSV-susceptible following experimental challenge, but the mortality curves and associated regulation of immune-related genes differed between the 2 trout types. Implications of the results for future management of Caspian trout populations are discussed.

  12. Exploring crowded trophic niche space in a novel reservoir fish assemblage: how many predators is too many?

    USGS Publications Warehouse

    Winters, Lisa K.; Budy, Phaedra

    2015-01-01

    In highly managed reservoir systems, species interactions within novel fish assemblages can be difficult to predict. In high-elevation Scofield Reservoir in Utah the unintentional introduction of Utah Chub Gila atraria and subsequent population expansion prompted a shift from stocking exclusively Rainbow Trout Oncorhynchus mykiss to include tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) and Bonneville Cutthroat Trout O. clarkii utah, which composed a novel suite of top predators and potential competitors. We examined the interspecific interactions among Scofield Reservoir piscivores using a multifaceted approach including gut analyses, stable isotopes, and gape limitation. Large Cutthroat Trout consumed 50–100% Utah Chub and tiger trout consumed 45–80%. In contrast, small and large Rainbow Trout consumed primarily invertebrate prey and exhibited significant overlap with small tiger trout, Cutthroat Trout, and Utah Chub. Large Cutthroat Trout and tiger trout occupy a top piscivore trophic niche and are more littoral, while Rainbow Trout occupy an omnivore niche space and are more pelagic. Both Cutthroat and tiger trout varied in niche space with respect to size-class, demonstrating an ontogenetic shift to piscivory at approximately 350 mm TL. Cutthroat Trout and tiger trout are capable of consuming prey up to 50% of their own size, which is larger than predicted based on their theoretical gape limit. Because it appears food resources (Utah Chub) are not limited, and performance metrics are high, competition is unlikely between Cutthroat Trout and tiger trout. In contrast, apparent survival of Rainbow Trout has recently declined significantly, potentially due to shared food resources with Utah Chub or negative behavioral interactions with other members of the community. Collectively, this research aids in understanding biotic interactions within a top-heavy and novel fish community and assists towards developing and implementing suitable management strategies to control nuisance species.

  13. Differential Accumulation of Mercury and Selenium in Brown Trout Tissues of a High-Gradient Urbanized Stream in Colorado, USA.

    PubMed

    Herrmann, S J; Nimmo, D R; Carsella, J S; Herrmann-Hoesing, L M; Turner, J A; Gregorich, J M; Heuvel, B D Vanden; Nehring, R B; Foutz, H P

    2016-02-01

    Total mercury (THg) and selenium (Se) were analyzed by Inductively Coupled Plasma Mass Spectrometry in 11 internal and external tissues and stomach contents from 23 brown trout, Salmo trutta, of a 22.9-km reach of a high-gradient stream (upper Fountain Creek) in Colorado, USA, impacted by coal-fired power plants, shale deposits, and urbanization. Trout and water were sampled from four sites ranging from 2335 to 1818 m elevation. Lengths, weights, and ages of fish between pairs of the four sites were not significantly different. The dry weight (dw) to wet weight (ww) conversion factor for each tissue was calculated with egg-ovary highest at 0.379 and epaxial muscle fourth highest at 0.223. THg and Se in stomach contents indicated diet and not ambient water was the major source of Hg and Se bioaccumulated. Mean THg ww in kidney was 40.33 µg/kg, and epaxial muscle second highest at 36.76 µg/kg. None of the tissues exceeded the human critical threshold for Hg. However, all 23 trout had at least one tissue type that exceeded 0.02 mg/kg THg ww for birds, and four trout tissues exceeded 0.1 mg/kg THg ww for mammals, indicating that piscivorous mammals and birds should be monitored. Se concentrations in tissues varied depending on ww or dw listing. Mean Se dw in liver was higher than ovary at the uppermost site and the two lower sites. Liver tissue, in addition to egg-ovary, should be utilized as an indicator tissue for Se toxicity.

  14. Shifts in the suitable habitat available for brown trout (Salmo trutta L.) under short-term climate change scenarios.

    PubMed

    Muñoz-Mas, R; Lopez-Nicolas, A; Martínez-Capel, F; Pulido-Velazquez, M

    2016-02-15

    The impact of climate change on the habitat suitability for large brown trout (Salmo trutta L.) was studied in a segment of the Cabriel River (Iberian Peninsula). The future flow and water temperature patterns were simulated at a daily time step with M5 models' trees (NSE of 0.78 and 0.97 respectively) for two short-term scenarios (2011-2040) under the representative concentration pathways (RCP 4.5 and 8.5). An ensemble of five strongly regularized machine learning techniques (generalized additive models, multilayer perceptron ensembles, random forests, support vector machines and fuzzy rule base systems) was used to model the microhabitat suitability (depth, velocity and substrate) during summertime and to evaluate several flows simulated with River2D©. The simulated flow rate and water temperature were combined with the microhabitat assessment to infer bivariate habitat duration curves (BHDCs) under historical conditions and climate change scenarios using either the weighted usable area (WUA) or the Boolean-based suitable area (SA). The forecasts for both scenarios jointly predicted a significant reduction in the flow rate and an increase in water temperature (mean rate of change of ca. -25% and +4% respectively). The five techniques converged on the modelled suitability and habitat preferences; large brown trout selected relatively high flow velocity, large depth and coarse substrate. However, the model developed with support vector machines presented a significantly trimmed output range (max.: 0.38), and thus its predictions were banned from the WUA-based analyses. The BHDCs based on the WUA and the SA broadly matched, indicating an increase in the number of days with less suitable habitat available (WUA and SA) and/or with higher water temperature (trout will endure impoverished environmental conditions ca. 82% of the days). Finally, our results suggested the potential extirpation of the species from the study site during short time spans. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The complete mitogenome of brown trout (Salmo trutta fario) and its phylogeny.

    PubMed

    Sahoo, Prabhati K; Singh, Lalit; Sharma, Lata; Kumar, Rohit; Singh, Vijay K; Ali, S; Singh, Atul K; Barat, Ashoktaru

    2016-11-01

    The complete mitochondrial genome of Salmo trutta fario, commonly known as brown trout, was sequenced using NGS technology. The mitochondrial genome size was determined to be 16 677 bp and composed of 13 protein-coding gene (PCG), 22 tRNAs, 2 rRNA genes, and 1 putative control region. The overall mitogenome composition of S. trutta fario is A: 28.13%, G: 16.44%, C: 29.47%, and T: 25.96% with A + T content of 54.09% and G + C content of 45.91%. The gene arrangement and the order are similar to other vertebrates. The phylogenetic tree constructed using 42 complete mitogenomes of Salmonidae fishes confirmed the position of the present species under the genus Salmo of subfamily Salmoninae. NGS platform was proved to be a rapid and time-saving technology to reveal complete mitogenomes.

  16. De novo assembly of the sea trout (Salmo trutta m. trutta) skin transcriptome to identify putative genes involved in the immune response and epidermal mucus secretion

    PubMed Central

    Wenne, Roman; Burzynski, Artur

    2017-01-01

    In fish, the skin is a multifunctional organ and the first barrier against pathogens. Salmonids differ in their susceptibility to microorganisms due to varied skin morphology and gene expression patterns. The brown trout is a salmonid species with important commercial and ecological value in Europe. However, there is a lack of knowledge regarding the genes involved in the immune response and mucus secretion in the skin of this fish. Thus, we characterized the skin transcriptome of anadromous brown trout using next-generation sequencing (NGS). A total of 1,348,306 filtered reads were obtained and assembled into 75,970 contigs. Of these contigs 48.57% were identified using BLAST tool searches against four public databases. KEGG pathway and Gene Ontology analyses revealed that 13.40% and 34.57% of the annotated transcripts, respectively, represent a variety of biological processes and functions. Among the identified KEGG Orthology categories, the best represented were signal transduction (23.28%) and immune system (8.82%), with a variety of genes involved in immune pathways, implying the differentiation of immune responses in the trout skin. We also identified and transcriptionally characterized 8 types of mucin proteins–the main structural components of the mucosal layer. Moreover, 140 genes involved in mucin synthesis were identified, and 1,119 potential simple sequence repeats (SSRs) were detected in 3,134 transcripts. PMID:28212382

  17. Effective freezing rate for semen cryopreservation in endangered Mediterranean brown trout (Salmo trutta macrostigma) inhabiting the Biferno river (South Italy).

    PubMed

    Iaffaldano, Nicolaia; Di Iorio, Michele; Manchisi, Angelo; Esposito, Stefano; Gibertoni, Pier Paolo

    2016-10-01

    This study was designed to determine: (i) the in vitro effects of different freezing rates on post-thaw semen quality of Mediterranean brown trout (Salmo trutta macrostigma) from the Biferno river; and (ii) the in vivo fertilization and hatching percentage of freezing rate giving rise to the best post-thaw semen quality. Pooled semen samples were diluted 1:3 (v:v) in a freezing extender composed of 300 mM glucose, 10% egg yolk and 10% dimethyl sulfoxide (DMSO). The extended semen was packaged in 0.25 ml plastic straws and frozen at different heights above the liquid nitrogen surface (1, 5 or 10 cm) for 10 min to give three different freezing rates. Semen samples were thawed at 30°C for 10 s. The variables assessed after thawing were sperm motility, duration of motility and viability. Our results clearly indicate a significant effect of freezing rate on post-thaw semen quality. Semen frozen 5 cm above the liquid nitrogen surface showed the best quality after freezing/thawing. Based on these in vitro data, 2 groups of 200 eggs were fertilized with fresh semen or semen frozen 5 cm above the liquid nitrogen surface. Fertilization and hatching rates recorded for eggs fertilized with frozen semen were significantly lower (25.4% and 22.5%, respectively) than the ones obtained using fresh semen (87.8% and 75.5%, respectively). An effective freezing protocol will allow for the creation of a sperm cryobank to recover the original population of Mediterranean brown trout in the Biferno river.

  18. Impact of wastewater on fish health: a case study at the Neckar River (Southern Germany) using biomarkers in caged brown trout as assessment tools.

    PubMed

    Vincze, Krisztina; Scheil, Volker; Kuch, Bertram; Köhler, Heinz R; Triebskorn, Rita

    2015-08-01

    The present work describes a field survey aiming at assessing the impact of a sewage treatment plant (STP) effluent on fish health by means of biomarkers. Indigenous fish were absent downstream of the STP. To elucidate the reason behind this, brown trout (Salmo trutta f. fario) were exposed in floating steel cages up- and downstream of a STP located at the Neckar River near Tübingen (Southern Germany), for 10 and 30 days. A combination of biomarker methods (histopathological investigations, analysis of the stress protein Hsp70, micronucleus test, B-esterase assays) offered the possibility to investigate endocrine, geno-, proteo- and neurotoxic effects in fish organs. Biological results were complemented with chemical analyses on 20 accumulative substances in fish tissue. Even after short-term exposure, biomarkers revealed clear evidence of water contamination at both Neckar River sites; however, physiological responses of caged brown trout were more severe downstream of the STP. According to this, similar bioaccumulation levels (low μg/kg range) of DDE and 12 polycyclic aromatic hydrocarbons (PAHs) were detected at both sampling sites, while up to fourfold higher concentrations of four PAHs, methyl-triclosan and two synthetic musks occurred in the tissues of downstream-exposed fish. The results obtained in this study suggest a constitutive background pollution at both sites investigated at the Neckar River and provided evidence for the additional negative impact of the STP Tübingen on water quality and the health condition of fish.

  19. Stressful environments induce novel phenotypic variation: hierarchical reaction norms for sperm performance of a pervasive invader

    PubMed Central

    Purchase, Craig F; Moreau, Darek T R

    2012-01-01

    Genetic variation for phenotypic plasticity is ubiquitous and important. However, the scale of such variation including the relative variability present in reaction norms among different hierarchies of biological organization (e.g., individuals, populations, and closely related species) is unknown. Complicating interpretation is a trade-off in environmental scale. As plasticity can only be inferred over the range of environments tested, experiments focusing on fine tuned responses to normal or benign conditions may miss cryptic phenotypic variation expressed under novel or stressful environments. Here, we sought to discern the presence and shape of plasticity in the performance of brown trout sperm as a function of optimal to extremely stressful river pH, and demarcate if the reaction norm varies among genotypes. Our overarching goal was to determine if deteriorating environmental quality increases expressed variation among individuals. A more applied aim was to ascertain whether maintaining sperm performance over a wide pH range could help explain how brown trout are able to invade diverse river systems when transplanted outside of their native range. Individuals differed in their reaction norms of phenotypic expression of an important trait in response to environmental change. Cryptic variation was revealed under stressful conditions, evidenced through increasing among-individual variability. Importantly, data on population averages masked this variability in plasticity. In addition, canalized reaction norms in sperm swimming velocities of many individuals over a very large range in water chemistry may help explain why brown trout are able to colonize a wide variety of habitats. PMID:23145341

  20. INTRACELLULAR ION CONCENTRATIONS IN BRANCHIAL EPITHELIAL CELLS OF BROWN TROUT (SALMO TRUTTA L.) DETERMINED BY X-RAY MICROANALYSIS

    PubMed

    Morgan; Potts; Oates

    1994-09-01

    The intracellular concentrations of sodium, chloride, phosphorus and potassium under normal conditions in pavement epithelial (PE) cells of brown trout (Salmo trutta) gill were 66, 51, 87 and 88 mmol l-1 respectively. The concentrations of these elements under identical conditions in mitochondria-rich (MR) cells were not significantly different, except for that of chlorine, which was lower in MR cells (40 mmol l-1). The concentration of sodium in the PE cells decreased slightly after exposure of the fish to low external [Na+] (25 µmol l-1) for 7 days but increased greatly within 5 min of subsequent exposure to 1 mmol l-1 external Na+. These changes in external [Na+] had no significant effect on MR cells. Exposure of fish to low [Cl-] (25 µmol l-1) had no effect on PE or MR cells, but on exposure to 1 mmol l-1 Cl- the concentrations of chlorine, phosphorus and potassium in both types of cells increased, whilst the intracellular sodium concentration decreased only in MR cells. The PE cells were little affected by exposure of the fish to the carbonic anhydrase inhibitor acetazolamide. In contrast, 0.5 mmol l-1 external acetazolamide caused a significant decrease in intracellular phosphorus, chlorine and potassium concentrations in MR cells. This suggests that the PE cells are the sites of sodium uptake in the gills of the brown trout and that chloride uptake occurs via the MR cells. These results are discussed with respect to the sites and possible mechanisms of ionic exchange in freshwater vertebrates.

  1. Earning their stripes: The potential of tiger trout and other salmonids as biological controls of forage fishes in a western reservoir

    USGS Publications Warehouse

    Winters, Lisa K.; Budy, Phaedra; Thiede, Gary P.

    2017-01-01

    Maintaining a balance between predator and prey populations can be an ongoing challenge for fisheries managers, especially in managing artificial ecosystems such as reservoirs. In a high-elevation Utah reservoir, the unintentional introduction of the Utah Chub Gila atraria and its subsequent population expansion prompted managers to experimentally shift from exclusively stocking Rainbow Trout Oncorhynchus mykiss to also stocking tiger trout (female Brown Trout Salmo trutta × male Brook Trout Salvelinus fontinalis) and Bonneville Cutthroat Trout O. clarkii utah (hereafter, Cutthroat Trout) as potential biological control agents. We measured a combination of diet, growth, temperature, and abundance and used bioenergetic simulations to quantify predator demand versus prey supply. Utah Chub were the predominant prey type for tiger trout, contributing up to 80% of the diet depending on the season. Utah Chub represented up to 70% of the total diet consumed by Cutthroat Trout. Although Utah Chub dominated the fish biomass in the reservoir, we still estimated abundances of 238,000 tiger trout, 214,000 Cutthroat Trout, and 55,000 Rainbow Trout. Consequently, when expanded to the population level of each predator, tiger trout and Cutthroat Trout consumed large quantities of Utah Chub on an annual basis: tiger trout consumed 508,000 kg (2,660 g/predator) of the standing prey population, and Cutthroat Trout consumed an estimated 322,000 kg (1,820 g/predator). The estimated combined consumption by Cutthroat Trout and tiger trout exceeded the estimate of Utah Chub annual production. As such, our results suggest that the high rates of piscivory exhibited by Cutthroat Trout and tiger trout in artificial lentic ecosystems are likely sufficient to effectively reduce the overall abundance of forage fishes and to prevent forage fishes from dominating fish assemblages. Collectively, this research provides the first documented findings on tiger trout ecology and performance, which will aid managers in designing and implementing the best stocking strategy to optimize sport fish performance, control undesirable forage fish, and enhance and maintain angler satisfaction.

  2. Heating up relations between cold fish: competition modifies responses to climate change.

    PubMed

    Urban, Mark C; Holt, Robert D; Gilman, Sarah E; Tewksbury, Joshua

    2011-05-01

    Most predictions about species responses to climate change ignore species interactions. Helland and colleagues (2011) test whether this assumption is valid by evaluating whether ice cover affects competition between brown trout [Salmo trutta (L.)] and Arctic charr [Salvelinus alpines (L.)]. They show that increasing ice cover correlates with lower trout biomass when Arctic charr co-occur, but not in charr's absence. In experiments, charr grew better in the cold, dark environments that typify ice-covered lakes. Decreasing ice cover with warmer winters could mean more trout and fewer charr. More generally, their results provide an excellent example, suggesting that species interactions can strongly modify responses to climate change. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  3. 50 CFR Table 2b to Part 679 - Species Codes: FMP Prohibited Species and CR Crab

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ✓ Dungeness Cancer magister 910 ✓ King, blue Paralithodes platypus 922 ✓ ✓ King, golden (brown) Lithodes... (humpback) Oncorhynchus gorbuscha 440 ✓ Sockeye (red) Oncorhynchus nerka 420 ✓ STEELHEAD TROUT Oncorhynchus...

  4. Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River

    PubMed Central

    Horreo, Jose L.; Abad, David; Dopico, Eduardo; Oberlin, Maud; Garcia-Vazquez, Eva

    2015-01-01

    The biological and anthropogenic (management) factors that may contribute to the expansion of non-native lineages in managed fish have been studied in this work taking brown trout (Salmo trutta) as a model species. The changes of users’ opinion about stocking was studied employing social science methodology (surveys). The evolution of hatchery stocks together with the outcome of stocking were analysed with two genetic tools: the LDH-C1* locus (marker of non-native stocks) and six microsatellite loci (for assignment of wild trout to the natural population or putative hatchery stocks). Consulted stakeholders were convinced of the correctness of releasing only native stocks, although in practice the hatcheries managed by them contained important proportions of non-native gene carriers. Our results suggest that allochthonous individuals perform better and grow faster in hatchery conditions than the native ones. We also find a dilution of the impact of this kind of suplementation in wild conditions. The use of only native individuals as hatchery breeders tested for the presence of non-native alleles previously to the artificial crosses must be a priority. Surveys can help steer policy making toward decisions that will be followed by the public, but they should not be used to justify science. PMID:26184162

  5. Expansion of Non-Native Brown Trout in South Europe May Be Inadvertently Driven by Stocking: Molecular and Social Survey in the North Iberian Narcea River.

    PubMed

    Horreo, Jose L; Abad, David; Dopico, Eduardo; Oberlin, Maud; Garcia-Vazquez, Eva

    2015-07-09

    The biological and anthropogenic (management) factors that may contribute to the expansion of non-native lineages in managed fish have been studied in this work taking brown trout (Salmo trutta) as a model species. The changes of users' opinion about stocking was studied employing social science methodology (surveys). The evolution of hatchery stocks together with the outcome of stocking were analysed with two genetic tools: the LDH-C1* locus (marker of non-native stocks) and six microsatellite loci (for assignment of wild trout to the natural population or putative hatchery stocks). Consulted stakeholders were convinced of the correctness of releasing only native stocks, although in practice the hatcheries managed by them contained important proportions of non-native gene carriers. Our results suggest that allochthonous individuals perform better and grow faster in hatchery conditions than the native ones. We also find a dilution of the impact of this kind of suplementation in wild conditions. The use of only native individuals as hatchery breeders tested for the presence of non-native alleles previously to the artificial crosses must be a priority. Surveys can help steer policy making toward decisions that will be followed by the public, but they should not be used to justify science.

  6. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

    PubMed

    Pérez, Tania; Balcázar, José Luis; Peix, Alvaro; Valverde, Angel; Velázquez, Encarna; de Blas, Ignacio; Ruiz-Zarzuela, Imanol

    2011-08-01

    The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) ( = LMG 24662(T)  = DSM 21502(T)).

  7. Estimation of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown treat (Salmo trutta)

    USGS Publications Warehouse

    Meadows, J.C.; Echols, K.R.; Huckins, J.N.; Borsuk, F.A.; Carline, R.F.; Tillitt, D.E.

    1998-01-01

    The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMD to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB- contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/ g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMDs was also similar. The rates of uptake generally increased or decreased with increasing K(ow), depending on the assumption of presence or absence of TOC.The triolein-filled semipermeable membrane device (SPMD) is a simple and effective method of assessing the presence of waterborne hydrophobic chemicals. Uptake rate constants for individual chemicals are needed to accurately relate the amounts of chemicals accumulated by the SPMB to dissolved water concentrations. Brown trout and SPMDs were exposed to PCB-contaminated groundwater in a spring for 28 days to calculate and compare uptake rates of specific PCB congeners by the two matrixes. Total PCB congener concentrations in water samples from the spring were assessed and corrected for estimated total organic carbon (TOC) sorption to estimate total dissolved concentrations. Whole and dissolved concentrations averaged 4.9 and 3.7 ??g/L, respectively, during the exposure. Total concentrations of PCBs in fish rose from 0.06 to 118.3 ??g/g during the 28-day exposure, while concentrations in the SPMD rose from 0.03 to 203.4 ??g/g. Uptake rate constants (k1) estimated for SPMDs and brown trout were very similar, with k1 values for SPMDs ranging from one to two times those of the fish. The pattern of congener uptake by the fish and SPMBs was also similar. The rates of uptake generally increased or decreased with increasing KOW, depending on the assumption of presence or absence of TOC.

  8. Acute heat tolerance of cardiac excitation in the brown trout (Salmo trutta fario).

    PubMed

    Vornanen, Matti; Haverinen, Jaakko; Egginton, Stuart

    2014-01-15

    The upper thermal tolerance and mechanisms of heat-induced cardiac failure in the brown trout (Salmo trutta fario) was examined. The point above which ion channel function and sinoatrial contractility in vitro, and electrocardiogram (ECG) in vivo, started to fail (break point temperature, BPT) was determined by acute temperature increases. In general, electrical excitation of the heart was most sensitive to heat in the intact animal (electrocardiogram, ECG) and least sensitive in isolated cardiac myocytes (ion currents). BPTs of Ca(2+) and K(+) currents of cardiac myocytes were much higher (>28°C) than BPT of in vivo heart rate (23.5 ± 0.6°C) (P<0.05). A striking exception among sarcolemmal ion conductances was the Na(+) current (INa), which was the most heat-sensitive molecular function, with a BPT of 20.9 ± 0.5°C. The low heat tolerance of INa was reflected as a low BPT for the rate of action potential upstroke in vitro (21.7 ± 1.2°C) and the velocity of impulse transmission in vivo (21.9 ± 2.2°C). These findings from different levels of biological organization strongly suggest that heat-dependent deterioration of Na(+) channel function disturbs normal spread of electrical excitation over the heart, leading to progressive variability of cardiac rhythmicity (missed beats, bursts of fast beating), reduction of heart rate and finally cessation of the normal heartbeat. Among the cardiac ion currents INa is 'the weakest link' and possibly a limiting factor for upper thermal tolerance of electrical excitation in the brown trout heart. Heat sensitivity of INa may result from functional requirements for very high flux rates and fast gating kinetics of the Na(+) channels, i.e. a trade-off between high catalytic activity and thermal stability.

  9. Development of a pH/alkalinity treatment model for applications of the lampricide TFM to streams tributary to the Great Lakes

    USGS Publications Warehouse

    Bills, Terry D.; Boogaard, Michael A.; Johnson, David A.; Brege, Dorance C.; Scholefield, Ronald J.; Westman, R. Wayne; Stephens, Brian E.

    2003-01-01

    It has long been known that the toxicity of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) is influenced by chemical and physical properties of water. As the pH, conductivity, and alkalinity of water increase, greater concentrations of TFM are required to kill sea lamprey (Petromyzon marinus) larvae. Consequently, the concentration of TFM required for effective treatment varies among streams. Brown trout (Salmo trutta) and sea lamprey larvae were exposed to a series of TFM concentrations in a continuous-flow diluter for 12 h. Twenty five exposures were conducted at various water alkalinities and pHs that treatment personnel encounter during lampricide treatments. Survival/mortality data were analyzed for lampricide concentrations that produced 50 and 99.9% mortality (LC50 and LC99.9) for sea lamprey larvae and 25 and 50% mortality (LC25 and LC50) for brown trout. Linear regression analyses were performed for each set of tests for each selected alkalinity by comparing the 12-h post exposure LC99.9 sea lamprey data and LC25 brown trout data at each pH. Mortality data from on-site toxicity tests conducted by lampricide control personnel were compared to predicted values from the pH/alkalinity prediction model. Of the 31 tests examined, 27 resulted in the LC100s (lowest TFM concentration where 100% mortality of sea lamprey was observed after 12 h of exposure) falling within 0.2 mg/L of the predicted sea lamprey minimum lethal (LC99.9) range. The pH/alkalinity prediction model provides managers with an operational tool that reduces the amount of TFM required for effective treatment while minimizing the impact on non-target organisms.

  10. Effects of nonylphenol on key hormonal balances and histopathology of the endangered Caspian brown trout (Salmo trutta caspius).

    PubMed

    Shirdel, Iman; Kalbassi, Mohammad Reza

    2016-01-01

    Endocrine disruptor chemicals (EDCs) potentially pose a hazard to endangered species. Evaluation of the sensitivity of these species to EDCs could be helpful for protecting their populations. So, the present study investigated the adverse effects of nonylphenol, an EDC, on the endocrine hormones and histopathology of male and female juvenile Caspian brown trout (Salmo trutta caspius) following 21 days of exposure to nominal concentrations of 1, 10 and 100 μg/l. The results showed that the HSI and plasma total calcium of male and female fishes exposed to 100 μg/l nonylphenol were significantly increased compared with the control groups (P<0.001). The male plasma T3 level was significantly decreased in 10 (P<0.01) and 100 (P<0.001) μg/l nonylphenol. The female T3 level increased in 1 μg/l nonylphenol concentration (P<0.05). The plasma T4 of males showed significant elevation in fishes exposed to 100 μg/l nonylphenol (P<0.05), but no change for females in any of treatment groups relative to controls (P>0.05). No significant effect of nonylphenol exposure was observed on male plasma TSH levels (P>0.05), whereas, in females, nonylphenol at all concentrations significantly reduced TSH levels. A bell-shaped response was observed in male and female plasma GH levels. Moreover, various histopathological lesions were observed in gill and intestine tissues of fishes exposed to different nonylphenol concentrations. These results demonstrate the high sensitivity of this endangered species to even environmentally relevant concentrations of nonylphenol. Furthermore, Caspian brown trout could be used as bioindicators reflecting the toxicity of nonylphenol. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Statistical properties of relative weight distributions of four salmonid species and their sampling implications

    USGS Publications Warehouse

    Hyatt, M.W.; Hubert, W.A.

    2001-01-01

    We assessed relative weight (Wr) distributions among 291 samples of stock-to-quality-length brook trout Salvelinus fontinalis, brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, and cutthroat trout O. clarki from lentic and lotic habitats. Statistics describing Wr sample distributions varied slightly among species and habitat types. The average sample was leptokurtotic and slightly skewed to the right with a standard deviation of about 10, but the shapes of Wr distributions varied widely among samples. Twenty-two percent of the samples had nonnormal distributions, suggesting the need to evaluate sample distributions before applying statistical tests to determine whether assumptions are met. In general, our findings indicate that samples of about 100 stock-to-quality-length fish are needed to obtain confidence interval widths of four Wr units around the mean. Power analysis revealed that samples of about 50 stock-to-quality-length fish are needed to detect a 2% change in mean Wr at a relatively high level of power (beta = 0.01, alpha = 0.05).

  12. An experiment to control nonnative fish in the Colorado River, Grand Canyon, Arizona

    USGS Publications Warehouse

    Coggins,, Lewis G.; Yard, Michael D.

    2011-01-01

    The humpback chub (Gila cypha) is an endangered native fish found only in the Colorado River Basin. In Grand Canyon, most humpback chub are found in the Little Colorado River and its confluence with the Colorado River. For decades, however, nonnative rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta), which prey on and compete with native fish, have dominated the Grand Canyon fish community. Between 2003 and 2006, scientists with the U.S. Geological Survey and Arizona Game and Fish Department experimentally removed 23,266 nonnative fish from a 9.4-mile-long reach of the Colorado River near where it joins the Little Colorado River. During the experiment, rainbow trout were reduced by as much as 90% and native fish abundance apparently increased in the reach. Concurrent environmental changes and a decrease in rainbow trout throughout the river make it difficult to determine if the apparent increase in native fish was the result of the experiment.

  13. Spring-summer diet of lake trout on Six Fathom Bank and Yankee Reef in Lake Huron

    USGS Publications Warehouse

    Madenjian, C.P.; Holuszko, J.D.; Desorcie, T.J.

    2006-01-01

    We examined the stomach contents of 1,045 lake trout (Salvelinus namaycush) caught on Six Fathom Bank and Yankee Reef, two offshore reef complexes in Lake Huron, during late spring and early summer 1998-2003. Lake trout ranged in total length from 213 to 858 mm, and in age from 2 to 14 years. In total, 742 stomachs contained food. On a wet-weight basis, alewife (Alosa pseudoharengus) dominated the spring-summer diet of lake trout on both of these offshore reef complexes. Alewives accounted for 75 to 90% of lake trout diet, depending on the lake trout size category. Size of alewives found in lake trout stomachs increased with increasing lake trout size. Faster growth of juvenile lake trout on Six Fathom Bank and Yankee Reef than on Sheboygan Reef in Lake Michigan was attributed to greater availability of small alewives on the offshore reefs in Lake Huron. Our findings indicated that alewives inhabited Six Fathom Bank and Yankee Reef during spring and summer months. Thus, our study provided support for the contention that alewives may have interfered with natural reproduction by lake trout on these offshore reef complexes in Lake Huron.

  14. Exposure of ova to cortisol pre-fertilisation affects subsequent behaviour and physiology of brown trout.

    PubMed

    Sloman, Katherine A

    2010-08-01

    Even before fertilisation, exposure of ova to high levels of stress corticosteroids can have significant effects on offspring in a variety of animals. In fish, high levels of cortisol in ovarian fluid can elicit morphological changes and reduce offspring survival. Whether there are other more subtle effects, including behavioural effects, of exposure to cortisol pre-fertilisation in fish is unclear. Here I demonstrate that a brief (3h) exposure of brown trout eggs to a physiologically relevant ( approximately 500 microg l(-)(1)) concentration of cortisol pre-fertilisation resulted in changes to developing offspring. Embryos exposed to cortisol pre-fertilisation displayed elevated oxygen consumption and ammonia excretion rates during development. After hatch, in contrast to the effects of cortisol exposure in juvenile fish, fish exposed to cortisol as eggs were more aggressive than control individuals and responded differently within a maze system. Thus, a transient exposure to corticosteroids in unfertilised eggs results in both physiological and behavioural alterations in fish. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Evidence for an autumn downstream migration of Atlantic salmon Salmo salar (Linnaeus) and brown trout Salmo trutta (Linnaeus) parr to the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Taal, Imre; Kesler, Martin; Saks, Lauri; Rohtla, Mehis; Verliin, Aare; Svirgsden, Roland; Jürgens, Kristiina; Vetemaa, Markus; Saat, Toomas

    2014-06-01

    In the eastern Baltic rivers, anadromous salmonid parr are known to smoltify and migrate to the sea from March until June, depending on latitude, climate and hydrological conditions. In this study, we present the first records of autumn descent of brown trout Salmo trutta and Atlantic salmon Salmo salar from the Baltic Sea Basin. Otolith microchemistry analyses revealed that these individuals hatched in freshwater and had migrated to the brackish water shortly prior to capture. The fish were collected in 2006, 2008, 2009 and 2013 from Eru Bay (surface salinity 4.5-6.5 ‰), Gulf of Finland. This relatively wide temporal range of observations indicates that the autumn descent of anadromous salmonids is not a random event. These results imply that autumn descent needs more consideration in the context of the effective stock management, assessment and restoration of Baltic salmonid populations and their habitats.

  16. Three brown trout Salmo trutta lineages in Corsica described through allozyme variation.

    PubMed

    Berrebi, P

    2015-01-01

    The brown trout Salmo trutta is represented by three lineages in Corsica: (1) an ancestral Corsican lineage, (2) a Mediterranean lineage and (3) a recently stocked domestic Atlantic S. trutta lineage (all are interfertile); the main focus of this study was the ancestral Corsican S. trutta, but the other lineages were also considered. A total of 38 samples captured between 1993 and 1998 were analysed, with nearly 1000 individuals considered overall. The Corsican ancestral lineage (Adriatic lineage according to the mitochondrial DNA control region nomenclature, AD) mostly inhabits streams in the southern half of the island; the Mediterranean lineage (ME) is present more in the north, especially in Golu River, but most populations are an admixture of these lineages and the domestic Atlantic S. trutta (AT). Locations where the Corsican ancestral S. trutta is dominant are now protected against stocking and sometimes fishing is also forbidden. The presence of the Corsican S. trutta is unique in France. © 2014 The Fisheries Society of the British Isles.

  17. Improved husbandry to control an outbreak of rainbow trout fry syndrome caused by infection with Flavobacterium psychrophilum

    USGS Publications Warehouse

    Bebak, J.A.; Welch, T.J.; Starliper, C.E.; Baya, A.M.; Garner, M.M.

    2007-01-01

    Case Description - A cohort of 35,200, 13-week-old, female rainbow trout at a fish farm was evaluated because of a 2-week history of anorexia and lethargy and a mortality rate of approximately 100 fish/d. Clinical Findings - Affected fish were lethargic and thin and had disequilibrium, bilateral exophthalmia, pale red gills and kidneys, red-tinged coelomic fluid, and pale brown livers. Some fish were differentially pigmented bilaterally. The presumptive diagnosis was bacterial or viral septicemia. The definitive diagnosis was rainbow trout fry syndrome caused by infection with Flavobacterium psychrophilum. Treatment and Outcome - A strategy for controlling the outbreak based on reducing pathogen numbers in affected tanks and reducing pathogen spread among tanks was developed. The option of treating with antimicrobial-medicated feed was discussed with the farmer, but was declined. After changes were made, mortality rate declined quickly, with no more deaths within 10 days after the initial farm visit. Clinical Relevance - Bacterial coldwater disease is the most common manifestation of infection with F psychrophilum in fingerling and adult rainbow trout. However, the organism can also cause rainbow trout fry syndrome. This condition should be included on a list of differential diagnoses for septicemia in hatchery-reared rainbow trout fry.

  18. Species interactions and response time to climate change: ice-cover and terrestrial run-off shaping Arctic char and brown trout competitive asymmetries

    NASA Astrophysics Data System (ADS)

    Finstad, A. G.; Palm Helland, I.; Jonsson, B.; Forseth, T.; Foldvik, A.; Hessen, D. O.; Hendrichsen, D. K.; Berg, O. K.; Ulvan, E.; Ugedal, O.

    2011-12-01

    There has been a growing recognition that single species responses to climate change often mainly are driven by interaction with other organisms and single species studies therefore not are sufficient to recognize and project ecological climate change impacts. Here, we study how performance, relative abundance and the distribution of two common Arctic and sub-Arctic freshwater fishes (brown trout and Arctic char) are driven by competitive interactions. The interactions are modified both by direct climatic effects on temperature and ice-cover, and indirectly through climate forcing of terrestrial vegetation pattern and associated carbon and nutrient run-off. We first use laboratory studies to show that Arctic char, which is the world's most northernmost distributed freshwater fish, outperform trout under low light levels and also have comparable higher growth efficiency. Corresponding to this, a combination of time series and time-for-space analyses show that ice-cover duration and carbon and nutrient load mediated by catchment vegetation properties strongly affected the outcome of the competition and likely drive the species distribution pattern through competitive exclusion. In brief, while shorter ice-cover period and decreased carbon load favored brown trout, increased ice-cover period and increased carbon load favored Arctic char. Length of ice-covered period and export of allochthonous material from catchments are major, but contrasting, climatic drivers of competitive interaction between these two freshwater lake top-predators. While projected climate change lead to decreased ice-cover, corresponding increase in forest and shrub cover amplify carbon and nutrient run-off. Although a likely outcome of future Arctic and sub-arctic climate scenarios are retractions of the Arctic char distribution area caused by competitive exclusion, the main drivers will act on different time scales. While ice-cover will change instantaneously with increasing temperature, changes in catchment vegetation, such as forest-line or shrub advancement affecting carbon and nutrient transport into lakes, act on considerably longer time-scales. This study therefore emphasizes the recurring challenge for ecological climate change studies related to species interactions within and across ecosystem compartments and the response time of ecosystems.

  19. Detecting the response of fish assemblages to stream restoration: Effects of different sampling designsf

    USGS Publications Warehouse

    Baldigo, Barry P.; Warren, D.R.

    2008-01-01

    Increased trout production within limited stream reaches is a popular goal for restoration projects, yet investigators seldom monitor, assess, or publish the associated effects on fish assemblages. Fish community data from a total of 40 surveys at restored and reference reaches in three streams of the Catskill Mountains, New York, were analyzed a posteriori to determine how the ability to detect significant changes in biomass of brown trout Salmo trutta, all salmonids, or the entire fish community differs with effect size, number of streams assessed, process used to quantify the index response, and number of replicates collected before and after restoration. Analyses of statistical power (probability of detecting a meaningful difference or effect) and integrated power (average power over all possible ??-values) were combined with before-after, control-impact analyses to assess the effectiveness of alternate sampling and analysis designs. In general, the more robust analyses indicated that biomass of brown trout and salmonid populations increased significantly in restored reaches but that the net increases (relative to the reference reach) were significant only at two of four restored reaches. Restoration alone could not account for the net increases in total biomass of fish communities. Power analyses generally showed that integrated power was greater than 0.95 when (1) biomass increases were larger than 5.0 g/m2, (2) the total number of replicates ranged from 4 to 8, and (3) coefficients of variation (CVs) for responses were less than 40%. Integrated power was often greater than 0.95 for responses as low as 1.0 g/m2 if the response CVs were less than 30%. Considering that brown trout, salmonid, and community biomass increased by 2.99 g/m2 on average (SD= 1.17 g/m2) in the four restored reaches, use of two to three replicates both before and after restoration would have an integrated power of about 0.95 and would help detect significant changes in fish biomass under similar situations. ?? Copyright by the American Fisheries Society 2008.

  20. Landscape prediction and mapping of game fish biomass, an ecosystem service of Michigan rivers

    USGS Publications Warehouse

    Esselman, Peter C.; Stevenson, R Jan; Lupi, Frank; Riseng, Catherine M.; Wiley, Michael J.

    2015-01-01

    The increased integration of ecosystem service concepts into natural resource management places renewed emphasis on prediction and mapping of fish biomass as a major provisioning service of rivers. The goals of this study were to predict and map patterns of fish biomass as a proxy for the availability of catchable fish for anglers in rivers and to identify the strongest landscape constraints on fish productivity. We examined hypotheses about fish responses to total phosphorus (TP), as TP is a growth-limiting nutrient known to cause increases (subsidy response) and/or decreases (stress response) in fish biomass depending on its concentration and the species being considered. Boosted regression trees were used to define nonlinear functions that predicted the standing crops of Brook Trout Salvelinus fontinalis, Brown Trout Salmo trutta, Smallmouth Bass Micropterus dolomieu, panfishes (seven centrarchid species), and Walleye Sander vitreus by using landscape and modeled local-scale predictors. Fitted models were highly significant and explained 22–56% of the variation in validation data sets. Nonlinear and threshold responses were apparent for numerous predictors, including TP concentration, which had significant effects on all except the Walleye fishery. Brook Trout and Smallmouth Bass exhibited both subsidy and stress responses, panfish biomass exhibited a subsidy response only, and Brown Trout exhibited a stress response. Maps of reach-specific standing crop predictions showed patterns of predicted fish biomass that corresponded to spatial patterns in catchment area, water temperature, land cover, and nutrient availability. Maps illustrated predictions of higher trout biomass in coldwater streams draining glacial till in northern Michigan, higher Smallmouth Bass and panfish biomasses in warmwater systems of southern Michigan, and high Walleye biomass in large main-stem rivers throughout the state. Our results allow fisheries managers to examine the biomass potential of streams, describe geographic patterns of fisheries, explore possible nutrient management targets, and identify habitats that are candidates for species management.

  1. Population dynamics of brown trout (Salmo trutta) in Spruce Creek Pennsylvania: A quarter-century perspective

    USGS Publications Warehouse

    Grossman, Gary D.; Carline, Robert F.; Wagner, Tyler

    2017-01-01

    We examined the relationship between density-independent and density-dependent factors on the demography of a dense, relatively unexploited population of brown trout in Spruce Creek Pennsylvania between 1985 and 2011.Individual PCAs of flow and temperature data elucidated groups of years with multiple high flow versus multiple low flow characteristics and high versus low temperature years, although subtler patterns of variation also were observed.Density and biomass displayed similar temporal patterns, ranging from 710 to 1,803 trout/ha and 76–263 kg/ha. We detected a significantly negative linear stock-recruitment relationship (R2 = .39) and there was no evidence that flow or water temperature affected recruitment.Both annual survival and the per-capita rate of increase (r) for the population varied over the study, and density-dependent mechanisms possessed the greatest explanatory power for annual survival data. Temporal trends in population r suggested it displayed a bounded equilibrium with increases observed in 12 years and decreases detected in 13 years.Model selection analysis of per-capita rate of increase data for age 1, and adults (N = eight interpretable models) indicated that both density-dependent (five of eight) and negative density-independent processes (five of eight, i.e. high flows or temperatures), affected r. Recruitment limitation also was identified in three of eight models. Variation in the per-capita rate of increase for the population was most strongly affected by positive density independence in the form of increasing spring–summer temperatures and recruitment limitation.Model selection analyses describing annual variation in both mean length and mass data yielded similar results, although maximum wi values were low ranging from 0.09 to 0.23 (length) and 0.13 to 0.22 (mass). Density-dependence was included in 15 of 15 interpretable models for length and all ten interpretable models for mass. Similarly, positive density-independent effects in the form of increasing autumn–winter flow were present in seven of 15 interpretable models for length and five of ten interpretable models for mass. Negative density independent effects also were observed in the form of high spring–summer flows or temperatures (N = 4), or high autumn–winter temperatures (N = 1).Our analyses of the factors affecting population regulation in an introduced population of brown trout demonstrate that density-dependent forces affected every important demographic characteristic (recruitment, survivorship, the rate of increase, and size) within this population. However, density-independent forces in the form of seasonal variations in flow and temperature also helped explain annual variation in the per-capita rate of increase, and mean length and mass data. Consequently, population regulation within this population is driven by a complex of biotic and environmental factors, although it seems clear that density-dependent factors play a dominant role.

  2. Optimal flow for brown trout: Habitat - prey optimization.

    PubMed

    Fornaroli, Riccardo; Cabrini, Riccardo; Sartori, Laura; Marazzi, Francesca; Canobbio, Sergio; Mezzanotte, Valeria

    2016-10-01

    The correct definition of ecosystem needs is essential in order to guide policy and management strategies to optimize the increasing use of freshwater by human activities. Commonly, the assessment of the optimal or minimum flow rates needed to preserve ecosystem functionality has been done by habitat-based models that define a relationship between in-stream flow and habitat availability for various species of fish. We propose a new approach for the identification of optimal flows using the limiting factor approach and the evaluation of basic ecological relationships, considering the appropriate spatial scale for different organisms. We developed density-environment relationships for three different life stages of brown trout that show the limiting effects of hydromorphological variables at habitat scale. In our analyses, we found that the factors limiting the densities of trout were water velocity, substrate characteristics and refugia availability. For all the life stages, the selected models considered simultaneously two variables and implied that higher velocities provided a less suitable habitat, regardless of other physical characteristics and with different patterns. We used these relationships within habitat based models in order to select a range of flows that preserve most of the physical habitat for all the life stages. We also estimated the effect of varying discharge flows on macroinvertebrate biomass and used the obtained results to identify an optimal flow maximizing habitat and prey availability. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Are hybrids between Atlantic salmon and brown trout suitable long-term hosts of Gyrodactylus salaris during winter?

    PubMed

    Knudsen, R; Henriksen, E H; Gjelland, K Ø; Hansen, H; Hendrichsen, D K; Kristoffersen, R; Olstad, K

    2017-10-01

    The monogenean parasite Gyrodactylus salaris poses serious threats to many Atlantic salmon populations and presents many conservation and management questions/foci and challenges. It is therefore critical to identify potential vectors for infection. To test whether hybrids of native Atlantic salmon (Salmo salar) × brown trout (Salmo trutta) are suitable as reservoir hosts for G. salaris during winter, infected hybrid parr were released into a natural subarctic brook in the autumn. Six months later, 23.9% of the pit-tagged fish were recaptured. During the experimental period, the hybrids had a sixfold increase in mean intensity of G. salaris, while the prevalence decreased from 81% to 35%. There was high interindividual hybrid variability in susceptibility to infections. The maximum infrapopulation growth rate (0.018 day -1 ) of G. salaris throughout the winter was comparable to earlier laboratory experiments at similar temperatures. The results confirm that infrapopulations of G. salaris may reproduce on a hybrid population for several generations at low water temperatures (~1 °C). Wild salmon-trout hybrids are undoubtedly susceptible to G. salaris and represent an important reservoir host for the parasite independent of other co-occurring susceptible hosts. Consequently, these hybrids may pose a serious risk for G. salaris transmission to nearby, uninfected rivers by migratory individuals. © 2017 John Wiley & Sons Ltd.

  4. Distribution of polycyclic aromatic hydrocarbons in the food web of a high mountain lake, Pyrenees, Catalonia, Spain.

    PubMed

    Vives, Ingrid; Grimalt, Joan O; Ventura, Marc; Catalan, Jordi

    2005-06-01

    We investigated the contents of polycyclic aromatic hydrocarbons (PAHs) in the food web organisms included in the diet of brown trout from a remote mountain lake. The preferential habitat and trophic level of the component species have been assessed from the signature of stable isotopes (delta13C and delta15N). Subsequently, the patterns of accumulation and transformation of these hydrocarbons in the food chain have been elucidated. Most of the food web organisms exhibit PAH distributions largely dominated by phenanthrene, which agrees with its predominance in atmospheric deposition, water, and suspended particles. Total PAH levels are higher in the organisms from the littoral habitat than from the deep sediments or the pelagic water column. However, organisms from deep sediments exhibit higher proportions of higher molecular weight PAH than those in other lake areas. Distinct organisms exhibit specific features in their relative PAH composition that point to different capacities for uptake and metabolic degradation. Brown trout show an elevated capacity for metabolic degradation because they have lower PAH concentrations than food and they are enriched strongly in lower molecular weight compounds. The PAH levels in trout highly depend on organisms living in the littoral areas. Fish exposure to PAH, therefore, may vary from lake to lake according to the relative contribution of littoral organisms to their diet.

  5. Morphological, physiological and dietary covariation in migratory and resident adult brown trout (Salmo trutta).

    PubMed

    Peiman, Kathryn S; Birnie-Gauvin, Kim; Larsen, Martin H; Colborne, Scott F; Gilmour, Kathleen M; Aarestrup, Kim; Willmore, William G; Cooke, Steven J

    2017-08-01

    The causes and consequences of trait relationships within and among the categories of physiology, morphology, and life-history remain poorly studied. Few studies cross the boundaries of these categories, and recent reviews have pointed out not only the dearth of evidence for among-category correlations but that trait relationships may change depending on the ecological conditions a population faces. We examined changes in mean values and correlations between traits in a partially migrant population of brown trout when migrant sea-run and resident stream forms were breeding sympatrically. Within each sex and life-history strategy group, we used carbon and nitrogen stable isotopes to assess trophic level and habitat use; assessed morphology which reflects swimming and foraging ability; measured circulating cortisol as it is released in response to stressors and is involved in the transition from salt to freshwater; and determined oxidative status by measuring oxidative stress and antioxidants. We found that sea-run trout were larger and had higher values of stable isotopes, cortisol and oxidative stress compared to residents. Most groups showed some correlations between morphology and diet, indicating individual resource specialization was occurring, and we found consistent correlations between morphology and cortisol. Additionally, relationships differed between the sexes (cortisol and oxidative status were related in females but not males) and between life-history strategies (habitat use was related to oxidative status in male sea-run trout but not in either sex of residents). The differing patterns of covariation between the two life-history strategies and between the sexes suggest that the relationships among phenotypic traits are subjected to different selection pressures, illustrating the importance of integrating multiple phenotypic measures across different trait categories and contrasting life-history strategies. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Instream habitat restoration and stream temperature reduction in a whirling disease-positive Spring Creek in the Blackfoot River Basin, Montana

    USGS Publications Warehouse

    Pierce, Ron; Podner, Craig; Marczak, Laurie B; Jones, Leslie A.

    2014-01-01

    Anthropogenic warming of stream temperature and the presence of exotic diseases such as whirling disease are both contemporary threats to coldwater salmonids across western North America. We examined stream temperature reduction over a 15-year prerestoration and postrestoration period and the severity of Myxobolus cerebralisinfection (agent of whirling disease) over a 7-year prerestoration and postrestoration period in Kleinschmidt Creek, a fully reconstructed spring creek in the Blackfoot River basin of western Montana. Stream restoration increased channel length by 36% and reduced the wetted surface area by 69% by narrowing and renaturalizing the channel. Following channel restoration, average maximum daily summer stream temperatures decreased from 15.7°C to 12.5°C, average daily temperature decreased from 11.2°C to 10.0°C, and the range of daily temperatures narrowed by 3.3°C. Despite large changes in channel morphology and reductions in summer stream temperature, the prevalence and severity of M. cerebralis infection for hatchery Rainbow Trout Oncorhynchus mykiss remained high (98–100% test fish with grade > 3 infection) versus minimal for hatchery Brown Trout Salmo trutta (2% of test fish with grade-1 infection). This study shows channel renaturalization can reduce summer stream temperatures in small low-elevation, groundwater-dominated streams in the Blackfoot basin to levels more suitable to native trout. However, because of continuous high infections associated with groundwater-dominated systems, the restoration of Kleinschmidt Creek favors brown trout Salmo trutta given their innate resistance to the parasite and the higher relative susceptibility of other salmonids.

  7. Phylogeography and taxonomic status of trout and salmon from the Ponto-Caspian drainages, with inferences on European Brown Trout evolution and taxonomy.

    PubMed

    Ninua, Levan; Tarkhnishvili, David; Gvazava, Elguja

    2018-03-01

    Current taxonomy of western Eurasian trout leaves a number of questions open; it is not clear to what extent some species are distinct genetically and morphologically. The purpose of this paper was to explore phylogeography and species boundaries in freshwater and anadromous trout from the drainages of the Black and the Caspian Seas (Ponto-Caspian). We studied morphology and mitochondrial phylogeny, combining samples from the western Caucasus within the potential range of five nominal species of trout that are thought to inhabit this region, and using the sequences available from GenBank. Our results suggest that the genetic diversity of trout in the Ponto-Caspian region is best explained with the fragmentation of catchments. (1) All trout species from Ponto-Caspian belong to the same mitochondrial clade, separated from the other trout since the Pleistocene; (2) the southeastern Black Sea area is the most likely place of diversification of this clade, which is closely related to the clades from Anatolia; (3) The species from the Black Sea and the Caspian Sea drainages are monophyletic; (4) except for the basal lineage of the Ponto-Caspian clade, Salmo rizeensis , all the lineages produce anadromous forms; (5) genetic diversification within the Ponto-Caspian clade is related to Pleistocene glacial waves; (6) the described morphological differences between the species are not fully diagnostic, and some earlier described differences depend on body size; the differences between freshwater and marine forms exceed those between the different lineages. We suggest a conservative taxonomic approach, using the names S. rizeensis and Salmo labrax for trout from the Black Sea basin and Salmo caspius and Salmo ciscaucasicus for the fish from the Caspian basin.

  8. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    PubMed Central

    Wenger, Seth J.; Isaak, Daniel J.; Luce, Charles H.; Neville, Helen M.; Fausch, Kurt D.; Dunham, Jason B.; Dauwalter, Daniel C.; Young, Michael K.; Elsner, Marketa M.; Rieman, Bruce E.; Hamlet, Alan F.; Williams, Jack E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. PMID:21844354

  9. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    USGS Publications Warehouse

    Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; Hamlet, A.F.; Williams, J.E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.

  10. How climate change will affect sessile stages of brown trout (Salmo trutta) in mountain streams of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Santiago, José M.; Alonso, Carlos; García de Jalón, Diego; Solana, Joaquín

    2017-04-01

    Streamflow and temperature regimes are determinant for the availability of suitable physical habitat for instream biological communities. Iberian brown trout (Salmo trutta) populations live in a climatic border in which summer water scarcity and raising temperatures will compromise their viability throughout the current century. Due to their impaired mobility, sessile stages of trout life cycle (i.e. eggs and larvae) are among the most sensitive organisms to environmental changing conditions. At a given spawning redd, thermal habitat is limited by the length of the period at which suitable temperatures occur. At the same time, suitable physical habitat is limited by the instream flow regime during spawning and incubation of eggs and larvae. Temperature and flow do also interact, thus producing synergistic effects on both physical and thermal habitats. This study is aimed at quantitatively predicting thermal and physical habitat loss for the sessile stages of brown trout life cycle due to clime change, in mountain streams at the rear edge of the species natural distribution using high-resolution spatial-temporal simulations of the thermal and physical habitat. Two streams of Central Spain have been studied (Cega and Lozoya streams). Daily temperature and flow data from ad hoc downscaled IPCC (RCP4.5 and RCP8.5) predictions were used as input variables. Physical habitat changes were simulated from previously predicted stream flow data by means of hydraulic simulation tools (River2D). By taking into account the thermal tolerance limits and the proportion of lost physical habitat, limiting factors for the reproduction of brown trout in the study area were determined. The general increase of mean temperatures shortens the duration of the early developmental stages. This reduction of the sessile period is rather similar in both RCP4.5 and RCP8.5 scenarios by 2050. Differences between both scenarios become greater by 2099. The duration of sessile developmental is reduced in 12 days (-10%) according to scenario RCP4.5 and as much as 30 days (-25%) according to RCP8.5 in the Cega stream. Reduction of this sessile period in the Lozoya stream ranges between 14 days (-12%) in RCP4.5 and 35 (-29%) in RCP8.5. However, this acceleration of the development is not sufficient to compensate the much greater reduction of the thermal window in which mean water temperature remain below 10°C (considered a critical threshold). In the Cega stream, suitable thermal window reduction will range between 21% (RCP4.5) and 49% (RCP8.5) by 2099. In contrast, the Lozoya stream will lose much less time of suitable temperatures by 2099: 3% and 21%, according to RCP4.5 and RCP8.5, respectively. Although habitat reductions will be significant during the spawning season, the most important problems for trout population viability seem to be related to the reduction of the available time window for embryos and larvae to complete their development. Besides, due to the differential sensitivity of instream thermal habitat to a general increase in air temperature, it is highly recommendable to address locally adapted mitigation programs to avoid a general retraction of the current native range of this species.

  11. Neighbouring populations, opposite dynamics: influence of body size and environmental variation on the demography of stream-resident brown trout (Salmo trutta).

    PubMed

    Fernández-Chacón, Albert; Genovart, Meritxell; Álvarez, David; Cano, José M; Ojanguren, Alfredo F; Rodriguez-Muñoz, Rolando; Nicieza, Alfredo G

    2015-06-01

    In organisms such as fish, where body size is considered an important state variable for the study of their population dynamics, size-specific growth and survival rates can be influenced by local variation in both biotic and abiotic factors, but few studies have evaluated the complex relationships between environmental variability and size-dependent processes. We analysed a 6-year capture-recapture dataset of brown trout (Salmo trutta) collected at 3 neighbouring but heterogeneous mountain streams in northern Spain with the aim of investigating the factors shaping the dynamics of local populations. The influence of body size and water temperature on survival and individual growth was assessed under a multi-state modelling framework, an extension of classical capture-recapture models that considers the state (i.e. body size) of the individual in each capture occasion and allows us to obtain state-specific demographic rates and link them to continuous environmental variables. Individual survival and growth patterns varied over space and time, and evidence of size-dependent survival was found in all but the smallest stream. At this stream, the probability of reaching larger sizes was lower compared to the other wider and deeper streams. Water temperature variables performed better in the modelling of the highest-altitude population, explaining over a 99 % of the variability in maturation transitions and survival of large fish. The relationships between body size, temperature and fitness components found in this study highlight the utility of multi-state approaches to investigate small-scale demographic processes in heterogeneous environments, and to provide reliable ecological knowledge for management purposes.

  12. Evidence of major genes affecting stress response in rainbow trout using Bayesian methods of complex segregation analysis

    USDA-ARS?s Scientific Manuscript database

    As a first step towards the genetic mapping of quantitative trait loci (QTL) affecting stress response variation in rainbow trout, we performed complex segregation analyses (CSA) fitting mixed inheritance models of plasma cortisol using Bayesian methods in large full-sib families of rainbow trout. ...

  13. Landscape models of brook trout abundance and distribution in lotic habitat with field validation

    USGS Publications Warehouse

    McKenna, James E.; Johnson, James H.

    2011-01-01

    Brook trout Salvelinus fontinalis are native fish in decline owing to environmental changes. Predictions of their potential distribution and a better understanding of their relationship to habitat conditions would enhance the management and conservation of this valuable species. We used over 7,800 brook trout observations throughout New York State and georeferenced, multiscale landscape condition data to develop four regionally specific artificial neural network models to predict brook trout abundance in rivers and streams. Land cover data provided a general signature of human activity, but other habitat variables were resistant to anthropogenic changes (i.e., changing on a geological time scale). The resulting models predict the potential for any stream to support brook trout. The models were validated by holding 20% of the data out as a test set and by comparison with additional field collections from a variety of habitat types. The models performed well, explaining more than 90% of data variability. Errors were often associated with small spatial displacements of predicted values. When compared with the additional field collections (39 sites), 92% of the predictions were off by only a single class from the field-observed abundances. Among “least-disturbed” field collection sites, all predictions were correct or off by a single abundance class, except for one where brown trout Salmo trutta were present. Other degrading factors were evident at most sites where brook trout were absent or less abundant than predicted. The most important habitat variables included landscape slope, stream and drainage network sizes, water temperature, and extent of forest cover. Predicted brook trout abundances were applied to all New York streams, providing a synoptic map of the distribution of brook trout habitat potential. These fish models set benchmarks of best potential for streams to support brook trout under broad-scale human influences and can assist with planning and identification of protection or rehabilitation sites.

  14. Occurrence and variation of egg cannibalism in brown trout Salmo trutta

    NASA Astrophysics Data System (ADS)

    Aymes, Jean-Christophe; Larrieu, Maider; Tentelier, Cédric; Labonne, Jacques

    2010-04-01

    Egg cannibalism is a common behavior among fish taxa and is largely studied in species with parental care. Heterocannibalism and filial cannibalism have both been reported in salmonids, a group with no extended parental care, but the topic remained somewhat under-documented, especially in brown trout ( Salmo trutta). In the present study, 83 spawning events were recorded finely with high-resolution video in three natural populations. Redd covering dynamics by females and the timing of cannibalism showed that eggs were vulnerable mainly during the first 120 s after spawning. Cannibalism occurred in 25% of spawnings and was principally perpetrated by peripherals but the sires also cannibalized their brood, especially after multiple mating. The probability of cannibalism increased with operational sex ratio but did not correlate with the date in spawning season. Occurrence of cannibalism also differed between populations. Our results suggest that such behavior is frequent and may reduce the fitness of parents. Its evolutionary implications for population ecology should be considered, since it appeared to be controlled by environmental and spatial factors.

  15. The male handicap: male-biased mortality explains skewed sex ratios in brown trout embryos.

    PubMed

    Morán, P; Labbé, L; Garcia de Leaniz, C

    2016-12-01

    Juvenile sex ratios are often assumed to be equal for many species with genetic sex determination, but this has rarely been tested in fish embryos due to their small size and absence of sex-specific markers. We artificially crossed three populations of brown trout and used a recently developed genetic marker for sexing the offspring of both pure and hybrid crosses. Sex ratios (SR = proportion of males) varied widely one month after hatching ranging from 0.15 to 0.90 (mean = 0.39 ± 0.03). Families with high survival tended to produce balanced or male-biased sex ratios, but SR was significantly female-biased when survival was low, suggesting that males sustain higher mortality during development. No difference in SR was found between pure and hybrid families, but the existence of sire × dam interactions suggests that genetic incompatibility may play a role in determining sex ratios. Our findings have implications for animal breeding and conservation because skewed sex ratios will tend to reduce effective population size and bias selection estimates. © 2016 The Authors.

  16. Occurrence and variation of egg cannibalism in brown trout Salmo trutta.

    PubMed

    Aymes, Jean-Christophe; Larrieu, Maider; Tentelier, Cédric; Labonne, Jacques

    2010-04-01

    Egg cannibalism is a common behavior among fish taxa and is largely studied in species with parental care. Heterocannibalism and filial cannibalism have both been reported in salmonids, a group with no extended parental care, but the topic remained somewhat under-documented, especially in brown trout (Salmo trutta). In the present study, 83 spawning events were recorded finely with high-resolution video in three natural populations. Redd covering dynamics by females and the timing of cannibalism showed that eggs were vulnerable mainly during the first 120 s after spawning. Cannibalism occurred in 25% of spawnings and was principally perpetrated by peripherals but the sires also cannibalized their brood, especially after multiple mating. The probability of cannibalism increased with operational sex ratio but did not correlate with the date in spawning season. Occurrence of cannibalism also differed between populations. Our results suggest that such behavior is frequent and may reduce the fitness of parents. Its evolutionary implications for population ecology should be considered, since it appeared to be controlled by environmental and spatial factors.

  17. Restricted gene flow at the micro- and macro-geographical scale in marble trout based on mtDNA and microsatellite polymorphism.

    PubMed

    Pujolar, José M; Lucarda, Alvise N; Simonato, Mauro; Patarnello, Tomaso

    2011-04-14

    The genetic structure of the marble trout Salmo trutta marmoratus, an endemic salmonid of northern Italy and the Balkan peninsula, was explored at the macro- and micro-scale level using a combination of mitochondrial DNA (mtDNA) and microsatellite data. Sequence variation in the mitochondrial control region showed the presence of nonindigenous haplotypes indicative of introgression from brown trout into marble trout. This was confirmed using microsatellite markers, which showed a higher introgression at nuclear level. Microsatellite loci revealed a strong genetic differentiation across the geographical range of marble trout, which suggests restricted gene flow both at the micro-geographic (within rivers) and macro-geographic (among river systems) scale. A pattern of Isolation-by-Distance was found, in which genetic samples were correlated with hydrographic distances. A general West-to-East partition of the microsatellite polymorphism was observed, which was supported by the geographic distribution of mitochondrial haplotypes. While introgression at both mitochondrial and nuclear level is unlikely to result from natural migration and might be the consequence of current restocking practices, the pattern of genetic substructuring found at microsatellites has been likely shaped by historical colonization patterns determined by the geological evolution of the hydrographic networks.

  18. Relationships between Boron concentrations and trout in the firehole river, Wyoming: Historical information and preliminary results of a field study

    USGS Publications Warehouse

    Meyer, J.S.; Boelter, A.M.; Woodward, D.F.; Goldstein, J.N.; Farag, A.M.; Hubert, W.A.

    1998-01-01

    The Firehole River (FHR) in Yellowstone National Park (YNP) is a world- renowned recreational fishery that predominantly includes rainbow trout (RBT, Oncorhynchus mykiss) and brown trout (BNT, Salmo trutta). The trout populations apparently are closed to immigration and have been self- sustaining since 1955. Inputs from hot springs and geysers increase the temperature and mineral content of the water, including elevating the boron (B) concentrations to a maximum of ~1 mg B/L. Both RBT and BNT reside in warm-water reaches, except when the water is extremely warm (???~25??C) during midsummer. They spawn in late fall and early winter, with documented spawning of BNT in the cold-water reach upstream from the Upper Geyser Basin and of RBT in the Lower Geyser Basin reach, where water temperatures presumably are the warmest; however, successful recruitment of RBT in waters containing ~1 mg B/L has not been demonstrated conclusively. Thus, we began investigating the relationships among temperature, B concentrations, other water-quality parameters, and the distribution and reproduction of trout in the FHR in spring 1997. However, atypical high water flows and concomitant lower than historical temperatures and B concentrations during summer 1997 preclude conclusions about avoidance of high B concentrations.

  19. Transfer of marine mercury to mountain lakes.

    PubMed

    Hansson, Sophia V; Sonke, Jeroen; Galop, Didier; Bareille, Gilles; Jean, Séverine; Le Roux, Gaël

    2017-10-05

    Stocking is a worldwide activity on geographical and historical scales. The rate of non-native fish introductions have more than doubled over the last decades yet the effect on natural ecosystems, in the scope of biologically mediated transport and biomagnification of Hg and Hg-isotopes, is unknown. Using geochemistry (THg) and stable isotopes (N, Sr and Hg), we evaluate natal origin and trophic position of brown trout (Salmo trutta fario), as well as mercury biomagnification trends and potential pollution sources to three high-altitude lakes. Farmed trout show Hg-isotope signatures similar to marine biota whereas wild trout shows Hg-isotope signatures typical of fresh water lakes. Stocked trout initially show Hg-isotope signatures similar to marine biota. As the stocked trout age and shifts diet to a higher trophic level, THg concentrations increase and the marine Hg isotope signatures, induced via farm fish feed, shift to locally produced MeHg with lower δ 202 Hg and higher Δ 199 Hg. We conclude that stocking acts a humanly induced biovector that transfers marine Hg to freshwater ecosystems, which is seen in the Hg-isotopic signature up to five years after stocking events occurred. This points to the need of further investigations of the role of stocking in MeHg exposure to freshwater ecosystems.

  20. Identifying trout refuges in the Indian and Hudson Rivers in northern New York through airborne thermal infrared remote sensing

    USGS Publications Warehouse

    Ernst, Anne G.; Baldigo, Barry P.; Calef, Fred J.; Freehafer, Douglas A.; Kremens, Robert L.

    2015-10-09

    The locations and sizes of potential cold-water refuges for trout were examined in 2005 along a 27-kilometer segment of the Indian and Hudson Rivers in northern New York to evaluate the extent of refuges, the effects of routine flow releases from an impoundment, and how these refuges and releases might influence trout survival in reaches that otherwise would be thermally stressed. This river segment supports small populations of brook trout (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) and also receives regular releases of reservoir-surface waters to support rafting during the summer, when water temperatures in both the reservoir and the river frequently exceed thermal thresholds for trout survival. Airborne thermal infrared imaging was supplemented with continuous, in-stream temperature loggers to identify potential refuges that may be associated with tributary inflows or groundwater seeps and to define the extent to which the release flows decrease the size of existing refuges. In general, the release flows overwhelmed the refuge areas and greatly decreased the size and number of the areas. Mean water temperatures were unaffected by the releases, but small-scale heterogeneity was diminished. At a larger scale, water temperatures in the upper and lower segments of the reach were consistently warmer than in the middle segment, even during passage of release waters. The inability of remote thermal infrared images to consistently distinguish land from water (in shaded areas) and to detect groundwater seeps (away from the shallow edges of the stream) limited data analysis and the ability to identify potential thermal refuge areas.

  1. Role of introduction history and landscape in the range expansion of brown trout (Salmo trutta L.) in the Kerguelen Islands.

    PubMed

    Launey, Sophie; Brunet, Geraldine; Guyomard, René; Davaine, Patrick

    2010-01-01

    Human-mediated biological invasions constitute interesting case studies to understand evolutionary processes, including the role of founder effects. Population expansion of newly introduced species can be highly dependant on barriers caused by landscape features, but identifying these barriers and their impact on genetic structure is a relatively recent concern in population genetics and ecology. Salmonid populations of the Kerguelen Islands archipelago are a favorable model system to address these questions as these populations are characterized by a simple history of introduction, little or no anthropogenic influence, and demographic monitoring since the first introductions. We analyzed genetic variation at 10 microsatellite loci in 19 populations of brown trout (Salmo trutta L.) in the Courbet Peninsula (Kerguelen Islands), where the species, introduced in 3 rivers only, has colonized the whole water system in 40 years. Despite a limited numbers of introductions, trout populations have maintained a genetic diversity comparable with what is found in hatchery or wild populations in Europe, but they are genetically structured. The main factor explaining the observed patterns of genetic diversity is the history of introductions, with each introduced population acting as a source for colonization of nearby rivers. Correlations between environmental and genetic parameters show that within each "source population" group, landscape characteristics (type of coast, accessibility of river mouth, distances between rivers, river length ...) play a role in shaping directions and rates of migration, and thus the genetic structure of the colonizing populations.

  2. Consistency in trophic magnification factors of cyclic methyl siloxanes in pelagic freshwater food webs leading to brown trout.

    PubMed

    Borgå, Katrine; Fjeld, Eirik; Kierkegaard, Amelie; McLachlan, Michael S

    2013-12-17

    Cyclic volatile methyl siloxanes (cVMS) concentrations were analyzed in the pelagic food web of two Norwegian lakes (Mjøsa, Randsfjorden), and in brown trout (Salmo trutta) and Arctic char (Salvelinus alpinus) collected in a reference lake (Femunden), in 2012. Lakes receiving discharge from wastewater treatment plants (Mjøsa and Randsfjorden) had cVMS concentrations in trout that were up to 2 orders of magnitude higher than those in Femunden, where most samples were close to the limit of quantification (LOQ). Food web biomagnification of cVMS in Mjøsa and Randsfjorden was quantified by estimation of trophic magnification factors (TMFs). TMF for legacy persistent organic pollutants (POPs) were analyzed for comparison. Both decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) biomagnified with TMFs of 2.9 (2.1-4.0) and 2.3 (1.8-3.0), respectively. Octamethylcyclotetrasiloxane (D4) was below the LOQ in the majority of samples and had substantially lower biomagnification than for D5 and D6. The cVMS TMFs did not differ between the lakes, whereas the legacy POP TMFs were higher in Mjøsa than inRandsfjorden. Whitefish had lower cVMS bioaccumulation compared to legacy POPs, and affected the TMF significance for cVMS, but not for POPs. TMFs of D5 and legacy contaminants in Lake Mjøsa were consistent with those previously measured in Mjøsa.

  3. Habitat Preference, Dispersal, and Population Trends of Three Species of Invasive Asian Carps in Tributaries of the La Grange Reach of the Illinois River

    DTIC Science & Technology

    2012-07-01

    Open circles represent sampling sites. Closed black circles indicate sampling sites at which Asian carp were collected. Closed brown circles...steelhead trout . Ecology 82(5):1247–1259. Kolar, C. S., D. C. Chapman, W. R. Courtenay, Jr., C. M. Housel, J. D. Williams, and D. P. Jennings. 2005...Resh, V. H., A. V. Brown , A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Shelden, J. B. Wallace, and R. C. Wissmar. 1988. The

  4. Organic matter dynamics and stable isotope signature as tracers of the sources of suspended sediment

    NASA Astrophysics Data System (ADS)

    Schindler Wildhaber, Y.; Liechti, R.; Alewell, C.

    2012-06-01

    Suspended sediment (SS) and organic matter in rivers can harm brown trout Salmo trutta by affecting the health and fitness of free swimming fish and by causing siltation of the riverbed. The temporal and spatial dynamics of sediment, carbon (C), and nitrogen (N) during the brown trout spawning season in a small river of the Swiss Plateau were assessed and C isotopes as well as the C/N atomic ratio were used to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the temporal and spatial sources of SS. Organic matter concentrations in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and high rainfall, probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to an increase of pasture and arable land downstream of the river. The mean fraction of SS originating from upper watershed riverbed sediment decreased from up to downstream and increased during high flow at all measuring sites along the course of the river. During base flow conditions, the major sources of SS are pasture, forest and arable land. The latter increased during rainy and warmer winter periods, most likely because both triggered snow melt and thus erosion. The measured increase in DOC and nitrate concentrations during high flow support these modeling results. Enhanced soil erosion processes on pasture and arable land are expected with increasing heavy rain events and less snow during winter seasons due to climate change. Consequently, SS and organic matter in the river will increase, which will possibly affect brown trout negatively.

  5. Viral and bacterial septicaemic infections modulate the expression of PACAP splicing variants and VIP/PACAP receptors in brown trout immune organs.

    PubMed

    Gorgoglione, Bartolomeo; Carpio, Yamila; Secombes, Christopher J; Taylor, Nick G H; Lugo, Juana María; Estrada, Mario Pablo

    2015-12-01

    Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and PACAP-Related Peptide (PRP) are structurally similar peptides encoded in the same transcripts. Their transcription has been detected not only in the brain but also in a wide range of peripheral tissues, even including organs of the immune system. PACAP exerts pleiotropic activities through G-protein coupled membrane receptors: the PACAP-specific PAC-1 and the VPAC-1 and VPAC-2 receptors that exhibit similar affinities for the Vasoactive Intestinal Peptide (VIP) and PACAP. Recent findings added PACAP and its receptors to the growing list of mediators that allow cross-talk between the nervous, endocrine and immune systems in fish. In this study the expression of genes encoding for PACAP and PRP, as well as VIP/PACAP receptors was studied in laboratory-reared brown trout (Salmo trutta) after septicaemic infections. Respectively Viral Haemorrhagic Septicaemia Virus (VHSV-Ia) or the Gram-negative bacterium Yersinia ruckeri (ser. O1 - biot. 2) were used in infection challenges. Kidney and spleen, the teleost main lymphopoietic organs, were sampled during the first two weeks post-infection. RT-qPCR analysis assessed specific pathogens burden and gene expression levels. PACAP and PRP transcription in each organ was positively correlated to the respective pathogen burden, assessed targeting the VHSV-glycoprotein or Y. ruckeri 16S rRNA. Results showed as the transcription of PACAP splicing variants and VIP/PACAP receptors is modulated in these organs during an acute viral and bacterial septicaemic infections in brown trout. These gene expression results provide clues as to how the PACAP system is modulated in fish, confirming an involvement during active immune responses elicited by both viral and bacterial aetiological agents. However, further experimental evidence is still required to fully elucidate and characterize the role of PACAP and PRP for an efficient immune response against pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Evaluation of architectural and histopathological biomarkers in the intestine of brown trout (Salmo trutta Linnaeus, 1758) challenged with environmental pollution.

    PubMed

    Barišić, Josip; Filipović Marijić, Vlatka; Mijošek, Tatjana; Čož-Rakovac, Rozelindra; Dragun, Zrinka; Krasnići, Nesrete; Ivanković, Dušica; Kružlicová, Dáša; Erk, Marijana

    2018-06-14

    In the present study novel histopathological approach, using fish intestine as a sensitive bioindicator organ of pollution impact in the freshwater ecosystem, was proposed. Histopathological alterations were compared between native brown trout (Salmo trutta Linnaeus, 1758) from the reference (Krka River spring) and pollution impacted location (influence of technological/municipal wastewaters and agricultural runoff near the Town of Knin) of the karst Krka River in Croatia. In brown trout from both locations, severe parasitic infestation with acanthocephalan species Dentitruncus trutae was found, enabling evaluation of acanthocephalan infestation histopathology, which indicated parasite tissue reaction in a form of inflammatory, necrotic and hyperplastic response that extended throughout lamina epithelialis mucosae, lamina propria, and lamina muscularis mucosae. New semi-quantitative histological approach was proposed in order to foresee alterations classified in three reaction patterns: control tissue appearance, moderate (progressive) tissue impairment and severe (regressive and inflammatory) tissue damage. The most frequent progressive alteration was hyperplasia of epithelium on the reference site, whereas the most frequent regressive alterations were atrophy and necrosis seen on the polluted site. Furthermore, histopathological approach was combined with micromorphological and macromorphological assessment as an additional indicator of pollution impact. Among 15 observed intestinal measures, two biomarkers of intestinal tissue damage were indicated as significant, height of supranuclear space (hSN) and number of mucous cells over 100 μm fold distance of intestinal mucosa (nM), which measures were significantly lower in fish from polluted area compared to the reference site. Obtained results indicated that combined histological and morphological approach on fish intestinal tissue might be used as a valuable biological tool for assessing pollution impact on aquatic organisms. Therefore, semi quantitative scoring and multiparametric morphological assessment of intestinal tissue lesion magnitude should become a common approach to handle environmental pollution impact. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Evaluating the effectiveness of restoring longitudinal connectivity for stream fish communities: towards a more holistic approach.

    PubMed

    Tummers, Jeroen S; Hudson, Steve; Lucas, Martyn C

    2016-11-01

    A more holistic approach towards testing longitudinal connectivity restoration is needed in order to establish that intended ecological functions of such restoration are achieved. We illustrate the use of a multi-method scheme to evaluate the effectiveness of 'nature-like' connectivity restoration for stream fish communities in the River Deerness, NE England. Electric-fishing, capture-mark-recapture, PIT telemetry and radio-telemetry were used to measure fish community composition, dispersal, fishway efficiency and upstream migration respectively. For measuring passage and dispersal, our rationale was to evaluate a wide size range of strong swimmers (exemplified by brown trout Salmo trutta) and weak swimmers (exemplified by bullhead Cottus perifretum) in situ in the stream ecosystem. Radio-tracking of adult trout during the spawning migration showed that passage efficiency at each of five connectivity-restored sites was 81.3-100%. Unaltered (experimental control) structures on the migration route had a bottle-neck effect on upstream migration, especially during low flows. However, even during low flows, displaced PIT tagged juvenile trout (total n=153) exhibited a passage efficiency of 70.1-93.1% at two nature-like passes. In mark-recapture experiments juvenile brown trout and bullhead tagged (total n=5303) succeeded in dispersing upstream more often at most structures following obstacle modification, but not at the two control sites, based on a Laplace kernel modelling approach of observed dispersal distance and barrier traverses. Medium-term post-restoration data (2-3years) showed that the fish assemblage remained similar at five of six connectivity-restored sites and two control sites, but at one connectivity-restored headwater site previously inhabited by trout only, three native non-salmonid species colonized. We conclude that stream habitat reconnection should support free movement of a wide range of species and life stages, wherever retention of such obstacles is not needed to manage non-native invasive species. Evaluation of the effectiveness of fish community restoration in degraded streams benefits from a similarly holistic approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hydraulic complexity metrics for evaluating in-stream brook trout habitat

    Treesearch

    J. Kozarek; W. Hession; M. ASCE; C. Dolloff; P. Diplas

    2010-01-01

    A two-dimensional hydraulic model (River2D) was used to investigate the significance of flow complexity on habitat preferences of brook trout (Salvelinus fontinalis) in the high-gradient Staunton River in Shenandoah National Park, Virginia. Two 100-m reaches were modeled where detailed brook trout surveys (10–30-m resolution) have been conducted annually since 1997....

  9. Artificial transmission to and susceptibility of Puget Sound fish to viral erythrocytic necrosis (VEN)

    USGS Publications Warehouse

    MacMillian, John R.; Mulcahy, Dan

    1979-01-01

    In Puget Sound, Wash., the incidence of viral erythrocytic necrosis (VEN) varied geographically from 0 to 17% in chum salmon (Oncorhynchus keta) and from 4 to 59% in Pacific herring (Clupea harengus pallasi). The disease was experimentally transmitted by intraperitoneal injection to chum, pink (O. gorbuscha), coho (O. kisutch), chinook (O. tshawytscha), sockeye (O. nerka), and Atlantic (Salmo salar) salmon, and rainbow (S. gairdneri), brown (S. trutta), and brook (Salvelinus fontinalis) trout. The disease was transmitted to chum salmon and brook trout by waterborne virus. Virus obtained from herring was experimentally transmitted into chum salmon by intraperitoneal injection. Key words: viral erythrocytic necrosis, fish disease, transmission

  10. Predictability of multispecies competitive interactions in three populations of Atlantic salmon Salmo salar.

    PubMed

    Houde, A L S; Wilson, C C; Neff, B D

    2015-04-01

    Juvenile Atlantic salmon Salmo salar from three allopatric populations (LaHave, Sebago and Saint-Jean) were placed into artificial streams with combinations of four non-native salmonids: brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, Chinook salmon Oncorhynchus tshawytscha and coho salmon Oncorhynchus kisutch. Non-additive effects, as evidenced by lower performance than predicted from weighted summed two-species competition trials, were detected for S. salar fork length (LF ) and mass, but not for survival, condition factor or riffle use. These data support emerging theory on niche overlap and species richness as factors that can lead to non-additive competition effects. © 2015 The Fisheries Society of the British Isles.

  11. Embryotoxicity of an extract from Great Lakes lake trout to rainbow trout and lake trout

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, P.J.; Tillitt, D.E.

    1995-12-31

    Aquatic ecosystems such as the Great Lakes are known to be contaminated with chemicals that are toxic to fish. However, the role of these contaminants in reproductive failures of fishes, such as lake trout recruitment, has remained controvertible. It was the objective to evaluate dioxin-like embryotoxicity of a complex mixture of chemicals and predict their potential to cause the lack of recruitment in Great Lakes lake trout. Graded doses of a complex environmental extract were injected into eggs of both rainbow trout and lake trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988.more » The extract was embryotoxic in rainbow trout, with LD50 values for Arlee strain and Erwin strain of 33 eggEQ and 14 eggEQ respectively. The LOAEL for hemorrhaging, yolk-sac edema, and craniofacial deformities in rainbow trout were 2, 2, and 4 eggEQ, respectively. Subsequent injections of the extract into lake trout eggs were likewise embryotoxic, with an LD50 value of 7 eggEQ. The LOAEL values for the extract in lake trout for hemorrhaging, yolk-sac edema, and craniofacial deformities were 0.1, 1, and 2 eggEQ, respectively. The current levels of contaminants in lake trout eggs are above the threshold for hemorrhaging and yolk-sac edema. The results also support the use of an additive model of toxicity to quantify PCDDs, PCDFs, Non-o-PCBs, and Mono-o-PCBs in relation to early life stage mortality in Lake Michigan lake trout.« less

  12. Historical citizen science to understand and predict climate-driven trout decline

    PubMed Central

    Ninyerola, Miquel; Hermoso, Virgilio; Filipe, Ana Filipa; Pla, Magda; Villero, Daniel; Brotons, Lluís; Delibes, Miguel

    2017-01-01

    Historical species records offer an excellent opportunity to test the predictive ability of range forecasts under climate change, but researchers often consider that historical records are scarce and unreliable, besides the datasets collected by renowned naturalists. Here, we demonstrate the relevance of biodiversity records developed through citizen-science initiatives generated outside the natural sciences academia. We used a Spanish geographical dictionary from the mid-nineteenth century to compile over 10 000 freshwater fish records, including almost 4 000 brown trout (Salmo trutta) citations, and constructed a historical presence–absence dataset covering over 2 000 10 × 10 km cells, which is comparable to present-day data. There has been a clear reduction in trout range in the past 150 years, coinciding with a generalized warming. We show that current trout distribution can be accurately predicted based on historical records and past and present values of three air temperature variables. The models indicate a consistent decline of average suitability of around 25% between 1850s and 2000s, which is expected to surpass 40% by the 2050s. We stress the largely unexplored potential of historical species records from non-academic sources to open new pathways for long-term global change science. PMID:28077766

  13. pH preference and avoidance responses of adult brook trout Salvelinus fontinalis and brown trout Salmo trutta.

    PubMed

    Fost, B A; Ferreri, C P

    2015-03-01

    The pH preferred and avoided by wild, adult brook trout Salvelinus fontinalis and brown trout Salmo trutta was examined in a series a laboratory tests using gradual and steep-gradient flow-through aquaria. The results were compared with those published for the observed segregation patterns of juvenile S. fontinalis and S. trutta in Pennsylvania streams. The adult S. trutta tested showed a preference for pH 4·0 while adult S. fontinalis did not prefer any pH within the range tested. Salmo trutta are not found in Pennsylvania streams with a base-flow pH < 5·8 which suggests that S. trutta prefer pH well above 4·0. Adult S. trutta displayed a lack of avoidance at pH below 5·0, as also reported earlier for juveniles. The avoidance pH of wild, adult S. fontinalis (between pH 5·5 and 6·0) and S. trutta (between pH 6·5 and 7·0) did not differ appreciably from earlier study results for the avoidance pH of juvenile S. fontinalis and S. trutta. A comparison of c.i. around these avoidance estimates indicates that avoidance pH is similar among adult S. fontinalis and S. trutta in this study. The limited overlap of c.i. for avoidance pH values for the two species, however, suggests that some S. trutta will display avoidance at a higher pH when S. fontinalis will not. The results of this study indicate that segregation patterns of adult S. fontinalis and S. trutta in Pennsylvania streams could be related to pH and that competition with S. trutta could be mediating the occurrence of S. fontinalis at some pH levels. © 2015 The Fisheries Society of the British Isles.

  14. Comparing stream-specific to generalized temperature models to guide salmonid management in a changing climate

    USGS Publications Warehouse

    Andrew K. Carlson,; William W. Taylor,; Hartikainen, Kelsey M.; Dana M. Infante,; Beard, Douglas; Lynch, Abigail

    2017-01-01

    Global climate change is predicted to increase air and stream temperatures and alter thermal habitat suitability for growth and survival of coldwater fishes, including brook charr (Salvelinus fontinalis), brown trout (Salmo trutta), and rainbow trout (Oncorhynchus mykiss). In a changing climate, accurate stream temperature modeling is increasingly important for sustainable salmonid management throughout the world. However, finite resource availability (e.g. funding, personnel) drives a tradeoff between thermal model accuracy and efficiency (i.e. cost-effective applicability at management-relevant spatial extents). Using different projected climate change scenarios, we compared the accuracy and efficiency of stream-specific and generalized (i.e. region-specific) temperature models for coldwater salmonids within and outside the State of Michigan, USA, a region with long-term stream temperature data and productive coldwater fisheries. Projected stream temperature warming between 2016 and 2056 ranged from 0.1 to 3.8 °C in groundwater-dominated streams and 0.2–6.8 °C in surface-runoff dominated systems in the State of Michigan. Despite their generally lower accuracy in predicting exact stream temperatures, generalized models accurately projected salmonid thermal habitat suitability in 82% of groundwater-dominated streams, including those with brook charr (80% accuracy), brown trout (89% accuracy), and rainbow trout (75% accuracy). In contrast, generalized models predicted thermal habitat suitability in runoff-dominated streams with much lower accuracy (54%). These results suggest that, amidst climate change and constraints in resource availability, generalized models are appropriate to forecast thermal conditions in groundwater-dominated streams within and outside Michigan and inform regional-level salmonid management strategies that are practical for coldwater fisheries managers, policy makers, and the public. We recommend fisheries professionals reserve resource-intensive stream-specific models for runoff-dominated systems containing high-priority fisheries resources (e.g. trophy individuals, endangered species) that will be directly impacted by projected stream warming.

  15. Physiological response of some economically important freshwater salmonids to catch-and-release fishing

    USGS Publications Warehouse

    Wedemeyer, G.A.; Wydoski, R.S.

    2008-01-01

    Catch-and-release fishing regulations are widely used by fishery resource managers to maintain both the quantity and quality of sport fish populations. We evaluated blood chemistry disturbances in wild brook trout Salvelinus fontinalis, brown trout Salmo trutta, cutthroat trout Oncorhynchus clarkii, and Arctic grayling Thymallus arcticus that had been hooked and played for 1-5 min in waters of the intermountain western United States. A hatchery stock of brown trout was included for comparison. To assess time needed for recovery, additional test groups were played for 5 min and then released into net-pens, where they were held for up to 72 h. The osmoregulatory and metabolic disturbances associated with catch-and-release fishing under the conditions we tested were minimal and judged to be well within normal physiological tolerance limits. In fish that were held for recovery, the blood chemistry alterations that did occur appeared to be related to stress from confinement in the net-pens. Our results confirm the results of previous studies, showing that prerelease air exposure and handling cause more physiological stress than does either hooking per se or playing time. Fishery managers must be aware of the differences in the perceptions, attitudes, and values of different societal groups, some of which feel that catch-and-release fishing should be banned because it is cruel to the animals. On the basis of brain anatomy, it seems highly unlikely that fish experience pain in the same manner as humans experience it, because fish lack a neocortex, the brain structure that enables the sensation of pain in higher vertebrates. However, independent of the neurobiological argument, our results indicate that under conditions similar to those tested, fish subjected to catch and release are neither suffering nor particularly stressed. Improved education programs about the relatively benign physiological effects of catch-and-release fishing as a fishery management practice would be beneficial to anglers and the nonfishing public alike.

  16. Evidence of Lake Trout reproduction at Lake Michigan's mid-lake reef complex

    USGS Publications Warehouse

    Janssen, J.; Jude, D.J.; Edsall, T.A.; Paddock, R.W.; Wattrus, N.; Toneys, M.; McKee, P.

    2006-01-01

    The Mid-Lake Reef Complex (MLRC), a large area of deep (> 40 m) reefs, was a major site where indigenous lake trout (Salvelinus namaycush) in Lake Michigan aggregated during spawning. As part of an effort to restore Lake Michigan's lake trout, which were extirpated in the 1950s, yearling lake trout have been released over the MLRC since the mid-1980s and fall gill net censuses began to show large numbers of lake trout in spawning condition beginning about 1999. We report the first evidence of viable egg deposition and successful lake trout fry production at these deep reefs. Because the area's existing bathymetry and habitat were too poorly known for a priori selection of sampling sites, we used hydroacoustics to locate concentrations of large fish in the fall; fish were congregating around slopes and ridges. Subsequent observations via unmanned submersible confirmed the large fish to be lake trout. Our technological objectives were driven by biological objectives of locating where lake trout spawn, where lake trout fry were produced, and what fishes ate lake trout eggs and fry. The unmanned submersibles were equipped with a suction sampler and electroshocker to sample eggs deposited on the reef, draw out and occasionally catch emergent fry, and collect egg predators (slimy sculpin Cottus cognatus). We observed slimy sculpin to eat unusually high numbers of lake trout eggs. Our qualitative approaches are a first step toward quantitative assessments of the importance of lake trout spawning on the MLRC.

  17. Warm water temperatures and shifts in seasonality increase trout recruitment but only moderately decrease adult size in western North American tailwaters

    USGS Publications Warehouse

    Dibble, Kimberly L.; Yackulic, Charles B.; Kennedy, Theodore A.

    2018-01-01

    Dams throughout western North America have altered thermal regimes in rivers, creating cold, clear “tailwaters” in which trout populations thrive. Ongoing drought in the region has led to highly publicized reductions in reservoir storage and raised concerns about potential reductions in downstream flows. Large changes in riverine thermal regimes may also occur as reservoir water levels drop, yet this potential impact has received far less attention. We analyzed historic water temperature and fish population data to anticipate how trout may respond to future changes in the magnitude and seasonality of river temperatures. We found that summer temperatures were inversely related to reservoir water level, with warm temperatures associated with reduced storage and with dams operated as run-of-river units. Variation in rainbow trout (Oncorhynchus mykiss) recruitment was linked to water temperature variation, with a 5-fold increase in recruitment occurring at peak summer temperatures (18 °C vs. 7 °C) and a 2.5-fold increase in recruitment when peak temperatures occurred in summer rather than fall. Conversely, adult trout size was only moderately related to temperature. Rainbow and brown trout (Salmo trutta) size decreased by ~24 mm and 20 mm, respectively, as mean annual and peak summer temperatures increased. Further, rainbow trout size decreased by ~29 mm with an earlier onset of cold winter temperatures. While increased recruitment may be the more likely outcome of a warmer and drier climate, density-dependent growth constraints could exacerbate temperature-dependent growth reductions. As such, managers may consider implementing flows to reduce recruitment or altering infrastructure to maintain coldwater reservoir releases.

  18. Seasonal changes in hepatocytic lipid droplets, glycogen deposits, and rough endoplasmic reticulum along the natural breeding cycle of female ohrid trout (Salmo letnica Kar.)-A semiquantitative ultrastructural study.

    PubMed

    Jordanova, Maja; Rebok, Katerina; Malhão, Fernanda; Rocha, Maria J; Rocha, Eduardo

    2016-08-01

    This study on wild female Ohrid trout was primarily designed to provide a general overview of the breeding cycle influence upon selected aspects of hepatocytes. According with a semiquantitatively evaluation, some of these cell's structural compartments change during the breeding cycle. Structural modifications were disclosed in the relative occurrence of lipid, glycogen, and RER content during breeding cycle. The relative amount of lipid deposits in the hepatocytes was much greater in previtellogenesis, and decreased postspawning. So, while the seasonal changes in RER were positively related with the ovary maturation status, those of the lipid droplets followed an opposite trend. The hepatocytic glycogen occurred rarely, mainly in late-vitellogenesis and spawning, suggesting that in this species such kind of energy storage is comparatively unimportant. Lipid accumulation and later usage is, probably, the relevant biochemical pathway for Ohrid trout in the wild. While glycogen and RER contents were positively correlated with the gonadosomatic index, lipids were negatively correlated. Additionally, glycogen inclusions were positively correlated with the plasma estradiol levels. When comparing seasonal patterns from wild Ohrid trout with those from well-studied rainbow and brown trout (specimens studied were from aquaculture), there are contradicting results as to lipid and glycogen reserves, and also as to RER loads. The differences among the mentioned trout can result from intrinsic interspecies differences or may be associated with natural feeding conditions versus feeding with commercially prepared diets, or other factors. This study offers new data useful as standard to access liver pathology in wild and aquacultured Ohrid trout. Microsc. Res. Tech. 79:700-706, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Rearing environment influences boldness and prey acquisition behavior, and brain and lens development of bull trout

    USGS Publications Warehouse

    Brignon, William R.; Pike, Martin M.; Ebbesson, Lars O.E.; Schaller, Howard A.; Peterson, James T.; Schreck, Carl B.

    2018-01-01

    Animals reared in barren captive environments exhibit different developmental trajectories and behaviors than wild counterparts. Hence, the captive phenotypes may influence the success of reintroduction and recovery programs for threatened and endangered species. We collected wild bull trout embryos from the Metolius River Basin, Oregon and reared them in differing environments to better understand how captivity affects the bull trout Salvelinus confluentusphenotype. We compared the boldness and prey acquisition behaviors and development of the brain and eye lens of bull trout reared in conventional barren and more structurally complex captive environments with that of wild fish. Wild fish and captive reared fish from complex habitats exhibited a greater level of boldness and prey acquisition ability, than fish reared in conventional captive environments. In addition, the eye lens of conventionally reared bull trout was larger than complex reared captive fish or same age wild fish. Interestingly, we detected wild fish had a smaller relative cerebellum than either captive reared treatment. Our results suggest that rearing fish in more complex captive environments can create a more wild-like phenotype than conventional rearing practices. A better understanding of the effects of captivity on the development and behavior of bull trout can inform rearing and reintroduction programs though prediction of the performance of released individuals.

  20. Fish status survey of Nordic lakes: effects of acidification, eutrophication and stocking activity on present fish species composition.

    PubMed

    Tammi, Jouni; Appelberg, Magnus; Beier, Ulrika; Hesthagen, Trygve; Lappalainen, Antti; Rask, Martti

    2003-03-01

    The status of fish populations in 3821 lakes in Norway, Sweden and Finland was assessed in 1995-1997. The survey lakes were chosen by stratified random sampling from all (126 482) Fennoscandian lakes > or = 0.04 km2. The water chemistry of the lakes was analyzed and information on fish status was obtained by a postal inquiry. Fish population losses were most frequent in the most highly acidified region of southern Norway and least common in eastern Fennoscandia. According to the inquiry results, the number of lost stocks of brown trout (Salmo trutta), roach (Rutilus rutilus), Arctic char (Salvelinus alpinus) and perch (Perca fluviatilis) was estimated to exceed 10000. The number of stocks of these species potentially affected by the low alkalinity of lake water was estimated to exceed 11000. About 3300 lakes showed high total phosphorus (> 25 microg L(-1)) and cyprinid dominance in eastern Fennoscandia, notably southwestern Finland. This survey did not reveal any extinction of fish species due to eutrophication. One-third of the lakes had been artificially stocked with at least one new species, most often brown trout, whitefish (Coregonus lavaretus s.l.), Arctic char, rainbow trout (Oncorhynchus mykiss), pike-perch (Stizostedion lucioperca), grayling (Thymallus thymallus), pike (Esox lucius), bream (Abramis brama), tench (Tinca tinca) and European minnow (Phoxinus phoxinus). The number of artificially manipulated stocks of these species in Fennoscandian lakes was estimated to exceed 52000. Hence, the number of fish species occurring in Nordic lakes has recently been changed more by stockings than by losses of fish species through environmental changes such as acidification.

  1. Assessing diet compositions of Lake Ontario predators using fatty acid profiles of prey fishes

    USGS Publications Warehouse

    Happell, Austin; Pattridge, Robert; Rinchard, Jacques; Walsh, Maureen

    2017-01-01

    Fatty acid profiles are used in food web studies to assess trophic interactions between predator and prey. The present study provides the first comprehensive fatty acid dataset for important prey and predator species in Lake Ontario. Three major prey fish (alewife, rainbow smelt, and round goby) were collected at three sites along the southern shore of Lake Ontario during the spring and fall of 2013, and predator species were collected in similar locations during the summer of 2013. Fatty acid compositions were compared among all prey species, all predator species, and information from both predator and prey was used to infer foraging differences among predators. Seasonal differences in fatty acids were found within each prey species studied. Differences among prey species were greater than any spatio-temporal differences detected within species. Fatty acids of predators revealed species-specific differences that matched known foraging habits. Chinook and Coho salmon, which are known to select alewife as their dominant prey item, had relatively little variation in fatty acid profiles. Conversely, brown trout, lake trout, yellow perch and esocids had highly variable fatty acid profiles and likely highly variable diet compositions. In general, our data suggested three dominant foraging patterns: 1) diet composed of nearly exclusively alewife for Chinook and Coho Salmon; 2) a mixed diet of alewife and round goby for brown and lake trout, and both rock and smallmouth bass; 3) a diet that is likely comprised of forage fishes other than those included in our study for northern pike and chain pickerel.

  2. Application of Risk Management and Uncertainty Concepts and Methods for Ecosystem Restoration: Principles and Best Practice

    DTIC Science & Technology

    2012-08-01

    habitats for specific species of trout . The report noted that these uncertainties — and the SMEs, who had past experience in such topic areas — were...reduce uncertainty in HREP projects is reflected in the completion of the Pool 11 Islands (UMRS RM 583-593) HREP in 2003. In 1989 the Browns Lake

  3. Fate of perfluoroalkyl substances within a small stream food web affected by sewage effluent.

    PubMed

    Cerveny, Daniel; Grabic, Roman; Fedorova, Ganna; Grabicova, Katerina; Turek, Jan; Zlabek, Vladimir; Randak, Tomas

    2018-05-01

    The fate of fourteen target perfluoroalkyl substances (PFASs) are described within a small stream affected by a sewage treatment plant (STP) effluent. Concentrations of target PFASs in samples of water, benthic macroinvertebrates and brown trout (Salmo trutta) are presented. Two hundred brown trout individuals originating from clean sites within the same stream were tagged and stocked into an experimental site affected by the STP's effluent. As a passive sampling approach, polar organic chemical integrative samplers (POCIS) were deployed in the water to reveal the water-macroinvertebrates-fish biotransformation processes of PFASs. Bioconcentration/bioaccumulation of target compounds was monitored one, three, and six months after stocking. Twelve of the fourteen target PFASs were found in concentration above the LOQ in at least one of the studied matrices. The compound pattern varied significantly between both the studied species and water samples. Concerning the accumulation of PFASs in fish, the highest concentrations were found in the liver of individuals sampled after three months of exposure. These concentrations rapidly decreased after six months although the water concentrations were slightly increasing during experiment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Comparative studies on intestine ultrastructure of third-stage larvae and adults of Cystidicoloides ephemeridarum (Nematoda, Cystidicolidae).

    PubMed

    Frantová, Denisa; Moravec, Frantisek

    2004-11-01

    The intestinal epithelium of third-stage larvae and adults of Cystidicoloides ephemeridarum from haemocoel of mayflies and stomach of brown trout was studied by electron microscopy and cytochemistry. In section, the intestine of both stages is composed of a single layer of about ten undifferentiated intestinal cells in a ring. A labyrinth of deep invaginations is present in the basal region of each cell. The apical surface is modified into well developed, regularly arranged microvilli. These, together with numerous organelles engaged in metabolism and a well defined gut lumen filled with unidentifiable material suggest that the intestine may function in digestion and absorption during both stages. The adults seem to feed upon the semifluid content of the stomach of brown trout. Fortuitous oral infection with undetermined bacteria in vitro led to degenerative changes in the intestinal tissue and probably caused death of the infected specimens. Up to 75% of the cell volume in the L(3) is occupied by glycogen deposits. In the adults, a minor portion of glycogen, together with lipid droplets, has been observed. The adults are considered to rely more on aerobic metabolism, whereas anaerobic metabolism (glycolysis) may prevail in L(3).

  5. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    USGS Publications Warehouse

    Chavarie, Louise; Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.

  6. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    PubMed

    Chavarie, Louise; Howland, Kimberly L; Harris, Les N; Hansen, Michael J; Harford, William J; Gallagher, Colin P; Baillie, Shauna M; Malley, Brendan; Tonn, William M; Muir, Andrew M; Krueger, Charles C

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0-150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself.

  7. From top to bottom: Do Lake Trout diversify along a depth gradient in Great Bear Lake, NT, Canada?

    PubMed Central

    Howland, Kimberly L.; Harris, Les N.; Hansen, Michael J.; Harford, William J.; Gallagher, Colin P.; Baillie, Shauna M.; Malley, Brendan; Tonn, William M.; Muir, Andrew M.; Krueger, Charles C.

    2018-01-01

    Depth is usually considered the main driver of Lake Trout intraspecific diversity across lakes in North America. Given that Great Bear Lake is one of the largest and deepest freshwater systems in North America, we predicted that Lake Trout intraspecific diversity to be organized along a depth axis within this system. Thus, we investigated whether a deep-water morph of Lake Trout co-existed with four shallow-water morphs previously described in Great Bear Lake. Morphology, neutral genetic variation, isotopic niches, and life-history traits of Lake Trout across depths (0–150 m) were compared among morphs. Due to the propensity of Lake Trout with high levels of morphological diversity to occupy multiple habitat niches, a novel multivariate grouping method using a suite of composite variables was applied in addition to two other commonly used grouping methods to classify individuals. Depth alone did not explain Lake Trout diversity in Great Bear Lake; a distinct fifth deep-water morph was not found. Rather, Lake Trout diversity followed an ecological continuum, with some evidence for adaptation to local conditions in deep-water habitat. Overall, trout caught from deep-water showed low levels of genetic and phenotypic differentiation from shallow-water trout, and displayed higher lipid content (C:N ratio) and occupied a higher trophic level that suggested an potential increase of piscivory (including cannibalism) than the previously described four morphs. Why phenotypic divergence between shallow- and deep-water Lake Trout was low is unknown, especially when the potential for phenotypic variation should be high in deep and large Great Bear Lake. Given that variation in complexity of freshwater environments has dramatic consequences for divergence, variation in the complexity in Great Bear Lake (i.e., shallow being more complex than deep), may explain the observed dichotomy in the expression of intraspecific phenotypic diversity between shallow- vs. deep-water habitats. The ambiguity surrounding mechanisms driving divergence of Lake Trout in Great Bear Lake should be seen as reflective of the highly variable nature of ecological opportunity and divergent natural selection itself. PMID:29566015

  8. Restoration of Rio Grande cutthroat trout Oncorhynchus clarkii virginalis to the Mescalero Apache Reservation

    USGS Publications Warehouse

    Kalb, Bradley W.; Caldwell, Colleen A.

    2014-01-01

    Rio Grande Cutthroat trout Oncorhynchus clarkii virginalis (RGCT) represents the most southern subspecies of cutthroat trout, endemic to Rio Grande, Canadian, and Pecos basins of New Mexico and southern Colorado. The subspecies currently occupies less than 12% of its historic range. The Mescalero Apache Tribe has partnered with U.S. Geological Survey-New Mexico Cooperative Fish and Wildlife Research Unit, New Mexico State University, U.S. Fish and Wildlife Service, and New Mexico Department of Game and Fish to meet mutually shared goals of restoring and maintaining a Pecos strain of RGCT to Tribal lands. The goal of this project was to assess the suitability of the Rio Ruidoso within the Mescalero Apache Reservation to support a self-sustaining RGCT population by conducting a systematic and comprehensive survey. We conducted three surveys (fall 2010, spring 2011 and 2012) to characterize water quality, macroinvertebrate assemblages, fish communities, and physical habitat (stream size, channel gradient, channel substrate, habitat complexity, riparian vegetation cover and structure, migration barriers to movement).Seven-100 m reaches throughout three major tributaries of the Rio Ruidoso within the Tribal lands were sampled during baseflow conditions October 2010, May 2011, and June 2012. Despite the onset of severe drought in 2011, water quality, physical habitat, and fish populations revealed that the Rio Ruidoso and its three tributaries would most likely support a self-sustaining RGCT population. Pools were abundant (mean, 8.9 pools/100 m), instream woody debris was present (range, 3.8-45.6 pieces/100 m), and instream dataloggers revealed daily maximum stream temperatures rarely exceeded criteria established in New Mexico for coldwater fishes, however, presence of frazil and anchor ice may limit fish distribution in the winter. Aquatic macroinvertebrate samples revealed a community of benthic invertebrates reflective of high quality cool to cold water. Overall densities of brown trout, rainbow trout and brook trout were high (overall mean, 0.23 fish/m2) and in relatively good condition (range of mean relative weight, 84-117).Should the Mescalero Apache Tribe decide to introduce RGCT, prior to chemical treatment, a barrier placed below the confluence of Middle and South forks of the Rio Ruidoso would create approximately 12 km of perennial flow and help protect against invasion of non-native fishes. The North Fork of the Rio Ruidoso is not a good candidate for reintroduction because of easy access by the public to reintroduce non-native fishes into the watershed. Lastly, an annual, long-term monitoring program of RGCT would help document that there was no subsequent incursion of non-native fishes.

  9. Strong Effects of Temperature on the Early Life Stages of a Cold Stenothermal Fish Species, Brown Trout (Salmo trutta L.)

    PubMed Central

    Réalis-Doyelle, Emilie; Pasquet, Alain; De Charleroy, Daniel; Fontaine, Pascal; Teletchea, Fabrice

    2016-01-01

    Temperature is the main abiotic factor that influences the life cycle of poikilotherms. The present study investigated the thermal tolerance and phenotypic plasticity of several parameters (development time, morphometric measures, bioenergetics) for both embryos and fry of a cold stenothermal fish species, brown trout (Salmo trutta L.) in order to allow for a holistic evaluation of the potential effects of temperature. Five temperatures (4°C, 6°C, 8°C, 10°C, and 12°C) were tested, and the effects of temperature were analyzed at three stages: hatching, emergence, and first food intake. A mean of 5,440 (S.E. ± 573) eggs, coming from seven females and seven males (seven families) captured close to Linkebeek (Belgium), were used for each temperature. Maximum survival of well-formed fry at first food intake and better use of energy budget were found at 6°C and 8°C, temperatures at which the possible contribution to the next generation should therefore be greatest. At 12°C, the experimental population fell dramatically (0.9% survival rate for well-formed fry at first food intake), and fry had almost no yolk sac at first food intake. The present results on survival at 12°C are in accordance with predictions of a sharp decrease in brown trout numbers in France over the coming decades according to climate change projections (1°C to 5°C temperature rise by 2100 for France). At 10°C, there was also a lower survival rate (55.4% at first food intake). At 4°C, the survival rate was high (76.4% at first food intake), but the deformity rate was much higher (22% at first food intake) than at 6°C, 8°C, and 10°C. The energetic budget showed that at the two extreme temperatures (4°C and 12°C) there was less energy left in the yolk sac at first food intake, suggesting a limited ability to survive starvation. PMID:27170996

  10. Estrogenic and anti-estrogenic influences in cultured brown trout hepatocytes: Focus on the expression of some estrogen and peroxisomal related genes and linked phenotypic anchors.

    PubMed

    Madureira, Tânia Vieira; Malhão, Fernanda; Pinheiro, Ivone; Lopes, Célia; Ferreira, Nádia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo

    2015-12-01

    Estrogens, estrogenic mimics and anti-estrogenic compounds are known to target estrogen receptors (ER) that can modulate other nuclear receptor signaling pathways, such as those controlled by the peroxisome proliferator-activated receptor (PPAR), and alter organelle (inc. peroxisome) morphodynamics. By using primary isolated brown trout (Salmo trutta f. fario) hepatocytes after 72 and 96h of exposure we evaluated some effects in selected molecular targets and in peroxisomal morphological features caused by: (1) an ER agonist (ethinylestradiol-EE2) at 1, 10 and 50μM; (2) an ER antagonist (ICI 182,780) at 10 and 50μM; and (3) mixtures of both (Mix I-10μM EE2 and 50μM ICI; Mix II-1μM EE2 and 10μM ICI and Mix III-1μM EE2 and 50μM ICI). The mRNA levels of the estrogenic targets (ERα, ERβ-1 and vitellogenin A-VtgA) and the peroxisome structure/function related genes (catalase, urate oxidase-Uox, 17β-hydroxysteroid dehydrogenase 4-17β-HSD4, peroxin 11α-Pex11α and PPARα) were analyzed by real-time polymerase chain reaction (RT-PCR). Stereology combined with catalase immunofluorescence revealed a significant reduction in peroxisome volume densities at 50μM of EE2 exposure. Concomitantly, at the same concentration, electron microscopy showed smaller peroxisome profiles, exacerbated proliferation of rough endoplasmic reticulum, and a generalized cytoplasmic vacuolization of hepatocytes. Catalase and Uox mRNA levels decreased in all estrogenic stimuli conditions. VtgA and ERα mRNA increased after all EE2 treatments, while ERβ-1 had an inverse pattern. The EE2 action was reversed by ICI 182,780 in a concentration-dependent manner, for VtgA, ERα and Uox. Overall, our data show the great value of primary brown trout hepatocytes to study the effects of estrogenic/anti-estrogenic inputs in peroxisome kinetics and in ER and PPARα signaling, backing the still open hypothesis of crosstalk interactions between these pathways and calling for more mechanistic experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Strong Effects of Temperature on the Early Life Stages of a Cold Stenothermal Fish Species, Brown Trout (Salmo trutta L.).

    PubMed

    Réalis-Doyelle, Emilie; Pasquet, Alain; De Charleroy, Daniel; Fontaine, Pascal; Teletchea, Fabrice

    2016-01-01

    Temperature is the main abiotic factor that influences the life cycle of poikilotherms. The present study investigated the thermal tolerance and phenotypic plasticity of several parameters (development time, morphometric measures, bioenergetics) for both embryos and fry of a cold stenothermal fish species, brown trout (Salmo trutta L.) in order to allow for a holistic evaluation of the potential effects of temperature. Five temperatures (4°C, 6°C, 8°C, 10°C, and 12°C) were tested, and the effects of temperature were analyzed at three stages: hatching, emergence, and first food intake. A mean of 5,440 (S.E. ± 573) eggs, coming from seven females and seven males (seven families) captured close to Linkebeek (Belgium), were used for each temperature. Maximum survival of well-formed fry at first food intake and better use of energy budget were found at 6°C and 8°C, temperatures at which the possible contribution to the next generation should therefore be greatest. At 12°C, the experimental population fell dramatically (0.9% survival rate for well-formed fry at first food intake), and fry had almost no yolk sac at first food intake. The present results on survival at 12°C are in accordance with predictions of a sharp decrease in brown trout numbers in France over the coming decades according to climate change projections (1°C to 5°C temperature rise by 2100 for France). At 10°C, there was also a lower survival rate (55.4% at first food intake). At 4°C, the survival rate was high (76.4% at first food intake), but the deformity rate was much higher (22% at first food intake) than at 6°C, 8°C, and 10°C. The energetic budget showed that at the two extreme temperatures (4°C and 12°C) there was less energy left in the yolk sac at first food intake, suggesting a limited ability to survive starvation.

  12. The temperature-productivity squeeze: Constraints on brook trout growth along an Appalachian river continuum

    USGS Publications Warehouse

    Petty, J. Todd; Thorne, David; Huntsman, Brock M.; Mazik, Patricia M.

    2014-01-01

    We tested the hypothesis that brook trout growth rates are controlled by a complex interaction of food availability, water temperature, and competitor density. We quantified trout diet, growth, and consumption in small headwater tributaries characterized as cold with low food and high trout density, larger tributaries characterized as cold with moderate food and moderate trout density, and large main stems characterized as warm with high food and low trout density. Brook trout consumption was highest in the main stem where diets shifted from insects in headwaters to fishes and crayfish in larger streams. Despite high water temperatures, trout growth rates also were consistently highest in the main stem, likely due to competitively dominant trout monopolizing thermal refugia. Temporal changes in trout density had a direct negative effect on brook trout growth rates. Our results suggest that competition for food constrains brook trout growth in small streams, but access to thermal refugia in productive main stem habitats enables dominant trout to supplement growth at a watershed scale. Brook trout conservation in this region should seek to relieve the “temperature-productivity squeeze,” whereby brook trout productivity is constrained by access to habitats that provide both suitable water temperature and sufficient prey.

  13. Ice cover affects the growth of a stream-dwelling fish.

    PubMed

    Watz, Johan; Bergman, Eva; Piccolo, John J; Greenberg, Larry

    2016-05-01

    Protection provided by shelter is important for survival and affects the time and energy budgets of animals. It has been suggested that in fresh waters at high latitudes and altitudes, surface ice during winter functions as overhead cover for fish, reducing the predation risk from terrestrial piscivores. We simulated ice cover by suspending plastic sheeting over five 30-m-long stream sections in a boreal forest stream and examined its effects on the growth and habitat use of brown trout (Salmo trutta) during winter. Trout that spent the winter under the artificial ice cover grew more than those in the control (uncovered) sections. Moreover, tracking of trout tagged with passive integrated transponders showed that in the absence of the artificial ice cover, habitat use during the day was restricted to the stream edges, often under undercut banks, whereas under the simulated ice cover condition, trout used the entire width of the stream. These results indicate that the presence of surface ice cover may improve the energetic status and broaden habitat use of stream fish during winter. It is therefore likely that reductions in the duration and extent of ice cover due to climate change will alter time and energy budgets, with potentially negative effects on fish production.

  14. An examination of environmental factors associated with Myxobolus cerebralis infection of wild trout in Pennsylvania

    USGS Publications Warehouse

    Kaeser, Adam J.; Rasmussen, Charlotte; Sharpe, William E.

    2006-01-01

    Salmonid whirling disease, caused by the myxosporean parasite Myxobolus cerebralis, was first observed in the United States in 1956 in central Pennsylvania. The parasite was subsequently discovered at several culture facilities throughout the state, and widespread distribution of this parasite via the stocking of subclinically infected brook trout Salvelinus fontinalis, rainbow trout Oncorhynchus mykiss, and brown trout Salmo trutta has been assumed. Although no monitoring of wild populations occurred until the late 1970s, it is a common belief that epizootics of whirling disease, now realized in the Intermountain West, are unlikely to have occurred in Pennsylvania. We conducted a review of historical information and a synoptic survey aimed at identifying factors that may prevent whirling disease outbreak in this region, reasoning that such information might be useful in identifying management strategies for populations affected by this parasite. Here we present data on parasite prevalence, fish populations, stream attributes, and the genetics of Tubifex tubifex (the obligate oligochaete host for the parasite) to evaluate various hypotheses proposed for low whirling disease impact in the region. We did not find clear associations between factors such as stream gradient, the genetics of T. tubifexpopulations, or the composition of resident trout populations and the pattern of M. cerebralis occurrence in Pennsylvania. We suggest that this pattern may be best explained by the association between T. tubifex host populations and point sources of organic enrichment. The potential restriction of T. tubifex populations to locations near sources of organic enrichment may be a factor in explaining why whirling disease has not been observed to cause population declines among wild trout in this region and should be further investigated.

  15. Pathogens associated with native and exotic trout populations in Shenandoah National Park and the relationships to fish stocking practices

    USGS Publications Warehouse

    Panek, Frank M.; Atkinson, James; Coll, John

    2008-01-01

    Restrictive fish stocking policies in National Parks were developed as early as 1936 in order to preserve native fish assemblages and historic genetic diversity. Despite recent efforts to understand the effects of non-native or exotic fish introductions, park managers have limited information regarding the effects of these introductions on native fish communities. Shenandoah National Park was established in 1936 and brook trout (Salvelinus fontinalis) restoration within selected streams in the park began in 1937 in collaboration with the Virginia Department of Game and Inland Fisheries (VDGIF). An analysis of tissue samples from brook, brown (Salmo trutta), and rainbow trout (Oncorhynchus mykiss) from 29 streams within the park from 1998–2002 revealed the presence of Renibacterium salmoninarum, Yersinia ruckeri, and infectious pancreatic necrosis virus (IPNv). In order to investigate the relationships of the occurrence of fish pathogens with stocking histories we classified the streams into three categories: 1) streams with no record of stocking, 2) streams that are known to have been stocked historically, and 3) streams that were historically stocked within the park and continue to be stocked downstream of the park boundary. The occurrences of pathogens were summarized relative to this stocking history. Renibacterium salmoninarum, the causative agent of bacterial kidney disease, was the most prevalent pathogen found, occurring in all three species and stream stocking categories, and appears to be endemic to the park. Two other pathogens, Yersinia ruckeri and infectious pancreatic necrosis virus were also described from brook trout populations within the park. IPNv was only found in brook trout populations in streams with prior stocking histories. Yersinia ruckeri was only found in brook trout in steams that have never been stocked and like R. salmoninarum, is likely endemic.

  16. Inappropriate analysis does not reveal the ecological causes of evolution of stickleback armour: a critique of Spence et al. 2013.

    PubMed

    MacColl, Andrew D C; Aucott, Beth

    2014-09-01

    In a recent paper in this journal, Spence et al. (2013) sought to identify the ecological causes of morphological evolution in three-spined sticklebacks Gasterosteus aculeatus, by examining phenotypic and environmental variation between populations on the island of North Uist, Scotland. However, by using simple qualitative assessments of phenotype and inappropriate measures of environmental variation, Spence et al. have come to a conclusion that is diametrically opposite to that which we have arrived at in studying the same populations. Our criticisms of their paper are threefold: (1) using a binomial qualitative measure of the variation in stickleback armour ("low" versus "minimal" (i.e., "normal" low-plated freshwater sticklebacks versus spineless and/or plateless fish)) does not represent the full range of phenotypes that can be described by quantitative measures of the individual elements of armour. (2) Their use of unspecified test kits, with a probable accuracy of 4 ppm, may not be accurate in the range of water chemistry on North Uist (1 to 30 ppm calcium). (3) Their qualitative assessment of the abundance of brown trout Salmo trutta as the major predator of sticklebacks does not accurately describe the variation in brown trout abundance that is revealed by catch-per-unit-effort statistics. Repeating Spence et al.'s analysis using our own measurements, we find, in direct contradiction to them, that variation in stickleback bony armour is strongly correlated with variation in trout abundance, and unrelated to variation in the concentration of calcium in the lochs in which they live. Field studies in ecology and evolution seldom address the same question in the same system at the same time, and it is salutary that in this rare instance two such studies arrived at diametrically opposite answers.

  17. Cross-interference of two model peroxisome proliferators in peroxisomal and estrogenic pathways in brown trout hepatocytes.

    PubMed

    Madureira, Tânia Vieira; Pinheiro, Ivone; Malhão, Fernanda; Lopes, Célia; Urbatzka, Ralph; Castro, L Filipe C; Rocha, Eduardo

    2017-06-01

    Peroxisome proliferators cause species-specific effects, which seem to be primarily transduced by peroxisome proliferator-activated receptor alpha (PPARα). Interestingly, PPARα has a close interrelationship with estrogenic signaling, and this latter has already been promptly activated in brown trout primary hepatocytes. Thus, and further exploring this model, we assess here the reactivity of two PPARα agonists in direct peroxisomal routes and, in parallel the cross-interferences in estrogen receptor (ER) mediated paths. To achieve these goals, three independent in vitro studies were performed using single exposures to clofibrate - CLF (50, 500 and 1000μM), Wy-14,643 - Wy (50 and 150μM), GW6471 - GW (1 and 10μM), and mixtures, including PPARα agonist or antagonist plus an ER agonist or antagonist. Endpoints included gene expression analysis of peroxisome/lipidic related genes (encoding apolipoprotein AI - ApoAI, fatty acid binding protein 1 - Fabp1, catalase - Cat, 17 beta-hydroxysteroid dehydrogenase 4 - 17β-HSD4, peroxin 11 alpha - Pex11α, PPARαBb, PPARαBa and urate oxidase - Uox) and those encoding estrogenic targets (ERα, ERβ-1 and vitellogenin A - VtgA). A quantitative morphological approach by using a pre-validated catalase immunofluorescence technique allowed checking possible changes in peroxisomes. Our results show a low responsiveness of trout hepatocytes to model PPARα agonists in direct target receptor pathways. Additionally, we unveiled interferences in estrogenic signaling caused by Wy, leading to an up-regulation VtgA and ERα at 150μM; these effects seem counteracted with a co-exposure to an ER antagonist. The present data stress the potential of this in vitro model for further exploring the physiological/toxicological implications related with this nuclear receptor cross-regulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Parasitism of Argulus japonicus in cultured and wild fish of Guangdong, China with new record of three hosts.

    PubMed

    Alsarakibi, Muhamd; Wadeh, Hicham; Li, Guoqing

    2014-02-01

    This study aimed to demonstrate the ability of Argulus japonicus to infect a wide range of freshwater fishes, as well as to understand the effects of fish origin and host body size on the incidence of A. japonicus. Samples of cultured and wild fish were collected randomly from July 2010 to March 2013, using angling, long-lining, gill-netting, and trapping from rivers and fish farms in Guangdong province, South China. Eight fish species were found to be heavily infected including the common carp, the goldfish, the black carp, the silver carp, the brown trout, the rainbow trout, the mandarin fish, and the perch. Furthermore, the black carp, the brown trout, and the mandarin fish were recorded as new hosts for the first time. During the present study, a total of 2,271 fishes were examined, out of which 712 fishes were found to be infected by a total of 1,443 A. japonicus. Abundance and intensity of A. japonicus infection were significantly influenced by origin of fishes (cultured and wild) and total length (class I, <250 mm; class II, 250-350 mm; and class III, >350 mm) of fish species, whereas varied impacts on prevalence of infection were observed. The correlation between total length of fishes and prevalence of A. japonicus infection was variable, where no significant correlation was observed in the black carp, the silver carp, the mandarin fish, and the perch. In spite of the weak negative correlation between body size of the silver carp and prevalence of infection, A. japonicus was the most abundant and intensive in the silver carp. Thus, aquaculturists should pay particular attention to the control of these fish lice due to its host biodiversity.

  19. Evidence of offshore lake trout reproduction in Lake Huron

    USGS Publications Warehouse

    DeSorcie, Timothy J.; Bowen, Charles A.

    2003-01-01

    Six Fathom Bank-Yankee Reef, an offshore reef complex, was an historically important spawning area believed to represent some of the best habitat for the rehabilitation of lake trout Salvelinus namaycush in Lake Huron. Since 1986, lake trout have been stocked on these offshore reefs to reestablish self-sustaining populations. We sampled with beam trawls to determine the abundance of naturally reproduced age-0 lake trout on these offshore reefs during May-July in 1994-1998 and 2000-2002. In total, 123 naturally reproduced lake trout fry were caught at Six Fathom Bank, and 2 naturally reproduced lake trout fry were caught at nearby Yankee Reef. Our findings suggest that this region of Lake Huron contains suitable habitat for lake trout spawning and offers hope that lake trout rehabilitation can be achieved in the main basin of Lake Huron.

  20. Improving the Recreational Fishery on Malmstrom Air Force Base

    DTIC Science & Technology

    2010-08-01

    requirements of NEPA, Air Force Regulations, and all applicable laws and regulations. Pow Wow Park is a recreational site located in the east central area...fishing day. Three hundred juvenile brown trout (Salmo trutta) from the Montana Fish, Wildlife and Parks State Fish Hatchery in Lewistown, Montana are...have proposed numerous improvements to the Pow Wow Park recreational area, including site work and equipment installations to enhance fish and wildlife

  1. A framework for estimating the determinants of spatial and temporal variation in vital rates and inferring the occurrence of unobserved extreme events

    PubMed Central

    Jesenšek, Dušan; Crivelli, Alain J.

    2018-01-01

    We develop a general framework that combines long-term tag–recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004–2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event. PMID:29657746

  2. A framework for estimating the determinants of spatial and temporal variation in vital rates and inferring the occurrence of unobserved extreme events.

    PubMed

    Vincenzi, Simone; Jesenšek, Dušan; Crivelli, Alain J

    2018-03-01

    We develop a general framework that combines long-term tag-recapture data and powerful statistical and modelling techniques to investigate how population, environmental and climate factors determine variation in vital rates and population dynamics in an animal species, using as a case study the population of brown trout living in Upper Volaja (Western Slovenia). This population has been monitored since 2004. Upper Volaja is a sink, receiving individuals from a source population living above a waterfall. We estimate the numerical contribution of the source population on the sink population and test the effects of temperature, population density and extreme events on variation in vital rates among 2647 individually tagged brown trout. We found that individuals dispersing downstream from the source population help maintain high population densities in the sink population despite poor recruitment. The best model of survival for individuals older than juveniles includes additive effects of birth cohort and sampling occasion. Fast growth of older cohorts and higher population densities in 2004-2005 suggest very low population densities in the late 1990s, which we hypothesize were caused by a flash flood that strongly reduced population size and created the habitat conditions for faster individual growth and transient higher population densities after the extreme event.

  3. Rainbow trout embryotoxicity of a complex contaminant mixture extracted from Lake Michigan lake trout

    USGS Publications Warehouse

    Wilson, P.J.; Tillitt, D.E.

    1996-01-01

    Persistent Hydrophobic contaminants such as poly chlorinated dibenzo-p-dioxins, dibenzofurans and biphenyl congeners are present in aquatic systems, and are known to produce adverse effects in fish. Reproductive failure in fish populations has been observed in aquatic systems contaminated with persistent hydrophobic compounds. In order to mimic maternal transfer of environmental contaminants to newly fertilized fish eggs, a complex environmental extract was tested for embryotoxicity in a nanoinjection bioassay with embryos of rainbow trout. The extract was obtained from whole adult lake trout collected from Lake Michigan in 1988. The tissue extraction involved blending and dehydration with sodium sulfate, column extraction, dialysis separation, reactive cleanup and, finally, high-performance gel permeation chromatography. Egg gram-equivalent doses (g tissue/g egg normalized for egg % lipid) of the final extract (0.02, 0.10, 0.20, 1.0, 2.0, 4.0, 10.0, 20.0 eggEQ) were injected into newly fertilized rainbow trout eggs using triolein as the vehicle. The extract of the lake trout was embryotoxic to rainbow trout, with an LD50 of 35 eggEQ, based on total cumulative mortality. Gross physical abnormalities characteristic of dioxin exposure, such as hemorrhaging, yolk-sac edema and craniofacial deformities, were observed and showed significant dose-related increases. Sublethal effects in the rainbow trout, such as delayed time to hatch, mild hemorrhaging and moderate yolk-sac edema, resulted from estimated total PCB exposure as low as 8.8 ng/g, and this may have significant implications on Great Lakes lake trout fry and juvenile mortality.

  4. Microsatellite analyses of the trout of northwest Mexico

    USGS Publications Warehouse

    Nielsen, J.L.; Sage, G.K.

    2001-01-01

    The trout of northwest Mexico represent an undescribed group of fish considered part of the Oncorhynchus mykiss (Pacific trout) complex of species and subspecies. Recent genetic studies have shown these fish to have important genetic diversity and a unique evolutionary history when compared to coastal rainbow trout. Increased levels of allelic diversity have been found in this species at the southern extent of its range. In this study we describe the trout in the Sierra Madre Occidental from the rios Yaqui, Mayo, Casas Grandes and de Bavispe, and their relationship to the more southern distribution of Mexican golden trout (O. chrysogaster) using 11 microsatellite loci. Microsatellite allelic diversity in Mexican trout was high with a mean of 6.6 alleles/locus, average heterozygosity = 0.35, and a mean Fst = 0.43 for all loci combined. Microsatellite data were congruent with previously published mtDNA results showing unique panmictic population structure in the Rio Yaqui trout that differs from Pacific coastal trout and Mexican golden trout. These data also add support for the theory of headwaters transfer of trout across the Continental Divide from tributaries of the Rio de Bavispe into the Rio Casas Grandes. Rio Mayo trout share a close genetic relationship to trout in Rio Yaqui, but sample sizes from the Rio Mayo prevent significant comparisons in this study. Microsatellite analyses show significant allelic frequency differences between Rio Yaqui trout and O. chrysogaster in Sinaloa and Durango Mexico, adding further support for a unique evolutionary status for this group of northwestern Mexican trout.

  5. Patterns of hybridization of nonnative cutthroat trout and hatchery rainbow trout with native redband trout in the Boise River, Idaho

    USGS Publications Warehouse

    Neville, Helen M.; Dunham, Jason B.

    2011-01-01

    Hybridization is one of the greatest threats to native fishes. Threats from hybridization are particularly important for native trout species as stocking of nonnative trout has been widespread within the ranges of native species, thus increasing the potential for hybridization. While many studies have documented hybridization between native cutthroat trout Oncorhynchus clarkii and nonnative rainbow trout O. mykiss, fewer have focused on this issue in native rainbow trout despite widespread threats from introductions of both nonnative cutthroat trout and hatchery rainbow trout. Here, we describe the current genetic (i.e., hybridization) status of native redband trout O. mykiss gairdneri populations in the upper Boise River, Idaho. Interspecific hybridization was widespread (detected at 14 of the 41 sampled locations), but high levels of hybridization between nonnative cutthroat trout and redband trout were detected in only a few streams. Intraspecific hybridization was considerably more widespread (almost 40% of sampled locations), and several local populations of native redband trout have been almost completely replaced with hatchery coastal rainbow trout O. mykiss irideus; other populations exist as hybrid swarms, some are in the process of being actively invaded, and some are maintaining genetic characteristics of native populations. The persistence of some redband trout populations with high genetic integrity provides some opportunity to conserve native genomes, but our findings also highlight the complex decisions facing managers today. Effective management strategies in this system may include analysis of the specific attributes of each site and population to evaluate the relative risks posed by isolation versus maintaining connectivity, identifying potential sites for control or eradication of nonnative trout, and long-term monitoring of the genetic integrity of remaining redband trout populations to track changes in their status.

  6. A modeling assessment of the thermal regime for an urban sport fishery

    USGS Publications Warehouse

    Bartholow, John M.

    1991-01-01

    Water temperature is almost certainly a limiting factor in the maintenance of a self-sustaining rainbow trout (Oncorhynchus mykiss, formerly Salmo gairdneri) and brown trout (Salmo trutta) fishery in the lower reaches of the Cache la Poudre River near Fort Collins, Colorado, USA. Irrigation diversions dewater portions of the river, but cold reservoir releases moderate water temperatures during some periods. The US Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP) was applied to a 31-km segment of the river using readily available stream geometry and hydrological and meteorological data. The calibrated model produced satisfactory water temperature predictions (R2=0.88,P3/sec would be needed to maintain suitable summer temperatures throughout most of the study area. Such flows would be especially beneficial during weekends when current irrigation patterns reduce flows. The model indicated that increasing the riparian shade would result in little improvement in water temperatures but that decreasing the stream width would result in significant temperature reductions. Introduction of a more thermally tolerant redband trout (Oncorhynchus sp.), or smallmouth bass (Micropterus dolomieui) might prove beneficial to the fishery. Construction of deep pools for thermal refugia might also be helpful.

  7. Thyroid axis disruption in juvenile brown trout (Salmo trutta) exposed to the flame retardant β-tetrabromoethylcyclohexane (β-TBECH) via the diet.

    PubMed

    Park, Bradley J; Palace, Vince; Wautier, Kerry; Gemmill, Bonnie; Tomy, Gregg

    2011-09-15

    Tetrabromoethylcyclohexane (TBECH) is an additive brominated flame retardant used in domestic and industrial applications. It has been detected in wildlife, and there is early evidence that it is an endocrine disruptor. Whereas other brominated flame retardants with similar physicochemical properties have been shown to disrupt the thyroid axis, no such evaluation has been conducted for TBECH. To elucidate this, juvenile brown trout (Salmo trutta) were fed either a control diet or diets containing low, medium, or high doses of β-TBECH, the isomer most frequently detected in wildlife, for 56 days (uptake phase) followed by a control diet for an additional 77 days (depuration phase). Eight fish per treatment were lethally sampled on uptake days 7, 14, 21, 35, 49, and 56 and on depuration days 7, 21, 35, 49, and 77 to assess fish condition, circulating free and total triiodothyronine and thyroxine, and thyroid epithelial cell height. Although there was no effect on condition factor, there was a significant reduction in total plasma thyroxine in the high dose group and a significant increase in mean thyroid epithelial cell height in the low, medium, and high dose groups during the uptake phase, whereas there were no differences in the depuration phase. These results indicate that β-TBECH may modulate the thyroid axis in fish at environmentally relevant concentrations.

  8. Testosterone-induced modulation of peroxisomal morphology and peroxisome-related gene expression in brown trout (Salmo trutta f. fario) primary hepatocytes.

    PubMed

    Lopes, Célia; Malhão, Fernanda; Guimarães, Cláudia; Pinheiro, Ivone; Gonçalves, José F; Castro, L Filipe C; Rocha, Eduardo; Madureira, Tânia V

    2017-12-01

    Disruption of androgenic signaling has been linked to possible cross-modulation with other hormone-mediated pathways. Therefore, our objective was to explore effects caused by testosterone - T (1, 10 and 50μM) in peroxisomal signaling of brown trout hepatocytes. To study the underlying paths involved, several co-exposure conditions were tested, with flutamide - F (anti-androgen) and ICI 182,780 - ICI (anti-estrogen). Molecular and morphological approaches were both evaluated. Peroxisome proliferator-activated receptor alpha (PPARα), catalase and urate oxidase were the selected targets for gene expression analysis. The vitellogenin A gene was also included as a biomarker of estrogenicity. Peroxisome relative volumes were estimated by immunofluorescence, and transmission electron microscopy was used for qualitative morphological control. The single exposures of T caused a significant down-regulation of urate oxidase (10 and 50μM) and a general up-regulation of vitellogenin. A significant reduction of peroxisome relative volumes and smaller peroxisome profiles were observed at 50μM. Co-administration of T and ICI reversed the morphological modifications and vitellogenin levels. The simultaneous exposure of T and F caused a significant and concentration-dependent diminishing in vitellogenin expression. Together, the findings suggest that in the tested model, T acted via both androgen and estrogen receptors to shape the peroxisomal related targets. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Short-term and long-term effects of transient exogenous cortisol manipulation on oxidative stress in juvenile brown trout.

    PubMed

    Birnie-Gauvin, Kim; Peiman, Kathryn S; Larsen, Martin H; Aarestrup, Kim; Willmore, William G; Cooke, Steven J

    2017-05-01

    In the wild, animals are exposed to a growing number of stressors with increasing frequency and intensity, as a result of human activities and human-induced environmental change. To fully understand how wild organisms are affected by stressors, it is crucial to understand the physiology that underlies an organism's response to a stressor. Prolonged levels of elevated glucocorticoids are associated with a state of chronic stress and decreased fitness. Exogenous glucocorticoid manipulation reduces an individual's ability to forage, avoid predators and grow, thereby limiting the resources available for physiological functions like defence against oxidative stress. Using brown trout ( Salmo trutta ), we evaluated the short-term (2 weeks) and long-term (4 months over winter) effects of exogenous cortisol manipulations (versus relevant shams and controls) on the oxidative status of wild juveniles. Cortisol caused an increase in glutathione over a 2 week period and appeared to reduce glutathione over winter. Cortisol treatment did not affect oxidative stress levels or low molecular weight antioxidants. Cortisol caused a significant decrease in growth rates but did not affect predation risk. Over-winter survival in the stream was associated with low levels of oxidative stress and glutathione. Thus, oxidative stress may be a mechanism by which elevated cortisol causes negative physiological effects. © 2017. Published by The Company of Biologists Ltd.

  10. Enhanced individual selection for selecting fast growing fish: the "PROSPER" method, with application on brown trout (Salmo trutta fario)

    PubMed Central

    Chevassus, Bernard; Quillet, Edwige; Krieg, Francine; Hollebecq, Marie-Gwénola; Mambrini, Muriel; Fauré, André; Labbé, Laurent; Hiseux, Jean-Pierre; Vandeputte, Marc

    2004-01-01

    Growth rate is the main breeding goal of fish breeders, but individual selection has often shown poor responses in fish species. The PROSPER method was developed to overcome possible factors that may contribute to this low success, using (1) a variable base population and high number of breeders (Ne > 100), (2) selection within groups with low non-genetic effects and (3) repeated growth challenges. Using calculations, we show that individual selection within groups, with appropriate management of maternal effects, can be superior to mass selection as soon as the maternal effect ratio exceeds 0.15, when heritability is 0.25. Practically, brown trout were selected on length at the age of one year with the PROSPER method. The genetic gain was evaluated against an unselected control line. After four generations, the mean response per generation in length at one year was 6.2% of the control mean, while the mean correlated response in weight was 21.5% of the control mean per generation. At the 4th generation, selected fish also appeared to be leaner than control fish when compared at the same size, and the response on weight was maximal (≈130% of the control mean) between 386 and 470 days post fertilisation. This high response is promising, however, the key points of the method have to be investigated in more detail. PMID:15496285

  11. Effects of hydropeaking on the spawning behaviour of Atlantic salmon Salmo salar and brown trout Salmo trutta.

    PubMed

    Vollset, K W; Skoglund, H; Wiers, T; Barlaup, B T

    2016-06-01

    An in situ camera set-up was used to study the spawning activity of Atlantic salmon Salmo salar and brown trout Salmo trutta throughout two consecutive seasons in a spawning area affected by hydropower-related pulse flows due to hydropeaking. The purpose was to test whether the flow variation discouraged spawning in shallow areas or motivated spawning into areas with elevated risk of incubation mortality. There were more S. salar observed on the spawning ground during days with high discharge. The presence of S. salar in the spawning grounds was not affected by the hydropeaking cycles of the preceding night. Female S. salar were observed preparing nests within the first hour after water discharge had increased to levels suitable for spawning. In contrast, the number of S. trutta was not correlated with flow and nest preparation was also observed at a discharge corresponding to the lowest discharge levels during a hydropeaking cycle. Survival was generally high in nests excavated the following winter, with only 5·4% suffering mortality due to dewatering. The results suggest that S. salar may respond rapidly to variable-flow conditions and utilize short windows with suitable flows for spawning. Smaller S. trutta may utilize low-flow conditions to spawn in areas that are not habitable by larger S. salar during low flow. © 2016 The Fisheries Society of the British Isles.

  12. Modeling prey consumption by native and non-native piscivorous fishes: implications for competition and impacts on shared prey in an ultraoligotrophic lake in Patagonia

    USGS Publications Warehouse

    Juncos, Romina; Beauchamp, David A.; Viglianoc, Pablo H.

    2013-01-01

    We examined trophic interactions of the nonnative salmonids Rainbow Trout Oncorhynchus mykiss, Brown Trout Salmo trutta, and Brook Trout Salvelinus fontinalisand the main native predator Creole Perch Percichthys trucha in Lake Nahuel Huapi (Patagonia, Argentina) to determine the relative impact of each predator on their forage base and to evaluate the potential vulnerability of each predator to competitive impacts by the others. Using bioenergetics simulations, we demonstrated the overall importance of galaxiids and decapods to the energy budgets of nonnative salmonids and Creole Perch. Introduced salmonids, especially Rainbow Trout, exerted considerably heavier predatory demands on shared resources than did the native Creole Perch on both a per capita basis and in terms of relative population impacts. Rainbow Trout consumed higher quantities and a wider size range of Small Puyen (also known as Inanga) Galaxias maculatus than the other predators, including early pelagic life stages of that prey; as such, this represents an additional source of mortality for the vulnerable early life stages of Small Puyen before and during their transition from pelagic to benthic habitats. All predators were generally feeding at high feeding rates (above 40% of their maximum physiological rates), suggesting that competition for prey does not currently limit either Creole Perch or the salmonids in this lake. This study highlights the importance of keystone prey for the coexistence of native species with nonnative top predators. It provides new quantitative and qualitative evidence of the high predation pressure exerted on Small Puyen, the keystone prey species, during the larval to juvenile transition from pelagic to littoral-benthic habitat in Patagonian lakes. This study also emphasizes the importance of monitoring salmonid and Creole Perch population dynamics in order to detect signs of potential impacts through competition and shows the need to carefully consider the rationale behind any additional trout stocking.

  13. Periodic habitat loss alters the competitive coexistence between brown trout and bullheads in a small stream over 34 years.

    PubMed

    Elliott, J M

    2006-01-01

    1. Changes in the population density of juvenile sea trout Salmo trutta L. and bullheads Cottus gobio L. were compared in a small stream over 34 years. Both species have a similar diet and obviously live in the same general habitat. Habitat loss was most marked in seven summer droughts: severest in 1976, 1983, 1984, 1995, and less severe but followed by autumn droughts in 1969, 1989 and 1993. The contrasting effects of habitat loss on the two species were examined. 2. For both species, the Ricker curvilinear model significantly fit (P < 0.001) the relationship between initial egg density and survivor density for successive life stages, even though egg densities were much lower for bullheads than trout. These analyses provided evidence for density-dependent population regulation and also identified extreme outliers, most being for year-classes affected by summer droughts. 3. The variable effects of changes in habitable area (= % wettable area in sampling section) were quantified by using the residuals, each residual being the absolute value expressed as a percentage of the expected value from the Ricker curve. Significant relationships between the residuals and habitable area showed that habitat loss had a marked effect on survivor density, this being negative for 0+ and 1+ trout, and positive for 0+, 1+ and 2+/3+ bullheads. 4. Therefore, during periods of habitat loss in the summer months, bullhead density increased at the expense of trout density. Low flows and a decrease in wettable area were associated with a marked reduction in habitat quality for drift-feeding trout and an increase in habitat quality, and perhaps also quantity, for benthic-feeding bullheads. This case study shows that, during a major perturbation, the relationship between the densities of two species can change markedly in favour of the less numerous species. The competitive coexistence between the two species is therefore a dynamic process that changes through time with periodic changes in the environment.

  14. Perfluorinated alkyl substances (PFAS) in terrestrial environments in Greenland and Faroe Islands.

    PubMed

    Bossi, Rossana; Dam, Maria; Rigét, Frank F

    2015-06-01

    Perfluorinated alkylated substances (PFASs) have been measured in liver samples from terrestrial organisms from Greenland and the Faeroe Islands. Samples from ptarmigan (West Greenland), reindeer (southwest-Greenland), muskox (East Greenland), and land-locked Arctic char from southwest Greenland and the Faroe Islands were analyzed. In addition, PFASs levels in land-locked brown trout from Faroese lakes are reported. Of the 17 PFASs analyzed in the samples the following compounds were detected: PFOS, PFNA, PFDA, PFUnA, PFDoA, PFTrA, and PFTeA. PFNA was the compound detected in most samples and in all species. However, the compound detected at highest concentration was dependent on species, with overall highest concentrations of PFTrA and PFUnA being detected in trout liver from Lake á Mýranar (Faroe Islands). In muskox, the PFAS occurring at highest concentrations was PFDA, which was among the PFAS detected at lowest concentrations in freshwater fish, and was only detected in one individual ptarmigan. The concentration of PFOS, PFDoA and PFTrA in Arctic char from Greenland and Faroe Islands were similar, whereas the concentration of PFNA, PFDA and PFUnA were higher in Arctic char than those from Greenland. The opposite was observed for PFTeA. The PFASs occurring at highest concentrations in trout were PFTrA and PFUnA. Arctic char from Lake á Mýranar had much lower concentrations of PFTrA and PFUnA than in trout from the lakes analyzed, but a higher concentration of PFTeA than trout from the same lake. A clear pattern with odd-carbon number homologues concentrations higher than the next lower even homologue was observed in fish samples, which is consistent with the hypothesis of transport of volatile precursors to remote regions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Role of habitat complexity in predator-prey dynamics between an introduced fish and larval Long-toed Salamanders (Ambystoma macrodactylum)

    USGS Publications Warehouse

    Kenison, Erin K; Litt, Andrea R.; Pilliod, David S.; McMahon, Tom E

    2016-01-01

    Predation by nonnative fishes has reduced abundance and increased extinction risk for amphibian populations worldwide. Although rare, fish and palatable amphibians have been observed to coexist where aquatic vegetation and structural complexity provide suitable refugia. We examined whether larval long-toed salamanders (Ambystoma macrodactylum Baird, 1849) increased use of vegetation cover in lakes with trout and whether adding vegetation structure could reduce predation risk and nonconsumptive effects (NCEs), such as reductions in body size and delayed metamorphosis. We compared use of vegetation cover by larval salamanders in lakes with and without trout and conducted a field experiment to investigate the influence of added vegetation structure on salamander body morphology and life history. The probability of catching salamanders in traps in lakes with trout was positively correlated with the proportion of submerged vegetation and surface cover. Growth rates of salamanders in enclosures with trout cues decreased as much as 85% and the probability of metamorphosis decreased by 56%. We did not find evidence that adding vegetation reduced NCEs in experimental enclosures, but salamanders in lakes with trout utilized more highly-vegetated areas which suggests that adding vegetation structure at the scale of the whole lake may facilitate coexistence between salamanders and introduced trout.

  16. Feeding ecology of native and nonnative salmonids during the expansion of a nonnative apex predator in Yellowstone Lake, Yellowstone National Park

    USGS Publications Warehouse

    Syslo, John M.; Guy, Christopher S.; Koel, Todd M.

    2016-01-01

    The illegal introduction of Lake Trout Salvelinus namaycush into Yellowstone Lake, Yellowstone National Park, preceded the collapse of the native population of Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri, producing a four-level trophic cascade. The Yellowstone Cutthroat Trout population’s collapse and the coinciding increase in Lake Trout abundance provided a rare opportunity to evaluate the feeding ecology of a native prey species and a nonnative piscivore species after the restructuring of a large lentic ecosystem. We assessed diets, stable isotope signatures, and depth-related CPUE patterns for Yellowstone Cutthroat Trout and Lake Trout during 2011–2013 to evaluate trophic overlap. To evaluate diet shifts related to density, we also compared 2011–2013 diets to those from studies conducted during previous periods with contrasting Yellowstone Cutthroat Trout and Lake Trout CPUEs. We illustrate the complex interactions between predator and prey in a simple assemblage and demonstrate how a nonnative apex predator can alter competitive interactions. The diets of Yellowstone Cutthroat Trout were dominated by zooplankton during a period when the Yellowstone Cutthroat Trout CPUE was high and were dominated by amphipods when the CPUE was reduced. Lake Trout shifted from a diet that was dominated by Yellowstone Cutthroat Trout during the early stages of the invasion to a diet that was dominated by amphipods after Lake Trout abundance had increased and after Yellowstone Cutthroat Trout prey had declined. The shifts in Yellowstone Cutthroat Trout and Lake Trout diets resulted in increased trophic similarity of these species through time due to their shared reliance on benthic amphipods. Yellowstone Cutthroat Trout not only face the threat posed by Lake Trout predation but also face the potential threat of competition with Lake Trout if amphipods are limiting. Our results demonstrate the importance of studying the long-term feeding ecology of fishes in invaded ecosystems.

  17. A modeling assessment of the thermal regime for an urban sport fishery

    NASA Astrophysics Data System (ADS)

    Bartholow, John M.

    1991-11-01

    Water temperature is almost certainly a limiting factor in the maintenance of a self-sustaining rainbow trout ( Oncorhynchus mykiss, formerly Salmo gairdneri) and brown trout ( Salmo trutta) fishery in the lower reaches of the Cache la Poudre River near Fort Collins, Colorado, USA. Irrigation diversions dewater portions of the river, but cold reservoir releases moderate water temperatures during some periods. The US Fish and Wildlife Service’s Stream Network Temperature Model (SNTEMP) was applied to a 31-km segment of the river using readily available stream geometry and hydrological and meteorological data. The calibrated model produced satisfactory water temperature predictions ( R 2=0.88, P<0.001, N=49) for a 62-day summer period. It was used to evaluate a variety of flow and nonflow alternatives to keep water temperatures below 23.3°C for the trout. Supplemental flows or reduced diversions of 3 m3/sec would be needed to maintain suitable summer temperatures throughout most of the study area. Such flows would be especially beneficial during weekends when current irrigation patterns reduce flows. The model indicated that increasing the riparian shade would result in little improvement in water temperatures but that decreasing the stream width would result in significant temperature reductions. Introduction of a more thermally tolerant redband trout ( Oncorhynchus sp.), or smallmouth bass ( Micropterus dolomieui) might prove beneficial to the fishery. Construction of deep pools for thermal refugia might also be helpful.

  18. Stress and food deprivation: linking physiological state to migration success in a teleost fish.

    PubMed

    Midwood, Jonathan D; Larsen, Martin H; Aarestrup, Kim; Cooke, Steven J

    2016-12-01

    Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i.e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. © 2016. Published by The Company of Biologists Ltd.

  19. Biotic interactions modify multiple-stressor effects on juvenile brown trout in an experimental stream food web.

    PubMed

    Bruder, Andreas; Salis, Romana K; Jones, Peter E; Matthaei, Christoph D

    2017-09-01

    Agricultural land use results in multiple stressors affecting stream ecosystems. Flow reduction due to water abstraction, elevated levels of nutrients and chemical contaminants are common agricultural stressors worldwide. Concurrently, stream ecosystems are also increasingly affected by climate change. Interactions among multiple co-occurring stressors result in biological responses that cannot be predicted from single-stressor effects (i.e. synergisms and antagonisms). At the ecosystem level, multiple-stressor effects can be further modified by biotic interactions (e.g. trophic interactions). We conducted a field experiment using 128 flow-through stream mesocosms to examine the individual and combined effects of water abstraction, nutrient enrichment and elevated levels of the nitrification inhibitor dicyandiamide (DCD) on survival, condition and gut content of juvenile brown trout and on benthic abundance of their invertebrate prey. Flow velocity reduction decreased fish survival (-12% compared to controls) and condition (-8% compared to initial condition), whereas effects of nutrient and DCD additions and interactions among these stressors were not significant. Negative effects of flow velocity reduction on fish survival and condition were consistent with effects on fish gut content (-25% compared to controls) and abundance of dominant invertebrate prey (-30% compared to controls), suggesting a negative metabolic balance driving fish mortality and condition decline, which was confirmed by structural equation modelling. Fish mortality under reduced flow velocity increased as maximal daily water temperatures approached the upper limit of their tolerance range, reflecting synergistic interactions between these stressors. Our study highlights the importance of indirect stressor effects such as those transferred through trophic interactions, which need to be considered when assessing and managing fish populations and stream food webs in multiple-stressor situations. However, in real streams, compensatory mechanisms and behavioural responses, as well as seasonal and spatial variation, may alter the intensity of stressor effects and the sensitivity of trout populations. © 2017 John Wiley & Sons Ltd.

  20. Effects of introduced fishes on wild juvenile coho salmon in three shallow pacific northwest lakes

    USGS Publications Warehouse

    Bonar, Scott A.; Bolding, B.D.; Divens, M.; Meyer, W.

    2005-01-01

    Declines in Pacific salmon Oncorhynchus spp. have been blamed on hydropower, overfishing, ocean conditions, and land use practices; however, less is known about the impacts of introduced fish. Most of the hundreds of lakes and ponds in the Pacific Northwest contain introduced fishes, and many of these water bodies are also important for salmon production, especially of coho salmon O. kisutch. Over 2 years, we examined the predation impacts of 10 common introduced fishes (brown bullhead Ameiurus nebulosus, black crappie Pomoxis nigro-maculatus, bluegill Lepomis macrochirus, golden shiner Notemigonus crysoleucas, green sunfish L. cyanellus, largemouth bass Micropterus salmoides, pumpkinseed L. gibbosus, rainbow trout O. mykiss, warmouth L. gulosus, and yellow perch Perca flavescens) and two native fishes (cutthroat trout O. clarkii and prickly sculpin Cottus asper) on wild juvenile coho salmon in three shallow Pacific Northwest lakes, all located in different watersheds. Of these species, largemouth bass were responsible for an average of 98% of the predation on coho salmon in all lakes, but the total impact to each run varied among lakes and years. Very few coho salmon were eaten by black crappies, brown bullheads, cutthroat trout, prickly sculpin, or yellow perch, whereas other species were not observed to eat coho salmon. Juvenile coho salmon growth in all lakes was higher than in nearby streams. Therefore, food competition between coho salmon and introduced fishes in lakes was probably not limiting coho salmon populations. Largemouth bass are widespread and are present in 85% of lowland warmwater public-access lakes in Washington (n = 421), 84% of those in Oregon (n = 179), and 74% of those in the eight northwesternmost counties in California (n = 19). Future research would help to identify the impact of largemouth bass predation across the region and prioritize lakes where impacts are most severe. Nevertheless, attempts to transplant or increase largemouth bass numbers in lakes important to coho salmon would be counterproductive to coho salmon enhancement efforts. ?? Copyright by the American Fisheries Society 2005.

  1. Fish glucose transporter (GLUT)-4 differs from rat GLUT4 in its traffic characteristics but can translocate to the cell surface in response to insulin in skeletal muscle cells.

    PubMed

    Díaz, Mònica; Antonescu, Costin N; Capilla, Encarnación; Klip, Amira; Planas, Josep V

    2007-11-01

    In mammals, glucose transporter (GLUT)-4 plays an important role in glucose homeostasis mediating insulin action to increase glucose uptake in insulin-responsive tissues. In the basal state, GLUT4 is located in intracellular compartments and upon insulin stimulation is recruited to the plasma membrane, allowing glucose entry into the cell. Compared with mammals, fish are less efficient restoring plasma glucose after dietary or exogenous glucose administration. Recently our group cloned a GLUT4-homolog in skeletal muscle from brown trout (btGLUT4) that differs in protein motifs believed to be important for endocytosis and sorting of mammalian GLUT4. To study the traffic of btGLUT4, we generated a stable L6 muscle cell line overexpressing myc-tagged btGLUT4 (btGLUT4myc). Insulin stimulated btGLUT4myc recruitment to the cell surface, although to a lesser extent than rat-GLUT4myc, and enhanced glucose uptake. Interestingly, btGLUT4myc showed a higher steady-state level at the cell surface under basal conditions than rat-GLUT4myc due to a higher rate of recycling of btGLUT4myc and not to a slower endocytic rate, compared with rat-GLUT4myc. Furthermore, unlike rat-GLUT4myc, btGLUT4myc had a diffuse distribution throughout the cytoplasm of L6 myoblasts. In primary brown trout skeletal muscle cells, insulin also promoted the translocation of endogenous btGLUT4 to the plasma membrane and enhanced glucose transport. Moreover, btGLUT4 exhibited a diffuse intracellular localization in unstimulated trout myocytes. Our data suggest that btGLUT4 is subjected to a different intracellular traffic from rat-GLUT4 and may explain the relative glucose intolerance observed in fish.

  2. Re-cycling mercury: the role of stocking non-native fish in high-altitude lakes

    NASA Astrophysics Data System (ADS)

    Hansson, S. V.; Le Roux, G.; Sonke, J.

    2016-12-01

    Mercury (Hg) is a globally distributed pollutant that can be carried long distances and be deposited remote from its original source. It is also one of the few natural abundant trace metals that serves no biological purpose, i.e. is highly toxic to humans and other biota. Studies have also shown that Hg-deposition increases with increasing altitude, leading to a higher load of contamination to these already sensitive environments. Any additional sources of Hg to high-altitude aquatic systems are therefore of high concern. Today introduced non-indigenous fish can be found in aquatic systems on all contents, with the exception of Antarctica. However, the social and economic benefits gained by these introductions often weighs against the ecological impacts. E.g. studies have shown that introduction of carnivore fish can lead to alternation of the aquatic food web and introduce pathogens causing population declines or even extinction. Few studies however have looked at the introduction of non-native fish to high altitude aquatic systems in the scope of heavy-metal contamination. By using a combined geochemical and isotopic approach, we therefore study the introduction of brown trout as a potential source of Hg-contamination in three high altitude lakes in the French Pyrenees. We combine analysis of δ13C and δ15N, with tot-Hg and Hg-isotopes in samples of biofilm, invertebrates, common minnow and brow trout and compare these with data from trout bred at a local fish farm, providing the fish used when stocking lakes in the nearby region. Our results show that levels of tot-Hg in trout from our sites surpasses literature values by 5 times or more and that MIF and MDF Hg-isotope signatures shows clear relationship with fish size and with δ15N. However, there is a clear difference in the Hg-isotopic signatures of the wild trout compared to the farmed. Whereas δ202Hg and Δ199Hg-signatures of the wild trout aligns with the onsite food chain (biofilm, plankton, common minnow), the farmed trout show isotopic signatures identical to marine biota, e.g. tuna and dolphin. This is also reflected in the δ15N-signatures where the farmed trout corresponds to trophic levels two steps above those of the wild trout. Drawing on these data we therefore ask; are we recycling mercury and shortcutting the natural Hg-cycle by stocking lakes with farmed fish?

  3. Genetic Structure of Pacific Trout at the Extreme Southern End of Their Native Range

    PubMed Central

    Abadía-Cardoso, Alicia; Garza, John Carlos; Mayden, Richard L.; García de León, Francisco Javier

    2015-01-01

    Salmonid fishes are cold water piscivores with a native distribution spanning nearly the entire temperate and subarctic northern hemisphere. Trout in the genus Oncorhynchus are the most widespread salmonid fishes and are among the most important fish species in the world, due to their extensive use in aquaculture and valuable fisheries. Trout that inhabit northwestern Mexico are the southernmost native salmonid populations in the world, and the least studied in North America. They are unfortunately also facing threats to their continued existence. Previous work has described one endemic species, the Mexican golden trout (O. chrysogaster), and one endemic subspecies, Nelson’s trout (O. mykiss nelsoni), in Mexico, but previous work indicated that there is vastly more biodiversity in this group than formally described. Here we conducted a comprehensive genetic analysis of this important group of fishes using novel genetic markers and techniques to elucidate the biodiversity of trout inhabiting northwestern Mexico, examine genetic population structure of Mexican trout and their relationships to other species of Pacific trout, and measure introgression from non-native hatchery rainbow trout. We confirmed substantial genetic diversity and extremely strong genetic differentiation present in the Mexican trout complex, not only between basins but also between some locations within basins, with at least four species-level taxa present. We also revealed significant divergence between Mexican trout and other trout species and found that introgression from non-native rainbow trout is present but limited, and that the genetic integrity of native trout is still maintained in most locations. This information will help to guide effective conservation strategies for this important group of fishes. PMID:26509445

  4. A General Model of Distant Hybridization Reveals the Conditions for Extinction in Atlantic Salmon and Brown Trout

    PubMed Central

    Quilodrán, Claudio S.; Currat, Mathias; Montoya-Burgos, Juan I.

    2014-01-01

    Interspecific hybridization is common in nature but can be increased in frequency or even originated by human actions, such as species introduction or habitat modification, which may threaten species persistence. When hybridization occurs between distantly related species, referred to as “distant hybridization,” the resulting hybrids are generally infertile or fertile but do not undergo chromosomal recombination during gametogenesis. Here, we present a model describing this frequent but poorly studied interspecific hybridization to assess its consequences on parental species and to anticipate the conditions under which they can reach extinction. Our general model fully incorporates three important processes: density-dependent competition, dominance/recessivity inheritance of traits and assortative mating. We demonstrate its use and flexibility by assessing population extinction risk between Atlantic salmon and brown trout in Norway, whose interbreeding has recently increased due to farmed fish releases into the wild. We identified the set of conditions under which hybridization may threaten salmonid species. Thanks to the flexibility of our model, we evaluated the effect of an additional risk factor, a parasitic disease, and showed that the cumulative effects dramatically increase the extinction risk. The consequences of distant hybridization are not genetically, but demographically mediated. Our general model is useful to better comprehend the evolution of such hybrid systems and we demonstrated its importance in the field of conservation biology to set up management recommendations when this increasingly frequent type of hybridization is in action. PMID:25003336

  5. Impact of trace metals from past mining on the aquatic ecosystem: a multi-proxy approach in the Morvan (France).

    PubMed

    Camizuli, E; Monna, F; Scheifler, R; Amiotte-Suchet, P; Losno, R; Beis, P; Bohard, B; Chateau, C; Alibert, P

    2014-10-01

    This study seeks to determine to what extent trace metals resulting from past mining activities are transferred to the aquatic ecosystem, and whether such trace metals still exert deleterious effects on biota. Concentrations of Cd, Cu, Pb and Zn were measured in streambed sediments, transplanted bryophytes and wild brown trout. This study was conducted at two scales: (i) the entire Morvan Regional Nature Park and (ii) three small watersheds selected for their degree of contamination, based on the presence or absence of past mining sites. The overall quality of streambed sediments was assessed using Sediment Quality Indices (SQIs). According to these standard guidelines, more than 96% of the sediments sampled should not represent a threat to biota. Nonetheless, in watersheds where past mining occurred, SQIs are significantly lower. Transplanted bryophytes at these sites consistently present higher trace metal concentrations. For wild brown trout, the scaled mass and liver indices appear to be negatively correlated with liver Pb concentrations, but there are no obvious relationships between past mining and liver metal concentrations or the developmental instability of specimens. Although the impact of past mining and metallurgical works is apparently not as strong as that usually observed in modern mining sites, it is still traceable. For this reason, past mining sites should be monitored, particularly in protected areas erroneously thought to be free of anthropogenic contamination. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Ecotoxicological impact of highway runoff using brown trout (Salmo trutta L.) as an indicator model.

    PubMed

    Meland, Sondre; Salbu, Brit; Rosseland, Bjørn Olav

    2010-03-01

    The ecotoxicological impact of highway runoff on brown trout (Salmo trutta L.) was studied in an in situ experiment consisting of four 24 h simulated runoff episodes. Fish were maintained in 5 tanks and exposed to highway runoff from a sedimentation pond close to E6 outside the city of Oslo, Norway. The tanks had the following contaminant loadings during the episodes: stream water (control), pond inlet, pond outlet, pond inlet + stream water and pond outlet + stream water. Opposite to road salt and compared to earlier findings, the first two episodes had rather low concentrations of trace metals, hydrocarbons and polycyclic aromatic hydrocarbons. A heavy rainfall before episode 3 increased the concentrations of all the contaminants except road salt which was diluted. In addition, lowered oxygen levels led to hypoxic conditions. Overall the fish exposed to highway runoff had, compared to the control fish, higher concentrations of trace metals in gills and liver, increased activity of the antioxidant defense system represented by superoxide dismutase, catalase and metallothionein, problems with the regulation of plasma Cl and Na, as well as increased levels of blood glucose and pCO(2). Finally, this seemed to affect the metabolism of the fish through reduced condition factor. The observed effects were likely caused by multiple stressors and not by a single contaminant. The sedimentation pond clearly reduced the toxicity of the highway runoff. But even in the least polluted exposure tank (pond outlet + stream water) signs of physiological disturbances were evident.

  7. A general model of distant hybridization reveals the conditions for extinction in Atlantic salmon and brown trout.

    PubMed

    Quilodrán, Claudio S; Currat, Mathias; Montoya-Burgos, Juan I

    2014-01-01

    Interspecific hybridization is common in nature but can be increased in frequency or even originated by human actions, such as species introduction or habitat modification, which may threaten species persistence. When hybridization occurs between distantly related species, referred to as "distant hybridization," the resulting hybrids are generally infertile or fertile but do not undergo chromosomal recombination during gametogenesis. Here, we present a model describing this frequent but poorly studied interspecific hybridization to assess its consequences on parental species and to anticipate the conditions under which they can reach extinction. Our general model fully incorporates three important processes: density-dependent competition, dominance/recessivity inheritance of traits and assortative mating. We demonstrate its use and flexibility by assessing population extinction risk between Atlantic salmon and brown trout in Norway, whose interbreeding has recently increased due to farmed fish releases into the wild. We identified the set of conditions under which hybridization may threaten salmonid species. Thanks to the flexibility of our model, we evaluated the effect of an additional risk factor, a parasitic disease, and showed that the cumulative effects dramatically increase the extinction risk. The consequences of distant hybridization are not genetically, but demographically mediated. Our general model is useful to better comprehend the evolution of such hybrid systems and we demonstrated its importance in the field of conservation biology to set up management recommendations when this increasingly frequent type of hybridization is in action.

  8. Effect of species, life stage, and water temperature on the toxicity of hydrogen peroxide to fish

    USGS Publications Warehouse

    Rach, J.J.; Schreier, Theresa M.; Howe, G.E.; Redman, S.D.

    1997-01-01

    Hydrogen peroxide is a drug of low regulatory priority status that is effective in treating fish and fish eggs infected by fungi. However, only limited information is available to guide fish culturists in administering hydrogen peroxide to diseased fish. Laboratory tests were conducted to determine (1) the sensitivity of brown trout Salmo trutta, lake trout Salvelinus namaycush, fathead minnow Pimephales promelas, walleye Stizostedion vitreum, channel catfish Ictalurus punctatus, and bluegill Lepomis, machrochirus to hydrogen peroxide treatments; (2) the sensitivity of various life stages of rainbow trout Oncorhynchus mykiss to hydrogen peroxide treatments; and (3) the effect of water temperature on the acute toxicity of hydrogen peroxide to three fish species. Fish were exposed to hydrogen peroxide concentrations ranging from 100 to 5,000 mu L/L (ppm) for 15-min or 45-min treatments every other day for four consecutive treatments to determine the sensitivity of various species and life stages of fish. Except for walleye, most species of fish tested (less than or equal to 2 g) tolerated hydrogen peroxide of 1,000 mu L/L or greater. Walleyes were sensitive to hydrogen peroxide concentrations as low as 100 mu L/L. A correlation was found between the toxicity of hydrogen peroxide and the life stages of rainbow trout; larger fish were more sensitive. Generally, the toxicity of hydrogen peroxide increased for all species as water temperature increased. The results of these experiments demonstrate that it is important to consider the effects of species, life stage, and water temperature when conducting hydrogen peroxide treatments.

  9. Quantitative evaluation of macrophage aggregates in brook trout Salvelinus fontinalis and rainbow trout Oncorhynchus mykiss

    USGS Publications Warehouse

    Schwindt, Adam R.; Truelove, Nathan; Schreck, Carl B.; Fournie, John W.; Landers, Dixon H.; Kent, Michael L.

    2006-01-01

    Macrophage aggregates (MAs) occur in various organs of fishes, especially the kidney, liver and spleen, and contain melanin, ceroid/lipofuscin and hemosiderin pigments. They have been used as indicators of a number of natural and anthropogenic stressors. Macrophage aggregates occur in salmonids but are poorly organized, irregularly shaped, and are generally smaller than those in derived teleosts. These features complicate quantification, and thus these fishes have seldom been used in studies correlating MAs with environmental stressors. To alleviate these complications, we developed color filtering algorithms for use with the software package ImagePro Plus® (Media Cybernetics) that select and quantify pigmented area (i.e. colors ranging from gold to brown to black) in tissue sections. Image analysis results compared well with subjective scoring when tested on brook trout Salvelinus fontinalis and rainbow trout Oncorhynchus mykiss captured from high-elevation lakes or hatcheries. Macrophage aggregate pigments correlated positively with age and negatively with condition factor. Within individual fish, pigmentation correlated positively among organs, suggesting that the kidney, liver or spleen are suitable indicator organs. In age-matched fishes, MA pigments were not different between hatcheries and lakes in the organs examined. Between lakes, differences in pigments were observed in the kidney and spleen, but were not explained by age, condition factor, sex or maturation state. Our results indicate that quantification of the area occupied by MA pigments is an efficient and accurate means of evaluating MAs in salmonid organs and that organ pigmentation correlates with age and condition factor, as seen in studies with more derived fishes. 

  10. Seasonal movement and habitat use by sub-adult bull trout in the upper Flathead River system, Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Marotz, Brian

    2005-01-01

    Despite the importance of large-scale habitat connectivity to the threatened bull trout Salvelinus confluentus, little is known about the life history characteristics and processes influencing natural dispersal of migratory populations. We used radiotelemetry to investigate the seasonal movements and habitat use by subadult bull trout (i.e., fish that emigrated from natal streams to the river system) tracked for varying durations from 1999 to 2002 in the upper Flathead River system in northwestern Montana. Telemetry data revealed migratory (N = 32 fish) and nonmigratory (N = 35 fish) behavior, indicating variable movement patterns in the subadult phase of bull trout life history. Most migrating subadults (84%) made rapid or incremental downriver movements (mean distance, 33 km; range, 6–129 km) to lower portions of the river system and to Flathead Lake during high spring flows and as temperatures declined in the fall and winter. Bull trout subadults used complex daytime habitat throughout the upper river system, including deep runs that contained unembedded boulder and cobble substrates, pools with large woody debris, and deep lake-influenced areas of the lower river system. Our results elucidate the importance of maintaining natural connections and a diversity of complex habitats over a large spatial scale to conserve the full expression of life history traits and processes influencing the natural dispersal of bull trout populations. Managers should seek to restore and enhance critical river corridor habitat and remove migration barriers, where possible, for recovery and management programs.

  11. Life history migrations of adult Yellowstone Cutthroat Trout in the upper Yellowstone River

    USGS Publications Warehouse

    Ertel, Brian D.; McMahon, Thomas E.; Koel, Todd M.; Gresswell, Robert E.; Burckhardt, Jason

    2017-01-01

    Knowledge of salmonid life history types at the watershed scale is increasingly recognized as a cornerstone for effective management. In this study, we used radiotelemetry to characterize the life history movements of Yellowstone Cutthroat Trout Oncorhynchus clarkii bouvieri in the upper Yellowstone River, an extensive tributary that composes nearly half of the drainage area of Yellowstone Lake. In Yellowstone Lake, Yellowstone Cutthroat Trout have precipitously declined over the past 2 decades primarily due to predation from introduced Lake Trout Salvelinus namaycush. Radio tags were implanted in 152 Yellowstone Cutthroat Trout, and their movements monitored over 3 years. Ninety-six percent of tagged trout exhibited a lacustrine–adfluvial life history, migrating upstream a mean distance of 42.6 km to spawn, spending an average of 24 d in the Yellowstone River before returning to Yellowstone Lake. Once in the lake, complex postspawning movements were observed. Only 4% of radio-tagged trout exhibited a fluvial or fluvial–adfluvial life history. Low prevalence of fluvial and fluvial–adfluvial life histories was unexpected given the large size of the upper river drainage. Study results improve understanding of life history diversity in potamodromous salmonids inhabiting relatively undisturbed watersheds and provide a baseline for monitoring Yellowstone Cutthroat Trout response to management actions in Yellowstone Lake.

  12. Geologic influences on Apache trout habitat in the White Mountains of Arizona

    Treesearch

    Jonathan W. Long; Alvin L. Medina

    2006-01-01

    Geologic variation has important influences on habitat quality for species of concern, but it can be difficult to evaluate due to subtle variations, complex terminology, and inadequate maps. To better understand habitat of the Apache trout (Onchorhynchus apache or O. gilae apache Miller), a threatened endemic species of the White...

  13. Investigation of the effects of dietary protein source on copper and zinc bioavailability in rainbow trout

    USDA-ARS?s Scientific Manuscript database

    Limited research has examined the effects that dietary protein sources have on copper (Cu) and Zinc (Zn) absorption, interactions and utilization in rainbow trout. Therefore, the objective of the first trial was to determine what effect protein source (plant vs. animal based), Cu source (complex vs....

  14. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: predicting the effects of climate change.

    PubMed

    Elliott, J M; Elliott, J A

    2010-11-01

    Atlantic salmon Salmo salar, brown trout Salmo trutta (including the anadromous form, sea trout) and Arctic charr Salvelinus alpinus (including anadromous fish) provide important commercial and sports fisheries in Western Europe. As water temperature increases as a result of climate change, quantitative information on the thermal requirements of these three species is essential so that potential problems can be anticipated by those responsible for the conservation and sustainable management of the fisheries and the maintenance of biodiversity in freshwater ecosystems. Part I compares the temperature limits for survival, feeding and growth. Salmo salar has the highest temperature tolerance, followed by S. trutta and finally S. alpinus. For all three species, the temperature tolerance for alevins is slightly lower than that for parr and smolts, and the eggs have the lowest tolerance; this being the most vulnerable life stage to any temperature increase, especially for eggs of S. alpinus in shallow water. There was little evidence to support local thermal adaptation, except in very cold rivers (mean annual temperature <6·5° C). Part II illustrates the importance of developing predictive models, using data from a long-term study (1967-2000) of a juvenile anadromous S. trutta population. Individual-based models predicted the emergence period for the fry. Mean values over 34 years revealed a large variation in the timing of emergence with c. 2 months between extreme values. The emergence time correlated significantly with the North Atlantic Oscillation Index, indicating that interannual variations in emergence were linked to more general changes in climate. Mean stream temperatures increased significantly in winter and spring at a rate of 0·37° C per decade, but not in summer and autumn, and led to an increase in the mean mass of pre-smolts. A growth model for S. trutta was validated by growth data from the long-term study and predicted growth under possible future conditions. Small increases (<2·5° C) in winter and spring would be beneficial for growth with 1 year-old smolts being more common. Water temperatures would have to increase by c. 4° C in winter and spring, and 3° C in summer and autumn before they had a marked negative effect on trout growth. © 2010 The Authors. Journal of Fish Biology © 2010 The Fisheries Society of the British Isles.

  15. Trophic ontogeny of fluvial Bull Trout and seasonal predation on Pacific Salmon in a riverine food web

    USGS Publications Warehouse

    Lowery, Erin D.; Beauchamp, David A.

    2015-01-01

    Bull Trout Salvelinus confluentus are typically top predators in their host ecosystems. The Skagit River in northwestern Washington State contains Bull Trout and Chinook Salmon Oncorhynchus tshawytschapopulations that are among the largest in the Puget Sound region and also contains a regionally large population of steelhead O. mykiss (anadromous Rainbow Trout). All three species are listed as threatened under the Endangered Species Act (ESA). Our objective was to determine the trophic ecology of Bull Trout, especially their role as predators and consumers in the riverine food web. We seasonally sampled distribution, diets, and growth of Bull Trout in main-stem and tributary habitats during 2007 and winter–spring 2008. Consumption rates were estimated with a bioenergetics model to (1) determine the annual and seasonal contributions of different prey types to Bull Trout energy budgets and (2) estimate the potential impacts of Bull Trout predation on juvenile Pacific salmon populations. Salmon carcasses and eggs contributed approximately 50% of the annual energy budget for large Bull Trout in main-stem habitats, whereas those prey types were largely inaccessible to smaller Bull Trout in tributary habitats. The remaining 50% of the energy budget was acquired by eating juvenile salmon, resident fishes, and immature aquatic insects. Predation on listed Chinook Salmon and steelhead/Rainbow Trout was highest during winter and spring (January–June). Predation on juvenile salmon differed between the two study years, likely due to the dominant odd-year spawning cycle for Pink Salmon O. gorbuscha. The population impact on ocean- and stream-type Chinook Salmon was negligible, whereas the impact on steelhead/Rainbow Trout was potentially very high. Due to the ESA-listed status of Bull Trout, steelhead, and Chinook Salmon, the complex trophic interactions in this drainage provide both challenges and opportunities for creative adaptive management strategies.

  16. Factors influencing the distribution of native bull trout and westslope cutthroat trout in western Glacier National Park, Montana

    USGS Publications Warehouse

    D'Angelo, Vincent S.; Muhlfeld, Clint C.

    2013-01-01

    The widespread declines of native bull trout (Salvelinus confluentus) and westslope cutthroat trout (Oncorhynchus clarkii lewisi) populations prompted researchers to investigate factors influencing their distribution and status in western Glacier National Park, Montana. We evaluated the association of a suite of abiotic factors (stream width, elevation, gradient, large woody debris density, pool density, August mean stream temperature, reach surface area) with the occurrence (presence or absence) of bull trout and westslope cutthroat trout in 79 stream reaches in five sub-drainages containing glacial lakes. We modeled the occurrence of each species using logistic regression and evaluated competing models using an information theoretic approach. Westslope cutthroat trout were widely distributed (47 of 79 reaches), and there appeared to be no restrictions on their distribution other than physical barriers. Westslope cutthroat trout were most commonly found in relatively warm reaches downstream of lakes and in headwater reaches with large amounts of large woody debris and abundant pools. By contrast, bull trout were infrequently detected (10 of 79 reaches), with 7 of the 10 (70%) detections in sub-drainages that have not been compromised by non-native lake trout (S. namaycush). Bull trout were most often found in cold, low-gradient reaches upstream of glacial lakes. Our results indicate that complex stream habitats in sub-drainages free of non-native species are important to the persistence of native salmonids in western Glacier National Park. Results from this study may help managers monitor and protect important habitats and populations, inform conservation and recovery programs, and guide non-native species suppression efforts in Glacier National Park and elsewhere.

  17. Patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes

    USGS Publications Warehouse

    Miller, Michael A.; Madenjian, Charles P.; Masnado, Robert G.

    1992-01-01

    To investigate spatial and temporal patterns of organochlorine contamination in lake trout from Wisconsin waters of the Great Lakes, we examined laboratory contaminant analysis data of muscle tissue samples from Lake Michigan (n=317) and Lake Superior (n=53) fish. Concentrations of polychlorinated biphenyls (PCBs), chlordane, and dieldrin, reported as mg/kg wet weight in 620 mm to 640 mm mean length Lake Michigan lake trout, decreased over time. Mean total PCB concentration declined exponentially from 9.7 in 1975 to 1.9 in 1990. Total chlordane concentration declined 63 percent from 0.48 in 1983 to 0.18 in 1990, and dieldrin declined 52 percent during this same period, from 0.21 to 0.10. The bioaccumulation rate of PCBs is significantly lower for lake trout inhabiting Lake Michigan's midlake reef complex, compared to lake trout from the nearshore waters of western Lake Michigan. Organochlorine compound concentrations were greater in Lake Michigan lake trout than Lake Superior fish. Lake Superior lean lake trout and siscowet exhibited similar rates of PCB bioaccumulation despite major differneces in muscle tissue lipid content between the two subspecies. The lack of a significant difference in the PCB bioaccumulation rates of lean trout and siscowet suggests that lipid content may not be an important factor influencing PCB bioaccumulation in lake trout, within the range of lipid concentrations observed. Relative concentrations of the various organochlorine contaminants found in lake trout were highly correlated, suggesting similar mass balance processes for these compounds. Evidence presented revealing spatial and temporal patterns of organochlorine contamination may be of value in reestablishing self-sustaining populations of lake trout in Lake Michigan.

  18. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    USGS Publications Warehouse

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already depressed where climatic vulnerability is highest; it will likely erode further in the very places where diversity may be most needed for future persistence.

  19. Mercury bioaccumulation in fish in a region affected by historic gold mining; the South Yuba River, Deer Creek, and Bear River watersheds, California, 1999

    USGS Publications Warehouse

    May, Jason T.; Hothem, Roger L.; Alpers, Charles N.; Law, Matthew A.

    2000-01-01

    Mercury that was used historically for gold recovery in mining areas of the Sierra Nevada continues to enter local and downstream water bodies, including the Sacramento Delta and the San Francisco Bay of northern California. Methylmercury is of particular concern because it is the most prevalent form of mercury in fish and is a potent neurotoxin that bioaccumulates at successive trophic levels within food webs. In April 1999, the U.S. Geological Survey, in cooperation with several other agencies the Forest Service (U.S. Department of Agriculture), the Bureau of Land Management, the U.S. Environmental Protection Agency, the California State Water Resources Control Board, and the Nevada County Resource Conservation District began a pilot investigation to characterize the occurrence and distribution of mercury in water, sediment, and biota in the South Yuba River, Deer Creek, and Bear River watersheds of California. Biological samples consisted of semi-aquatic and aquatic insects, amphibians, bird eggs, and fish. Fish were collected from 5 reservoirs and 14 stream sites during August through October 1999 to assess the distribution of mercury in these watersheds. Fish that were collected from reservoirs included top trophic level predators (black basses, Micropterus spp.) intermediate trophic level predators [sunfish (blue gill, Lepomis macrochirus; green sunfish, Lepomis cyanellus; and black crappie, Poxomis nigromaculatus)] and benthic omnivores (channel catfish, Ictularus punctatus). At stream sites, the species collected were upper trophic level salmonids (brown trout, Salmo trutta) and upper-to-intermediate trophic level salmonids (rainbow trout, Oncorhynchus mykiss). Boneless and skinless fillet portions from 161 fish were analyzed for total mercury; 131 samples were individual fish, and the remaining 30 fish were combined into 10 composite samples of three fish each of the same species and size class. Mercury concentrations in samples of black basses (Micropterus spp.), including largemouth, smallmouth, and spotted bass, ranged from 0.20 to 1.5 parts per million (ppm), wet basis. Mercury concentrations in sunfish ranged from less than 0.10 to 0.41 ppm (wet). Channel catfish had mercury concentrations from 0.16 to 0.75 ppm (wet). The range of mercury concentrations observed in rainbow trout was from 0.06 to 0.38 ppm (wet), and in brown trout was from 0.02 to 0.43 ppm (wet). Mercury concentrations in trout were greater than 0.3 ppm in samples from three of 14 stream sites. Mercury at elevated concentrations may pose a health risk to piscivorous wildlife and to humans who eat fish on a regular basis. Data presented in this report may be useful to local, state, and federal agencies responsible for assessing the potential risks associated with elevated levels of mercury in fish in the South Yuba River, Deer Creek, and Bear River watersheds.

  20. Treated mine drainage effluent benefits Maryland and West Virginia fisherman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashby, J.C.

    1995-12-31

    In January of 1994, the Maryland Department of Natural Resources-Freshwater Fisheries Division and Mettiki Coal Corporation of Oakland, Maryland entered into a cooperative agreement to construct a trout rearing facility within Mettiki`s 10 million gallons per day acid mine drainage treatment system to supplement the DNR stockings in the newly revitalized North Branch of the Potomac River. Due to pyrite oxidation and a lack of alkaline buffering capacity in the Freeport coal strata, seven thousand gallons per minute of acidic water containing oxidized sulfide minerals must be pumped through Mettiki`s AMD treatment systems and elevated to Federal standards prior tomore » discharge into the Upper North Branch of the Potomac River. Utilizing hydrated lime, aeration, flocculation, sedimentation, and sludge recirculation, Mettiki`s treatment imparts superior trout propagation qualities to the discharge (pH of 8.1, dissolved oxygen of 8.0 ppm, temperature ranges of from 52 to 60 degrees Fahrenheit) and has allowed for weight gain throughout the typically dormant winter months. Presently, 30,000 brown, rainbow, and cutthroat trout are suspended in floating net pens within the systems` discharge collection pond where pH, flow, temperature, feed assimilation, and growth rates were compared with typical stream diversion hatcheries. Growth rates, lack of significant disease, and quality parameters coupled with ideal temperatures suggests treated acidic mine effluent can offer successful fish propagation opportunities.« less

  1. A comparison of the toxicity of synergized and technical formulations of permethrin, sumithrin, and resmethrin to trout.

    PubMed

    Paul, E A; Simonin, H A; Tomajer, T M

    2005-02-01

    Synthetic pyrethroids often have synergists added to improve effectiveness, yet decisions regarding the use of these pesticides are often based upon toxicity tests using technical material without the synergist, piperonyl butoxide. We conducted toxicity tests with brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) to compare the toxicity of synergized and technical formulations of permethrin, sumithrin, and resmethrin. We found a significant increase in toxicity in the synergized permethrin formulation using traditional 24, 48, and 96-h tests, relative to tests with the technical formulation. However, there was little difference in toxicity between synergized and technical sumithrin until 48 h had elapsed. Many test fish were strongly intoxicated by either formulation of permethrin or sumithrin, but the synergized formulations of both chemicals affected fish at lower concentrations. Intoxication was potentially severe enough to reduce the survival of these fish in the wild. Following short (6-h) exposures, we also found a larger difference in the number of fish that died or became intoxicated between the synergized and technical formulations of permethrin and sumithrin. Finally, we tested the ability of exposed fish to swim against a current. Fish exposed for 6 h to synergized permethrin and resmethrin had far less swimming stamina than those exposed to technical formulations. We found no difference in the effect on swimming between the synergized and technical formulation of sumithrin. In general, the synergized formulations of these chemicals appeared to cause a faster response than the technical formulations. This response increases the lethal and sublethal impacts of the insecticides. We also found that sumithrin was the least toxic of the three pyrethroids. Since the maximum application rate of sumithrin is half that of the other two pyrethroids, the potential risk to wild trout in streams may be reduced.

  2. Predicting fine-scale distributions of peripheral aquatic species in headwater streams.

    PubMed

    DeRolph, Christopher R; Nelson, Stacy A C; Kwak, Thomas J; Hain, Ernie F

    2015-01-01

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.

  3. Effects of dam removal on brook trout in a Wisconsin stream

    USGS Publications Warehouse

    Stanley, E.H.; Catalano, M.J.; Mercado-Silva, N.; Orr, C.H.

    2007-01-01

    Dams create barriers to fish migration and dispersal in drainage basins, and the removal of dams is often viewed as a means of increasing habitat availability and restoring migratory routes of several fish species. However, these barriers can also isolate and protect native taxa from aggressive downstream invaders. We examined fish community composition two years prior to and two years after the removal of a pair of low-head dams from Boulder Creek, Wisconsin, U.S.A. in 2003 to determine if removal of these potential barriers affected the resident population of native brook trout (Salvelinus fontinalis). Despite the presence of other taxa in the downstream reaches, and in other similar streams adjacent to the Boulder Creek (including the brown trout, Salmo trutta), no new species had colonized the Boulder Creek in the two years following dam removal. The adults catch per unit effort (CPUE) was lower and the young-of-the-year catch per unit effort (YOY CPUE) was higher in 2005 than in 2001 in all reaches, but the magnitude of these changes was substantially larger in the two dam-affected sample reaches relative to an upstream reference reach, indicating a localized effect of the removal. Total length of the adults and the YOY and the adult body condition did not vary between years or among reaches. Thus, despite changes in numbers of adults and the YOYs in some sections of the stream, the lack of new fish species invading Boulder Creek and the limited extent of population change in brook trout indicate that dam removal had a minor effect on these native salmonids in the first two years of the post-removal. Copyright ?? 2007 John Wiley & Sons, Ltd.

  4. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    USGS Publications Warehouse

    DeRolph, Christopher R.; Nelson, S.; Kwak, Thomas J.; Hain, Ernie F.

    2015-01-01

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.

  5. Comparative analysis of Met-enkephalin, galanin and GABA immunoreactivity in the developing trout preoptic-hypophyseal system.

    PubMed

    Rodríguez Díaz, M A; Candal, E; Santos-Durán, G N; Adrio, F; Rodríguez-Moldes, I

    2011-08-01

    We studied the organization of Met-enkephalin-containing cells and fibers in the developing preoptic-hypophyseal system of the brown trout (Salmo trutta fario) by immunohistochemistry and determined the relationship of these cells and fibers to the galaninergic and GABAergic systems. Met-enkephalin immunoreactivity was observed in cells in the preoptic area, the hypothalamus and the pituitary of late larvae. In the hypophysis, a few Met-enkephalin-containing cells were present in all divisions of the adenohypophysis, and some immunoreactive fibers were present in the interdigitations of the neural lobe with the proximal pars distalis. Concurrently, GABAergic fibers innervated the anterior and posterior neural lobe. Galanin cells coexisted with Met-enkephalin cells in neuronal groups of the preoptic-hypophyseal system. Galaninergic and GABAergic fibers innervated the preoptic and hypothalamic areas, but GABAergic fibers containing galanin were not observed. These results indicate that Met-enkephalin, galanin and GABA may modulate neuroendocrine activities in the preoptic area, hypothalamus and pituitary during the transition from larval to juvenile period. To better know how the development of the trout preoptic-hypophyseal system takes place, we studied the patterns of cell proliferation and expression of Pax6, a conserved transcription factor involved in the hypophysis development. Pax6 expressing cells and proliferating cells were present in the Rathke's pouch, the hypothalamus and the hypophysis of early larvae. In late larvae, Pax6 expression was no longer observed in these areas, and the density of proliferating cells largely decreased throughout development, although they remained in the hypophysis of late larvae and juveniles, suggesting that Pax6 might play an important role in the early regionalization of the pituitary in the trout. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    DOE PAGES

    DeRolph, Christopher R.; Nelson, Stacy A. C.; Kwak, Thomas J.; ...

    2014-12-09

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. In this paper, we predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistancemore » and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Finally and additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients.« less

  7. Predicting fine-scale distributions of peripheral aquatic species in headwater streams

    PubMed Central

    DeRolph, Christopher R; Nelson, Stacy A C; Kwak, Thomas J; Hain, Ernie F

    2015-01-01

    Headwater species and peripheral populations that occupy habitat at the edge of a species range may hold an increased conservation value to managers due to their potential to maximize intraspecies diversity and species' adaptive capabilities in the context of rapid environmental change. The southern Appalachian Mountains are the southern extent of the geographic range of native Salvelinus fontinalis and naturalized Oncorhynchus mykiss and Salmo trutta in eastern North America. We predicted distributions of these peripheral, headwater wild trout populations at a fine scale to serve as a planning and management tool for resource managers to maximize resistance and resilience of these populations in the face of anthropogenic stressors. We developed correlative logistic regression models to predict occurrence of brook trout, rainbow trout, and brown trout for every interconfluence stream reach in the study area. A stream network was generated to capture a more consistent representation of headwater streams. Each of the final models had four significant metrics in common: stream order, fragmentation, precipitation, and land cover. Strahler stream order was found to be the most influential variable in two of the three final models and the second most influential variable in the other model. Greater than 70% presence accuracy was achieved for all three models. The underrepresentation of headwater streams in commonly used hydrography datasets is an important consideration that warrants close examination when forecasting headwater species distributions and range estimates. Additionally, it appears that a relative watershed position metric (e.g., stream order) is an important surrogate variable (even when elevation is included) for biotic interactions across the landscape in areas where headwater species distributions are influenced by topographical gradients. PMID:25628872

  8. Distribution and abundance of nonnative fishes in streams of the western United States

    USGS Publications Warehouse

    Schade, C.B.; Bonar, Scott A.

    2005-01-01

    This report presents data from one of the largest standardized stream surveys conducted in he western United States, which shows that one of every four individual fish in streams of 12 western states are nonnative. The states surveyed included Arizona, California, Colorado, Idaho, Montana, Nevada, North Dakota, Oregon, South Dakota, Utah, Washington, and Wyoming. The most widely distributed and abundant nonnative fishes in the western USA were brook trout Salvelinus fontinalis, brown trout Salmo trutta, rainbow trout Oncorhynchus mykiss, common carp Cyprinus carpio, smallmouth bass Micropterus dolomieu, largemouth bass M. salmoides, green sunfish Lepomis cyanellus, fathead minnow Pimephales promelas, yellow perch Percaflavescens, yellow bullhead Ameiurus natalis, cutthroat trout O. clarkii, western mosquitofish Gambusia affinis, golden shiner Notemigonus crysoleucas, channel catfish Ictalurus punctatus, and red shiner Cyprinella lutrensis. The greatest abundance and distribution of nonnative fishes was in interior states, and the most common nonnatives were introduced for angling. Nonnative fishes were widespread in pristine to highly disturbed streams influenced by all types of land use practices. We present ranges in water temperature, flow, stream order, riparian cover, human disturbance, and other environmental conditions where the 10 most common introduced species were found. Of the total western U.S. stream length bearing fish, 50.1% contained nonnative fishes while 17.9% contained physical environment that was ranked highly or moderately disturbed by humans. Introduced fishes can adversely affect stream communities, and they are much more widespread in western U.S. streams than habitat destruction. The widespread distribution and high relative abundance of nonnative fishes and their documented negative effects suggest their management and control should elicit at least as much attention as habitat preservation in the protection of native western U.S. stream biota. ?? Copyright by the American Fisheries Society 2005.

  9. Effects of host genetics and environment on egg-associated microbiotas in brown trout (Salmo trutta).

    PubMed

    Wilkins, Laetitia G E; Fumagalli, Luca; Wedekind, Claus

    2016-10-01

    Recent studies found fish egg-specific bacterial communities that changed over the course of embryogenesis, suggesting an interaction between the developing host and its microbiota. Indeed, single-strain infections demonstrated that the virulence of opportunistic bacteria is influenced by environmental factors and host immune genes. However, the interplay between a fish embryo host and its microbiota has not been studied yet at the community level. To test whether host genetics affects the assemblage of egg-associated bacteria, adult brown trout (Salmo trutta) were sampled from a natural population. Their gametes were used for full-factorial in vitro fertilizations to separate sire from dam effects. In total, 2520 embryos were singly raised under experimental conditions that differently support microbial growth. High-throughput 16S rRNA amplicon sequencing was applied to characterize bacterial communities on milt and fertilized eggs across treatments. Dam and sire identity influenced embryo mortality, time until hatching and composition of egg-associated microbiotas, but no link between bacterial communities on milt and on fertilized eggs could be found. Elevated resources increased embryo mortality and modified bacterial communities with a shift in their putative functional potential. Resource availability did not significantly affect any parental effects on embryo performance. Sire identity affected bacterial diversity that turned out to be a significant predictor of hatching time: embryos associated with high bacterial diversity hatched later. We conclude that both host genetics and the availability of resources define diversity and composition of egg-associated bacterial communities that then affect the life history of their hosts. © 2016 John Wiley & Sons Ltd.

  10. If and when: intrinsic differences and environmental stressors influence migration in brown trout (Salmo trutta).

    PubMed

    Peiman, Kathryn S; Birnie-Gauvin, Kim; Midwood, Jonathan D; Larsen, Martin H; Wilson, Alexander D M; Aarestrup, Kim; Cooke, Steven J

    2017-06-01

    Partial migration is a common phenomenon, yet the causes of individual differences in migratory propensity are not well understood. We examined factors that potentially influence timing of migration and migratory propensity in a wild population of juvenile brown trout (Salmo trutta) by combining experimental manipulations with passive integrated transponder telemetry. Individuals were subjected to one of six manipulations: three designed to mimic natural stressors (temperature increase, food deprivation, and chase by a simulated predator), an injection of exogenous cortisol designed to mimic an extreme physiological challenge, a sham injection, and a control group. By measuring length and mass of 923 individuals prior to manipulation and by monitoring tagged individuals as they left the stream months later, we assessed whether pre-existing differences influenced migratory tendency and timing of migration, and whether our manipulations affected growth, condition, and timing of migration. We found that pre-existing differences predicted migration, with smaller individuals and individuals in poor condition having a higher propensity to migrate. Exogenous cortisol manipulation had the largest negative effect on growth and condition, and resulted in an earlier migration date. Additionally, low-growth individuals within the temperature and food deprivation treatments migrated earlier. By demonstrating that both pre-existing differences in organism state and additional stressors can affect whether and when individuals migrate, we highlight the importance of understanding individual differences in partial migration. These effects may carry over to influence migration success and affect the evolutionary dynamics of sub-populations experiencing different levels of stress, which is particularly relevant in a changing world.

  11. Environmental Effects of Storage Preservation Practices: Controlled Flushing of Fine Sediment from a Small Hydropower Reservoir

    NASA Astrophysics Data System (ADS)

    Espa, Paolo; Castelli, Elena; Crosa, Giuseppe; Gentili, Gaetano

    2013-07-01

    Sediment flushing may be effective in mitigating loss of reservoir storage due to siltation, but flushing must be controlled to limit the impact on the downstream environment. A reliable prediction of the environmental effects of sediment flushing is hindered by the limited scientific information currently available. Consequently, there may be some controversy as regards to management decisions, planning the work, and monitoring strategies. This paper summarizes the main results of a monitoring campaign on the stream below a small alpine hydropower reservoir subjected to annual flushing between 2006 and 2009. The removed sediment was essentially silt, and the suspended solid concentration (SSC) of the discharged water was controlled to alleviate downstream impact. Control was achieved through hydraulic regulation and mechanical digging, alternating daytime sediment evacuation, and nocturnal clear water release. The four operations lasted about two weeks each and had an average SSC of about 4 g L-1. Maximum values of SSC were generally kept below 10 g L-1. Downstream impact was quantified through sampling of fish fauna (brown trout) and macroinvertebrate in the final reach of the effluent stream. The benthic community was severely impaired by the flushing operations, but recovered to pre-flushing values in a few months. As expected, the impact on brown trout was heavier on juveniles. While data biasing due to fish removal and re-stocking cannot be ruled out, the fish community seems to have reached a state of equilibrium characterized by a lower density than was measured before the flushing operations.

  12. Temporal stability and rates of post-depositional change in geochemical signatures of brown trout Salmo trutta scales.

    PubMed

    Ryan, D; Shephard, S; Kelly, F L

    2016-09-01

    This study investigates temporal stability in the scale microchemistry of brown trout Salmo trutta in feeder streams of a large heterogeneous lake catchment and rates of change after migration into the lake. Laser-ablation inductively coupled plasma mass spectrometry was used to quantify the elemental concentrations of Na, Mg, Mn, Cu, Zn, Ba and Sr in archived (1997-2002) scales of juvenile S. trutta collected from six major feeder streams of Lough Mask, County Mayo, Ireland. Water-element Ca ratios within these streams were determined for the fish sampling period and for a later period (2013-2015). Salmo trutta scale Sr and Ba concentrations were significantly (P < 0·05) correlated with stream water sample Sr:Ca and Ba:Ca ratios respectively from both periods, indicating multi-annual stability in scale and water-elemental signatures. Discriminant analysis of scale chemistries correctly classified 91% of sampled juvenile S. trutta to their stream of origin using a cross-validated classification model. This model was used to test whether assumed post-depositional change in scale element concentrations reduced correct natal stream classification of S. trutta in successive years after migration into Lough Mask. Fish residing in the lake for 1-3 years could be reliably classified to their most likely natal stream, but the probability of correct classification diminished strongly with longer lake residence. Use of scale chemistry to identify natal streams of lake S. trutta should focus on recent migrants, but may not require contemporary water chemistry data. © 2016 The Fisheries Society of the British Isles.

  13. Genome-wide nucleotide diversity of hatchery-reared Atlantic and Mediterranean strains of brown trout Salmo trutta compared to wild Mediterranean populations.

    PubMed

    Leitwein, M; Gagnaire, P-A; Desmarais, E; Guendouz, S; Rohmer, M; Berrebi, P; Guinand, B

    2016-12-01

    A genome-wide assessment of diversity is provided for wild Mediterranean brown trout Salmo trutta populations from headwater tributaries of the Orb River and from Atlantic and Mediterranean hatchery-reared strains that have been used for stocking. Double-digest restriction-site-associated DNA sequencing (dd-RADseq) was performed and the efficiency of de novo and reference-mapping approaches to obtain individual genotypes was compared. Large numbers of single nucleotide polymorphism (SNP) markers with similar genome-wide distributions were discovered using both approaches (196 639 v. 121 016 SNPs, respectively), with c. 80% of the loci detected de novo being also found with reference mapping, using the Atlantic salmon Salmo salar genome as a reference. Lower mapping density but larger nucleotide diversity (π) was generally observed near extremities of linkage groups, consistent with regions of residual tetrasomic inheritance observed in salmonids. Genome-wide diversity estimates revealed reduced polymorphism in hatchery strains (π = 0·0040 and π = 0·0029 in Atlantic and Mediterranean strains, respectively) compared to wild populations (π = 0·0049), a pattern that was congruent with allelic richness estimated from microsatellite markers. Finally, pronounced heterozygote deficiency was found in hatchery strains (Atlantic F IS = 0·18; Mediterranean F IS = 0·42), indicating that stocking practices may affect the genetic diversity in wild populations. These new genomic resources will provide important tools to define better conservation strategies in S. trutta. © 2016 The Fisheries Society of the British Isles.

  14. Metabolism of sn-1(3)-Monoacylglycerol and sn-2-Monoacylglycerol in Caecal Enterocytes and Hepatocytes of Brown Trout (Salmo trutta).

    PubMed

    Li, Keshuai; Olsen, Rolf Erik

    2017-01-01

    sn-2-Monoacylglycerol (2-MAG) and sn-1(3)-monoacylglycerol [1(3)-MAG] are important but yet little studied intermediates in lipid metabolism. The current study compared the metabolic fate of 2-MAG and 1(3)-MAG in isolated caecal enterocytes and hepatocytes of brown trout (Salmo trutta). 1(3)-Oleoyl [9,10-3H(N)]-glycerol and 2-Oleoyl [9,10-3H(N)]-glycerol were prepared by pancreatic lipase digestion of triolein [9,10-3H(N)]. The 1(3)-MAG and 2-MAG were efficiently absorbed by enterocytes and hepatocytes at similar rates. The 2-MAG was quickly resynthesized into TAG through the monoacylglycerol acyltransferase (EC: 2.3.1.22, MGAT) pathway in both tissues, whereas 1(3)-MAG was processed into TAG and phospholipids at a much slower rate, suggesting 2-MAG was the preferred substrates for MGAT. Further analysis showed that 1(3)-MAG was synthesized into 1,3-DAG, but there were no accumulation of 1,3-DAG in either enterocytes or hepatocytes, which contrasts that of mammalian studies. Some of the 1(3)-MAG may be acylated to 1,2(2,3)-DAG and then utilized for TAG synthesis. Alternatively, 1(3)-MAG can be hydrolyzed to free fatty acid and glycerol, and re-synthesized into TAG through the glycerol-3-phosphate (Gro-3-P) pathway. The overall data suggested that the limiting step of the intracellular 1(3)-MAG metabolism is the conversion of 1(3)-MAG itself.

  15. Environmental effects of storage preservation practices: controlled flushing of fine sediment from a small hydropower reservoir.

    PubMed

    Espa, Paolo; Castelli, Elena; Crosa, Giuseppe; Gentili, Gaetano

    2013-07-01

    Sediment flushing may be effective in mitigating loss of reservoir storage due to siltation, but flushing must be controlled to limit the impact on the downstream environment. A reliable prediction of the environmental effects of sediment flushing is hindered by the limited scientific information currently available. Consequently, there may be some controversy as regards to management decisions, planning the work, and monitoring strategies. This paper summarizes the main results of a monitoring campaign on the stream below a small alpine hydropower reservoir subjected to annual flushing between 2006 and 2009. The removed sediment was essentially silt, and the suspended solid concentration (SSC) of the discharged water was controlled to alleviate downstream impact. Control was achieved through hydraulic regulation and mechanical digging, alternating daytime sediment evacuation, and nocturnal clear water release. The four operations lasted about two weeks each and had an average SSC of about 4 g L(-1). Maximum values of SSC were generally kept below 10 g L(-1). Downstream impact was quantified through sampling of fish fauna (brown trout) and macroinvertebrate in the final reach of the effluent stream. The benthic community was severely impaired by the flushing operations, but recovered to pre-flushing values in a few months. As expected, the impact on brown trout was heavier on juveniles. While data biasing due to fish removal and re-stocking cannot be ruled out, the fish community seems to have reached a state of equilibrium characterized by a lower density than was measured before the flushing operations.

  16. Seawater tolerance and post-smolt migration of wild Atlantic salmon Salmo salar × brown trout S. trutta hybrid smolts.

    PubMed

    Urke, H A; Kristensen, T; Arnekleiv, J V; Haugen, T O; Kjærstad, G; Stefansson, S O; Ebbesson, L O E; Nilsen, T O

    2013-01-01

    High levels of hybridization between Atlantic salmon Salmo salar and brown trout Salmo trutta have been reported in the River Driva. This study presents the underlying mechanisms of development of seawater (SW) tolerance and marine migration pattern for S. salar×S. trutta hybrids. Migrating S. salar×S. trutta hybrid smolts caught in the River Driva, Norway (a river containing Gyrodactylus salaris), displayed freshwater (FW) gill Na(+), K(+) -ATPase (NKA) activity levels of 11·8 µmol ADP mg protein h(-1), which were equal to or higher than activity levels observed in S. salar and S. trutta smolts. Following 4 days of SW exposure (salinity 32·3), enzyme activity remained high and plasma ion levels were maintained within the normal physiological range observed in S. salar smolts, indicating no signs of ion perturbations in S. salar×S. trutta hybrids. SW exposure induced an increase in NKA α1b-subunit mRNA levels with a concurrent decrease in α1a levels. Salmo salar×S. trutta post-smolts migrated rapidly through the fjord system, with increasing speed with distance from the river, as is often seen in S. salar smolts. The present findings suggest that S. salar×S. trutta smolts, as judged by the activity and transcription of the NKA system, regulation of plasma ion levels and migration speed more closely resemble S. salar than S. trutta. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  17. Phylogenetic status of brown trout Salmo trutta populations in five rivers from the southern Caspian Sea and two inland lake basins, Iran: a morphogenetic approach.

    PubMed

    Hashemzadeh Segherloo, I; Farahmand, H; Abdoli, A; Bernatchez, L; Primmer, C R; Swatdipong, A; Karami, M; Khalili, B

    2012-10-01

    Interrelationships, origin and phylogenetic affinities of brown trout Salmo trutta populations from the southern Caspian Sea basin, Orumieh and Namak Lake basins in Iran were analysed from complete mtDNA control region sequences, 12 microsatellite loci and morphological characters. Among 129 specimens from six populations, seven haplotypes were observed. Based on mtDNA haplotype data, the Orumieh and southern Caspian populations did not differ significantly, but the Namak basin-Karaj population presented a unique haplotype closely related to the haplotypes of the other populations (0·1% Kimura two-parameter, K2P divergence). All Iranian haplotypes clustered as a distinct group within the Danube phylogenetic grouping, with an average K2P distance of 0·41% relative to other Danubian haplotypes. The Karaj haplotype in the Namak basin was related to a haplotype (Da26) formerly identified in the Tigris basin in Turkey, to a Salmo trutta oxianus haplotype from the Aral Sea basin, and to haplotype Da1a with two mutational steps, as well as to other Iranian haplotypes with one to two mutational steps, which may indicate a centre of origin in the Caspian basin. In contrast to results of the mtDNA analysis, more pronounced differentiation was observed among the populations studied in the morphological and microsatellite DNA data, except for the two populations from the Orumieh basin, which were similar, possibly due to anthropogenic causes. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  18. Assessment of COWFISH for predicting trout populations in grazed watersheds of the Intermountain West

    Treesearch

    Craig R. Cantor; William S. Platts

    1991-01-01

    The COWFISH model, developed and applied in selected Montana streams, was tested on 14 streams in Idaho, Nevada, and Utah, where it proved to have little value for predicting numbers of trout in watersheds grazed by livestock. The model holds promise for estimating the health of stream channels and riparian complexes.

  19. Evidence of major genes affecting bacterial cold water disease resistance in rainbow trout using Bayesian methods of complex segregation analysis

    USDA-ARS?s Scientific Manuscript database

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation for BCWD resistance in our rainbow trout population, and a family-based selection program to improve resistance was initiated at the NCCCWA in 2005. The main objec...

  20. Fall and winter habitat use and movement by Columbia River redband trout in a small stream in Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Bennett, David H.; Marotz, B.

    2001-01-01

    We used radiotelemetry to quantify the movements and habitat use of resident adult Columbia River redband trout Oncorhynchus mykiss gairdneri (hereafter, redband trout) from October to December 1997 in South Fork Callahan Creek, a third-order tributary to Callahan Creek in the Kootenai River drainage in northwestern Montana. All redband trout (N = 23) were consistently relocated in a stream reach with moderate gradient (2.3%) near the site of original capture. Some fish (N = 13) displayed sedentary behavior, whereas others were mobile (N = 10). The mean total distance moved during the study for all fish combined was 64 m (SD = 105 m; range, 0–362 m), and the mean home range from October through December was 67 m (SD = 99 m; range, 5–377 m). Thirteen redband trout made short upstream and downstream movements (mean total movement = 134 m; range, 8–362 m) that were related to habitat use. Mobile fish commonly migrated to complex pools that spanned the entire channel width (primary pools). Eight of 10 fish that did not change habitat location occupied primary pools, whereas the remaining 2 fish occupied lateral pools. Fish commonly overwintered in primary pools dominated by cobble and boulder substrates that contained large woody debris. As water temperatures decreased from 3.2–6.3°C in October to 0–3.8°C in November and December, we found a 29% average increase (46–75%) in the proportional use of primary pool habitats. The lack of extensive movement and small home ranges indicate that adult redband trout found suitable overwintering habitat in deep pools with extensive amounts of cover within a third-order mountain stream. Resource managers who wish to protect overwintering habitat features preferred by redband trout throughout their limited range in streams affected by land management practices could apply strategies that protect and enhance pool habitat and stream complexity.

  1. Molecular epidemiology of infectious hematopoietic necrosis virus reveals complex virus traffic and evolution within southern Idaho aquaculture

    USGS Publications Warehouse

    Troyer, R.M.; Kurath, G.

    2003-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus which infects salmon and trout and may cause disease with up to 90% mortality. In the Hagerman Valley of Idaho, IHNV is endemic or epidemic among numerous fish farms and resource mitigation hatcheries. A previous study characterizing the genetic diversity among 84 IHNV isolates at 4 virus-endemic rainbow trout farms indicated that multiple lineages of relatively high diversity co-circulated at these facilities (Troyer et al. 2000 J Gen Virol. 81:2823-2832). We tested the hypothesis that high IHNV genetic diversity and co-circulating lineages are present in aquaculture facilities throughout this region. In this study, 73 virus isolates from 14 rainbow trout farms and 3 state hatcheries in the Hagerman Valley, isolated between 1978 and 1999, were genetically characterized by sequence analysis of a 303 nucleotide region of the glycoprotein gene. Phylogenetic and epidemiological analyses showed that multiple IHNV lineages co-circulate in a complex pattern throughout private trout farms and state hatcheries in the valley. IHNV maintained within the valley appears to have evolved significantly over the 22 yr study period.

  2. Influence of the invasive Asian clam Corbicula fluminea (Bivalvia: Corbiculidae) on estuarine epibenthic assemblages

    NASA Astrophysics Data System (ADS)

    Ilarri, M. I.; Souza, A. T.; Antunes, C.; Guilhermino, L.; Sousa, R.

    2014-04-01

    One of the most widespread invasive alien species (IAS) in aquatic ecosystems is the Asian clam Corbicula fluminea. Several studies have shown that C. fluminea can cause large-scale changes in macrozoobenthic assemblages; however, very few attempted to investigate the effects of this IAS on mobile epibenthic species, such as fishes and crustaceans. In this context, the influence of C. fluminea on epibenthic species was investigated during one year by comparing the associated epibenthic fauna in three nearby sites of the Minho estuary (NW of the Iberian Peninsula), wherein the abiotic conditions are similar but the density of the Asian clam is highly different. From a total of 13 species, six were significantly influenced by C. fluminea; five responded positively, namely the brown shrimp Crangon crangon, the European eel Anguilla anguilla, the common goby Pomatoschistus microps, the brown trout Salmo trutta fario and the great pipefish Syngnathus acus, whereas the shore crab Carcinus maenas was negatively influenced. However, stomach contents analysis revealed that fish and crustacean species do not feed on C. fluminea, suggesting that this IAS is still not a large component of the diet of higher trophic levels in this estuarine ecosystem. Our results suggest that the structure provided by C. fluminea shells is likely to be one of the main factors responsible for the differences observed. C. fluminea physical structure seems to influence the epibenthic associated fauna, when found in densities higher than 1000 ind./m2, with sedentary small-bodied crustaceans and fishes being mainly attracted by the increasing in habitat complexity and consequent enhancement of heterogeneity and shelter availability.

  3. A histochemical study of the distribution of lectin binding sites in the developing branchial area of the trout Salmo trutta.

    PubMed Central

    Rojo, M C; Blánquez, M J; González, M E

    1996-01-01

    A histochemical study of the branchial area of brown trout embryos from 35 to 71 d of incubation is reported. A battery of 6 different horseradish peroxidase-labelled lectins, the PAS reaction and Alcian blue staining were used to study the distribution of carbohydrate residues in glycoconjugates along the pharyngeal and branchial epithelia. Con A and WGA reacted at every site of the branchial region thus showing the ubiquitous presence of alpha-D-mannose and N-acetyl-D-glucosamine. WGA, DBA and SBA were good markers for the hatching gland cells (HGCs) and mucous cells. Other lectins, such as PNA and UEA I, reacted only for a short time at some sites during the considered period of incubation. From 35 d until posthatching stages, a manifest strong reaction was noted both in the dorsal epithelium of branchial arches and the HGCs as shown by SBA reactivity. This may be significant with regard to the controversial origin of HGCs, which is thought to be endodermal. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8982837

  4. Behavioral avoidance as evidence of injury to fishery resources: Applications to natural resource damage assessment

    USGS Publications Warehouse

    Delonay, Aaron J.; Little, Edward E.; Lipton, J.; Woodward, D.F.; Hansen, J.A.

    1996-01-01

    Natural Resource Damage Assessment (NRDA) provisions enacted under Comprehensive Environmental Response Compensation and Liability Act (CERCLA) and the Oil Pollution Act (OPA) empower natural resource trustees to seek compensation for environmental injury resulting from the release of oil or hazardous substances. Under NRDA regulations promulgated under CERCLA, fish avoidance behavior is recognized as an accepted injury, and may be used to support damage claims. In support of an ongoing damage assessment, tests were conducted to determine if avoidance of ambient metals concentrations may contribute to reductions in local salmonid populations. In laboratory tests, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta) avoided mixtures of metals (Cd, Cu, Pb, and Zn) at concentrations that occur in impacted river reaches at a contaminated site (Clark Fork River, MT). Avoidance of metal contamination may contribute to population reductions and preclude restoration of instream populations by prohibiting movement of fish into contaminated areas of the river from uncontaminated tributaries. Laboratory avoidance tests were performed at two testing facilities. The similar avoidance responses observed at the two laboratories demonstrated the reproducibility of avoidance measures.

  5. Coping with divided attention: the advantage of familiarity.

    PubMed

    Griffiths, S W; Brockmark, S; Höjesjö, J; Johnsson, J I

    2004-04-07

    The ability of an animal to perform a task successfully is limited by the amount of attention being simultaneously focused on other activities. One way in which individuals might reduce the cost of divided attention is by preferentially focusing on the most beneficial tasks. In territorial animals where aggression is lower among familiar individuals, the decision to associate preferentially with familiar conspecifics may therefore confer advantages by allowing attention to be switched from aggression to predator vigilance and feeding. Wild juvenile brown trout were used to test the prediction that familiar fishes respond more quickly than unfamiliar fishes to a simulated predator attack. Our results confirm this prediction by demonstrating that familiar trout respond 14% faster than unfamiliar individuals to a predator attack. The results also show that familiar fishes consume a greater number of food items, foraging at more than twice the rate of unfamiliar conspecifics. To the best of our knowledge, these results provide the first evidence that familiarity-biased association confers advantages through the immediate fitness benefits afforded by faster predator-evasion responses and the long-term benefits provided by increased feeding opportunities.

  6. Total Mercury, Methylmercury, and Carbon and Nitrogen Stable Isotope Data for Biota from Selected Streams in Oregon, Wisconsin, and Florida, 2002-04

    USGS Publications Warehouse

    Chasar, Lia C.; Scudder, Barbara C.; Bell, Amanda H.; Wentz, Dennis A.; Brigham, Mark E.

    2008-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program conducted a multidisciplinary study to investigate the bioaccumulation of mercury from 2002 to 2004. Study areas were located in Oregon, Wisconsin, and Florida. Each study area included one urban site, and one or two nonurban sites that had the following attributes: high-percent wetland or low-percent wetland. Periphyton, macroinvertebrates, and forage fish were collected twice per year (during 2003 and 2004) to capture seasonality. Top predators, specifically largemouth bass (Micropterus salmoides), brown trout (Salmo trutta), and cutthroat trout (Oncorhynchus clarkii), were collected once per year (Oregon, Wisconsin, and Florida in 2003; Florida only in 2004). All biota were identified to the lowest possible taxonomic category and were analyzed for mercury and stable carbon and nitrogen isotopes. Periphyton and invertebrates were analyzed for total mercury and methylmercury; fish were analyzed for total mercury only. This report presents (1) methodology and data on mercury, methylmercury, stable isotopes, and (2) other ecologically relevant measurements in biological tissues of periphyton, invertebrates, forage fish, and predator fish.

  7. Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Klinck, Joel; Dunbar, Michael; Brown, Stephanie; Nichols, Joel; Winter, Anna; Hughes, Christopher; Playle, Richard C

    2005-03-25

    To distinguish physiologically regulated uptake from passive uptake of inorganic Hg in fish, rainbow trout (Oncorhynchus mykiss) were exposed to inorganic Hg (0.5, 1, or 2 microM total Hg) in ion-poor water with various treatments. Addition of ions to the water (mM concentrations of Ca, K, Cl) did not consistently alter Hg accumulation by trout gills, although there was a trend to higher Hg accumulation at higher ion concentrations. The apical Ca channel blockers Verapamil and lanthanum also did not consistently affect Hg accumulation by trout gills. Pre-treatment of trout with the Na channel blocker Phenamil decreased Hg uptake by about half. These results suggest a combination of physiologically regulated and passive uptake of Hg by trout gills. Strong complexing agents of Hg (EDTA, NTA, ethylenediamine, cysteine) decreased Hg-binding by trout gills in a dose-dependent manner. From these data, a conditional equilibrium binding constant for Hg to the gills was estimated as logK(Hg-gill) = 18.0, representing very strong binding of Hg to the gills. This value is a first step in creating a biotic ligand model (BLM) for inorganic Hg and fish. Natural organic matter (2-10 mg C/L) also decreased Hg-binding by trout gills, although mM concentrations of Na, K, and Cl interfered with this effect. At low concentrations of these ions, natural organic matter samples isolated from various sources bound Hg to similar degrees, as judged by Hg accumulation by trout gills. A conditional binding constant to natural organic matter (NOM) was estimated as logK(Hg-NOM) = 18.0 with about 0.5 micromol binding sites per mg C, representing strong binding of Hg to NOM.

  8. Vertebrate species introductions in the United States and its territories

    USGS Publications Warehouse

    Witmer, Gary W.; Fuller, Pam L.

    2011-01-01

    At least 1,065 introduced vertebrate species have been introduced in the United States and its territories, including at least 86 mammalian, 127 avian, 179 reptilian/amphibian, and 673 fish species. Examples in each major taxonomic group include domestic cat, small Indian mongoose, red fox, goat, pig, rabbit, rats, house mouse, gray squirrel, nutria, starling, Indian common myna, red-vented bulbul, brown treesnake, red-eared slider, brown trout, tilapia, and grass carp. We briefly review some of these species and the types of damage they cause. We then review the basic types of methods used for control or eradication of each taxonomic group, including physical, chemical, biological, and cultural methods. We discuss some of the challenges in managing these species, including issues with the use of toxicants, land access, public attitudes, and monitoring difficulties. Finally, we list some ongoing research and future research needs, including improved detection methods, improved attractants, improved barriers, improved capture methods, fertility control, and risk assessment methods.

  9. Organic matter dynamics and stable isotopes for tracing sources of suspended sediment

    NASA Astrophysics Data System (ADS)

    Schindler Wildhaber, Y.; Liechti, R.; Alewell, C.

    2012-01-01

    Suspended sediment (SS) and organic matter in rivers can harm brown trout Salmo trutta by impact on health and fitness of free swimming fish and siltation of the riverbed. The later results in a decrease of hydraulic conductivity and therefore smaller oxygen supply to the salmonid embryos. Additionally, oxygen demand within riverbeds will increase as the pool of organic matter increases. We assessed the temporal and spatial dynamics of sediment, carbon (C) and nitrogen (N) during the brown trout spawning season and used C isotopes as well as the C/N atomic ratio to distinguish autochthonous and allochthonous sources of organic matter in SS loads. The visual basic program IsoSource with 13Ctot and 15N as input isotopes was used to quantify the sources of SS in respect of time and space. Organic matter fractions in the infiltrated and suspended sediment were highest during low flow periods with small sediment loads and lowest during high flow periods with high sediment loads. Peak values in nitrate and dissolved organic C were measured during high flow and precipitation probably due to leaching from pasture and arable land. The organic matter was of allochthonous sources as indicated by the C/N atomic ratio and δ13Corg. Organic matter in SS increased from up- to downstream due to pasture and arable land. The fraction of SS originating from upper watershed riverbed sediment increased at all sites during high flow. Its mean fraction decreased from up- to downstream. During base flow conditions, the major sources of SS are pasture and arable land. The later increased during rainy and warmer periods probably due to snow melting and erosion processes. These modeling results support the measured increased DOC and NO3 concentrations during high flow.

  10. Plerocercoids of the cestode Diphyllobothrium ditremum in brown trout Salmo trutta: substantial increase in infection after establishment of European minnow Phoxinus phoxinus.

    PubMed

    Borgstrøm, R; Trømborg, J; Haugen, T O; Rosseland, B O

    2017-09-01

    This study focuses on plerocercoids of the cestode Diphyllobothrium ditremum in brown trout Salmo trutta from the subalpine lake Øvre Heimdalsvatn in south-central Norway. Salmo trutta was the only fish species in this lake until European minnow Phoxinus phoxinus was registered in 1969. The P. phoxinus population increased substantially in the following years. In contrast with the 1969-1972 period, when plerocercoids of D. ditremum were practically absent in S. trutta, there was a high prevalence and intensity of infection in the 2013 S. trutta samples. Because the life cycle of D. ditremum involves two larval stages, in copepods and salmonids and mature worms in piscivorous birds, such as mergansers and loons, a change in feeding ecology of S. trutta or changes in population densities of copepods, fish or birds might have influenced the infection pattern. No relationships between D. ditremum infection and muscle-tissue δ 15 N signature or Hg concentration were found, indicating that infection is not a result of piscivory or cannibalism. Furthermore, consumption of copepods by S. trutta during summer and autumn was low. On the other hand, the number of piscivorous birds has increased, probably due to the presence of P. phoxinus as a new and numerous prey. An increased number of final D. ditremum hosts may have produced a higher output of cestode eggs, resulting in more infected copepods that in turn are consumed by S. trutta. Indirectly, P. phoxinus may therefore have caused the observed increased infection in S. trutta and thereby imposed further negative effects on S. trutta in high mountain areas. © 2017 The Fisheries Society of the British Isles.

  11. The Effects of Run-of-River Hydroelectric Power Schemes on Fish Community Composition in Temperate Streams and Rivers.

    PubMed

    Bilotta, Gary S; Burnside, Niall G; Gray, Jeremy C; Orr, Harriet G

    2016-01-01

    The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.

  12. An epidemic model for the interactions between thermal regime of rivers and transmission of Proliferative Kidney Disease in salmonid fish

    NASA Astrophysics Data System (ADS)

    Carraro, Luca; Bertuzzo, Enrico; Mari, Lorenzo; Gatto, Marino; Strepparava, Nicole; Hartikainen, Hanna; Rinaldo, Andrea

    2015-04-01

    Proliferative kidney disease (PKD) affects salmonid populations in European and North-American rivers. It is caused by the endoparasitic myxozoan Tetracapsuloides bryosalmonae, which exploits freshwater bryozoans (Fredericella sultana) and salmonids as primary and secondary hosts, respectively. Incidence and mortality, which can reach up to 90-100%, are known to be strongly related to water temperature. PKD has been present in brown trout population for a long time but has recently increased rapidly in incidence and severity causing a decline in fish catches in many countries. In addition, environmental changes are feared to cause PKD outbreaks at higher latitude and altitude regions as warmer temperatures promote disease development. This calls for a better comprehension of the interactions between disease dynamics and the thermal regime of rivers, in order to possibly devise strategies for disease management. In this perspective, a spatially explicit model of PKD epidemiology in riverine host metacommunities is proposed. The model aims at summarizing the knowledge on the modes of transmission of the disease and the life-cycle of the parasite, making the connection between temperature and epidemiological parameters explicit. The model accounts for both local population and disease dynamics of bryozoans and fish and hydrodynamic dispersion of the parasite spores and hosts along the river network. The model is time-hybrid, coupling inter-seasonal and intra-seasonal dynamics, the former being described in a continuous time domain, the latter seen as time steps of a discrete time domain. In order to test the model, a case study is conducted in river Wigger (Cantons of Aargau and Lucerne, Switzerland), where data about water temperature, brown trout and bryozoan populations and PKD prevalence are being collected.

  13. Characterization of perch rhabdovirus (PRV) in farmed grayling Thymallus thymallus.

    PubMed

    Gadd, Tuija; Viljamaa-Dirks, Satu; Holopainen, Riikka; Koski, Perttu; Jakava-Viljanen, Miia

    2013-10-11

    Two Finnish fish farms experienced elevated mortality rates in farmed grayling Thymallus thymallus fry during the summer months, most typically in July. The mortalities occurred during several years and were connected with a few neurological disorders and peritonitis. Virological investigation detected an infection with an unknown rhabdovirus. Based on the entire glycoprotein (G) and partial RNA polymerase (L) gene sequences, the virus was classified as a perch rhabdovirus (PRV). Pairwise comparisons of the G and L gene regions of grayling isolates revealed that all isolates were very closely related, with 99 to 100% nucleotide identity, which suggests the same origin of infection. Phylogenetic analysis demonstrated that they were closely related to the strain isolated from perch Perca fluviatilis and sea trout Salmo trutta trutta caught from the Baltic Sea. The entire G gene sequences revealed that all Finnish grayling isolates, and both the perch and sea trout isolates, were most closely related to a PRV isolated in France in 2004. According to the partial L gene sequences, all of the Finnish grayling isolates were most closely related to the Danish isolate DK5533 from pike. The genetic analysis of entire G gene and partial L gene sequences showed that the Finnish brown trout isolate ka907_87 shared only approximately 67 and 78% identity, respectively, with our grayling isolates. The grayling isolates were also analysed by an immunofluorescence antibody test. This is the first report of a PRV causing disease in grayling in Finland.

  14. Lack of evidence of infectious salmon anemia virus in pollock Pollachius virens cohabitating with infected farmed Atlantic salmon Salmo salar.

    PubMed

    McClure, Carol A; Hammell, K Larry; Dohoo, Ian R; Gagné, Nellie

    2004-10-21

    The infectious salmon anemia (ISA) virus causes lethargy, anemia, hemorrhage of the internal organs, and death in farmed Atlantic salmon Salmo salar. It has been a cause of disease in Norwegian farmed Atlantic salmon since 1984 and has since been identified in Canada, Scotland, the United States, and the Faroe Islands. Wild fish have been proposed as a viral reservoir because they are capable of close contact with farmed salmon. Laboratory studies have shown that brown trout and sea trout Salmo trutta, rainbow trout Oncorhynchus mykiss, and herring Clupea harengus tested positive for the virus weeks after intra-peritoneal injection of the ISA virus. Pollock Pollachius virens are commonly found in and around salmon cages, and their close association with the salmon makes them an important potential viral reservoir to consider. The objective of this study was to determine the presence or prevalence of ISA virus in pollock cohabitating with ISA-infected farmed Atlantic salmon. Kidney tissue from 93 pollock that were living with ISA-infected salmon in sea cages were tested with reverse transcription-polymerase chain reaction (RT-PCR) test. Results yielded the expected 193 bp product for positive controls, while no product was observed in any of the pollock samples, resulting in an ISA viral prevalence of 0%. This study strengthens the evidence that pollock are unlikely to be an ISA virus reservoir for farmed Atlantic salmon.

  15. Evidence that PCBs are approaching stable concentrations in Lake Michigan fishes

    USGS Publications Warehouse

    Stow, Craig A.; Carpenter, Stephen R.; Eby, Lisa A.; Amrhein, James F.; Hesselberg, Robert J.

    1995-01-01

    We examined PCB concentration data for seven species of Lake Michigan fishes to determine what trends were apparent °20 yr after PCB restrictions became effective. Total PCB concentrations in all seven species, lake trout (Salvelinus namaycush), rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta), chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch), alewife (Alosa pseudoharengus), and bloater chub (Coregonus hoyi) declined and appeared to stabilize in the mid-to-late 1980s. Concentrations in two species, chinook and coho salmon, appear to have increased slightly since the late 1980s. All species are currently well below the high PCB levels that existed when PCB use was curtailed in the 1970s. We believe stabilizing concentrations are the result of large pools of PCBs that are being recycled in the environment. Atmospheric and sediment PCB inputs to the lake probably constitute current PCB sources. Increasing concentrations in chinook and coho salmon are likely the result of changing growth dynamics caused by alterations in the mid-trophic levels of the food web. Median stable PCB concentrations estimated in this analysis are below the current FDA action level of 2 mg/kg, but not appreciably below this threshold. Improvements beyond these levels may result if management practices that maximize fish growth rates are implemented. Detection of future improvements in PCB levels may require samples in the range of 1000-2000 fish because of the high variability in PCB concentrations among individuals.

  16. Impacts of trout predation on fitness of sympatric sticklebacks and their hybrids.

    PubMed Central

    Vamosi, Steven M; Schluter, Dolph

    2002-01-01

    Predation may be a significant factor in the divergence of sympatric species although its role has been largely overlooked. This study examines the consequences of predation on the fitness of a pair of lacustrine stickleback species (Gasterosteus aculeatus complex) and their F(1) hybrids. Benthic sticklebacks are found in the littoral zone of lakes associated with vegetation and bare sediments, whereas limnetic sticklebacks spend most of their lives in the pelagic zone. The cutthroat trout (Oncorhynchus clarki) is a major predator of sticklebacks and the only other fish species native to lakes containing both benthic and limnetic species. In pond experiments we found that the addition of these predators primarily impacted the survival of limnetics. By contrast, benthic survival was unaffected by trout addition. The result was that relative survival of benthics and limnetics was reversed in the presence of trout. The presence of trout had no effect on the rank order of parent species growth rates, with benthics always growing faster than limnetics. F(1) hybrids survived poorly relative to benthics and limnetics and their growth rates were intermediate regardless of treatment. The results implicate predation by trout in the divergence of the species but not through increased vulnerability of F(1) hybrids. PMID:12028775

  17. Assessment of digestive enzymes activity during the fry development of the endangered Caspian brown trout Salmo caspius.

    PubMed

    Zamani, A; Hajimoradloo, A; Madani, R; Farhangi, M

    2009-09-01

    The study of digestive enzymes activity at Salmo caspius fry showed that enzymes were available at the moment of mouth opening on the first day post hatching (dph) and the activity of enzymes showed no significant difference from the hatching day 28 dph. An increased activity was seen between 32 and 43 dph and this activity was significantly higher than the activity during the first 28 days. In the primary stages after yolk sac resorption (43-58 dph), enzymes activity showed an increased profile, however none of them showed a significant difference between 43 and 58 dph.

  18. Nonnative fish control in the Colorado River in Grand Canyon, Arizona: An effective program or serendipitous timing?

    USGS Publications Warehouse

    Coggins,, Lewis G.; Yard, Michael D.; Pine, William E.

    2011-01-01

    The federally endangered humpback chub Gila cypha in the Colorado River within Grand Canyon is currently the focus of a multiyear program of ecosystem-level experimentation designed to improve native fish survival and promote population recovery as part of the Glen Canyon Dam Adaptive Management Program. A key element of this experiment was a 4-year effort to remove nonnative fishes from critical humpback chub habitat, thereby reducing potentially negative interactions between native and nonnative fishes. Over 36,500 fish from 15 species were captured in the mechanical removal reach during 2003–2006. The majority (64%) of the catch consisted of nonnative fish, including rainbow trout Oncorhynchus mykiss (19,020), fathead minnow Pimephales promelas (2,569), common carp Cyprinus carpio (802), and brown trout Salmo trutta (479). Native fish (13,268) constituted 36% of the total catch and included flannelmouth suckers Catostomus latipinnis (7,347), humpback chub (2,606), bluehead suckers Catostomus discobolus (2,243), and speckled dace Rhinichthys osculus (1,072). The contribution of rainbow trout to the overall species composition fell steadily throughout the study period from a high of approximately 90% in January 2003 to less than 10% in August 2006. Overall, the catch of nonnative fish exceeded 95% in January 2003 and fell to less than 50% after July 2005. Our results suggest that removal efforts were successful in rapidly shifting the fish community from one dominated numerically by nonnative species to one dominated by native species. Additionally, increases in juvenile native fish abundance within the removal reach suggest that removal efforts may have promoted greater survival and recruitment. However, drought-induced increases in river water temperature and a systemwide decrease in rainbow trout abundance concurrent with our experiment made it difficult to determine the cause of the apparent increase in juvenile native fish survival and recruitment. Experimental efforts continue and may be able to distinguish among these factors and to better inform future management actions.

  19. A comparative evaluation of crowding stress on muscle HSP90 and myostatin expression in salmonids

    USGS Publications Warehouse

    Galt, Nicholas J.; Froehlich, Jacob Michael; McCormick, Stephen; Biga, Peggy R.

    2018-01-01

    Stress is a major factor that contributes to poor production and animal welfare concerns in aquaculture. As such, a thorough understanding of mechanisms involved in the stress response is imperative to developing strategies to mitigate the negative side effects of stressors, including the impact of high stocking densities on growth. The purpose of this study was to determine how the muscle growth inhibitor, myostatin, and the stress-responsive gene HSP90 are regulated in response to crowding stress in rainbow trout (Oncorhynchus mykiss), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar). All species exhibited higher cortisol and glucose levels following the handling stress, indicating physiological response to the treatment. Additionally, all species, except rainbow trout, exhibited higher HSP90 levels in muscle after a 48 h crowding stress. Crowding stress resulted in a decrease of myostatin-1ain brook trout white muscle but not red muscle, while, myostatin-1a and -2a levels increased in white muscle and myostatin-1b levels increased in red muscle in Atlantic salmon. In rainbow trout, no significant changes were detected in either muscle type, but myostatin-1awas upregulated in both white and red skeletal muscle in the closely related cutthroat trout. The variation in response to crowding suggests a complex and species-specific interaction between stress and the muscle gene regulation in these salmonids. Only Atlantic salmon and cutthroat trout exhibited increased muscle myostatin transcription, and also exhibited the largest increase in circulating glucose in response to crowding. These results suggest that species-specific farming practices should be carefully examined in order to optimize low stress culture conditions.

  20. Transcriptome Assembly, Gene Annotation and Tissue Gene Expression Atlas of the Rainbow Trout

    PubMed Central

    Salem, Mohamed; Paneru, Bam; Al-Tobasei, Rafet; Abdouni, Fatima; Thorgaard, Gary H.; Rexroad, Caird E.; Yao, Jianbo

    2015-01-01

    Efforts to obtain a comprehensive genome sequence for rainbow trout are ongoing and will be complemented by transcriptome information that will enhance genome assembly and annotation. Previously, transcriptome reference sequences were reported using data from different sources. Although the previous work added a great wealth of sequences, a complete and well-annotated transcriptome is still needed. In addition, gene expression in different tissues was not completely addressed in the previous studies. In this study, non-normalized cDNA libraries were sequenced from 13 different tissues of a single doubled haploid rainbow trout from the same source used for the rainbow trout genome sequence. A total of ~1.167 billion paired-end reads were de novo assembled using the Trinity RNA-Seq assembler yielding 474,524 contigs > 500 base-pairs. Of them, 287,593 had homologies to the NCBI non-redundant protein database. The longest contig of each cluster was selected as a reference, yielding 44,990 representative contigs. A total of 4,146 contigs (9.2%), including 710 full-length sequences, did not match any mRNA sequences in the current rainbow trout genome reference. Mapping reads to the reference genome identified an additional 11,843 transcripts not annotated in the genome. A digital gene expression atlas revealed 7,678 housekeeping and 4,021 tissue-specific genes. Expression of about 16,000–32,000 genes (35–71% of the identified genes) accounted for basic and specialized functions of each tissue. White muscle and stomach had the least complex transcriptomes, with high percentages of their total mRNA contributed by a small number of genes. Brain, testis and intestine, in contrast, had complex transcriptomes, with a large numbers of genes involved in their expression patterns. This study provides comprehensive de novo transcriptome information that is suitable for functional and comparative genomics studies in rainbow trout, including annotation of the genome. PMID:25793877

  1. High levels of MHC class II allelic diversity in lake trout from Lake Superior

    USGS Publications Warehouse

    Dorschner, M.O.; Duris, T.; Bronte, C.R.; Burnham-Curtis, M. K.; Phillips, R.B.

    2000-01-01

    Sequence variation in a 216 bp portion of the major histocompatibility complex (MHC) II B1 domain was examined in 74 individual lake trout (Salvelinus namaycush) from different locations in Lake Superior. Forty-three alleles were obtained which encoded 71-72 amino acids of the mature protein. These sequences were compared with previous data obtained from five Pacific salmon species and Atlantic salmon using the same primers. Although all of the lake trout alleles clustered together in the neighbor-joining analysis of amino acid sequences, one amino acid allelic lineage was shared with Atlantic salmon (Salmo salar), a species in another genus which probably diverged from Salvelinus more than 10-20 million years ago. As shown previously in other salmonids, the level of nonsynonymous nucleotide substitution (d(N)) exceeded the level of synonymous substitution (d(S)). The level of nucleotide diversity at the MHC class II B1 locus was considerably higher in lake trout than in the Pacific salmon (genus Oncorhynchus). These results are consistent with the hypothesis that lake trout colonized Lake Superior from more than one refuge following the Wisconsin glaciation. Recent population bottlenecks may have reduced nucleotide diversity in Pacific salmon populations.

  2. Colorado River fish monitoring in Grand Canyon, Arizona; 2000 to 2009 summary

    USGS Publications Warehouse

    Makinster, Andrew S.; Persons, William R.; Avery, Luke A.; Bunch, Aaron J.

    2010-01-01

    Long-term fish monitoring in the Colorado River below Glen Canyon Dam is an essential component of the Glen Canyon Dam Adaptive Management Program (GCDAMP). The GCDAMP is a federally authorized initiative to ensure that the primary mandate of the Grand Canyon Protection Act of 1992 to protect resources downstream from Glen Canyon Dam is met. The U.S. Geological Survey's Grand Canyon Monitoring and Research Center is responsible for the program's long-term fish monitoring, which is implemented in cooperation with the Arizona Game and Fish Department, U.S. Fish and Wildlife Service, SWCA Environmental Consultants, and others. Electrofishing and tagging protocols have been developed and implemented for standardized annual monitoring of Colorado River fishes since 2000. In 2009, sampling occurred throughout the river between Lees Ferry and Lake Mead for 38 nights over two trips. During the two trips, scientists captured 6,826 fish representing 11 species. Based on catch-per-unit-effort, salmonids (for example, rainbow trout (Oncorhynchus mykiss) and brown trout (Salmo trutta)) increased eightfold between 2006 and 2009. Flannelmouth sucker (Catostomus latipinnis) catch rates were twice as high in 2009 as in 2006. Humpback chub (Gila cypha) catches were low throughout the 10-year sampling period.

  3. Brook trout passage performance through culverts

    USGS Publications Warehouse

    Goerig, Elsa; Castro-Santos, Theodore R.; Bergeron, Normand

    2016-01-01

    Culverts can restrict access to habitat for stream-dwelling fishes. We used passive integrated transponder telemetry to quantify passage performance of >1000 wild brook trout (Salvelinus fontinalis) attempting to pass 13 culverts in Quebec under a range of hydraulic and environmental conditions. Several variables influenced passage success, including complex interactions between physiology and behavior, hydraulics, and structural characteristics. The probability of successful passage was greater through corrugated metal culverts than through smooth ones, particularly among smaller fish. Trout were also more likely to pass at warmer temperatures, but this effect diminished above 15 °C. Passage was impeded at higher flows, through culverts with steep slopes, and those with deep downstream pools. This study provides insight on factors influencing brook trout capacity to pass culverts as well as a model to estimate passage success under various conditions, with an improved resolution and accuracy over existing approaches. It also presents methods that could be used to investigate passage success of other species, with implications for connectivity of the riverscape.

  4. Do Cutthroat Trout Go With the Flow? Hydrologic Determinants of Cutthroat Trout (Oncorhynchus clarkii) Abundance in the Western Cascades

    NASA Astrophysics Data System (ADS)

    Owens, H.; Skaugset, A. E.

    2012-12-01

    Resident Coastal Cutthroat trout are ubiquitous in headwater streams across western Oregon. The federal Endangered Species Act lists coastal cutthroat trout as a species of concern and lists habitat modification due to forest management as a cause of population decline. Protection of cutthroat trout is a concern to natural resource managers, yet the dynamics of cutthroat trout populations are complex and poorly understood. Thus, identifying the factors that drive the dynamics of cutthroat trout populations is important to the management of forested headwater watersheds. This poster describes an interdisciplinary study to identify hydrologic determinants of annual abundance, age structure, and growth in resident Cutthroat trout in headwater streams of the western Cascades of southern Oregon. Discharge is a primary variable of interest because it affects habitat volume, stream velocity, channel hydraulics, water quality, channel geomorphology, bed-load stability, and resource availability. Discharge is also affected by forest management activities, specifically timber harvest. The objective of this project is to identify and quantify the influence streamflow has on the abundance of resident cutthroat trout in western Oregon. The study was a part of the Hinkle Creek Paired Watershed Study and took place in the foothills of the Cascade Mountains in the Umpqua River basin from 2004-2011. Streamflow and fish populations were measured in the streams of a 3rd order, 1,950 hectare watershed. The study design was a nested paired watershed study that allowed the investigation to occur at multiple spatial and temporal scales. The study watersheds supported harvest-regenerated stands of Douglas-fir (pseudotsuga menziesii) and are part of a larger study to investigate the environmental impacts of contemporary forest practices on fish-bearing headwater streams. Fish populations and channel habitat characteristics were measured throughout the stream network annually. Discharge was measured at eight gaging stations (two 3rd-order and six 2nd-order streams). Stream temperature was measured at 29 locations throughout the study period. Linear regression was used to model potential explanatory variables of discharge, temperature, and habitat characteristics to explain annual trout abundance, age structure, and growth.

  5. Global gene expression in muscle from fasted/refed trout reveals up-regulation of genes promoting myofibre hypertrophy but not myofibre production.

    PubMed

    Rescan, Pierre-Yves; Le Cam, Aurelie; Rallière, Cécile; Montfort, Jérôme

    2017-06-07

    Compensatory growth is a phase of rapid growth, greater than the growth rate of control animals, that occurs after a period of growth-stunting conditions. Fish show a capacity for compensatory growth after alleviation of dietary restriction, but the underlying cellular mechanisms are unknown. To learn more about the contribution of genes regulating hypertrophy (an increase in muscle fibre size) and hyperplasia (the generation of new muscle fibres) in the compensatory muscle growth response in fish, we used high-density microarray analysis to investigate the global gene expression in muscle of trout during a fasting-refeeding schedule and in muscle of control-fed trout displaying normal growth. The compensatory muscle growth signature, as defined by genes up-regulated in muscles of refed trout compared with control-fed trout, showed enrichment in functional categories related to protein biosynthesis and maturation, such as RNA processing, ribonucleoprotein complex biogenesis, ribosome biogenesis, translation and protein folding. This signature was also enriched in chromatin-remodelling factors of the protein arginine N-methyl transferase family. Unexpectedly, functional categories related to cell division and DNA replication were not inferred from the molecular signature of compensatory muscle growth, and this signature contained virtually none of the genes previously reported to be up-regulated in hyperplastic growth zones of the late trout embryo myotome and to potentially be involved in production of new myofibres, notably genes encoding myogenic regulatory factors, transmembrane receptors essential for myoblast fusion or myofibrillar proteins predominant in nascent myofibres. Genes promoting myofibre growth, but not myofibre formation, were up-regulated in muscles of refed trout compared with continually fed trout. This suggests that a compensatory muscle growth response, resulting from the stimulation of hypertrophy but not the stimulation of hyperplasia, occurs in trout after refeeding. The generation of a large set of genes up-regulated in muscle of refed trout may yield insights into the molecular and cellular mechanisms controlling skeletal muscle mass in teleost and serve as a useful list of potential molecular markers of muscle growth in fish.

  6. Ecological risk assessment of heavy metals in brown trout (Salmo trutta m. fario) from the military training area Boletice (Czech republic).

    PubMed

    Dvořák, Petr; Andreji, Jaroslav; Mráz, Jan; Dvořáková-Líšková, Zuzana; Klufová, Renata

    2016-12-18

    This study to assess the environmental pollution status in streams (Loutecky, Spicak, Olsina, Trebovicky, Polecnicky and Luzny) from the Boletice area. Were determined of some metal (Hg, Pb, Cd) concentrations in the muscle and correlations among selected metals as well as standard length and total weight in brown trouth - Salmo trutta morpha fario. The contents of the analyzed metals in muscles were Hg 0.19-0.72, Pb 0.01-0.6 and Cd 0.020-0.083 mg/kg wet weight basis and these concentrations did not exceed the limits admissible in the Czech Republic. The Czech republic permissible limit for Hg (0.5 mg/kg to omnivors, 1 mg/kg to predators), Pb (0.3 mg/kg) and Cd (0.05 mg/kg) defined in the Codex Alimentarius for safe human consumption exceeded in 6%, 3%, and 0% of analyzed samples for Hg, Pb and Cd respectively. On an average, the order of metal concentrations in the fish muscle was: Hg>Pb>Cd.

  7. Linking egg thiamine and fatty acid concentrations of Lake Michigan lake trout with early life stage mortality.

    PubMed

    Czesny, Sergiusz; Dettmers, John M; Rinchard, Jacques; Dabrowski, Konrad

    2009-12-01

    The natural reproduction of lake trout Salvelinus namaycush in Lake Michigan is thought to be compromised by nutritional deficiency associated with inadequate levels of thiamine (vitamin B1) in their eggs. However, mortality driven by thiamine deficiency (commonly referred to as early mortality syndrome [EMS]) is not the only significant cause of low lake trout survival at early life stages. In this study, we sought to better understand the combined effects of variable levels of thiamine and fatty acids in lake trout eggs on prehatch, posthatch, and swim-up-stage mortality. We sampled the eggs of 29 lake trout females from southwestern Lake Michigan. The concentrations of free thiamine and its vitamers (e.g., thiamine monophosphate [TMP] and thiamine pyrophosphate [TPP]) as well as fatty acid profiles were determined in sampled eggs. Fertilized eggs and embryos were monitored through the advanced swim-up stage (1,000 degree-days). Three distinct periods of mortality were identified: prehatch (0-400 degree-days), immediately posthatch (401-600 degree-days), and swim-up (601-1,000 degree-days). Stepwise multiple regression analysis revealed (1) that cis-7-hexadecenoic acid in both neutral lipids (NL) and phospholipids (PL) correlated with prehatch mortality, (2) that docosapentaenoic acid in PL and docosahexaenoic acid in NL correlated with posthatch mortality, and (3) that total lipids, TPP, and palmitoleic acid in NL, linoleic acid, and palmitic acid in PL correlated with the frequency of EMS. These results indicate the complexity of early life stage mortality in lake trout and suggest that inadequate levels of key fatty acids in eggs, along with variable thiamine content, contribute to the low survival of lake trout progeny in Lake Michigan.

  8. Molecular characterization and expression analysis of three subclasses of IgT in rainbow trout (Oncorhynchus mykiss)

    PubMed Central

    Zhang, Nu; Zhang, Xu-Jie; Chen, Dan-Dan; Sunyer, J. Oriol; Zhang, Yong-An

    2017-01-01

    As the teleost specific immunoglobulin, IgT plays important roles in systemic and mucosal immunity. In the current study, in rainbow trout, we have cloned the heavy chain (Igτ) genes of a secretory form of IgT2 as well as the membrane and secretory forms of a third IgT subclass, termed IgT3. Conserved cysteine and tryptophan residues that are crucial for the folding of the immunoglobulin domain as well as hydrophobic and hydrophilic residues within CART motif were identified in all IgT subclasses. Through analysis of the rainbow trout genome assembly, Igτ3 gene was found localized upstream of Igτ1 gene, while Igτ2 gene situated on another scaffold. At the transcriptional level, Igτ1 was mainly expressed in both systemic and mucosal lymphoid tissues, while Igτ2 was largely expressed in systemic lymphoid organs. After LPS and poly (I:C) treatment, Igτ1 and Igτ2 genes exhibited different expression profiles. Interestingly the transcriptional level of Igτ3 was negligible, although its protein product could be identified in trout serum. Importantly, a previously reported monoclonal antibody directed against trout IgT1 was able to recognize IgT2 and IgT3. These data demonstrate that there exist three subclasses of IgT in rainbow trout, and that their heavy chain genes display different expression patterns during stimulation. Overall, our data reflect the diversity and complexity of immunoglobulin in trout, thus provide a better understanding of the IgT system in the immune response of teleost fish. PMID:28062226

  9. Waning habitats due to climate change: the effects of changes in streamflow and temperature at the rear edge of the distribution of a cold-water fish

    NASA Astrophysics Data System (ADS)

    María Santiago, José; Muñoz-Mas, Rafael; Solana-Gutiérrez, Joaquín; García de Jalón, Diego; Alonso, Carlos; Martínez-Capel, Francisco; Pórtoles, Javier; Monjo, Robert; Ribalaygua, Jaime

    2017-08-01

    Climate changes affect aquatic ecosystems by altering temperatures and precipitation patterns, and the rear edges of the distributions of cold-water species are especially sensitive to these effects. The main goal of this study was to predict in detail how changes in air temperature and precipitation will affect streamflow, the thermal habitat of a cold-water fish (the brown trout, Salmo trutta), and the synergistic relationships among these variables at the rear edge of the natural distribution of brown trout. Thirty-one sites in 14 mountain rivers and streams were studied in central Spain. Models of streamflow were built for several of these sites using M5 model trees, and a non-linear regression method was used to estimate stream temperatures. Nine global climate models simulations for Representative Concentration Pathways RCP4.5 and RCP8.5 scenarios were downscaled to the local level. Significant reductions in streamflow were predicted to occur in all of the basins (max. -49 %) by the year 2099, and seasonal differences were noted between the basins. The stream temperature models showed relationships between the model parameters, geology and hydrologic responses. Temperature was sensitive to streamflow in one set of streams, and summer reductions in streamflow contributed to additional stream temperature increases (max. 3.6 °C), although the sites that are most dependent on deep aquifers will likely resist warming to a greater degree. The predicted increases in water temperatures were as high as 4.0 °C. Temperature and streamflow changes will cause a shift in the rear edge of the distribution of this species. However, geology will affect the extent of this shift. Approaches like the one used herein have proven to be useful in planning the prevention and mitigation of the negative effects of climate change by differentiating areas based on the risk level and viability of fish populations.

  10. Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka.

    PubMed

    Dragun, Zrinka; Filipović Marijić, Vlatka; Krasnići, Nesrete; Ivanković, Dušica; Valić, Damir; Žunić, Jakov; Kapetanović, Damir; Smrzlić, Irena Vardić; Redžović, Zuzana; Grgić, Ivana; Erk, Marijana

    2018-01-01

    Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) were studied in the period from April 2015 to May 2016 at two sampling sites on Croatian river Krka, to establish if river water contamination with metals/metalloids downstream of Knin town has influenced metal bioaccumulation in S. trutta liver. Differences were observed between two sites, with higher concentrations of several elements (Ag, As, Ca, Co, Na, Se, Sr, V) found downstream of Knin town, whereas few others (Cd, Cs, Mo, Tl) were, unexpectedly, increased at the Krka River spring. However, total metal/metalloid concentrations in the liver of S. trutta from both sites of the Krka River were still mainly below previously reported levels for pristine freshwaters worldwide. The analysis of seasonal changes of metal/metalloid concentrations in S. trutta liver and their association with fish sex and size mostly indicated their independence of fish physiology, making them good indicators of water contamination and exposure level. Metal/metalloid concentrations in the metabolically available hepatic cytosolic fractions reported in this study are the first data of that kind for S. trutta liver, and the majority of analyzed elements were present in the cytosol in the quantity higher than 50% of their total concentrations, thus indicating their possible availability for toxic effects. However, the special attention should be directed to As, Cd, Cs, and Tl, which under the conditions of increased exposure tended to accumulate more within the cytosol. Although metal/metalloid concentrations in S. trutta liver were still rather low, monitoring of the Krka River water quality and of the health status of its biota is essential due to a trend of higher metal/metalloid bioaccumulation downstream of Knin town, especially taking into consideration the proximity of National Park Krka and the need for its conservation. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Local Adaptation at the Transcriptome Level in Brown Trout: Evidence from Early Life History Temperature Genomic Reaction Norms

    PubMed Central

    Meier, Kristian; Hansen, Michael Møller; Normandeau, Eric; Mensberg, Karen-Lise D.; Frydenberg, Jane; Larsen, Peter Foged; Bekkevold, Dorte; Bernatchez, Louis

    2014-01-01

    Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change. PMID:24454810

  12. Effects of stream-adjacent logging in fishless headwaters on downstream coastal cutthroat trout

    USGS Publications Warehouse

    Bateman, Douglas S.; Sloat, Matthew R.; Gresswell, Robert E.; Berger, Aaron M.; Hockman-Wert, David; Leer, David W.; Skaugset, Arne E.

    2016-01-01

    To investigate effects of headwater logging on downstream coastal cutthroat trout (Oncorhynchus clarkii clarkii) populations, we monitored stream habitat and biotic indicators including biomass, abundance, growth, movement, and survival over 8 years using a paired-watershed approach. Reference and logged catchments were located on private industrial forestland on ∼60-year harvest rotation. Five clearcuts (14% of the logged catchment area) were adjacent to fishless portions of the headwater streams, and contemporary regulations did not require riparian forest buffers in the treatment catchment. Logging did not have significant negative effects on downstream coastal cutthroat trout populations for the duration of the sample period. Indeed, the only statistically significant response of fish populations following logging in fishless headwaters was an increase in late-summer biomass (g·m−2) of age-1+ coastal cutthroat trout in tributaries. Ultimately, the ability to make broad generalizations concerning effects of timber harvest is difficult because response to disturbance (anthropogenically influenced or not) in aquatic systems is complex and context-dependent, but our findings provide one example of environmentally compatible commercial logging in a regenerated forest setting.

  13. Landscape-scale evaluation of genetic structure among barrier-isolated populations of coastal cutthroat trout, Oncorhynchus clarkii clarkii

    USGS Publications Warehouse

    Guy, T.J.; Gresswell, R.E.; Banks, M.A.

    2008-01-01

    Relationships among landscape structure, stochastic disturbance, and genetic diversity were assessed by examining interactions between watershed-scale environmental factors and genetic diversity of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in 27 barrier-isolated watersheds from western Oregon, USA. Headwater populations of coastal cutthroat trout were genetically differentiated (mean FST = 0.33) using data from seven microsatellite loci (2232 individuals), but intrapopulation microsatellite genetic diversity (mean number of alleles per locus = 5, mean He = 0.60) was only moderate. Genetic diversity of coastal cutthroat trout was greater (P = 0.02) in the Coast Range ecoregion (mean alleles = 47) than in the Cascades ecoregion (mean alleles = 30), and differences coincided with indices of regional within-watershed complexity and connectivity. Furthermore, regional patterns of diversity evident from isolation-by-distance plots suggested that retention of within-population genetic diversity in the Coast Range ecoregion is higher than that in the Cascades, where genetic drift is the dominant factor influencing genetic patterns. Thus, it appears that physical landscape features have influenced genetic patterns in these populations isolated from short-term immigration. ?? 2008 NRC.

  14. Assessing three fish species ecological status in Colorado River, Grand Canyon based on physical habitat and population models.

    PubMed

    Yao, Weiwei; Chen, Yuansheng

    2018-04-01

    Colorado River is a unique ecosystem and provides important ecological services such as habitat for fish species as well as water power energy supplies. River management for this ecosystem requires assessment and decision support tools for fish which involves protecting, restoring as well as forecasting of future conditions. In this paper, a habitat and population model was developed and used to determine the levels of fish habitat suitability and population density in Colorado River between Lees Ferry and Lake Mead. The short term target fish populations are also predicted based on native fish recovery strategy. This model has been developed by combining hydrodynamics, heat transfer and sediment transport models with a habitat suitability index model and then coupling with habitat model into life stage population model. The fish were divided into four life stages according to the fish length. Three most abundant and typical native and non-native fish were selected as target species, which are rainbow trout (Oncorhynchus mykiss), brown trout (Salmo trutta) and flannelmouth sucker (Catostomus latipinnis). Flow velocity, water depth, water temperature and substrates were used as the suitability indicators in habitat model and overall suitability index (OSI) as well as weight usable area (WUA) was used as an indicator in population model. A comparison was made between simulated fish population alteration and surveyed fish number fluctuation during 2000 to 2009. The application of this habitat and population model indicates that this model can be accurate present habitat situation and targets fish population dynamics of in the study areas. The analysis also indicates the flannelmouth sucker population will steadily increase while the rainbow trout will decrease based on the native fish recovery scheme. Copyright © 2018. Published by Elsevier Inc.

  15. The Challenge of Teaching "Brown"

    ERIC Educational Resources Information Center

    Waite, Cally L.

    2004-01-01

    This paper examines the issues on whether Brown really desegregate school. Study shows that many cases of large number of segregated schools still exist today. This was the complexity of addressing this issue that makes teaching Brown a challenge. The 1954 Supreme Court decision--Brown v. Board of Education was the basis of their study for the…

  16. Fish Rhabdovirus Cell Entry Is Mediated by Fibronectin

    PubMed Central

    Bearzotti, Monique; Delmas, Bernard; Lamoureux, Annie; Loustau, Anne-Marie; Chilmonczyk, Stefan; Bremont, Michel

    1999-01-01

    Three monoclonal antibodies (MAbs) generated against rainbow trout gonad cells (RTG-2) have been selected for their ability to protect cells from the viral hemorrhagic septicemia virus (VHSV) infection, a salmonid rhabdovirus. Protection from infection was restricted to the salmonid-derived cell lines indicating species specificity of the blocking MAbs. Surprisingly, the blocking activity of these MAbs was also effective against other nonantigenically related fish rhabdoviruses. Indirect immunofluorescence and immunoelectron microscopy observations demonstrated that the three MAbs were all directed against an abundant cell plasma membrane component, and immunoprecipitation studies indicated that the target consisted of a heterodimeric complex with molecular masses of 200 and 44 kDa. Biochemical data provided the following evidence that fibronectin is part of this complex and that it could represent the main receptor for fish rhabdoviruses. (i) An antiserum generated against the 200-kDa protein reacted against the recombinant rainbow trout fibronectin expressed in Escherichia coli. (ii) The purified rainbow trout fibronectin was able to bind specifically to VHSV. To our knowledge, this is the first identification of a cellular component acting as a primary receptor for a virus replicating in lower vertebrates and, more interestingly, for viruses belonging to the Rhabdoviridae family. PMID:10438860

  17. Summer habitat use by Columbia River redband trout in the Kootenai River drainage, Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Bennett, David H.

    2001-01-01

    The reported decline in the abundance, distribution, and genetic diversity of Columbia River redband trout Oncorhynchus mykiss gairdneri (a rainbow trout subspecies) has prompted fisheries managers to investigate their habitat requirements, identify critical habitat, and develop effective conservation and recovery programs. We analyzed the microhabitat, mesohabitat, and macrohabitat use and distribution of Columbia River redband trout by means of snorkel surveys in two watersheds in the Kootenai River drainage, Montana and Idaho, during the summers of 1997 and 1998. Juvenile (36–125 mm total length, TL) and adult (>=126 mm TL) fish preferred deep microhabitats (>=0.4 m) with low to moderate velocities (<=0.5 m/s) adjacent to the thalweg. Conversely, age-0 (<=35 mm) fish selected slow water (<=0.1 m/s) and shallow depths (<=0.2 m) located in lateral areas of the channel. Age-0, juvenile, and adult fish strongly selected pool mesohabitats and avoided riffles; juveniles and adults generally used runs in proportion to their availability. At the macrohabitat scale, density of Columbia River redband trout (35 mm) was positively related to the abundance of pools and negatively related to stream gradient. The pool: riffle ratio, gradient, and stream size combined accounted for 80% of the variation in density among 23 stream reaches in five streams. Our results demonstrate that low-gradient, medium-elevation reaches with an abundance of complex pools are critical areas for the production of Columbia River redband trout. These data will be useful in assessing the impacts of land-use practices on the remaining populations and may assist with habitat restoration or enhancement efforts.

  18. Sources of variability and comparability between salmonid stomach contents and isotopic analyses: study design lessons and recommendations

    USGS Publications Warehouse

    Vinson, M.R.; Budy, P.

    2011-01-01

    We compared sources of variability and cost in paired stomach content and stable isotope samples from three salmonid species collected in September 2001–2005 and describe the relative information provided by each method in terms of measuring diet overlap and food web study design. Based on diet analyses, diet overlap among brown trout, rainbow trout, and mountain whitefish was high, and we observed little variation in diets among years. In contrast, for sample sizes n ≥ 25, 95% confidence interval (CI) around mean δ15Ν and δ13C for the three target species did not overlap, and species, year, and fish size effects were significantly different, implying that these species likely consumed similar prey but in different proportions. Stable isotope processing costs were US$12 per sample, while stomach content analysis costs averaged US$25.49 ± $2.91 (95% CI) and ranged from US$1.50 for an empty stomach to US$291.50 for a sample with 2330 items. Precision in both δ15Ν and δ13C and mean diet overlap values based on stomach contents increased considerably up to a sample size of n = 10 and plateaued around n = 25, with little further increase in precision.

  19. Polyphasic characterization of Aeromonas salmonicida isolates recovered from salmonid and non-salmonid fish

    USGS Publications Warehouse

    Diamanka, A.; Loch, T.P.; Cipriano, R.C.; Faisal, M.

    2013-01-01

    Michigan's fisheries rely primarily upon the hatchery propagation of salmonid fish for release in public waters. One limitation on the success of these efforts is the presence of bacterial pathogens, including Aeromonas salmonicida, the causative agent of furunculosis. This study was undertaken to determine the prevalence of A. salmonicida in Michigan fish, as well as to determine whether biochemical or gene sequence variability exists among Michigan isolates. A total of 2202 wild, feral and hatchery-propagated fish from Michigan were examined for the presence of A. salmonicida. The examined fish included Chinook salmon, Oncorhynchus tshawytscha (Walbaum), coho salmon, O. kisutcha (Walbaum), steelhead trout, O. mykiss (Walbaum), Atlantic salmon, Salmo salar L., brook trout, Salvelinus fontinalis (Mitchill), and yellow perch, Perca flavescens (Mitchill). Among these, 234 fish yielded a brown pigment-producing bacterium that was presumptively identified as A. salmonicida. Further phenotypic and phylogenetic analyses identified representative isolates as Aeromonas salmonicida subsp. salmonicida and revealed some genetic and biochemical variability. Logistic regression analyses showed that infection prevalence varied according to fish species/strain, year and gender, whereby Chinook salmon and females had the highest infection prevalence. Moreover, this pathogen was found in six fish species from eight sites, demonstrating its widespread nature within Michigan.

  20. A probabilistic model for silver bioaccumulation in aquatic systems and assessment of human health risks

    USGS Publications Warehouse

    Warila, James; Batterman, Stuart; Passino-Reader, Dora R.

    2001-01-01

    Silver (Ag) is discharged in wastewater effluents and is also a component in a proposed secondary water disinfectant. A steady-state model was developed to simulate bioaccumulation in aquatic biota and assess ecological and human health risks. Trophic levels included phytoplankton, invertebrates, brown trout, and common carp. Uptake routes included water, food, or sediment. Based on an extensive review of the literature, distributions were derived for most inputs for use in Monte Carlo simulations. Three scenarios represented ranges of dilution and turbidity. Compared with the limited field data available, median estimates of Ag in carp (0.07-2.1 Iμg/g dry weight) were 0.5 to 9 times measured values, and all measurements were within the predicted interquartile range. Median Ag concentrations in biota were ranked invertebrates > phytoplankton > trout > carp. Biotic concentrations were highest for conditions of low dilution and low turbidity. Critical variables included Ag assimilation eficiency, specific feeding rate, and the phytoplankton bioconcentration factor. Bioaccumulation of Ag seems unlikely to result in txicity to aquatic biota and humans consuming fish. Although the highest predicted Ag concentrations in water (>200 ng/L) may pose chronic risks to early survival and development of salmonids and risks of argyria to subsistence fishers, these results occur under highly conservative conditions.

  1. Seasonal movements and habitat use of Potamodromous Rainbow Trout across a complex Alaska riverscape

    USGS Publications Warehouse

    Fraley, Kevin M.; Falke, Jeffrey A.; Yanusz, Richard; Ivey, Sam S.

    2016-01-01

    Potamodromous Rainbow Trout Oncorhynchus mykiss are an important ecological and recreational resource in freshwater ecosystems of Alaska, and increased human development, hydroelectric projects, and reduced escapement of Chinook Salmon Oncorhynchus tshawytscha may threaten their populations. We used aerial and on-the-ground telemetry tracking, a digital landscape model, and resource selection functions to characterize seasonal movements and habitat use of 232 adult (>400 mm FL) Rainbow Trout across the complex, large (31,221 km2) Susitna River basin of south-central Alaska during 2003–2004 and 2013–2014. We found that fish overwintered in main-stem habitats near tributary mouths from November to April. After ice-out in May, fish ascended tributaries up to 51 km to spawn and afterward moved downstream to lower tributary reaches, assumedly to intercept egg and flesh subsidies provided by spawning salmonids in July and August. Fish transitioned back to main-stem overwintering habitats at the onset of autumn when salmonid spawning waned. Fidelity to tributaries where fish were initially tagged varied across seasons but was high (>0.75) in three out of four drainages. Model-averaged resource selection functions suggested that Rainbow Trout habitat use varied seasonally; fish selected low-gradient, sinuous, main-stem stream reaches in the winter, reaches with suitably sized substrate during spawning, larger reaches during the feeding season prior to the arrival of spawning salmonids, and reaches with high Chinook Salmon spawning habitat potential following the arrival of adult fish. We found little difference in movement patterns between males and females among a subset of fish for which sex was determined using genetic analysis. As most Rainbow Trout undertake extensive movements within and among tributaries and make use of a variety of seasonal habitats to complete their life histories, it will be critical to take a basinwide approach to their management (i.e., habitat protection and angling bag limits) in light of anticipated land-use changes.

  2. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  3. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, Eric D.; Purcell, Maureen K.; Thorgaard, Gary H.; Wheeler , Paul A.; Hansen, John D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in naïve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  4. Identification of the thiamin pyrophosphokinase gene in rainbow trout: Characteristic structure and expression of seven splice variants in tissues and cell lines and during embryo development

    USGS Publications Warehouse

    Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming

    2012-01-01

    Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.

  5. Life history diversity of Snake River finespotted cutthroat trout: managing for persistence in a rapidly changing environment

    USGS Publications Warehouse

    Homel, Kristen M.; Gresswell, Robert E.; Kershner, Jeffrey L.

    2015-01-01

    Over the last century, native trout have experienced dramatic population declines, particularly in larger river systems where habitats associated with different spawning life history forms have been lost through habitat degradation and fragmentation. The resulting decrease in life history diversity has affected the capacity of populations to respond to environmental variability and disturbance. Unfortunately, because few large rivers are intact enough to permit full expression of life history diversity, it is unclear what patterns of diversity should be a conservation target. In this study, radiotelemetry was used to identify spawning and migration patterns of Snake River Finespotted Cutthroat Trout Oncorhynchus clarkii behnkei in the upper Snake River. Individuals were implanted with radio tags in October 2007 and 2008, and monitored through October 2009. Radio-tagged cutthroat trout in the upper Snake River exhibited variation in spawning habitat type and location, migration distance, spawn timing, postspawning behavior, and susceptibility to mortality sources. Between May and July, Cutthroat Trout spawned in runoff-dominated tributaries, groundwater-dominated spring creeks, and side channels of the Snake River. Individuals migrated up to 101 km from tagging locations in the upper Snake River to access spawning habitats, indicating that the upper Snake River provided seasonal habitat for spawners originating throughout the watershed. Postspawning behavior also varied; by August each year, 28% of spring-creek spawners remained in their spawning location, compared with 0% of side-channel spawners and 7% of tributary spawners. These spawning and migration patterns reflect the connectivity, habitat diversity, and dynamic template of the Snake River. Ultimately, promoting life history diversity through restoration of complex habitats may provide the most opportunities for cutthroat trout persistence in an environment likely to experience increased variability from climate change and disturbance from invasive species.

  6. Adaptive Flow Management in Regulated Rivers: Successes and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Robinson, C. T.; Melis, T. S.; Kennedy, T.; Korman, J.; Ortlepp, J.

    2013-12-01

    Experimental high flows are becoming common management actions in rivers affected by large dams. When implemented under clear objectives and goals, experimental flows provide opportunities for long-term ecological successes but also impose various ecological challenges as systems shift under environmental change or from human-related actions. We present case studies from long-term adaptive flow management programs on the River Spöl, Switzerland and the Colorado River, USA, both of which are regulated by high dams and flow through National Parks. The management goals in each system differ thus reflecting the different high flow practices implemented over time. Regulated flows in the Spöl reflect a compromise between hydropower needs and ecology (native brown trout fishery), whereas Glen Canyon Dam flows have mainly been directed towards maintenance of river beaches in Grand Canyon National Park with co-management of both nonnative rainbow trout in the tailwater immediately below the dam and downstream endangered native fish of Grand Canyon also an objective. Some 24 experimental floods have occurred on the Spöl over the last 13 years, resulting in a positive effect on the trout fishery and a zoobenthic assemblage having a more typical alpine stream composition. The system has experienced various shifts in assemblage composition over time with the last shift occurring 7 years after the initial floods. A major challenge occurred in spring 2013 with an accidental release of fine sediments from the reservoir behind Punt dal Gall Dam, causing high fish mortality and smothering of the river bottom. Results showed that the effect was pronounced near the dam and gradually lessened downriver to the lower reservoir. Zoobenthic assemblages displayed relatively high resistance to the event and some fish found refugia in the lower reservoir and larger side tributaries, thus projecting a faster recovery than initially thought. Below Glen Canyon dam, benefits to sandbars have been marginal since experimental constrained hydropower releases began in 1991 and controlled floods began in 1996 (7 have been released through 2012), while native fish populations have increased, although apparently not in response to flows. However, nonnative rainbow trout have been shown to increase in abundance repeatedly below Glen Canyon Dam in response to both controlled floods and more stable flows, both of which were originally proposed to benefit Grand Canyon beaches. Survival of trout fry following the 2008 spring flood was apparently tied to increased abundance of benthic invertebrates in the tailwater. Expansion of nonnative trout in response to high flows pose a potential threat to native fish downstream through competition for limited food and habitat, and through predation of juvenile native fish. Challenges are presented for each system in terms of flow implementation under hydropower needs (Spöl) and environmental change (Colorado). We close with perspectives on improving adaptive flow management actions in regulated rivers as learning-based, long-term ecological experiments.

  7. Marine effect of introduced salmonids: Prey consumption by exotic steelhead and anadromous brown trout in the Patagonian Continental Shelf

    USGS Publications Warehouse

    Ciancio, J.; Beauchamp, D.A.; Pascual, M.

    2010-01-01

    On the basis of stable isotope analysis, we estimated the marine diet of the most abundant anadromous salmonid species in Patagonian Atlantic basins. The results were coupled with bioenergetic and population models to estimate the consumption of food by salmonids and was compared with that by seabirds, the most abundant top predators in the area. Amphipods were the main salmonid prey, followed by sprat, silversides, squid, and euphausiids. The total consumption, even assuming large anadromous salmonid populations, represented <5% of the total consumption by seabirds. We also identified the particular seabird colonies and artisanal fisheries with which salmonid trophic interactions at a more local scale could be significant. ?? 2010, by the American Society of Limnology and Oceanography, Inc.

  8. Trophic relationships between a native and a nonnative predator in a system of natural lakes

    USGS Publications Warehouse

    Meeuwig, Michael H.; Guy, Christopher S.; Fedenberg, Wade A.

    2011-01-01

    Bull trout, a species of char listed as threatened under the US Endangered Species Act, have been displaced from portions of their historic range following the introduction of nonnative lake trout. It has been suggested that competitive exclusion as a result of trophic overlap between bull trout and lake trout may be the causal mechanism associated with displacement of bull trout. This study used stable isotope data to evaluate trophic relationships among native bull trout, nonnative lake trout and other fishes in seven lakes in Glacier National Park (GNP), Montana. Bull trout and lake trout had greater δ15N values relative to other fishes among lakes (δ15N = 3.0‰). Lake trout had greater δ15N values relative to bull trout (δ15N = +1.0‰). Bull trout had greater δ13C values relative to lake trout in six of the seven lakes examined. Although both bull trout and lake trout had greater δ15N values relative to other fishes within lakes in GNP, differences in δ15N and 13C between bull trout and lake trout suggest that they are consuming different prey species or similar prey species in different proportions. Therefore, displacement of bull trout as a direct result of complete overlap in food resource use is not anticipated unless diet shifts occur or food resources become limiting. Additionally, future studies should evaluate food habits to identify important prey species and sources of partial dietary overlap between bull trout and lake trout.

  9. Effect of brook trout removal from a spawning stream on an adfluvial population of Lahontan cutthroat trout

    USGS Publications Warehouse

    Scoppettone, G. Gary; Rissler, Peter H.; Shea, Sean P.; Somer, William

    2012-01-01

    Independence Lake (Nevada and Sierra counties, California) harbors the only extant native population of Lahontan cutthroat trout Oncorhynchus clarkii henshawi in the Truckee River system and one of two extant adfluvial populations in the Lahontan basin. The persistence of this population has been precarious for more than 50 years, with spawning runs consisting of only 30–150 fish. It is assumed that this population was much larger prior to the introduction of nonnative brook trout Salvelinus fontinalis. Brook trout overlap with cutthroat trout in upper Independence Creek, where the cutthroat trout spawn and their resulting progeny emigrate to Independence Lake. In 2005, we began removing brook trout from upper Independence Creek using electrofishers and monitored the cutthroat trout population. Stomach analysis of captured brook trout revealed cutthroat trout fry, and cutthroat trout fry survival increased significantly from 4% to 12% with brook trout removal. Prior to brook trout removal, the only Lahontan cutthroat trout progeny emigrating to Independence Lake were fry; with brook trout removal, juveniles were found entering the lake. In 2010, 237 potential spawners passed a prefabricated weir upstream of Independence Lake. Although the results of this study suggest that brook trout removal from upper Independence Creek has had a positive influence on the population dynamics of Independence Lake Lahontan cutthroat trout, additional years of removal are needed to assess the ultimate effect this action will have upon the cutthroat trout population.

  10. Use of cover habitat by bull trout Salvelinus confluentus and lake trout Salvelinus namaycush in a laboratory environment

    USGS Publications Warehouse

    Meeuwig, Michael H.; Guy, Christopher S.; Fredenberg, Wade A.

    2011-01-01

    Lacustrine-adfluvial bull trout, Salvelinus confluentus, migrate from spawning and rearing streams to lacustrine environments as early as age 0. Within lacustrine environments, cover habitat pro- vides refuge from potential predators and is a resource that is competed for if limiting. Competitive inter- actions between bull trout and other species could result in bull trout being displaced from cover habitat, and bull trout may lack evolutionary adaptations to compete with introduced species, such as lake trout, Salvelinus namaycush. A laboratory experiment was performed to examine habitat use and interactions for cover by juvenile (i.e., <80 mm total length) bull trout and lake trout. Differences were observed between bull trout and lake trout in the proportion of time using cover (F1,22.6=20.08, P<0.001) and bottom (F1,23.7 = 37.01, P < 0.001) habitat, with bull trout using cover and bottom habitats more than lake trout. Habitat selection ratios indicated that bull trout avoided water column habitat in the presence of lake trout and that lake trout avoided bottom habitat. Intraspecific and interspecific agonistic interactions were infrequent, but approximately 10 times greater for intraspecific inter- actions between lake trout. Results from this study provide little evidence that juvenile bull trout and lake trout compete for cover, and that species-specific differences in habitat use and selection likely result in habitat partitioning between these species.

  11. Application of two- and three-dimensional computational fluid dynamics models to complex ecological stream flows

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Diplas, Panayiotis

    2008-01-01

    SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The research suggests ways of improving the modeling practices for ecosystem management studies.

  12. Lake trout (Salvelinus namaycush) suppression for bull trout (Salvelinus confluentus) recovery in Flathead Lake, Montana, North America

    USGS Publications Warehouse

    Hansen, Michael J.; Hansen, Barry S; Beauchamp, David A.

    2016-01-01

    Non-native lake trout Salvelinus namaycush displaced native bull trout Salvelinus confluentus in Flathead Lake, Montana, USA, after 1984, when Mysis diluviana became abundant following its introduction in upstream lakes in 1968–1976. We developed a simulation model to determine the fishing mortality rate on lake trout that would enable bull trout recovery. Model simulations indicated that suppression of adult lake trout by 75% from current abundance would reduce predation on bull trout by 90%. Current removals of lake trout through incentivized fishing contests has not been sufficient to suppress lake trout abundance estimated by mark-recapture or indexed by stratified-random gill netting. In contrast, size structure, body condition, mortality, and maturity are changing consistent with a density-dependent reduction in lake trout abundance. Population modeling indicated total fishing effort would need to increase 3-fold to reduce adult lake trout population density by 75%. We conclude that increased fishing effort would suppress lake trout population density and predation on juvenile bull trout, and thereby enable higher abundance of adult bull trout in Flathead Lake and its tributaries.

  13. Influence of eastern hemlock (Tsuga canadensis L.) on fish community structure and function in headwater streams of the Delaware River basin

    USGS Publications Warehouse

    Ross, R.M.; Bennett, R.M.; Snyder, C.D.; Young, J.A.; Smith, D.R.; Lemarie, D.P.

    2003-01-01

    Hemlock (Tsuga canadensis) forest of the eastern U.S. are in decline due to invasion by the exotic insect hemlock woolly adelgid (Adelges tsugae). Aquatic biodiversity in hemlock ecosystems has not been documented; thus the true impact of the infestation cannot be assessed. We compared ichthyofaunal assemblages and trophic structure of streams draining hemlock and hardwood forests by sampling first- and second-order streams draining 14 paired hemlock and hardwood stands during base flows in July 1997 at the Delaware Water Gap National Recreation Area of Pennsylvania and New Jersey. Over 1400 fish of 15 species and 7 families were collected, but hemlock and hardwood streams individually harbored only one to four species. Brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) were two to three times as prevalent in hemlock than hardwood streams. Insectivorous fishes occurred in significantly higher proportion in streams of hardwood (0.90) than hemlock (0.46) stands, while piscivores occurred more often in hemlock (0.85) than hardwood (0.54) stands. Functional (trophic) diversity of fishes in hemlock and second-order streams was numerically greater than that of hardwood and first-order streams. Species composition also differed by stream order and terrain type. Biodiversity is threatened at several levels within hemlock ecosystems at risk to the hemlock woolly adelgid in eastern U.S. forests.

  14. Elucidating the Behavior of Cyclic Volatile Methylsiloxanes in a Subarctic Freshwater Food Web: A Modeled and Measured Approach.

    PubMed

    Krogseth, Ingjerd S; Undeman, Emma; Evenset, Anita; Christensen, Guttorm N; Whelan, Mick J; Breivik, Knut; Warner, Nicholas A

    2017-11-07

    Cyclic volatile methylsiloxanes (cVMS) are used in personal care products and emitted to aquatic environments through wastewater effluents, and their bioaccumulation potential is debated. Here, a new bentho-pelagic version of the ACC-HUMAN model was evaluated for polychlorinated biphenyls (PCBs) and applied to cVMS in combination with measurements to explore their bioaccumulation behavior in a subarctic lake. Predictions agreed better with measured PCB concentrations in Arctic char (Salvelinus alpinus) and brown trout (Salmo trutta) when the benthic link was included than in the pelagic-only model. Measured concentrations of decamethylcyclopentasiloxane (D5) were 60 ± 1.2 (Chironomidae larvae), 107 ± 4.5 (pea clams Pisidium sp.), 131 ± 105 (three-spined sticklebacks: Gasterosteus aculeatus), 41 ± 38 (char), and 9.9 ± 5.9 (trout) ng g -1 wet weight. Concentrations were lower for octamethylcyclotetrasiloxane (D4) and dodecamethylcyclohexasiloxane (D6), and none of the cVMS displayed trophic magnification. Predicted cVMS concentrations were lower than measured in benthos, but agreed well with measurements in fish. cVMS removal through ventilation was an important predicted loss mechanism for the benthic-feeding fish. Predictions were highly sensitive to the partition coefficient between organic carbon and water (K OC ) and its temperature dependence, as this controlled bioavailability for benthos (the main source of cVMS for fish).

  15. Fitness and community consequences of avoiding multiple predators.

    PubMed

    Peckarsky, Barbara L; McIntosh, Angus R

    1998-02-01

    We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities.

  16. Irradiation of rainbow trout at early life stages results in trans-generational effects including the induction of a bystander effect in non-irradiated fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Richard W., E-mail: rich.wilson.smith@gmail.com; Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario; Seymour, Colin B.

    The bystander effect, a non-targeted effect (NTE) of radiation, which describes the response by non-irradiated organisms to signals emitted by irradiated organisms, has been documented in a number of fish species. However transgenerational effects of radiation (including NTE) have yet to be studied in fish. Therefore rainbow trout, which were irradiated as eggs at 48 h after fertilisation, eyed eggs, yolk sac larvae or first feeders, were bred to generate a F1 generation and these F1 fish were bred to generate a F2 generation. F1 and F2 fish were swam with non-irradiated bystander fish. Media from explants of F1 eyedmore » eggs, F1 one year old fish gill and F1 two year old fish gill and spleen samples, and F2 two year old gill and spleen samples, as well as from bystander eggs/fish, was used to treat a reporter cell line, which was then assayed for changes in cellular survival/growth. The results were complex and dependent on irradiation history, age (in the case of the F1 generation), and were tissue specific. For example, irradiation of one parent often resulted in effects not seen with irradiation of both parents. This suggests that, unlike mammals, in certain circumstances maternal and paternal irradiation may be equally important. This study also showed that trout can induce a bystander effect 2 generations after irradiation, which further emphasises the importance of the bystander effect in aquatic radiobiology. Given the complex community structure in aquatic ecosystems, these results may have significant implications for environmental radiological protection. - Highlights: • We evaluated the transgenerational effect of early life irradiation in rainbow trout. • Trout irradiated as eggs, yolk sac larvae or first feeders were crossed. • A transgenerational effect was evident in two generations after irradiation. • F1 and F2 generation fish induced a bystander effect in non-irradiated fish. • The precise effects were tissue specific and dependent on parental radiation history.« less

  17. A Tale of Two Movements: The Power and Consequences of Misremembering "Brown"

    ERIC Educational Resources Information Center

    Williamson, Joy Ann

    2006-01-01

    If, as James Anderson stated, a nation committed to democracy and equality has every reason to be ashamed on "Brown v. Board of Education's" 50th anniversary, why the commemoration and celebration? By revising Anderson's challenge to examine the complex role of "Brown" in the nation's memory and history, this chapter…

  18. Fish habitat regression under water scarcity scenarios in the Douro River basin

    NASA Astrophysics Data System (ADS)

    Segurado, Pedro; Jauch, Eduardo; Neves, Ramiro; Ferreira, Teresa

    2015-04-01

    Climate change will predictably alter hydrological patterns and processes at the catchment scale, with impacts on habitat conditions for fish. The main goals of this study are to identify the stream reaches that will undergo more pronounced flow reduction under different climate change scenarios and to assess which fish species will be more affected by the consequent regression of suitable habitats. The interplay between changes in flow and temperature and the presence of transversal artificial obstacles (dams and weirs) is analysed. The results will contribute to river management and impact mitigation actions under climate change. This study was carried out in the Tâmega catchment of the Douro basin. A set of 29 Hydrological, climatic, and hydrogeomorphological variables were modelled using a water modelling system (MOHID), based on meteorological data recorded monthly between 2008 and 2014. The same variables were modelled considering future climate change scenarios. The resulting variables were used in empirical habitat models of a set of key species (brown trout Salmo trutta fario, barbell Barbus bocagei, and nase Pseudochondrostoma duriense) using boosted regression trees. The stream segments between tributaries were used as spatial sampling units. Models were developed for the whole Douro basin using 401 fish sampling sites, although the modelled probabilities of species occurrence for each stream segment were predicted only for the Tâmega catchment. These probabilities of occurrence were used to classify stream segments into suitable and unsuitable habitat for each fish species, considering the future climate change scenario. The stream reaches that were predicted to undergo longer flow interruptions were identified and crossed with the resulting predictive maps of habitat suitability to compute the total area of habitat loss per species. Among the target species, the brown trout was predicted to be the most sensitive to habitat regression due to the interplay of flow reduction, increase of temperature and transversal barriers. This species is therefore a good indicator of climate change impacts in rivers and therefore we recommend using this species as a target of monitoring programs to be implemented in the context of climate change adaptation strategies.

  19. Hatchery Contributions to Emerging Naturally Produced Lake Huron Lake Trout.

    PubMed

    Scribner, Kim; Tsehaye, Iyob; Brenden, Travis; Stott, Wendylee; Kanefsky, Jeannette; Bence, James

    2018-06-19

    Recent assessments indicate the emergence of naturally produced lake trout (Salvelinus namaycush) recruitment throughout Lake Huron in the North American Laurentian Great Lakes (>50% of fish <7 yrs). Because naturally produced fish derived from different stocked hatchery strains are unmarked, managers cannot distinguish strains contributing to natural recruitment. We used 15 microsatellite loci to identify strains of naturally produced lake trout (N=1567) collected in assessment fisheries during early (2002-2004) and late (2009-2012) sampling periods. Individuals from 13 American and Canadian hatchery strains (N=1143) were genotyped to develop standardized baseline information. Strain contributions were estimated using a Bayesian inferential approach. Deviance information criteria was used to compare models evaluating strain contributions at different spatial and temporal scales. The best performing models were the most complex models, suggesting that hatchery strain contributions to naturally produced lake trout varied spatially among management districts and temporally between time periods. Contributions of Seneca strain lake trout were consistently high across most management districts, with contributions increasing from early to late time periods (estimates ranged from 52-94% for the late period across eight of nine districts). Strain contributions deviated from expectations based on historical stocking levels, indicating strains differed with respect to survival, reproductive success, and/or dispersal. Knowledge of recruitment levels of strains stocked in different management districts, and how strain-specific recruitment varies temporally, spatially, and as a function of local or regional stocking is important to prioritize strains for future stocking and management of the transition process from primarily hatchery to naturally produced stocks.

  20. The effects of riverine physical complexity on anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss around the Pacific Rim.

    PubMed

    McPhee, M V; Whited, D C; Kuzishchin, K V; Stanford, J A

    2014-07-01

    This study explored the relationship between riverine physical complexity, as determined from remotely sensed metrics, and anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss. The proportion of anadromy (estimated fraction of individuals within a drainage that are anadromous) was correlated with riverine complexity, but this correlation appeared to be driven largely by a confounding negative relationship between drainage area and the proportion of anadromy. Genetic diversity decreased with latitude, was lower in rivers with only non-anadromous individuals and also decreased with an increasing ratio of floodplain area to total drainage area. Anadromy may be less frequent in larger drainages due to the higher cost of migration associated with reaches farther from the ocean, and the negative relationship between genetic diversity and floodplain area may be due to lower effective population size resulting from greater population fluctuations associated with higher rates of habitat turnover. Ultimately, the relationships between riverine physical complexity and migratory life history or genetic diversity probably depend on the spatial scale of analysis. © 2014 The Fisheries Society of the British Isles.

  1. Fish thermal habitat current use and simulation of thermal habitat availability in lakes of the Argentine Patagonian Andes under climate change scenarios RCP 4.5 and RCP 8.5.

    PubMed

    Vigliano, Pablo H; Rechencq, Magalí M; Fernández, María V; Lippolt, Gustavo E; Macchi, Patricio J

    2018-09-15

    Habitat use in relation to the thermal habitat availability and food source as a forcing factor on habitat selection and use of Percichthys trucha (Creole perch), Oncorhynchus mykiss (rainbow trout), Salmo trutta (brown trout) and Salvelinus fontinalis (brook trout) were determined as well as future potential thermal habitat availability for these species under climate change scenarios Representative Concentration Pathways 4.5 and 8.5. This study was conducted in three interconnected lakes of Northern Patagonia (Moreno Lake system). Data on fish abundance was obtained through gill netting and hydroacoustics, and thermal profiles and fish thermal habitat suitability index curves were used to identify current species-specific thermal habitat use. Surface air temperatures from the (NEX GDDP) database for RCP scenarios 4.5 and 8.5 were used to model monthly average temperatures of the water column up to the year 2099 for all three lakes, and to determine potential future habitat availability. In addition, data on fish diet were used to determine whether food could act as a forcing factor in current habitat selection. The four species examined do not use all the thermally suitable habitats currently available to them in the three lakes, and higher fish densities are not necessarily constrained to their "fundamental thermal niches" sensu Magnuson et al. (1979), as extensive use is made of less suitable habitats. This is apparently brought about by food availability acting as a major forcing factor in habitat selection and use. Uncertainties related to the multidimensionality inherent to habitat selection and climate change imply that fish resource management in Patagonia will not be feasible through traditional incremental policies and strategic adjustments based on short-term predictions, but will have to become highly opportunistic and adaptive. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Constituent bioconcentration in rainbow trout exposed to a complex chemical mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linder, G.; Bergman, H.L.; Meyer, J.S.

    1984-09-01

    Classically, aquatic contaminant fate models predicting a chemical's bioconcentration factor (BCF) are based upon single-compound derived models, yet such BCF predictions may deviate from observed BCFs when physicochemical interactions or biological responses to complex chemical mixture exposures are not adequately considered in the predictive model. Rainbow trout were exposed to oil-shale retort waters. Such a study was designed to model the potential biological effects precluded by exposure to complex chemical mixtures such as solid waste leachates, agricultural runoff, and industrial process waste waters. Chromatographic analysis of aqueous and nonaqueous liquid-liquid reservoir components yielded differences in mixed extraction solvent HPLC profilesmore » of whole fish exposed for 1 and 3 weeks to the highest dilution of the complex chemical mixture when compared to their corresponding control, yet subsequent whole fish extractions at 6, 9, 12, and 15 weeks into exposure demonstrated no qualitative differences between control and exposed fish. Liver extractions and deproteinized bile samples from exposed fish were qualitatively different than their corresponding controls. These findings support the projected NOEC of 0.0045% dilution, even though the differences in bioconcentration profiles suggest hazard assessment strategies may be useful in evaluating environmental fate processes associated with complex chemical mixtures. 12 references, 4 figures, 2 tables.« less

  3. Ebb and flow of encroachment by nonnative rainbow trout in a small stream in the southern Appalachian Mountains

    USGS Publications Warehouse

    Larson, Gary L.; Moore, S.E.

    1995-01-01

    Brook trout Salvelinus fontinalis is the native salmonid species of streams in the southern Appalachian Mountains. The present distribution of this species, once widespread from headwaters to lower reaches of large streams, is restricted to mostly headwater areas. Changes in the distribution of native brook trout in the presence of' nonnative rainbow trout Oncorhynchus mykiss have been documented in Great Smoky Mountains National Park. When rainbow trout were first found in a tributary (Rock Creek) in the park in 1979, a study was begun to assess changes through time in distribution and abundance of rainbow trout in Rock Creek and to compare the brook trout and rainbow trout associations in Rock Creek with associations found in other park streams. Abundance of brook trout was low in the downstream sections of Rock Creek in 1979a??1993. Brook trout abundance was highest in the steep-gradient, pool-dominated headwater section which was only 2 km from the confluence of Rock Creek and Cosby Creek. Rainbow trout were present in low densities in Rock Creek during the same period. Although rainbow trout were most abundant in the lower stream sections and never found in the headwater section, adult and age-0 rainbow trout were found in the middle section in 1988. Rainbow trout were absent in the middle section in 1991, but one large adult rainbow trout was present in the section in 1992 and 1993. Floods, freshets, and periods of low stream discharge appeared to play an important role in the distribution and population structure of rainbow trout in Rock Creek. The lower portion of Rock Creek was poor trout habitat because the sections were dominated by cobblea??rubble substrate and shallow riffle areas. Stream habitat appeared to be better suited for brook trout than for rainbow trout in the steep-gradient upstream sections which were dominated by boulder-cobble substrate and deep pools. The results of this study suggest that encroachment by rainbow trout can exhibit considerable ebb and flow in steep-gradient tributaries in the park, and they suggest substantial evolutionary adaptation by brook trout to the hydrological conditions in the Rock Creek drainage.

  4. Diet overlap of top-level predators in recent sympatry: bull trout and nonnative lake trout

    USGS Publications Warehouse

    Guy, Christopher S.; McMahon, Thomas E.; Fredenberg, Wade A.; Smith, Clinton J.; Garfield, David W.; Cox, Benjamin S.

    2011-01-01

    The establishment of nonnative lake trout Salvelinus namaycush in lakes containing lacustrine–adfluvial bull trout Salvelinus confluentus often results in a precipitous decline in bull trout abundance. The exact mechanism for the decline is unknown, but one hypothesis is related to competitive exclusion for prey resources. We had the rare opportunity to study the diets of bull trout and nonnative lake trout in Swan Lake, Montana during a concomitant study. The presence of nonnative lake trout in Swan Lake is relatively recent and the population is experiencing rapid population growth. The objective of this study was to evaluate the diets of bull trout and lake trout during the early expansion of this nonnative predator. Diets were sampled from 142 bull trout and 327 lake trout during the autumn in 2007 and 2008. Bull trout and lake trout had similar diets, both consumed Mysis diluviana as the primary invertebrate, especially at juvenile stages, and kokanee Oncorhynchus nerka as the primary vertebrate prey, as adults. A diet shift from primarily M. diluviana to fish occurred at similar lengths for both species, 506 mm (476–545 mm, 95% CI) for bull trout and 495 mm (470–518 mm CI) for lake trout. These data indicate high diet overlap between these two morphologically similar top-level predators. Competitive exclusion may be a possible mechanism if the observed overlap remains similar at varying prey densities and availability.

  5. THERMAL HETEROGENEITY, STREAM CHANNEL MORPHOLOGY, AND SALMONID ABUNDANCE IN NORTHEASTERN OREGON STREAMS

    EPA Science Inventory

    Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha) in northeastern Oregon. Th...

  6. Competition and predation as mechanisms for displacement of greenback cutthroat trout by brook trout

    Treesearch

    C. C. McGrath; W. M. Lewis

    2007-01-01

    Cutthroat trout Oncorhynchus clarkii frequently are displaced by nonnative brook trout Salvelinus fontinalis, but the ecological mechanisms of displacement are not understood. Competition for food and predation between greenback cutthroat trout O. c. stomias and brook trout were investigated in montane streams of...

  7. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    USGS Publications Warehouse

    Wenger, Seth J.; Isaak, Daniel J.; Dunham, Jason B.; Fausch, Kurt D.; Luce, Charles H.; Neville, Helen M.; Rieman, Bruce E.; Young, Michael K.; Nagel, David E.; Horan, Dona L.; Chandler, Gwynne L.

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus confluentus), as well as nonnative brook trout (Salvelinus fontinalis). We also examined the response of the native species to the presence of brook trout. Analyses were conducted using multilevel logistic regression applied to a geographically broad database of 4165 fish surveys. The results indicated that bull trout distributions were strongly related to climatic factors, and more weakly related to the presence of brook trout and geomorphic variables. Cutthroat trout distributions were weakly related to climate but strongly related to the presence of brook trout. Brook trout distributions were related to both climate and geomorphic variables, including proximity to unconfined valley bottoms. We conclude that brook trout and bull trout are likely to be adversely affected by climate warming, whereas cutthroat trout may be less sensitive. The results illustrate the importance of considering species interactions and flow regime alongside temperature in understanding climate effects on fish.

  8. Growth, morphology, and developmental instability of rainbow trout, Yellowstone cutthroat trout, and four hybrid generations

    USGS Publications Warehouse

    Ostberg, C.O.; Duda, J.J.; Graham, J.H.; Zhang, S.; Haywood, K. P.; Miller, B.; Lerud, T.L.

    2011-01-01

    Hybridization of cutthroat trout Oncorhynchus clarkii with nonindigenous rainbow trout O. mykiss contributes to the decline of cutthroat trout subspecies throughout their native range. Introgression by rainbow trout can swamp the gene pools of cutthroat trout populations, especially if there is little selection against hybrids. We used rainbow trout, Yellowstone cutthroat trout O. clarkii bouvieri, and rainbow trout × Yellowstone cutthroat trout F1 hybrids as parents to construct seven different line crosses: F1 hybrids (both reciprocal crosses), F2 hybrids, first-generation backcrosses (both rainbow trout and Yellowstone cutthroat trout), and both parental taxa. We compared growth, morphology, and developmental instability among these seven crosses reared at two different temperatures. Growth was related to the proportion of rainbow trout genome present within the crosses. Meristic traits were influenced by maternal, additive, dominant, overdominant, and (probably) epistatic genetic effects. Developmental stability, however, was not disturbed in F1 hybrids, F2 hybrids, or backcrosses. Backcrosses were morphologically similar to their recurrent parent. The lack of developmental instability in hybrids suggests that there are few genetic incompatibilities preventing introgression. Our findings suggest that hybrids are not equal: that is, growth, development, character traits, and morphology differ depending on the genomic contribution from each parental species as well as the hybrid generation.

  9. Genetic strategies for lake trout rehabilitation: a synthesis

    USGS Publications Warehouse

    Burnham-Curtis, Mary K.; Krueger, Charles C.; Schreiner, Donald R.; Johnson, James E.; Stewart, Thomas J.; Horrall, Ross M.; MacCallum, Wayne R.; Kenyon, Roger; Lange, Robert E.

    1995-01-01

    The goal of lake trout rehabilitation efforts in the Great Lakes has been to reestablish inshore lake trout (Salvelinus namaycush) populations to self-sustaining levels. A combination of sea lamprey control, stocking of hatchery-reared lake trout, and catch restrictions were used to enhance remnant lake trout stocks in Lake Superior and reestablish lake trout in Lakes Michigan, Huron, Erie, and Ontario. Genetic diversity is important for the evolution and maintenance of successful adaptive strategies critical to population restoration. The loss of genetic diversity among wild lake trout stocks in the Great Lakes imposes a severe constraint on lake trout rehabilitation. The objective of this synthesis is to address whether the particular strain used for stocking combined with the choice of stocking location affects the success or failure of lake trout rehabilitation. Poor survival, low juvenile recruitment, and inefficient habitat use are three biological impediments to lake trout rehabilitation that can be influenced by genetic traits. Evidence supports the hypothesis that the choices of appropriate lake trout strain and stocking locations enhance the survival of lake trout stocked into the Great Lakes. Genetic strategies proposed for lake trout rehabilitation include conservation of genetic diversity in remnant stocks, matching of strains with target environments, stocking a greater variety of lake trout phenotypes, and rehabilitation of diversity at all trophic levels.

  10. Innocent until proven guilty? Stable coexistence of alien rainbow trout and native marble trout in a Slovenian stream

    NASA Astrophysics Data System (ADS)

    Vincenzi, Simone; Crivelli, Alain J.; Jesensek, Dusan; Rossi, Gianluigi; de Leo, Giulio A.

    2011-01-01

    To understand the consequences of the invasion of the nonnative rainbow trout Oncorhynchus mykiss on the native marble trout Salmo marmoratus, we compared two distinct headwater sectors where marble trout occur in allopatry (MTa) or sympatry (MTs) with rainbow trout (RTs) in the Idrijca River (Slovenia). Using data from field surveys from 2002 to 2009, with biannual (June and September) sampling and tagging from June 2004 onwards, we analyzed body growth and survival probabilities of marble trout in each stream sector. Density of age-0 in September over the study period was greater for MTs than MTa and very similar between MTs and RTs, while density of trout ≥age-1 was similar for MTa and MTs and greater than density of RTs. Monthly apparent survival probabilities were slightly higher in MTa than in MTs, while RTs showed a lower survival than MTs. Mean weight of marble and rainbow trout aged 0+ in September was negatively related to cohort density for both marble and rainbow trout, but the relationship was not significantly different between MTs and MTa. No clear depression of body growth of sympatric marble trout between sampling intervals was observed. Despite a later emergence, mean weight of RTs cohorts at age 0+ in September was significantly higher than weight of both MTs and MTa. The establishment of a self-sustaining population of rainbow trout does not have a significant impact on body growth and survival probabilities of sympatric marble trout. The numerical dominance of rainbow trout in streams at lower altitudes seem to suggest that while the low summer flow pattern of Slovenian streams is favorable for rainbow trout invasion, the adaptation of marble trout to headwater environments may limit the invasion success of rainbow trout in headwaters.

  11. Kootenai River Fisheries Investigations; Rainbow and Bull Trout Recruitment, 2002-2003 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Jody P.

    Rainbow trout Oncorhynchus mykiss provide the most important sport fishery in the Kootenai River, Idaho, but densities and catch rates are low. Low recruitment is one possible factor limiting the rainbow trout population. Bull trout Salvelinus confluentus also exist in the Kootenai River, but little is known about this population. Research reported here addresses the following objectives for the Kootenai River, Idaho: increase rainbow trout recruitment, identify rainbow and bull trout spawning tributaries and migration timing, establish baseline data on bull trout redd numbers in tributaries, and improve the rainbow trout population size structure. Six adult rainbow trout were movedmore » to spawning habitat upstream of a potential migration barrier on Caboose Creek, but numbers of redds and age-0 out-migrants did not appear to increase relative to a reference stream. Measurements taken on the Moyie River indicated the gradient is inadequate to deliver suitable flows to a proposed rainbow trout spawning channel. Summer water temperatures measured in the Deep Creek drainage sometimes exceeded 24 C, higher than those reported as suitable for rainbow trout. Radio-tagged rainbow trout were located in Boulder Creek during the spring spawning season, and bull trout were located in the Moyie River and O'Brien Creek, Montana in the fall. Bull trout spawning migration timing was related to increases in Kootenai River flows. Bull trout redd surveys documented 19 redds on Boulder Creek and North and South Callahan creeks. Fall 2002 electrofishing showed that the Kootenai River rainbow trout proportional stock density was 54, higher than prior years when more liberal fishing regulations were in effect. Boulder Creek produces the highest number of age-0 rainbow trout out-migrants upstream of Bonners Ferry, but the survival rate of these out-migrants upon reaching the Kootenai River is unknown. Determining juvenile survival rates and sources of mortality could aid management efforts to increase rainbow trout recruitment. North and South Callahan creeks support the largest spawning population of bull trout in the Kootenai River drainage, Idaho, so management of the watershed should consider bull trout as high priority.« less

  12. Analysis of brook trout spatial behavior during passage attempts in corrugated culverts using near-infrared illumination video imagery

    USGS Publications Warehouse

    Bergeron, Normand E.; Constantin, Pierre-Marc; Goerig, Elsa; Castro-Santos, Theodore R.

    2016-01-01

    We used video recording and near-infrared illumination to document the spatial behavior of brook trout of various sizes attempting to pass corrugated culverts under different hydraulic conditions. Semi-automated image analysis was used to digitize fish position at high temporal resolution inside the culvert, which allowed calculation of various spatial behavior metrics, including instantaneous ground and swimming speed, path complexity, distance from side walls, velocity preference ratio (mean velocity at fish lateral position/mean crosssectional velocity) as well as number and duration of stops in forward progression. The presentation summarizes the main results and discusses how they could be used to improve fish passage performance in culverts.

  13. Rainbow trout versus brook trout biomass and production under varied climate regimes in small southern Appalachian streams

    Treesearch

    Bonnie. J.E. Myers; C. Andrew Dolloff; Andrew L. Rypel

    2014-01-01

    Many Appalachian streams historically dominated by Brook Trout Salvelinus fontinalis have experienced shifts towards fish communities dominated by Rainbow Trout Onchorhynchus mykiss. We used empirical estimates of biomass and secondary production of trout conspecifics to evaluate species success under varied thermal regimes. Trout...

  14. Spawning and rearing behavior of bull trout in a headwaterlake ecosystem

    USGS Publications Warehouse

    Lora B. Tennant,; Gresswell, Bob; Guy, Christopher S.; Michael H. Meeuwig,

    2015-01-01

    Numerous life histories have been documented for bull trout Salvelinus confluentus. Lacustrine-adfluvial bull trout populations that occupy small, headwater lake ecosystems and migrate short distances to natal tributaries to spawn are likely common; however, much of the research on potamodromous bull trout has focused on describing the spawning and rearing characteristics of bull trout populations that occupy large rivers and lakes and make long distance spawning migrations to natal headwater streams. This study describes the spawning and rearing characteristics of lacustrine-adfluvial bull trout in the Quartz Lake drainage, Glacier National Park, USA, a small headwater lake ecosystem. Many spawning and rearing characteristics of bull trout in the Quartz Lake drainage are similar to potamodromous bull trout that migrate long distances. For example, subadult bull trout distribution was positively associated with slow-water habitat unit types and maximum wetted width, and negatively associated with increased stream gradient. Bull trout spawning also occurred when water temperatures were between 5 and 9 °C, and redds were generally located in stream segments with low stream gradient and abundant gravel and cobble substrates. However, this study also elucidated characteristics of bull trout biology that are not well documented in the literature, but may be relatively widespread and have important implications regarding general characteristics of bull trout ecology, use of available habitat by bull trout, and persistence of lacustrine-adfluvial bull trout in small headwater lake ecosystems.

  15. Foxc2 coordinates inflammation and browning of white adipose by leptin-STAT3-PRDM16 signal in mice.

    PubMed

    Gan, L; Liu, Z; Feng, F; Wu, T; Luo, D; Hu, C; Sun, C

    2018-02-01

    The objective of this study is to characterize the relationship between forkhead box C2 protein (Foxc2) and leptin under adipose inflammatory response. Lipopolysaccharide (LPS)-induced inflammatory model was conducted. Data from wild-type and ob/ob mice were used to compare the alternative role of leptin on Foxc2-mediated inflammation and browning. Transcriptional regulation and protein-protein interaction were analyzed by bioinformatics and proved by chromatin immunoprecipitation and co-immunoprecipitation experiment. Foxc2 and leptin correlated with inflammation and browning of white adipose tissue (WAT) in LPS-treated mice. Moreover, Foxc2-mediated inhibition of inflammation involved downstream activation of leptin signal and promoted WAT browning. We then determined CREB, the potential transcriptional factor of leptin, was required for Foxc2-mediated inflammation in the regulation of WAT browning. Foxc2 alleviated adipocyte inflammation by reducing leptin-mediated Janus-activated kinase 2/signal transducer and activator of transcription 3 (STAT3) pathway. Importantly, STAT3 physically interacted with PRDM16 and formed a complex to promote WAT browning. Exogenous Foxc2 overexpression also ameliorated inflammation and promoted adipose browning in high fat diet (HFD)-induced obese mice. Our results indicated that Foxc2 inhibited inflammation and promoted browning of WAT through positive regulation of leptin signal and the STAT3-PRDM16 complex. These findings identify a new potential means to prevent and treat obese caused metabolic syndrome of mammals.

  16. Have brook trout (Salvelinus fontinalis) displaced bull trout (Salvelinus confluentus) along longitudinal gradients in central Idaho streams?

    Treesearch

    Bruce E. Rieman; James T. Peterson; Deborah L. Myers

    2006-01-01

    Invasions of non-native brook trout (Salvelinus fontinalis) have the potential for upstream displacement or elimination of bull trout (Salvelinus confluentus) and other native species already threatened by habitat loss. We summarized the distribution and number of bull trout in samples from 12 streams with and without brook trout...

  17. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish

    USGS Publications Warehouse

    Chadwick, Joseph G; Nislow, Kieth H; McCormick, Stephen

    2015-01-01

    Climate change is predicted to change the distribution and abundance of species, yet underlying physiological mechanisms are complex and methods for detecting populations at risk from rising temperature are poorly developed. There is increasing interest in using physiological mediators of the stress response as indicators of individual and population-level response to environmental stressors. Here, we use laboratory experiments to show that the temperature thresholds in brook trout (Salvelinus fontinalis) for increased gill heat shock protein-70 (20.7°C) and plasma glucose (21.2°C) are similar to their proposed thermal ecological limit of 21.0°C. Field assays demonstrated increased plasma glucose, cortisol and heat shock protein-70 concentrations at field sites where mean daily temperature exceeded 21.0°C. Furthermore, population densities of brook trout were lowest at field sites where temperatures were warm enough to induce a stress response, and a co-occurring species with a higher thermal tolerance showed no evidence of physiological stress at a warm site. The congruence of stress responses and proposed thermal limits supports the use of these thresholds in models of changes in trout distribution under climate change scenarios and suggests that the induction of the stress response by elevated temperature may play a key role in driving the distribution of species.

  18. Resistant starch type V formation in brown lentil (Lens culinaris Medikus) starch with different lipids/fatty acids.

    PubMed

    Okumus, Bahar Nur; Tacer-Caba, Zeynep; Kahraman, Kevser; Nilufer-Erdil, Dilara

    2018-02-01

    This study aimed to characterize the brown lentil (Lens culinaris Medikus) starch and investigate the formation of amylose-lipid complexes (Resistant Starch Type V) by the addition of different lipids/fatty acids (10%, w/w) to both raw and cooked starch samples. Resistant starch content (measured by the official method of AACCI (Method 32-40), using the resistant starch assay kit) of raw brown lentil starch (BLS) increased significantly by the additions of lipids/fatty acids, starch sample complexed with HSO (hydrogenated sunflower oil) (14.1±0.4%) being the highest. For the cooked starch/lipid complexes, more profound effect was evident (22.2-67.7%). Peak, breakdown and trough viscosity values of the amylose-lipid complexed starches were significantly lower than that of BLS (p<0.05), while significant decreases in the setback and final viscosities were only detected in oil samples, but not in fatty acids. Each lipid in concern exerted different effects on the digestibility of starch and amylose-lipid complex formation while having no substantial differential effects on the thermal properties of starch depicted by differential scanning calorimetry (DSC). Amylose-lipid complex formation with suitable fatty acids/lipids seems a promising way of increasing resistant starch content of food formulations. Although the applications being quite uncommon yet, brown lentil seems to have potential both as a starch and also as a resistant starch source. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Insights in the Fruit Flesh Browning Mechanisms in Solanum melongena Genetic Lines with Opposite Postcut Behavior.

    PubMed

    Docimo, T; Francese, G; De Palma, M; Mennella, D; Toppino, L; Lo Scalzo, R; Mennella, G; Tucci, M

    2016-06-08

    Color, taste, flavor, nutritional value, and shelf life are important factors determining quality and healthiness of food and vegetables. These factors are strongly affected by browning processes, occurring after fruit or vegetable cutting. Characterization of ten eggplant genotypes for chlorogenic acid (CGA) content, total phenols (TP), polyphenoloxidase (PPO) activity, and browning tendency corroborated a lack of significant correlations between biochemical factors and fruit flesh browning. Further in-depth molecular and biochemical analyses of two divergent eggplant genetic lines, AM199 (high browning) and AM086 (low browning), within 30 min from cutting, highlighted differences in the physiological mechanisms underlying the browning process. qRT-PCR analysis revealed distinct activation mechanisms of CGA biosynthetic and PPO genes in the two genetic lines. Metabolic data on CGA, sugars, and ascorbic acid contents confirmed that their different browning tendency matched with different metabolic responses to cutting. Our findings suggest that the complex mechanism of flesh browning in the two eggplant genetic lines might be mediated by multiple specific factors.

  20. From Brown-Peterson to continual distractor via operation span: A SIMPLE account of complex span.

    PubMed

    Neath, Ian; VanWormer, Lisa A; Bireta, Tamra J; Surprenant, Aimée M

    2014-09-01

    Three memory tasks-Brown-Peterson, complex span, and continual distractor-all alternate presentation of a to-be-remembered item and a distractor activity, but each task is associated with a different memory system, short-term memory, working memory, and long-term memory, respectively. SIMPLE, a relative local distinctiveness model, has previously been fit to data from both the Brown-Peterson and continual distractor tasks; here we use the same version of the model to fit data from a complex span task. Despite the many differences between the tasks, including unpredictable list length, SIMPLE fit the data well. Because SIMPLE posits a single memory system, these results constitute yet another demonstration that performance on tasks originally thought to tap different memory systems can be explained without invoking multiple memory systems.

  1. Capture, marking, and enumeration of juvenile bull trout and cutthroat trout in small, low-conductivity streams

    Treesearch

    Joseph L. Bonneau; Russell F. Thurow; Dennis L. Scarnecchia

    1995-01-01

    Relative efficiencies of sampling methods were evaluated for bull trout Salvefinus confluentus and cutthroat trout Oncorhynchus clarki in small, high-gradient streams with low conductivities. We compared day and nighttime observations by snorkelers to enumerate bull trout and cutthroat trout, and at night we also used a bank observer. Methods were developed for...

  2. 78 FR 21964 - Sheldon National Wildlife Refuge Humboldt and Washoe Counties, NV, and Lake County, OR; Record of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... species indigenous to the region--Lahontan cutthroat trout, Alvord cutthroat trout, or redband trout...; replacing nonnative trout in Big Spring Reservoir with trout species indigenous to the region, but not...

  3. Role of stream ice on fall and winter movements and habitat use by bull trout and cutthroat trout in Montana headwater streams

    Treesearch

    Michael J. Jakober; Thomas E. McMahon; Russell F. Thurow; Christopher G. Clancy

    1998-01-01

    We used radiotelemetry and underwater observation to assess fall and winter movements and habitat use by bull trout Salvelinus confluentus and westslope cutthroat trout Oncorhynchus clarki lewisi in two headwater streams in the Bitterroot River drainage, Montana, that varied markedly in habitat availability and stream ice conditions. Bull trout and cutthroat trout made...

  4. Species- and habitat-specific bioaccumulation of total mercury and methylmercury in the food web of a deep oligotrophic lake.

    PubMed

    Arcagni, Marina; Juncos, Romina; Rizzo, Andrea; Pavlin, Majda; Fajon, Vesna; Arribére, María A; Horvat, Milena; Ribeiro Guevara, Sergio

    2018-01-15

    Niche segregation between introduced and native fish in Lake Nahuel Huapi, a deep oligotrophic lake in Northwest Patagonia (Argentina), occurs through the consumption of different prey. Therefore, in this work we analyzed total mercury [THg] and methylmercury [MeHg] concentrations in top predator fish and in their main prey to test whether their feeding habits influence [Hg]. Results indicate that [THg] and [MeHg] varied by foraging habitat and they increased with greater percentage of benthic diet and decreased with pelagic diet in Lake Nahuel Huapi. This is consistent with the fact that the native creole perch, a mostly benthivorous feeder, which shares the highest trophic level of the food web with introduced salmonids, had higher [THg] and [MeHg] than the more pelagic feeder rainbow trout and bentho-pelagic feeder brown trout. This differential THg and MeHg bioaccumulation observed in native and introduced fish provides evidence to the hypothesis that there are two main Hg transfer pathways from the base of the food web to top predators: a pelagic pathway where Hg is transferred from water, through plankton (with Hg in inorganic species mostly), forage fish to salmonids, and a benthic pathway, as Hg is transferred from the sediments (where Hg methylation occurs mostly), through crayfish (with higher [MeHg] than plankton), to native fish, leading to one fold higher [Hg]. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Can fisheries management make substantial progress towards further reductions in sport fish PCB concentrations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, L.J.

    1995-12-31

    Great Lakes managers continue to be concerned by PCB concentrations in Great Lakes sport fish. A reduction in sport fish consumption advisory levels would heighten public concern and increase pressure on managers to reduce contaminant levels in sport fish. PCB concentrations in Great Lakes sediments remain high and exchange with the water column is significant. Atmospheric inputs help maintain PCB availability in the Great Lakes. However, it is not technically feasible to control sediment and atmospheric inputs. Here the author uses a detailed age-structured simulation model of chinook salmon, alewife and rainbow smelt to examine the potential for fish managementmore » actions to make progress towards reducing PCB concentrations of sport fish consumed by humans. Chinook salmon PCB concentrations were found to be more affected by prey PCB concentrations than chinook salmon growth rates. Salmonid predators selectively attack the largest prey, but these prey are likely the oldest and most contaminated. The interaction between size selective predation by chinook salmon and their growth rates suggests that there is an ideal stocking level of sport fish that should keep the average prey fish small, and therefore have relatively low PCE concentrations, but not reduce the age structure of the alewife population to include few reproductive individuals. These results are applicable to other stocked salmonids too, (e.g., lake trout, brown trout, coho salmon, steelhead) because they also exhibit size selective predation and their recruitment is primarily by stocking.« less

  6. Food web accumulation of cyclic siloxanes in Lake Mjøsa, Norway.

    PubMed

    Borgå, Katrine; Fjeld, Eirik; Kierkegaard, Amelie; McLachlan, Michael S

    2012-06-05

    The biomagnification of the cyclic volatile methyl siloxanes octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexatetrasiloxane (D6) was analyzed in the Lake Mjøsa food web in Norway from zooplankton and Mysis to planktivorous and piscivorous fish. The trophic magnification factor (TMF) for D5 was determined and compared with TMFs of several legacy contaminants: polychlorinated biphenyl (PCB) congeners 153 and 180, polybrominated diphenyl ether (PBDE) congeners 47 and 99, and p,p'-DDE. D5 showed TMF significantly greater than 1, implying food web biomagnification (TMF = 2.28, CI: 1.22-4.29). This contrasts with two studies that reported TMF < 1, which may reflect variability in TMF between food webs. The Lake Mjøsa D5 TMF was sensitive to the species included at the higher trophic level; whole food web TMF differed from TMF excluding smelt (Osmerus eperlanus) or brown trout (Salmo trutta) (TMF(-SMELT) = 1.62, CI: 0.96-2.72; TMF(-TROUT) = 3.58, CI: 1.82-7.03). For legacy contaminants (e.g., PCB-153 and PCB-180), the TMFs were less sensitive to the food web composition, and a better model fit was obtained compared to D5. The differences in biomagnification behavior between D5 and the legacy contaminants suggest that the biomagnification of D5 is being governed by species-specific properties such as biotransformation rate or tissue distribution that differ from those of legacy contaminants.

  7. Sensitivity analysis of environmental changes associated with riverscape evolutions following sediment reintroduction: Application to the Drôme River network, France

    NASA Astrophysics Data System (ADS)

    Piégay, H.; Bertrand, M.; Liébault, F.; Pont, D.; Sauquet, E.

    2011-12-01

    The present contribution aims to put into practice the conceptual framework defined in Pont et al. (2009) to the Drôme River Basin (France) in order to test the capacity of functional reach concept to be used to assess risks in environmental changes. The methodology is illustrated by examples focusing on the potential changes in functional reach diversity as a proxy of habitat diversity, and on potential impact on trout distribution at a network scale due to actions of sediment reintroduction. We used remote sensing and GIS methods to provide original data and to analyze them. A cluster analysis performed on the components of a PCA has been done to establish a functional reach typology based on planform parameters, used as a proxy of habitat typology following a review of literature. We calculated for the entire channel network an index of present and 1948 states of the functional reach types diversity to highlight past evolution. Various options of changes in functional reach types diversity were compared in relation to various increases in bedload delivery following planned deforestation. A similar risk assessment procedure is proposed in relation to changes in canopy cover and associated changes in summer temperature to evaluate impacts on brown trout distribution. Two practical examples are used as pilots for evaluating the risk assessment approach based on functional reach typology and its potential applicability for testing management actions for improving aquatic ecology. Limitations and improvements are then discussed.

  8. Estimate of net trophic transfer efficiency of PCBs to Lake Michigan lake trout from their prey

    USGS Publications Warehouse

    Madenjian, Charles P.; Hesselberg, Robert J.; DeSorcie, Timothy J.; Schmidt, Larry J.; Stedman, Ralph M.; Quintal, Richard T.; Begnoche, Linda J.; Passino-Reader, Dora R.

    1998-01-01

    Most of the polychlorinated biphenyl (PCB) body burden accumulated by lake trout (Salvelinus namaycush) from the Laurentian Great Lakes is from their food. We used diet information, PCB determinations in both lake trout and their prey, and bioenergetics modeling to estimate the efficiency with which Lake Michigan lake trout retain PCBs from their food. Our estimates were the most reliable estimates to date because (a) the lake trout and prey fish sampled during our study were all from the same vicinity of the lake, (b) detailed measurements were made on the PCB concentrations of both lake trout and prey fish over wide ranges in fish size, and (c) lake trout diet was analyzed in detail over a wide range of lake trout size. Our estimates of net trophic transfer efficiency of PCBs to lake trout from their prey averaged from 0.73 to 0.89 for lake trout between the ages of 5 and 10 years old. There was no evidence of an upward or downward trend in our estimates of net trophic transfer efficiency for lake trout between the ages of 5 and 10 years old, and therefore this efficiency appeared to be constant over the duration of the lake trout's adult life in the lake. On the basis of our estimtes, lake trout retained 80% of the PCBs that are contained within their food.

  9. Examining indirect effects of lake trout recovery

    EPA Science Inventory

    With the recovery of lake trout populations in Lake Superior, there are indications of decreased forage fish abundance and density-dependence in lake trout. In Lake Superior, lean lake trout historically occupied depths < 60 m, and siscowet lake trout occupied depths > 60 m...

  10. Acoustic estimates of abundance and distribution of spawning lake trout on Sheboygan Reef in Lake Michigan

    USGS Publications Warehouse

    Warner, D.M.; Claramunt, R.M.; Janssen, J.; Jude, D.J.; Wattrus, N.

    2009-01-01

    Efforts to restore self-sustaining lake trout (Salvelinus namaycush) populations in the Laurentian Great Lakes have had widespread success in Lake Superior; but in other Great Lakes, populations of lake trout are maintained by stocking. Recruitment bottlenecks may be present at a number of stages of the reproduction process. To study eggs and fry, it is necessary to identify spawning locations, which is difficult in deep water. Acoustic sampling can be used to rapidly locate aggregations of fish (like spawning lake trout), describe their distribution, and estimate their abundance. To assess these capabilities for application to lake trout, we conducted an acoustic survey covering 22 km2 at Sheboygan Reef, a deep reef (<40 m summit) in southern Lake Michigan during fall 2005. Data collected with remotely operated vehicles (ROV) confirmed that fish were large lake trout, that lake trout were 1–2 m above bottom, and that spawning took place over specific habitat. Lake trout density exhibited a high degree of spatial structure (autocorrelation) up to a range of ~190 m, and highest lake trout and egg densities occurred over rough substrates (rubble and cobble) at the shallowest depths sampled (36–42 m). Mean lake trout density in the area surveyed (~2190 ha) was 5.8 fish/ha and the area surveyed contained an estimated 9500–16,000 large lake trout. Spatial aggregation in lake trout densities, similarity of depths and substrates at which high lake trout and egg densities occurred, and relatively low uncertainty in the lake trout density estimate indicate that acoustic sampling can be a useful complement to other sampling tools used in lake trout restoration research.

  11. Kootenai River Fisheries Investigations; Rainbow and Bull Trout Recruitment, 2003-2004 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Jody P.

    2005-08-01

    Rainbow trout Oncorhynchus mykiss provide the most important sport fishery in the Kootenai River, Idaho, but densities and catch rates are low. Low recruitment is one possible factor limiting the rainbow trout population. Bull trout Salvelinus confluentus also exist in the Kootenai River, but little is known about this population. Research reported here addresses the following objectives for the Kootenai River, Idaho: identify sources of rainbow and bull trout recruitment, monitor the rainbow trout population size structure to evaluate regulation changes initiated in 2002, and identify factors potentially limiting rainbow trout recruitment. A screw trap was used to estimate juvenilemore » redband and bull trout out-migration from the Callahan Creek drainage, and electrofishing was conducted to estimate summer densities of bull trout rearing in the Idaho portion of the drainage. An estimated 1,132 juvenile redband trout and 68 juvenile bull trout out-migrated from Callahan Creek to the Kootenai River from April 7 through July 15, 2003. Densities of bull trout {ge} age-1 in North and South Callahan creeks ranged from 1.6 to 7.7 fish/100m{sup 2} in August. Bull trout redd surveys were conducted in North and South Callahan creeks, Boulder Creek, and Myrtle Creek. Thirty-two bull trout redds were located in North Callahan Creek, while 10 redds were found in South Callahan Creek. No redds were found in the other two streams. Modeling of culverts in the Deep Creek drainage identified two as upstream migration barriers, preventing rainbow trout from reaching spawning and rearing habitat. Water temperature monitoring in Deep Creek identified two sites where maximum temperatures exceeded those suitable for rainbow trout. Boulder Creek produces the most rainbow trout recruits to the Kootenai River in Idaho upstream of Deep Creek, but may be below carrying capacity for rearing rainbow trout due to nutrient limitations. Monthly water samples indicate Boulder Creek is nutrient limited as soluble reactive and total dissolved phosphorus were typically at or below detection limits, and dissolved inorganic nitrogen concentrations were <30 {micro}/L. A fall 2003 electrofishing survey of the Kootenai River rainbow trout population showed that the proportional stock density (55) and quality stock density (6) increased for the second year in a row following implementation of more conservative harvest regulations. North and South Callahan creeks support the largest spawning population of bull trout in the Kootenai River drainage, Idaho, so management of the watershed should consider bull trout as high priority. Monitoring of the Kootenai River rainbow trout population size structure should continue for at least two to three years to help evaluate the conservative harvest regulations. Finally, options to improve or increase access to rainbow trout spawning and rearing habitat in the Deep Creek drainage should be investigated.« less

  12. Hybridization dynamics between Colorado's native cutthroat trout and introduced rainbow trout.

    PubMed

    Metcalf, Jessica L; Siegle, Matthew R; Martin, Andrew P

    2008-01-01

    Newly formed hybrid populations provide an opportunity to examine the initial consequences of secondary contact between species and identify genetic patterns that may be important early in the evolution of hybrid inviability. Widespread introductions of rainbow trout (Oncorhynchus mykiss) into watersheds with native cutthroat trout (Oncorhynchus clarkii) have resulted in hybridization. These introductions have contributed to the decline of native cutthroat trout populations. Here, we examine the pattern of hybridization between introduced rainbow trout and 2 populations of cutthroat trout native to Colorado. For this study, we utilized 7 diagnostic, codominant nuclear markers and a diagnostic mitochondrial marker to investigate hybridization in a population of greenback cutthroat trout (Oncorhynchus clarkii stomias) and a population of Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). We infer that cutthroat-rainbow trout hybrid swarms have formed in both populations. Although a mixture of hybrid genotypes was present, not all genotype combinations were detected at expected frequencies. We found evidence that mitochondrial DNA introgression in hybrids is asymmetric and more likely from rainbow trout than from cutthroat trout. A difference in spawning time of the 2 species or differences in the fitness between the reciprocal crosses may explain the asymmetry. Additionally, the presence of intraspecific cytonuclear associations found in both populations is concordant with current hypotheses regarding coevolution of mitochondrial and nuclear genomes.

  13. Swimming endurance of bull trout, lake trout, arctic char, and rainbow trout following challenge with Renibacterium salmoninarum

    USGS Publications Warehouse

    Jones, D.T.; Moffitt, C.M.

    2004-01-01

    We tested the swimming endurance of juvenile bull trout Salvelinus confluentus, lake trout S. namaycush, Arctic char S. alpinus, and rainbow trout Oncorhynchus mykiss at 9??C and 15??C to determine whether sublethal infection from a moderate challenge of Renibacterium salmoninarum administered months before testing affected the length of time fish could maintain a swimming speed of 5-6 body lengths per second in an experimental flume. Rainbow trout and Arctic char swam longer in trials than did bull trout or lake trout, regardless of challenge treatment. When we tested fish 14-23 weeks postchallenge, we found no measurable effect of R. salmoninarum on the swimming endurance of the study species except for bull trout, which showed a mixed response. We conducted additional trials with bull trout 5-8 weeks postchallenge to determine whether increasing the challenge dose would affect swimming endurance and hematocrit. In those tests, bull trout with clinical signs of disease and those exposed to the highest challenge doses had significantly reduced swimming endurance compared with unchallenged control fish. Fish hematocrit levels measured at the end of all swimming endurance tests varied among species and between test temperatures, and patterns were not always consistent between challenged and control fish.

  14. The Environmental Evaluation Work Group: FY 1979 Studies of the Winter Navigation Demonstration Program, St. Lawrence River Fisheries Study. Appendices

    DTIC Science & Technology

    1979-07-31

    salmon Oncorhynchus kisutch 311 Kokanee Oncorhynchus nerka 312 Humper lake trout 313 Halfbreed lake trout 314 Splake (brook trout x lake trout) - 315...Unidentified chubs 214 Chubs (large) 215 Chubs (small) 216 Chubs 300 Trouts and graylings: Oncorhynchus tshawytscha 301 Chinook salmon 302 Cutthroat...Released lake trout (commercial) MDNR use 316 Pink salmon Oncorhynchus gorbuscha Catostomidae 400 Suckers: 403 Quillback Carpiodes cyprinus 404

  15. Introgression and susceptibility to disease in a wild population of rainbow trout

    USGS Publications Warehouse

    Currens, K.P.; Hemmingsen, A.R.; French, R.A.; Buchanan, D.V.; Schreck, C.B.; Li, H.W.

    1997-01-01

    We examined susceptibility of wild rainbow trout Oncorhynchus mykiss from the Metolius River, a tributary of the Deschutes River, Oregon, to genetic introgression and ceratomyxosis as a result of stocking nonnative hatchery rainbow trout. Ceratomyxa shasta, an enzootic myxosporean parasite that can be lethal to nonnative hatchery rainbow trout, might have been limiting the interbreeding of hatchery and wild rainbow trout in the river. However, rainbow trout from the Metolius River had allozyme frequencies intermediate between those of wild and hatchery fish at LDH-B2* and sSOD-1*, two diagnostic genetic loci that allow the inland subspecies of rainbow trout to be distinguished from hatchery strains of coastal origin. They also had notable frequencies of ADA-1*85, an allele documented in hatchery rainbow trout but rarely seen in wild populations. We also found that rainbow trout in the Metolius River averaged 138.9 scales in the lateral series, intermediate between the counts for 9 coastal or nonnative hatchery populations, which always had fewer than 140 scales, and 10 inland populations, which always had more than 140 scales. Disease challenges revealed that rainbow trout from the Metolius River had much greater susceptibility to C. shasta than rainbow trout from the Deschutes River, which have genetic resistance to the lethal disease. Based on these data, we concluded that introgression with nonnative hatchery rainbow trout has reduced the abilities of wild rainbow trout in the Metolius River to survive when conditions for ceratomyxosis infection occur.

  16. Demographic characteristics of an adfluvial bull trout population in Lake Pend Oreille, Idaho

    USGS Publications Warehouse

    McCubbins, Jonathan L; Hansen, Michael J.; DosSantos, Joseph M; Dux, Andrew M

    2016-01-01

    Introductions of nonnative species, habitat loss, and stream fragmentation have caused the Bull Trout Salvelinus confluentus to decline throughout much of its native distribution. Consequently, in June 1998, the Bull Trout was listed under the U.S. Endangered Species Act as threatened. The Bull Trout has existed in Lake Pend Oreille and its surrounding tributaries since the last ice age, and the lake once supported a world-renowned Bull Trout fishery. To quantify the current status of the Bull Trout population in Lake Pend Oreille, Idaho, we compared the mean age, growth, maturity, and abundance with reports in a study conducted one decade earlier. Abundance was estimated by mark–recapture for Bull Trout caught in trap nets and gill nets set in Lake Pend Oreille during ongoing suppression netting of Lake Trout S. namaycushin 2007–2008. Bull Trout sampled in 2006–2008 were used to estimate age structure, survival, growth, and maturity. Estimated Bull Trout abundance was similar to that estimated one decade earlier in Lake Pend Oreille. Bull Trout residing in Lake Pend Oreille between 2006 and 2008 were between ages 4 and 14 years; their growth was fastest between ages 1 and 2 and slowed thereafter. Male and female Bull Trout matured at a similar age, but females grew faster than males, thereby maturing at a larger size. Our findings suggest that management has effectively addressed current threats to increase the likelihood of long-term persistence of the Bull Trout population in Lake Pend Oreille.

  17. [Specific problems posed by carbohydrate utilization in the rainbow trout].

    PubMed

    Bergot, F

    1979-01-01

    Carbohydrate incorporation in trout diets arises problems both at digestive and metabolic levels. Digestive utilization of carbohydrate closely depends on their molecular weight. In addition, in the case of complex carbohydrates (starches), different factors such as the level of incorporation, the amount consumed and the physical state of starch influence the digestibility. The measurement of digestibility in itself is confronted with methodological difficulties. The way the feces are collected can affect the digestion coefficient. Dietary carbohydrates actually serve as a source of energy. Nevertheless, above a certain level in the diet, intolerance phenomena may appear. The question that arises now is to establish the optimal part that carbohydrates can take in the metabolizable energy of a given diet.

  18. The amount of food ingested in a single meal by rainbow trout offered chopped herring, dry and wet diets

    PubMed

    Ruohonen; Grove; McIlroy

    1997-07-01

    Two-year-old 1·5-kg rainbow trout were held in cages and conditioned by feeding either on low-fat chopped herring (H trout) or dry pellets (P trout) for 15 weeks. Their satiation amounts were then determined under standard conditions. On a wet weight basis H trout ate 2·5-3·5 times more food than P trout; this was sufficient to compensate for the high water content of herring and thereby maintain the dry matter intake. When P trout were offered herring (PH trout) they consumed more food than when offered dry pellets but not as much as H trout. Stomach capacity restricted the intake and their dry matter intake was reduced by c. 40%. When H trout were offered dry pellets (HP trout) they adjusted their intake immediately close to the level of P trout although their larger stomachs could have accommodated more than twice this volume of dry food. The return of appetite after a satiation meal was almost linear with time. Appetite increased at c. 556 mg g-1 body weight h-1 for H trout and at 142 mg g-1 bw h-1 for P trout. The return of appetite in PH trout was significantly slower (c. 370 mg g-1 bw h-1) than in H trout; the previous dietary history of the PH trout limited their capacity to process larger volumes of wet food in a single meal. Fish offered dry diet (P and HP trout) had similar rates of appetite return despite their previous feeding history suggesting that the property of the dry feed itself might limit meal size. The total gastric emptying time of diets of similar dry matter content (with and without large amounts of water) was similar, but the delay time before gastric emptying starts tended to be longer for dry diets. Dry pellets appear to impose a demand for water that prolongs the gastric delay. This water demand is met partly by drinking since the trout fed on dry pellets drank significantly more (436±189 mg kg-1 h-1) than unfed and herring-fed trout which drank little or not at all (65±113 and 70±66 mg kg-1 h-1 respectively). Dietary water facilitated food processing and increased daily dry matter intake of trout when fed four times a day. When only one satiation meal per day was allowed, dietary water had no effect. It is concluded from this work that, in addition to gastric volume, a short-term limitation on the size of satiation meals in the rainbow trout is the availability of water to moisturize the food and thus to promote gastric digestion and emptying. 1997 The Fisheries Society of the British Isles

  19. Distribution and movement of bull trout in the upper Jarbidge River watershed, Nevada

    USGS Publications Warehouse

    Allen, M. Brady; Connolly, Patrick J.; Mesa, Matthew G.; Charrier, Jodi; Dixon, Chris

    2010-01-01

    In 2006 and 2007, we surveyed the occurrence of bull trout (Salvelinus confluentus), the relative distributions of bull trout and redband trout (Oncorhynchus mykiss), and stream habitat conditions in the East and West Forks of the Jarbidge River in northeastern Nevada and southern Idaho. We installed passive integrated transponder (PIT) tag interrogation systems at strategic locations within the watershed, and PIT-tagged bull trout were monitored to evaluate individual fish growth, movement, and the connectivity of bull trout between streams. Robust bull trout populations were found in the upper portions of the East Fork Jarbidge River, the West Fork Jarbidge River, and in the Pine, Jack, Dave, and Fall Creeks. Small numbers of bull trout also were found in Slide and Cougar Creeks. Bull trout were numerically dominant in the upper portions of the East Fork Jarbidge River, and in Fall, Dave, Jack, and Pine Creeks, whereas redband trout were numerically dominant throughout the rest of the watershed. The relative abundance of bull trout was notably higher at altitudes above 2,100 m. This study was successful in documenting bull trout population connectivity within the West Fork Jarbidge River, particularly between West Fork Jarbidge River and Pine Creek. Downstream movement of bull trout to the confluence of the East Fork and West Fork Jarbidge River both from Jack Creek (rkm 16.6) in the West Fork Jarbidge River and from Dave Creek (rkm 7.5) in the East Fork Jarbidge River was detected. Although bull trout exhibited some downstream movement during the spring and summer, much of their emigration occurred in the autumn, concurrent with decreasing water temperatures and slightly increasing flows. The bull trout that emigrated were mostly age-2 or older, but some age-1 fish also emigrated. Upstream movement by bull trout was detected less than downstream movement. The overall mean annual growth rate of bull trout in the East Fork and West Fork Jarbidge River was 36 mm. This growth rate is within the range reported in other river systems and is indicative of good habitat conditions. Mark-recapture methods were used to estimate a population of 147 age-1 or older bull trout in the reach of Jack Creek upstream of Jenny Creek.

  20. Investigations of Bull Trout (Salvelinus Confluentus), Steelhead Trout (Oncorhynchus Mykiss), and Spring Chinook Salmon (O. Tshawytscha) Interactions in Southeast Washington Streams. Final Report 1992.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, Keith D.

    1995-01-01

    The goal of this two year study was to determine if supplementation with hatchery reared steelhead trout (Oncorhynchus mykiss) and spring chinook salmon (O. tshawytscha) negatively impacted wild native bull trout (Salvelinus confluentus) through competitive interactions. Four streams with varying levels of fish supplementation activity were sampled in Southeast Washington. Tasks performed during this study were population density, relative abundance, microhabitat utilization, habitat availability, diet analysis, bull trout spawning ground surveys, radio telemetry of adult bull trout, and growth analysis. Results indicate that bull trout overlapped geographically with the supplemented species in each of the study streams suggesting competition amongmore » species was possible. Within a stream, bull trout and the supplemented species utilized dissimilar microhabitats and microhabitat utilization by each species was the same among streams suggesting that there was no shifts in microhabitat utilization among streams. The diet of bull trout and O. mykiss significantly overlapped in each of the study streams. The stream most intensely supplemented contained bull trout with the slowest growth and the non-supplemented stream contained bull trout with the fastest growth. Conversely, the stream most intensely supplemented contain steelhead with the fastest growth and the non-supplemented stream contained steelhead with the slowest growth. Growth indicated that bull trout may have been negatively impacted from supplementation, although other factors may have contributed. At current population levels, and current habitat quantity and quality, no impacts to bull trout as a result of supplementation with hatchery reared steelhead trout and spring chinook salmon were detected. Project limitations and future research recommendations are discussed.« less

  1. Spatial patterns in PCB concentrations of Lake Michigan lake trout

    USGS Publications Warehouse

    Madenjian, Charles P.; DeSorcie, Timothy J.; Stedman, Ralph M.; Brown, Edward H.; Eck, Gary W.; Schmidt, Larry J.; Hesselberg, Robert J.; Chernyak, Sergei M.; Passino-Reader, Dora R.

    1999-01-01

    Most of the PCB body burden in lake trout (Salvelinus namaycush) of the Great Lakes is from their food. PCB concentrations were determined in lake trout from three different locations in Lake Michigan during 1994–1995, and lake trout diets were analyzed at all three locations. The PCB concentrations were also determined in alewife (Alosa pseudoharengus), rainbow smelt (Osmerus mordax), bloater (Coregonus hoyi), slimy sculpin (Cottus cognatus), and deepwater sculpin (Myoxocephalus thompsoni), five species of prey fish eaten by lake trout in Lake Michigan, at three nearshore sites in the lake. Despite the lack of significant differences in the PCB concentrations of alewife, rainbow smelt, bloater, slimy sculpin, and deepwater sculpin from the southeastern nearshore site near Saugatuck (Michigan) compared with the corresponding PCB concentrations from the northwestern nearshore site near Sturgeon Bay (Wisconsin), PCB concentrations in lake trout at Saugatuck were significantly higher than those at Sturgeon Bay. The difference in the lake trout PCB concentrations between Saugatuck and Sturgeon Bay could be explained by diet differences. The diet of lake trout at Saugatuck was more concentrated in PCBs than the diet of Sturgeon Bay lake trout, and therefore lake trout at Saugatuck were more contaminated in PCBs than Sturgeon Bay lake trout. These findings were useful in interpreting the long-term monitoring series for contaminants in lake trout at both Saugatuck and the Wisconsin side of the lake.

  2. Tissue astaxanthin and canthaxanthin distribution in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar).

    PubMed

    Page, G I; Davies, S J

    2006-01-01

    A comparative investigation of tissue carotenoid distribution between rainbow trout, Oncorhynchus mykiss, and Atlantic salmon, Salmo salar, was undertaken to identify the relative efficiency of utilization of astaxanthin and canthaxanthin. Higher apparent digestibility coefficients (ADCs) (96% in trout vs. 28-31% in salmon; P<0.05), and pigment retention efficiencies (11.5-12.5% in trout vs. 5.5% in salmon; P<0.05), for both astaxanthin and canthaxanthin, were observed for rainbow trout. Astaxanthin deposition was higher than canthaxanthin in rainbow trout, while the reverse was true for Atlantic salmon, suggesting species-specificity in carotenoid utilization. The white muscle (95% in trout vs. 93% in salmon) and kidneys (0.5% in trout vs. 0.2% in salmon) represented higher proportions of the total body carotenoid pool in rainbow trout than in Atlantic salmon (P<0.05), whereas the liver was a more important storage organ in Atlantic salmon (2-6% in salmon vs. 0.2% in trout; P<0.05). The liver and kidney appeared to be important sites of carotenoid catabolism based on the relative proportion of the peak chromatogram of the fed carotenoid in both species, with the pyloric caecae and hind gut being more important in Atlantic salmon than in the rainbow trout. Liver catabolism is suspected to be a critical determinant in carotenoid clearance, with higher catabolism expected in Atlantic salmon than in rainbow trout.

  3. Effects of various kitchen heat treatments, ultraviolet light, and gamma irradiation on mirex insecticide residues in fish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cin, D.A.; Kroger, M.

    Concentrations of the chlorinated hydrocarbon insecticide mirex (C/sub 10/Cl/sub 12/) were determined in brown trout from a defined contaminated area of Spring Creek, Centre County, PA, using electron-capture gas chromatography. Conventional heat treatments, namely, baking, frying, poaching, and baking without skin, did not cause significant decreases of the contaminant. Ultraviolet irradiation led to significant reductions (p < 0.05) in mirex concentration in muscle tissue. Exposures of 24, 48, and 72 hr led to degradations of 30.0%, and 45.6%, respectively, of the initial mirex concentration. Gamma irradiation also led to significant reductions (p < 0.05) in mirex concentration in muscle tissue.more » Following absorption of 1, 3, and 5 Mrad, degradations of 9.8%, 23,1%, and 37.5%, respectively, of the initial mirex concentration were observed.« less

  4. Experimental and natural host specificity of Loma salmonae (Microsporidia).

    PubMed

    Shaw, R W; Kent, M L; Brown, A M; Whipps, C M; Adamson, M L

    2000-03-14

    The microsporidian Loma salmonae (Putz, Hoffman & Dunbar, 1965) Morrison & Sprague, 1981 has caused significant gill disease in Pacific salmon Oncorhynchus spp. Host specificity of the parasite was examined experimentally by per os challenge of selected salmonids and non-salmonids with infective chinook salmon O. tshawytscha gill material. Pink Oncorhynchus gorbuscha and chum salmon O. keta, brown Salmo trutta and brook trout Salvelinus fontinalis, and chinook salmon (controls) were positive, whereas Atlantic salmon Salmo salar and Arctic char Salvelinus alpinus were negative. In addition, no non-salmonids were susceptible to experimental exposure. Wild Pacific salmon species in British Columbia, Canada, were examined for L. salmonae during their freshwater life history stages (smolts, prespawning, spawning). All stages were infected, although infections in smolts were only detectable using a L. salmonae-specific PCR test. Many previous Loma spp. described from Oncorhychus spp. are likely L. salmonae based on host, parasite morphology, and site of infection.

  5. Aerobic scope explains individual variation in feeding capacity

    PubMed Central

    Auer, Sonya K.; Salin, Karine; Anderson, Graeme J.; Metcalfe, Neil B.

    2015-01-01

    Links between metabolism and components of fitness such as growth, reproduction and survival can depend on food availability. A high standard metabolic rate (SMR; baseline energy expenditure) or aerobic scope (AS; the difference between an individual's maximum and SMR) is often beneficial when food is abundant or easily accessible but can be less important or even disadvantageous when food levels decline. While the mechanisms underlying these context-dependent associations are not well understood, they suggest that individuals with a higher SMR or AS are better able to take advantage of high food abundance. Here we show that juvenile brown trout (Salmo trutta) with a higher AS were able to consume more food per day relative to individuals with a lower AS. These results help explain why a high aerobic capacity can improve performance measures such as growth rate at high but not low levels of food availability. PMID:26556902

  6. 77 FR 62500 - Peabody Trout Creek Reservoir LLC; Notice of Intent To File License Application, Filing of Pre...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14446-000] Peabody Trout.... c. Dated Filed: August 9, 2012. d. Submitted By: Peabody Trout Creek Reservoir LLC. e. Name of Project: Trout Creek Reservoir Hydroelectric Project. f. Location: On Trout Creek, 15 miles southwest of...

  7. Changes in native bull trout and non-native brook trout distributions in the upper Powder River basin after 20 years, relationships to water temperature and implications of climate change

    Treesearch

    Philip J. Howell

    2017-01-01

    Many bull trout populations have declined from non-native brook trout introductions, habitat changes (e.g. water temperature) and other factors. We systematically sampled the distribution of bull trout and brook trout in the upper Powder River basin in Oregon in the 1990s and resampled it in 2013–2015, examined temperature differences in the habitats of the two species...

  8. Coeur d'Alene Tribe Fisheries Program : Implementation of Fisheries Enhancement Opportunities on the Coeur d’Alene Reservation : 2007 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firehammer, Jon A.; Vitale, Angelo J.; Hallock, Stephanie A.

    2009-09-08

    Historically, the Coeur d'Alene Indian Tribe depended on runs of anadromous salmon and steelhead along the Spokane River and Hangman Creek, as well as resident and adfluvial forms of trout and char in Coeur d'Alene Lake, for survival. Dams constructed in the early 1900s on the Spokane River in the City of Spokane and at Little Falls (further downstream) were the first dams that initially cut-off the anadromous fish runs from the Coeur d'Alene Tribe. These fisheries were further removed following the construction of Chief Joseph and Grand Coulee Dams on the Columbia River. Together, these actions forced the Tribemore » to rely solely on the resident fish resources of Coeur d'Alene Lake for their subsistence needs. The Coeur d'Alene Tribe is estimated to have historically harvested around 42,000 westslope cutthroat trout (Oncorhynchus clarki lewisi) per year (Scholz et al. 1985). In 1967, Mallet (1969) reported that 3,329 cutthroat trout were harvested from the St. Joe River, and a catch of 887 was reported from Coeur d'Alene Lake. This catch is far less than the 42,000 fish per year the tribe harvested historically. Today, only limited opportunities exist to harvest cutthroat trout in the Coeur d'Alene Basin. It appears that a suite of factors have contributed to the decline of cutthroat trout stocks within Coeur d'Alene Lake and its tributaries (Mallet 1969; Scholz et al. 1985; Lillengreen et al. 1993). These factors included the construction of Post Falls Dam in 1906, major changes in land cover types, impacts from agricultural activities, and introduction of exotic fish species. The decline in native cutthroat trout populations in the Coeur d'Alene basin has been a primary focus of study by the Coeur d'Alene Tribe's Fisheries and Water Resources programs since 1990. The overarching goals for recovery have been to restore the cutthroat trout populations to levels that allow for subsistence harvest, maintain genetic diversity, and increase the probability of persistence in the face of anthropogenic influences and prospective climate change. This included recovering the lacustrine-adfluvial life history form that was historically prevalent and had served to provide both resilience and resistance to the structure of cutthroat trout populations in the Coeur d'Alene basin. To this end, the Coeur d'Alene Tribe closed Lake Creek and Benewah Creek to fishing in 1993 to initiate recovery of westslope cutthroat trout to historical levels. However, achieving sustainable cutthroat trout populations also required addressing biotic factors and habitat features in the basin that were limiting recovery. Early in the 1990s, BPA-funded surveys and inventories identified limiting factors in Tribal watersheds that would need to be remedied to restore westslope cutthroat trout populations. The limiting factors included: low-quality, low-complexity mainstem stream habitat and riparian zones; high stream temperatures in mainstem habitats; negative interactions with nonnative brook trout in tributaries; and potential survival bottlenecks in Coeur d'Alene Lake. In 1994, the Northwest Power Planning Council adopted the recommendations set forth by the Coeur d'Alene Tribe to improve the Reservation fishery (NWPPC Program Measures 10.8B.20). These recommended actions included: (1) Implement habitat restoration and enhancement measures in Alder, Benewah, Evans, and Lake Creeks; (2) Purchase critical watershed areas for protection of fisheries habitat; (3) Conduct an educational/outreach program for the general public within the Coeur d'Alene Reservation to facilitate a 'holistic' watershed protection process; (4) Develop an interim fishery for tribal and non-tribal members of the reservation through construction, operation and maintenance of five trout ponds; (5) Design, construct, operate and maintain a trout production facility; and (6) Implement a monitoring program to evaluate the effectiveness of the hatchery and habitat improvement projects. These activities provide partial mitigation for the extirpation of anadromous fish resources from usual and accustomed harvest areas and Reservation lands. Since that time, much of the mitigation activities occurring within the Coeur d'Alene sub-basin have had a connection to the BPA project entitled 'Implement of Fisheries Enhancement Opportunities on the Coeur d'Alene Reservation' (1990-044-00), which is sponsored and implemented by the Coeur d'Alene Tribe Fisheries Program.« less

  9. Discovering hidden biodiversity: the use of complementary monitoring of fish diet based on DNA barcoding in freshwater ecosystems.

    PubMed

    Jo, Hyunbin; Ventura, Marc; Vidal, Nicolas; Gim, Jeong-Soo; Buchaca, Teresa; Barmuta, Leon A; Jeppesen, Erik; Joo, Gea-Jae

    2016-01-01

    Ecological monitoring contributes to the understanding of complex ecosystem functions. The diets of fish reflect the surrounding environment and habitats and may, therefore, act as useful integrating indicators of environmental status. It is, however, often difficult to visually identify items in gut contents to species level due to digestion of soft-bodied prey beyond visual recognition, but new tools rendering this possible are now becoming available. We used a molecular approach to determine the species identities of consumed diet items of an introduced generalist feeder, brown trout (Salmo trutta), in 10 Tasmanian lakes and compared the results with those obtained from visual quantification of stomach contents. We obtained 44 unique taxa (OTUs) belonging to five phyla, including seven classes, using the barcode of life approach from cytochrome oxidase I (COI). Compared with visual quantification, DNA analysis showed greater accuracy, yielding a 1.4-fold higher number of OTUs. Rarefaction curve analysis showed saturation of visually inspected taxa, while the curves from the DNA barcode did not saturate. The OTUs with the highest proportions of haplotypes were the families of terrestrial insects Formicidae, Chrysomelidae, and Torbidae and the freshwater Chironomidae. Haplotype occurrence per lake was negatively correlated with lake depth and transparency. Nearly all haplotypes were only found in one fish gut from a single lake. Our results indicate that DNA barcoding of fish diets is a useful and complementary method for discovering hidden biodiversity.

  10. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.

    USGS Publications Warehouse

    Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.

    2012-01-01

    Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.

  11. Identification and regulatory analysis of rainbow trout tapasin and tapasin-related genes

    USGS Publications Warehouse

    Landis, E.D.; Palti, Y.; Dekoning, J.; Drew, R.; Phillips, R.B.; Hansen, J.D.

    2006-01-01

    Tapasin (TAPBP) is a key member of MHC class Ia antigen-loading complexes, bridging the class Ia molecule to the transporter associated with antigen presentation (TAP). As part of an ongoing study of MHC genomics in rainbow trout, we have identified two rainbow trout TAPBP genes (Onmy-TAPBP.a and .b) and a similar but distinct TAPBP-related gene (Onmy-TAPBP-R) that had previously only been described in mammals. Physical and genetic mapping indicate that Onmy-TAPBP.a is on chromosome 18 in the MHC class Ia region and that Onmy-TAPBP.b resides on chromosome 14 in the MHC class Ib region. There are also at least two copies of TAPBP-R, Onmy-TAPBP-R.a and Onmy-TAPBP-R.b, located on chromosomes 2 and 3, respectively. Due to the central role of TAPBP expression during acute viral infection, we have characterized the transcriptional profile and regulatory regions for both Onmy-TAPBP and Onmy-TAPBP-R. Transcription of both genes increased during acute infection with infectious hematapoeitic necrosis virus (IHNV) in a fashion indicative of interferon-mediated regulation. Promoter-reporter assays in STE-137 cells demonstrate that the trout TAPBP and TAPBP-R promoters respond to interferon regulatory factors, Onmy-IRF1 and Onmy-IRF2. Overall, TAPBP is expressed at higher levels than TAPBP-R in nai??ve tissues and TAPBP transcription is more responsive to viral infection and IRF1 and 2 binding. ?? Springer-Verlag 2006.

  12. Investigation of metal ions sorption of brown peat moss powder

    NASA Astrophysics Data System (ADS)

    Kelus, Nadezhda; Blokhina, Elena; Novikov, Dmitry; Novikova, Yaroslavna; Chuchalin, Vladimir

    2017-11-01

    For regularities research of sorptive extraction of heavy metal ions by cellulose and its derivates from aquatic solution of electrolytes it is necessary to find possible mechanism of sorption process and to choice a model describing this process. The present article investigates the regularities of aliovalent metals sorption on brown peat moss powder. The results show that sorption isotherm of Al3+ ions is described by Freundlich isotherm and sorption isotherms of Na+ i Ni2+ are described by Langmuir isotherm. To identify the mechanisms of brown peat moss powder sorption the IR-spectra of the initial brown peat moss powder samples and brown peat moss powder samples after Ni (II) sorption were studied. Metal ion binding mechanisms by brown peat moss powder points to ion exchange, physical adsorption, and complex formation with hydroxyl and carboxyl groups.

  13. Fat content of the flesh of siscowets and lake trout from Lake Superior

    USGS Publications Warehouse

    Eschmeyer, Paul H.; Phillips, Arthur M.

    1965-01-01

    Samples of flesh were excised from the middorsal region of 67 siscowets (Salvelinus namaycush siscowet) and 46 lake trout (Salvelinus n. namaycush) collected from Lake Superior. Chemical analysis of the samples revealed a range in fat content (dry weight) of 32.5 to 88.8 per cent in siscowets and 6.6 to 52.3 per cent in lake trout. Percentage fat increased progressively with increase in length of fish in both forms, but the average rate of increase was far greater for siscowets than for lake trout at lengths between 12 and 20 inches. Despite substantial individual variation, the percentage fat in the two forms was widely different and without overlap at all comparable lengths. The range in iodine number of the fat was 100 to 160 for siscowets and 103 to 161 for lake trout; average values were generally lower for siscowets than for lake trout among fish of comparable length. Percentage fat and relative weight were not correlated significantly in either subspecies. The fat content of flesh samples from a distinctive subpopulation of Lake Superior lake trout known as 'humpers' was more closely similar to that of typical lean lake trout than to siscowets, but the rate of increase in fat with increasing length was greater than for lean lake trout. Flesh samples from hatchery-reared stocks of lake trout, hybrid lake trout X siscowets, and siscowets tended to support the view that the wide difference in fat content between siscowets and lake trout is genetically determined.

  14. Across the great divide: genetic forensics reveals misidentification of endangered cutthroat trout populations.

    PubMed

    Metcalf, Jessica L; Pritchard, Victoria L; Silvestri, Sarah M; Jenkins, Jazzmin B; Wood, John S; Cowley, David E; Evans, R Paul; Shiozawa, Dennis K; Martin, Andrew P

    2007-11-01

    Accurate assessment of species identity is fundamental for conservation biology. Using molecular markers from the mitochondrial and nuclear genomes, we discovered that many putatively native populations of greenback cutthroat trout (Oncorhynchus clarkii stomias) comprised another subspecies of cutthroat trout, Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus). The error can be explained by the introduction of Colorado River cutthroat trout throughout the native range of greenback cutthroat trout in the late 19th and early 20th centuries by fish stocking activities. Our results suggest greenback cutthroat trout within its native range is at a higher risk of extinction than ever before despite conservation activities spanning more than two decades.

  15. Bull trout distributions related to temperature regimes in four central Idaho streams

    Treesearch

    Susan B. Adams; Theodore C. Bjornn

    1997-01-01

    bull trout Salvelinus confluentus distributions and water temperature regimes were studied in four streams in the Weiser River basin, Idaho, in 1992 and 1993. bull trout occurred at elevations ranging from 1,472 m to 2,182 m and at densities up to 9.5 fish per 100 m2. Bull trout were sympatric with rainbow trout

  16. Experimental evaluation of rainbow trout Oncorhynchus mykiss predation on longnose dace Rhinichthys cataractae

    USGS Publications Warehouse

    Turek, Kelly C.; Pegg, Mark A.; Pope, Kevin L.

    2014-01-01

    Laboratory and in-stream enclosure experiments were used to determine whether rainbow trout Oncorhynchus mykiss influence survival of longnose dace Rhinichthys cataractae. In the laboratory, adult rainbow trout preyed on longnose dace in 42% of trials and juvenile rainbow trout did not prey on longnose dace during the first 6 h after rainbow trout introduction. Survival of longnose dace did not differ in the presence of adult rainbow trout previously exposed to active prey and those not previously exposed to active prey ( = 0.28, P = 0.60). In field enclosures, the number of longnose dace decreased at a faster rate in the presence of rainbow trout relative to controls within the first 72 h, but did not differ between moderate and high densities of rainbow trout (F2,258.9 = 3.73, P = 0.03). Additionally, longnose dace were found in 7% of rainbow trout stomachs after 72 h in enclosures. Rainbow trout acclimated to the stream for longer periods had a greater initial influence on the number of longnose dace remaining in enclosures relative to those acclimated for shorter periods regardless of rainbow trout density treatment (F4,148.5 = 2.50, P = 0.04). More research is needed to determine how predation rates will change in natural environments, under differing amounts of habitat and food resources and in the context of whole assemblages. However, if rainbow trout are introduced into the habitat of longnose dace, some predation on longnose dace is expected, even when rainbow trout have no previous experience with active prey.

  17. Kootenai River Fisheries Investigations: Salmonid Studies Project Progress Report, 2007-2008 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo

    2009-04-09

    This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less thanmore » the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.« less

  18. Molecular analysis of population genetic structure and recolonization of rainbow trout following the Cantara spill

    USGS Publications Warehouse

    Nielsen, J.L.; Heine, Erika L.; Gan, Christina A.; Fountain, Monique C.

    2000-01-01

    Mitochondrial DNA (mtDNA) sequence and allelic frequency data for 12 microsatellite loci were used to analyze population genetic structure and recolonization by rainbow trout, Oncorhynchus mykiss, following the 1991 Cantara spill on the upper Sacramento River, California. Genetic analyses were performed on 1,016 wild rainbow trout collected between 1993 and 1996 from the mainstem and in 8 tributaries. Wild trout genotypes were compared to genotypes for 79 Mount Shasta Hatchery rainbow trout. No genetic heterogeneity was found 2 years after the spill (1993) between tributary populations and geographically proximate mainstem fish, suggesting recolonization of the upper mainstem directly from adjacent tributaries. Trout collections made in 1996 showed significant year-class genetic variation for mtDNA and microsatellites when compared to fish from the same locations in 1993. Five years after the spill, mainstem populations appeared genetically mixed with no significant allelic frequency differences between mainstem populations and geographically proximate tributary trout. In our 1996 samples, we found no significant genetic differences due to season of capture (summer or fall) or sampling technique used to capture rainbow trout, with the exception of trout collected by electrofishing and hook and line near Prospect Avenue. Haplotype and allelic frequencies in wild rainbow trout populations captured in the upper Sacramento River and its tributaries were found to differ genetically from Mount Shasta Hatchery trout for both years, with the notable exception of trout collected in the lower mainstem river near Shasta Lake, where mtDNA and microsatellite data both suggested upstream colonization by hatchery fish from the reservoir. These data suggest that the chemical spill in the upper Sacramento River produced significant effects over time on the genetic population structure of rainbow trout throughout the entire upper river basin.

  19. Kootenai River Fisheries Investigations; Rainbow and Bull Trout Recruitment, 1999 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Jody P.; Downs, Christopher C.

    2001-08-01

    Our 1999 objectives were to determine sources of rainbow trout Oncorhynchus mykiss and bull trout Salvelinus confluentus spawning and recruitment in the Idaho reach of the Kootenai River. We used a rotary-screw trap to capture juvenile trout to determine age at out-migration and to estimate total out-migration from the Boundary Creek drainage to the Kootenai River. The out-migrant estimate for March through August 1999 was 1,574 (95% C. I. = 825-3,283) juvenile rainbow trout. Most juveniles out-migrated at age-2 and age-3. No out-migrating bull trout were caught. Five of 17 rainbow trout radio-tagged in Idaho migrated upstream into Montana watersmore » during the spawning season. Five bull trout originally radio-tagged in O'Brien Creek, Montana in early October moved downstream into Idaho and British Columbia by mid-October. Annual angler exploitation for the rainbow trout population upstream of Bonners Ferry, Idaho was estimated to be 58%. Multi-pass depletion estimates for index reaches of Caboose, Curley, and Debt creeks showed 0.20, 0.01, and 0.13 rainbow trout juveniles/m{sup 2}, respectively. We estimated rainbow trout (180-415 mm TL) standing stock of 1.6 kg/ha for the Hemlock Bar reach (29.4 ha) of the Kootenai River, similar to the 1998 estimate. Recruitment of juvenile rainbow and bull trout from Idaho tributaries is not sufficient to be the sole source of subsequent older fish in the mainstem Kootenai River. These populations are at least partly dependent on recruitment from Montana waters. The low recruitment and high exploitation rate may be indicators of a rainbow trout population in danger of further decline.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Steven W.

    Bull trout (Salvelinus confluentus) are native to many tributaries of the Snake River in southeast Washington. The Washington Department of Wildlife (WDW) and the American Fisheries Society (AFS) have identified bull trout as a species of special concern which means that they may become threatened or endangered by relatively, minor disturbances to their habitat. Steelhead trout/rainbow trout (Oncorhynchus mykiss) and spring chinook salmon (O.tshawytscha) are also native to several tributaries of the Snake river in southeast Washington. These species of migratory fishes are depressed, partially due to the construction of several dams on the lower Snake river. In response tomore » decreased run size, large hatchery program were initiated to produce juvenile steelhead and salmon to supplement repressed tributary stocks, a practice known as supplementation. There is a concern that supplementing streams with artificially high numbers of steelhead and salmon may have an impact on resident bull trout in these streams. Historically, these three species of fish existed together in large numbers, however, the amount of high-quality habitat necessary for reproduction and rearing has been severely reduced in recent years, as compared to historic amounts. The findings of the first year of a two year study aimed at identifying species interactions in southeast Washington streams are presented in this report. Data was collected to assess population dynamics; habitat utilization and preference, feeding habits, fish movement and migration, age, condition, growth, and the spawning requirements of bull trout in each of four streams. A comparison of the indices was then made between the study streams to determine if bull trout differ in the presence of the putative competitor species. Bull trout populations were highest in the Tucannon River (supplemented stream), followed by Mill Creek (unsupplemented stream). Young of the year bull trout utilized riffle and cascade habitat the most in all four streams. Juvenile bull trout utilized scour pool and run habitat the most in all four streams. YOY bull trout preferred plunge pool and scour pool habitat, as did juvenile bull trout in all four streams. These data show that while in the presence of the putative competitors, bull trout prefer the same habitat as in the absence of the putative competitors. Juvenile bull trout preferred mayflies and stoneflies in Mill Creek, while in the presence of the competitor species they preferred caddisflies, stoneflies, and Oligochaeta. It is felt that this difference is due to the differences in food items available and not species interactions, bull trout consume what is present. Adult bull trout were difficult to capture, and therefore it was difficult to determine the migratory habits in the Tucannon River. It is recommended that future studies use radio telemetry to determine the migratory habitat of these fish. The age, condition, and growth rates of bull trout differed only minimally between streams, indicating that if competitive interactions are occurring between these species it is not reflected by: (1) the length at age of bull trout; (2) the length-weight relationship of bull trout; or (3) the rate of growth of bull trout. The spawning habits of bull trout and spring chinook salmon are similar in the Tucannon River, however it was found that they spawn in different river locations. The salmon spawn below river kilometer 83, while 82% of bull trout spawn above that point. The peak of spawning for salmon occurred 10 days before the peak of bull trout spawning, indicating that very little competition for spawning locations occurs between these species in the Tucannon River. Future species interactions study recommendations include the use of electrofishing to enumerate bull trout populations, snorkeling to identify micro-habitat utilization, seasonal diet analysis, and radio transmitters to identify seasonal migration patterns of bull trout.« less

  1. Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams

    USGS Publications Warehouse

    Kocovsky, P.M.; Carline, R.F.

    2006-01-01

    Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.

  2. Hybridization and cytonuclear associations among native westslope cutthroat trout, introduced rainbow trout, and their hybrids within the Stehekin River drainage, North Cascades National Park

    USGS Publications Warehouse

    Ostberg, C.O.; Rodriguez, R.J.

    2006-01-01

    Historic introductions of nonnative rainbow trout Oncorhynchus mykiss into the native habitats of cutthroat trout O. clarkii have impacted cutthroat trout populations through introgressive hybridization, creating challenges and concerns for cutthroat trout conservation. We examined the effects of rainbow trout introductions on the native westslope cutthroat trout O. c. lewisii within the Stehekin River drainage, North Cascades National Park, Washington, by analyzing 1,763 salmonid DNA samples from 18 locations with nine diagnostic nuclear DNA markers and one diagnostic mitochondrial DNA (mtDNA) marker. Pure westslope cutthroat trout populations only occurred above upstream migration barriers in the Stehekin River and Park Creek. Two categories of rainbow trout admixture were observed: (1) less than 10% within the Stehekin River drainage above the Bridge Creek confluence and the middle and upper Bridge Creek drainage and (2) greater than 30% within the Stehekin River below the Bridge Creek confluence and in lower Bridge Creek. Hybrid indices and multilocus genotypes revealed an absence of rainbow trout and reduced hybrid diversity within the Stehekin River above the Bridge Creek confluence relative to hybrid diversity in the Stehekin River below the confluence and within lower Bridge Creek. Cytonuclear disequilibrium statistics revealed assortative mating between westslope cutthroat and rainbow trout but not among hybrids within the same locations. This suggests that a randomly mating hybrid swarm does not currently exist. However, continual migration of parental genotypes into the study location could also create significant cytonuclear disequilibria. The Stehekin River represents a novel and unique example of a dynamic hybridization zone where the invasion of rainbow trout alleles into the Stehekin River westslope cutthroat trout population above the Bridge Creek confluence appears to be impeded, suggesting that divergent ecological or evolutionary mechanisms promote the population structure within the Stehekin River drainage, depending upon location.

  3. Statistical Field Estimation and Scale Estimation for Complex Coastal Regions and Archipelagos

    DTIC Science & Technology

    2009-05-01

    instruments applied to mode-73. Deep-Sea Research, 23:559–582. Brown , R. G. and Hwang , P. Y. C. (1997). Introduction to Random Signals and Applied Kalman ...the covariance matrix becomes neg- ative due to numerical issues ( Brown and Hwang , 1997). Some useful techniques to counter these divergence problems...equations ( Brown and Hwang , 1997). If the number of observations is large, divergence problems can arise under certain con- ditions due to truncation errors

  4. Causes of declining survival of lake trout stocked in U.S. waters of Lake Superior in 1963-1986

    USGS Publications Warehouse

    Hansen, Michael J.; Ebener, Mark P.; Schorfhaar, Richard G.; Schram, Stephen T.; Schreiner, Donald R.; Selgeby, James H.; Taylor, William W.

    1996-01-01

    Survival of the 1963-1982 year-classes of stocked yearling lake trout Salvelinus namaycush declined significantly over time in Lake Superior. To investigate possible causes of this decline, a Ricker model of stock-recruitment was used to describe the catch per effort (CPE) of age-7 stocked lake trout in the Michigan, Minnesota, and Wisconsin waters of Lake Superior as functions of the numbers of yearlings stocked 6 years earlier (an index of density dependence), the density (CPE) of wild adult lake trout (an index of predation), and large-mesh (a?Y 114-mm stretch-measure) gill-net fishing effort (an index of fishing mortality). Declining CPE of stocked lake trout in Michigan and Wisconsin was significantly associated with increasing large-mesh gillnet fishing effort. Declining CPE of stocked lake trout in Minnesota was significantly associated with increasing density of wild lake trout. Declining survival of stocked lake trout may therefore have been caused by increased mortality in large-mesh gill-net fisheries in Michigan and Wisconsin, and by predation by wild lake trout that recently recolonized the Minnesota area. We recommend that experimental management be pursued to determine the relative importance of large-mesh gillnet fishing effort and of predation by wild lake trout on the survival of stocked lake trout in U.S. waters of Lake Superior.

  5. Microsatellite analyses of San Franciscuito Creek rainbow trout

    USGS Publications Warehouse

    Nielsen, Jennifer L.

    2000-01-01

    Microsatellite genetic diversity found in San Francisquito Creek rainbow trout support a close genetic relationship with rainbow trout (Oncorhynchus mykiss) from another tributary of San Francisco Bay, Alameda Creek, and coastal trout found in Lagunitas Creek, Marin County, California. Fish collected for this study from San Francisquito Creek showed a closer genetic relationship to fish from the north-central California steelhead ESU than for any other listed group of O. mykiss. No significant genotypic or allelic frequency associations could be drawn between San Francisquito Creek trout and fish collected from the four primary rainbow trout hatchery strains in use in California, i.e. Whitney, Mount Shasta, Coleman, and Hot Creek hatchery fish. Indeed, genetic distance analyses (δµ2) supported separation between San Francisquito Creek trout and all hatchery trout with 68% bootstrap values in 1000 replicate neighbor-joining trees. Not surprisingly, California hatchery rainbow trout showed their closest evolutionary relationships with contemporary stocks derived from the Sacramento River. Wild collections of rainbow trout from the Sacramento-San Joaquin basin in the Central Valley were also clearly separable from San Francisquito Creek fish supporting separate, independent ESUs for two groups of O. mykiss (one coastal and one Central Valley) with potentially overlapping life histories in San Francisco Bay. These data support the implementation of management and conservation programs for rainbow trout in the San Francisquito Creek drainage as part of the central California coastal steelhead ESU.

  6. Molecular and biochemical analysis of rainbow trout LCK suggests a conserved mechanism for T-cell signaling in gnathostomes

    USGS Publications Warehouse

    Laing, K.J.; Dutton, S.; Hansen, J.D.

    2007-01-01

    Two genes were identified in rainbow trout that display high sequence identity to vertebrate Lck. Both of the trout Lck transcripts are associated with lymphoid tissues and were found to be highly expressed in IgM-negative lymphocytes. In vitro analysis of trout lymphocytes indicates that trout Lck mRNA is up-regulated by T-cell mitogens, supporting an evolutionarily conserved function for Lck in the signaling pathways of T-lymphocytes. Here, we describe the generation and characterization of a specific monoclonal antibody raised against the N-terminal domains of recombinant trout Lck that can recognize Lck protein(s) from trout thymocyte lysates that are similar in size (???57 kDa) to mammalian Lck. This antibody also reacted with permeabilized lymphocytes during FACS analysis, indicating its potential usage for cellular analyses of trout lymphocytes, thus representing an important tool for investigations of salmonid T-cell function.

  7. Fish communities of benchmark streams in agricultural areas of eastern Wisconsin

    USGS Publications Warehouse

    Sullivan, D.J.; Peterson, E.M.

    1997-01-01

    Fish communities were surveyed at 20 stream sites in agricultural areas in eastern Wisconsin in 1993 and 1995 as part of the National Water-Quality Assessment (NAWQA) Program. These streams, designated "benchmark streams," were selected for study because of their potential use as regional references for healthy streams in agricultural areas, based on aquatic communities, habitat, and water chemistry. The agricultural benchmark streams were selected from four physical settings, or relatively homogeneous units (RHU's), that differ in bedrock type, texture of surficial deposits, and land use. Additional data were collected along with the fish-community data, including measures of habitat, water chemistry, and population surveys of algae and benthic invertebrates. Of the 20 sites, 19 are classified as trout (salmonid) streams. Fish species that require cold or cool water were the most commonly collected. At least one species of trout was collected at 18 sites, and trout were the most abundant species at 13 sites. The species with the greatest collective abundance, and collected at 18 of the 20 sites, were mottled sculpin (Cottus bairdi), a coldwater species. The next most abundant species were brown trout (Salmo trutta), followed by brook trout (Salvelinusfontinalis), creek chub (Semotilus atromaculatus), and longnose dace (Rhinichthys cataractae). In all, 31 species of fish were collected. The number of species per stream ranged from 2 to 14, and the number of individuals collected ranged from 19 to 264. According to Index of Biotic Integrity (IBI) scores, 5 sites were rated excellent, 10 sites rated good, 4 rated fair, and 1 rated poor. The ratings of the five sites in the fair to poor range were low for various reasons. Two sites appeared to have more warmwater species than was ideal for a high-quality coldwater stream. One was sampled during high flow and the results may not be valid for periods of normal flow; the other may have been populated by migrating warmwater species. Two sites had insufficient deep-water habitat to support large numbers offish, especially top carnivores. Finally, one stream may be too cool to support enough warmwater species and too warm to support trout. In general, two methods of evaluating site habitat indicate that habitat is not a limiting factor for fish communities. However, two sites were rated as fair according to both habitat evaluation methods due to low base flow. Two sites rated below good according to one habitat evaluation method but rated good or excellent according to the other. Detrended correspondence analysis (DCA) of data for 17 sites showed three station groupings. These groupings fell along RHU divisions and each group was associated with one of three trout species. A species-richness gradient was evident on the station-ordination diagram. Intolerant species were associated with each grouping, a reflection of the generally high water quality at the sites. However, no significant differences were found between IBI scores or habitat indices among the site groupings. The DCA axis 1 and 2 scores correlated with average velocity and percent pool as well as RHU factors percent sandy surficial deposits, percent wetland, percent agriculture, and bedrock. Average velocity was highest at three sites which also had among the highest measured flow and largest drainage areas. Percent pool was generally lower at sites with smaller percentages of sandy surficial deposits, with one exception. The usefulness of ordination methods in conjunction with more traditional methods of defining biotic integrity (IB I) has been noted in previous studies. In this study, however, perhaps because of the relative homogeneity of the benchmark streams, the IBI did not correlate with the same kinds of factors as the DCA axis scores did. 

  8. Development and evaluation of 200 novel SNP assays for population genetic studies of westslope cutthroat trout and genetic identification of related taxa

    Treesearch

    N. R. Campbell; S. J. Amish; V. L. Prichard; K. M. McKelvey; M. K. Young; M. K. Schwartz; J. C. Garza; G. Luikart; S. R. Narum

    2012-01-01

    DNA sequence data were collected and screened for single nucleotide polymorphisms (SNPs) in westslope cutthroat trout (Oncorhynchus clarki lewisi) and also for substitutions that could be used to genetically discriminate rainbow trout (O. mykiss) and cutthroat trout, as well as several cutthroat trout subspecies. In total, 260 expressed sequence tag-derived loci were...

  9. Structured decision making for conservation of bull trout (Salvelinus confluentus) in Long Creek, Klamath River Basin, south-central Oregon

    USGS Publications Warehouse

    Benjamin, Joseph R.; McDonnell, Kevin; Dunham, Jason B.; Brignon, William R.; Peterson, James T.

    2017-06-21

    With the decline of bull trout (Salvelinus confluentus), managers face multiple, and sometimes contradictory, management alternatives for species recovery. Moreover, effective decision-making involves all stakeholders influenced by the decisions (such as Tribal, State, Federal, private, and non-governmental organizations) because they represent diverse objectives, jurisdictions, policy mandates, and opinions of the best management strategy. The process of structured decision making is explicitly designed to address these elements of the decision making process. Here we report on an application of structured decision making to a population of bull trout believed threatened by high densities of nonnative brook trout (S. fontinalis) and habitat fragmentation in Long Creek, a tributary to the Sycan River in the Klamath River Basin, south-central Oregon. This involved engaging stakeholders to identify (1) their fundamental objectives for the conservation of bull trout, (2) feasible management alternatives to achieve their objectives, and (3) biological information and assumptions to incorporate in a decision model. Model simulations suggested an overarching theme among the top decision alternatives, which was a need to simultaneously control brook trout and ensure that the migratory tactic of bull trout can be expressed. More specifically, the optimal management decision, based on the estimated adult abundance at year 10, was to combine the eradication of brook trout from Long Creek with improvement of downstream conditions (for example, connectivity or habitat conditions). Other top decisions included these actions independently, as well as electrofishing removal of brook trout. In contrast, translocating bull trout to a different stream or installing a barrier to prevent upstream spread of brook trout had minimal or negative effects on the bull trout population. Moreover, sensitivity analyses suggested that these actions were consistently identified as optimal across a large range of parameter values. Taken together, these results support the conclusion that management actions focused on controlling brook trout and enhancing migrant bull trout are more likely to yield more adult bull trout within the 10-year time frame specified by stakeholders.

  10. B cell signatures of BCWD-resistant and susceptible lines of rainbow trout: a shift towards more EBF-expressing progenitors and fewer mature B cells in resistant animals.

    PubMed

    Zwollo, Patty; Ray, Jocelyn C; Sestito, Michael; Kiernan, Elizabeth; Wiens, Gregory D; Kaattari, Steve; StJacques, Brittany; Epp, Lidia

    2015-01-01

    Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative to susceptible trout. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Fish population losses from Adirondack Lakes: The role of surface water acidity and acidification

    NASA Astrophysics Data System (ADS)

    Baker, Joan P.; Warren-Hicks, William J.; Gallagher, James; Christensen, Sigurd W.

    1993-04-01

    Changes over time in the species composition of fish communities in Adirondack lakes were assessed to determine (1) the approximate numbers offish populations that have been lost and (2) the degree to which fish population losses may have resulted from surface water acidification and acidic deposition. Information on the present-day status offish communities was obtained by the Adirondack Lakes Survey Corporation, which surveyed 1469 Adirondack lakes in 1984-1987 (53% of the total ponded waters in the Adirondack ecological zone). Two hundred and ninety-five of these lakes had been surveyed in 1929-1934 during the first statewide biological survey; 720 had been surveyed in one or more years prior to 1970. Sixteen to 19% of the lakes with adequate historical data appeared to have lost one or more fish populations as a result of acidification. Brook trout and acid-sensitive minnow species had experienced the most widespread effects. Populations of brook trout and acid-sensitive minnows had been lost apparently as a result of acidification from 11% and 19%, respectively, of the lakes with confirmed historical occurrence of these taxa. By contrast, fish species that tend to occur primarily in lower elevation and larger lakes, such as largemouth and smallmouth bass and brown trout, have experienced little to no documented adverse effects. Lakes that were judged to have lost fish populations as a result of acidification had significantly lower; pH and, in most cases, also had higher estimated concentrations of inorganic aluminum and occurred at higher elevations than did lakes with the fish species still present. No other lake characteristics were consistently associated with fish population losses attributed to acidification. The exact numbers and proportions of fish populations affected could not be determined because of limitations on the quantity and quality of historical data. Lakes for which we had adequate historical data to assess long-term trends in fish communities were significantly larger and deeper and have higher pH than do Adirondack lakes in general; thus, fish communities adversely affected by acidification and acidic deposition may be underrepresented in this study.

  12. Mercury Concentrations in Fish and Sediment within Streams are Influenced by Watershed and Landscape Variables including Historical Gold Mining in the Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Alpers, C. N.; Yee, J. L.; Ackerman, J. T.; Orlando, J. L.; Slotton, D. G.; Marvin-DiPasquale, M. C.

    2015-12-01

    We compiled available data on total mercury (THg) and methylmercury (MeHg) concentrations in fish tissue and streambed sediment from stream sites in the Sierra Nevada, California, to assess whether spatial data, including information on historical mining, can be used to make robust predictions of fish fillet tissue THg concentrations. A total of 1,271 fish from five species collected at 103 sites during 1980-2012 were used for the modeling effort: 210 brown trout, 710 rainbow trout, 79 Sacramento pikeminnow, 93 Sacramento sucker, and 179 smallmouth bass. Sediment data were used from 73 sites, including 106 analyses of THg and 77 analyses of MeHg. The dataset included 391 fish (mostly rainbow trout) and 28 sediment samples collected explicitly for this study during 2011-12. Spatial data on historical mining included the USGS Mineral Resources Data System and publicly available maps and satellite photos showing the areas of hydraulic mine pits and other placer mines. Modeling was done using multivariate linear regression and multi-model inference using Akaike Information Criteria. Results indicate that fish THg, accounting for species and length, can be predicted using geospatial data on mining history together with other landscape characteristics including land use/land cover. A model requiring only geospatial data, with an R2 value of 0.61, predicted fish THg correctly with respect to over-or-under 0.2 μg/g wet weight (a California regulatory threshold) for 108 of 121 (89 %) size-species combinations tested. Data for THg in streambed sediment did not improve the geospatial-only model. However, data for sediment MeHg, loss on ignition (organic content), and percent of sediment less than 0.063 mm resulted in a slightly improved model, with an R2 value of 0.63. It is anticipated that these models will be useful to the State of California and others to predict areas where mercury concentrations in fish are likely to exceed regulatory criteria.

  13. Water and sediment study of the Snake River watershed, Colorado, Oct. 9-12, 2001

    USGS Publications Warehouse

    Fey, D.L.; Church, S.E.; Unruh, D.M.; Bove, D.J.

    2002-01-01

    The Snake River watershed, located upstream from Dillon Reservoir in the central mountains of Colorado, has been affected by historical base-metal mining. Trout stocked in the Snake River for recreational purposes do not survive through the winter. Sediment cores analyzed by previous investigators from the reservoir revealed elevated concentrations of base metals and mercury. We collected 36 surface water samples (filtered and unfiltered) and 38 streambed-sediment samples from streams in the Snake River watershed. Analyses of the sediment and water samples show that concentrations of several metals exceed aquatic life standards in one or both media. Ribbon maps showing dissolved concentrations of zinc, cadmium, copper, and manganese in water (0.45-micron filtered and corrected for the ameliorating effect of hardness), and copper, cadmium, and zinc in sediment indicate reaches where toxic effects on trout would be expected and stream reaches where toxicity standards for rainbow, brown, and brook trout are exceeded. Instantaneous loads for sulfate, strontium, iron, cadmium, copper, and zinc were calculated from 0.45-micron-filtered water concentrations and discharge measurements were made at each site. Sulfate and strontium behave conservatively, whereas copper, cadmium, and zinc are reactive. The dissolved copper load entering the reservoir is less than 20 percent of the value calculated from some upper reaches; copper is transferred to suspended and or streambed sediment by sorption to iron oxyhydroxides. Higher percentages of zinc and cadmium reach the reservoir in dissolved form; however, load calculations indicate that some of these metals are also precipitated out of solution. The most effective remediation activities should be concentrated on reducing the dissolved loads of zinc, cadmium, and copper in two reaches of lower Peru Creek between the confluence with the Snake River and Cinnamon Gulch. We analyzed all streambed sediment for mercury and selected streambed-sediment and reservoir core samples for lead isotope signatures. Results indicate that the mercury anomaly in the reservoir sediment was not from any known source in the Snake River, Blue River, or Tenmile Creek watersheds. Its source remains an enigma.

  14. Kate Brown | NREL

    Science.gov Websites

    -7721 Research Interests Kate Brown received her Ph.D. from the Massachusetts Institute of Technology in 2008. While at the National Renewable Energy Laboratory, her research has focused on the synthesis and ] hydrogenase complexes and implications for photochemical H2 generation," Journal of the American Chemical

  15. Founding population size of an aquatic invasive species

    USGS Publications Warehouse

    Kalinowski, Steven T.; Muhlfeld, Clint C.; Guy, Christopher S.; Benjamin Cox,

    2010-01-01

    Non-native species of fish threaten native fishes throughout North America, and in the Rocky Mountains, introduced populations of lake trout threaten native populations of bull trout. Effective management of lake trout and other exotic species require understanding the dynamics of invasion in order to either suppress non-native populations or to prevent their spread. In this study, we used microsatellite genetic data to estimate the number of lake trout that invaded a population of bull trout in Swan Lake, MT. Examination of genetic diversity and allele frequencies within the Swan Lake populations showed that most of the genes in the lake trout population are descended from two founders. This emphasizes the importance of preventing even a few lake trout from colonizing new territory.

  16. Biosynthetic Pathway and Health Benefits of Fucoxanthin, an Algae-Specific Xanthophyll in Brown Seaweeds

    PubMed Central

    Mikami, Koji; Hosokawa, Masashi

    2013-01-01

    Fucoxanthin is the main carotenoid produced in brown algae as a component of the light-harvesting complex for photosynthesis and photoprotection. In contrast to the complete elucidation of the carotenoid biosynthetic pathways in red and green algae, the biosynthetic pathway of fucoxanthin in brown algae is not fully understood. Recently, two models for the fucoxanthin biosynthetic pathway have been proposed in unicellular diatoms; however, there is no such information for the pathway in brown seaweeds to date. Here, we propose a biosynthetic pathway for fucoxanthin in the brown seaweed, Ectocarpus siliculosus, derived from comparison of carotenogenic genes in its sequenced genome with those in the genomes of two diatoms, Thalassiosira pseudonana and Phaeodactylum tricornutum. Currently, fucoxanthin is receiving attention, due to its potential benefits for human health. Therefore, new knowledge regarding the medical and nutraceutical properties of fucoxanthin from brown seaweeds is also summarized here. PMID:23820585

  17. Evidence of widespread natural reproduction by lake trout Salvelinus namaycush in the Michigan waters of Lake Huron

    USGS Publications Warehouse

    Riley, S.C.; He, J.X.; Johnson, J.E.; O'Brien, T. P.; Schaeffer, J.S.

    2007-01-01

    Localized natural reproduction of lake trout Salvelinus namaycush in Lake Huron has occurred since the 1980s near Thunder Bay, Michigan. During 2004–2006, USGS spring and fall bottom trawl surveys captured 63 wild juvenile lake trout at depths ranging from 37–73 m at four of five ports in the Michigan waters of the main basin of Lake Huron, more than five times the total number captured in the previous 30-year history of the surveys. Relatively high catches of wild juvenile lake trout in bottom trawls during 2004–2006 suggest that natural reproduction by lake trout has increased and occurred throughout the Michigan waters of the main basin. Increased catches of wild juvenile lake trout in the USGS fall bottom trawl survey were coincident with a drastic decline in alewife abundance, but data were insufficient to determine what mechanism may be responsible for increased natural reproduction by lake trout. We recommend further monitoring of juvenile lake trout abundance and research into early life history of lake trout in Lake Huron.

  18. Biology, population structure, and estimated forage requirements of lake trout in Lake Michigan

    USGS Publications Warehouse

    Eck, Gary W.; Wells, LaRue

    1983-01-01

    Data collected during successive years (1971-79) of sampling lake trout (Salvelinus namaycush) in Lake Michigan were used to develop statistics on lake trout growth, maturity, and mortality, and to quantify seasonal lake trout food and food availability. These statistics were then combined with data on lake trout year-class strengths and age-specific food conversion efficiencies to compute production and forage fish consumption by lake trout in Lake Michigan during the 1979 growing season (i.e., 15 May-1 December). An estimated standing stock of 1,486 metric tons (t) at the beginning of the growing season produced an estimated 1,129 t of fish flesh during the period. The lake trout consumed an estimated 3,037 t of forage fish, to which alewives (Alosa pseudoharengus) contributed about 71%, rainbow smelt (Osmerus mordax) 18%, and slimy sculpins (Cottus cognatus) 11%. Seasonal changes in bathymetric distributions of lake trout with respect to those of forage fish of a suitable size for prey were major determinants of the size and species compositions of fish in the seasonal diet of lake trout.

  19. In vitro immune functions in thiamine-replete and -depleted lake trout (Salvelinus namaycush).

    PubMed

    Ottinger, Christopher A; Honeyfield, Dale C; Densmore, Christine L; Iwanowicz, Luke R

    2014-05-01

    In this study we examined the impacts of in vivo thiamine deficiency on lake trout leukocyte function measured in vitro. When compared outside the context of individual-specific thiamine concentrations no significant differences were observed in leukocyte bactericidal activity or in concanavalin A (Con A), and phytohemagglutinin-P (PHA-P) stimulated leukocyte proliferation. Placing immune functions into context with the ratio of in vivo liver thiamine monophosphate (TMP--biologically inactive form) to thiamine pyrophosphate (TPP--biologically active form) proved to be the best indicator of thiamine depletion impacts as determined using regression modeling. These observed relationships indicated differential effects on the immune measures with bactericidal activity exhibiting an inverse relationship with TMP to TPP ratios, Con A stimulated mitogenesis exhibiting a positive relationship with TMP to TPP ratios and PHA-P stimulated mitogenesis exhibiting no significant relationships. In addition, these relationships showed considerable complexity which included the consistent observation of a thiamine-replete subgroup with characteristics similar to those seen in the leukocytes from thiamine-depleted fish. When considered together, our observations indicate that lake trout leukocytes experience cell-type specific impacts as well as an altered physiologic environment when confronted with a thiamine-limited state. Published by Elsevier Ltd.

  20. In vitro immune functions in thiamine-replete and -depleted lake trout (Salvelinus namaycush)

    USGS Publications Warehouse

    Ottinger, Christopher A.; Honeyfield, Dale C.; Densmore, Christine L.; Iwanowicz, Luke R.

    2014-01-01

    In this study we examined the impacts of in vivo thiamine deficiency on lake trout leukocyte function measured in vitro. When compared outside the context of individual-specific thiamine concentrations no significant differences were observed in leukocyte bactericidal activity or in concanavalin A (Con A), and phytohemagglutinin-P (PHA-P) stimulated leukocyte proliferation. Placing immune functions into context with the ratio of in vivo liver thiamine monophosphate (TMP – biologically inactive form) to thiamine pyrophosphate (TPP – biologically active form) proved to be the best indicator of thiamine depletion impacts as determined using regression modeling. These observed relationships indicated differential effects on the immune measures with bactericidal activity exhibiting an inverse relationship with TMP to TPP ratios, Con A stimulated mitogenesis exhibiting a positive relationship with TMP to TPP ratios and PHA-P stimulated mitogenesis exhibiting no significant relationships. In addition, these relationships showed considerable complexity which included the consistent observation of a thiamine-replete subgroup with characteristics similar to those seen in the leukocytes from thiamine-depleted fish. When considered together, our observations indicate that lake trout leukocytes experience cell-type specific impacts as well as an altered physiologic environment when confronted with a thiamine-limited state.

Top