Nett, Isabelle R E; Martin, David M A; Miranda-Saavedra, Diego; Lamont, Douglas; Barber, Jonathan D; Mehlert, Angela; Ferguson, Michael A J
2009-07-01
The protozoan parasite Trypanosoma brucei is the causative agent of human African sleeping sickness and related animal diseases, and it has over 170 predicted protein kinases. Protein phosphorylation is a key regulatory mechanism for cellular function that, thus far, has been studied in T.brucei principally through putative kinase mRNA knockdown and observation of the resulting phenotype. However, despite the relatively large kinome of this organism and the demonstrated essentiality of several T. brucei kinases, very few specific phosphorylation sites have been determined in this organism. Using a gel-free, phosphopeptide enrichment-based proteomics approach we performed the first large scale phosphorylation site analyses for T.brucei. Serine, threonine, and tyrosine phosphorylation sites were determined for a cytosolic protein fraction of the bloodstream form of the parasite, resulting in the identification of 491 phosphoproteins based on the identification of 852 unique phosphopeptides and 1204 phosphorylation sites. The phosphoproteins detected in this study are predicted from their genome annotations to participate in a wide variety of biological processes, including signal transduction, processing of DNA and RNA, protein synthesis, and degradation and to a minor extent in metabolic pathways. The analysis of phosphopeptides and phosphorylation sites was facilitated by in-house developed software, and this automated approach was validated by manual annotation of spectra of the kinase subset of proteins. Analysis of the cytosolic bloodstream form T. brucei kinome revealed the presence of 44 phosphorylated protein kinases in our data set that could be classified into the major eukaryotic protein kinase groups by applying a multilevel hidden Markov model library of the kinase catalytic domain. Identification of the kinase phosphorylation sites showed conserved phosphorylation sequence motifs in several kinase activation segments, supporting the view that phosphorylation-based signaling is a general and fundamental regulatory process that extends to this highly divergent lower eukaryote.
Bland, Nicholas D; Wang, Cuihua; Tallman, Craig; Gustafson, Alden E; Wang, Zhouxi; Ashton, Trent D; Ochiana, Stefan O; McAllister, Gregory; Cotter, Kristina; Fang, Anna P; Gechijian, Lara; Garceau, Norman; Gangurde, Rajiv; Ortenberg, Ron; Ondrechen, Mary Jo; Campbell, Robert K; Pollastri, Michael P
2011-12-08
Neglected tropical disease drug discovery requires application of pragmatic and efficient methods for development of new therapeutic agents. In this report, we describe our target repurposing efforts for the essential phosphodiesterase (PDE) enzymes TbrPDEB1 and TbrPDEB2 of Trypanosoma brucei , the causative agent for human African trypanosomiasis (HAT). We describe protein expression and purification, assay development, and benchmark screening of a collection of 20 established human PDE inhibitors. We disclose that the human PDE4 inhibitor piclamilast, and some of its analogues, show modest inhibition of TbrPDEB1 and B2 and quickly kill the bloodstream form of the subspecies T. brucei brucei . We also report the development of a homology model of TbrPDEB1 that is useful for understanding the compound-enzyme interactions and for comparing the parasitic and human enzymes. Our profiling and early medicinal chemistry results strongly suggest that human PDE4 chemotypes represent a better starting point for optimization of TbrPDEB inhibitors than those that target any other human PDEs.
Steeves, Craig H; Bearne, Stephen L
2011-09-15
CTP Synthase from Trypanosoma brucei (TbCTPS) catalyzes the conversion of UTP to CTP and is a recognized target for the development of antiprotozoal agents. GTP activates glutamine-dependent CTP formation catalyzed by TbCTPS at concentrations below 0.2 mM, but inhibits this activity at concentrations above 0.2 mM. TbCTPS catalyzes ammonia-dependent CTP formation, which is inhibited by purine derivatives such as GTP, guanosine, caffeine, and uric acid with IC(50) values of 460, 380, 480, and 100 μM, respectively. These observations suggest that the purine ring may serve as a useful scaffold for the development of inhibitors of trypanosomal CTP synthase. Copyright © 2011 Elsevier Ltd. All rights reserved.
Mamani-Matsuda, Maria; Rambert, Jérôme; Malvy, Denis; Lejoly-Boisseau, Hélène; Daulouède, Sylvie; Thiolat, Denis; Coves, Sara; Courtois, Pierrette; Vincendeau, Philippe; Mossalayi, M Djavad
2004-03-01
In addition to parasite spread, the severity of disease observed in cases of human African trypanosomiasis (HAT), or sleeping sickness, is associated with increased levels of inflammatory mediators, including tumor necrosis factor (TNF)-alpha and nitric oxide derivatives. In the present study, quercetin (3,3',4',5,7-pentahydroxyflavone), a potent immunomodulating flavonoid, was shown to directly induce the death of Trypanosoma brucei gambiense, the causative agent of HAT, without affecting normal human cell viability. Quercetin directly promoted T. b. gambiense death by apoptosis as shown by Annexin V binding. In addition to microbicidal activity, quercetin induced dose-dependent decreases in the levels of TNF-alpha and nitric oxide produced by activated human macrophages. These results highlight the potential use of quercetin as an antimicrobial and anti-inflammatory agent for the treatment of African trypanomiasis.
Abdelwahab, Nuha Z; Crossman, Arthur T; Sullivan, Lauren; Ferguson, Michael A J; Urbaniak, Michael D
2012-03-01
Disruption of glycosylphosphatidylinositol biosynthesis is genetically and chemically validated as a drug target against the protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. The N-acetylglucosamine-phosphatidylinositol de-N-acetylase (deNAc) is a zinc metalloenzyme responsible for the second step of glycosylphosphatidylinositol biosynthesis. We recently reported the synthesis of eight deoxy-2-C-branched monosaccharides containing carboxylic acid, hydroxamic acid, or N-hydroxyurea substituents at the C2 position that may act as zinc-binding groups. Here, we describe the synthesis of a glucocyclitol-phospholipid incorporating a hydroxamic acid moiety and report the biochemical evaluation of the monosaccharides and the glucocyclitol-phospholipid as inhibitors of the trypanosome deNAc in the cell-free system and against recombinant enzyme. Monosaccharides with carboxylic acid or hydroxamic acid substituents were found to be the inhibitors of the trypanosome deNAc with IC(50) values 0.1-1.5mM and the glucocyclitol-phospholipid was found to be a dual inhibitor of the deNAc and the α1-4-mannose transferase with an apparent IC(50)= 19±0.5μm. © 2011 John Wiley & Sons A/S.
Quinol derivatives as potential trypanocidal agents
Capes, Amy; Patterson, Stephen; Wyllie, Susan; Hallyburton, Irene; Collie, Iain T.; McCarroll, Andrew J.; Stevens, Malcolm F.G.; Frearson, Julie A.; Wyatt, Paul G.; Fairlamb, Alan H.; Gilbert, Ian H.
2012-01-01
Quinols have been developed as a class of potential anti-cancer compounds. They are thought to act as double Michael acceptors, forming two covalent bonds to their target protein(s). Quinols have also been shown to have activity against the parasite Trypanosoma brucei, the causative organism of human African trypanosomiasis, but they demonstrated little selectivity over mammalian MRC5 cells in a counter-screen. In this paper, we report screening of further examples of quinols against T. brucei. We were able to derive an SAR, but the compounds demonstrated little selectivity over MRC5 cells. In an approach to increase selectivity, we attached melamine and benzamidine motifs to the quinols, because these moieties are known to be selectively concentrated in the parasite by transporter proteins. In general these transporter motif-containing analogues showed increased selectivity; however they also showed reduced levels of potency against T. brucei. PMID:22264753
Mamani-Matsuda, Maria; Rambert, Jérôme; Malvy, Denis; Lejoly-Boisseau, Hélène; Daulouède, Sylvie; Thiolat, Denis; Coves, Sara; Courtois, Pierrette; Vincendeau, Philippe; Djavad Mossalayi, M.
2004-01-01
In addition to parasite spread, the severity of disease observed in cases of human African trypanosomiasis (HAT), or sleeping sickness, is associated with increased levels of inflammatory mediators, including tumor necrosis factor (TNF)-α and nitric oxide derivatives. In the present study, quercetin (3,3′,4′,5,7-pentahydroxyflavone), a potent immunomodulating flavonoid, was shown to directly induce the death of Trypanosoma brucei gambiense, the causative agent of HAT, without affecting normal human cell viability. Quercetin directly promoted T. b. gambiense death by apoptosis as shown by Annexin V binding. In addition to microbicidal activity, quercetin induced dose-dependent decreases in the levels of TNF-α and nitric oxide produced by activated human macrophages. These results highlight the potential use of quercetin as an antimicrobial and anti-inflammatory agent for the treatment of African trypanomiasis. PMID:14982785
A Trk/HKT-Type K+ Transporter from Trypanosoma brucei ▿
Mosimann, Marc; Goshima, Shinobu; Wenzler, Tanja; Lüscher, Alexandra; Uozumi, Nobuyuki; Mäser, Pascal
2010-01-01
The molecular mechanisms of K+ homeostasis are only poorly understood for protozoan parasites. Trypanosoma brucei subsp. parasites, the causative agents of human sleeping sickness and nagana, are strictly extracellular and need to actively concentrate K+ from their hosts’ body fluids. The T. brucei genome contains two putative K+ channel genes, yet the trypanosomes are insensitive to K+ antagonists and K+ channel-blocking agents, and they do not spontaneously depolarize in response to high extracellular K+ concentrations. However, the trypanosomes are extremely sensitive to K+ ionophores such as valinomycin. Surprisingly, T. brucei possesses a member of the Trk/HKT superfamily of monovalent cation permeases which so far had only been known from bacteria, archaea, fungi, and plants. The protein was named TbHKT1 and functions as a Na+-independent K+ transporter when expressed in Escherichia coli, Saccharomyces cerevisiae, or Xenopus laevis oocytes. In trypanosomes, TbHKT1 is expressed in both the mammalian bloodstream stage and the Tsetse fly midgut stage; however, RNA interference (RNAi)-mediated silencing of TbHKT1 expression did not produce a growth phenotype in either stage. The presence of HKT genes in trypanosomatids adds a further piece to the enigmatic phylogeny of the Trk/HKT superfamily of K+ transporters. Parsimonial analysis suggests that the transporters were present in the first eukaryotes but subsequently lost in several of the major eukaryotic lineages, in at least four independent events. PMID:20190075
A Trk/HKT-type K+ transporter from Trypanosoma brucei.
Mosimann, Marc; Goshima, Shinobu; Wenzler, Tanja; Lüscher, Alexandra; Uozumi, Nobuyuki; Mäser, Pascal
2010-04-01
The molecular mechanisms of K(+) homeostasis are only poorly understood for protozoan parasites. Trypanosoma brucei subsp. parasites, the causative agents of human sleeping sickness and nagana, are strictly extracellular and need to actively concentrate K(+) from their hosts' body fluids. The T. brucei genome contains two putative K(+) channel genes, yet the trypanosomes are insensitive to K(+) antagonists and K(+) channel-blocking agents, and they do not spontaneously depolarize in response to high extracellular K(+) concentrations. However, the trypanosomes are extremely sensitive to K(+) ionophores such as valinomycin. Surprisingly, T. brucei possesses a member of the Trk/HKT superfamily of monovalent cation permeases which so far had only been known from bacteria, archaea, fungi, and plants. The protein was named TbHKT1 and functions as a Na(+)-independent K(+) transporter when expressed in Escherichia coli, Saccharomyces cerevisiae, or Xenopus laevis oocytes. In trypanosomes, TbHKT1 is expressed in both the mammalian bloodstream stage and the Tsetse fly midgut stage; however, RNA interference (RNAi)-mediated silencing of TbHKT1 expression did not produce a growth phenotype in either stage. The presence of HKT genes in trypanosomatids adds a further piece to the enigmatic phylogeny of the Trk/HKT superfamily of K(+) transporters. Parsimonial analysis suggests that the transporters were present in the first eukaryotes but subsequently lost in several of the major eukaryotic lineages, in at least four independent events.
Aquaglyceroporins Are the Entry Pathway of Boric Acid in Trypanosoma brucei.
Marsiccobetre, Sabrina; Rodríguez-Acosta, Alexis; Lang, Florian; Figarella, Katherine; Uzcátegui, Néstor L
2017-05-01
The boron element possesses a range of different effects on living beings. It is essential to beneficial at low concentrations, but toxic at excessive concentrations. Recently, some boron-based compounds have been identified as promising molecules against Trypanosoma brucei, the causative agent of sleeping sickness. However, until now, the boron metabolism and its access route into the parasite remained elusive. The present study addressed the permeability of T. brucei aquaglyceroporins (TbAQPs) for boric acid, the main natural boron species. To this end, the three TbAQPs were expressed in Saccharomyces cerevisiae and Xenopus laevis oocytes. Our findings in both expression systems showed that all three TbAQPs are permeable for boric acid. Especially TbAQP2 is highly permeable for this compound, displaying one of the highest conductances reported for a solute in these channels. Additionally, T. brucei aquaglyceroporin activities were sensitive to pH. Taken together, these results establish that TbAQPs are channels for boric acid and are highly efficient entry pathways for boron into the parasite. Our findings stress the importance of studying the physiological functions of boron and their derivatives in T. brucei, as well as the pharmacological implications of their uptake by trypanosome aquaglyceroporins. Copyright © 2017 Elsevier B.V. All rights reserved.
Wright, Megan H; Paape, Daniel; Price, Helen P; Smith, Deborah F; Tate, Edward W
2016-06-10
The enzyme N-myristoyltransferase (NMT) catalyzes the essential fatty acylation of substrate proteins with myristic acid in eukaryotes and is a validated drug target in the parasite Trypanosoma brucei , the causative agent of African trypanosomiasis (sleeping sickness). N-Myristoylation typically mediates membrane localization of proteins and is essential to the function of many. However, only a handful of proteins are experimentally validated as N-myristoylated in T. brucei . Here, we perform metabolic labeling with an alkyne-tagged myristic acid analogue, enabling the capture of lipidated proteins in insect and host life stages of T. brucei . We further compare this with a longer chain palmitate analogue to explore the chain length-specific incorporation of fatty acids into proteins. Finally, we combine the alkynyl-myristate analogue with NMT inhibitors and quantitative chemical proteomics to globally define N-myristoylated proteins in the clinically relevant bloodstream form parasites. This analysis reveals five ARF family small GTPases, calpain-like proteins, phosphatases, and many uncharacterized proteins as substrates of NMT in the parasite, providing a global view of the scope of this important protein modification and further evidence for the crucial and pleiotropic role of NMT in the cell.
Patterson, Stephen; Alphey, Magnus S; Jones, Deuan C; Shanks, Emma J; Street, Ian P; Frearson, Julie A; Wyatt, Paul G; Gilbert, Ian H; Fairlamb, Alan H
2011-10-13
Trypanothione reductase (TryR) is a genetically validated drug target in the parasite Trypanosoma brucei , the causative agent of human African trypanosomiasis. Here we report the discovery, synthesis, and development of a novel series of TryR inhibitors based on a 3,4-dihydroquinazoline scaffold. In addition, a high resolution crystal structure of TryR, alone and in complex with substrates and inhibitors from this series, is presented. This represents the first report of a high resolution complex between a noncovalent ligand and this enzyme. Structural studies revealed that upon ligand binding the enzyme undergoes a conformational change to create a new subpocket which is occupied by an aryl group on the ligand. Therefore, the inhibitor, in effect, creates its own small binding pocket within the otherwise large, solvent exposed active site. The TryR-ligand structure was subsequently used to guide the synthesis of inhibitors, including analogues that challenged the induced subpocket. This resulted in the development of inhibitors with improved potency against both TryR and T. brucei parasites in a whole cell assay.
de Jesus, Teresa Cristina Leandro; Tonelli, Renata Rosito; Nardelli, Sheila C.; da Silva Augusto, Leonardo; Motta, Maria Cristina M.; Girard-Dias, Wendell; Miranda, Kildare; Ulrich, Paul; Jimenez, Veronica; Barquilla, Antonio; Navarro, Miguel; Docampo, Roberto; Schenkman, Sergio
2010-01-01
Target of rapamycin (TOR) kinases are highly conserved protein kinases that integrate signals from nutrients and growth factors to coordinate cell growth and cell cycle progression. It has been previously described that two TOR kinases control cell growth in the protozoan parasite Trypanosoma brucei, the causative agent of African trypanosomiasis. Here we studied an unusual TOR-like protein named TbTOR-like 1 containing a PDZ domain and found exclusively in kinetoplastids. TbTOR-like 1 localizes to unique cytosolic granules. After hyperosmotic stress, the localization of the protein shifts to the cell periphery, different from other organelle markers. Ablation of TbTOR-like 1 causes a progressive inhibition of cell proliferation, producing parasites accumulating in the S/G2 phase of the cell cycle. TbTOR-like 1 knocked down cells have an increased area occupied by acidic vacuoles, known as acidocalcisomes, and are enriched in polyphosphate and pyrophosphate. These results suggest that TbTOR-like 1 might be involved in the control of acidocalcisome and polyphosphate metabolism in T. brucei. PMID:20495004
Substituted 2-Phenyl-Imidazopyridines: A New Class of Drug Leads for Human African Trypanosomiasis
Tatipaka, Hari Babu; Gillespie, J. Robert; Chatterjee, Arnab K.; Norcross, Neil R.; Hulverson, Matthew A.; Ranade, Ranae M.; Nagendar, Pendem; Creason, Sharon A.; McQueen, Joshua; Duster, Nicole A.; Nagle, Advait; Supek, Frantisek; Molteni, Valentina; Wenzler, Tanja; Brun, Reto; Glynne, Richard; Buckner, Frederick S.; Gelb, Michael H.
2014-01-01
A phenotypic screen of a compound library for antiparasitic activity on Trypanosoma brucei, the causative agent of human African trypanosomiasis, led to the identification of substituted 2-(3-aminophenyl) oxazolopyridines as a starting point for hit-to-lead medicinal chemistry. A total of 110 analogues were prepared, which led to the identification of 64, a substituted 2-(3-aminophenyl) imidazopyridine. This compound showed antiparasitic activity in vitro with an EC50 of 2 nM and displayed reasonable drug-like properties when tested in a number of in vitro assays. The compound was orally bioavailable and displayed good plasma and brain exposure in mice. Compound 64 cured mice infected with Trypanosoma brucei when dosed orally down to 2.5 mg/kg. Given its potent anti-parasitic properties and its ease of synthesis, compound 64 represents a new lead for the development of drugs to treat human African trypanosomiasis. PMID:24354316
Rubio, Brent K.; Tenney, Karen; Ang, Kean-Hooi; Abdulla, Maha; Arkin, Michelle; McKerrow, James H.; Crews, Phillip
2009-01-01
Human African trypanosomiasis (HAT), also known as African sleeping sickness, is a neglected tropical disease with inadequate therapeutic options. We have launched a collaborative new lead discovery venture using our repository of extracts and natural product compounds as input into our growth inhibition primary screen against Trypanosoma brucei. Careful evaluation of the spectral data of the natural products and derivatives allowed for the elucidation of the absolute configuration (using the modified Mosher’s method) of two new peroxiterpenes: (+)-muqubilone B (1a) and (−)-ent-muqubilone (3a). Five known compounds were also isolated: (+)-sigmosceptrellin A (4a), (+)-sigmosceptrellin A methyl ester (4b), (−)-sigmosceptrellin B (5), (+)-epi-muqubillin A (6) and (−)-epi-nuapapuin B methyl ester (7). The isolated peroxiterpenes demonstrated activities in the range from IC50 = 0.2 – 2 μg/mL. PMID:19159277
Millan, Cinthia R.; Acosta-Reyes, Francisco J.; Lagartera, Laura; Ebiloma, Godwin U.; Lemgruber, Leandro; Nué Martínez, J. Jonathan; Saperas, Núria
2017-01-01
Abstract Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)–biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida. PMID:28637278
González-Salgado, Amaia; Steinmann, Michael; Major, Louise L; Sigel, Erwin; Reymond, Jean-Louis; Smith, Terry K; Bütikofer, Peter
2015-06-01
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
González-Salgado, Amaia; Steinmann, Michael; Major, Louise L.; Sigel, Erwin; Reymond, Jean-Louis
2015-01-01
myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na+- or H+-linked myo-inositol transporters. While Na+-coupled myo-inositol transporters are found exclusively in the plasma membrane, H+-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H+-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol. PMID:25888554
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rea, Dean; Hazell, Carole; Andrews, Norma W.
2006-08-01
Recombinant oligopeptidase B from T. brucei has been prepared and crystallized. Data were collected to 2.7 Å. Heavy-atom soaks and preparation of selenomethionine-substituted protein are in progress for structure determination by MAD or MIR. African sleeping sickness, also called trypanosomiasis, is a significant cause of morbidity and mortality in sub-Saharan Africa. Peptidases from Trypanosoma brucei, the causative agent, include the serine peptidase oligopeptidase B, a documented virulence factor and therapeutic target. Determination of the three-dimensional structure of oligopeptidase B is desirable to facilitate the development of novel inhibitors. Oligopeptidase B was overexpressed in Escherichia coli as an N-terminally hexahistidine-tagged fusionmore » protein, purified using metal-affinity chromatography and crystallized using the hanging-drop vapour-diffusion technique in 7%(w/v) polyethylene glycol 6000, 1 M LiCl, 0.1 M bis-tris propane pH 7.5. Diffraction data to 2.7 Å resolution were collected using synchrotron radiation. The crystals belong to space group P3{sub 1}21 or P3{sub 2}21, with unit-cell parameters a = b = 124.5, c = 249.9 Å. A complete data set to 2.7 Å was collected using synchrotron radiation.« less
Identification of the trypanocidal factor in normal human serum: high density lipoprotein.
Rifkin, M R
1978-01-01
The differentiation of Trypanosoma brucei from T. rhodesiense, the causative agent of human sleeping sickness, depends on their relative sensitivities to the cytotoxic effects of normal human serum. The molecule responsible for the specific lysis of T. brucei has now been isolated. Serum lipoproteins were fractionated and purified by ultracentrifugal flotation and chromatography on Bio-Gel A-5m. Trypanocidal activity was recovered in the high density lipoprotein fraction (density, 1.063-1.216 g/ml). Contamination by other serum proteins was checked by crossed immunoelectrophoresis and sodium dodecyl sulfate/acrylamide gel electrophoresis. Only a trace of beta-lipoprotein was found. The trypanocidal activity of pure human high density lipoprotein was identical to that of unfractionated serum when the following were tested: (i) time course of in vitro lysis of T. bruceli; (ii) in vivo destruction of T. brucei; (iii) relative resistance of T. rhodesiense to lysis. Rat or rabbit high density lipoprotein had no trypanocidal activity. Identification of the trypanocidal factor as high density lipoprotein was confirmed by the finding that serum from patients with Tangier disease, an autosomal recessive disorder characterized by a severe deficiency of high density lipoprotein, had no trypanocidal activity. Images PMID:210461
Decoding the network of Trypanosoma brucei proteins that determines sensitivity to apolipoprotein-L1
MacLeod, Annette
2018-01-01
In contrast to Trypanosoma brucei gambiense and T. b. rhodesiense (the causative agents of human African trypanosomiasis), T. b. brucei is lysed by apolipoprotein-L1 (apoL1)-containing human serum trypanolytic factors (TLF), rendering it non-infectious to humans. While the mechanisms of TLF1 uptake, apoL1 membrane integration, and T. b. gambiense and T. b. rhodesiense apoL1-resistance have been extensively characterised, our understanding of the range of factors that drive apoL1 action in T. b. brucei is limited. Selecting our bloodstream-form T. b. brucei RNAi library with recombinant apoL1 identified an array of factors that supports the trypanocidal action of apoL1, including six putative ubiquitin modifiers and several proteins putatively involved in membrane trafficking; we also identified the known apoL1 sensitivity determinants, TbKIFC1 and the V-ATPase. Most prominent amongst the novel apoL1 sensitivity determinants was a putative ubiquitin ligase. Intriguingly, while loss of this ubiquitin ligase reduces parasite sensitivity to apoL1, its loss enhances parasite sensitivity to TLF1-dominated normal human serum, indicating that free and TLF1-bound apoL1 have contrasting modes-of-action. Indeed, loss of the known human serum sensitivity determinants, p67 (lysosomal associated membrane protein) and the cathepsin-L regulator, ‘inhibitor of cysteine peptidase’, had no effect on sensitivity to free apoL1. Our findings highlight a complex network of proteins that influences apoL1 action, with implications for our understanding of the anti-trypanosomal action of human serum. PMID:29346416
The activity of aminoglycoside antibiotics against Trypanosoma brucei.
Maina, N W; Kinyanjui, B; Onyango, J D; Auma, J E; Croj, S
1998-01-01
The trypanocidal activity of four aminoglycosides was determined against Trypanosoma brucei in vitro. The drug activity in descending order, was as follows; paromomycin kanamycin>gentamycin > neomycin. Paromomycin bad the highest activity and the concentration that inhibited 50% of trypanosome growth (IC50) was 11.4microM. The effect of paromomycin on the causative agents of the East African form of sleeping sickness - T.b. rhodesiense KETRI 265, 2285, 2545, 2562 and EATRO 110,112, 1152 was subsequently assessed. Variations sensitivities between the trypanosome populations were observed and IC50 values ranging from 13.01 to 43.06 microM recorded. However, when paromomycin was administered intraperitoneally (i.p) at 500 mg/kg, it was not effective in curing mice infected with T. b. rhodesienseKETRI 2545 the most drug-sensitive isolate in vitro. Lack of in vivo activity may be because the trypanosome is an extracellular parasite. The pharmacokinetics of paromomycin in the mouse model need to be determined.
Domestic pigs as potential reservoirs of human and animal trypanosomiasis in Northern Tanzania
2013-01-01
Background Pig keeping is becoming increasingly common across sub-Saharan Africa. Domestic pigs from the Arusha region of northern Tanzania were screened for trypanosomes using PCR-based methods to examine the role of pigs as a reservoir of human and animal trypanosomiasis. Methods A total of 168 blood samples were obtained from domestic pigs opportunistically sampled across four districts in Tanzania (Babati, Mbulu, Arumeru and Dodoma) during December 2004. A suite of PCR-based methods was used to identify the species and sub-species of trypanosomes including: Internally Transcribed Sequence to identify multiple species; species specific PCR to identify T. brucei s. l. and T. godfreyi and a multiplex PCR reaction to distinguish T. b. rhodesiense from T. brucei s. l. Results Of the 168 domestic pigs screened for animal and human infective trypanosome DNA, 28 (16.7%) were infected with one or more species of trypanosome; these included: six pigs infected with Trypanosoma vivax (3.6%); three with Trypanosoma simiae (1.8%); two with Trypanosoma congolense (Forest) (1%) and four with Trypanosoma godfreyi (2.4%). Nineteen pigs were infected with Trypanosoma brucei s. l. (10.1%) of which eight were identified as carrying the human infective sub-species Trypanosoma brucei rhodesiense (4.8%). Conclusion These results show that in Tanzania domestic pigs may act as a significant reservoir for animal trypanosomiasis including the cattle pathogens T. vivax and T. congolense, the pig pathogen T. simiae, and provide a significant reservoir for T. b. rhodesiense, the causative agent of acute Rhodesian sleeping sickness. PMID:24499540
An Overview of Trypanosoma brucei Infections: An Intense Host-Parasite Interaction.
Ponte-Sucre, Alicia
2016-01-01
Trypanosoma brucei rhodesiense and T. brucei gambiense , the causative agents of Human African Trypanosomiasis, are transmitted by tsetse flies. Within the vector, the parasite undergoes through transformations that prepares it to infect the human host. Sequentially these developmental stages are the replicative procyclic (in which the parasite surface is covered by procyclins) and trypo-epimastigote forms, as well as the non-replicative, infective, metacyclic form that develops in the vector salivary glands. As a pre-adaptation to their life in humans, metacyclic parasites begin to express and be densely covered by the Variant Surface Glycoprotein (VSG). Once the metacyclic form invades the human host the parasite develops into the bloodstream form. Herein the VSG triggers a humoral immune response. To avoid this humoral response, and essential for survival while in the bloodstream, the parasite changes its cover periodically and sheds into the surroundings the expressed VSG, thus evading the consequences of the immune system activation. Additionally, tools comparable to quorum sensing are used by the parasite for the successful parasite transmission from human to insect. On the other hand, the human host promotes clearance of the parasite triggering innate and adaptive immune responses and stimulating cytokine and chemokine secretion. All in all, the host-parasite interaction is extremely active and leads to responses that need multiple control sites to develop appropriately.
Handling Uncertainty in Dynamic Models: The Pentose Phosphate Pathway in Trypanosoma brucei
Alibu, Vincent P.; Burchmore, Richard J.; Gilbert, Ian H.; Trybiło, Maciej; Driessen, Nicole N.; Gilbert, David; Breitling, Rainer; Bakker, Barbara M.; Barrett, Michael P.
2013-01-01
Dynamic models of metabolism can be useful in identifying potential drug targets, especially in unicellular organisms. A model of glycolysis in the causative agent of human African trypanosomiasis, Trypanosoma brucei, has already shown the utility of this approach. Here we add the pentose phosphate pathway (PPP) of T. brucei to the glycolytic model. The PPP is localized to both the cytosol and the glycosome and adding it to the glycolytic model without further adjustments leads to a draining of the essential bound-phosphate moiety within the glycosome. This phosphate “leak” must be resolved for the model to be a reasonable representation of parasite physiology. Two main types of theoretical solution to the problem could be identified: (i) including additional enzymatic reactions in the glycosome, or (ii) adding a mechanism to transfer bound phosphates between cytosol and glycosome. One example of the first type of solution would be the presence of a glycosomal ribokinase to regenerate ATP from ribose 5-phosphate and ADP. Experimental characterization of ribokinase in T. brucei showed that very low enzyme levels are sufficient for parasite survival, indicating that other mechanisms are required in controlling the phosphate leak. Examples of the second type would involve the presence of an ATP:ADP exchanger or recently described permeability pores in the glycosomal membrane, although the current absence of identified genes encoding such molecules impedes experimental testing by genetic manipulation. Confronted with this uncertainty, we present a modeling strategy that identifies robust predictions in the context of incomplete system characterization. We illustrate this strategy by exploring the mechanism underlying the essential function of one of the PPP enzymes, and validate it by confirming the model predictions experimentally. PMID:24339766
Navarro, Gabriel; Chokpaiboon, Supchar; De Muylder, Geraldine; Bray, Walter M; Nisam, Sean C; McKerrow, James H; Pudhom, Khanitha; Linington, Roger G
2012-01-01
Human African trypanosomiasis (HAT) is an infectious disease with a large global health burden occurring primarily in Central and Eastern Africa. Most current treatments have poor blood brain barrier (BBB) penetration, which prevent them from targeting the most lethal stage of the infection. In addition, current therapeutics suffer from a variety of limitations ranging from serious side effects to difficulties with treatment administration. Therefore it is of crucial importance to find new treatments that are safe, affordable, and effective against both sub-species of Trypanosoma brucei. Semi-synthetic derivatization of the fungally-derived natural product merulin A (1) has led to the discovery of new development candidates for the protozoan parasite T. brucei, the causative agent of HAT. Creation of an initial SAR library based around the merulin scaffold revealed several key features required for activity, including the endoperoxide bridge, as well as one position suitable for further derivatization. Subsequent synthesis of a 20-membered analogue library, guided by the addition of acyl groups that improve the drug-like properties of the merulin A core, resulted in the development of compound 12 with an IC(50) of 60 nM against T. brucei, and a selectivity index greater than 300-fold against HeLa and immortalized glial cells. We report the semi-synthetic optimization of the merulin class of endoperoxide natural products as development candidates against T. brucei. We have identified compounds with low nM antiparasitic activities and high selectivity indices against HeLa cells. These compounds can be produced economically in large quantities via a one step derivatization from the microbial fermentation broth isolate, making them encouraging lead candidates for further development.
Smith, Joseph T.; Singha, Ujjal K.; Misra, Smita
2018-01-01
ABSTRACT The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei. Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei. Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite’s mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei, a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei, and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei. PMID:29925672
Smith, Joseph T; Singha, Ujjal K; Misra, Smita; Chaudhuri, Minu
2018-06-27
The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei , the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes. IMPORTANCE Trypanosoma brucei is the causative agent of African sleeping sickness. The parasite's mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei , a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei , and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei . Copyright © 2018 Smith et al.
Pérez-Moreno, Guiomar; Sealey-Cardona, Marco; Rodrigues-Poveda, Carlos; Gelb, Michael H; Ruiz-Pérez, Luis Miguel; Castillo-Acosta, Víctor; Urbina, Julio A; González-Pacanowska, Dolores
2012-10-01
Sterol biosynthesis inhibitors are promising entities for the treatment of trypanosomal diseases. Insect forms of Trypanosoma brucei, the causative agent of sleeping sickness, synthesize ergosterol and other 24-alkylated sterols, yet also incorporate cholesterol from the medium. While sterol function has been investigated by pharmacological manipulation of sterol biosynthesis, molecular mechanisms by which endogenous sterols influence cellular processes remain largely unknown in trypanosomes. Here we analyse by RNA interference, the effects of a perturbation of three specific steps of endogenous sterol biosynthesis in order to dissect the role of specific intermediates in proliferation, mitochondrial function and cellular morphology in procyclic cells. A decrease in the levels of squalene synthase and squalene epoxidase resulted in a depletion of cellular sterol intermediates and end products, impaired cell growth and led to aberrant morphologies, DNA fragmentation and a profound modification of mitochondrial structure and function. In contrast, cells deficient in sterol methyl transferase, the enzyme involved in 24-alkylation, exhibited a normal growth phenotype in spite of a complete abolition of the synthesis and content of 24-alkyl sterols. Thus, the data provided indicates that while the depletion of squalene and post-squalene endogenous sterol metabolites results in profound cellular defects, bulk 24-alkyl sterols are not strictly required to support growth in insect forms of T. brucei in vitro. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Fragment-based screening in tandem with phenotypic screening provides novel antiparasitic hits.
Blaazer, Antoni R; Orrling, Kristina M; Shanmugham, Anitha; Jansen, Chimed; Maes, Louis; Edink, Ewald; Sterk, Geert Jan; Siderius, Marco; England, Paul; Bailey, David; de Esch, Iwan J P; Leurs, Rob
2015-01-01
Methods to discover biologically active small molecules include target-based and phenotypic screening approaches. One of the main difficulties in drug discovery is elucidating and exploiting the relationship between drug activity at the protein target and disease modification, a phenotypic endpoint. Fragment-based drug discovery is a target-based approach that typically involves the screening of a relatively small number of fragment-like (molecular weight <300) molecules that efficiently cover chemical space. Here, we report a fragment screening on TbrPDEB1, an essential cyclic nucleotide phosphodiesterase (PDE) from Trypanosoma brucei, and human PDE4D, an off-target, in a workflow in which fragment hits and a series of close analogs are subsequently screened for antiparasitic activity in a phenotypic panel. The phenotypic panel contained T. brucei, Trypanosoma cruzi, Leishmania infantum, and Plasmodium falciparum, the causative agents of human African trypanosomiasis (sleeping sickness), Chagas disease, leishmaniasis, and malaria, respectively, as well as MRC-5 human lung cells. This hybrid screening workflow has resulted in the discovery of various benzhydryl ethers with antiprotozoal activity and low toxicity, representing interesting starting points for further antiparasitic optimization. © 2014 Society for Laboratory Automation and Screening.
Kaiser, Marcel; Chatelain, Eric; Moawad, Sarah R.; Ganame, Danny; Ioset, Jean-Robert; Avery, Vicky M.
2012-01-01
Human African Trypanosomiasis (HAT) is caused by two trypanosome sub-species, Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Drugs available for the treatment of HAT have significant issues related to difficult administration regimes and limited efficacy across species and disease stages. Hence, there is considerable need to find new alternative and less toxic drugs. An approach to identify starting points for new drug candidates is high throughput screening (HTS) of large compound library collections. We describe the application of an Alamar Blue based, 384-well HTS assay to screen a library of 87,296 compounds against the related trypanosome subspecies, Trypanosoma brucei brucei bloodstream form lister 427. Primary hits identified against T.b. brucei were retested and the IC50 value compounds were estimated for T.b. brucei and a mammalian cell line HEK293, to determine a selectivity index for each compound. The screening campaign identified 205 compounds with greater than 10 times selectivity against T.b. brucei. Cluster analysis of these compounds, taking into account chemical and structural properties required for drug-like compounds, afforded a panel of eight compounds for further biological analysis. These compounds had IC50 values ranging from 0.22 µM to 4 µM with associated selectivity indices ranging from 19 to greater than 345. Further testing against T.b. rhodesiense led to the selection of 6 compounds from 5 new chemical classes with activity against the causative species of HAT, which can be considered potential candidates for HAT early drug discovery. Structure activity relationship (SAR) mining revealed components of those hit compound structures that may be important for biological activity. Four of these compounds have undergone further testing to 1) determine whether they are cidal or static in vitro at the minimum inhibitory concentration (MIC), and 2) estimate the time to kill. PMID:23209849
NASA Astrophysics Data System (ADS)
Verlinde, Christophe L. M. J.; Rudenko, Gabrielle; Hol, Wim G. J.
1992-04-01
A modular method for pursuing structure-based inhibitor design in the framework of a design cycle is presented. The approach entails four stages: (1) a design pathway is defined in the three-dimensional structure of a target protein; (2) this pathway is divided into subregions; (3) complementary building blocks, also called fragments, are designed in each subregion; complementarity is defined in terms of shape, hydrophobicity, hydrogen bond properties and electrostatics; and (4) fragments from different subregions are linked into potential lead compounds. Stages (3) and (4) are qualitatively guided by force-field calculations. In addition, the designed fragments serve as entries for retrieving existing compounds from chemical databases. This linked-fragment approach has been applied in the design of potentially selective inhibitors of triosephosphate isomerase from Trypanosoma brucei, the causative agent of sleeping sickness.
Gonzalez-Salgado, Amaia; Steinmann, Michael E; Greganova, Eva; Rauch, Monika; Mäser, Pascal; Sigel, Erwin; Bütikofer, Peter
2012-04-13
myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated.
Gonzalez-Salgado, Amaia; Steinmann, Michael E.; Greganova, Eva; Rauch, Monika; Mäser, Pascal; Sigel, Erwin; Bütikofer, Peter
2012-01-01
myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated. PMID:22351763
Frasch, Alejandra P.; Carmona, Adriana K.; Juliano, Luiz; Cazzulo, Juan J.; Niemirowicz, Gabriela T.
2012-01-01
Metallocarboxypeptidases (MCP) of the M32 family of peptidases have been identified in a number of prokaryotic organisms but they are absent from eukaryotic genomes with the remarkable exception of those of trypanosomatids. The genome of Trypanosoma brucei, the causative agent of Sleeping Sickness, encodes one such MCP which displays 72% identity to the characterized TcMCP-1 from Trypanosoma cruzi. As its orthologue, TcMCP-1, Trypanosoma brucei MCP is a cytosolic enzyme expressed in both major stages of the parasite. Purified recombinant TbMCP-1 exhibits a significant hydrolytic activity against the carboxypeptidase B substrate FA (furylacryloil)-Ala-Lys at pH 7.0–7.8 resembling the T. cruzi enzyme. S everal divalent cations had little effect on TbMCP-1 activity but increasing amounts of Co2+ inhibited the enzyme. Despite having similar tertiary structure, both protozoan MCPs display different substrate specificity with respect to P1 position. Thus, TcMCP-1 enzyme cleaved Abz-FVK-(Dnp)-OH substrate (where Abz: o-aminobenzoic acid and Dnp: 2,4-dinitrophenyl) whereas TbMCP-1 had no activity on this substrate. Comparative homology models and sequence alignments using TcMCP-1 as a template led us to map several residues that could explain this difference. To verify this hypothesis, site-directed mutagenesis was undertaken replacing the TbMCP-1 residues by those present in TcMCP-1. We found that the substitution A414M led TbMCP-1 to gain activity on Abz-FVK-(Dnp)-OH, thus showing that this residue is involved in specificity determination, probably being part of the S1 sub-site. Moreover, the activity of both protozoan MCPs was explored on two vasoactive compounds such as bradykinin and angiotensin I resulting in two different hydrolysis patterns. PMID:22575602
A global sensitivity analysis for African sleeping sickness.
Davis, Stephen; Aksoy, Serap; Galvani, Alison
2011-04-01
African sleeping sickness is a parasitic disease transmitted through the bites of tsetse flies of the genus Glossina. We constructed mechanistic models for the basic reproduction number, R0, of Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, respectively the causative agents of West and East African human sleeping sickness. We present global sensitivity analyses of these models that rank the importance of the biological parameters that may explain variation in R0, using parameter ranges based on literature, field data and expertize out of Uganda. For West African sleeping sickness, our results indicate that the proportion of bloodmeals taken from humans by Glossina fuscipes fuscipes is the most important factor, suggesting that differences in the exposure of humans to tsetse are fundamental to the distribution of T. b. gambiense. The second ranked parameter for T. b. gambiense and the highest ranked for T. b. rhodesiense was the proportion of Glossina refractory to infection. This finding underlines the possible implications of recent work showing that nutritionally stressed tsetse are more susceptible to trypanosome infection, and provides broad support for control strategies in development that are aimed at increasing refractoriness in tsetse flies. We note though that for T. b. rhodesiense the population parameters for tsetse - species composition, survival and abundance - were ranked almost as highly as the proportion refractory, and that the model assumed regular treatment of livestock with trypanocides as an established practice in the areas of Uganda experiencing East African sleeping sickness.
Nicotinamide Inhibits the Lysosomal Cathepsin b-like Protease and Kills African Trypanosomes*
Unciti-Broceta, Juan D.; Maceira, José; Morales, Sonia; García-Pérez, Angélica; Muñóz-Torres, Manuel E.; Garcia-Salcedo, Jose A.
2013-01-01
Nicotinamide, a soluble compound of the vitamin B3 group, has antimicrobial activity against several microorganisms ranging from viruses to parasite protozoans. However, the mode of action of this antimicrobial activity is unknown. Here, we investigate the trypanocidal activity of nicotinamide on Trypanosoma brucei, the causative agent of African trypanosomiasis. Incubation of trypanosomes with nicotinamide causes deleterious defects in endocytic traffic, disruption of the lysosome, failure of cytokinesis, and, ultimately, cell death. At the same concentrations there was no effect on a cultured mammalian cell line. The effects on endocytosis and vesicle traffic were visible within 3 h and can be attributed to inhibition of lysosomal cathepsin b-like protease activity. The inhibitory effect of nicotinamide was confirmed by a direct activity assay of recombinant cathepsin b-like protein. Taken together, these data demonstrate that inhibition of the lysosomal protease cathepsin b-like blocks endocytosis, causing cell death. In addition, these results demonstrate for the first time the inhibitory effect of nicotinamide on a protease. PMID:23443665
An observation on the unexpected frequency of some multiple infections
Willett, K. C.
1972-01-01
Studies of trypanosome infections in over 3 500 young and adult cattle in the Lambwe Valley of Kenya showed the presence of Trypanosoma congolense, T. vivax, and T. brucei in single or multiple infections. Some of the multiple infections were much more frequent than would have been expected on the basis of chance, but only if T. brucei was one of the infective agents. Some studies of malaria infections in man show a similar phenomenon. PMID:4544825
Anti-trypanosomal activity of cationic N-heterocyclic carbene gold(I) complexes.
Winter, Isabel; Lockhauserbäumer, Julia; Lallinger-Kube, Gertrud; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard
2017-06-01
Two gold(I) N-heterocyclic carbene complexes 1a and 1b were tested for their anti-trypanosomal activity against Trypanosoma brucei parasites. Both gold compounds exhibited excellent anti-trypanosomal activity (IC 50 =0.9-3.0nM). The effects of the gold complexes 1a and 1b on the T. b. brucei cytoskeleton were evaluated. Rapid detachment of the flagellum from the cell body occurred after treatment with the gold complexes. In addition, a quick and complete degeneration of the parasitic cytoskeleton was induced by the gold complexes, only the microtubules of the detached flagellum remained intact. Both gold compounds 1a and 1b feature selective anti-trypanosomal agents and were distinctly more active against T. b. brucei cells than against human HeLa cells. Thus, the gold complexes 1a and 1b feature promising drug candidates for the treatment of trypanosome infections such as sleeping sickness (human African Trypanosomiasis caused by Trypanosoma brucei parasites). Copyright © 2017 Elsevier B.V. All rights reserved.
Allen, T E; Ullman, B
1993-01-01
The hypoxanthine-guanine phosphoribosyltransferase (HGPRT) enzyme of Trypanosoma brucei and related parasites provides a rational target for the treatment of African sleeping sickness and several other parasitic diseases. To characterize the T. brucei HGPRT enzyme in detail, the T. brucei hgprt was isolated within a 4.2 kb SalI-KpnI genomic insert and sequenced. Nucleotide sequence analysis revealed an open reading frame of 630 bp that encoded a protein of 210 amino acids with a M(r) = 23.4 kd. After gap alignment, the T. brucei HGPRT exhibited 21-23% amino acid sequence identity, mostly in three clustered regions, with the HGPRTs from human, S. mansoni, and P falciparum, indicating that the trypanosome enzyme was the most divergent of the group. Surprisingly, the T. brucei HGPRT was more homologous to the hypoxanthine phosphoribosyltransferase (HPRT) from the prokaryote V. harveyi than to the eukaryotic HGPRTs. Northern blot analysis revealed two trypanosome transcripts of 1.4 and 1.9 kb, each expressed to equivalent degrees in insect vector and mammalian forms of the parasite. The T. brucei hgprt was inserted into an expression plasmid and transformed into S phi 606 E. coli that are deficient in both HPRT and xanthine-guanine phosphoribosyltransferase activities. Soluble, enzymatically active recombinant T. brucei HGPRT was expressed to high levels and purified to homogeneity by GTP-agarose affinity chromatography. The purified recombinant enzyme recognized hypoxanthine, guanine, and allopurinol, but not xanthine or adenine, as substrates and was inhibited by a variety of nucleotide effectors. The availability of a molecular clone encoding the T. brucei hgprt and large quantities of homogeneous recombinant HGPRT enzyme provides an experimentally manipulable molecular and biochemical system for the rational design of novel therapeutic agents for the treatment of African sleeping sickness and other diseases of parasitic origin. Images PMID:8265360
Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.
Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael
2013-11-15
In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.
Menna-Barreto, Rubem Figueiredo Sadok; de Castro, Solange Lisboa
2014-01-01
The pathogenic trypanosomatids Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. are the causative agents of African trypanosomiasis, Chagas disease, and leishmaniasis, respectively. These diseases are considered to be neglected tropical illnesses that persist under conditions of poverty and are concentrated in impoverished populations in the developing world. Novel efficient and nontoxic drugs are urgently needed as substitutes for the currently limited chemotherapy. Trypanosomatids display a single mitochondrion with several peculiar features, such as the presence of different energetic and antioxidant enzymes and a specific arrangement of mitochondrial DNA (kinetoplast DNA). Due to mitochondrial differences between mammals and trypanosomatids, this organelle is an excellent candidate for drug intervention. Additionally, during trypanosomatids' life cycle, the shape and functional plasticity of their single mitochondrion undergo profound alterations, reflecting adaptation to different environments. In an uncoupling situation, the organelle produces high amounts of reactive oxygen species. However, these species role in parasite biology is still controversial, involving parasite death, cell signalling, or even proliferation. Novel perspectives on trypanosomatid-targeting chemotherapy could be developed based on better comprehension of mitochondrial oxidative regulation processes.
Patrick, Donald A; Gillespie, J Robert; McQueen, Joshua; Hulverson, Matthew A; Ranade, Ranae M; Creason, Sharon A; Herbst, Zackary M; Gelb, Michael H; Buckner, Frederick S; Tidwell, Richard R
2017-02-09
A previous publication from this lab (Patrick, et al. Bioorg. Med. Chem. 2016, 24 , 2451 - 2465 ) explored the antitrypanosomal activities of novel derivatives of 2-(2-benzamido)ethyl-4-phenylthiazole (1), which had been identified as a hit against Trypanosoma brucei, the causative agent of human African trypanosomiasis. While a number of these compounds, particularly the urea analogues, were quite potent, these molecules as a whole exhibited poor metabolic stability. The present work describes the synthesis of 65 new analogues arising from medicinal chemistry optimization at different sites on the molecule. The most promising compounds were the urea derivatives of 2-aryl-benzothiazol-5-amines. One such analogue, (S)-2-(3,4-difluorophenyl)-5-(3-fluoro-N-pyrrolidylamido)benzothiazole (57) was chosen for in vivo efficacy studies based upon in vitro activity, metabolic stability, and brain penetration. This compound attained 5/5 cures in murine models of both early and late stage human African trypanosomiasis, representing a new lead for the development of drugs to combat this neglected disease.
Patham, Bhargavi; Duffy, Josh; Lane, Ariel; Davis, Richard C; Wipf, Peter; Fewell, Sheara W; Brodsky, Jeffrey L; Mensa-Wilmot, Kojo
2009-04-15
HAT (human African trypanosomiasis), caused by the protozoan parasite Trypanosoma brucei, is an emerging disease for which new drugs are needed. Expression of plasma membrane proteins [e.g. VSG (variant surface glycoprotein)] is crucial for the establishment and maintenance of an infection by T. brucei. Transport of a majority of proteins to the plasma membrane involves their translocation into the ER (endoplasmic reticulum). Thus inhibition of protein import into the ER of T. brucei would be a logical target for discovery of lead compounds against trypanosomes. We have developed a TbRM (T. brucei microsome) system that imports VSG_117 post-translationally. Using this system, MAL3-101, equisetin and CJ-21,058 were discovered to be small molecule inhibitors of VSG_117 translocation into the ER. These agents also killed bloodstream T. brucei in vitro; the concentrations at which 50% of parasites were killed (IC50) were 1.5 microM (MAL3-101), 3.3 microM (equisetin) and 7 microM (CJ-21,058). Thus VSG_117 import into TbRMs is a rapid and novel assay to identify 'new chemical entities' (e.g. MAL3-101, equisetin and CJ-21,058) for anti-trypanosome drug development.
Stearoyl-CoA desaturase is an essential enzyme for the parasitic protist Trypanosoma brucei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alloatti, Andres; Gupta, Shreedhara; Gualdron-Lopez, Melisa
2011-08-26
Highlights: {yields} Inhibiting {Delta}9 desaturase drastically changes T. brucei's fatty-acid composition. {yields} Isoxyl specifically inhibits the {Delta}9 desaturase causing a growth arrest. {yields} RNA interference of desaturase expression causes a similar effect. {yields} Feeding T. brucei-infected mice with Isoxyl decreases the parasitemia. {yields} 70% of Isoxyl-treated mice survived the trypanosome infection. -- Abstract: Trypanosoma brucei, the etiologic agent of sleeping sickness, is exposed to important changes in nutrients and temperature during its life cycle. To adapt to these changes, the fluidity of its membranes plays a crucial role. This fluidity, mediated by the fatty-acid composition, is regulated by enzymes namedmore » desaturases. We have previously shown that the oleoyl desaturase is essential for Trypanosoma cruzi and T. brucei. In this work, we present experimental support for the relevance of stearoyl-CoA desaturase (SCD) for T. brucei's survival, in both its insect or procyclic-form (PCF) and bloodstream-form (BSF) stages. We evaluated this essentiality in two different ways: by generating a SCD knocked-down parasite line using RNA interference, and by chemical inhibition of the enzyme with two compounds, Isoxyl and a thiastearate with the sulfur atom at position 10 (10-TS). The effective concentration for 50% growth inhibition (EC{sub 50}) of PCF was 1.0 {+-} 0.2 {mu}M for Isoxyl and 5 {+-} 2 {mu}M for 10-TS, whereas BSF appeared more susceptible with EC{sub 50} values 0.10 {+-} 0.03 {mu}M (Isoxyl) and 1.0 {+-} 0.6 {mu}M (10-TS). RNA interference showed to be deleterious for both stages of the parasite. In addition, T. brucei-infected mice were fed with Isoxyl, causing a reduction of the parasitemia and an increase of the rodents' survival.« less
Uzcategui, Nestor L; Szallies, Alexander; Pavlovic-Djuranovic, Slavica; Palmada, Monica; Figarella, Katherine; Boehmer, Christoph; Lang, Florian; Beitz, Eric; Duszenko, Michael
2004-10-08
Trypanosoma brucei, causative for African sleeping sickness, relies exclusively on glycolysis for ATP production. Under anaerobic conditions, glucose is converted to equimolar amounts of glycerol and pyruvate, which are both secreted from the parasite. As we have shown previously, glycerol transport in T. brucei occurs via specific membrane proteins (Wille, U., Schade, B., and Duszenko, M. (1998) Eur. J. Biochem. 256, 245-250). Here, we describe cloning and biochemical characterization of the three trypanosomal aquaglyceroporins (AQP; TbAQP1-3), which show a 40-45% identity to mammalian AQP3 and -9. AQPs belong to the major intrinsic protein family and represent channels for small non-ionic molecules. Both TbAQP1 and TbAQP3 contain two highly conserved NPA motifs within the pore-forming region, whereas TbAQP2 contains NSA and NPS motifs instead, which are only occasionally found in AQPs. For functional characterization, all three proteins were heterologously expressed in yeast and Xenopus oocytes. In the yeast fps1Delta mutant, TbAQPs suppressed hypoosmosensitivity and rendered cells to a hyper-osmosensitive phenotype, as expected for unregulated glycerol channels. Under iso- and hyperosmotic conditions, these cells constitutively released glycerol, consistent with a glycerol efflux function of TbAQP proteins. TbAQP expression in Xenopus oocytes increased permeability for water, glycerol and, interestingly, dihydroxyacetone. Except for urea, TbAQPs were virtually impermeable for other polyols; only TbAQP3 transported erythritol and ribitol. Thus, TbAQPs represent mainly water/glycerol/dihydroxyacetone channels involved in osmoregulation and glycerol metabolism in T. brucei. This function and especially the so far not investigated transport of dihydroxyacetone may be pivotal for the survival of the parasite survival under non-aerobic or osmotic stress conditions.
2015-01-01
The bifunctional enzyme N5,N10-methylenetetrahydrofolate dehydrogenase/cyclo hydrolase (FolD) is essential for growth in Trypanosomatidae. We sought to develop inhibitors of Trypanosoma brucei FolD (TbFolD) as potential antiparasitic agents. Compound 2 was synthesized, and the molecular structure was unequivocally assigned through X-ray crystallography of the intermediate compound 3. Compound 2 showed an IC50 of 2.2 μM, against TbFolD and displayed antiparasitic activity against T. brucei (IC50 49 μM). Using compound 2, we were able to obtain the first X-ray structure of TbFolD in the presence of NADP+ and the inhibitor, which then guided the rational design of a new series of potent TbFolD inhibitors. PMID:26322631
Trypanosoma Cruzi Cyp51 Inhibitor Derived from a Mycobacterium Tuberculosis Screen Hit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chiung-Kuang; Doyle, Patricia S.; Yermalitskaya, Liudmila V.
2009-02-18
The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas disease chemotherapy is sterol 14{alpha}-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols. In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51{sub Mt}), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51{sub Mt}. Subsequent assays against the CYP51 orthologuemore » in T. cruzi, CYP51{sub Tc}, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti-T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site. CYP51{sub Mt}-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51{sub Tc}. Enzyme sterol 14{alpha}-demethylase (CYP51) is a well-established target for anti-fungal therapy and is a prospective target for Chagas disease therapy. We previously identified a chemical scaffold capable of delivering a variety of chemical structures into the CYP51 active site. In this work the binding modes of several second generation compounds carrying this scaffold were determined in high-resolution co-crystal structures with CYP51 of Mycobacterium tuberculosis. Subsequent assays against CYP51 in Trypanosoma cruzi, the agent of Chagas disease, demonstrated that two of the compounds bound tightly to the enzyme. Both were tested for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei. One of the compounds had potent, selective anti-T. cruzi activity in infected mouse macrophages. This compound is currently being evaluated in animal models of Chagas disease. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability of a single amino acid residue at a critical position in the active site. Our work is aimed at rational design of potent and highly selective CYP51 inhibitors with potential to become therapeutic drugs. Drug selectivity to prevent host-pathogen cross-reactivity is pharmacologically important, because CYP51 is present in human host.« less
Single molecule analysis of Trypanosoma brucei DNA replication dynamics
Calderano, Simone Guedes; Drosopoulos, William C.; Quaresma, Marina Mônaco; Marques, Catarina A.; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L.; Elias, Maria Carolina
2015-01-01
Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5′ extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. PMID:25690894
Single molecule analysis of Trypanosoma brucei DNA replication dynamics.
Calderano, Simone Guedes; Drosopoulos, William C; Quaresma, Marina Mônaco; Marques, Catarina A; Kosiyatrakul, Settapong; McCulloch, Richard; Schildkraut, Carl L; Elias, Maria Carolina
2015-03-11
Eukaryotic genome duplication relies on origins of replication, distributed over multiple chromosomes, to initiate DNA replication. A recent genome-wide analysis of Trypanosoma brucei, the etiological agent of sleeping sickness, localized its replication origins to the boundaries of multigenic transcription units. To better understand genomic replication in this organism, we examined replication by single molecule analysis of replicated DNA. We determined the average speed of replication forks of procyclic and bloodstream form cells and we found that T. brucei DNA replication rate is similar to rates seen in other eukaryotes. We also analyzed the replication dynamics of a central region of chromosome 1 in procyclic forms. We present evidence for replication terminating within the central part of the chromosome and thus emanating from both sides, suggesting a previously unmapped origin toward the 5' extremity of chromosome 1. Also, termination is not at a fixed location in chromosome 1, but is rather variable. Importantly, we found a replication origin located near an ORC1/CDC6 binding site that is detected after replicative stress induced by hydroxyurea treatment, suggesting it may be a dormant origin activated in response to replicative stress. Collectively, our findings support the existence of more replication origins in T. brucei than previously appreciated. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei.
Hovel-Miner, Galadriel; Mugnier, Monica; Papavasiliou, F Nina; Pinger, Jason; Schulz, Danae
2015-01-01
Antigenic variation is a common microbial survival strategy, powered by diversity in expressed surface antigens across the pathogen population over the course of infection. Even so, among pathogens, African trypanosomes have the most comprehensive system of antigenic variation described. African trypanosomes (Trypanosoma brucei spp.) are unicellular parasites native to sub-Saharan Africa, and the causative agents of sleeping sickness in humans and of n'agana in livestock. They cycle between two habitats: a specific species of fly (Glossina spp. or, colloquially, the tsetse) and the bloodstream of their mammalian hosts, by assuming a succession of proliferative and quiescent developmental forms, which vary widely in cell architecture and function. Key to each of the developmental forms that arise during these transitions is the composition of the surface coat that covers the plasma membrane. The trypanosome surface coat is extremely dense, covered by millions of repeats of developmentally specified proteins: procyclin gene products cover the organism while it resides in the tsetse and metacyclic gene products cover it while in the fly salivary glands, ready to make the transition to the mammalian bloodstream. But by far the most interesting coat is the Variant Surface Glycoprotein (VSG) coat that covers the organism in its infectious form (during which it must survive free living in the mammalian bloodstream). This coat is highly antigenic and elicits robust VSG-specific antibodies that mediate efficient opsonization and complement mediated lysis of the parasites carrying the coat against which the response was made. Meanwhile, a small proportion of the parasite population switches coats, which stimulates a new antibody response to the prevalent (new) VSG species and this process repeats until immune system failure. The disease is fatal unless treated, and treatment at the later stages is extremely toxic. Because the organism is free living in the blood, the VSG:antibody surface represents the interface between pathogen and host, and defines the interaction of the parasite with the immune response. This interaction (cycles of VSG switching, antibody generation, and parasite deletion) results in stereotypical peaks and troughs of parasitemia that were first recognized more than 100 years ago. Essentially, the mechanism of antigenic variation in T. brucei results from a need, at the population level, to maintain an extensive repertoire, to evade the antibody response. In this chapter, we will examine what is currently known about the VSG repertoire, its depth, and the mechanisms that diversify it both at the molecular (DNA) and at the phenotypic (surface displayed) level, as well as how it could interact with antibodies raised specifically against it in the host.
Koh, Hazel X.; Aye, Htay M.; Tan, Kevin S. W.; He, Cynthia Y.
2015-01-01
Background: Trypanosoma brucei is a blood-borne, protozoan parasite that causes African sleeping sickness in humans and nagana in animals. The current chemotherapy relies on only a handful of drugs that display undesirable toxicity, poor efficacy and drug-resistance. In this study, we explored the use of lysosomotropic drugs to induce bloodstream form T. brucei cell death via lysosome destabilization. Methods: We measured drug concentrations that inhibit cell proliferation by 50% (IC50) for several compounds, chosen based on their lysosomotropic effects previously reported in Plasmodium falciparum. The lysosomal effects and cell death induced by L-leucyl-L-leucyl methyl ester (LeuLeu-OMe) were further analyzed by flow cytometry and immunofluorescence analyses of different lysosomal markers. The effect of autophagy in LeuLeu-OMe-induced lysosome destabilization and cytotoxicity was also investigated in control and autophagy-deficient cells. Results: LeuLeu-OMe was selected for detailed analyses due to its strong inhibitory profile against T. brucei with minimal toxicity to human cell lines in vitro. Time-dependent immunofluorescence studies confirmed an effect of LeuLeu-OMe on the lysosome. LeuLeu-OMe-induced cytotoxicity was also found to be dependent on the acidic pH of the lysosome. Although an increase in autophagosomes was observed upon LeuLeu-OMe treatment, autophagy was not required for the cell death induced by LeuLeu-OMe. Necrosis appeared to be the main cause of cell death upon LeuLeu-OMe treatment. Conclusions: LeuLeu-OMe is a lysosomotropic agent capable of destabilizing lysosomes and causing necrotic cell death in bloodstream form of T. brucei. PMID:28357304
Petrelli, Riccardo; Ranjbarian, Farahnaz; Dall'Acqua, Stefano; Papa, Fabrizio; Iannarelli, Romilde; Ngahang Kamte, Stephane L; Vittori, Sauro; Benelli, Giovanni; Maggi, Filippo; Hofer, Anders; Cappellacci, Loredana
2017-04-01
Among natural products, sesquiterpenes have shown promising inhibitory effects against bloodstream forms of Trypanosoma brucei, the protozoan parasite causing human African trypanosomiasis (HAT). Smyrnium olusatrum (Apiaceae), also known as Alexanders or wild celery, is a neglected horticultural crop characterized by oxygenated sesquiterpenes containing a furan ring. In the present work we explored the potential of its essential oils obtained from different organs and the main oxygenated sesquiterpenes, namely isofuranodiene, germacrone and β-acetoxyfuranoeudesm-4(15)-ene, as inhibitors of Trypanosoma brucei. All essential oils effectively inhibited the growth of parasite showing IC 50 values of 1.9-4.0μg/ml. Among the main essential oil constituents, isofuranodiene exhibited a significant and selective inhibitory activity against T. brucei (IC 50 of 0.6μg/ml, SI=30), with β-acetoxyfuranoeudesm-4(15)-ene giving a moderate potentiating effect. These results shed light on the possible application of isofuranodiene as an antiprotozoal agent to be included in combination treatments aimed not only at curing patients but also at preventing the diffusion of HAT. Copyright © 2017 Elsevier B.V. All rights reserved.
2017-01-01
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei (Tb). We solved crystal structures of several TbPTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of TbPTR1 with low toxicity. In particular, compound 4m, a biphenyl-thiadiazole-2,5-diamine with IC50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti-T. brucei agents can be obtained. PMID:28983525
Linciano, Pasquale; Dawson, Alice; Pöhner, Ina; Costa, David M; Sá, Monica S; Cordeiro-da-Silva, Anabela; Luciani, Rosaria; Gul, Sheraz; Witt, Gesa; Ellinger, Bernhard; Kuzikov, Maria; Gribbon, Philip; Reinshagen, Jeanette; Wolf, Markus; Behrens, Birte; Hannaert, Véronique; Michels, Paul A M; Nerini, Erika; Pozzi, Cecilia; di Pisa, Flavio; Landi, Giacomo; Santarem, Nuno; Ferrari, Stefania; Saxena, Puneet; Lazzari, Sandra; Cannazza, Giuseppe; Freitas-Junior, Lucio H; Moraes, Carolina B; Pascoalino, Bruno S; Alcântara, Laura M; Bertolacini, Claudia P; Fontana, Vanessa; Wittig, Ulrike; Müller, Wolfgang; Wade, Rebecca C; Hunter, William N; Mangani, Stefano; Costantino, Luca; Costi, Maria P
2017-09-30
Pteridine reductase-1 (PTR1) is a promising drug target for the treatment of trypanosomiasis. We investigated the potential of a previously identified class of thiadiazole inhibitors of Leishmania major PTR1 for activity against Trypanosoma brucei ( Tb ). We solved crystal structures of several Tb PTR1-inhibitor complexes to guide the structure-based design of new thiadiazole derivatives. Subsequent synthesis and enzyme- and cell-based assays confirm new, mid-micromolar inhibitors of Tb PTR1 with low toxicity. In particular, compound 4m , a biphenyl-thiadiazole-2,5-diamine with IC 50 = 16 μM, was able to potentiate the antitrypanosomal activity of the dihydrofolate reductase inhibitor methotrexate (MTX) with a 4.1-fold decrease of the EC 50 value. In addition, the antiparasitic activity of the combination of 4m and MTX was reversed by addition of folic acid. By adopting an efficient hit discovery platform, we demonstrate, using the 2-amino-1,3,4-thiadiazole scaffold, how a promising tool for the development of anti- T. brucei agents can be obtained.
Structures of Trypanosome Vacuolar Soluble Pyrophosphatases: Anti-Parasitic Drug Targets
Yang, Yunyun; Ko, Tzu-Ping; Chen, Chun-Chi; Huang, Guozhong; Zheng, Yingying; Liu, Weidong; Wang, Iren; Ho, Meng-Ru; Danny Hsu, Shang-Te; O’Dowd, Bing; Huff, Hannah C.; Huang, Chun-Hsiang; Docampo, Roberto; Oldfield, Eric; Guo, Rey-Ting
2016-01-01
Trypanosomatid parasites are the causative agents of many neglected tropical diseases including the leishmaniases, Chagas disease, and human African trypanosomiasis. They exploit unusual vacuolar soluble pyrophosphatases (VSPs), absent in humans, for cell growth and virulence and as such, are drug targets. Here, we report the crystal structures of VSP1s from Trypanosoma cruzi and T. brucei, together with that of the T. cruzi protein bound to a bisphosphonate inhibitor. Both VSP1s form a hybrid structure containing an (N-terminal) EF-hand domain fused to a (C-terminal) pyrophosphatase domain. The two domains are connected via an extended loop of about 17 residues. Crystallographic analysis and size exclusion chromatography indicate that the VSP1s form tetramers containing head-to-tail dimers. Phosphate and diphosphate ligands bind in the PPase substrate-binding pocket and interact with several conserved residues, and a bisphosphonate inhibitor (BPH-1260) binds to the same site. Based on Cytoscape and other bioinformatics analyses it is apparent that similar folds will be found in most if not all trypanosomatid VSP1s, including those found in insects (Angomonas deanei, Strigomonas culicis), plant pathogens (Phytomonas spp.) and Leishmania spp. Overall, the results are of general interest since they open the way to structure-based drug design for many of the neglected tropical diseases. PMID:26907161
Evidence for recycling of invariant surface transmembrane domain proteins in African trypanosomes.
Koumandou, V Lila; Boehm, Cordula; Horder, Katy A; Field, Mark C
2013-02-01
Intracellular trafficking is a vital component of both virulence mechanisms and drug interactions in Trypanosoma brucei, the causative agent of human African trypanosomiasis and n'agana of cattle. Both maintaining the surface proteome composition within a life stage and remodeling the composition when progressing between life stages are important features of immune evasion and development for trypanosomes. Our recent work implicates the abundant transmembrane invariant surface glycoproteins (ISGs) in the uptake of first-line therapeutic suramin, suggesting a potential therapeutic route into the cell. RME-8 is a mediator of recycling pathways in higher eukaryotes and is one of a small cohort of intracellular transport gene products upregulated in mammal-infective trypanosomes, suggesting a role in controlling the copy number of surface proteins in trypanosomes. Here we investigate RME-8 function and its contribution to intracellular trafficking and stability of ISGs. RME-8 is a highly conserved protein and is broadly distributed across multiple endocytic compartments. By knockdown we find that RME-8 is essential and mediates delivery of endocytic probes to late endosomal compartments. Further, we find ISG accumulation within endosomes, but that RME-8 knockdown also increases ISG turnover; combined with previous data, this suggests that it is most probable that ISGs are recycled, and that RME-8 is required to support recycling.
Sánchez, E; Perrone, T; Recchimuzzi, G; Cardozo, I; Biteau, N; Aso, P M; Mijares, A; Baltz, T; Berthier, D; Balzano-Nogueira, L; Gonzatti, M I
2015-10-15
Livestock trypanosomoses, caused by three species of the Trypanozoon subgenus, Trypanosoma brucei brucei, T. evansi and T. equiperdum is widely distributed throughout the world and constitutes an important limitation for the production of animal protein. T. evansi and T. equiperdum are morphologically indistinguishable parasites that evolved from a common ancestor but acquired important biological differences, including host range, mode of transmission, distribution, clinical symptoms and pathogenicity. At a molecular level, T. evansi is characterized by the complete loss of the maxicircles of the kinetoplastic DNA, while T. equiperdum has retained maxicircle fragments similar to those present in T. brucei. T. evansi causes the disease known as Surra, Derrengadera or "mal de cadeiras", while T. equiperdum is the etiological agent of dourine or "mal du coit", characterized by venereal transmission and white patches in the genitalia. Nine Venezuelan Trypanosoma spp. isolates, from horse, donkey or capybara were genotyped and classified using microsatellite analyses and maxicircle genes. The variables from the microsatellite data and the Procyclin PE repeats matrices were combined using the Hill-Smith method and compared to a group of T. evansi, T. equiperdum and T. brucei reference strains from South America, Asia and Africa using Coinertia analysis. Four maxicircle genes (cytb, cox1, a6 and nd8) were amplified by PCRfrom TeAp-N/D1 and TeGu-N/D1, the two Venezuelan isolates that grouped with the T. equiperdum STIB841/OVI strain. These maxicircle sequences were analyzed by nucleotide BLAST and aligned toorthologous genes from the Trypanozoon subgenus by MUSCLE tools. Phylogenetic trees were constructed using Maximum Parsimony (MP) and Maximum Likelihood (ML) with the MEGA5.1® software. We characterized microsatellite markers and Procyclin PE repeats of nine Venezuelan Trypanosoma spp. isolates with various degrees of virulence in a mouse model, and compared them to a panel of T. evansi and T. equiperdum reference strains. Coinertia analysis of the combined repeats and previously reported T. brucei brucei microsatellite genotypes revealed three distinct groups. Seven of the Venezuelan isolates grouped with globally distributed T. evansi strains, while TeAp-N/D1 and TeGu-N/D1 strains clustered in a separate group with the T. equiperdum STIB841/OVI strain isolated in South Africa. A third group included T. brucei brucei, two strains previously classified as T. evansi (GX and TC) and one as T. equiperdum (BoTat-1.1). Four maxicircle genes, Cytochrome b, Cythocrome Oxidase subunit 1, ATP synthase subunit 6 and NADH dehydrogenase subunit 8, were identified in the two Venezuelan strains clustering with the T. equiperdum STIB841/OVI strain. Phylogenetic analysis of the cox1 gene sequences further separated these two Venezuelan T. equiperdum strains: TeAp-N/D1 grouped with T. equiperdum strain STIB818 and T. brucei brucei, and TeGu-N/D1 with the T. equiperdum STIB841/OVI strain. Based on the Coinertia analysis and maxicircle gene sequence phylogeny, TeAp-N/D1 and TeGu-N/D1 constitute the first confirmed T. equiperdum strains described from Latin America.
Salmon, Didier
2018-04-25
Trypanosoma brucei , etiological agent of Sleeping Sickness in Africa, is the prototype of African trypanosomes, protozoan extracellular flagellate parasites transmitted by saliva ( Salivaria ). In these parasites the molecular controls of the cell cycle and environmental sensing are elaborate and concentrated at the flagellum. Genomic analyses suggest that these parasites appear to differ considerably from the host in signaling mechanisms, with the exception of receptor-type adenylate cyclases (AC) that are topologically similar to receptor-type guanylate cyclase (GC) of higher eukaryotes but control a new class of cAMP targets of unknown function, the cAMP response proteins (CARPs), rather than the classical protein kinase A cAMP effector (PKA). T. brucei possesses a large polymorphic family of ACs, mainly associated with the flagellar membrane, and these are involved in inhibition of the innate immune response of the host prior to the massive release of immunomodulatory factors at the first peak of parasitemia. Recent evidence suggests that in T. brucei several insect-specific AC isoforms are involved in social motility, whereas only a few AC isoforms are involved in cytokinesis control of bloodstream forms, attesting that a complex signaling pathway is required for environmental sensing. In this review, after a general update on cAMP signaling pathway and the multiple roles of cAMP, I summarize the existing knowledge of the mechanisms by which pathogenic microorganisms modulate cAMP levels to escape immune defense.
Kpoviessi, Salomé; Bero, Joanne; Agbani, Pierre; Gbaguidi, Fernand; Kpadonou-Kpoviessi, Bénédicta; Sinsin, Brice; Accrombessi, Georges; Frédérich, Michel; Moudachirou, Mansourou; Quetin-Leclercq, Joëlle
2014-01-01
Cymbopogon species are largely used in folk medicine for the treatment of many diseases some of which related to parasitical diseases as fevers and headaches. As part of our research on antiparasitic essential oils from Beninese plants, we decided to evaluate the in vitro antiplasmodial and antitrypanosomal activities of essential oils of four Cymbopogon species used in traditional medicine as well as their cytotoxicity. The essential oils of four Cymbopogon species Cymbopogon citratus (I), Cymbopogon giganteus (II), Cymbopogon nardus (III) and Cymbopogon schoenantus (IV) from Benin obtained by hydrodistillation were analysed by GC/MS and GC/FID and were tested in vitro against Trypanosoma brucei brucei and Plasmodium falciparum respectively for antitrypanosomal and antiplasmodial activities. Cytotoxicity was evaluated in vitro against Chinese Hamster Ovary (CHO) cells and the human non cancer fibroblast cell line (WI38) through MTT assay to evaluate the selectivity. All tested oils showed a strong antitrypanosomal activity with a good selectivity. Sample II was the most active against Trypanosoma brucei brucei and could be considered as a good candidate. It was less active against Plasmodium falciparum. Samples II, III and IV had low or no cytotoxicity, but the essential oil of Cymbopogon citratus (I), was toxic against CHO cells and moderately toxic against WI38 cells and needs further toxicological studies. Sample I (29 compounds) was characterised by the presence as main constituents of geranial, neral, β-pinene and cis-geraniol; sample II (53 compounds) by trans-p-mentha-1(7),8-dien-2-ol, trans-carveol, trans-p-mentha-2,8-dienol, cis-p-mentha-2,8-dienol, cis-p-mentha-1(7),8-dien-2-ol, limonene, cis-carveol and cis-carvone; sample III (28 compounds) by β-citronellal, nerol, β-citronellol, elemol and limonene and sample IV (41 compounds) by piperitone, (+)-2-carene, limonene, elemol and β-eudesmol. Our study shows that essential oils of Cymbopogon genus can be a good source of antitrypanosomal agents. This is the first report on the activity of these essential oils against Trypanosoma brucei brucei, Plasmodium falciparum and analysis of their cytotoxicity. © 2013 Published by Elsevier Ireland Ltd.
USDA-ARS?s Scientific Manuscript database
Current methods for detecting the presence of botulinum neurotoxins in food and other biological samples Botulinum neurotoxins (BoNTs), the causative agents of botulism, are among the most lethal human bacterial toxins and the causative agent of botulism. BoNTs are also classified as Select Agents ...
The Born Rule and Free Will: why Libertarian Agent-Causal Free Will is not "antiscientific"
NASA Astrophysics Data System (ADS)
Kastner, Ruth E.
In the libertarian "agent causation" view of free will, free choices are attributable only to the choosing agent, as opposed to a specific cause or causes outside the agent. An often-repeated claim in the philosophical literature on free will is that agent causation necessarily implies lawlessness, and is therefore "antiscientific." That claim is critiqued and it is argued, on the contrary, that the volitional powers of a free agent need not be viewed as anomic, specifically with regard to the quantum statistical law (the Born Rule). Assumptions about the role and nature of causation, taken as bearing on volitional agency, are examined and found inadequate to the task. Finally, it is suggested that quantum theory may constitute precisely the sort of theory required for a nomic grounding of libertarian free will.
An Investigation of the Spanish Causatives: "Hacer Ver, Hacer Creer, Hacer Pensar, Hacer Saber."
ERIC Educational Resources Information Center
Dowling, Lee H.
1981-01-01
Presents study which shows that although these causatives have same surface structure as productive causative constructions they differ in several ways, e.g., unlike other productive causatives their meaning changes when "que" subjunctive is substituted for the infinitive, and they function like lexical causatives which involve agent-patient, not…
Wen, Yan-Zi; Su, Bi-Xiu; Lyu, Shu-Shen; Hide, Geoff; Lun, Zhao-Rong; Lai, De-Hua
2016-12-01
Trehalose, a non-permeating cryoprotective agent (CPA), has been documented as less toxic and highly efficient at cryopreserving different kinds of cells or organisms. In the present study, trehalose was evaluated for its application in cryopreservation of both Trypanosoma brucei procyclic and bloodstream form cells. The cryopreservation efficiency was determined by the motility of trypanosomes after thawing, as well as a subsequent recovery and infectivity assessment. The viability of trypanosomes from cultivation that were frozen in a serial concentrations of trehalose showed similar results to classical CPAs of glycerol and DMSO. Nevertheless, trypanosomes cryopreserved in 0.2M trehalose showed the best growth characteristic during subsequent cultivation. In addition, CPA cocktails with trehalose and permeating CPA glycerol or DMSO were developed and evaluated. Interestingly, trypanosomes in host (mouse) blood cryopreserved in 0.4M trehalose plus 5% glycerol showed higher infectivity than those preserved in trehalose/DMSO cocktails as well as individually. Further investigations showed that, in comparison with slow freezing at -80°C, flash freezing in liquid nitrogen provided better cryopreservation for bloodstream form cells than slow freezing. In conclusion, trehalose is an easy, safe and efficient CPA for cryopreservation of T. brucei and potentially for other protozoan species and cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Devine, William G; Diaz-Gonzalez, Rosario; Ceballos-Perez, Gloria; Rojas, Domingo; Satoh, Takashi; Tear, Westley; Ranade, Ranae M; Barros-Álvarez, Ximena; Hol, Wim G J; Buckner, Frederick S; Navarro, Miguel; Pollastri, Michael P
2017-03-10
Human African trypanosomiasis is a neglected tropical disease that is lethal if left untreated. Existing therapeutics have limited efficacy and severe associated toxicities. 2-(2-(((3-((1H-Benzo[d]imidazol-2-yl)amino)propyl)amino)methyl)-4,6-dichloro-1H-indol-1-yl)ethan-1-ol (NEU-1053) has recently been identified from a high-throughput screen of >42,000 compounds as a highly potent and fast-acting trypanocidal agent capable of curing a bloodstream infection of Trypanosoma brucei in mice. We have designed a library of analogues to probe the structure-activity relationship and improve the predicted central nervous system (CNS) exposure of NEU-1053. We report the activity of these inhibitors of T. brucei, the efficacy of NEU-1053 in a murine CNS model of infection, and identification of the target of NEU-1053 via X-ray crystallography.
New Class of Antitrypanosomal Agents Based on Imidazopyridines.
Silva, Daniel G; Gillespie, J Robert; Ranade, Ranae M; Herbst, Zackary M; Nguyen, Uyen T T; Buckner, Frederick S; Montanari, Carlos A; Gelb, Michael H
2017-07-13
The present work describes the synthesis of 22 new imidazopyridine analogues arising from medicinal chemistry optimization at different sites on the molecule. Seven and 12 compounds exhibited an in vitro EC 50 ≤ 1 μM against Trypanosoma cruzi ( T. cruzi ) and Trypanosoma brucei ( T. brucei ) parasites, respectively. Based on promising results of in vitro activity (EC 50 < 100 nM), cytotoxicity, metabolic stability, protein binding, and pharmacokinetics (PK) properties, compound 20 was selected as a candidate for in vivo efficacy studies. This compound was screened in an acute mouse model against T.cruzi ( Tulahuen strain). After established infection, mice were dosed twice a day for 5 days, and then monitored for 6 weeks using an in vivo imaging system (IVIS). Compound 20 demonstrated parasite inhibition comparable to the benznidazole treatment group. Compound 20 represents a potential lead for the development of drugs to treat trypanosomiasis.
Costa, Sonya; Cavadas, Cláudia; Cavaleiro, Carlos; Salgueiro, Lígia; do Céu Sousa, Maria
2018-07-01
Aiming for discovering effective and harmless antitrypanosomal agents, 17 essential oils and nine major components were screened for their effects on T. b. brucei. The essential oils were obtained by hydrodistillation from fresh plant material and analyzed by GC and GC-MS. The trypanocidal activity was assessed using blood stream trypomastigotes cultures of T. b. brucei and the colorimetric resazurin method. The MTT test was used to assess the cytotoxicity of essential oils on macrophage cells and Selectivity Indexes were calculated. Of the 17 essential oils screened three showed high trypanocidal activity (IC 50 < 10 μg/mL): Juniperus oxycedrus (IC 50 of 0.9 μg/mL), Cymbopogon citratus (IC 50 of 3.2 μg/mL) and Lavandula luisieri (IC 50 of 5.7 μg/mL). These oils had no cytotoxic effects on macrophage cells showing the highest values of Selectivity Index (63.4, 9.0 and 11.8, respectively). The oils of Distichoselinum tenuifolium, Lavandula viridis, Origanum virens, Seseli tortuosom, Syzygium aromaticum, and Thymbra capitata also exhibited activity (IC 50 of 10-25 μg/mL) but showed cytotoxicity on macrophages. Of the nine compounds tested, α-pinene (IC 50 of 2.9 μg/mL) and citral (IC 50 of 18.9 μg/mL) exhibited the highest anti-trypanosomal activities. Citral is likely the active component of C. citratus and α-pinene is responsible for the antitrypanosomal effects of J. oxycedrus. The present work leads us to propose the J. oxycedrus, C. citratus and L. luisieri oils as valuable sources of new molecules for African Sleeping Sickness treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
75 FR 52758 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
...- related virus (XMRV) has been implicated as a possible causative agent of prostate cancer and chronic... other retroviruses to possibly establish these viruses as causative agents for CFS, prostate cancer, and... other biologics, for treating prostate cancer, chronic fatigue syndrome, and any other disease where...
Infectious causes of reproductive disorders in cattle.
Yoo, Han Sang
2010-01-01
The incidences of reproductive disorders in bovine are increasing over years. This scenario is further aggravating due to more emphasis on selection and rearing of animal for specific commercial purposes which compromises livestock reproduction. Reproductive disorders like infertility and abortions in cattle are major problems in the bovine industry. The reproductive disorders might be caused by several different agents such as physical agents, chemical agents, biological agents, etc. Also, the causative agent and pathogenesis of reproductive disorders are influenced by various factors including environmental factor. The exact causes may not be evident and are often complicated with multiple causative agents. Thus, there is a need for multi-faceted approach to understand correlation of various factors with reproductive performance. Of the agents, infectious biological agents are significant cause of reproductive disorder and are of high priority in the bovine industry. These factors are not only related to the prosperity of bovine industry but are also important from public health point of view because of their zoonotic potentials. Several infectious agents like bacterial, viral, protozoon, chlamydial and fungal agents are known to have direct impact on reproductive health of cattle. These diseases can be arranged and discussed in different groups based on the causative agents.
In Vitro Trypanocidal Activity of Antibodies to Bacterially Expressed Trypanosoma brucei Tubulin
Kateete, DP; Alezuyo, C; Nanteza, A; Asiimwe, C; Lubega, GW
2012-01-01
Background There are only four drugs for treating African trypanosomiasis, a devastating disease in sub-Saharan Africa. With slow discovery of better drugs, vaccination is viewed as the best method of control. We previously showed that antibodies to native Trypanosoma brucei brucei tubulin inhibit the growth of trypanosomes in culture. Here, we aimed to determine the effect of antibodies to bacterially expressed trypanosome tubulin on T. brucei brucei growth. Methods T. brucei brucei alpha and beta tubulin genes were individually expressed in Escherichia coli under the tryptophan promoter. Monoclonal tubulin antibodies reacted specifically with the expressed tubulins with no cross-reaction with the opposite tubulin. Rabbits were immunized with 450µg each of the concentrated recombinant tubulin, and production of antibodies assessed by ELISA and Western blotting. The effect of polyclonal antibodies on trypanosome growth was determined by culturing bloodstream T. brucei brucei in up to 25% of antisera. Results Low antisera dilutions (25%) from the immunized rabbits inhibited trypanosome growth. The most cytotoxic antisera were from one rabbit immunized with a mixture of both alpha and beta tubulins. However, the result was not reproduced in other rabbits and there was no apparent effect on growth at higher antisera dilutions. Conclusion Antibodies to bacterially expressed trypanosome tubulin are not effective at killing cultured bloodstream trypanosomes. PMID:23109963
42 CFR 441.17 - Laboratory services.
Code of Federal Regulations, 2014 CFR
2014-10-01
... testing for the presence of the human immunodeficiency virus (HIV) antibody or for the isolation and identification of the HIV causative agent as described in § 405.1316(f) (2) and (3) of this chapter, the... requirement for patient's name, in paragraph (b) of this section for HIV antibody or causative agent testing...
42 CFR 441.17 - Laboratory services.
Code of Federal Regulations, 2011 CFR
2011-10-01
... testing for the presence of the human immunodeficiency virus (HIV) antibody or for the isolation and identification of the HIV causative agent as described in § 405.1316(f) (2) and (3) of this chapter, the... requirement for patient's name, in paragraph (b) of this section for HIV antibody or causative agent testing...
42 CFR 441.17 - Laboratory services.
Code of Federal Regulations, 2012 CFR
2012-10-01
... testing for the presence of the human immunodeficiency virus (HIV) antibody or for the isolation and identification of the HIV causative agent as described in § 405.1316(f) (2) and (3) of this chapter, the... requirement for patient's name, in paragraph (b) of this section for HIV antibody or causative agent testing...
42 CFR 441.17 - Laboratory services.
Code of Federal Regulations, 2013 CFR
2013-10-01
... testing for the presence of the human immunodeficiency virus (HIV) antibody or for the isolation and identification of the HIV causative agent as described in § 405.1316(f) (2) and (3) of this chapter, the... requirement for patient's name, in paragraph (b) of this section for HIV antibody or causative agent testing...
42 CFR 441.17 - Laboratory services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... testing for the presence of the human immunodeficiency virus (HIV) antibody or for the isolation and identification of the HIV causative agent as described in § 405.1316(f) (2) and (3) of this chapter, the... requirement for patient's name, in paragraph (b) of this section for HIV antibody or causative agent testing...
Pusterla, N; Madigan, J E; Chae, J S; DeRock, E; Johnson, E; Pusterla, J B
2000-03-01
We report successful helminthic transmission of Ehrlichia risticii, the causative agent of Potomac horse fever, using trematode stages collected from Juga yrekaensis snails. The ehrlichial agent was isolated from the blood of experimentally infected horses by culture in murine monocytic cells and identified as E. risticii ultrastructurally and by characterization of three different genes.
Pusterla, Nicola; Madigan, John E.; Chae, Joon-Seok; DeRock, Elfriede; Johnson, Eileen; Pusterla, Jeannine Berger
2000-01-01
We report successful helminthic transmission of Ehrlichia risticii, the causative agent of Potomac horse fever, using trematode stages collected from Juga yrekaensis snails. The ehrlichial agent was isolated from the blood of experimentally infected horses by culture in murine monocytic cells and identified as E. risticii ultrastructurally and by characterization of three different genes. PMID:10699046
The flagellum of Trypanosoma brucei: new tricks from an old dog
Ralston, Katherine S.; Hill, Kent L.
2010-01-01
African trypanosomes, i.e. Trypanosoma brucei and related sub-species, are devastating human and animal pathogens that cause significant human mortality and limit sustained economic development in sub-Saharan Africa. Trypanosoma brucei is a highly motile protozoan parasite and coordinated motility is central to both disease pathogenesis in the mammalian host and parasite development in the tsetse fly vector. Since motility is critical for parasite development and pathogenesis, understanding unique aspects of the T. brucei flagellum may uncover novel targets for therapeutic intervention in African sleeping sickness. Moreover, studies of conserved features of the T. brucei flagellum are directly relevant to understanding fundamental aspects of flagellum and cilium function in other eukaryotes, making T. brucei an important model system. The T. brucei flagellum contains a canonical 9 + 2 axoneme, together with additional features that are unique to kinetoplastids and a few closely-related organisms. Until recently, much of our knowledge of the structure and function of the trypanosome flagellum was based on analogy and inference from other organisms. There has been an explosion in functional studies in T. brucei in recent years, revealing conserved as well as novel and unexpected structural and functional features of the flagellum. Most notably, the flagellum has been found to be an essential organelle, with critical roles in parasite motility, morphogenesis, cell division and immune evasion. This review highlights recent discoveries on the T. brucei flagellum. PMID:18472102
Markin, V A; Pantiukhov, V B; Markov, V I; Bondarev, V P
2013-01-01
Analysis of data of the available literature on epidemiology of Bolivian hemorrhagic fever, manifestations of human disease, biological properties of the causative agent and development carried out abroad of means and methods of diagnostics, prophylaxis and therapy of this infection that presents a potential threat for the population and economy of the Russian Federation in case of introduction of the causative agent is presented.
[Staphylococcus aureus infection in Apis mellifera L. (honeybees)].
Keskin, N
1989-07-01
The causative agent of American foulbrood is Bacillus larvae, the causes of the European foulbrood diseases are Streptococcus pluton and Bacillus alvei and the causes of the septicemia are Pseudomonas apiseptica and Escherichia coli in honeybees (Apis mellifera). Apart from the above causative agents in this study, Staphylococcus aureus has been isolated and identified from honeybees (Apis mellifera).
Gibson, Marc W; Dewar, Simon; Ong, Han B; Sienkiewicz, Natasha; Fairlamb, Alan H
2016-05-01
Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.
Colasante, Claudia; Peña Diaz, P; Clayton, Christine; Voncken, Frank
2009-10-01
The mitochondrial carrier family (MCF) is a group of structurally conserved proteins that mediate the transport of a wide range of metabolic intermediates across the mitochondrial inner membrane. In this paper, an overview of the mitochondrial carrier proteins (MCPs) of the early-branching kinetoplastid parasite Trypanosoma brucei brucei is presented. Sequence analysis and phylogenetic reconstruction gave insight into the evolution and conservation of the 24 identified TbMCPs; for most of these, putative transport functions could be predicted. Comparison of the kinetoplastid MCP inventory to those previously reported for other eukaryotes revealed remarkable deviations: T. b. brucei lacks genes encoding some prototypical MCF members, such as the citrate carrier and uncoupling proteins. The in vivo expression of the identified TbMCPs in the two replicating life-cycle forms of T. b. brucei, the bloodstream-form and procyclic-form, was quantitatively assessed at the mRNA level by Northern blot analysis. Immunolocalisation studies confirmed that majority of the 24 identified TbMCPs is found in the mitochondrion of procyclic-form T. b. brucei.
[Formation of microbial biofilms in causative agents of acute and chronic pyelonephritis].
Lagun, L V; Atanasova, Iu V; Tapal'skiĭ, D V
2013-01-01
Study the intensity of formation of microbial biofilms by Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus strains isolated during various forms of pyelonephritis. 150 clinical isolates of microorganisms isolated from urine ofpatientswith acute and chronic pyelonephritiswere included into the study. Determination of intensity of film-formation was carried out by staining of the formed biofilms by crystal violet with consequent extraction of the dye and measurement of its concentration in washout solution. Among causative agents ofpyelonephritis P. aeruginosa isolates had the maximum film-forming ability. The intensity of biofilm formation of these isolates was 2-3 time higher than staphylococcus and enterobacteria strains. Strains isolated from patients with chronic pyelonephritis by ability to form biofilms significantly surpassed strains isolated from acute pyelonephritis patients. A higher ability to form microbial biofilms for microorganisms--causative agents of pyelonephritis progressing against the background ofurolithiasis was noted. The ability to form biofilms is determined by both causative agent species and character of the infectious process in which this microorganism participates. Intensive formation of biofilms by E. coli, P. aeruginosa, K. pneumoniae, S. aureus clinical isolates may be an important factor of chronization of urinary tract infections.
Evaluation of substituted ebselen derivatives as potential trypanocidal agents.
Gordhan, Heeren M; Patrick, Stephen L; Swasy, Maria I; Hackler, Amber L; Anayee, Mark; Golden, Jennifer E; Morris, James C; Whitehead, Daniel C
2017-02-01
Human African trypanosomiasis is a disease of sub-Saharan Africa, where millions are at risk for the illness. The disease, commonly referred to as African sleeping sickness, is caused by an infection by the eukaryotic pathogen, Trypanosoma brucei. Previously, a target-based high throughput screen revealed ebselen (EbSe), and its sulfur analog, EbS, to be potent in vitro inhibitors of the T. brucei hexokinase 1 (TbHK1). These molecules also exhibited potent trypanocidal activity in vivo. In this manuscript, we synthesized a series of sixteen EbSe and EbS derivatives bearing electron-withdrawing carboxylic acid and methyl ester functional groups, and evaluated the influence of these substituents on the biological efficacy of the parent scaffold. With the exception of one methyl ester derivative, these modifications ablated or blunted the potent TbHK1 inhibition of the parent scaffold. Nonetheless, a few of the methyl ester derivatives still exhibited trypanocidal effects with single-digit micromolar or high nanomolar EC 50 values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Novel duck parvovirus identified in Cherry Valley ducks (Anas platyrhynchos domesticus), China.
Li, Chuanfeng; Li, Qi; Chen, Zongyan; Liu, Guangqing
2016-10-01
An unknown infectious disease in Cherry Valley ducks (Anas platyrhynchos domesticus) characterized by short beak and strong growth retardation occurred in China during 2015. The causative agent of this disease, tentatively named duck short beak and dwarfism syndrome (DSBDS), as well as the evolutionary relationships between this causative agent and all currently known avian-origin parvoviruses were clarified by virus isolation, transmission electron microscope (TEM) observation, analysis of nuclear acid type, (RT-)PCR identification, whole genome sequencing, and NS1 protein sequences-based phylogenetic analyses. The results indicated that the causative agent of DSBDS is closely related with the goose parvovirus-like virus, which is divergent from all currently known avian-origin parvoviruses and should be a novel duck parvovirus (NDPV). Copyright © 2016 Elsevier B.V. All rights reserved.
Cai, J; Collins, M D
1994-04-01
The 16S rRNA gene sequence of Melissococcus pluton, the causative agent of European foulbrood disease, was determined in order to investigate the phylogenetic relationships between this organism and other low-G + C-content gram-positive bacteria. A comparative sequence analysis revealed that M. pluton is a close phylogenetic relative of the genus Enterococcus.
Mating compatibility in the parasitic protist Trypanosoma brucei.
Peacock, Lori; Ferris, Vanessa; Bailey, Mick; Gibson, Wendy
2014-02-21
Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. The outcomes of individual crosses, particularly back crosses, were variable in numbers of both hybrid and selfer clones produced, and do not readily fit a simple two MT model. From comparison of the behaviour of trypanosome gametes in inter- and intraclonal mixtures, we infer that mating compatibility is controlled at the level of gamete fusion.
Mating compatibility in the parasitic protist Trypanosoma brucei
2014-01-01
Background Genetic exchange has been described in several kinetoplastid parasites, but the most well-studied mating system is that of Trypanosoma brucei, the causative organism of African sleeping sickness. Sexual reproduction takes place in the salivary glands (SG) of the tsetse vector and involves meiosis and production of haploid gametes. Few genetic crosses have been carried out to date and consequently there is little information about the mating compatibility of different trypanosomes. In other single-celled eukaryotes, mating compatibility is typically determined by a system of two or more mating types (MT). Here we investigated the MT system in T. brucei. Methods We analysed a large series of F1, F2 and back crosses by pairwise co-transmission of red and green fluorescent cloned cell lines through experimental tsetse flies. To analyse each cross, trypanosomes were cloned from fly SG containing a mixture of both parents, and genotyped by microsatellites and molecular karyotype. To investigate mating compatibility at the level of individual cells, we directly observed the behaviour of SG-derived gametes in intra- or interclonal mixtures of red and green fluorescent trypanosomes ex vivo. Results Hybrid progeny were found in all F1 and F2 crosses and most of the back crosses. The success of individual crosses was highly variable as judged by the number of hybrid clones produced, suggesting a range of mating compatibilities among F1 progeny. As well as hybrids, large numbers of recombinant genotypes resulting from intraclonal mating (selfers) were found in some crosses. In ex vivo mixtures, red and green fluorescent trypanosome gametes were observed to pair up and interact via their flagella in both inter- and intraclonal combinations. While yellow hybrid trypanosomes were frequently observed in interclonal mixtures, such evidence of cytoplasmic exchange was rare in the intraclonal mixtures. Conclusions The outcomes of individual crosses, particularly back crosses, were variable in numbers of both hybrid and selfer clones produced, and do not readily fit a simple two MT model. From comparison of the behaviour of trypanosome gametes in inter- and intraclonal mixtures, we infer that mating compatibility is controlled at the level of gamete fusion. PMID:24559099
Toenshoff, Elena R.; Fields, Peter D.; Bourgeois, Yann X.; Ebert, Dieter
2018-01-01
The planktonic freshwater crustacean of the genus Daphnia are a model system for biomedical research and, in particular, invertebrate-parasite interactions. Up until now, no virus has been characterized for this system. Here we report the discovery of an iridovirus as the causative agent of White Fat Cell Disease (WFCD) in Daphnia. WFCD is a highly virulent disease of Daphnia that can easily be cultured under laboratory conditions. Although it has been studied from sites across Eurasia for more than 60 years, its causative agent had not been described, nor had an iridovirus been connected to WFCD before now. Here we find that an iridovirus—the Daphnia iridescent virus 1 (DIV-1)—is the causative agent of WFCD. DIV-1 has a genome sequence of about 288 kbp, with 39% G+C content and encodes 367 predicted open reading frames. DIV-1 clusters together with other invertebrate iridoviruses but has by far the largest genome among all sequenced iridoviruses. Comparative genomics reveal that DIV-1 has apparently recently lost a substantial number of unique genes but has also gained genes by horizontal gene transfer from its crustacean host. DIV-1 represents the first invertebrate iridovirus that encodes proteins to purportedly cap RNA, and it contains unique genes for a DnaJ-like protein, a membrane glycoprotein and protein of the immunoglobulin superfamily, which may mediate host–pathogen interactions and pathogenicity. Our findings end a 60-year search for the causative agent of WFCD and add to our knowledge of iridovirus genomics and invertebrate–virus interactions. PMID:29487186
Hunupolagama, D M; Chandrasekharan, N V; Wijesundera, W S S; Kathriarachchi, H S; Fernando, T H P S; Wijesundera, R L C
2017-06-01
Colletotrichum is an important fungal genus with great diversity, which causes anthracnose of a variety of crop plants including rubber trees. Colletotrichum acutatum and Colletotrichum gloeosporioides have been identified as the major causative agents of Colletotrichum leaf disease of rubber trees in Sri Lanka based on morphology, pathogenicity, and the analysis of internally transcribed spacer sequences of the nuclear ribosomal DNA. This study has been conducted to investigate the members of the C. acutatum species complex causing rubber leaf disease using a morphological and multi gene approach. For the first time in Sri Lanka, Colletotrichum simmondsii, Colletotrichum laticiphilum, Colletotrichum nymphaeae, and Colletotrichum citri have been identified as causative agents of Colletotrichum leaf disease in addition to C. acutatum s. str. Among them, C. simmondsii has been recognized as the major causative agent.
Bitonti, A J; Dumont, J A; McCann, P P
1986-01-01
Trypanosoma brucei brucei S-adenosyl-L-methionine (AdoMet) decarboxylase was found to be relatively insensitive to activation by putrescine as compared with the mammalian enzyme, being stimulated by only 50% over a 10,000-fold range of putrescine concentrations. The enzyme was not stimulated by up to 10 mM-Mg2+. The Km for AdoMet was 30 microM, similar to that of other eukaryotic AdoMet decarboxylases. T.b. brucei AdoMet decarboxylase activity was apparently irreversibly inhibited in vitro by Berenil and reversibly by pentamidine and methylglyoxal bis(guanylhydrazone). Berenil also inhibited trypanosomal AdoMet decarboxylase by 70% within 4 h after administration to infected rats and markedly increased the concentration of putrescine in trypanosomes that were exposed to the drug in vivo. Spermidine and spermine blocked the curative effect of Berenil on model mouse T.b. brucei infections. This effect of the polyamines was probably not due to reversal of Berenil's inhibitory effects on the AdoMet decarboxylase. PMID:3800910
[Opportunistic microorganisms in purulent inflammatory otolaryngologic diseases and meningitis].
Mironov, A Iu; Savitskaia, K I; Vorob'ev, A A
2001-01-01
The contamination of clinical specimens material, obtained from patients with otolaryngology inflammatory processes and purulent meningitides in the Moscow region, has been studied. Etiologically significant causative agents dominating in different purulent inflammatory diseases have been established. As revealed in this study, in the Moscow region the leading causative agents of purulent inflammatory otolaryngology deseases and meningitides are coagulase-negative ataphylococci, Escherichia coli, meningococci, pyogenic streptococci and fungi of the genus Candida.
United States Air Force Personnel and Exposure to Herbicide Orange
1988-02-01
effects. Dioxin cannot be confidently identified as the causative agent of these findings at this time because of several reasons, including the absence...of correlations with an exposure index and the incomplete clinical picture. However, dioxin is not exonerated as a causative agent because of the...relative risk of two for causes of death, such as heart disease, having incidence 1/100 in the comparison population. The corresponding power is less than
Tsujino, Yoshio; Hieda, Yoko; Morita, Eishin
2005-08-01
A 73-year-old woman, who suffered from erythema with bullae and pustules on her abdomen and anterior right thigh, visited our hospital without an awareness of the causative agents. The lesions appeared like first and second degree burns. The small amount of detached roof of bulla was sampled without skin biopsy before the ointment treatment. The sample was sonicated in an ultrasonic bath for 1 min in n-pentane, and then 1 mul of the extract was analyzed by gas chromatography-mass spectrometry (GC-MS). The causative agent was determined to be kerosene. An examination of blood samples collected at the first visit failed to detect kerosene, though traces of trimethylbenzene were detected. A GC-MS analysis of the small sample of lesional epidermis was very useful to identify kerosene as a causative agent.
FOOT ECZEMA: THE ROLE OF PATCH TEST IN DETERMINING THE CAUSATIVE AGENT USING STANDARD SERIES
Priya, K S; Kamath, Ganesh; Martis, Jacintha; D, Sukumar; Shetty, Narendra J; Bhat, Ramesh M; Kishore, B Nanda
2008-01-01
Foot dermatitis refers to the predominant involvement of feet in the eczematous process. This study is undertaken to determine the clinical pattern and causative agent in foot eczema and to evaluate the role of patch testing in determining the causative agent of foot eczema. Data was collected from 50 patients with foot eczema, who attended the out-patient department. The patch test was performed using Indian standard series. Patch test was positive in 88% of the patients. The most common site affected was the dorsal aspect of the foot (48%) and scaly plaque was the predominant morphological pattern. The highest number of patients (24%) showed positive reactions to mercaptobenzothiazole (MBT) and the lowest (4%) to neomycin sulfate. Rubber and rubber chemicals have been reported worldwide to be the most common sensitizer causing foot eczema. Thus, patch test has a major role in finding out the cause of foot eczema. PMID:19881990
Ibrahim, M A; Aliyu, A B; Sallau, A B; Bashir, M; Yunusa, I; Umar, T S
2010-05-01
The in vitro and in vivo antitrypanosomal effects of the ethanol extract of Senna occidentalis leaf were investigated. The crude extract exhibited an in vitro activity against Trypanosoma brucei brucei as it completely eliminated parasites' motility within 10 minutes postincubation with 6.66 mg/ml of effective extract concentration. The extract was further used to treat experimentally T. brucei brucei infected rats at concentrations of 100 and 200 mg/kg body weight, beginning on day 5 post infections (p.i.). At the termination of the experiment on Day 11 p.i., the extract significantly (P < 0.05) kept the parasitemia lower than was recorded in the infected untreated rats. All the infected animals developed anemia, the severity of which was significantly (P < 0.05) ameliorated by the extract treatment. The infection caused significant (P < 0.05) increases in serum alanine and aspartate aminotransferases as well as serum urea and creatinine levels. However, treatment of infected animals with the extract significantly (P < 0.05) prevented the trypanosome-induced increase in these biochemical indices. Furthermore, the T. brucei infection caused hepatomegaly and splenomegaly that were significantly (P < 0.05) ameliorated by the extract administration. It was concluded that orally administered ethanol extract of S. occidentalis leaf possessed anti-T. brucei brucei activity and could ameliorate the disease-induced anemia and organ damage.
Schechtman, Regina Casz; Silva, Nanashara Diane Valgas; Quaresma, Maria Victória; Bernardes Filho, Fred; Buçard, Alice Mota; Sodré, Celso Tavares
2015-01-01
Tinea capitis is a scalp infection caused by fungi. In Brazil, the main causative agents are Microsporum canis and the Trichophyton tonsurans. Etiological diagnosis is based on suggestive clinical findings and confirmation depends on the fungus growth in culture. However, it is not always possible to perform this test due to lack of availability. We reveal the dermoscopic findings that enable distinction between the main causative agents of Tinea capitis, M. canis and T. tonsurans. The association of clinical and dermatoscopic findings in suspected Tinea capitis cases may help with the differential diagnosis of the etiological agent, making feasible the precocious, specific treatment. PMID:26312662
Schechtman, Regina Casz; Silva, Nanashara Diane Valgas; Quaresma, Maria Victória; Bernardes Filho, Fred; Buçard, Alice Mota; Sodré, Celso Tavares
2015-01-01
Tinea capitis is a scalp infection caused by fungi. In Brazil, the main causative agents are Microsporum canis and the Trichophyton tonsurans. Etiological diagnosis is based on suggestive clinical findings and confirmation depends on the fungus growth in culture. However, it is not always possible to perform this test due to lack of availability. We reveal the dermoscopic findings that enable distinction between the main causative agents of Tinea capitis, M. canis and T. tonsurans. The association of clinical and dermatoscopic findings in suspected Tinea capitis cases may help with the differential diagnosis of the etiological agent, making feasible the precocious, specific treatment.
Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis
Bentley, Stephen J.
2017-01-01
Tsetse flies (Glossina spp.) are the sole vectors of the protozoan parasites of the genus Trypanosoma, the causative agents of African Trypanosomiasis. Species of Glossina differ in vector competence and Glossina morsitans morsitans is associated with transmission of Trypanosoma brucei rhodesiense, which causes an acute and often fatal form of African Trypanosomiasis. Heat shock proteins are evolutionarily conserved proteins that play critical roles in proteostasis. The activity of heat shock protein 70 (Hsp70) is regulated by interactions with its J-protein (Hsp40) co-chaperones. Inhibition of these interactions are emerging as potential therapeutic targets. The assembly and annotation of the G. m. morsitans genome provided a platform to identify and characterize the Hsp70s and J-proteins, and carry out an evolutionary comparison to its well-studied eukaryotic counterparts, Drosophila melanogaster and Homo sapiens, as well as Stomoxys calcitrans, a comparator species. In our study, we identified 9 putative Hsp70 proteins and 37 putative J-proteins in G. m. morsitans. Phylogenetic analyses revealed three evolutionarily distinct groups of Hsp70s, with a closer relationship to orthologues from its blood-feeding dipteran relative Stomoxys calcitrans. G. m. morsitans also lacked the high number of heat inducible Hsp70s found in D. melanogaster. The potential localisations, functions, domain organisations and Hsp70/J-protein partnerships were also identified. A greater understanding of the heat shock 70 (Hsp70) and J-protein (Hsp40) families in G. m. morsitans could enhance our understanding of the cell biology of the tsetse fly. PMID:28902917
Chroman-4-One Derivatives Targeting Pteridine Reductase 1 and Showing Anti-Parasitic Activity.
Di Pisa, Flavio; Landi, Giacomo; Dello Iacono, Lucia; Pozzi, Cecilia; Borsari, Chiara; Ferrari, Stefania; Santucci, Matteo; Santarem, Nuno; Cordeiro-da-Silva, Anabela; Moraes, Carolina B; Alcantara, Laura M; Fontana, Vanessa; Freitas-Junior, Lucio H; Gul, Sheraz; Kuzikov, Maria; Behrens, Birte; Pöhner, Ina; Wade, Rebecca C; Costi, Maria Paola; Mangani, Stefano
2017-03-08
Flavonoids have previously been identified as antiparasitic agents and pteridine reductase 1 (PTR1) inhibitors. Herein, we focus our attention on the chroman-4-one scaffold. Three chroman-4-one analogues ( 1 - 3 ) of previously published chromen-4-one derivatives were synthesized and biologically evaluated against parasitic enzymes ( Trypanosoma brucei PTR1- Tb PTR1 and Leishmania major-Lm PTR1) and parasites ( Trypanosoma brucei and Leishmania infantum ). A crystal structure of Tb PTR1 in complex with compound 1 and the first crystal structures of Lm PTR1-flavanone complexes (compounds 1 and 3 ) were solved. The inhibitory activity of the chroman-4-one and chromen-4-one derivatives was explained by comparison of observed and predicted binding modes of the compounds. Compound 1 showed activity both against the targeted enzymes and the parasites with a selectivity index greater than 7 and a low toxicity. Our results provide a basis for further scaffold optimization and structure-based drug design aimed at the identification of potent anti-trypanosomatidic compounds targeting multiple PTR1 variants.
Discovery and Evaluation of Thiazinoquinones as Anti-Protozoal Agents
Lam, Cary F. C.; Pearce, A. Norrie; Tan, Shen H.; Kaiser, Marcel; Copp, Brent R.
2013-01-01
Pure compound screening has identified the dioxothiazino-quinoline-quinone ascidian metabolite ascidiathiazone A (2) to be a moderate growth inhibitor of Trypanosoma brucei rhodesiense (IC50 3.1 μM) and Plasmodium falciparum (K1 dual drug resistant strain) (IC50 3.3 μM) while exhibiting low levels of cytotoxicity (L6, IC50 167 μM). A series of C-7 amide and Δ2(3) analogues were prepared that explored the influence of lipophilicity and oxidation state on observed anti-protozoal activity and selectivity. Little variation in anti-malarial potency was observed (IC50 0.62–6.5 μM), and no correlation was apparent between anti-malarial and anti-T. brucei activity. Phenethylamide 7e and Δ2(3)-glycine analogue 8k exhibited similar anti-Pf activity to 2 but with slightly enhanced selectivity (SI 72 and 93, respectively), while Δ2(3)-phenethylamide 8e (IC50 0.67 μM, SI 78) exhibited improved potency and selectivity towards T. brucei rhodesiense compared to the natural product hit. A second series of analogues were prepared that replaced the quinoline ring of 2 with benzofuran or benzothiophene moieties. While esters 10a/10b and 15 were once again found to exhibit cytotoxicity, carboxylic acid analogues exhibited potent anti-Pf activity (IC50 0.34–0.035 μM) combined with excellent selectivity (SI 560–4000). In vivo evaluation of a furan carboxylic acid analogue against P. berghei was undertaken, demonstrating 85.7% and 47% reductions in parasitaemia with ip or oral dosing respectively. PMID:24022732
Sergevnin, V I; Tryasolobova, M A; Kudrevatykh, E V; Kuzovnikova, E Zh
2015-01-01
Study the manifestations of epidemic process and leading transmission routes of causative agents of enterovirus serous meningitis (SM) by results of laboratory studies and epidemiologic examination of epidemic nidi. During 2010 - 2014 a study for enterovirus was carried out in cerebrospinal fluid in 743 patients, hospitalized into medical organizations of Perm with primary diagnosis "serous meningitis", feces of 426 individuals, that had communicated with patients with SM of enterovirus etiology; 827 water samples from the distribution network, 295 water samples from open water and 57 washes from surface of vegetables and fruits. All the samples were studied in polymerase chain reaction, part--by a virological method. Epidemiologic examination of 350 epidemic nidi of SM was carried out. Enterovirus and (or) its RNA were detected in 62.0% of patients and 61.9% of individuals that had communicated with patients with enteroviris SM. ECHO 6 serotype enterovirus dominated among the causative agents. Maximum intensity of epidemic process of enterovirus SM, based on data from laboratory examination of patients, was detected in a group of organized pre-school and school age children during summer-autumn period. . Examination of epidemic nidi and laboratory control of environmental objects have shown that CV causative agent transmission factors are, in particular, unboiled water from decentralized sources (boreholes, wells, springs), water from open waters during bathing, as well as fresh vegetables, fruits, berries and meals produced from them. .
Observational goals for Max '91 to identify the causative agent for impulsive bursts
NASA Technical Reports Server (NTRS)
Batchelor, D. A.
1989-01-01
Recent studies of impulsive hard x ray and microwave bursts suggest that a propagating causative agent with a characteristic velocity of the order of 1000 km/s is responsible for these bursts. The results of these studies are summarized and observable distinguishing characteristics of the various possible agents are highlighted, with emphasis on key observational goals for the Max '91 campaigns. The most likely causative agents suggested by the evidence are shocks, thermal conduction fronts, and propagating modes of magnetic reconnection in flare plasmas. With new instrumentation planned for Max '91, high spatial resolution observations of hard x ray sources have the potential to identify the agent by revealing detailed features of source spatial evolution. Observations with the Very Large Array and other radio imaging instruments are of great importance, as well as detailed modeling of coronal loop structures to place limits on their density and temperature profiles. With the combined hard x ray and microwave imaging observations, aided by loop model results, the simplest causative agent to rule out would be the propagating modes of magnetic reconnection. To fit the observational evidence, reconnection modes would need to travel at approximately the same velocity (the Alfven velocity) in different coronal structures that vary in length by a factor of 10(exp 3). Over such a vast range in loop lengths, it is difficult to believe that the Alfven velocity is constant. Thermal conduction fronts would be suggested by sources that expand along the direction of B and exhibit relatively little particle precipitation. Particle acceleration due to shocks could produce more diverse radially expanding source geometries with precipitation at loop footprints.
Antibiotic resistance patterns of urinary tract pathogens in Turkish children.
Gunduz, Suzan; Uludağ Altun, Hatice
2018-01-01
Knowledge of local antimicrobial resistance patterns is essential for evidence- based empirical antibiotic prescribing. We aimed to investigate the distribution and changes in causative agents of urinary tract infections in children and the resistance rates, and to recommend the most appropriate antibiotics. In this retrospective study, we evaluated causative agents and antimicrobial resistance in urine isolates from the positive community from September 2014 to April 2016 in a single hospital in Ankara, Turkey. A total of 850 positive urine cultures were identified, of which 588 (69.2%) were from girls and 262 (30.8%) were from boys. Their mean age was 36.5 ± 45.0 months. The most common causative agent was Escherichia coli (64.2% of cases) followed by Klebsiella pneumoniae (14.9%). The overall resistance to ampicillin (62.6%), cephalothin (44.2%), co-trimoxazole (29.8%) and cefuroxime (28.7%) was significant. No resistance to imipenem was detected in the isolates. The least resistance was for amikacin, ceftriaxone, ciprofloxacin and cefepime (0.1, 2.4, 7.5 and 8.3%, respectively). Imipenem was the most active agent against E. coli followed by amikacin (0.2%), ceftriaxone (2.7%) and nitrofurantoin (5.1%). High resistance rates to nitrofurantoin were detected in K. pneumoniae, Proteus and Enterobacteriae . E. coli was the most common causative agent of urinary tract infection in children. Ampicillin, trimethoprim-sulfometaxazole, cephalothin and cefuroxim had the highest resistance rates against urinary tract pathogens in our center. For oral empirical antibiotherapy, cefixime is the most appropriate choice so as to include Klebsiella strains.
[Recurrent epidemics of gastroenteritis caused by norovirus GI.3 in a small hotel].
Soini, Jani; Hemminki, Kaisa; Pirnes, Aija; Roivainen, Merja; Al-Hello, Haider; Maunula, Leena; Kauppinen, Ari; Miettinen, Likka; Smit, Pieter W; Huusko, Sari; Toikkanen, Salla; Rimhanen-Finne, Ruska
2016-01-01
Recurrent cases of gastroenteritis occurred in a small hotel. The causative agent of disease could not be detected. The cause and the source of the disease were established through epidemiological investigations and laboratory diagnosis. The causative agent of the disease was norovirus GI.3. Norovirus GI was detected in the water from the well and on surfaces at the hotel. Both epidemiological investigations and laboratory diagnostics are needed in resolving epidemics. Continuous development of laboratory methods is important.
Gazestani, Vahid H; Salavati, Reza
2015-01-01
Trypanosoma brucei is a vector-borne parasite with intricate life cycle that can cause serious diseases in humans and animals. This pathogen relies on fine regulation of gene expression to respond and adapt to variable environments, with implications in transmission and infectivity. However, the involved regulatory elements and their mechanisms of actions are largely unknown. Here, benefiting from a new graph-based approach for finding functional regulatory elements in RNA (GRAFFER), we have predicted 88 new RNA regulatory elements that are potentially involved in the gene regulatory network of T. brucei. We show that many of these newly predicted elements are responsive to both transcriptomic and proteomic changes during the life cycle of the parasite. Moreover, we found that 11 of predicted elements strikingly resemble previously identified regulatory elements for the parasite. Additionally, comparison with previously predicted motifs on T. brucei suggested the superior performance of our approach based on the current limited knowledge of regulatory elements in T. brucei.
Sykes, Steven; Szempruch, Anthony; Hajduk, Stephen
2015-03-01
α-Ketoglutarate decarboxylase (α-KDE1) is a Krebs cycle enzyme found in the mitochondrion of the procyclic form (PF) of Trypanosoma brucei. The bloodstream form (BF) of T. brucei lacks a functional Krebs cycle and relies exclusively on glycolysis for ATP production. Despite the lack of a functional Krebs cycle, α-KDE1 was expressed in BF T. brucei and RNA interference knockdown of α-KDE1 mRNA resulted in rapid growth arrest and killing. Cell death was preceded by progressive swelling of the flagellar pocket as a consequence of recruitment of both flagellar and plasma membranes into the pocket. BF T. brucei expressing an epitope-tagged copy of α-KDE1 showed localization to glycosomes and not the mitochondrion. We used a cell line transfected with a reporter construct containing the N-terminal sequence of α-KDE1 fused to green fluorescent protein to examine the requirements for glycosome targeting. We found that the N-terminal 18 amino acids of α-KDE1 contain overlapping mitochondrion- and peroxisome-targeting sequences and are sufficient to direct localization to the glycosome in BF T. brucei. These results suggest that α-KDE1 has a novel moonlighting function outside the mitochondrion in BF T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Aminoacyl-tRNA synthetases as drug targets in eukaryotic parasites☆
Pham, James S.; Dawson, Karen L.; Jackson, Katherine E.; Lim, Erin E.; Pasaje, Charisse Flerida A.; Turner, Kelsey E.C.; Ralph, Stuart A.
2013-01-01
Aminoacyl-tRNA synthetases are central enzymes in protein translation, providing the charged tRNAs needed for appropriate construction of peptide chains. These enzymes have long been pursued as drug targets in bacteria and fungi, but the past decade has seen considerable research on aminoacyl-tRNA synthetases in eukaryotic parasites. Existing inhibitors of bacterial tRNA synthetases have been adapted for parasite use, novel inhibitors have been developed against parasite enzymes, and tRNA synthetases have been identified as the targets for compounds in use or development as antiparasitic drugs. Crystal structures have now been solved for many parasite tRNA synthetases, and opportunities for selective inhibition are becoming apparent. For different biological reasons, tRNA synthetases appear to be promising drug targets against parasites as diverse as Plasmodium (causative agent of malaria), Brugia (causative agent of lymphatic filariasis), and Trypanosoma (causative agents of Chagas disease and human African trypanosomiasis). Here we review recent developments in drug discovery and target characterisation for parasite aminoacyl-tRNA synthetases. PMID:24596663
Kim, Hee-Sook; Park, Sung Hee; Günzl, Arthur; Cross, George A M
2013-01-01
Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei.
Ostoa-Saloma, P; Garza-Ramos, G; Ramírez, J; Becker, I; Berzunza, M; Landa, A; Gómez-Puyou, A; Tuena de Gómez-Puyou, M; Pérez-Montfort, R
1997-03-15
The gene that encodes for triosephosphate isomerase from Trypanosoma cruzi was cloned and sequenced. In T. cruzi, there is only one gene for triosephosphate isomerase. The enzyme has an identity of 72% and 68% with triosephosphate isomerase from Trypanosoma brucei and Leishmania mexicana, respectively. The active site residues are conserved: out of the 32 residues that conform the interface of dimeric triosephosphate isomerase from T. brucei, 29 are conserved in the T. cruzi enzyme. The enzyme was expressed in Escherichia coli and purified to homogeneity. Data from electrophoretic analysis under denaturing techniques and filtration techniques showed that triosephosphate isomerase from T. cruzi is a homodimer. Some of its structural and kinetic features were determined and compared to those of the purified enzymes from T. brucei and L. mexicana. Its circular dichroism spectrum was almost identical to that of triosephosphate isomerase from T. brucei. Its kinetic properties and pH optima were similar to those of T. brucei and L. mexicana, although the latter exhibited a higher Vmax with glyceraldehyde 3-phosphate as substrate. The sensitivity of the three enzymes to the sulfhydryl reagent methylmethane thiosulfonate (MeSO2-SMe) was determined; the sensitivity of the T. cruzi enzyme was about 40 times and 200 times higher than that of the enzymes from T. brucei and L. mexicana, respectively. Triosephosphate isomerase from T. cruzi and L. mexicana have the three cysteine residues that exist in the T. brucei enzyme (positions 14, 39, 126, using the numbering of the T. brucei enzyme); however, they also have an additional residue (position 117). These data suggest that regardless of the high identity of the three trypanosomatid enzymes, there are structural differences in the disposition of their cysteine residues that account for their different sensitivity to the sulfhydryl reagent. The disposition of the cysteine in triosephosphate isomerase from T. cruzi appears to make it unique for inhibition by modification of its cysteine.
Abdeen, Sanofar; Salim, Nilshad; Mammadova, Najiba; Summers, Corey M; Goldsmith-Pestana, Karen; McMahon-Pratt, Diane; Schultz, Peter G; Horwich, Arthur L; Chapman, Eli; Johnson, Steven M
2016-11-01
Trypanosoma brucei are protozoan parasites that cause African sleeping sickness in humans (also known as Human African Trypanosomiasis-HAT). Without treatment, T. brucei infections are fatal. There is an urgent need for new therapeutic strategies as current drugs are toxic, have complex treatment regimens, and are becoming less effective owing to rising antibiotic resistance in parasites. We hypothesize that targeting the HSP60/10 chaperonin systems in T. brucei is a viable anti-trypanosomal strategy as parasites rely on these stress response elements for their development and survival. We recently discovered several hundred inhibitors of the prototypical HSP60/10 chaperonin system from Escherichia coli, termed GroEL/ES. One of the most potent GroEL/ES inhibitors we discovered was compound 1. While examining the PubChem database, we found that a related analog, 2e-p, exhibited cytotoxicity to Leishmania major promastigotes, which are trypanosomatids highly related to Trypanosoma brucei. Through initial counter-screening, we found that compounds 1 and 2e-p were also cytotoxic to Trypanosoma brucei parasites (EC 50 =7.9 and 3.1μM, respectively). These encouraging initial results prompted us to develop a library of inhibitor analogs and examine their anti-parasitic potential in vitro. Of the 49 new chaperonin inhibitors developed, 39% exhibit greater cytotoxicity to T. brucei parasites than parent compound 1. While many analogs exhibit moderate cytotoxicity to human liver and kidney cells, we identified molecular substructures to pursue for further medicinal chemistry optimization to increase the therapeutic windows of this novel class of chaperonin-targeting anti-parasitic candidates. An intriguing finding from this study is that suramin, the first-line drug for treating early stage T. brucei infections, is also a potent inhibitor of GroEL/ES and HSP60/10 chaperonin systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yinnesu, Asmamaw; Nurfeta, Ajebu
2012-03-01
The replacement value of dried Erythrina brucei leaf for cotton seed meal (CSM) on growth performance and carcass characteristics was evaluated. Twenty-five yearling buck goats (15.8 ± 1.4 kg) were assigned into five treatments in a randomized complete block design: natural grass hay alone (T1) or supplemented with 100% CSM (T2), 67% CSM + 33% E. brucei (T3), 33% CSM + 67% E. brucei (T4), and 100% E. brucei (T5) on dry matter (DM) basis. Supplemented goats consumed more (P < 0.05) total DM and organic matter (OM) than the non-supplemented group, but the intakes were not influenced (P > 0.05) by the proportion of the supplements. The highest (P < 0.05) crude protein (CP) intake was observed in goats supplemented with CSM alone, whereas the lowest intake was observed in the non-supplemented group. Total CP intake decreased (P < 0.05) with increasing levels of E. brucei in the supplement mixture. The supplemented goats gained more (P < 0.05) weight than the control group. Apparent DM and OM digestibility was higher (P < 0.05) in supplemented goats than in the non-supplemented ones, but similar (P > 0.05) among the supplemented group. The digestibility of CP was higher (P < 0.05) for supplemented goats, except in those goats fed E. brucei alone, than the non-supplemented group. Slaughter weight, empty body weight, hot carcass weight, dressing percentage, rib eye muscle area, and total edible offals were higher (P < 0.05) for supplemented goats than for the non-supplemented ones. It could be concluded that E. brucei could be used as a substitute to CSM under smallholder production systems.
Dermatophytes and other fungi associated with skin mycoses in Tripoli, Libya.
Ellabib, M S; Khalifa, Z; Kavanagh, K
2002-04-01
This study sought to determine the prevalence of skin infections and their causative agents in the Libyan population. Samples were collected from 2224 patients attending the Dermatology Clinics of the Tripoli Medical Centre (TMC) between August 1997 and December 1999 and were submitted to a mycology laboratory for analysis. Diagnosis was confirmed by microscopic examination in 1180 cases (53.1%) and the causative agent was isolated and cultured in 1160 cases (52.2%). Dermatophytes, Malassezia furfur and Candida albicans were the most common etiological agents isolated. Tinea corporis accounted for 45.9% of cases (85% of cases occurred in children below 15 years of age). The frequency of the other clinical types in descending order was pityriasis versicolor 27.8% (322 cases), candidiosis 13.4% (156 cases), tinea pedis 8.1% (94 cases), tinea manuum 2.6% (30 cases) and tinea barbae 2.2% (26 cases). Trichophyton violaceum was the most common etiological agent, responsible for 44% (300 cases) of dermatophyte infections. Malassezia furfur was ranked the second most frequent causative agent being found in 27.8% of cases, followed by Trichophyton rubrum 13.8% (160 cases) and Candida albicans 10% (116 cases). Other species isolated included Microsporum canis 8.1% (94 cases), Epidermophyton floccosum 6.6% (76 cases) and Trichophyton mentagrophytes 3.1% (36 cases).
Inferences about moral character moderate the impact of consequences on blame and praise.
Siegel, Jenifer Z; Crockett, Molly J; Dolan, Raymond J
2017-10-01
Moral psychology research has highlighted several factors critical for evaluating the morality of another's choice, including the detection of norm-violating outcomes, the extent to which an agent caused an outcome, and the extent to which the agent intended good or bad consequences, as inferred from observing their decisions. However, person-centered accounts of moral judgment suggest that a motivation to infer the moral character of others can itself impact on an evaluation of their choices. Building on this person-centered account, we examine whether inferences about agents' moral character shape the sensitivity of moral judgments to the consequences of agents' choices, and agents' role in the causation of those consequences. Participants observed and judged sequences of decisions made by agents who were either bad or good, where each decision entailed a trade-off between personal profit and pain for an anonymous victim. Across trials we manipulated the magnitude of profit and pain resulting from the agent's decision (consequences), and whether the outcome was caused via action or inaction (causation). Consistent with previous findings, we found that moral judgments were sensitive to consequences and causation. Furthermore, we show that the inferred character of an agent moderated the extent to which people were sensitive to consequences in their moral judgments. Specifically, participants were more sensitive to the magnitude of consequences in judgments of bad agents' choices relative to good agents' choices. We discuss and interpret these findings within a theoretical framework that views moral judgment as a dynamic process at the intersection of attention and social cognition. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A Spirochaete is suggested as the causative agent of Akoya oyster disease by metagenomic analysis
Yasuike, Motoshige; Fujiwara, Atushi; Nakamura, Yoji; Takano, Tomokazu; Takeuchi, Takeshi; Satoh, Noriyuki; Adachi, Yoshikazu; Tsuchihashi, Yasushi; Aoki, Hideo; Odawara, Kazushi; Iwanaga, Shunsuke; Kurita, Jun; Kamaishi, Takashi; Nakayasu, Chihaya
2017-01-01
Mass mortality that is acompanied by reddish browning of the soft tissues has been occurring in cultured pearl oyster, Pinctada fucata martensii. The disease is called Akoya oyster disease (AOD). Although spreading pattern of the disease and transmission experiments suggest that the disease is infectious, the causative agent has not yet been identified. We used shotgun and 16S rRNA-based metagenomic analysis to identify genes that are present specifically in affected oysters. The genes found only in diseased oysters were mostly bacterial origin, suggesting that the causative agent was a bacterial pathogen. This hypothesis was supported by the inhibition of AOD development in naïve oysters injected with the hemolymph of diseased animals followed immediately with penicillin bath-administration. Further analyses of the hemolymph and mantle specifically and universally detected genes of bacteria that belong to phylum Spirochaetes in diseased pearl oysters but not in healthy oysters. By in situ hybridization or immunostaining, a Brachyspira-like bacterium was observed in the smears of hemolymph from affected oysters, but not from healthy oysters. Phylogenetic analysis using 16S rRNA sequences showed that the presumptive causative bacterium was outside of but most closely related to family Brachyspiraceae. We propose ‘Candidatus Maribrachyspira akoyae’ gen. nov, sp nov., for this bacterium. PMID:28771537
Kim, Hee-Sook; Park, Sung Hee; Günzl, Arthur; Cross, George A. M.
2013-01-01
Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei. PMID:23451133
Carrillo-Muñoz, Alfonso J.; Tur-Tur, Cristina; Cárdenes, Delia C.; Estivill, Dolors; Giusiano, Gustavo
2011-01-01
The fungistatic and fungicidal activities of sertaconazole against dermatophytes were evaluated by testing 150 clinical isolates of causative agents of tinea pedis, Trichophyton rubrum, Trichophyton mentagrophytes, and Epidermophyton floccosum. The overall geometric means for fungistatic and fungicidal activities of sertaconazole against these isolates were 0.26 and 2.26 μg/ml, respectively, although values were higher for T. mentagrophytes than for the others. This is the first comprehensive demonstration of the fungicidal activity of sertaconazole against dermatophytes. PMID:21746955
[Laboratory diagnosis of toxoplasmosis].
Strhársky, J; Mad'arová, L; Klement, C
2009-04-01
Under Central European climatic conditions, toxoplasmosis is one of the most common human parasitic diseases. A wide range of methods for both direct and indirect detection of the causative agent are currently available for the laboratory diagnosis of toxoplasmosis. The purpose of the article is to review the history of the discovery of the causative agent of toxoplasmosis and how laboratory diagnostic methods were developed and improved. The main emphasis is placed on current options in the diagnosis of Toxoplasma gondii, more precisely on the serodiagnosis and new trends in molecular biology-based techniques.
Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Van Damme, Els J. M.; Balzarini, Jan; González-Pacanowska, Dolores
2015-01-01
Trypanosoma brucei variant surface glycoproteins (VSG) are glycosylated by both paucimannose and oligomannose structures which are involved in the formation of a protective barrier against the immune system. Here, we report that the stinging nettle lectin (UDA), with predominant N-acetylglucosamine-binding specificity, interacts with glycosylated VSGs and kills parasites by provoking defects in endocytosis together with impaired cytokinesis. Prolonged exposure to UDA induced parasite resistance based on a diminished capacity to bind the lectin due to an enrichment of biantennary paucimannose and a reduction of triantennary oligomannose structures. Two molecular mechanisms involved in resistance were identified: VSG switching and modifications in N-glycan composition. Glycosylation defects were correlated with the down-regulation of the TbSTT3A and/or TbSTT3B genes (coding for oligosaccharyltransferases A and B, respectively) responsible for glycan specificity. Furthermore, UDA-resistant trypanosomes exhibited severely impaired infectivity indicating that the resistant phenotype entails a substantial fitness cost. The results obtained further support the modification of surface glycan composition resulting from down-regulation of the genes coding for oligosaccharyltransferases as a general resistance mechanism in response to prolonged exposure to carbohydrate-binding agents. PMID:25746926
Molecular epidemiology of African sleeping sickness.
Hide, G; Tait, A
2009-10-01
Human sleeping sickness in Africa, caused by Trypanosoma brucei spp. raises a number of questions. Despite the widespread distribution of the tsetse vectors and animal trypanosomiasis, human disease is only found in discrete foci which periodically give rise to epidemics followed by periods of endemicity A key to unravelling this puzzle is a detailed knowledge of the aetiological agents responsible for different patterns of disease--knowledge that is difficult to achieve using traditional microscopy. The science of molecular epidemiology has developed a range of tools which have enabled us to accurately identify taxonomic groups at all levels (species, subspecies, populations, strains and isolates). Using these tools, we can now investigate the genetic interactions within and between populations of Trypanosoma brucei and gain an understanding of the distinction between human- and nonhuman-infective subspecies. In this review, we discuss the development of these tools, their advantages and disadvantages and describe how they have been used to understand parasite genetic diversity, the origin of epidemics, the role of reservoir hosts and the population structure. Using the specific case of T.b. rhodesiense in Uganda, we illustrate how molecular epidemiology has enabled us to construct a more detailed understanding of the origins, generation and dynamics of sleeping sickness epidemics.
Sizikova, T E; Lebedev, V N; Pantyukhov, V B; Borisevich, S V; Merkulov, V A
2015-01-01
Experience of study and possible ways of elimination of false positive and false negative results during execution of polymerase chain reaction on an example of Junin virus RNA detection. MATERIALSS AND METHODS: Junin virus--causative agent of Argentine hemorrhagic fever (AHF) strain XJpR37/5787 was obtained from the State collection of pathogenicity group I causative agents of the 48th Central Research Institute. Reagent kit for detection of Junin virus RNA by RT-PCR was developed in the Institute and consists of 4 sets: for isolation of RNA, execution of reverse-transcription reaction, execution of PCR and electrophoretic detection of PCR products. RT-PCR was carried out by a standard technique. Continuous cell cultures of African green monkey Vero B, GMK-AH-1(D) were obtained from the museum of cell culture department of the Centre. An experimental study of the effect of various factors of impact on the sample under investigation ("thawing-freezing", presence of formaldehyde, heparin) on the obtaining of false negative results during Junin virus RNA detection by using RT-PCR was studied. Addition of 0.01% heparin to the samples was shown to completely inhibit PCR. Addition of 0.05% formaldehyde significantly reduces sensitivity of the method. A possibility of reduction of analysis timeframe from 15 to 5 days was shown during detection of the causative agent in samples with low concentration of the latter by growing the samples and subsequent analysis of the material obtained by using RT-PCR. During detection of causative agent by using RT-PCR false negative results could appear in the presence of formaldehyde and heparin in the sample. A possibility of elimination of false negative PCR results due to concentration of the causative agent in the sample under investigation at a level below sensitivity threshold was shown on the example of Junin virus RNA detection by using growing of the pathogen in appropriate accumulation system with subsequent analysis of the material obtained using PCR.
Skerk, V; Schönwald, S; Bobinac, E; Bejuk, D; Zrinsćak, J
1995-01-01
A total number of 836 episodes of bacteremia and fungemia were examined in 823 hospitalized patients in the University Hospital of Infectious Diseases "Dr Fran Mihaljević" Zagreb from the beginning of 1987 to the end of 1991. Twenty-five percent of them were nosocomial bacteremias and 5% were polymicrobial bacteremias. The most frequently isolated causative agents were Salmonella spp. (26%), Escherichia coli (17%), Streptococcus pneumoniae (11%) and Staphylococcus aureus (8%). There were 34% of gram-positive bacteremias. The increased frequency of nosocomial bacteremias caused by coagulase-negative staphylococci was recorded. The frequency of coagulase-negative staphylococci strains resistant to gentamicin and Klebsiella spp. strains resistant to cefotaxime was increased. Shock was present in 19% of episodes. Relation between septic shock occurrence and causative agent of bacteremia was not proved. Mortality in patients with bacteremia was 13%, and total mortality was 20%. The outcome of the disease was in direct relation with causative agent of bacteremia. The initial empiric antimicrobial therapy was prolonged in 91% of episodes of bacteremia after blood culture results were known.
Park, Won-Ju; Yoo, Seok-Ju; Lee, Suk-Ho; Chung, Jae-Woo; Jang, Keun-Ho; Moon, Jai-Dong
2015-01-01
An outbreak of acute febrile illness occurred in the Republic of Korea Air Force boot camp from May to July 2011. An epidemiological investigation of the causative agent, which was of a highly infective nature, was conducted. Throat swabs were carried out and a multiplex reverse transcriptase-polymerase chain reaction (RT-PCR) assay was performed to identify possible causative factors. The mean age of patients who had febrile illness during the study period was 20.24 years. The multiplex RT-PCR assay identified respiratory syncytial virus (RSV) as the causative agent. The main symptoms were sore throat (76.0%), sputum (72.8%), cough (72.1%), tonsillar hypertrophy (67.9%), and rhinorrhea (55.9%). The mean temperature was 38.75°C and the attack rate among the recruits was 15.7% (588 out of 3750 recruits), while the mean duration of fever was 2.3 days. The prognosis was generally favorable with supportive care but recurrent fever occurred in 10.1% of the patients within a month. This is the first epidemiological study of an RSV outbreak that developed in a healthy young adult group. In the event of an outbreak of an acute febrile illness of a highly infective nature in facilities used by a young adult group, RSV should be considered among the possible causative agents.
Reactivation of triosephosphate isomerase from three trypanosomatids and human: effect of suramin.
Gao, X G; Garza-Ramos, G; Saavedra-Lira, E; Cabrera, N; De Gómez-Puyou, M T; Perez-Montfort, R; Gómez-Puyou, A
1998-01-01
The reactivation of the homodimeric triosephosphate isomerases (TIMs) from Trypanosoma brucei, T. cruzi, Leishmania mexicana and humans was determined after their denaturation with guanidine hydrochloride. In the range of 2-32 microg of T. brucei TIM per ml and 0.2-5 microg of the other enzymes per ml, the rate and extent of TIM reactivation depended on protein concentration, indicating that at these protein concentrations, the rate-limiting step of reactivation is monomer association and not monomer folding. The rate of monomer association was more than one order of magnitude lower in the T. brucei enzyme than in the other three enzymes. Suramin is a drug of choice in the treatment of sleeping sickness, but its mechanism of action is not known. At micromolar concentrations, Suramin inhibited the reactivation of the four enzymes, but the extent of inhibition by Suramin decreased with increasing protein concentration as consequence of a diminution of the life time of the folded monomer. Since the life time of the monomer of T. brucei TIM is longer than that of the other enzymes, Suramin is a more effective inhibitor of the reactivation of TIM from T. brucei, particularly at monomer concentrations above 1 microg of protein per ml (monomer concentration approx. 37 nM). Compounds that are structurally related to Suramin also inhibit TIM reactivation; their effect was about five times more pronounced in the enzyme from T. brucei than in human TIM. PMID:9576855
Omobowale, Temidayo O.; Oyagbemi, Ademola A.; Oyewunmi, Oyefunbi A.; Adejumobi, Olumuyiwa A.
2015-01-01
Introduction: The medicinal properties of Azadirachta indica have been harnessed for many years in the treatment of many diseases in both humans and animals. Materials and Methods: Twenty-five apparently healthy dogs weighing between 3 and 8 kg were randomly divided into five groups with five dogs in each group. Ameliorative effect of A. indica on erythrocyte antioxidant status and markers of oxidative stress were assessed. Liver and kidney function tests were also performed. Results: Pre-treatment with methanolic extract of Azadirachta indica (MEAI) at different doses did not significantly alter the values of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activity in Trypanosoma brucei infection. Although, serum creatinine significantly (P < 0.05) decreased with pre-treatment with 50 mg/kg A. indica, after 2 weeks of T. brucei infection. However, the reduced glutathione (GSH) content of the erythrocyte increased significantly in animals pre-treated with 50 mg/kg and 200 mg/kg of A. indica respectively. Markers of oxidative stress such as malondialdehyde and hydrogen peroxide generated were higher in animals infected with T. brucei with no significant (P >0.05) difference compared to the values obtained in pre-treated animals. Pre-treatment with 100 mg/kg and 200 mg/kg of A. indica significantly (P < 0.05) decreased serum myeloperoxidase activity at 2 weeks post-infection with T. brucei. Conclusion: From this study, MEAI showed significant ability to attenuate oxidative stress and inflammation during experimental T. brucei infection. PMID:26130936
USDA-ARS?s Scientific Manuscript database
Several benzoic acid analogs showed antifungal activity against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis. Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids increased by addition of a methyl, methoxyl...
Brown, Scott M; Lehman, Preston M; Kern, Ryan A; Henning, Jill D
2015-06-01
Prevalence studies of Borrelia burgdorferi and Anaplasma phagocytophilum have been rare for ticks from southwestern Pennsylvania. We collected 325 Ixodes scapularis ticks between 2011 and 2012 from four counties in southwestern Pennsylvania. We tested for the presence of Borrelia burgdorferi and Anaplasma phagocytophilum using PCR. Of the ticks collected from Pennsylvania, B. burgdorferi (causative agent of Lyme disease) was present in 114/325 (35%) and Anaplasma phagocytophilum (causative agent of Human Granulocytic Anaplasmosis) was present in 48/325 (15%) as determined by PCR analysis. © 2015 The Society for Vector Ecology.
Regulation and spatial organization of PCNA in Trypanosoma brucei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, Doris; Gassen, Alwine; Maiser, Andreas
2012-03-23
Highlights: Black-Right-Pointing-Pointer Characterization of the proliferating cell nuclear antigen in Trypanosoma brucei (TbPCNA). Black-Right-Pointing-Pointer TbPCNA is a suitable marker to detect replication in T. brucei. Black-Right-Pointing-Pointer TbPCNA distribution and regulation is different compared to closely related parasites T. cruzi and Leishmania donovani. -- Abstract: As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. bruceimore » (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.« less
de Sousa, Karina Pires; Atouguia, Jorge; Silva, Marcelo Sousa
2010-05-01
Metalloproteinases (MMP) belong to the family of cation dependent endopeptidases that degrade matrices at physiological pH and to cleave extracellular matrix proteins. They play an important role in diverse physiological and pathological processes; not only there diverse types of MMP differ in structure and functionally, but also their enzymatic activity is regulated at multiple levels. Trying to shed some light over the processes that govern the pathology of African Trypanosomiasis, the aim of the present study was to examine the proteolytic activity of the crude trypanosome protein extract obtained from the bloodstream forms of Trypanosoma brucei brucei parasites. We hereby report the partial biochemical characterization of a neutral Trypanosoma brucei-metalloproteinase that displays marked proteolytic activities on gelatin and casein, with a molecular mass of approximately 40 kDa, whose activity is strongly dependent of pH and temperature. Furthermore, we show that this activity can be inhibited by classical MMP inhibitors such as EDTA, EGTA, phenantroline, and also by tetracycline and derivatives. This study has a relevant role in the search for new therapeutical targets, for the use of metalloproteinases inhibitors as treatment strategies, or as enhancement to trypanocidal drugs used in the treatment of the disease.
Latif, B. M. A.; Adam, Katherine M. G.
1973-01-01
Epidemiological studies, if they are to lead to appropriate preventive procedures, require knowledge of the host distribution of the parasite. Progress in the epidemiology of African trypanosomiasis is restricted by the lack of a reliable and simple method of differentiating Trypanosoma brucei, T. rhodesiense, and T. gambiense. The recently introduced blood inoculation infectivity test promises to fulfil this need by distinguishing T. brucei from T. rhodesiense, but it would not be suitable for separating T. brucei from T. gambiense, since rats and mice are frequently refractory to infection by fresh isolates of T. gambiense. Previous studies had indicated that the indirect fluorescent antibody test might differentiate not only the subgenera of the salivarian trypanosome species but also members of the subgenus Trypanozoon. A method of performing the test is described that enables T. brucei, T. rhodesiense, and T. gambiense to be differentiated by the titre of the sera. The method might be used in conjunction with the blood inoculation infectivity test to distinguish between new isolates of the subgenus Trypanozoon in East Africa, and also to search for possible animal reservoirs of T. gambiense in West Africa. PMID:4587481
Causative Agents of Aspergillosis Including Cryptic Aspergillus Species and A. fumigatus.
Toyotome, Takahito
2016-01-01
Aspergillosis is an important deep mycosis. The causative agents are Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, and Aspergillus terreus, of which A. fumigatus is the most prevalent. Cryptic Aspergillus spp., which morphologically resemble representative species of each Aspergillus section, also cause aspergillosis. Most of the cryptic species reveal different susceptibility patterns and/or different secondary metabolite profiles, also called exometabolome in this manuscript, from those representative species. On the other hand, azole-resistant A. fumigatus strains in clinical specimens and in the environment have been reported. Therefore, it is imperative to precisely identify the species, including cryptic Aspergillus spp., and evaluate the susceptibility of isolates.In this manuscript, some of the causative cryptic Aspergillus spp. are briefly reviewed. In addition, the exometabolome of Aspergillus section Fumigati is described. Finally, azole resistance of A. fumigatus is also discussed, in reference to several studies from Japan.
A Minimal Anaphase Promoting Complex/Cyclosome (APC/C) in Trypanosoma brucei
Bessat, Mohamed; Knudsen, Giselle; Burlingame, Alma L.; Wang, Ching C.
2013-01-01
The anaphase-promoting complex/cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that initiates chromosome segregation and mitotic exit by targeting critical cell-cycle regulators for proteolytic destruction. Previously, seven APC/C subunit homologues were identified in the genome of Trypanosoma brucei. In the present study, we tested five of them in yeast complementation studies and found none of them capable of complementing the yeast mutants lacking the corresponding subunits, suggesting significant discrepancies between the two APC/C’s. Subunit homologues of mitotic checkpoint complex (MCC) have not yet been identified in T. brucei, raising the possibility that a MCC-APC/C complex equivalent may not exist in T. brucei. We performed tandem affinity purification of the protein complex containing a APC1 fusion protein expressed in the cells enriched in different phases of the cell cycle of procyclic form T. brucei, and compared their protein profiles using LC-MS/MS analyses. The seven putative APC/C subunits were identified in the protein complex throughout the cell cycle together with three additional proteins designated the associated proteins (AP) AP1, AP2 and AP3. Abundance of the 10 proteins remained relatively unchanged throughout the cell cycle, suggesting that they are the core subunits of APC/C. AP1 turned out to be a homologue of APC4. An RNAi knockdown of APC4 and AP3 showed no detectable cellular phenotype, whereas an AP2 knockdown enriched the cells in G2/M phase. The AP2-depleted cells showed stabilized mitotic cyclin B. An accumulation of poly-ubiquitinated cyclin B was indicated in the cells treated with the proteasome inhibitor MG132, demonstrating the involvement of proteasome in degrading poly-ubiquitinated cyclin B. In all, a 10-subunit APC/C machinery with a conserved function is identified in T. brucei without linking to a MCC-like complex, thus indicating a unique T. brucei APC/C. PMID:23533609
Lheureux, M; Lheureux, M; Vervoort, T; Van Meirvenne, N; Steinert, M
1979-01-01
Polyadenylated RNA isolated from total polyribosomes of two variable antigen types (VATs) of T. brucei brucei were shown to program the synthesis, in mRNA-dependant reticulocyte lysates, of a wide variety of polypeptides. After immunoprecipitation of these cell-free products with an homologous antiserum raised against purified variant-specific surface antigen (VSSA), a major electrophoretic band was apparent on fluorography. It was confirmed that this band corresponds to the variable antigen since only an excess of purified homologous antigen will provoke competition. The apparent molecular weight of the in vitro synthesized antigen is about 63,000 daltons. The VSSA mRNA has been found in membrane-bound polyribosomes and a 15 fold immunological purification of this mRNA has been obtained, using partially purified anti-VSSA IgG in conjunction with inactivated Staphylococcus aureus. Images PMID:116191
Protective effect of humus extract against Trypanosoma brucei infection in mice.
Kodama, Hiroshi; Denso; Okazaki, Fumi; Ishida, Saeko
2008-11-01
Humic substances are formed during the decomposition of organic matter in humus, and are found in many natural environments in which organic materials and microorganisms are present. Oral administration of humus extract to mice successfully induced effective protection against experimental challenge by the two subspecies, Trypanosoma brucei brucei and T. brucei gambiense. Mortality was most reduced among mice who received a 3% humus extract for 21 days in drinking water ad libitum. Spleen cells from humus-administered mice exhibited significant non-specific cytotoxic activity against L1210 mouse leukemia target cells. Also, spleen cells produced significantly higher amounts of Interferon-gamma when stimulated in vitro with Concanavalin A than cells from normal controls. These results clearly show that administration to mice of humus extract induced effective resistance against Trypanosoma infection. Enhancement of the innate immune system may be involved in host defense against trypanosomiasis.
Intrinsic DNA curvature in trypanosomes.
Smircich, Pablo; El-Sayed, Najib M; Garat, Beatriz
2017-11-09
Trypanosoma cruzi and Trypanosoma brucei are protozoan parasites causing Chagas disease and African sleeping sickness, displaying unique features of cellular and molecular biology. Remarkably, no canonical signals for RNA polymerase II promoters, which drive protein coding genes transcription, have been identified so far. The secondary structure of DNA has long been recognized as a signal in biological processes and more recently, its involvement in transcription initiation in Leishmania was proposed. In order to study whether this feature is conserved in trypanosomatids, we undertook a genome wide search for intrinsic DNA curvature in T. cruzi and T. brucei. Using a region integrated intrinsic curvature (RIIC) scoring that we previously developed, a non-random distribution of sequence-dependent curvature was observed. High RIIC scores were found to be significantly correlated with transcription start sites in T. cruzi, which have been mapped in divergent switch regions, whereas in T. brucei, the high RIIC scores correlated with sites that have been involved not only in RNA polymerase II initiation but also in termination. In addition, we observed regions with high RIIC score presenting in-phase tracts of Adenines, in the subtelomeric regions of the T. brucei chromosomes that harbor the variable surface glycoproteins genes. In both T. cruzi and T. brucei genomes, a link between DNA conformational signals and gene expression was found. High sequence dependent curvature is associated with transcriptional regulation regions. High intrinsic curvature also occurs at the T. brucei chromosome subtelomeric regions where the recombination processes involved in the evasion of the immune host system take place. These findings underscore the relevance of indirect DNA readout in these ancient eukaryotes.
Arginine and Lysine Transporters Are Essential for Trypanosoma brucei.
Mathieu, Christoph; Macêdo, Juan P; Hürlimann, Daniel; Wirdnam, Corina; Haindrich, Alexander C; Suter Grotemeyer, Marianne; González-Salgado, Amaia; Schmidt, Remo S; Inbar, Ehud; Mäser, Pascal; Bütikofer, Peter; Zilberstein, Dan; Rentsch, Doris
2017-01-01
For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 μM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-β-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 μM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.
Arginine and Lysine Transporters Are Essential for Trypanosoma brucei
Hürlimann, Daniel; Wirdnam, Corina; Haindrich, Alexander C.; Suter Grotemeyer, Marianne; González-Salgado, Amaia; Schmidt, Remo S.; Inbar, Ehud; Mäser, Pascal; Bütikofer, Peter; Zilberstein, Dan; Rentsch, Doris
2017-01-01
For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 μM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-β-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 μM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei. PMID:28045943
Role of the Trypanosoma brucei HEN1 Family Methyltransferase in Small Interfering RNA Modification
Shi, Huafang; Barnes, Rebecca L.; Carriero, Nicholas; Atayde, Vanessa D.
2014-01-01
Parasitic protozoa of the flagellate order Kinetoplastida represent one of the deepest branches of the eukaryotic tree. Among this group of organisms, the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser degree in Leishmania (Viannia) spp. The pathway is triggered by long double-stranded RNA (dsRNA) and in T. brucei requires a set of five core genes, including a single Argonaute (AGO) protein, T. brucei AGO1 (TbAGO1). The five genes are conserved in Leishmania (Viannia) spp. but are absent in other major kinetoplastid species, such as Trypanosoma cruzi and Leishmania major. In T. brucei small interfering RNAs (siRNAs) are methylated at the 3′ end, whereas Leishmania (Viannia) sp. siRNAs are not. Here we report that T. brucei HEN1, an ortholog of the metazoan HEN1 2′-O-methyltransferases, is required for methylation of siRNAs. Loss of TbHEN1 causes a reduction in the length of siRNAs. The shorter siRNAs in hen1−/− parasites are single stranded and associated with TbAGO1, and a subset carry a nontemplated uridine at the 3′ end. These findings support a model wherein TbHEN1 methylates siRNA 3′ ends after they are loaded into TbAGO1 and this methylation protects siRNAs from uridylation and 3′ trimming. Moreover, expression of TbHEN1 in Leishmania (Viannia) panamensis did not result in siRNA 3′ end methylation, further emphasizing mechanistic differences in the trypanosome and Leishmania RNAi mechanisms. PMID:24186950
Obesity, metabolic syndrome and adipocytes
USDA-ARS?s Scientific Manuscript database
Obesity and metabolic syndrome are examples whereby excess energy consumption and energy flux disruptions are causative agents of increased fatness. Because other, as yet elucidated, cellular factors may be involved and because potential treatments of these metabolic problems involve systemic agents...
USDA-ARS?s Scientific Manuscript database
Structure-activity analysis revealed that antifungal activities of benzoic and gallic acids were increased against strains of Aspergillus flavus, A. fumigatus and A. terreus, causative agents of human aspergillosis, by addition of a methyl, methoxyl or a chloro group at position 4 of the aromatic ri...
Interactions among Trypanosoma brucei RAD51 paralogues in DNA repair and antigenic variation
Dobson, Rachel; Stockdale, Christopher; Lapsley, Craig; Wilkes, Jonathan; McCulloch, Richard
2011-01-01
Homologous recombination in Trypanosoma brucei is used for moving variant surface glycoprotein (VSG) genes into expression sites during immune evasion by antigenic variation. A major route for such VSG switching is gene conversion reactions in which RAD51, a universally conserved recombinase, catalyses homology-directed strand exchange. In any eukaryote, RAD51-directed strand exchange in vivo is mediated by further factors, including RAD51-related proteins termed Rad51 paralogues. These appear to be ubiquitously conserved, although their detailed roles in recombination remain unclear. In T. brucei, four putative RAD51 paralogue genes have been identified by sequence homology. Here we show that all four RAD51 paralogues act in DNA repair, recombination and RAD51 subnuclear dynamics, though not equivalently, while mutation of only one RAD51 paralogue gene significantly impedes VSG switching. We also show that the T. brucei RAD51 paralogues interact, and that the complexes they form may explain the distinct phenotypes of the mutants as well as observed expression interdependency. Finally, we document the Rad51 paralogues that are encoded by a wide range of protists, demonstrating that the Rad51 paralogue repertoire in T. brucei is unusually large among microbial eukaryotes and that one member of the protein family corresponds with a key, conserved eukaryotic Rad51 paralogue. PMID:21615552
[Etiology of acute and chronic pyelonephritis in children in Khabarovsk region].
Kozlova, E A; Kholodok, G N; Alekseeva, I N; Kozlov, V K
2008-01-01
Microflora of urinary tract was studied in 419 children aged 1 - 17 years and hospitalized due to acute or chronic pyelonephritis. Etiology of inflammatory process was established in 57.8% of cases. According to our study, etiologic structure of causative agents of pyelonephritis did not differ from all-Russian data. The leading positions belonged to Gram-negative microorganisms from Enterobacteriaceae family: Escherichia coli, Proteus mirabilis, and Klebsiella spp. Results of the study point to high susceptibility of main causative agents of pyelonephritis to cephalosporins, aminoglycosides, and fluoroquinolones. High resistance to aminopenicillines was noted. In several isolates from Enterobacteriaceae family significant resistance to nalidixic acid and furazidin was observed.
Elston, Ralph A; Moore, James; Abbott, Cathryn L
2012-12-03
Mikrocytos mackini, causative agent of Denman Island disease in Pacific oysters Crassostrea gigas and other oyster species, was found in 2011 in a previously unreported host, the Kumamoto oyster C. sikamea, in Humboldt Bay, California, USA. The detection was also the first reported finding of M. mackini in California. Prevalence was estimated as high as approximately 27% from pooled samples analyzed by PCR. Higher prevalence appeared related to longer residence time in the bay and somewhat colder than typical winter seawater temperatures. No M. mackini was detected in Humboldt Bay juvenile Kumamoto oysters or Pacific oyster brood or seed stock in 2011 or 2012.
Sublett, J Wesley; Bernstein, David I
2011-11-01
Work-related rhinitis, which includes work-exacerbated rhinitis and occupational rhinoconjunctivitis (OR), is two to three times more common than occupational asthma. High molecular weight proteins and low molecular weight chemicals have been implicated as causes of OR. The diagnosis of work-related rhinitis is established based on occupational history and documentation of immunoglobulin E (IgE) mediated sensitization to the causative agent if possible. Management of work-related rhinitis is similar to that of other causes of rhinitis and includes elimination or reduction of exposure to causative agents combined with pharmacotherapy. If allergens are commercially available, allergen immunotherapy can be considered. Copyright © 2011 Elsevier Inc. All rights reserved.
Gomes, Joana; Leão, Celia; Ferreira, Filipa; Afonso, Maria Odete; Santos, Catarina; Josenando, Theophile; Seixas, Jorge; Atouguia, Jorge; Centeno-Lima, Sonia
2009-10-24
Tsetse flies (Glossina spp.) are responsible for the transmission of trypanosomes, agents of animal and Human African Trypanosomiasis (HAT). These diseases are associated with considerable animal and human economical loss, morbidity and mortality. The correct identification of trypanosomes species infecting tsetse flies is crucial for adequate control measures. Identification presently requires technically difficult, cumbersome and expensive on-site fly dissection. To obviate this difficulty we explored the possibility of correctly identifying trypanosomes in tsetse collected, under field conditions, only for number determination. Tsetse flies, that remained exposed for weeks in field traps in the Vista Alegre HAT focus in Angola, were obtained. The flies were not dissected on site and were stored at room temperature for months. DNA extraction using the whole tsetse bodies and PCR analysis were performed in 73 randomly chosen flies. Despite the extensive degradation of the tsetse, DNA extraction was conducted successfully in 62 out of the 73 flies. PCR analysis detected the presence of T. brucei s.l DNA in 3.2 % of the tsetse. This approach could be cost-effective and suitable for vector related HAT control activities in the context of countries where entomological trained personnel is missing and financial resources are limited.
Sommer, J M; Nguyen, T T; Wang, C C
1994-08-15
Import of proteins into the glycosomes of T. brucei resembles the peroxisomal protein import in that C-terminal SKL-like tripeptide sequences can function as targeting signals. Many of the glycosomal proteins do not, however, possess such C-terminal tripeptide signals. Among these, phosphoenolpyruvate carboxykinase (PEPCK (ATP)) was thought to be targeted to the glycosomes by an N-terminal or an internal targeting signal. A limited similarity to the N-terminal targeting signal of rat peroxisomal thiolase exists at the N-terminus of T. brucei PEPCK. However, we found that this peroxisomal targeting signal does not function for glycosomal protein import in T. brucei. Further studies of the PEPCK gene revealed that the C-terminus of the predicted protein does not correspond to the previously deduced protein sequence of 472 amino acids due to a -1 frame shift error in the original DNA sequence. Readjusting the reading frame of the sequence results in a predicted protein of 525 amino acids in length ending in a tripeptide serine-arginine-leucine (SRL), which is a potential targeting signal for import into the glycosomes. A fusion protein of firefly luciferase, without its own C-terminal SKL targeting signal, and T. brucei PEPCK is efficiently imported into the glycosomes when expressed in procyclic trypanosomes. Deletion of the C-terminal SRL tripeptide or the last 29 amino acids of PEPCK reduced the import only by about 50%, while a deletion of the last 47 amino acids completely abolished the import. These results suggest that T. brucei PEPCK may contain a second, internal glycosomal targeting signal upstream of the C-terminal SRL sequence.
Use of chiral cell shape to ensure highly directional swimming in trypanosomes
2017-01-01
Swimming cells typically move along a helical path or undergo longitudinal rotation as they swim, arising from chiral asymmetry in hydrodynamic drag or propulsion bending the swimming path into a helix. Helical paths are beneficial for some forms of chemotaxis, but why asymmetric shape is so prevalent when a symmetric shape would also allow highly directional swimming is unclear. Here, I analyse the swimming of the insect life cycle stages of two human parasites; Trypanosoma brucei and Leishmania mexicana. This showed quantitatively how chirality in T. brucei cell shape confers highly directional swimming. High speed videomicrographs showed that T. brucei, L. mexicana and a T. brucei RNAi morphology mutant have a range of shape asymmetries, from wild-type T. brucei (highly chiral) to L. mexicana (near-axial symmetry). The chiral cells underwent longitudinal rotation while swimming, with more rapid longitudinal rotation correlating with swimming path directionality. Simulation indicated hydrodynamic drag on the chiral cell shape caused rotation, and the predicted geometry of the resulting swimming path matched the directionality of the observed swimming paths. This simulation of swimming path geometry showed that highly chiral cell shape is a robust mechanism through which microscale swimmers can achieve highly directional swimming at low Reynolds number. It is insensitive to random variation in shape or propulsion (biological noise). Highly symmetric cell shape can give highly directional swimming but is at risk of giving futile circular swimming paths in the presence of biological noise. This suggests the chiral T. brucei cell shape (associated with the lateral attachment of the flagellum) may be an adaptation associated with the bloodstream-inhabiting lifestyle of this parasite for robust highly directional swimming. It also provides a plausible general explanation for why swimming cells tend to have strong asymmetries in cell shape or propulsion. PMID:28141804
Adeleye, Olushola Emmanuel; Ale, Jude Makinde; Sogebi, Emmanuella Olubanke Amope; Durotoye, Ladoke A; Adeleye, Adenike Iyabo; Adeyemi, Samuel Olufemi; Olukunle, Johnny Olufemi
2018-03-23
This study was carried out to determine the blood pressure changes in experimentally Trypanosoma brucei brucei-infected Wistar albino rats and diminazene aceturate-treated rats. Twenty-four rats were purchased and divided into four groups consisting of six rats each. Control group (CON) received 0.5 mL of distilled water, i.m., infected but not treated group (INF) received 2×106 trypanosome/mL i.m., infected but diminazene aceturate-treated group (INFDIM) received 2×106 trypanosome/mL, 3.5 mg/kg, i.m.) and non-infected but diminazene aceturate-treated group (DIM) received 3.5 mg/kg, i.m. and served as negative control. The blood pressures were measured using a CODA 2® non-invasive blood pressure monitor (Kent Scientific, USA). The results were compiled and statistical analysis was done with significance set at p≥0.05. The values of the blood pressure readings of the Trypanosoma-infected INF (137.0±2.0 mmHg) and diminazene-treated rats INFDIM (125.0±7.5 mmHg) when compared to the control group (168.0±3.0 mmHg) were significantly lower (p≤0.05) at the end of day 7. The heart rate was also significantly reduced in the INF (403.5±1.5 beats/min) and DIM (445.0±24 beats/min) groups of rats when compared with the control group (613.0±2.0 beats/min) at the end of day 8. The findings indicate the significant reduction in blood pressure and heart rates during Trypanosoma brucei brucei infection and with diminazene aceturate administration. Hence, caution should be exercised when treating trypanosome-infected patients with diminazene aceturate.
Application of calcifying bacteria for remediation of stones and cultural heritages
Dhami, Navdeep Kaur; Reddy, M. Sudhakara; Mukherjee, Abhijit
2014-01-01
Since ages, architects and artists worldwide have focused on usage of durable stones as marble and limestone for construction of beautiful and magnificent historic monuments as European Cathedrals, Roman, and Greek temples, Taj Mahal etc. But survival of these irreplaceable cultural and historical assets is in question these days due to their degradation and deterioration caused by number of biotic and abiotic factors. These causative agents have affected not only the esthetic appearance of these structures, but also lead to deterioration of their strength and durability. The present review emphasizes about different causative agents leading to deterioration and application of microbially induced calcium carbonate precipitation as a novel and potential technology for dealing with these problems. The study also sheds light on benefits of microbial carbonate binders over the traditional agents and future directions. PMID:25018751
Application of calcifying bacteria for remediation of stones and cultural heritages.
Dhami, Navdeep Kaur; Reddy, M Sudhakara; Mukherjee, Abhijit
2014-01-01
Since ages, architects and artists worldwide have focused on usage of durable stones as marble and limestone for construction of beautiful and magnificent historic monuments as European Cathedrals, Roman, and Greek temples, Taj Mahal etc. But survival of these irreplaceable cultural and historical assets is in question these days due to their degradation and deterioration caused by number of biotic and abiotic factors. These causative agents have affected not only the esthetic appearance of these structures, but also lead to deterioration of their strength and durability. The present review emphasizes about different causative agents leading to deterioration and application of microbially induced calcium carbonate precipitation as a novel and potential technology for dealing with these problems. The study also sheds light on benefits of microbial carbonate binders over the traditional agents and future directions.
Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trindade, Sandra; Rijo-Ferreira, Filipa; Carvalho, Tania
Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenousmore » myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. Lastly, these findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.« less
Habila, Nathan; Agbaji, Abel S; Ladan, Zakari; Bello, Isaac A; Haruna, Emmanuel; Dakare, Monday A; Atolagbe, Taofiq O
2010-01-01
Essential oils (EOs) from Cymbopogon citratus (CC), Eucalyptus citriodora (EC), Eucalyptus camaldulensis (ED), and Citrus sinensis (CS) were obtained by hydrodistillation process. The EOs were evaluated in vitro for activity against Trypanosoma brucei brucei (Tbb) and Trypanosoma evansi (T. evansi). The EOs were found to possess antitrypanosomal activity in vitro in a dose-dependent pattern in a short period of time. The drop in number of parasite over time was achieved doses of 0.4 g/ml, 0.2 g/mL, and 0.1 g/mL for all the EOs. The concentration of 0.4 g/mL CC was more potent at 3 minutes and 2 minutes for Tbb and T. evansi, respectively. The GC-MS analysis of the EOs revealed presence of Cyclobutane (96.09%) in CS, 6-octenal (77.11%) in EC, Eucalyptol (75%) in ED, and Citral (38.32%) in CC among several other organic compounds. The results are discussed in relation to trypanosome chemotherapy.
Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice
Trindade, Sandra; Rijo-Ferreira, Filipa; Carvalho, Tania; ...
2016-05-26
Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenousmore » myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. Lastly, these findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness.« less
Genome-Wide SNP Analysis Reveals Distinct Origins of Trypanosoma evansi and Trypanosoma equiperdum
Cuypers, Bart; Van den Broeck, Frederik; Van Reet, Nick; Meehan, Conor J.; Cauchard, Julien; Wilkes, Jonathan M.; Claes, Filip; Goddeeris, Bruno; Birhanu, Hadush; Dujardin, Jean-Claude; Laukens, Kris; Büscher, Philippe
2017-01-01
Abstract Trypanosomes cause a variety of diseases in man and domestic animals in Africa, Latin America, and Asia. In the Trypanozoon subgenus, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense cause human African trypanosomiasis, whereas Trypanosoma brucei brucei, Trypanosoma evansi, and Trypanosoma equiperdum are responsible for nagana, surra, and dourine in domestic animals, respectively. The genetic relationships between T. evansi and T. equiperdum and other Trypanozoon species remain unclear because the majority of phylogenetic analyses has been based on only a few genes. In this study, we have conducted a phylogenetic analysis based on genome-wide SNP analysis comprising 56 genomes from the Trypanozoon subgenus. Our data reveal that T. equiperdum has emerged at least once in Eastern Africa and T. evansi at two independent occasions in Western Africa. The genomes within the T. equiperdum and T. evansi monophyletic clusters show extremely little variation, probably due to the clonal spread linked to the independence from tsetse flies for their transmission. PMID:28541535
The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei
Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa
2015-01-01
The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca2+, and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. PMID:26195527
Motility modes of the parasite Trypanosoma brucei
NASA Astrophysics Data System (ADS)
Temel, Fatma Zeynep; Qu, Zijie; McAllaster, Michael; de Graffenried, Christopher; Breuer, Kenneth
2015-11-01
The parasitic single-celled protozoan Trypanosoma brucei causes African Sleeping Sickness, which is a fatal disease in humans and animals that threatens more than 60 million people in 36 African countries. Cell motility plays a critical role in the developmental phases and dissemination of the parasite. Unlike many other motile cells such as bacteria Escherichia coli or Caulobacter crescentus, the flagellum of T. brucei is attached along the length of its awl-like body, producing a unique mode of motility that is not fully understood or characterized. Here, we report on the motility of T. brucei, which swims using its single flagellum employing both rotating and undulating propulsion modes. We tracked cells in real-time in three dimensions using fluorescent microscopy. Data obtained from experiments using both short-term tracking within the field of view and long-term tracking using a tracking microscope were analyzed. Motility modes and swimming speed were analyzed as functions of cell size, rotation rate and undulation pattern. Research supported by NSF.
The Oral Antimalarial Drug Tafenoquine Shows Activity against Trypanosoma brucei.
Carvalho, Luis; Martínez-García, Marta; Pérez-Victoria, Ignacio; Manzano, José Ignacio; Yardley, Vanessa; Gamarro, Francisco; Pérez-Victoria, José M
2015-10-01
The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Novel Membrane-Bound eIF2α Kinase in the Flagellar Pocket of Trypanosoma brucei▿
Moraes, Maria Carolina S.; Jesus, Teresa C. L.; Hashimoto, Nilce N.; Dey, Madhusudan; Schwartz, Kevin J.; Alves, Viviane S.; Avila, Carla C.; Bangs, James D.; Dever, Thomas E.; Schenkman, Sergio; Castilho, Beatriz A.
2007-01-01
Translational control mediated by phosphorylation of the alpha subunit of the eukaryotic initiation factor 2 (eIF2α) is central to stress-induced programs of gene expression. Trypanosomatids, important human pathogens, display differentiation processes elicited by contact with the distinct physiological milieu found in their insect vectors and mammalian hosts, likely representing stress situations. Trypanosoma brucei, the agent of African trypanosomiasis, encodes three potential eIF2α kinases (TbeIF2K1 to -K3). We show here that TbeIF2K2 is a transmembrane glycoprotein expressed both in procyclic and in bloodstream forms. The catalytic domain of TbeIF2K2 phosphorylates yeast and mammalian eIF2α at Ser51. It also phosphorylates the highly unusual form of eIF2α found in trypanosomatids specifically at residue Thr169 that corresponds to Ser51 in other eukaryotes. T. brucei eIF2α, however, is not a substrate for GCN2 or PKR in vitro. The putative regulatory domain of TbeIF2K2 does not share any sequence similarity with known eIF2α kinases. In both procyclic and bloodstream forms TbeIF2K2 is mainly localized in the membrane of the flagellar pocket, an organelle that is the exclusive site of exo- and endocytosis in these parasites. It can also be detected in endocytic compartments but not in lysosomes, suggesting that it is recycled between endosomes and the flagellar pocket. TbeIF2K2 location suggests a relevance in sensing protein or nutrient transport in T. brucei, an organism that relies heavily on posttranscriptional regulatory mechanisms to control gene expression in different environmental conditions. This is the first membrane-associated eIF2α kinase described in unicellular eukaryotes. PMID:17873083
Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.
2015-01-01
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914
Andersen, Jody L; He, Gui-Xin; Kakarla, Prathusha; K C, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F
2015-01-28
Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.
Vijayasarathy, S; Ernest, I; Itzhaki, J E; Sherman, D; Mowatt, M R; Michels, P A; Clayton, C E
1990-01-01
The fructose bisphosphate aldolase genes of Trypanosoma brucei are interspersed with unrelated genes whose transcript levels show no developmental modulation. Transcription appears approximately constant across the entire locus, suggesting that aldolase mRNA abundance is regulated post-transcriptionally. Images PMID:2349093
Metagenomic analysis of the turkey gut RNA virus community
USDA-ARS?s Scientific Manuscript database
Poultry enteric disease syndromes present an ongoing economic burden to poultry producers worldwide. Despite considerable research into the viral agents associated with these enteric disease syndromes, no single virus has emerged as a likely causative agent and target for prevention and control effo...
Essential Assembly Factor Rpf2 Forms Novel Interactions within the 5S RNP in Trypanosoma brucei
Kamina, Anyango D.; Jaremko, Daniel; Christen, Linda
2017-01-01
ABSTRACT Ribosome biogenesis is a highly complex and conserved cellular process that is responsible for making ribosomes. During this process, there are several assembly steps that function as regulators to ensure proper ribosome formation. One of these steps is the assembly of the 5S ribonucleoprotein particle (5S RNP) in the central protuberance of the 60S ribosomal subunit. In eukaryotes, the 5S RNP is composed of 5S rRNA, ribosomal proteins L5 and L11, and assembly factors Rpf2 and Rrs1. Our laboratory previously showed that in Trypanosoma brucei, the 5S RNP is composed of 5S rRNA, L5, and trypanosome-specific RNA binding proteins P34 and P37. In this study, we characterize an additional component of the 5S RNP, the T. brucei homolog of Rpf2. This is the first study to functionally characterize interactions mediated by Rpf2 in an organism other than fungi. T. brucei Rpf2 (TbRpf2) was identified from tandem affinity purification using extracts prepared from protein A-tobacco etch virus (TEV)-protein C (PTP)-tagged L5, P34, and P37 cell lines, followed by mass spectrometry analysis. We characterized the binding interactions between TbRpf2 and the previously characterized members of the T. brucei 5S RNP. Our studies show that TbRpf2 mediates conserved binding interactions with 5S rRNA and L5 and that TbRpf2 also interacts with trypanosome-specific proteins P34 and P37. We performed RNA interference (RNAi) knockdown of TbRpf2 and showed that this protein is essential for the survival of the parasites and is critical for proper ribosome formation. These studies provide new insights into a critical checkpoint in the ribosome biogenesis pathway in T. brucei. IMPORTANCE Trypanosoma brucei is the parasitic protozoan that causes African sleeping sickness. Ribosome assembly is essential for the survival of this parasite through the different host environments it encounters during its life cycle. The assembly of the 5S ribonucleoprotein particle (5S RNP) functions as one of the regulatory checkpoints during ribosome biogenesis. We have previously characterized the 5S RNP in T. brucei and showed that trypanosome-specific proteins P34 and P37 are part of this complex. In this study, we characterize for the first time the interactions of the homolog of the assembly factor Rpf2 with members of the 5S RNP in another organism besides fungi. Our studies show that Rpf2 is essential in T. brucei and that it forms unique interactions within the 5S RNP, particularly with P34 and P37. These studies have identified parasite-specific interactions that can potentially function as new therapeutic targets against sleeping sickness. PMID:29062898
Essential Assembly Factor Rpf2 Forms Novel Interactions within the 5S RNP in Trypanosoma brucei.
Kamina, Anyango D; Jaremko, Daniel; Christen, Linda; Williams, Noreen
2017-01-01
Ribosome biogenesis is a highly complex and conserved cellular process that is responsible for making ribosomes. During this process, there are several assembly steps that function as regulators to ensure proper ribosome formation. One of these steps is the assembly of the 5S ribonucleoprotein particle (5S RNP) in the central protuberance of the 60S ribosomal subunit. In eukaryotes, the 5S RNP is composed of 5S rRNA, ribosomal proteins L5 and L11, and assembly factors Rpf2 and Rrs1. Our laboratory previously showed that in Trypanosoma brucei , the 5S RNP is composed of 5S rRNA, L5, and trypanosome-specific RNA binding proteins P34 and P37. In this study, we characterize an additional component of the 5S RNP, the T. brucei homolog of Rpf2. This is the first study to functionally characterize interactions mediated by Rpf2 in an organism other than fungi. T . brucei Rpf2 (TbRpf2) was identified from tandem affinity purification using extracts prepared from protein A-tobacco etch virus (TEV)-protein C (PTP)-tagged L5, P34, and P37 cell lines, followed by mass spectrometry analysis. We characterized the binding interactions between TbRpf2 and the previously characterized members of the T. brucei 5S RNP. Our studies show that TbRpf2 mediates conserved binding interactions with 5S rRNA and L5 and that TbRpf2 also interacts with trypanosome-specific proteins P34 and P37. We performed RNA interference (RNAi) knockdown of TbRpf2 and showed that this protein is essential for the survival of the parasites and is critical for proper ribosome formation. These studies provide new insights into a critical checkpoint in the ribosome biogenesis pathway in T. brucei . IMPORTANCE Trypanosoma brucei is the parasitic protozoan that causes African sleeping sickness. Ribosome assembly is essential for the survival of this parasite through the different host environments it encounters during its life cycle. The assembly of the 5S ribonucleoprotein particle (5S RNP) functions as one of the regulatory checkpoints during ribosome biogenesis. We have previously characterized the 5S RNP in T. brucei and showed that trypanosome-specific proteins P34 and P37 are part of this complex. In this study, we characterize for the first time the interactions of the homolog of the assembly factor Rpf2 with members of the 5S RNP in another organism besides fungi. Our studies show that Rpf2 is essential in T. brucei and that it forms unique interactions within the 5S RNP, particularly with P34 and P37. These studies have identified parasite-specific interactions that can potentially function as new therapeutic targets against sleeping sickness.
A case report of tinea pedis caused by Trichosporon faecale in Iran
Fallahi, Ali akbar; Moazeni, Maryam; Noorbakhsh, Fatemeh; Kordbacheh, Parivash; Zaini, Farideh; Mirhendi, Hossein; Zeraati, Hojjat; Rezaie, Sassan
2012-01-01
Trichosporon species are known as the causative agents of cutaneous infections and are involved in systemic, localized, as well as disseminated mycoses particularly in immunocompromised patients. Here we report a case of tinea pedis infection caused by Trichosporon faecale in a healthy 29-year-old woman in the north of Iran. Macroscopic and microscopic characteristics using direct examination as well as culture method revealed the causative agent as Trichosporon species. Molecular analysis of the internal transcribed spacer region validated the initial result and indicated that this case of tinea pedis was caused by T. faecale. The patient was recovered after treatment with topical myconazole accompanied with oral fluconazole. PMID:24371737
[Genodiagnosis and molecular typing of the pathogens for plague, cholera, and anthrax].
Kutyrev, V V; Smirnova, N I
2003-01-01
The paper contains a survey of published data about the use of DNA-diagnostics in indicating and identifying the causative agents of highly dangerous infections like plague, cholera and anthrax. A discussion of data about the genetic relationship between strains of the mentioned causative agents isolated from different sources by using the molecular-typing methods as well as about the evolution ties between strains of different origins is in the focus of attention. Results of comparative studies of nucleotide sequences of genomes or of individual genomes in different Yersinia pestis, Vibrio cholerae and Bacillus anthracis strains, which are indicative of the evolution of their pathogenicity, are also under discussion.
A case of bullous dermatitis artefacta possibly induced by a deodorant spray.
Ikenaga, Satsuki; Nakano, Hajime; Umegaki, Noriko; Moritsugu, Ryuta; Aizu, Takayuki; Kuribayashi, Michihito; Hanada, Katsumi
2006-01-01
Dermatitis artefacta is one of a spectrum of factitious diseases etiologically responsible for skin lesions denied by patients. These factors often make it difficult to identify the causative agents of the condition. Herein, we report a case of bullous dermatitis artefacta in a 12-year-old girl, for which a deodorant spray was suspected as the probable cause. Pathological examination revealed subepidermal blistering with full-thickness necrosis of the epidermis, suggesting a thermo- or cryo-induced injury. Psychological testing demonstrated her immaturity and dependence. In searching for the causative agent, we suspected a deodorant spray as a blister-inducing agent. We succeeded in reproducing a similar blister lesion on the volunteer's healthy skin using the same spray. Psychiatric involvement significantly complicates the treatment of factitious diseases, including dermatitis artefacta. Cooperation among dermatologists, psychiatrists and the patient's family members is required for ensuring a favorable prognosis.
Park, Jong Myong; You, Young-Hyun; Cho, Hyun-Min; Hong, Ji Won; Ghim, Sa-Youl
2017-06-01
The objective of this review is to propose an appropriate course of action for improving the guidelines followed by food handlers for control of infection. For this purpose, previous epidemiological reports related to acute gastroenteritis in food service businesses mediated by food handlers were intensively analyzed. Relevant studies were identified in international databases. We selected eligible papers reporting foodborne infectious disease outbreaks. Among primary literature collection, the abstract of each article was investigated to find cases that absolutely identified a causative factor to be food handlers' inappropriate infection control and the taxon of causative microbial agents by epidemiological methodologies. Information about the sites (type of food business) where the outbreaks occurred was investigated. A wide variety of causative microbial agents has been investigated, using several epidemiological methods. These agents have shown diverse propagation pathways based on their own molecular pathogenesis, physiology, taxonomy, and etiology. Depending on etiology, transmission, propagation, and microbiological traits, we can predict the transmission characteristics of pathogens in food preparation areas. The infected food workers have a somewhat different ecological place in infection epidemiology as compared to the general population. However, the current Korean Food Safety Act cannot propose detailed guidelines. Therefore, different methodologies have to be made available to prevent further infections.
Rapid, whole blood diagnostic test for detecting anti-hantavirus antibody in rats.
Amada, Takako; Yoshimatsu, Kumiko; Yasuda, Shumpei P; Shimizu, Kenta; Koma, Takaaki; Hayashimoto, Nobuhito; Gamage, Chandika D; Nishio, Sanae; Takakura, Akira; Arikawa, Jiro
2013-10-01
Hantavirus is a causative agent of rodent-borne viral zoonoses, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome. Seoul virus (SEOV) is a causative agent of urban and laboratory rat-associated HFRS worldwide. Surveillance of rodents has been done mainly by serological detection of hantavirus-specific antibodies by enzyme linked immunosorbent assay (ELISA) and immunofluorescent antibody assay (IFA). An immunochromatographic (ICG) test was developed with the N-terminal 103 amino acids of nucleocapsid protein of Hantaan virus expressed by Escherichia coli as an antigen to detect IgG antibody specific to hantavirus in sera from Rattus sp. animals. Antibody-detecting sensitivity of the ICG test was the same as that of ELISA and about 100-times higher than that of IFA. Overall sensitivities and specificities of the ICG test in comparison to ELISA and IFA for sera from 192 urban rats and 123 laboratory rats were 99.3% and 100%, respectively. Diluted whole blood samples without separation could be used for the ICG test. The ICG test enabled detection of antibodies to SEOV, Hantaan, Dobrava/Belgrade, and Thailand viruses, which are causative agents of HFRS throughout Eurasia. The ICG test is a rapid, simple and safe method for diagnosis of SEOV infection in rats. Copyright © 2013 Elsevier B.V. All rights reserved.
Llorens, Jordi; Soler-Martín, Carla; Saldaña-Ruíz, Sandra; Cutillas, Blanca; Ambrosio, Santiago; Boadas-Vaello, Pere
2011-03-01
Konzo and lathyrism are associated with consumption of cassava and grass pea, respectively. Cassava consumption has also been associated with a third disease, tropical ataxic neuropathy (TAN). This review presents a new unifying hypothesis on the causative agents for these diseases: namely, that they are nitriles, compounds containing cyano groups. The diseases may be caused by different but similar nitriles through direct neurotoxic actions not mediated by systemic cyanide release. Both cassava and Lathyrus contain nitriles, and other unidentified nitriles can be generated during food processing or in the human body. Available data indicate that several small nitriles cause a variety of neurotoxic effects. In experimental animals, 3,3'-iminodipropionitrile (IDPN), allylnitrile and cis-crotononitrile cause sensory toxicity, whereas hexadienenitrile and trans-crotononitrile induce selective neuronal degeneration in discrete brain regions. IDPN also induces a neurofilamentous axonopathy, and dimethylaminopropionitrile is known to cause autonomic (genito-urinary) neurotoxicity in both humans and rodents. Some of these actions depend on metabolic bioactivation of the parental nitriles, and sex- and species-dependent differences in susceptibility have been recorded. Recently, neuronal degeneration has been found in rats exposed to acetone cyanohydrin. Taken together, the neurotoxic properties of nitriles make them excellent candidates as causative agents for konzo, lathyrism and TAN. Copyright © 2010 Elsevier Ltd. All rights reserved.
Park, Jong Myong; You, Young-Hyun; Cho, Hyun-Min; Hong, Ji Won; Ghim, Sa-Youl
2017-01-01
Objectives The objective of this review is to propose an appropriate course of action for improving the guidelines followed by food handlers for control of infection. For this purpose, previous epidemiological reports related to acute gastroenteritis in food service businesses mediated by food handlers were intensively analyzed. Methods Relevant studies were identified in international databases. We selected eligible papers reporting foodborne infectious disease outbreaks. Among primary literature collection, the abstract of each article was investigated to find cases that absolutely identified a causative factor to be food handlers’ inappropriate infection control and the taxon of causative microbial agents by epidemiological methodologies. Information about the sites (type of food business) where the outbreaks occurred was investigated. Results A wide variety of causative microbial agents has been investigated, using several epidemiological methods. These agents have shown diverse propagation pathways based on their own molecular pathogenesis, physiology, taxonomy, and etiology. Conclusion Depending on etiology, transmission, propagation, and microbiological traits, we can predict the transmission characteristics of pathogens in food preparation areas. The infected food workers have a somewhat different ecological place in infection epidemiology as compared to the general population. However, the current Korean Food Safety Act cannot propose detailed guidelines. Therefore, different methodologies have to be made available to prevent further infections. PMID:28781938
Orban, Oliver C F; Korn, Ricarda S; Benítez, Diego; Medeiros, Andrea; Preu, Lutz; Loaëc, Nadège; Meijer, Laurent; Koch, Oliver; Comini, Marcelo A; Kunick, Conrad
2016-08-15
Trypanothione synthetase is an essential enzyme for kinetoplastid parasites which cause highly disabling and fatal diseases in humans and animals. Inspired by the observation that N(5)-substituted paullones inhibit the trypanothione synthetase from the related parasite Leishmania infantum, we designed and synthesized a series of new derivatives. Although none of the new compounds displayed strong inhibition of Trypanosoma brucei trypanothione synthetase, several of them caused a remarkable growth inhibition of cultivated Trypanosoma brucei bloodstream forms. The most potent congener 3a showed antitrypanosomal activity in double digit nanomolar concentrations and a selectivity index of three orders of magnitude versus murine macrophage cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antimicrobial and antiparasitic activities of three algae from the northwest coast of Algeria.
Ghania, Aissaoui; Nabila, Belyagoubi-Benhammou; Larbi, Belyagoubi; Elisabeth, Mouray; Philippe, Grellier; Mariem, Benmahdjoub; Khadidja, Kerzabi-Kanoun; Wacila, Benguedda-Rahal; Fawzia, Atik-Bekkara
2017-11-22
The objective of this study was to investigate the biological activities of Algerian algae, Sargassum vulgare, Cladostephus hirsutus and Rissoella verruculosa. Antimicrobial activity of the crude extracts and their fractions was assessed using the disc diffusion assay, the minimum inhibitory concentration and the minimum bactericidal concentration. Antiparasitic activity was studied in vitro against the blood stream forms of Trypanosoma brucei brucei and the intraerythrocytic stages of Plasmodium falciparum. Ethyl acetate (EA) fractions of the three tested algae showed more potent antimicrobial activity against S. aureus (7-14.5 mm) and B. cereus (7-10.75 mm), MIC values ranged from 0.9375 to 7.5 mg mL -1 and MBC values > 15 mg mL -1 . Concerning the antiparasitic activity, EA factions of S. vulgare (IC 50 = 9.3 μg mL -1 ) and R. verruculosa (IC 50 = 11.0 μg mL -1 ) were found to be more effective against T. brucei brucei, whereas the three EA fractions were little active against P. falciparum.
Ferreira, Leonardo L G; Ferreira, Rafaela S; Palomino, David L; Andricopulo, Adriano D
2018-04-27
The glycolytic enzyme fructose-1,6-bisphosphate aldolase is a validated molecular target in human African trypanosomiasis (HAT) drug discovery, a neglected tropical disease (NTD) caused by the protozoan Trypanosoma brucei. Herein, a structure-based virtual screening (SBVS) approach to the identification of novel T. brucei aldolase inhibitors is described. Distinct molecular docking algorithms were used to screen more than 500,000 compounds against the X-ray structure of the enzyme. This SBVS strategy led to the selection of a series of molecules which were evaluated for their activity on recombinant T. brucei aldolase. The effort led to the discovery of structurally new ligands able to inhibit the catalytic activity the enzyme. The predicted binding conformations were additionally investigated in molecular dynamics simulations, which provided useful insights into the enzyme-inhibitor intermolecular interactions. The molecular modeling results along with the enzyme inhibition data generated practical knowledge to be explored in further structure-based drug design efforts in HAT drug discovery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Thomson, Russell; Finkelstein, Alan
2015-01-01
Apolipoprotein L-1 (APOL1), the trypanolytic factor of human serum, can lyse several African trypanosome species including Trypanosoma brucei brucei, but not the human-infective pathogens T. brucei rhodesiense and T. brucei gambiense, which are resistant to lysis by human serum. Lysis follows the uptake of APOL1 into acidic endosomes and is apparently caused by colloid-osmotic swelling due to an increased ion permeability of the plasma membrane. Here we demonstrate that nanogram quantities of full-length recombinant APOL1 induce ideally cation-selective macroscopic conductances in planar lipid bilayers. The conductances were highly sensitive to pH: their induction required acidic pH (pH 5.3), but their magnitude could be increased 3,000-fold upon alkalinization of the milieu (pKa = 7.1). We show that this phenomenon can be attributed to the association of APOL1 with the bilayer at acidic pH, followed by the opening of APOL1-induced cation-selective channels upon pH neutralization. Furthermore, the conductance increase at neutral pH (but not membrane association at acidic pH) was prevented by the interaction of APOL1 with the serum resistance-associated protein, which is produced by T. brucei rhodesiense and prevents trypanosome lysis by APOL1. These data are consistent with a model of lysis that involves endocytic recycling of APOL1 and the formation of cation-selective channels, at neutral pH, in the parasite plasma membrane. PMID:25730870
A Cell-surface Phylome for African Trypanosomes
Jackson, Andrew P.; Allison, Harriet C.; Barry, J. David; Field, Mark C.; Hertz-Fowler, Christiane; Berriman, Matthew
2013-01-01
The cell surface of Trypanosoma brucei, like many protistan blood parasites, is crucial for mediating host-parasite interactions and is instrumental to the initiation, maintenance and severity of infection. Previous comparisons with the related trypanosomatid parasites T. cruzi and Leishmania major suggest that the cell-surface proteome of T. brucei is largely taxon-specific. Here we compare genes predicted to encode cell surface proteins of T. brucei with those from two related African trypanosomes, T. congolense and T. vivax. We created a cell surface phylome (CSP) by estimating phylogenies for 79 gene families with putative surface functions to understand the more recent evolution of African trypanosome surface architecture. Our findings demonstrate that the transferrin receptor genes essential for bloodstream survival in T. brucei are conserved in T. congolense but absent from T. vivax and include an expanded gene family of insect stage-specific surface glycoproteins that includes many currently uncharacterized genes. We also identify species-specific features and innovations and confirm that these include most expression site-associated genes (ESAGs) in T. brucei, which are absent from T. congolense and T. vivax. The CSP presents the first global picture of the origins and dynamics of cell surface architecture in African trypanosomes, representing the principal differences in genomic repertoire between African trypanosome species and provides a basis from which to explore the developmental and pathological differences in surface architectures. All data can be accessed at: http://www.genedb.org/Page/trypanosoma_surface_phylome. PMID:23556014
Sanchez, Marco A; Tryon, Rob; Green, Joy; Boor, Ilja; Landfear, Scott M
2002-06-14
Purine nucleoside and nucleobase transporters are of fundamental importance for Trypanosoma brucei and related kinetoplastid parasites because these protozoa are not able to synthesize purines de novo and must salvage the compounds from their hosts. In the studies reported here, we have identified a family of six clustered genes in T. brucei that encode nucleoside/nucleobase transporters. These genes, TbNT2/927, TbNT3, TbNT4, TbNT5, TbNT6, and TbNT7, have predicted amino acid sequences that show high identity to each other and to TbNT2, a P1 type nucleoside transporter recently identified in our laboratory. Expression in Xenopus laevis oocytes revealed that TbNT2/927, TbNT5, TbNT6, and TbNT7 are high affinity adenosine/inosine transporters with K(m) values of <5 microm. In addition, TbNT5, and to a limited degree TbNT6 and TbNT7, also mediate the uptake of the nucleobase hypoxanthine. Ribonuclease protection assays showed that mRNA from all of the six members of this gene family are expressed in the bloodstream stage of the T. brucei life cycle but that TbNT2/927 and TbNT5 mRNAs are also expressed in the insect stage of the life cycle. These results demonstrate that T. brucei expresses multiple purine transporters with distinct substrate specificities and different patterns of expression during the parasite life cycle.
Mad cow disease--the OR connection.
Hansel, P A
1999-08-01
Creutzfeldt-Jakob disease (CJD) is one of the transmissible spongiform encephalopathies, a group of fatal, neurodegenerative disorders affecting both humans and animals. The causative agent is the prion, which is still being researched and is controversial. In the 1980s, bovine spongiform encephalopathy brought much media attention to these diseases. Bovine spongiform encephalopathy is the result of faulty industrial practices that produced cattle feed contaminated by prions. In the 1990s, a new variant of CJD (i.e., nvCJD) appeared in Britain. Researchers believe that nvCJD was passed to humans through oral consumption of contaminated beef. This article describes the history, causative agent, mode of transmission, clinical features and course, diagnosis, treatment, and decontamination and sterilization guidelines for this baffling disease.
Serrano-Martínez, Marcus Enrique; Scholz, Tomas
2015-01-01
The Pacific broad tapeworm Adenocephalus pacificus (syn. Diphyllobothrium pacificum) is the causative agent of the third most common fish-borne cestodosis among humans. Although most of the nearly 1,000 cases among humans have been reported in South America (Peru, Chile, and Ecuador), cases recently imported to Europe demonstrate the potential for spread of this tapeworm throughout the world as a result of global trade of fresh or chilled marine fish and travel or migration of humans. We provide a comprehensive survey of human cases of infection with this zoonotic parasite, summarize the history of this re-emerging disease, and identify marine fish species that may serve as a source of human infection when eaten raw or undercooked. PMID:26402440
Kuchta, Roman; Serrano-Martínez, Marcus Enrique; Scholz, Tomas
2015-10-01
The Pacific broad tapeworm Adenocephalus pacificus (syn. Diphyllobothrium pacificum) is the causative agent of the third most common fish-borne cestodosis among humans. Although most of the nearly 1,000 cases among humans have been reported in South America (Peru, Chile, and Ecuador), cases recently imported to Europe demonstrate the potential for spread of this tapeworm throughout the world as a result of global trade of fresh or chilled marine fish and travel or migration of humans. We provide a comprehensive survey of human cases of infection with this zoonotic parasite, summarize the history of this re-emerging disease, and identify marine fish species that may serve as a source of human infection when eaten raw or undercooked.
Giordani, Federica; Buschini, Annamaria; Baliani, Alessandro; Kaiser, Marcel; Brun, Reto; Barrett, Michael P.; Pellacani, Claudia; Poli, Paola
2014-01-01
This paper reports an evaluation of a melamino nitroheterocycle, a potential lead for further development as an agent against human African trypanosomiasis (HAT). Studies on its efficacy, physicochemical and biopharmaceutical properties, and potential for toxicity are described. The compound previously had been shown to possess exceptional activity against Trypanosoma brucei in in vitro assays comparable to that of melarsoprol. Here, we demonstrate that the compound also was curative in the stringent acute mouse model T. brucei rhodesiense STIB 900 when given intraperitoneally at 40 mg/kg of body weight. Nevertheless, activity was only moderate when the oral route was used, and no cure was obtained when the compound was tested in a stage 2 rodent model of infection. Genotoxic profiling revealed that the compound induces DNA damage by a mechanism apparently independent from nitroreduction and involving the introduction of base pair substitutions (Ames test), possibly caused by oxidative damage of the DNA (comet test). No significant genotoxicity was observed at the chromosome level (micronucleus assay). The lack of suitable properties for oral and central nervous system uptake and the genotoxic liabilities prevent the progression of this melamine nitroheterocycle as a drug candidate for HAT. Further modification of the compound is required to improve the pharmacokinetic properties of the molecule and to separate the trypanocidal activity from the toxic potential. PMID:25022590
Stewart, Mhairi L.; Boussard, Cyrille; Brun, Reto; Gilbert, Ian H.; Barrett, Michael P.
2005-01-01
Single benzamidine group-carrying compounds were shown to interact with the Trypanosoma brucei P2 aminopurine transporter. Replacement of the amidine with a guanidine group decreased affinity. Trypanocidal activity was evident, but compounds were equally toxic against trypanosomes lacking the P2 transporter, which indicates additional uptake routes for monobenzamidine-derived compounds. PMID:16304196
9 CFR 113.113 - Autogenous biologics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... herd of origin and which there is reason to believe are the causative agent(s) of the current disease... for use in herds adjacent to the herd of origin, when adjacent herds are considered to be at risk. To request authorization to prepare a product for use in herds adjacent to the herd of origin, the...
9 CFR 113.113 - Autogenous biologics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... herd of origin and which there is reason to believe are the causative agent(s) of the current disease... for use in herds adjacent to the herd of origin, when adjacent herds are considered to be at risk. To request authorization to prepare a product for use in herds adjacent to the herd of origin, the...
9 CFR 113.113 - Autogenous biologics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... herd of origin and which there is reason to believe are the causative agent(s) of the current disease... for use in herds adjacent to the herd of origin, when adjacent herds are considered to be at risk. To request authorization to prepare a product for use in herds adjacent to the herd of origin, the...
Inactivation of F.tularensis Utah-112 on food and food contact surfaces by ultraviolet light
USDA-ARS?s Scientific Manuscript database
Francisella tularensis is the causative agent of tularemia, a plague-like illness that affects animals and humans, and has caused large illness pandemics in the last century. It has also been used as a biological warfare agent, and tularemia can be contracted through consumption of contaminated food...
Thermal Inactivation of Viruses
1977-10-01
thermal inactivation . 12 Bibliography 20 Table 3. Thermal inactivation of viruses in foods 25 Bibliography 31 Table 4, Agents modifying...the presence of protective agents that reduce the lethal effect of heat on the viruses at temperatures below 60 C In addition, whtn solid foods...systems but were observed j when animal inoculation was utilized. It is possible that free virus nucl’lc < acid may have been the causative agent in
2006-11-01
mallei , Burkholderia pseudomallei and Variola virus (smallpox virus). A chimera of 2040 bp was engineered to produce PCR amplicons of different sizes...potential bio-warfare use have been completely sequenced, B. mallei , the etiologic agent of glanders , and B. pseudomallei, causative agent of... Burkholderia mallei Nierman et al, 2004 Burkholderia pseudomallei Holden et al, 2004 Burkholderia thailandensis
Holland, C J; Ristic, M; Cole, A I; Johnson, P; Baker, G; Goetz, T
1985-02-01
Potomac horse fever, a disease characterized by fever, anorexia, leukopenia, and occasional diarrhea, is fatal in approximately 30 percent of affected animals. The seasonal occurrence of the disease (June to October) and evidence of antibodies to the rickettsia Ehrlichia sennetsu in the serum of convalescing horses suggested that a related rickettsia might be the causative agent. Such an agent was isolated in cultured blood monocytes from an experimentally infected pony. This intracytoplasmic organism was adapted to growth in primary cultures of canine blood monocytes. A healthy pony inoculated with these infected monocytes also developed the disease. The organism was reisolated from this animal which, at autopsy, had pathological manifestations typical of Potomac horse fever. Cross serologic reactions between the newly isolated agent and antisera to 15 rickettsiae revealed that it is related to certain members of the genus Ehrlichia, particularly to Ehrlichia sennetsu. Since the disease occurs in other parts of the United States as well as in the vicinity of the Potomac River, and since it has also been reported in Europe, the name equine monocytic ehrlichiosis is proposed as being more descriptive.
NASA Astrophysics Data System (ADS)
Syafitri, E.; Prayitno, S. B.; Ma'ruf, W. F.; Radjasa, O. K.
2017-02-01
An essential step in investigating the bacterial role in the occurrence of diseases in Kappaphycus alvarezii is the characterization of bacteria associated with this seaweed. A molecular characterization was conducted on the genetic diversity of the causative agents of ice-ice disease associated with K. alvarezii widely known as the main source of kappa carrageenan. K. alvrezii infected with ice-ice were collected from the Karimunjawa island, North Java Sea, Indonesia. Using Zobell 2216E marine agar medium, nine bacterial species were isolated from the infected seaweed. The molecular characterizations revealed that the isolated bacteria causing ice-ice disease were closely related to the genera of Alteromonas, Bacillus, Pseudomonas, Pseudoalteromonas, Glaciecola, Aurantimonas, and Rhodococcus. In order to identify the symptoms causative organisms, the isolated bacterial species were cultured and were evaluated for their pathogenity. Out of 9 species, only 3 isolates were able to cause the ice-ice symptoms and consisted of Alteromonas macleodii, Pseudoalteromonas issachenkonii and Aurantimonas coralicida. A. macleodii showed the highest pathogenity.
Grey, Katherine R; Warshaw, Erin M
Allergic contact dermatitis is an important cause of periorbital dermatitis. Topical ophthalmic agents are relevant sensitizers. Contact dermatitis to ophthalmic medications can be challenging to diagnose and manage given the numerous possible offending agents, including both active and inactive ingredients. Furthermore, a substantial body of literature reports false-negative patch test results to ophthalmic agents. Subsequently, numerous alternative testing methods have been described. This review outlines the periorbital manifestations, causative agents, and alternative testing methods of allergic contact dermatitis to ophthalmic medications.
Sharlow, Elizabeth R.; Lyda, Todd A.; Dodson, Heidi C.; Mustata, Gabriela; Morris, Meredith T.; Leimgruber, Stephanie S.; Lee, Kuo-Hsiung; Kashiwada, Yoshiki; Close, David; Lazo, John S.; Morris, James C.
2010-01-01
Background The parasitic protozoan Trypanosoma brucei utilizes glycolysis exclusively for ATP production during infection of the mammalian host. The first step in this metabolic pathway is mediated by hexokinase (TbHK), an enzyme essential to the parasite that transfers the γ-phospho of ATP to a hexose. Here we describe the identification and confirmation of novel small molecule inhibitors of bacterially expressed TbHK1, one of two TbHKs expressed by T. brucei, using a high throughput screening assay. Methodology/Principal Findings Exploiting optimized high throughput screening assay procedures, we interrogated 220,233 unique compounds and identified 239 active compounds from which ten small molecules were further characterized. Computation chemical cluster analyses indicated that six compounds were structurally related while the remaining four compounds were classified as unrelated or singletons. All ten compounds were ∼20-17,000-fold more potent than lonidamine, a previously identified TbHK1 inhibitor. Seven compounds inhibited T. brucei blood stage form parasite growth (0.03≤EC50<3 µM) with parasite specificity of the compounds being demonstrated using insect stage T. brucei parasites, Leishmania promastigotes, and mammalian cell lines. Analysis of two structurally related compounds, ebselen and SID 17387000, revealed that both were mixed inhibitors of TbHK1 with respect to ATP. Additionally, both compounds inhibited parasite lysate-derived HK activity. None of the compounds displayed structural similarity to known hexokinase inhibitors or human African trypanosomiasis therapeutics. Conclusions/Significance The novel chemotypes identified here could represent leads for future therapeutic development against the African trypanosome. PMID:20405000
Pyrimidine Biosynthesis Is Not an Essential Function for Trypanosoma brucei Bloodstream Forms
Munday, Jane C.; Donachie, Anne; Morrison, Liam J.; de Koning, Harry P.
2013-01-01
Background African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite. Methodology/Principal Findings Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line. Conclusions/Significance Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal. PMID:23505454
Binder, Barbara; Lackner, Helmut Karl; Poessl, Birgit Dorothea; Propst, Erika; Weger, Wolfgang; Smolle, Josef; Ginter-Hanselmayer, Gabriele
2011-05-01
Tinea capitis is the most common dermatophyte infection in childhood, but may rarely occur in adults and the elderly. Causative agents vary within different geographical areas as well as during decades. The aim of this study was to evaluate the prevalence and causative agents of tinea capitis in Southeastern Austria. Retrospective analysis of 714 patients diagnosed with tinea capitis seen at the outpatient Department of Dermatology/Medical University of Graz during the time period 1985-2008 was carried out. A total of 517 of the 714 patients were children, 21 adults and in the case of 176 patients age was not available. Microsporum canis was found in 84.4%. Trichophyton soudanense tinea capitis is seen since 1998, Trichophyton tonsurans for the first time in 2008. Tinea capitis has become very important for the public health. Besides an increasing incidence, there is a change in age of the patients affected and with the pattern of causative agents as a result of immigration movements and lifestyle habits mainly influenced by domestic pets. Our situation reflects nearly the epidemiology of the bordering countries of Austria mainly in the Southeastern surroundings. These epidemiological changes are a challenge for general practitioners, dermatologists and veterinarians to work close together for advice on control, early diagnosing and adequate treatment. © 2009 Blackwell Verlag GmbH.
Daunes, Sylvie; Yardley, Vanessa; Croft, Simon L; D'Silva, Claudius
2017-02-15
A new series of N-substituted S-(2,4-dinitrophenyl)glutathione dibutyl diesters were synthesized to improve in vitro anti-protozoal activity against the pathogenic parasites Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania donovani. The results obtained indicate that N-substituents enhance the inhibitory properties of glutathione diesters whilst showing reduced toxicity against KB cells as in the cases of compounds 5, 9, 10, 16, 18 and 19. We suggest that the interaction of N-substituted S-(2,4-dinitrophenyl) glutathione dibutyl diesters with T. b. brucei occurs mainly by weak hydrophobic interactions such as London and van der Waals forces. A QSAR study indicated that the inhibitory activity of the peptide is associated negatively with the average number of C atoms, N C and positively to S ZX, the ZX shadow a geometric descriptor related to molecular size and orientation of the compound. HPLC-UV studies in conjunction with optical microscopy indicate that the observed selectivity of inhibition of these compounds against bloodstream form T. b. brucei parasites in comparison to L. donovani under the same conditions is due to intracellular uptake via endocytosis in the flagellar pocket. Copyright © 2016. Published by Elsevier Ltd.
Friedman, Aaron J; Durrant, Jacob D; Pierce, Levi C T; McCorvie, Thomas J; Timson, David J; McCammon, J Andrew
2012-08-01
During the past century, several epidemics of human African trypanosomiasis, a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan Africa. Over 10 000 new victims are reported each year, with hundreds of thousands more at risk. As current drug treatments are either highly toxic or ineffective, novel trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one potential therapeutic target. Although galactose is essential for T. brucei survival, the parasite lacks the transporters required to intake galactose from the environment. UDP-galactose 4'-epimerase (TbGalE) is responsible for the epimerization of UDP-glucose to UDP-galactose and is therefore of great interest to medicinal chemists. Using molecular dynamics simulations, we investigate the atomistic motions of TbGalE in both the apo and holo states. The sampled conformations and protein dynamics depend not only on the presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. This dependence provides important insights into TbGalE function and may help guide future computer-aided drug discovery efforts targeting this protein. © 2012 John Wiley & Sons A/S.
Deciphering RNA regulatory elements in trypanosomatids: one piece at a time or genome-wide?
Gazestani, Vahid H; Lu, Zhiquan; Salavati, Reza
2014-05-01
Morphological and metabolic changes in the life cycle of Trypanosoma brucei are accomplished by precise regulation of hundreds of genes. In the absence of transcriptional control, RNA-binding proteins (RBPs) shape the structure of gene regulatory maps in this organism, but our knowledge about their target RNAs, binding sites, and mechanisms of action is far from complete. Although recent technological advances have revolutionized the RBP-based approaches, the main framework for the RNA regulatory element (RRE)-based approaches has not changed over the last two decades in T. brucei. In this Opinion, after highlighting the current challenges in RRE inference, we explain some genome-wide solutions that can significantly boost our current understanding about gene regulatory networks in T. brucei. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pham, ThanhTruc; Walden, Madeline; Butler, Christopher; Diaz-Gonzalez, Rosario; Pérez-Moreno, Guiomar; Ceballos-Pérez, Gloria; Gomez-Pérez, Veronica; García-Hernández, Raquel; Zecca, Henry; Krakoff, Emma; Kopec, Brian; Ichire, Ogar; Mackenzie, Caden; Pitot, Marika; Ruiz, Luis Miguel; Gamarro, Francisco; González-Pacanowska, Dolores; Navarro, Miguel; Dounay, Amy B
2017-08-15
In 2014, a published report of the high-throughput screen of>42,000 kinase inhibitors from GlaxoSmithKline against T. brucei identified 797 potent and selective hits. From this rich data set, we selected NEU-0001101 (1) for hit-to-lead optimization. Through our preliminary compound synthesis and SAR studies, we have confirmed the previously reported activity of 1 in a T. brucei cell proliferation assay and have identified alternative groups to replace the pyridyl ring in 1. Pyrazole 24 achieves improvements in both potency and lipophilicity relative to 1, while also showing good in vitro metabolic stability. The SAR developed on 24 provides new directions for further optimization of this novel scaffold for anti-trypanosomal drug discovery. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mouse model for the Rift Valley fever virus MP12 strain infection
USDA-ARS?s Scientific Manuscript database
Rift Valley fever virus (RVFV), a Category A pathogen and select agent, is the causative agent of Rift Valley fever. To date, no fully licensed vaccine is available in the U.S. for human or animal use and effective antiviral drugs have not been identified. The RVFV MP12 strain is conditionally licen...
In-silico Investigation of Antitrypanosomal Phytochemicals from Nigerian Medicinal Plants
Setzer, William N.; Ogungbe, Ifedayo V.
2012-01-01
Background Human African trypanosomiasis (HAT), a parasitic protozoal disease, is caused primarily by two subspecies of Trypanosoma brucei. HAT is a re-emerging disease and currently threatens millions of people in sub-Saharan Africa. Many affected people live in remote areas with limited access to health services and, therefore, rely on traditional herbal medicines for treatment. Methods A molecular docking study has been carried out on phytochemical agents that have been previously isolated and characterized from Nigerian medicinal plants, either known to be used ethnopharmacologically to treat parasitic infections or known to have in-vitro antitrypanosomal activity. A total of 386 compounds from 19 species of medicinal plants were investigated using in-silico molecular docking with validated Trypanosoma brucei protein targets that were available from the Protein Data Bank (PDB): Adenosine kinase (TbAK), pteridine reductase 1 (TbPTR1), dihydrofolate reductase (TbDHFR), trypanothione reductase (TbTR), cathepsin B (TbCatB), heat shock protein 90 (TbHSP90), sterol 14α-demethylase (TbCYP51), nucleoside hydrolase (TbNH), triose phosphate isomerase (TbTIM), nucleoside 2-deoxyribosyltransferase (TbNDRT), UDP-galactose 4′ epimerase (TbUDPGE), and ornithine decarboxylase (TbODC). Results This study revealed that triterpenoid and steroid ligands were largely selective for sterol 14α-demethylase; anthraquinones, xanthones, and berberine alkaloids docked strongly to pteridine reductase 1 (TbPTR1); chromenes, pyrazole and pyridine alkaloids preferred docking to triose phosphate isomerase (TbTIM); and numerous indole alkaloids showed notable docking energies with UDP-galactose 4′ epimerase (TbUDPGE). Polyphenolic compounds such as flavonoid gallates or flavonoid glycosides tended to be promiscuous docking agents, giving strong docking energies with most proteins. Conclusions This in-silico molecular docking study has identified potential biomolecular targets of phytochemical components of antitrypanosomal plants and has determined which phytochemical classes and structural manifolds likely target trypanosomal enzymes. The results could provide the framework for synthetic modification of bioactive phytochemicals, de novo synthesis of structural motifs, and lead to further phytochemical investigations. PMID:22848767
Van Reet, Nick; Van de Vyver, Hélène; Pyana, Patient Pati; Van der Linden, Anne Marie; Büscher, Philippe
2014-08-01
Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients. We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT. We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better kinetics of their substrate D-luciferin.
Van Reet, Nick; Van de Vyver, Hélène; Pyana, Patient Pati; Van der Linden, Anne Marie; Büscher, Philippe
2014-01-01
Background Genetic engineering with luciferase reporter genes allows monitoring Trypanosoma brucei (T.b.) infections in mice by in vivo bioluminescence imaging (BLI). Until recently, luminescent T.b. models were based on Renilla luciferase (RLuc) activity. Our study aimed at evaluating red-shifted luciferases for in vivo BLI in a set of diverse T.b. strains of all three subspecies, including some recently isolated from human patients. Methodology/Principal findings We transfected T.b. brucei, T.b. rhodesiense and T.b. gambiense strains with either RLuc, click beetle red (CBR) or Photinus pyralis RE9 (PpyRE9) luciferase and characterised their in vitro luciferase activity, growth profile and drug sensitivity, and their potential for in vivo BLI. Compared to RLuc, the red-shifted luciferases, CBR and PpyRE9, allow tracking of T.b. brucei AnTaR 1 trypanosomes with higher details on tissue distribution, and PpyRE9 allows detection of the parasites with a sensitivity of at least one order of magnitude higher than CBR luciferase. With CBR-tagged T.b. gambiense LiTaR1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT in an acute, subacute and chronic infection model respectively, we observed differences in parasite tropism for murine tissues during in vivo BLI. Ex vivo BLI on the brain confirmed central nervous system infection by all luminescent strains of T.b. brucei AnTaR 1, T.b. rhodesiense RUMPHI and T.b. gambiense 348 BT. Conclusions/Significance We established a genetically and phenotypically diverse collection of bioluminescent T.b. brucei, T.b. gambiense and T.b. rhodesiense strains, including drug resistant strains. For in vivo BLI monitoring of murine infections, we recommend trypanosome strains transfected with red-shifted luciferase reporter genes, such as CBR and PpyRE9. Red-shifted luciferases can be detected with a higher sensitivity in vivo and at the same time they improve the spatial resolution of the parasites in the entire body due to the better kinetics of their substrate D-luciferin. PMID:25144573
Wiegand, Cornelia; Mugisha, Peter; Mulyowa, Grace K; Elsner, Peter; Hipler, Uta-Christina; Gräser, Yvonne; Uhrlaß, Silke; Nenoff, Pietro
2017-08-01
Tinea capitis is a dermatophyte infection common among prepubertal children in sub-Saharan Africa and mainly caused by Trichophyton and Microsporum species. Accurate identification is challenging as conventional methods like culture and microscopy are slow and mostly based on morphological characteristics, which make them less sensitive and specific. Modern molecular methods, like polymerase chain reaction (PCR) assays, are gaining acceptance and are quick as well as accurate. The aim of this study was to investigate the clinical patterns of tinea capitis and to accurately identify the most common causative dermatophytes affecting the scalps of children aged 1 to 16 years attending the Skin Clinic at Mbarara University of Science and Technology (MUST), Mbarara, Uganda, East Africa, using both conventional mycological methods and PCR-ELISA for detection of dermatophyte DNA. One hundred fifteen clinical samples from children from Western Uganda attending the MUST Skin Clinic with a clinical diagnosis of tinea capitis were analyzed. T. violaceum was identified as the most common causative agent, followed by M. audouinii, T. soudanense, and T. rubrum. The early identification of the causative agent of tinea capitis is a prerequisite for the effective management of the disease, the identification of probable source and the prevention of spreading. Children with tinea capitis in Western Uganda should be treated by systemic therapy rather than topical preparations to ensure high cure rates as the most common causative dermatophytes T. violaceum exhibits an endothrix rather than ectothrix invasion of the hair follicle. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Ali, Juma A. M.; Creek, Darren J.; Burgess, Karl; Allison, Harriet C.; Field, Mark C.; Mäser, Pascal; De Koning, Harry P.
2016-01-01
African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host. However, uptake of pyrimidines in bloodstream form trypanosomes has not been investigated, making it difficult to judge the relative importance of salvage and synthesis or to design a pyrimidine-based chemotherapy. Detailed characterization of pyrimidine transport activities in bloodstream form Trypanosoma brucei brucei found that these cells express a high-affinity uracil transporter (designated TbU3) that is clearly distinct from the procyclic pyrimidine transporters. This transporter had low affinity for uridine and 2′deoxyuridine and was the sole pyrimidine transporter expressed in these cells. In addition, thymidine was taken up inefficiently through a P1-type nucleoside transporter. Of importance, the anticancer drug 5-fluorouracil was an excellent substrate for TbU3, and several 5-fluoropyrimidine analogs were investigated for uptake and trypanocidal activity; 5F-orotic acid, 5F-2′deoxyuridine displayed activity in the low micromolar range. The metabolism and mode of action of these analogs was determined using metabolomic assessments of T. brucei clonal lines adapted to high levels of these pyrimidine analogs, and of the sensitive parental strains. The analysis showed that 5-fluorouracil is incorporated into a large number of metabolites but likely exerts toxicity through incorporation into RNA. 5F-2′dUrd and 5F-2′dCtd are not incorporated into nucleic acids but act as prodrugs by inhibiting thymidylate synthase as 5F-dUMP. We present the most complete model of pyrimidine salvage in T. brucei to date, supported by genome-wide profiling of the predicted pyrimidine biosynthesis and conversion enzymes. PMID:23188714
Genetic Validation of Aminoacyl-tRNA Synthetases as Drug Targets in Trypanosoma brucei
Kalidas, Savitha; Cestari, Igor; Monnerat, Severine; Li, Qiong; Regmi, Sandesh; Hasle, Nicholas; Labaied, Mehdi; Parsons, Marilyn; Stuart, Kenneth
2014-01-01
Human African trypanosomiasis (HAT) is an important public health threat in sub-Saharan Africa. Current drugs are unsatisfactory, and new drugs are being sought. Few validated enzyme targets are available to support drug discovery efforts, so our goal was to obtain essentiality data on genes with proven utility as drug targets. Aminoacyl-tRNA synthetases (aaRSs) are known drug targets for bacterial and fungal pathogens and are required for protein synthesis. Here we survey the essentiality of eight Trypanosoma brucei aaRSs by RNA interference (RNAi) gene expression knockdown, covering an enzyme from each major aaRS class: valyl-tRNA synthetase (ValRS) (class Ia), tryptophanyl-tRNA synthetase (TrpRS-1) (class Ib), arginyl-tRNA synthetase (ArgRS) (class Ic), glutamyl-tRNA synthetase (GluRS) (class 1c), threonyl-tRNA synthetase (ThrRS) (class IIa), asparaginyl-tRNA synthetase (AsnRS) (class IIb), and phenylalanyl-tRNA synthetase (α and β) (PheRS) (class IIc). Knockdown of mRNA encoding these enzymes in T. brucei mammalian stage parasites showed that all were essential for parasite growth and survival in vitro. The reduced expression resulted in growth, morphological, cell cycle, and DNA content abnormalities. ThrRS was characterized in greater detail, showing that the purified recombinant enzyme displayed ThrRS activity and that the protein localized to both the cytosol and mitochondrion. Borrelidin, a known inhibitor of ThrRS, was an inhibitor of T. brucei ThrRS and showed antitrypanosomal activity. The data show that aaRSs are essential for T. brucei survival and are likely to be excellent targets for drug discovery efforts. PMID:24562907
Nolan, D P; Voorheis, H P
1992-10-01
Bloodstream forms of Trypanosoma brucei were found to maintain a significant membrane potential across their mitochondrial inner membrane (delta psi m) in addition to a plasma membrane potential (delta psi p). Significantly, the delta psi m was selectively abolished by low concentrations of specific inhibitors of the F1F0-ATPase, such as oligomycin, whereas inhibition of mitochondrial respiration with salicylhydroxamic acid was without effect. Thus, the mitochondrial membrane potential is generated and maintained exclusively by the electrogenic translocation of H+, catalysed by the mitochondrial F1F0-ATPase at the expense of ATP rather than by the mitochondrial electron-transport chain present in T. brucei. Consequently, bloodstream forms of T. brucei cannot engage in oxidative phosphorylation. The mitochondrial membrane potential generated by the mitochondrial F1F0-ATPase in intact trypanosomes was calculated after solving the two-compartment problem for the uptake of the lipophilic cation, methyltriphenylphosphonium (MePh3P+) and was shown to have a value of approximately 150 mV. When the value for the delta psi m is combined with that for the mitochondrial pH gradient (Nolan and Voorheis, 1990), the mitochondrial proton-motive force was calculated to be greater than 190 mV. It seems likely that this mitochondrial proton-motive force serves a role in the directional transport of ions and metabolites across the promitochondrial inner membrane during the bloodstream stage of the life cycle, as well as promoting the import of nuclear-encoded protein into the promitochondrion during the transformation of bloodstream forms into the next stage of the life cycle of T. brucei.
Tapeworm Diphyllobothrium dendriticum (Cestoda)—Neglected or Emerging Human Parasite?
Kuchta, Roman; Brabec, Jan; Kubáčková, Petra; Scholz, Tomáš
2013-01-01
Background A total number of 14 valid species of Diphyllobothrium tapeworms have been described in literature to be capable of causing diphyllobothriosis, with D. latum being the major causative agent of all human infections. However, recent data indicate that some of these infections, especially when diagnosed solely on the basis of morphology, have been identified with this causative agent incorrectly, confusing other Diphyllobothrium species with D. latum. Another widely distributed species, D. dendriticum, has never been considered as a frequent parasite of man, even though it is found commonly throughout arctic and subarctic regions parasitizing piscivorous birds and mammals. Recent cases of Europeans infected with this cestode called into question the actual geographic distribution of this tapeworm, largely ignored by medical parasitologists. Methodology and Results On the basis of revision of more than 900 available references and a description and revision of recent European human cases using morphological and molecular (cox1) data supplemented by newly characterized D. dendriticum sequences, we updated the current knowledge of the life-cycle, geographic distribution, epidemiological status, and molecular diagnostics of this emerging causal agent of zoonotic disease of man. Conclusions The tapeworm D. dendriticum represents an example of a previously neglected, probably underdiagnosed parasite of man with a potential to spread globally. Recent cases of diphyllobothriosis caused by D. dendriticum in Europe (Netherlands, Switzerland and Czech Republic), where the parasite has not been reported previously, point out that causative agents of diphyllobothriosis and other zoonoses can be imported throughout the world. Molecular tools should be used for specific and reliable parasite diagnostics, and also rare or non-native species should be considered. This will considerably help improve our knowledge of the distribution and epidemiology of these human parasites. PMID:24386497
Saleh, Mona; Soliman, Hatem; El-Matbouli, Mansour
2008-08-12
Enteric Redmouth (ERM) disease also known as Yersiniosis is a contagious disease affecting salmonids, mainly rainbow trout. The causative agent is the gram-negative bacterium Yersinia ruckeri. The disease can be diagnosed by isolation and identification of the causative agent, or detection of the Pathogen using fluorescent antibody tests, ELISA and PCR assays. These diagnostic methods are laborious, time consuming and need well trained personnel. A loop-mediated isothermal amplification (LAMP) assay was developed and evaluated for detection of Y. ruckeri the etiological agent of enteric red mouth (ERM) disease in salmonids. The assay was optimised to amplify the yruI/yruR gene, which encodes Y. ruckeri quorum sensing system, in the presence of a specific primer set and Bst DNA polymerase at an isothermal temperature of 63 degrees C for one hour. Amplification products were detected by visual inspection, agarose gel electrophoresis and by real-time monitoring of turbidity resulted by formation of LAMP amplicons. Digestion with HphI restriction enzyme demonstrated that the amplified product was unique. The specificity of the assay was verified by the absence of amplification products when tested against related bacteria. The assay had 10-fold higher sensitivity compared with conventional PCR and successfully detected Y. ruckeri not only in pure bacterial culture but also in tissue homogenates of infected fish. The ERM-LAMP assay represents a practical alternative to the microbiological approach for rapid, sensitive and specific detection of Y. ruckeri in fish farms. The assay is carried out in one hour and needs only a heating block or water bath as laboratory furniture. The advantages of the ERM-LAMP assay make it a promising tool for molecular detection of enteric red mouth disease in fish farms.
Tapeworm Diphyllobothrium dendriticum (Cestoda)--neglected or emerging human parasite?
Kuchta, Roman; Brabec, Jan; Kubáčková, Petra; Scholz, Tomáš
2013-01-01
A total number of 14 valid species of Diphyllobothrium tapeworms have been described in literature to be capable of causing diphyllobothriosis, with D. latum being the major causative agent of all human infections. However, recent data indicate that some of these infections, especially when diagnosed solely on the basis of morphology, have been identified with this causative agent incorrectly, confusing other Diphyllobothrium species with D. latum. Another widely distributed species, D. dendriticum, has never been considered as a frequent parasite of man, even though it is found commonly throughout arctic and subarctic regions parasitizing piscivorous birds and mammals. Recent cases of Europeans infected with this cestode called into question the actual geographic distribution of this tapeworm, largely ignored by medical parasitologists. On the basis of revision of more than 900 available references and a description and revision of recent European human cases using morphological and molecular (cox1) data supplemented by newly characterized D. dendriticum sequences, we updated the current knowledge of the life-cycle, geographic distribution, epidemiological status, and molecular diagnostics of this emerging causal agent of zoonotic disease of man. The tapeworm D. dendriticum represents an example of a previously neglected, probably underdiagnosed parasite of man with a potential to spread globally. Recent cases of diphyllobothriosis caused by D. dendriticum in Europe (Netherlands, Switzerland and Czech Republic), where the parasite has not been reported previously, point out that causative agents of diphyllobothriosis and other zoonoses can be imported throughout the world. Molecular tools should be used for specific and reliable parasite diagnostics, and also rare or non-native species should be considered. This will considerably help improve our knowledge of the distribution and epidemiology of these human parasites.
2014-01-01
Background For over a decade, the presence of trombiculid mites in some mountain areas of La Rioja (Northern Spain) and their association with seasonal human dermatitis have been recognized. This work aimed to establish the species identity of the agent causing trombiculiasis in the study area. Methods Trombiculid larvae (chigger mites) were collected from vegetation in the Sierra Cebollera Natural Park and in Sierra La Hez during an outbreak of human trombiculiasis in 2010. Three specimens collected from a bird were also examined. Identification was made using morphological and morphometric traits based on the most recent taxonomic sources. A comparison of those mites with specimens of the same species collected throughout Europe was performed by means of cluster analysis with multiscale bootstrap resampling and calculation of approximately unbiased p-values. Results All collected mites were identified as Neotrombicula inopinata (Oudemans, 1909). Therefore, this species is the most likely causative agent of trombiculiasis in Spain, not Neotrombicula autumnalis (Shaw, 1790), as it was generally assumed. No chigger was identified as N. autumnalis in the study area. Neotrombicula inopinata clearly differs from N. autumnalis in the presence of eight or more setae in the 1st and 2nd rows of dorsal idiosomal setae vs. six setae in N. autumnalis. Comparison of N. inopinata samples from different locations shows significant geographic variability in morphometric traits. Samples from Western and Eastern Europe and the Caucasus formed three separate clusters. Conclusion Since the taxonomical basis of many studies concerning N. autumnalis as a causative agent of trombiculiasis is insufficient, it is highly possible that N. inopinata may be hiding behind the common name of “harvest bug” in Europe, together with N. autumnalis. PMID:24589214
Stekolnikov, Alexandr A; Santibáñez, Paula; Palomar, Ana M; Oteo, José A
2014-03-03
For over a decade, the presence of trombiculid mites in some mountain areas of La Rioja (Northern Spain) and their association with seasonal human dermatitis have been recognized. This work aimed to establish the species identity of the agent causing trombiculiasis in the study area. Trombiculid larvae (chigger mites) were collected from vegetation in the Sierra Cebollera Natural Park and in Sierra La Hez during an outbreak of human trombiculiasis in 2010. Three specimens collected from a bird were also examined. Identification was made using morphological and morphometric traits based on the most recent taxonomic sources. A comparison of those mites with specimens of the same species collected throughout Europe was performed by means of cluster analysis with multiscale bootstrap resampling and calculation of approximately unbiased p-values. All collected mites were identified as Neotrombicula inopinata (Oudemans, 1909). Therefore, this species is the most likely causative agent of trombiculiasis in Spain, not Neotrombicula autumnalis (Shaw, 1790), as it was generally assumed. No chigger was identified as N. autumnalis in the study area. Neotrombicula inopinata clearly differs from N. autumnalis in the presence of eight or more setae in the 1st and 2nd rows of dorsal idiosomal setae vs. six setae in N. autumnalis. Comparison of N. inopinata samples from different locations shows significant geographic variability in morphometric traits. Samples from Western and Eastern Europe and the Caucasus formed three separate clusters. Since the taxonomical basis of many studies concerning N. autumnalis as a causative agent of trombiculiasis is insufficient, it is highly possible that N. inopinata may be hiding behind the common name of "harvest bug" in Europe, together with N. autumnalis.
Konziase, Benetode
2015-08-01
We studied the target proteins of artemisinin in Trypanosoma brucei brucei using the affinity-labeling method. We designed and synthesized four biotinylated probes of artemisinin for use as molecular tools. Their in vitro trypanocidal activities (data not shown) proved that they mimicked the biological action of artemisinin. We assessed the chemical stability for all of the probes in the parasite culture medium and lysate using reversed-phase high-performance liquid chromatography (HPLC). After 3-h incubations, the probes remained undecomposed in a range of 40 to 65% in the parasite culture medium, whereas approximately 80% of the probes remained stable in the parasite lysate. Using liquid chromatography mass spectrometry (LC-MS), we demonstrated that, with respect to all of the probes, uptakes into the parasite ranging from 81 to 96% occurred after 30-min incubations. In a competitive binding assay between artemisinin and the four biotinylated probes, we searched for the trypanosomal target protein of artemisinin. Consequently, we observed that only the diazirine-free probe 5 could provide the desired result with high affinity-labeling efficiency. Using the horseradish peroxidase-tagged streptavidin-biotin method, we showed that artemisinin could specifically bind to candidate target proteins of approximately 60, 40, and 39 kDa. Copyright © 2015 Elsevier Inc. All rights reserved.
Identification of a Novel Prostaglandin F2α Synthase in Trypanosoma brucei
Kubata, Bruno Kilunga; Duszenko, Michael; Kabututu, Zakayi; Rawer, Marc; Szallies, Alexander; Fujimori, Ko; Inui, Takashi; Nozaki, Tomoyoshi; Yamashita, Kouwa; Horii, Toshihiro; Urade, Yoshihiro; Hayaishi, Osamu
2000-01-01
Members of the genus Trypanosoma cause African trypanosomiasis in humans and animals in Africa. Infection of mammals by African trypanosomes is characterized by an upregulation of prostaglandin (PG) production in the plasma and cerebrospinal fluid. These metabolites of arachidonic acid (AA) may, in part, be responsible for symptoms such as fever, headache, immunosuppression, deep muscle hyperaesthesia, miscarriage, ovarian dysfunction, sleepiness, and other symptoms observed in patients with chronic African trypanosomiasis. Here, we show that the protozoan parasite T. brucei is involved in PG production and that it produces PGs enzymatically from AA and its metabolite, PGH2. Among all PGs synthesized, PGF2α was the major prostanoid produced by trypanosome lysates. We have purified a novel T. brucei PGF2α synthase (TbPGFS) and cloned its cDNA. Phylogenetic analysis and molecular properties revealed that TbPGFS is completely distinct from mammalian PGF synthases. We also found that TbPGFS mRNA expression and TbPGFS activity were high in the early logarithmic growth phase and low during the stationary phase. The characterization of TbPGFS and its gene in T. brucei provides a basis for the molecular analysis of the role of parasite-derived PGF2α in the physiology of the parasite and the pathogenesis of African trypanosomiasis. PMID:11067881
Marques, Catarina A.; Tiengwe, Calvin; Lemgruber, Leandro; Damasceno, Jeziel D.; Scott, Alan; Paape, Daniel; Marcello, Lucio; McCulloch, Richard
2016-01-01
Abstract Initiation of DNA replication depends upon recognition of genomic sites, termed origins, by AAA+ ATPases. In prokaryotes a single factor binds each origin, whereas in eukaryotes this role is played by a six-protein origin recognition complex (ORC). Why eukaryotes evolved a multisubunit initiator, and the roles of each component, remains unclear. In Trypanosoma brucei, an ancient unicellular eukaryote, only one ORC-related initiator, TbORC1/CDC6, has been identified by sequence homology. Here we show that three TbORC1/CDC6-interacting factors also act in T. brucei nuclear DNA replication and demonstrate that TbORC1/CDC6 interacts in a high molecular complex in which a diverged Orc4 homologue and one replicative helicase subunit can also be found. Analysing the subcellular localization of four TbORC1/CDC6-interacting factors during the cell cycle reveals that one factor, TbORC1B, is not a static constituent of ORC but displays S-phase restricted nuclear localization and expression, suggesting it positively regulates replication. This work shows that ORC architecture and regulation are diverged features of DNA replication initiation in T. brucei, providing new insight into this key stage of eukaryotic genome copying. PMID:26951375
Narayanan, Mani Shankar; Kushwaha, Manish; Ersfeld, Klaus; Fullbrook, Alexander; Stanne, Tara M; Rudenko, Gloria
2011-03-01
Trypanosoma brucei mono-allelically expresses one of approximately 1500 variant surface glycoprotein (VSG) genes while multiplying in the mammalian bloodstream. The active VSG is transcribed by RNA polymerase I in one of approximately 15 telomeric VSG expression sites (ESs). T. brucei is unusual in controlling gene expression predominantly post-transcriptionally, and how ESs are mono-allelically controlled remains a mystery. Here we identify a novel transcription regulator, which resembles a nucleoplasmin-like protein (NLP) with an AT-hook motif. NLP is key for ES control in bloodstream form T. brucei, as NLP knockdown results in 45- to 65-fold derepression of the silent VSG221 ES. NLP is also involved in repression of transcription in the inactive VSG Basic Copy arrays, minichromosomes and procyclin loci. NLP is shown to be enriched on the 177- and 50-bp simple sequence repeats, the non-transcribed regions around rDNA and procyclin, and both active and silent ESs. Blocking NLP synthesis leads to downregulation of the active ES, indicating that NLP plays a role in regulating appropriate levels of transcription of ESs in both their active and silent state. Discovery of the unusual transcription regulator NLP provides new insight into the factors that are critical for ES control.
USDA-ARS?s Scientific Manuscript database
The genus Bordetella includes 8 formally recognized species, of which Bordetella parapertussis, Bordetella bronchiseptica, Bordetella avium, and Bordetella hinzii are of veterinary interest. Bordetella pertussis, the type species, is an obligate human pathogen and the causative agent of whooping co...
[Problem of bioterrorism under modern conditions].
Vorob'ev, A A; Boev, B V; Bondarenko, V M; Gintsburg, A L
2002-01-01
It is practically impossible to discuss the problem of bioterrorism (BT) and to develop effective programs of decreasing the losses and expenses suffered by the society from the BT acts without evaluation of the threat and prognosis of consequences based on research and empiric data. Stained international situation following the act of terrorism (attack on the USA) on September 11, 2001, makes the scenarios of the bacterial weapon use (the causative agents of plague, smallpox, anthrax, etc.) by international terrorists most probable. In this connection studies on the analysis and prognostication of the consequences of BT, including mathematical and computer modelling, are necessary. The authors present the results of initiative studies on the analysis and prognostication of the consequences of the hypothetical act of BT with the use of the smallpox causative agent in a city with the population of about 1,000,000 inhabitants. The analytical prognostic studies on the operative analysis and prognostication of the consequences of the BT act with the use of the smallpox causative agent has demonstrated that the mathematical (computer) model of the epidemic outbreak of smallpox is an effective instrument of calculation studies. Prognostic evaluations of the consequences of the act of BT under the conditions of different reaction of public health services (time of detection, interventions) have been obtained with the use of modelling. In addition, the computer model is necessary for training health specialists to react adequately to the acts of BT with the use of different kinds of bacteriological weapons.
2013-05-01
122 I. Q Fever Model Parameters (Section C131) ....................................................128 1...needed to incorporate human response models for five biological agents not originally considered in AMedP-8(C): brucellosis, glanders, Q fever ...0103.1b should be modified to read: b. Biological agents include the causative agents of anthrax, brucellosis, glanders, Q fever , tularemia
Raeven, Vivian M; Spoorenberg, Simone M C; Boersma, Wim G; van de Garde, Ewoudt M W; Cannegieter, Suzanne C; Voorn, G P Paul; Bos, Willem Jan W; van Steenbergen, Jim E
2016-06-17
Microorganisms causing community-acquired pneumonia (CAP) can be categorised into viral, typical and atypical (Legionella species, Coxiella burnetii, Mycoplasma pneumoniae, and Chlamydia species). Extensive microbiological testing to identify the causative microorganism is not standardly recommended, and empiric treatment does not always cover atypical pathogens. In order to optimize epidemiologic knowledge of CAP and to improve empiric antibiotic choice, we investigated whether atypical microorganisms are associated with a particular season or with the patient characteristics age, gender, or chronic obstructive pulmonary disease (COPD). A data-analysis was performed on databases from four prospective studies, which all included adult patients hospitalised with CAP in the Netherlands (N = 980). All studies performed extensive microbiological testing. A main causative agent was identified in 565/980 (57.7 %) patients. Of these, 117 (20.7 %) were atypical microorganisms. This percentage was 40.4 % (57/141) during the non-respiratory season (week 20 to week 39, early May to early October), and 67.2 % (41/61) for patients under the age of 60 during this season. Factors that were associated with atypical causative agents were: CAP acquired in the non-respiratory season (odds ratio (OR) 4.3, 95 % CI 2.68-6.84), age <60 year (OR 2.9, 95 % CI 1.83-4.66), male gender (OR 1.7, 95 % CI 1.06-2.71) and absence of COPD (OR 0.2, 95 % CI 0.12-0.52). Atypical causative agents in CAP are associated with respectively non-respiratory season, age <60 years, male gender and absence of COPD. Therefore, to maximise its yield, extensive microbiological testing should be considered in patients <60 years old who are admitted with CAP from early May to early October. NCT00471640 , NCT00170196 (numbers of original studies).
Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S
2012-02-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.
Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.
2012-01-01
Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659
Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser
DePonte, Daniel P.; White, Thomas A.; Rehders, Dirk; Barty, Anton; Stellato, Francesco; Liang, Mengning; Barends, Thomas R.M.; Boutet, Sébastien; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Aquila, Andrew; Arnlund, David; Bajt, Sasa; Barth, Torsten; Bogan, Michael J.; Caleman, Carl; Chao, Tzu-Chiao; Doak, R. Bruce; Fleckenstein, Holger; Frank, Matthias; Fromme, Raimund; Galli, Lorenzo; Grotjohann, Ingo; Hunter, Mark S.; Johansson, Linda C.; Kassemeyer, Stephan; Katona, Gergely; Kirian, Richard A.; Koopmann, Rudolf; Kupitz, Chris; Lomb, Lukas; Martin, Andrew V.; Mogk, Stefan; Neutze, Richard; Shoeman, Robert L.; Steinbrener, Jan; Timneanu, Nicusor; Wang, Dingjie; Weierstall, Uwe; Zatsepin, Nadia A.; Spence, John C. H.; Fromme, Petra; Schlichting, Ilme; Duszenko, Michael; Betzel, Christian; Chapman, Henry N.
2013-01-01
The Trypanosoma brucei cysteine protease cathepsin B (TbCatB), which is involved in host protein degradation, is a promising target to develop new treatments against sleeping sickness, a fatal disease caused by this protozoan parasite. The structure of the mature, active form of TbCatB has so far not provided sufficient information for the design of a safe and specific drug against T. brucei. By combining two recent innovations, in vivo crystallization and serial femtosecond crystallography, we obtained the room-temperature 2.1 angstrom resolution structure of the fully glycosylated precursor complex of TbCatB. The structure reveals the mechanism of native TbCatB inhibition and demonstrates that new biomolecular information can be obtained by the “diffraction-before-destruction” approach of x-ray free-electron lasers from hundreds of thousands of individual microcrystals. PMID:23196907
Structure-guided design of novel Trypanosoma brucei Methionyl-tRNA synthetase inhibitors.
Huang, Wenlin; Zhang, Zhongsheng; Barros-Álvarez, Ximena; Koh, Cho Yeow; Ranade, Ranae M; Gillespie, J Robert; Creason, Sharon A; Shibata, Sayaka; Verlinde, Christophe L M J; Hol, Wim G J; Buckner, Frederick S; Fan, Erkang
2016-11-29
A screening hit 1 against Trypanosoma brucei methionyl-tRNA synthetase was optimized using a structure-guided approach. The optimization led to the identification of two novel series of potent inhibitors, the cyclic linker and linear linker series. Compounds of both series were potent in a T. brucei growth inhibition assay while showing low toxicity to mammalian cells. The best compound of each series, 16 and 31, exhibited EC 50 s of 39 and 22 nM, respectively. Compounds 16 and 31 also exhibited promising PK properties after oral dosing in mice. Moreover, compound 31 had moderately good brain permeability, with a brain/plasma ratio of 0.27 at 60 min after IP injection. This study provides new lead compounds for arriving at new treatments of human African trypanosomiasis (HAT). Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Butter, Falk; Bucerius, Ferdinand; Michel, Margaux; Cicova, Zdenka; Mann, Matthias; Janzen, Christian J
2013-01-01
Trypanosoma brucei developed a sophisticated life cycle to adapt to different host environments. Although developmental differentiation of T. brucei has been the topic of intensive research for decades, the mechanisms responsible for adaptation to different host environments are not well understood. We developed stable isotope labeling by amino acids in cell culture in trypanosomes to compare the proteomes of two different life cycle stages. Quantitative comparison of 4364 protein groups identified many proteins previously not known to be stage-specifically expressed. The identification of stage-specific proteins helps to understand how parasites adapt to different hosts and provides new insights into differences in metabolism, gene regulation, and cell architecture. A DEAD-box RNA helicase, which is highly up-regulated in the bloodstream form of this parasite and which is essential for viability and proper cell cycle progression in this stage is described as an example.
Protein Composition of Trypanosoma brucei Mitochondrial Membranes
Acestor, Nathalie; Panigrahi, Aswini K.; Ogata, Yuko; Anupama, Atashi; Stuart, Kenneth D.
2010-01-01
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane and matrix; each harboring specific functions and structures. In this study, we used mass spectrometry (LC-MS/MS) to characterize the protein composition of Trypanosoma brucei mitochondrial membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mitochondrial membranes with high confidence, and 106 with moderate to low confidence. The sub-cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mitochondrial membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub-organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mitochondrial functions. PMID:19834910
Sleeping sickness is a circadian disorder.
Rijo-Ferreira, Filipa; Carvalho, Tânia; Afonso, Cristina; Sanches-Vaz, Margarida; Costa, Rui M; Figueiredo, Luísa M; Takahashi, Joseph S
2018-01-04
Sleeping sickness is a fatal disease caused by Trypanosoma brucei, a unicellular parasite that lives in the bloodstream and interstitial spaces of peripheral tissues and the brain. Patients have altered sleep/wake cycles, body temperature, and endocrine profiles, but the underlying causes are unknown. Here, we show that the robust circadian rhythms of mice become phase advanced upon infection, with abnormal activity occurring during the rest phase. This advanced phase is caused by shortening of the circadian period both at the behavioral level as well as at the tissue and cell level. Period shortening is T. brucei specific and independent of the host immune response, as co-culturing parasites with explants or fibroblasts also shortens the clock period, whereas malaria infection does not. We propose that T. brucei causes an advanced circadian rhythm disorder, previously associated only with mutations in clock genes, which leads to changes in the timing of sleep.
Rodríguez-Bolaños, Monica; Cabrera, Nallely
2016-01-01
The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei. Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins. PMID:27733588
Characterization of a Novel Association between Two Trypanosome-Specific Proteins and 5S rRNA
Ciganda, Martin; Williams, Noreen
2012-01-01
P34 and P37 are two previously identified RNA binding proteins in the flagellate protozoan Trypanosoma brucei. RNA interference studies have determined that the proteins are essential and are involved in ribosome biogenesis. Here, we show that these proteins interact in vitro with the 5S rRNA with nearly identical binding characteristics in the absence of other cellular factors. The T. brucei 5S rRNA has a complex secondary structure and presents four accessible loops (A to D) for interactions with RNA-binding proteins. In other eukaryotes, loop C is bound by the L5 ribosomal protein and loop A mainly by TFIIIA. The binding of P34 and P37 to T. brucei 5S rRNA involves the LoopA region of the RNA, but these proteins also protect the L5 binding site located on LoopC. PMID:22253864
Kasahara, Katsuaki; Gotoh, Yoshimitsu; Kuroyanagi, Yoshiyuki; Nagano, China
2017-07-14
Toxic epidermal necrolysis (TEN) is a rare life-threatening condition almost exclusively attributed to drugs. The main etiologic factors for TEN are sulphonamides, anticonvulsants, and antibiotics; however, there are no published reports of warfarin causing TEN. We present the case of a 3-year-old patient who developed TEN while receiving treatment for Henoch-Schönlein purpura nephritis (HSPN). With multiple-drug therapy comprising prednisolone, mizoribine, dipyridamole, and warfarin, it is difficult to detect which drug is the causative agent. While in most cases, diagnosis of the causative drug is based on clinical history without a lymphocyte transformation test (LTT), we performed the test three times and identified the causative drug as warfarin at the late phase. We continued HSPN treatment without warfarin, and results showed good renal function without life-threatening complications. To our knowledge, this is the first report about TEN caused by warfarin. Repeated LTTs could be useful for identifying TEN-causative drugs even in the late phase.
Gilad, Jacob
2007-11-01
Burkholderia mallei and Burkholderia pseudomallei are the causative micro-organisms of Glanders and Melioidosis, respectively. Although now rare in Western countries, both micro-organisms have recently gained much interest because of their unique potential as bioterrorism agents. This paper reviews the epidemiology, pathogenesis, diagnosis and treatment of Melioidosis and Glanders. Recent patents relating to these micro-organisms, especially potential vaccines, are presented. Continued research and development is urgently needed, especially in regard to rapid and accurate diagnosis of melioidosis and glanders, efficacious therapy and primary and secondary prevention.
Epidemiological profile of tinea capitis in São Paulo City*
Veasey, John Verrinder; Miguel, Barbara Arruda Fraletti; Mayor, Silvia Assumpção Soutto; Zaitz, Clarisse; Muramatu, Laura Hitomi; Serrano, Juliane Agarinakamura
2017-01-01
Tinea capitis is the most common fungal infection in children. The identification of the etiologic agent helps clinicians make their therapeutic choice. Studies conducted in different countries show a changing pattern of the main etiological agents according to their regions. We performed a retrospective study in the tertiary public service in São Paulo, analyzing the isolated etiological agents in patients with tinea capitis from March 2013 to May 2015. Microsporum canis was the main agent (56.6%), followed by Trichophyton tonsurans (36.6%). Despite recent migratory movements in the city, we observed no change in the causative agent of tinea capitis. PMID:28538903
Epidemiological profile of tinea capitis in São Paulo City.
Veasey, John Verrinder; Miguel, Barbara Arruda Fraletti; Mayor, Silvia Assumpção Soutto; Zaitz, Clarisse; Muramatu, Laura Hitomi; Serrano, Juliane Agarinakamura
2017-01-01
Tinea capitis is the most common fungal infection in children. The identification of the etiologic agent helps clinicians make their therapeutic choice. Studies conducted in different countries show a changing pattern of the main etiological agents according to their regions. We performed a retrospective study in the tertiary public service in São Paulo, analyzing the isolated etiological agents in patients with tinea capitis from March 2013 to May 2015. Microsporum canis was the main agent (56.6%), followed by Trichophyton tonsurans (36.6%). Despite recent migratory movements in the city, we observed no change in the causative agent of tinea capitis.
Ranasinghe, L; Jayawardena, B; Abeywickrama, K
2002-01-01
To develop a post-harvest treatment system against post-harvest fungal pathogens of banana using natural products. Colletotrichum musae was isolated and identified as the causative agent responsible for anthracnose peel blemishes while three fungi, namely Lasiodiplodia theobromae, C. musae and Fusarium proliferatum, were identified as causative agents responsible for crown rot. During the liquid bioassay, cinnamon [Cinnamomum zeylanicum (L.)] leaf, bark and clove [Syzygium aromaticum (L.)] oils were tested against the anthracnose and crown rot pathogens. The test oils were fungistatic and fungicidal against the test pathogens within a range of 0.03-0.11% (v/v). Cinnamon and clove essential oils could be used as antifungal agents to manage post harvest fungal diseases of banana. Cinnamon and clove essential oil could be used as alternative post-harvest treatments on banana. Banana treated with essential oil is chemically safe and acceptable to consumers. Benomyl (Benlate), which is currently used to manage fungal pathogens, can cause adverse health effects and could be replaced with volatile essential oils.
Marandi, Farinaz Rashed; Rahbar, Mohammad; Sabourian, Roghieh; Saremi, Mahnaz
2010-01-01
To determine the ability of Iranian microbiology laboratories for identification and susceptibility testing of Streptococcus pneumoniae and Haemophilus influenzae as causative agents of bacterial meningitides. Two strains of bacteria including Haemophilus influenzae and Streptococcus pneumoniae as a common causative agents of meningitides were chosen and coded as strain number 1 and number 2. The strains were distributed among 679 microbiology laboratories. All laboratories were requested for identification of each unknown microorganism and susceptibility testing of S. pneumoniae against five commonly used antibiotics. Of 679 microbiology laboratories 310 (46%) laboratories participated in the survey and among these, 258 laboratories completely identified S. pneumoniae. About 85% laboratories produced correct susceptibility testing against oxacillin, erythromycin, tetracycline, and vancomycin. Of 310 received responses only 50 laboratories identified H. influenza correctly. The majority of the laboratories did not have the capacity to identification H. influenza. Microbiology laboratories in our country are qualified for identification and susceptibility testing of S. pneumoniae. However, majority of laboratories are not qualified for identification of H. influenzae.
Closing the mycetoma knowledge gap.
van de Sande, Wendy; Fahal, Ahmed; Ahmed, Sarah Abdalla; Serrano, Julian Alberto; Bonifaz, Alexandro; Zijlstra, Ed
2018-04-01
On 28th May 2016, mycetoma was recognized as a neglected tropical disease by the World Health Organization. This was the result of a 4-year journey starting in February 2013 with a meeting of global mycetoma experts. Knowledge gaps were identified and included the incidence, prevalence, and mapping of mycetoma; the mode of transmission; the development of methods for early diagnosis; and better treatment. In this review, we review the road to recognition, the ISHAM working group meeting in Argentina, and we address the progress made in closing the knowledge gaps since 2013. Progress included adding another 9000 patients to the literature, which allowed us to update the prevalence map on mycetoma. Furthermore, based on molecular phylogeny, species names were corrected and four novel mycetoma causative agents were identified. By mapping mycetoma causative agents an association with Acacia trees was found. For early diagnosis, three different isothermal amplification techniques were developed, and novel antigens were discovered. To develop better treatment strategies for mycetoma patients, in vitro susceptibility tests for the coelomycete agents of black grain mycetoma were developed, and the first randomized clinical trial for eumycetoma started early 2017.
Bero, J; Beaufay, C; Hannaert, V; Hérent, M-F; Michels, P A; Quetin-Leclercq, J
2013-02-15
Keetia leucantha is a West African tree used in traditional medicine to treat several diseases among which parasitic infections. The dichloromethane extract of leaves was previously shown to possess growth-inhibitory activities on Plasmodium falciparum, Trypanosoma brucei brucei and Leishmania mexicana mexicana with low or no cytotoxicity (>100 μg/ml on human normal fibroblasts) (Bero et al. 2009, 2011). In continuation of our investigations on the antitrypanosomal compounds from this dichloromethane extract, we analyzed by GC-FID and GC-MS the essential oil of its leaves obtained by hydrodistillation and the major triterpenic acids in this extract by LC-MS. Twenty-seven compounds were identified in the oil whose percentages were calculated using the normalization method. The essential oil, seven of its constituents and the three triterpenic acids were evaluated for their antitrypanosomal activity on Trypanosoma brucei brucei bloodstream forms (Tbb BSF) and procyclic forms (Tbb PF) to identify an activity on the glycolytic process of trypanosomes. The oil showed an IC(50) of 20.9 μg/ml on Tbb BSF and no activity was observed on Tbb PF. The best antitrypanosomal activity was observed for ursolic acid with IC(50) of 2.5 and 6.5 μg/ml respectively on Tbb BSF and Tbb PF. The inhibitory activity on a glycolytic enzyme of T. brucei, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was also evaluated for betulinic acid, olenaolic acid, ursolic acid, phytol, α-ionone and β-ionone. The three triterpenic acids and β-ionone showed inhibitory activities on GAPDH with oleanolic acid being the most active with an inhibition of 72.63% at 20 μg/ml. This paper reports for the first time the composition and antitrypanosomal activity of the essential oil of Keetia leucantha. Several of its constituents and three triterpenic acids present in the dichloromethane leaves extract showed a higher antitrypanosomal activity on bloodstream forms of Tbb as compared to procyclic forms, namely geranyl acetone, phytol, α-ionone, β-ionone, ursolic acid, oleanolic acid and betulinic acid. The four last compounds were proven to be inhibitors of trypanosomal GAPDH, which may in part explain these antitrypanosomal activities. Copyright © 2012 Elsevier GmbH. All rights reserved.
Allicin and derivates are cysteine protease inhibitors with antiparasitic activity.
Waag, Thilo; Gelhaus, Christoph; Rath, Jennifer; Stich, August; Leippe, Matthias; Schirmeister, Tanja
2010-09-15
Allicin and derivatives thereof inhibit the CAC1 cysteine proteases falcipain 2, rhodesain, cathepsin B and L in the low micromolar range. The structure-activity relationship revealed that only derivatives with primary carbon atom in vicinity to the thiosulfinate sulfur atom attacked by the active-site Cys residue are active against the target enzymes. Some compounds also show potent antiparasitic activity against Plasmodium falciparum and Trypanosoma brucei brucei. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
McGettrick, Anne F; Corcoran, Sarah E; Barry, Paul J G; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M; Franklin, Edward; Corr, Sinéad C; Mok, K Hun; Cummins, Eoin P; Taylor, Cormac T; O'Neill, Luke A J; Nolan, Derek P
2016-11-29
The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei.
Hilton, Nicholas A; Sladewski, Thomas E; Perry, Jenna A; Pataki, Zemplen; Sinclair-Davis, Amy N; Muniz, Richard S; Tran, Holly L; Wurster, Jenna I; Seo, Jiwon; de Graffenried, Christopher L
2018-05-21
The protist parasite Trypanosoma brucei is an obligate extracellular pathogen that retains its highly-polarized morphology during cell division and has evolved a novel cytokinetic process independent of non-muscle myosin II. The polo-like kinase homolog TbPLK is essential for transmission of cell polarity during division and for cytokinesis. We previously identified a putative TbPLK substrate named Tip of the Extending FAZ 1 (TOEFAZ1) as an essential kinetoplastid-specific component of the T. brucei cytokinetic machinery. We performed a proximity-dependent biotinylation (BioID) screen using TOEFAZ1 as a means to identify additional proteins that are involved in cytokinesis. Using quantitative proteomic methods, we identified nearly 500 TOEFAZ1-proximal proteins and characterized 59 in further detail. Among the candidates, we identified an essential putative phosphatase that regulates the expression level and localization of both TOEFAZ1 and TbPLK, a previously uncharacterized protein that is necessary for the assembly of a new cell posterior, and a microtubule plus-end directed orphan kinesin that is required for completing cleavage furrow ingression. The identification of these proteins provides new insight into T. brucei cytokinesis and establishes TOEFAZ1 as a key component of this essential and uniquely-configured process in kinetoplastids. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.
Antibodies to calmodulin during experimental Trypanosoma brucei rhodesiense infections in rabbits.
Ruben, L; Patton, C L
1985-01-01
Calmodulin is an intracellular Ca2+ receptor protein which regulates a wide variety of enzymatic processes in eukaryotic cells examined in detail. Native calmodulin is not antigenic in rabbits because of its small size, high degree of amino acid sequence conservation and hydrophobicity. African trypanosomes contain a novel calmodulin which is structurally distinct from bovine brain and Tetrahymena calmodulins. In the present study, we examine the antibody response towards these calmodulins during chronic Trypanosoma brucei rhodesiense infections. Injection of purified trypanosome calmodulin into rabbits stimulates the production of specific IgG antibodies which recognize trypanosome, but not bovine brain or Tetrahymena calmodulins. By contrast, during chronic T. brucei infections in rabbits, antibodies (IgG + IgM + IgA) that recognize trypanosome, Tetrahymena and mammalian calmodulins arise. When only IgG antibodies are evaluated from infection sera, the major response is against mammalian and Tetrahymena calmodulins. Significantly fewer IgG antibodies are measured in the infection sera which recognize trypanosome calmodulin, while the non-specific control protein, chicken ovalbumin, is not recognized. Peak IgG antibody responses against calmodulin occur between Days 30-34 post-infection. Competition assays indicate that Tetrahymena and mammalian calmodulins are recognized at identical epitopes which are distinct from epitopes on trypanosome calmodulin. We conclude that, in the context of chronic T. brucei infections in rabbits, antibodies arise which are able to recognize mammalian host calmodulin. Images Figure 1 PMID:2414212
McDermott, Suzanne M.; Carnes, Jason
2015-01-01
KREPB5 is an essential component of ∼20S editosomes in Trypanosoma brucei which contains a degenerate, noncatalytic RNase III domain. To explore the function of this protein, we used a novel approach to make and screen numerous conditional null T. brucei bloodstream form cell lines that express randomly mutagenized KREPB5 alleles. We identified nine single amino acid substitutions that could not complement the conditional loss of wild-type KREPB5. Seven of these were within the RNase III domain, and two were in the C-terminal region that has no homology to known motifs. Exclusive expression of these mutated KREPB5 alleles in the absence of wild-type allele expression resulted in growth inhibition, the loss of ∼20S editosomes, and inhibition of RNA editing in BF cells. Eight of these mutations were lethal in bloodstream form parasites but not in procyclic-form parasites, showing that multiple domains function in a life cycle-dependent manner. Amino acid changes at a substantial number of positions, including up to 7 per allele, allowed complementation and thus did not block KREPB5 function. Hence, the degenerate RNase III domain and a newly identified domain are critical for KREPB5 function and have differential effects between the life cycle stages of T. brucei that differentially edit mRNAs. PMID:26370513
Lai, De-Hua; Poropat, Estefanía; Pravia, Carlos; Landoni, Malena; Couto, Alicia S.; Pérez Rojo, Fernando G.; Fuchs, Alicia G.; Dubin, Marta; Elingold, Igal; Rodríguez, Juan B.; Ferella, Marcela; Esteva, Mónica I.
2014-01-01
Ubiquinone 9 (UQ9), the expected product of the long-chain solanesyl diphosphate synthase of Trypanosoma brucei (TbSPPS), has a central role in reoxidation of reducing equivalents in the mitochondrion of T. brucei. The ablation of TbSPPS gene expression by RNA interference increased the generation of reactive oxygen species and reduced cell growth and oxygen consumption. The addition of glycerol to the culture medium exacerbated the phenotype by blocking its endogenous generation and excretion. The participation of TbSPPS in UQ synthesis was further confirmed by growth rescue using UQ with 10 isoprenyl subunits (UQ10). Furthermore, the survival of infected mice was prolonged upon the downregulation of TbSPPS and/or the addition of glycerol to drinking water. TbSPPS is inhibited by 1-[(n-oct-1-ylamino)ethyl] 1,1-bisphosphonic acid, and treatment with this compound was lethal for the cells. The findings that both UQ9 and ATP pools were severely depleted by the drug and that exogenous UQ10 was able to fully rescue growth of the inhibited parasites strongly suggest that TbSPPS and UQ synthesis are the main targets of the drug. These two strategies highlight the importance of TbSPPS for T. brucei, justifying further efforts to validate it as a new drug target. PMID:24376001
McGettrick, Anne F.; Corcoran, Sarah E.; Barry, Paul J. G.; McFarland, Jennifer; Crès, Cécile; Curtis, Anne M.; Franklin, Edward; Corr, Sinéad C.; Mok, K. Hun; Cummins, Eoin P.; Taylor, Cormac T.; O’Neill, Luke A. J.; Nolan, Derek P.
2016-01-01
The parasite Trypanasoma brucei causes African trypanosomiasis, known as sleeping sickness in humans and nagana in domestic animals. These diseases are a major burden in the 36 sub-Saharan African countries where the tsetse fly vector is endemic. Untreated trypanosomiasis is fatal and the current treatments are stage-dependent and can be problematic during the meningoencephalitic stage, where no new therapies have been developed in recent years and the current drugs have a low therapeutic index. There is a need for more effective treatments and a better understanding of how these parasites evade the host immune response will help in this regard. The bloodstream form of T. brucei excretes significant amounts of aromatic ketoacids, including indolepyruvate, a transamination product of tryptophan. This study demonstrates that this process is essential in bloodstream forms, is mediated by a specialized isoform of cytoplasmic aminotransferase and, importantly, reveals an immunomodulatory role for indolepyruvate. Indolepyruvate prevents the LPS-induced glycolytic shift in macrophages. This effect is the result of an increase in the hydroxylation and degradation of the transcription factor hypoxia-inducible factor-1α (HIF-1α). The reduction in HIF-1α levels by indolepyruvate, following LPS or trypanosome activation, results in a decrease in production of the proinflammatory cytokine IL-1β. These data demonstrate an important role for indolepyruvate in immune evasion by T. brucei. PMID:27856732
Van Reet, N; Pyana, P P; Deborggraeve, S; Büscher, P; Claes, F
2011-07-01
Trypanosoma brucei (T.b.) gambiense causes the chronic form of human African trypanosomiasis or sleeping sickness. One of the major problems with studying T.b. gambiense is the difficulty to isolate it from its original host and the difficult adaptation to in vivo and in vitro mass propagation. The objective of this study was to evaluate if an established method for axenic culture of pleomorphic bloodstream form T.b. brucei strains, based on methylcellulose containing HMI-9 medium, also facilitated the continuous in vitro propagation of other bloodstream form Trypanozoon strains, in particular of T.b. gambiense. Bloodstream form trypanosomes from one T.b. brucei, two T.b. rhodesiense, one T. evansi and seven T.b. gambiense strains were isolated from mouse blood and each was concurrently cultivated in liquid and methylcellulose-containing HMI-9 based medium, either with or without additional human serum supplementation, for over 10 consecutive sub passages. Although HMI-9 based medium supplemented with 1.1% (w/v) methylcellulose supported the continuous cultivation of all non-gambiense strains better than liquid media could, the in vitro cultivation of all gambiense strains was only achieved in HMI-9 based medium containing 1.1% (w/v) methylcellulose, 15% (v/v) fetal calf serum and 5% (v/v) heat-inactivated human serum. Copyright © 2011 Elsevier Inc. All rights reserved.
Bordetella pertussis transmission
USDA-ARS?s Scientific Manuscript database
Bordetella pertussis and Bordetella bronchiseptica are Gram negative bacterial respiratory pathogens. B. pertussis is the causative agent of whooping cough and is considered a human-adapted variant of B. bronchiseptica. B. pertussis and B. bronchiseptica share mechanisms of pathogenesis and are gene...
Ulshina, D V; Kovalev, D A; Zhirov, A M; Zharinova, N V; Khudoleev, A A; Kogotkova, O I; Efremenko, V I; Evchenko, N I; Kulichenko, A N
2016-01-01
Carry out comparative analysis using time-of-flight mass-spectrometry with matrix laser desorption/ionization (MALDI-TOF MS) of protein profiles of brucellosis causative agents (Brucella melitensis Rev-1 and Brucella abortus 19BA), cultivated in various nutrient media: Albimi agar, brucellagar and erythrit-agar. Vaccine,strains: Brucella melitensis Rev-1 and Brucella abortus 19BA. Protein profiling in linear mode on Microflex "Bruker Daltonics" MALDI-TOF mass-spectrometer. A number of characteristic features of brucella mass-spectra was detected: in particular, preservation of the total qualitative composition of protein profiles of cultures and significant differences in the intensity of separate peaks depending on the nutrient medium used. Based on the analysis of the data obtained, use of Albimi agar as the nutrient medium for preparation of brucella culture samples for mass-spectrometric analysis was shown to be optimal.
Barnes, Kay B; Steward, Jackie; Thwaite, Joanne E; Lever, M Stephen; Davies, Carwyn H; Armstrong, Stuart J; Laws, Thomas R; Roughley, Neil; Harding, Sarah V; Atkins, Timothy P; Simpson, Andrew J H; Atkins, Helen S
2013-06-01
Burkholderia pseudomallei is the causative agent of the disease melioidosis, which is prevalent in tropical countries and is intractable to a number of antibiotics. In this study, the antibiotic co-trimoxazole (trimethoprim/sulfamethoxazole) was assessed for the post-exposure prophylaxis of experimental infection in mice with B. pseudomallei and its close phylogenetic relative Burkholderia mallei, the causative agent of glanders. Co-trimoxazole was effective against an inhalational infection with B. pseudomallei or B. mallei. However, oral co-trimoxazole delivered twice daily did not eradicate infection when administered from 6h post exposure for 14 days or 21 days, since infected and antibiotic-treated mice succumbed to infection following relapse or immunosuppression. These data highlight the utility of co-trimoxazole for prophylaxis both of B. pseudomallei and B. mallei and the need for new approaches for the treatment of persistent bacterial infection. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Kim, Kyoo Sang
2010-01-01
Occupational asthma (OA) is the leading occupational respiratory disease. Cases compensated as OA by the Korea Workers' Compensation and Welfare Service (COMWEL) (218 cases), cases reported by a surveillance system (286 cases), case reports by related scientific journals and cases confirmed by the Occupational Safety and Health Research Institute (OSHRI) over 15 yr from 1992 to 2006 were analyzed. Annual mean incidence rate was 1.6 by compensation and 3.5 by surveillance system, respectively. The trend appeared to increase according to the surveillance system. Incidence was very low compared with other countries. The most frequently reported causative agent was isocyanate followed by reactive dye in dyeing factories. Other chemicals, metals and dust were also found as causative agents. OA was underreported according to compensation and surveillance system data. In conclusion, a more effective surveillance system is needed to evaluate OA causes and distribution, and to effectively prevent newly developing OA. PMID:21258586
N’Djetchi, Martial Kassi; Ilboudo, Hamidou; Koffi, Mathurin; Kaboré, Jacques; Kaboré, Justin Windingoudi; Kaba, Dramane; Courtin, Fabrice; Coulibaly, Bamoro; Fauret, Pierre; Kouakou, Lingué; Ravel, Sophie; Deborggraeve, Stijn; Solano, Philippe; De Meeûs, Thierry; Bucheton, Bruno
2017-01-01
Background Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d’Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci. Methodology/Principal findings 552 domestic animals (goats, pigs, cattle and sheep) were included. Blood samples were tested for trypanosomes by microscopic observation, species-specific PCR for T. brucei sl, T. congolense, T. vivax and subspecies-specific PCR for T. b. gambiense and T. b. gambiense immune trypanolysis (TL). Infection rates varied significantly between animal species and were by far the highest in pigs (30%). T. brucei s.l was the most prevalent trypanosome species (13.7%) followed by T. congolense. No T. b. gambiense was identified by PCR while high TL positivity rates were observed using T. b. gambiense specific variants (up to 27.6% for pigs in the Bonon focus). Conclusion This study shows that domestic animals are highly infected by trypanosomes in the studied foci. This was particularly true for pigs, possibly due to a higher exposure of these animals to tsetse flies. Whereas T. brucei s.l. was the most prevalent species, discordant results were obtained between PCR and TL regarding T. b. gambiense identification. It is therefore crucial to develop better tools to study the epidemiological role of potential animal reservoir for T. b. gambiense. Our study illustrates the importance of “one health” approaches to reach HAT elimination and contribute to AAT control in the studied foci. PMID:29045405
Pedron, Julien; Boudot, Clotilde; Hutter, Sébastien; Bourgeade-Delmas, Sandra; Stigliani, Jean-Luc; Sournia-Saquet, Alix; Moreau, Alain; Boutet-Robinet, Elisa; Paloque, Lucie; Mothes, Emmanuelle; Laget, Michèle; Vendier, Laure; Pratviel, Geneviève; Wyllie, Susan; Fairlamb, Alan; Azas, Nadine; Courtioux, Bertrand; Valentin, Alexis; Verhaeghe, Pierre
2018-06-05
To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin. Crown Copyright © 2018. Published by Elsevier Masson SAS. All rights reserved.
von Wissmann, Beatrix; Machila, Noreen; Picozzi, Kim; Fèvre, Eric M.; deC. Bronsvoort, Barend M.; Handel, Ian G.; Welburn, Susan C.
2011-01-01
Background Trypanosomiasis is regarded as a constraint on livestock production in Western Kenya where the responsibility for tsetse and trypanosomiasis control has increasingly shifted from the state to the individual livestock owner. To assess the sustainability of these localised control efforts, this study investigates biological and management risk factors associated with trypanosome infections detected by polymerase chain reaction (PCR), in a range of domestic livestock at the local scale in Busia, Kenya. Busia District also remains endemic for human sleeping sickness with sporadic cases of sleeping sickness reported. Results In total, trypanosome infections were detected in 11.9% (329) out of the 2773 livestock sampled in Busia District. Multivariable logistic regression revealed that host species and cattle age affected overall trypanosome infection, with significantly increased odds of infection for cattle older than 18 months, and significantly lower odds of infection in pigs and small ruminants. Different grazing and watering management practices did not affect the odds of trypanosome infection, adjusted by host species. Neither anaemia nor condition score significantly affected the odds of trypanosome infection in cattle. Human infective Trypanosoma brucei rhodesiense were detected in 21.5% of animals infected with T. brucei s.l. (29/135) amounting to 1% (29/2773) of all sampled livestock, with significantly higher odds of T. brucei rhodesiense infections in T. brucei s.l. infected pigs (OR = 4.3, 95%CI 1.5-12.0) than in T. brucei s.l. infected cattle or small ruminants. Conclusions Although cattle are the dominant reservoir of trypanosome infection it is unlikely that targeted treatment of only visibly diseased cattle will achieve sustainable interruption of transmission for either animal infective or zoonotic human infective trypanosomiasis, since most infections were detected in cattle that did not exhibit classical clinical signs of trypanosomiasis. Pigs were also found to be reservoirs of infection for T. b. rhodesiense and present a risk to local communities. PMID:21311575
2015-10-01
This proposal aims to identify topically applied anti-inflammatory drugs that will reduce recipient site inflammation and skin graft contraction. We...hypothesize that the elevated and prolonged inflammatory state of the recipient wound bed is a causative factor in the development of skin graft contraction...Using a porcine model of skin graft contraction, we will screen for anti-inflammatory agents (dose, schedule of administration, drug class
Control of Hemotropic Diseases of Dogs.
1979-12-31
and Kobayashi, Y.: Studies on Infectious Mononucleosis . I. Isolation of Etiologic Agent from Blood, Bone Marrow and Lymph Node of a Patient with... Infectious Mononucleosis by Using Mice. Tokyo Iji Shinshi, 71 (1954): 683-686. Ristic, M., Huxsoll, D.L., IWeisiger, R.M., Hildebrandt, P.K., Nyindo, M. B...1030-1036. Tanaka, H. and Hanoaka, M.: Ultrastructurc and Taxonomy of Rickettsia sennetsu (the Causative Agent of "Sennetsu" or Infectious Mononucleosis
Novel Burkholderia mallei Virulence Factors Linked to Specific Host-Pathogen Protein Interactions
2013-06-23
Wallqvist‡ Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent ...experimental Burkholderia data to ini- tially select a small number of proteins as putative viru- lence factors. We then used yeast two-hybrid assays...causative agent of glan- ders, a disease primarily affecting horses but transmittable to humans; and Burkholderia pseudomallei, which is responsible for
Hypersensitivity pneumonitis: a complex lung disease.
Riario Sforza, Gian Galeazzo; Marinou, Androula
2017-01-01
Hypersensitivity pneumonitis (HP), also called extrinsic allergic alveolitis, is a respiratory syndrome involving the lung parenchyma and specifically the alveoli, terminal bronchioli, and alveolar interstitium, due to a delayed allergic reaction. Such reaction is secondary to a repeated and prolonged inhalation of different types of organic dusts or other substances to which the patient is sensitized and hyper responsive, primarily consisting of organic dusts of animal or vegetable origin, more rarely from chemicals. The prevalence of HP is difficult to evaluate because of uncertainties in detection and misdiagnosis and lacking of widely accepted diagnostic criteria, and varies considerably depending on disease definition, diagnostic methods, exposure modalities, geographical conditions, agricultural and industrial practices, and host risk factors. HP can be caused by multiple agents that are present in work places and in the home, such as microbes, animal and plant proteins, organic and inorganic chemicals. The number of environment, settings and causative agents is increasing over time. From the clinical point of view HP can be divided in acute/subacute and chronic, depending on the intensity and frequency of exposure to causative antigens. The mainstay in managing HP is the avoidance of the causative antigen, though the complete removal is not always possible due to the difficulties to identify the agent or because its avoidance may lead to major changes in life style or occupational settings. HP is a complex syndrome that needs urgently for more stringent and selective diagnostic criteria and validation, including wider panels of IgG, and a closer collaboration with occupational physicians, as part of a multidisciplinary expertise.
Antibiotics are the Most Commonly Identified Cause of Perioperative Hypersensitivity Reactions
Kuhlen, James L.; Camargo, Carlos A.; Balekian, Diana S.; Blumenthal, Kimberly G.; Guyer, Autumn; Morris, Theresa; Long, Aidan; Banerji, Aleena
2016-01-01
Background Hypersensitivity reactions (HSR) during the perioperative period are unpredictable and can be life threatening. Prospective studies for evaluation of perioperative HSR are lacking and data on causative agents varies between different studies. Objective To prospectively determine the success of a comprehensive allergy evaluation plan for patients with HSR during anesthesia, including identification of causative agent and outcomes during subsequent anesthesia exposure. Methods All patients referred for perioperative HSR between November 2013 and March 2015, from a Boston teaching hospital, were evaluated using a standardized protocol with skin testing (ST) within 6 months of HSR. Comprehensive allergy evaluation included collection of patient information, including characteristics of HSR during anesthesia. We reviewed results of ST and/or test doses for all potential causative medications Event-related tryptase levels were reviewed when available. Results Over 17 months, 25 patients completed the comprehensive allergy evaluation. Fifty-two percent (13/25) were female with a median age of 52 (IQR 43–66) years. The most frequently observed HSR systems were cutaneous (68%), cardiovascular (64%), and pulmonary (24%). A culprit drug, defined as a positive ST, was identified in 36% (9/25) of patients. The most common agent identified was cefazolin (6/9). Following our comprehensive evaluation and management plan, seven (7/8, 88%) patients tolerated subsequent anesthesia. Conclusions Cefazolin was the most commonly identified cause of perioperative HSR in our study population. Skin testing patients within 6 months of a perioperative HSR may improve the odds of finding a positive result. Tolerance of subsequent anesthesia is generally achieved in patients undergoing our comprehensive evaluation. PMID:27039234
Bender, Andrea; Beller, Sieghard
2017-01-01
Linguistic cues may be considered a potent tool for focusing attention on causes or effects. In this paper, we explore how different cues affect causal assignments in German and Tongan. From a larger screening study, two parts are reported here: Part 1 dealt with syntactic variations, including word order (agent vs. patient in first/subject position) and case marking (e.g., as ergative vs. non-ergative in Tongan) depending on verb type (transitive vs. intransitive). For two physical settings (wood floating on water and a man breaking a glass), participants assigned causality to the two entities involved. In the floating setting, speakers of the two languages were sensitive to syntactic variations, but differed in the entity regarded as causative. In the breaking setting, the human agent was uniformly regarded as causative. Part 2 dealt with implicit verb causality. Participants assigned causality to subject or object of 16 verbs presented in minimal social scenarios. In German, all verbs showed a subject (agent) focus; in Tongan, the focus depended on the verb; and for nine verbs, the focus differed across languages. In conclusion, we discuss the question of domain-specificity of causal cognition, the role of the ergative as causal marker, and more general differences between languages. PMID:28736538
Cohen, Philip R
2017-04-01
Melasma is an acquired disorder of pigmentation that presents with asymptomatic symmetric darkening of the face. The pathogenesis of this condition is multifactorial and influenced by several factors including female sex hormones, genetic predisposition and ultraviolet light exposure. The management of melasma is usually directed at more than one of the causative etiologic factors and often incorporates a combination of topical agents, with or without the addition of physical modalities. Estrogen and angiogenesis are significant factors in the etiology of melasma. A useful addition to the therapeutic armentarium for treating melasma would include a topical agent that could effect both of these causative factors. Specifically, a topical preparation consisting of an anti-estrogen and a vascular endothelial growth factor inhibitor would accomplish this goal. Suitable candidates that target estrogen receptors and vascular endothelial growth factor are currently used in medical oncology as systemic antineoplastic agents. The anti-estrogen could be either a selective estrogen receptor modulator (such as tamoxifen or raloxifene) or an aromatase inhibitor (such as anastrozole or letrozole or exemestane). The vascular endothelial growth factor inhibitor would be bevacizumab. In conclusion, a novel-topically administered-therapy for melasma would combine an anti-estrogen and a vascular endothelial growth factor inhibitor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Bradford Hill's criteria, emerging zoonoses, and One Health.
Asokan, G V; Asokan, Vanitha
2016-09-01
Zoonoses constitute more than 60% of infectious diseases and 75% of emerging infectious diseases. Inappropriate overemphasis of specialization of disciplines has ignored public health. Identifying the causes of disease and determining how exposures are related to outcomes in "emerging zoonoses" affecting multiple species are considered to be the hallmarks of public health research and practice that compels the adoption of "One Health". The interactions within and among populations of vertebrates in the causation and transmissions of emerging zoonotic diseases are inherently dynamic, interdependent, and systems based. Disease causality theories have moved from one or several agents causing disease in a single species, to one infectious agent causing disease in multiple species-emerging zoonoses. Identification of the causative pathogen components or structures, elucidating the mechanisms of species specificity, and understanding the natural conditions of emergence would facilitate better derivation of the causal mechanism. Good quality evidence on causation in emerging zoonoses affecting multiple species makes a strong recommendation under the One Health approach for disease prevention and control from diagnostic tests, treatment, antimicrobial resistance, preventive vaccines, and evidence informed health policies. In the tenets of One Health, alliances work best when the legitimate interests of the different partners combine to prevent and control emerging zoonoses. Copyright © 2015 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.
New discoveries in the transmission biology of sleeping sickness parasites: applying the basics.
MacGregor, Paula; Matthews, Keith R
2010-09-01
The sleeping sickness parasite, Trypanosoma brucei, must differentiate in response to the changing environments that it encounters during its complex life cycle. One developmental form, the bloodstream stumpy stage, plays an important role in infection dynamics and transmission of the parasite. Recent advances have shed light on the molecular mechanisms by which these stumpy forms differentiate as they are transmitted from the mammalian host to the insect vector of sleeping sickness, tsetse flies. These molecular advances now provide improved experimental tools for the study of stumpy formation and function within the mammalian bloodstream. They also offer new routes to therapy via high-throughput screens for agents that accelerate parasite development. Here, we shall discuss the recent advances that have been made and the prospects for future research now available.
Drug discovery for the treatment of leishmaniasis, African sleeping sickness and Chagas disease.
2013-10-01
The trypanosomatid protozoa Leishmania, Trypanosoma brucei and Trypanosoma cruzi are the caustive agents of the human diseases respectively, leishmaniasis, African sleeping sickness and Chagas disease. Among the 17 'neglected tropical diseases' highlighted by WHO, progress towards the treatment of these diseases has improved in recent decades, as a result of increased awareness, the emergence of public-private research partnerships and advances in drug-discovery technologies and techniques. Despite this, the current therapies for these diseases have serious shortcomings and, as such, the need to develop novel drugs, improve diagnosis and control the spread of disease is of paramount importance. Future Medicinal Chemistry invited leading experts in the field to share their thoughts and opinions on the changing face of drug discovery in the pursuit of treatments for trypanosomatid-based diseases.
Operational Testing of Floor Cleaning Cloths for Household ...
Report The objective of this study was to evaluate the Swiffer® Sweeper® floor mop system (SSFMS) as a low-tech method to clean indoor residential floors contaminated with B. anthracis spores (the causative agent of anthrax).
Induction of Crown Gall on Carrot Slices.
ERIC Educational Resources Information Center
Babich, H.; Fox, K. D.
1998-01-01
Argues that the transfer of plasmid from a bacterium to a plant cell has received little attention. Presents an experiment for studying this type of genetic transformation using the causative agent of crown gall, a malignant plant tumor. (DDR)
Hwang, Deng-Fwu; Tsai, Yu-Shia; Chou, Shin-Shoug; Liu, Shiu-Mei; Wu, Jiunn-Tzong; Lin, Shin-Jung; Tu, Wei-Chun
2005-04-01
In an outbreak of food poisoning involving a dried purple laver product (called nori), four persons had allergic-like symptoms such as inflammation and red rash on their face, mouth and belly. The causative nori was extracted and smeared on the arm-skin of five volunteers. Three out of five volunteers had a slight allergic reaction after 5 to 30 min when they were exposed to sunlight. The levels of the chlorophyll derivatives, pheophorbide a and pyropheophorbide a, measured by HPLC were 851-906 and 5,460-5,624 microg/g, respectively, in the causative samples. Judging from the high contents of pyropheophorbide a and pheophorbide a and the symptoms of patients and volunteers, the causative agents were concluded to be the photosensitizers pyropheophorbide a and pheophorbide a.
Giroud, Maude; Dietzel, Uwe; Anselm, Lilli; Banner, David; Kuglstatter, Andreas; Benz, Jörg; Blanc, Jean-Baptiste; Gaufreteau, Delphine; Liu, Haixia; Lin, Xianfeng; Stich, August; Kuhn, Bernd; Schuler, Franz; Kaiser, Marcel; Brun, Reto; Schirmeister, Tanja; Kisker, Caroline; Diederich, François; Haap, Wolfgang
2018-04-26
Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( K i < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC 50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.
Al-Musayeib, Nawal M; Mothana, Ramzi A; Al-Massarani, Shaza; Matheeussen, An; Cos, Paul; Maes, Louis
2012-09-25
The present study investigated the in vitro antiprotozoal activity of sixteen selected medicinal plants. Plant materials were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxic activity was determined against MRC-5 cells to assess selectivity. The criterion for activity was an IC₅₀ < 10 μg/mL (<5 μg/mL for T. brucei) and a selectivity index of ≥4. Antiplasmodial activity was found in the extracts of Prosopis juliflora and Punica granatum. Antileishmanial activity against L. infantum was demonstrated in Caralluma sinaica and Periploca aphylla. Amastigotes of T. cruzi were affected by the methanol extract of Albizia lebbeck pericarp, Caralluma sinaica, Periploca aphylla and Prosopius juliflora. Activity against T. brucei was obtained in Prosopis juliflora. Cytotoxicity (MRC-5 IC₅₀ < 10 μg/mL) and hence non-specific activities were observed for Conocarpus lancifolius.
Kovářová, Julie; Horáková, Eva; Changmai, Piya; Vancová, Marie
2014-01-01
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites. PMID:24243795
Kovárová, Julie; Horáková, Eva; Changmai, Piya; Vancová, Marie; Lukeš, Julius
2014-03-01
Trypanosoma brucei has a complex life cycle during which its single mitochondrion is subjected to major metabolic and morphological changes. While the procyclic stage (PS) of the insect vector contains a large and reticulated mitochondrion, its counterpart in the bloodstream stage (BS) parasitizing mammals is highly reduced and seems to be devoid of most functions. We show here that key Fe-S cluster assembly proteins are still present and active in this organelle and that produced clusters are incorporated into overexpressed enzymes. Importantly, the cysteine desulfurase Nfs, equipped with the nuclear localization signal, was detected in the nucleolus of both T. brucei life stages. The scaffold protein Isu, an interacting partner of Nfs, was also found to have a dual localization in the mitochondrion and the nucleolus, while frataxin and both ferredoxins are confined to the mitochondrion. Moreover, upon depletion of Isu, cytosolic tRNA thiolation dropped in the PS but not BS parasites.
Tiengwe, Calvin; Marcello, Lucio; Farr, Helen; Dickens, Nicholas; Kelly, Steven; Swiderski, Michal; Vaughan, Diane; Gull, Keith; Barry, J. David; Bell, Stephen D.; McCulloch, Richard
2012-01-01
Summary Identification of replication initiation sites, termed origins, is a crucial step in understanding genome transmission in any organism. Transcription of the Trypanosoma brucei genome is highly unusual, with each chromosome comprising a few discrete transcription units. To understand how DNA replication occurs in the context of such organization, we have performed genome-wide mapping of the binding sites of the replication initiator ORC1/CDC6 and have identified replication origins, revealing that both localize to the boundaries of the transcription units. A remarkably small number of active origins is seen, whose spacing is greater than in any other eukaryote. We show that replication and transcription in T. brucei have a profound functional overlap, as reducing ORC1/CDC6 levels leads to genome-wide increases in mRNA levels arising from the boundaries of the transcription units. In addition, ORC1/CDC6 loss causes derepression of silent Variant Surface Glycoprotein genes, which are critical for host immune evasion. PMID:22840408
Claes, Filip; Vodnala, Suman K.; van Reet, Nick; Boucher, Nathalie; Lunden-Miguel, Hilda; Baltz, Theo; Goddeeris, Bruno Maria; Büscher, Philippe; Rottenberg, Martin E.
2009-01-01
Monitoring Trypanosoma spread using real-time imaging in vivo provides a fast method to evaluate parasite distribution especially in immunoprivileged locations. Here, we generated monomorphic and pleomorphic recombinant Trypanosoma brucei expressing the Renilla luciferase. In vitro luciferase activity measurements confirmed the uptake of the coelenterazine substrate by live parasites and light emission. We further validated the use of Renilla luciferase-tagged trypanosomes for real-time bioluminescent in vivo analysis. Interestingly, a preferential testis tropism was observed with both the monomorphic and pleomorphic recombinants. This is of importance when considering trypanocidal drug development, since parasites might be protected from many drugs by the blood-testis barrier. This hypothesis was supported by our final study of the efficacy of treatment with trypanocidal drugs in T. brucei-infected mice. We showed that parasites located in the testis, as compared to those located in the abdominal cavity, were not readily cleared by the drugs. PMID:19621071
Loua, Jean; Traore, Mohamed Sahar; Camara, Aissata; Balde, Mamadou Aliou; Maes, Louis; Pieters, Luc
2017-01-01
Caesalpinia benthamiana is widely used as antimalarial in Guinean traditional medicine. Leaf extracts of the plant were tested for their in vitro antiprotozoal activity against Trypanosoma brucei brucei and T. cruzi and the chloroquine-sensitive Ghana strain of Plasmodium falciparum along with their cytotoxicity on MRC-5 cells. The methanolic extract showed the strongest antiprotozoal activity against P. falciparum (IC50 4 μg/ml), a good activity against T. brucei (IC50 13 μg/ml), and a moderate activity against T. cruzi (IC50 31 μg/ml) along with an IC50 on human MRC-5 cells of 32 μg/ml. Bioassay-guided fractionation from the methanolic extract led to antiplasmodially active subfractions. A prospective, placebo-controlled ethnotherapeutic trial assessed the antimalarial effectiveness and tolerability of C. benthamiana syrup administered orally to children with uncomplicated malaria as compared with chloroquine syrup. Phytochemical screening of the leaf extracts indicated the presence of flavonoids, terpenoids, tannins, saponins, and iridoids. PMID:29081823
Structure of a Trypanosoma Brucei Alpha/Beta--Hydrolase Fold Protein With Unknown Function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, E.A.; Holmes, M.; Buckner, F.S.
2009-05-26
The structure of a structural genomics target protein, Tbru020260AAA from Trypanosoma brucei, has been determined to a resolution of 2.2 {angstrom} using multiple-wavelength anomalous diffraction at the Se K edge. This protein belongs to Pfam sequence family PF08538 and is only distantly related to previously studied members of the {alpha}/{beta}-hydrolase fold family. Structural superposition onto representative {alpha}/{beta}-hydrolase fold proteins of known function indicates that a possible catalytic nucleophile, Ser116 in the T. brucei protein, lies at the expected location. However, the present structure and by extension the other trypanosomatid members of this sequence family have neither sequence nor structural similaritymore » at the location of other active-site residues typical for proteins with this fold. Together with the presence of an additional domain between strands {beta}6 and {beta}7 that is conserved in trypanosomatid genomes, this suggests that the function of these homologs has diverged from other members of the fold family.« less
Steinmann, Michael E; Schmidt, Remo S; Macêdo, Juan P; Kunz Renggli, Christina; Bütikofer, Peter; Rentsch, Doris; Mäser, Pascal; Sigel, Erwin
2017-01-01
CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium.
TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes
Reis, Helena; Schwebs, Marie; Dietz, Sabrina; Janzen, Christian J; Butter, Falk
2018-01-01
Abstract During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation. PMID:29385523
N-myristoyltransferase inhibitors as new leads to treat sleeping sickness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frearson, Julie A.; Brand, Stephen; McElroy, Stuart P.
2010-11-05
African sleeping sickness or human African trypanosomiasis, caused by Trypanosoma brucei spp., is responsible for {approx}30,000 deaths each year. Available treatments for this disease are poor, with unacceptable efficacy and safety profiles, particularly in the late stage of the disease when the parasite has infected the central nervous system. Here we report the validation of a molecular target and the discovery of associated lead compounds with the potential to address this lack of suitable treatments. Inhibition of this target - T. brucei N-myristoyltransferase - leads to rapid killing of trypanosomes both in vitro and in vivo and cures trypanosomiasis inmore » mice. These high-affinity inhibitors bind into the peptide substrate pocket of the enzyme and inhibit protein N-myristoylation in trypanosomes. The compounds identified have promising pharmaceutical properties and represent an opportunity to develop oral drugs to treat this devastating disease. Our studies validate T. brucei N-myristoyltransferase as a promising therapeutic target for human African trypanosomiasis.« less
The Origin of Malignant Malaria
USDA-ARS?s Scientific Manuscript database
Plasmodium falciparum is the causative agent of malignant malaria, which is among the most severe human infectious diseases. Despite its overwhelming significance to human health, the parasite’s origins remain unclear. The favored origin hypothesis holds that P. falciparum and its closest known rel...
USDA-ARS?s Scientific Manuscript database
Bordetellosis, also known as turkey coryza, is an acute, highly contagious disease of the upper respiratory tract of young turkeys. In the 1980’s, following initial disagreement as to the etiology, the bacterium Bordetella avium was proven to be the causative agent. Mortality in uncomplicated outb...
Human gastroenteritis outbreak associated with Escherichia albertii, Japan.
Ooka, Tadasuke; Tokuoka, Eisuke; Furukawa, Masato; Nagamura, Tetsuya; Ogura, Yoshitoshi; Arisawa, Kokichi; Harada, Seiya; Hayashi, Tetsuya
2013-01-01
Although Escherichia albertii is an emerging intestinal pathogen, it has been associated only with sporadic human infections. In this study, we determined that a human gastroenteritis outbreak at a restaurant in Japan had E. albertii as the major causative agent.
Krstin, Sonja; Sobeh, Mansour; Braun, Markus Santhosh; Wink, Michael
2018-04-21
Background: Garlics and onions have been used for the treatment of diseases caused by parasites and microbes since ancient times. Trypanosomiasis and leishmaniasis are a concern in many areas of the world, especially in poor countries. Methods: Trypanosoma brucei brucei and Leishmania tarentolae were used to investigate the anti-parasitic effects of dichloromethane extracts of Allium sativum (garlic) and Allium cepa (onion) bulbs. As a confirmation of known antimicrobial activities, they were studied against a selection of G-negative, G-positive bacteria and two fungi. Chemical analyses were performed using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Results: Chemical analyses confirmed the abundance of several sulfur secondary metabolites in garlic and one (zwiebelane) in the onion extract. Both extracts killed both types of parasites efficiently and inhibited the Trypanosoma brucei trypanothione reductase irreversibly. In addition, garlic extract decreased the mitochondrial membrane potential in trypanosomes. Garlic killed the fungi C. albicans and C. parapsilosis more effectively than the positive control. The combinations of garlic and onion with common trypanocidal and leishmanicidal drugs resulted in a synergistic or additive effect in 50% of cases. Conclusion: The mechanism for biological activity of garlic and onion appears to be related to the amount and the profile of sulfur-containing compounds. It is most likely that vital substances inside the parasitic cell, like trypanothione reductase, are inhibited through disulfide bond formation between SH groups of vital redox compounds and sulfur-containing secondary metabolites.
Purification of an eight subunit RNA polymerase I complex in Trypanosoma brucei.
Nguyen, Tu N; Schimanski, Bernd; Zahn, André; Klumpp, Birgit; Günzl, Arthur
2006-09-01
Trypanosoma brucei harbors a unique multifunctional RNA polymerase (pol) I which transcribes, in addition to ribosomal RNA genes, the gene units encoding the major cell surface antigens variant surface glycoprotein and procyclin. In consequence, this RNA pol I is recruited to three structurally different types of promoters and sequestered to two distinct nuclear locations, namely the nucleolus and the expression site body. This versatility may require parasite-specific protein-protein interactions, subunits or subunit domains. Thus far, data mining of trypanosomatid genomes have revealed 13 potential RNA pol I subunits which include two paralogous sets of RPB5, RPB6, and RPB10. Here, we analyzed a cDNA library prepared from procyclic insect form T. brucei and found that all 13 candidate subunits are co-expressed. Moreover, we PTP-tagged the largest subunit TbRPA1, tandem affinity-purified the enzyme complex to homogeneity, and determined its subunit composition. In addition to the already known subunits RPA1, RPA2, RPC40, 1RPB5, and RPA12, the complex contained RPC19, RPB8, and 1RPB10. Finally, to evaluate the absence of RPB6 in our purifications, we used a combination of epitope-tagging and reciprocal coimmunoprecipitation to demonstrate that 1RPB6 but not 2RPB6 binds to RNA pol I albeit in an unstable manner. Collectively, our data strongly suggest that T. brucei RNA pol I binds a distinct set of the RPB5, RPB6, and RPB10 paralogs.
Sobeh, Mansour; Braun, Markus Santhosh; Krstin, Sonja; Youssef, Fadia S; Ashour, Mohamed L; Wink, Michael
2016-11-01
The essential oil compositions of the leaves of three related Myrtaceae species, namely Syzygium aqueum, Syzygium samarangense and Eugenia uniflora, were investigated using GLC/MS and GLC/FID. Altogether, 125 compounds were identified: α-Selinene (13.85%), β-caryophyllene (12.72%) and β-selinene constitute the most abundant constituents in S. aqueum. Germacrene D (21.62%) represents the major compound in S. samarangense whereas in E. uniflora, spathulenol (15.80%) represents the predominant component. Multivariate chemometric analyses were used to discriminate the essential oils using hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on the chromatographic results. The antimicrobial activity of the popularly used E. uniflora essential oil was assessed using broth microdilution method against six Gram-positive, three Gram-negative bacteria and two fungi. The oil showed moderate antimicrobial activity against Bacillus licheniformis exhibiting MIC and MMC of 0.63 mg/ml. The cytotoxic activity of E. uniflora essential oil was investigated against Trypanosoma brucei brucei (T. b. brucei) and MCF-7 cancer cell line using MTT assay. It showed moderate activity against MCF-7 cells with an IC 50 value of 76.40 μg/ml. On the other hand, T. brucei was highly susceptible to E. uniflora essential oil with IC 50 of 11.20 μg/ml, and a selectivity index of 6.82. © 2016 Wiley-VHCA AG, Zurich, Switzerland.
McDermott, Suzanne M; Carnes, Jason; Stuart, Kenneth
2015-12-01
KREPB5 is an essential component of ∼ 20S editosomes in Trypanosoma brucei which contains a degenerate, noncatalytic RNase III domain. To explore the function of this protein, we used a novel approach to make and screen numerous conditional null T. brucei bloodstream form cell lines that express randomly mutagenized KREPB5 alleles. We identified nine single amino acid substitutions that could not complement the conditional loss of wild-type KREPB5. Seven of these were within the RNase III domain, and two were in the C-terminal region that has no homology to known motifs. Exclusive expression of these mutated KREPB5 alleles in the absence of wild-type allele expression resulted in growth inhibition, the loss of ∼ 20S editosomes, and inhibition of RNA editing in BF cells. Eight of these mutations were lethal in bloodstream form parasites but not in procyclic-form parasites, showing that multiple domains function in a life cycle-dependent manner. Amino acid changes at a substantial number of positions, including up to 7 per allele, allowed complementation and thus did not block KREPB5 function. Hence, the degenerate RNase III domain and a newly identified domain are critical for KREPB5 function and have differential effects between the life cycle stages of T. brucei that differentially edit mRNAs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zhou, Qing; Li, Ziyin
2015-11-01
γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.
Zhou, Qing; Li, Ziyin
2015-01-01
The γ-tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, GCP2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. PMID:26224545
Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms
Nes, Craigen R.; Singha, Ujjal K.; Liu, Jialin; Ganapathy, Kulothungan; Villalta, Fernando; Waterman, Michael R.; Lepesheva, Galina I.; Chaudhuri, Minu; Nes, W. David
2012-01-01
Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14-demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate–mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control <[2-13C]leucine<[2-13C]acetate<[1-13C]glucose) and corresponding depletion of cholesta-5,7,24-trienol. We conclude that anabolic fluxes originating in mitochondrial metabolism constitute a flexible part of sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth. PMID:22176028
Nanavaty, Vishal; Sandhu, Ranjodh; Jehi, Sanaa E; Pandya, Unnati M; Li, Bibo
2017-06-02
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Could inhibition of the proteasome cause mad cow disease?
Hooper, Nigel M
2003-04-01
The proteasome is the cellular machinery responsible for the degradation of normal and misfolded proteins. Inhibitors of the proteasome are being evaluated as therapeutic agents and recent work suggests that such inhibition might promote the neurotoxic properties of the prion protein (the causative agent of mad cow disease) and its conformational conversion to the infectious form, thus raising the question as to whether proteasome inhibitors might facilitate the development of prion diseases.
Vaccine Development for Biothreat Alpha Viruses
2011-09-25
gaviridae, are causative agents of debilitative, acute, and sometimes fatal encephalitis in North, Central, and South America [1]. These viruses are...and can be lyophilized. VEEV was tested as a biowarfare agent during the U.S. offensive program in the 1950’s and 1960’s, and may have been...MD 21702, USA Abstract The majority of alpha virus is non-pathogenic to humans. However, select alpha viruses can cause severe disease in humans
Piipari, R; Keskinen, H
2005-12-01
Occupational asthma is an avoidable form of asthma. In Finland, the diagnosis of occupational asthma entitles substantial compensation to the employee. The diagnostics are based on symptoms, exposure assessment, allergologic investigations, follow-up of peak expiratory flow (PEF) at work and at home and, in many cases, specific challenge tests. To study the causative agents of occupational asthma in Finland. The causative agents and the numbers of new occupational asthma cases notified to the Finnish Register of Occupational Diseases (FROD) during 1986-2002 are reported. The number of occupational asthma cases increased from 1986 until 1995, after which a downward trend, stabilizing during the last few years, has been observed. The majority of the cases (59%) in the beginning of the period (1986-1990) were associated with agriculture, but the percentage has fallen thereafter (42% of the cases in 1998-2002) along with the fall in the total number of cases. Since 1995, indoor moulds from water-damaged buildings have caused an increasing number of cases and have become the most important causative agents (0.5% cases, in 1986-1990 and 18% of the cases in 1998-2002). Chemicals have caused 10-30% of the cases, a decreasing number since 1990. The most important chemicals causing occupational asthma have been diisocyanates and welding fumes, followed by hairdressing chemicals and formaldehyde. The number of occupational asthma cases in Finland reached its height in the mid-1990s. The decrease in the number of total cases is because of the decrease in agriculture-associated cases, reflecting the number of employees in agriculture-associated occupations, which has greatly decreased since Finland joined the EU in 1995. An epidemic of mould-induced asthma, affecting mostly white-collar employees working in moisture-damaged buildings, has taken place since 1995.
Bonifaz, A; Vázquez-González, D
2010-10-01
Sporotrichosis is the most frequent and worldwide distributed subcutaneous mycoses. The aim of this article is to review the most recent aspects of sporotrichosis about its epidemiology, etiologic agents, mycologic characteristics, clinical features, diagnosis and treatment. The causative agents of sporotrichosis belong to five well defined species of dimorphic fungi of the called Sporothrix schenckii complex. Sporotrichosis and its etiologic agents have specific endemic areas, but it is possible to find epidemics of the disease in practically every continent, the entrance via is cutaneous due to the inoculation of the fungi into the skin after a traumatism and less frequent due to respiratory way. Clinical manifestations are widely variable, with important involvement of the skin and the superficial lymphatic system, but also with affection of the mucosa and some organs like lungs, bones and joints. Nowadays sporotrichosis is considered a true zoonosis with important changes related to the endemic areas and the ecologic features of the causative pathogens. The therapy of choice is the potassium iodide (KI), but other alternatives are itraconazole, terbinafine, thermotherapy and in severe cases amphotericin B. The importance of the recognition of the clinical manifestations of the disease in some non-endemic areas helps to challenge the diagnosis and give an accurate therapy.
Human Gastroenteritis Outbreak Associated with Escherichia albertii, Japan
Ooka, Tadasuke; Tokuoka, Eisuke; Furukawa, Masato; Nagamura, Tetsuya; Ogura, Yoshitoshi; Arisawa, Kokichi; Harada, Seiya
2013-01-01
Although Escherichia albertii is an emerging intestinal pathogen, it has been associated only with sporadic human infections. In this study, we determined that a human gastroenteritis outbreak at a restaurant in Japan had E. albertii as the major causative agent. PMID:23260717
INFECTIOUS DOSE OF NORWALK VIRUS
The Norwalk virus and related viruses (caliciviruses) have been identified as a common cause of waterborne disease. Moreover, there are many outbreaks of waterborne disease every year where the causative agent was never identified, and it is thought that many of these are due to ...
Phenotypic and genotypic characterization of Klebsiella pneumonia recovered from nonhuman primates
USDA-ARS?s Scientific Manuscript database
Klebsiella pneumoniae is a zoonotic, Gram-negative member of the family Enterobacteriaceae and is the causative agent of nosocomial septicemic, pneumonic, and urinary tract infections. Recently, pathogenic strains of K. pneumoniae sharing a hypermucoviscosity (HMV) phenotype have been attributed to ...
ENHANCED CONCENTRATION AND ISOLATION OF CYCLOSPORA CAYETANENSIS OOCYSTS FROM HUMAN FECAL SAMPLES
Cyclospora cayetanensis is the causative agent of cyclosporiasis, an emerging infections disease. A new method for the purification of Cycloposra cayetanensis oocysts from fecal matter has been developed, using a modified detachment solution and a Renocal-sucrose gradient sedimen...
SURVIVAL OF HELICOBACTER PYLORI IN A NATURAL FRESHWATER ENVIRONMENT
The mode by which Helicobacter pylori, the causative agent of most gastric ulcers, is transmitted remains undetermined. Epidemiological evidence suggests these organisms are waterborne; however, H. pylori has rarely been grown from potential water sources. This may be due to th...
Gene expression analysis between planktonic and biofilm states of Flavobacterium columnare
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease ...
Development of a waterborne challenge model for Flavobacterium psychrophilum
USDA-ARS?s Scientific Manuscript database
Flavobacterium psychrophilum is the causative agent of bacterial coldwater disease and can cause significant mortality in salmonid aquaculture. To better evaluate disease prevention or treatment methods for F. psychrophilum in the laboratory, a waterborne challenge model that mimics a natural outbre...
Sensitivity of Mycobacterium bovis to common beef processing interventions
USDA-ARS?s Scientific Manuscript database
Introduction. Cattle infected with Mycobacterium bovis, the causative agent of bovine tuberculosis and a relevant zoonosis to humans, may be sent to slaughter before diagnosis of infection because of slow multiplication of the pathogen. Purpose. This study evaluates multiple processing interventi...
Large-Scale Environmental Influences on Aquatic Animal Health
In the latter portion of the 20th century, North America experienced numerous large-scale mortality events affecting a broad diversity of aquatic animals. Short-term forensic investigations of these events have sometimes characterized a causative agent or condition, but have rare...
Sickeningly sweet: L-rhamnose stimulates Flavobacterium columnare biofilm formation and virulence
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease ...
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the causative agent of columnaris disease causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry, continual efforts to better understand basic mechanisms that contribute to disease...
Setting Environmental Standards
ERIC Educational Resources Information Center
Fishbein, Gershon
1975-01-01
Recent court decisions have pointed out the complexities involved in setting environmental standards. Environmental health is composed of multiple causative agents, most of which work over long periods of time. This makes the cause-and-effect relationship between health statistics and environmental contaminant exposures difficult to prove in…
Selective delivery of 2-hydroxy APA to Trypanosoma brucei using the melamine motif
Klee, Nina; Wong, Pui Ee; Baragaña, Beatriz; Mazouni, Farah El; Phillips, Margaret A.; Barrett, Michael P.; Gilbert, Ian H.
2010-01-01
Trypanosoma brucei, the parasite that causes human African trypanosomiasis, is auxotrophic for purines and has specialist nucleoside transporters to import these metabolites. In particular, the P2 aminopurine transporter can also selectively accumulate melamine derivatives. In this Letter, we report the coupling of the melamine moiety to 2-hydroxy APA, a potent ornithine decarboxylase inhibitor, with the aim of selectively delivering this compound to the parasite. The best compound described here shows an increased in vitro trypanocidal activity compared with the parent. PMID:20615694
Outbreak of caliciviruses in the Singapore military, 2015.
Neo, Freddy Jun Xian; Loh, Jimmy Jin Phang; Ting, Peijun; Yeo, Wei Xin; Gao, Christine Qiu Han; Lee, Vernon Jian Ming; Tan, Boon Huan; Ng, Ching Ging
2017-11-14
From 31 August to 9 September 2015, a total of 150 military personnel at a military institution in Singapore were infected with acute gastroenteritis (AGE) with an attack rate of approximately 3%. This study aimed to determine the epidemiology of the outbreak, investigate its origins, and discuss measures to prevent future occurrences. After the AGE outbreak was declared on 31 August 2015, symptom surveys, hygiene inspections, and the testing of water, food, and stool samples were initiated. We collected 86 stool samples from AGE cases and 58 samples from food-handlers during the course of the outbreak and these stool samples were tested for 8 bacterial pathogens and 2 viral pathogens (i.e., norovirus and sapovirus). We detected Sapovirus (SaV), group I Norovirus (NoV GI) and group II Norovirus (NoV GII) from the stool samples of AGE cases. Further sequence analyses showed that the AGE outbreak in August was caused mainly by three rarely reported calicivirus novel genotypes: NoV GI.7, NoV GII.17 and SaV GII.3. Control measures implemented focused on the escalation of personal and environmental hygiene, which included the separation of affected and unaffected soldiers, enforcement of rigorous hand-washing and hygiene, raising awareness of food and water safety, and disinfection of communal areas with bleach. This study identified both NoV and SaV as the causative agents for an AGE outbreak at a Singapore military camp in August 2015. This study is also the first to report SaV as one of the main causative agents, highlighting the importance of caliciviruses as causative agents of AGE outbreaks in the Singapore military. As there are no commercially available vaccines against caliciviruses, strict personal hygiene and proper disinfection of environmental surfaces remain crucial to prevent calicivirus outbreak and transmission.
Serological detection of Tick-Borne Relapsing Fever in Texan domestic dogs
Snell, Chloe B.; Adetunji, Shakirat A.; Piccione, Julie
2017-01-01
Tick-Borne Relapsing Fever (TBRF) is caused by spirochetes in the genus Borrelia. Very limited information exists on the incidence of this disease in humans and domestic dogs in the United States. The main objective of this study is to evaluate exposure of dogs to Borrelia turicatae, a causative agent of TBRF, in Texas. To this end, 878 canine serum samples were submitted to Texas A&M Veterinary Medical Diagnostic Laboratory from October 2011 to September 2012 for suspected tick-borne illnesses. The recombinant Borrelial antigen glycerophosphodiester phosphodiesterase (GlpQ) was expressed, purified, and used as a diagnostic antigen in both ELISA assays and Immunoblot analysis. Unfortunately, due to significant background reaction, the use of GlpQ as a diagnostic marker in the ELISA assay was not effective in discriminating dogs exposed to B. turicatae. Nevertheless, immunoblot assays showed that 17 out of 853 samples tested were considered to be seropositive, which constitutes 1.99% of all Texas samples tested in this study. The majority of positive samples were from central and southern Texas. Exposure to TBRF spirochetes may be seasonal, with 70.59% (12 out of 17) of the cases detected between June and December. In addition, 2 out of the 17 sero-reactive cases (11.76%) showed reactivity to both B. burgdorferi (causative agent of Lyme disease) and B. turicatae (a causative agent of TBRF). This is the first report of TBRF sero-prevalence in companion animals in an endemic area. Our findings further indicate that B. turicatae is maintained in domestic canids in Texas in regions where human disease also occurs, suggesting that domestic dogs could serve as sentinels for this disease. PMID:29232415
Godoy, Daniel; Randle, Gaynor; Simpson, Andrew J; Aanensen, David M; Pitt, Tyrone L; Kinoshita, Reimi; Spratt, Brian G
2003-05-01
A collection of 147 isolates of Burkholderia pseudomallei, B. mallei, and B. thailandensis was characterized by multilocus sequence typing (MLST). The 128 isolates of B. pseudomallei, the causative agent of melioidosis, were obtained from diverse geographic locations, from humans and animals with disease, and from the environment and were resolved into 71 sequence types. The utility of the MLST scheme for epidemiological investigations was established by analyzing isolates from captive marine mammals and birds and from humans in Hong Kong with melioidosis. MLST gave a level of resolution similar to that given by pulsed-field gel electrophoresis and identified the same three clones causing disease in animals, each of which was also associated with disease in humans. The average divergence between the alleles of B. thailandensis and B. pseudomallei was 3.2%, and there was no sharing of alleles between these species. Trees constructed from differences in the allelic profiles of the isolates and from the concatenated sequences of the seven loci showed that the B. pseudomallei isolates formed a cluster of closely related lineages that were fully resolved from the cluster of B. thailandensis isolates, confirming their separate species status. However, isolates of B. mallei, the causative agent of glanders, recovered from three continents over a 30-year period had identical allelic profiles, and the B. mallei isolates clustered within the B. pseudomallei group of isolates. Alleles at six of the seven loci in B. mallei were also present within B. pseudomallei isolates, and B. mallei is a clone of B. pseudomallei that, on population genetics grounds, should not be given separate species status.
Antibiotics Are the Most Commonly Identified Cause of Perioperative Hypersensitivity Reactions.
Kuhlen, James L; Camargo, Carlos A; Balekian, Diana S; Blumenthal, Kimberly G; Guyer, Autumn; Morris, Theresa; Long, Aidan; Banerji, Aleena
2016-01-01
Hypersensitivity reactions (HSRs) during the perioperative period are unpredictable and can be life threatening. Prospective studies for the evaluation of perioperative HSRs are lacking, and data on causative agents vary between different studies. The objective of this study was to prospectively determine the success of a comprehensive allergy evaluation plan for patients with HSRs during anesthesia, including identification of a causative agent and outcomes during subsequent anesthesia exposure. All patients referred for a perioperative HSR between November 2013 and March 2015, from a Boston teaching hospital, were evaluated using a standardized protocol with skin testing (ST) within 6 months of HSR. Comprehensive allergy evaluation included collection of patient information, including characteristics of HSR during anesthesia. We reviewed the results of ST and/or test doses for all potential causative medications Event-related tryptase levels were reviewed when available. Over 17 months, 25 patients completed the comprehensive allergy evaluation. Fifty-two percent (13 of 25) were female with a median age of 52 (interquartile range 43-66) years. The most frequently observed HSR systems were cutaneous (68%), cardiovascular (64%), and pulmonary (24%). A culprit drug, defined as a positive ST, was identified in 36% (9 of 25) of patients. The most common agent identified was cefazolin (6 of 9). After our comprehensive evaluation and management plan, 7 (7 of 8, 88%) patients tolerated subsequent anesthesia. Cefazolin was the most commonly identified cause of a perioperative HSR in our study population. Skin testing patients within 6 months of a perioperative HSR may improve the odds of finding a positive result. Tolerance of subsequent anesthesia is generally achieved in patients undergoing our comprehensive evaluation. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Alcantara, Monica Visnieski; Kessler, Rafael Luis; Gonçalves, Rosana Elisa Gonçalves; Marliére, Newmar Pinto; Guarneri, Alessandra Aparecida; Picchi, Gisele Fernanda Assine; Fragoso, Stenio Perdigão
2018-04-01
In the protozoan parasite Trypanosoma cruzi - the causative agent of Chagas disease - gene expression control is mainly post-transcriptional, where RNA-binding proteins (RBPs) play a central role, by controlling mRNA stability, distribution and translation. A large variety of RBPs are encoded in the T. cruzi genome, including the CCCH-type zinc finger (CCCH ZnF) protein family, which is characterized by the presence of the C-X 7/8 -C-X 5 -C-X 3 -H (CCCH) motif. In the related parasite T. brucei, CCCH ZnF proteins have been shown to control key differentiation steps in the parasite's life cycle. However, little is known about the CCCH ZnF proteins in T. cruzi. We have worked on the generation of T. cruzi mutants for CCCH ZnF proteins in an effort to shed light on the functions of these proteins in this parasite. Here, we characterize the expression and function of the CCCH ZnF protein TcZC3H31 of T. cruzi. TcZC3H31 is almost exclusively expressed in epimastigotes and metacyclic trypomastigotes, the parasite forms found in the invertebrate host. Importantly, we show that the epimastigote form of the T. cruzi knockout for the TcZC3H31 gene (TcZC3H31 KO) is incapable, both in vitro and in vivo (in infected triatomine insects), to differentiate into the metacyclic trypomastigote form, which is responsible for infection transmission from vectors to humans. The epimastigote forms recovered from the excreta of insects infected with TcZC3H31 KO parasites do not have the typical epimastigote morphology, suggesting that parasites are arrested in a mid-differentiation step. Also, epimastigotes overexpressing TcZC3H31 differentiate into metacyclics more efficiently than wild-type epimastigotes, in vitro. These data suggest that TcZC3H31 is an essential positive regulator of T. cruzi differentiation into the human-infective metacyclic form. Copyright © 2018 Elsevier B.V. All rights reserved.
1986-07-01
terminal buds, attributable to insect feeding, but no causative agent was found. Some stems had obviously been grazed by fish, probably Tilapia ziulii...dispersal of the phytophagous Tilapia zillii through much of the region may also have played a part in stressing the plant. However, it seems...in nutrients. Most have high populations of depauperate Tilapia and, possibly as a result, are seemingly devoid of sub- 4merged vegetation. Pistia was
Chronic lymphadenopathy caused by a Brazilian strain of Bartonella henselae.
Velho, Paulo Eduardo Neves Ferreira; Drummond, Marina Rovani; Adad, Marcio Antonio Haro; Cintra, Maria Letícia; Sowy, Stanley; Diniz, Pedro Paulo Vissotto de Paiva
2017-09-04
Bartonella henselae is a relevant causative agent of bartonelloses in humans. We described an immunocompetent patient with clinical manifestation of chronic cervical lymphadenopathy after a cat-scratch in her forearm. This case shows B. henselae infection persistence even after prolonged antibiotic treatment.
The first closed genome sequence of Campylobacter fetus subsp. venerealis biovar intermedius
USDA-ARS?s Scientific Manuscript database
Campylobacter fetus venerealis biovar intermedius is a variant of Campylobacter fetus subsp. venerealis, the causative agent of Bovine Genital Campylobacteriosis. In contrast to Campylobacter fetus subsp. venerealis which is restricted to the genital tract of cattle, Campylobacter fetus subsp. vener...
Acetylcholinesterase mutations and organophosphate resistance in sand flies and mosquitoes
USDA-ARS?s Scientific Manuscript database
The sand fly, Phlebotomus papatasi (Scopoli) is a major vector of Leishamnia major, the principle causative agent of human cutaneous leishmaniasis in the Middle East, southern Europe, northern Africa, and Southern Asia. Sand fly bites and leishmaniasis significantly impacted U.S. military operations...
Mapping of QTL for bacterial cold water disease resistance in rainbow trout
USDA-ARS?s Scientific Manuscript database
Bacterial cold water disease (BCWD) causes significant economic loss in salmonids aquaculture. We previously detected genetic variation in survival following challenge with Flavobacterium psychrophilum (Fp), the causative agent of BCWD in rainbow trout, and a family-based selection program to impro...
USDA-ARS?s Scientific Manuscript database
Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. We previously detected genetic variation in survival following challenge with Flavobacterium psychrophilum (Fp), the causative agent of BCWD in rainbow trout (Oncorhynchus mykiss). A family-based selectio...
The concept of molds as causative agents for allergy/asthma is not new. In fact many fungal genera have been associated with allergic lung disease, but only a few fungi are well studied and even fewer fungal allergens well characterized. The complexity and variety of fungal pro...
Protein expression profiling of Rathayibacter toxicus using mass spectrometry
USDA-ARS?s Scientific Manuscript database
Annual ryegrass toxicity (ARGT) is a frequently fatal disease that primarily affects livestock in southern and Western Australia. The causative agent of the disease is RATHAYIBACTER TOXICUS, a bacterium that often contaminates the indigenous grasses used for grazing and hay-making. R. TOXICUS produc...
[Mass spectrometry in medicine and biotechnology].
Polunina, T A; Kireev, M N; Khramchenkova, T A; Spitsyn, A N; Grigor'eva, G V
2013-01-01
History of development and improvement of tandem mass spectrometry, possibilities of its application at the contemporary stage in various fields of medicine and biotechnology including production of novel medicinal preparations, identification of biologically active substances, pathogenic microorganisms and causative agents of especially dangerous infections is given.
Endoscopic Endonasal Transsphenoidal Drainage of a Spontaneous Candida glabrata Pituitary Abscess.
Strickland, Ben A; Pham, Martin; Bakhsheshian, Joshua; Carmichael, John; Weiss, Martin; Zada, Gabriel
2018-01-01
Noniatrogenic pituitary abscess remains a rare clinical entity, and is the indication for surgery in <1% of transsphenoidal approaches. Correct diagnosis of this rare entity is often delayed. Without timely treatment, morbidity and mortality are high. Of the 200 cases reported to date, less than one-half have identified a causative organism. We report the second case of a pituitary abscess caused by Candida species, and also provide an intraoperative video showing the endoscopic management of this pathology. A 33-year-old woman presented with headache, hypopituitarism, and vision loss in the setting of diabetic ketoacidosis, and was found to have multiple abscesses in the liver, lung, kidney, and uterus. Brain magnetic resonance imaging revealed a 15-mm cystic sellar mass with restricted diffusion. The patient underwent urgent evacuation of the abscess via an endoscopic endonasal transsphenoidal route, with obvious purulent material filling the sella, later identified as Candida glabrata. Antimicrobial therapy was refined appropriately, and she exhibited significant improvement in neurologic function, although endocrinopathy has persisted. With timely management, including a combination of surgical drainage and appropriate antimicrobial therapy, neurologic outcomes are good in most cases of pituitary abscess; however, endocrinopathy often does not improve. Although most reported cases with identified causative organisms speciate bacteria, some cases are of fungal etiology and require different antimicrobial agents. This further underscores the importance of identifying the causative agent. Copyright © 2017 Elsevier Inc. All rights reserved.
Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis
Begley, Darren W.; Edwards, Thomas E.; Raymond, Amy C.; Smith, Eric R.; Hartley, Robert C.; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D.; Myler, Peter J.; Staker, Bart L.; Stewart, Lance J.
2011-01-01
Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research. PMID:21904052
Febrile neutropenia in cats treated with chemotherapy.
Pierro, J; Krick, E; Flory, A; Regan, R; DeRegis, C; Boudreaux, B; Barber, L; Saam, D; Saba, C
2017-06-01
The purpose of this study was to describe the clinical presentation, potential causative agents, treatment and outcome of febrile neutropenia (FN) in chemotherapy-treated cats. Medical records from eight institutions were retrospectively reviewed. A total of 22 FN events in 20 cats were evaluated. Lymphoma was the most common cancer diagnosis; lomustine and vinca alkaloids were the most frequently implicated causative agents. Presenting clinical signs included decreased appetite, lethargy, vomiting and diarrhoea. Median body temperature and absolute neutrophil count at presentation were 104.1 °F; 40 °C (range: 103.1-105.1 °F; 39.5-40.6 °C) and 246 mL -1 (range: 0-1600 mL -1 ), respectively. Median number of days between chemotherapy administration and FN onset was 5 (range: 4-25 days). All but one cat were treated with intravenous fluids and broad spectrum antibiotics. Fevers resolved in all cases and absolute neutrophil counts returned to normal in 19 cats. Clinical presentation of cats with FN appears similar to that of dogs. © 2016 John Wiley & Sons Ltd.
Winter , Gary W.; Schreck, Carl B.; McIntyre, John D.
1979-01-01
Juvenile coho salmon and steelhead trout ofdifferentstocks and three transferrin genotypes(AA, AC, and CCl, all reared in identical or similar environments, were experimentally infected with Corynebacterium sp., the causative agent ofbacterial kidney disease, or with Vibrio anguillarum, the causative agent of vibriosis. Mortality due to the pathogens was compared among stocks within a species and among transferrin genotypes within a stock to determine whetherthere was a geneticbasis for resistance to disease. Differences in resistance to bacterial kidney disease among coho salmon stocks had a genetic basis. Stock susceptibility to vibriosis was strongly influenced by environmental factors. Coho salmon orsteelhead trout of one stock may be resistant to one disease but susceptible to another. The importance of transferrin genotype of coho salmon in resistance to bacterial kidney disease was stock specific; in stocks that showed differential resistance of genotypes, the AA was the most susceptible. No differencesin resistance to vibriosis were observed among transferrin genotypes.
Jain, Surendra; Jacob, Melissa; Walker, Larry; Tekwani, Babu
2016-05-18
Human African Trypanosomiasis (HAT) is a protozoan parasitic disease caused by Trypanosoma brucei. The disease is endemic in regions of sub-Saharan Africa, covering 36 countries and more than 60 million people at the risk. Only few drugs are available for the treatment of HAT. Current drugs suffer from severe toxicities and require intramuscular or intravenous administrations. The situation is further aggravated due to the emergence of drug resistance. There is an urgent need of new drugs that are effective orally against both stages of HAT. Natural products offer an unmatched source for bioactive molecules with new chemotypes. The extracts prepared from 522 plants collected from various parts of the North America were screened in vitro against blood stage trypamastigote forms of T. brucei. Active extracts were further screened at concentrations ranging from 10 to 0.4 μg/mL. Active extracts were also investigated for toxicity in Differentiated THP1 cells at 10 μg/mL concentration. The results were computed for dose-response analysis and determination of IC50/IC90 values. A significant number (150) of extracts showed >90 % inhibition of growth of trypomastigote blood forms of T. brucei in primary screening at 20 μg/mL concentration. The active extracts were further investigated for dose-response inhibition of T. brucei growth. The antitrypansomal activity of 125 plant extracts was confirmed with IC50 < 10 μg/mL. None of these active extracts showed toxicity against differentiated THP1 cells. Eight plants extracts namely, Alnus rubra, Hoita macrostachya, Sabal minor, Syzygium aqueum, Hamamelis virginiana, Coccoloba pubescens, Rhus integrifolia and Nuphar luteum were identified as highly potent antitrypanosomal extracts with IC50 values <1 μg/mL. Limited phytochemical and pharmacological reports are available for the lead plant extracts with potent antitrypanosomal activity. Follow up evaluation of these plant extracts is likely to yield new antitrypanosomal drug-leads or alternate medicines for treatment of HAT.
The gut microbiota and obesity: from correlation to causality.
Zhao, Liping
2013-09-01
The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.
Lin, Sheng; Morris, Meredith T; Ackroyd, P Christine; Morris, James C; Christensen, Kenneth A
2013-05-28
Studies of dynamic changes in organelles of protozoan parasite Trypanosoma brucei have been limited, in part because of the difficulty of targeting analytical probes to specific subcellular compartments. Here we demonstrate application of a ratiometric probe for pH quantification in T. brucei glycosomes. The probe consists of a peptide encoding the peroxisomal targeting sequence (F-PTS1, acetyl-CKGGAKL) coupled to fluorescein, which responds to pH. When incubated with living parasites, the probe is internalized within vesicular structures that colocalize with a glycosomal marker. Inhibition of uptake of F-PTS1 at 4 °C and pulse-chase colocalization with fluorescent dextran suggested that the probe is initially taken up by non-receptor-mediated endocytosis but is subsequently transported separately from dextran and localized within glycosomes, prior to the final fusion of labeled glycosomes and lysosomes as part of glycosomal turnover. Intraorganellar measurements and pH calibration with F-PTS1 in T. brucei glycosomes indicate that the resting glycosomal pH under physiological conditions is 7.4 ± 0.2. However, incubation in glucose-depleted buffer triggered mild acidification of the glycosome over a period of 20 min, with a final observed pH of 6.8 ± 0.3. This glycosomal acidification was reversed by reintroduction of glucose. Coupling of ratiometric fluorescent sensors and reporters to PTS peptides offers an invaluable tool for monitoring in situ glycosomal response(s) to changing environmental conditions and could be applied to additional kinetoplastid parasites.
Omar, Ruwida M K; Igoli, John; Gray, Alexander I; Ebiloma, Godwin Unekwuojo; Clements, Carol; Fearnley, James; Ebel, Ru Angeli Edrada; Zhang, Tong; De Koning, Harry P; Watson, David G
2016-01-01
A previous study showed the unique character of Nigerian red propolis from Rivers State, Nigeria (RSN), with regards to chemical composition and activity against Trypanosoma brucei in comparison with other African propolis. To carry out fractionation and biological testing of Nigerian propolis in order to isolate compounds with anti-trypanosomal activity. To compare the composition of the RSN propolis with the composition of Brazilian red propolis. Profiling was carried out using HPLC-UV-ELSD and HPLC-Orbitrap-FTMS on extracts of two samples collected from RSN with data extraction using MZmine software. Isolation was carried out by normal phase and reversed phase MPLC. Elucidation of the compounds with a purity > 95% was performed by 1D/2D NMR HRMS and HRLC-MS(n) . Ten phenolic compounds were isolated or in the case of liquiritigenin partially purified. Data for nine of these correlated with literature reports of known compounds i.e. one isoflavanone, calycosin (1); two flavanones, liquiritigenin (2) and pinocembrin (5); an isoflavan, vestitol (3); a pterocarpan, medicarpin (4); two prenylflavanones, 8-prenylnaringenin (7) and 6-prenylnaringenin (8); and two geranyl flavonoids, propolin D (9) and macarangin (10). The tenth was elucidated as a previously undescribed dihydrobenzofuran (6). The isolated compounds were tested against Trypanosoma brucei and displayed moderate to high activity. Some of the compounds tested had similar activity against wild type T. brucei and two strains displaying pentamidine resistance. Nigerian propolis from RSN has some similarities with Brazilian red propolis. The propolis displayed anti-trypanosomal activity at a potentially useful level. Copyright © 2015 John Wiley & Sons, Ltd.
Symmetrical choline-derived dications display strong anti-kinetoplastid activity
Ibrahim, Hasan M. S.; Al-Salabi, Mohammed I.; El Sabbagh, Nasser; Quashie, Neils B.; Alkhaldi, Abdulsalam A. M.; Escale, Roger; Smith, Terry K.; Vial, Henri J.; de Koning, Harry P.
2011-01-01
Objectives To investigate the anti-kinetoplastid activity of choline-derived analogues with previously reported antimalarial efficacy. Methods From an existing choline analogue library, seven antimalarial compounds, representative of the first-, second- and third-generation analogues previously developed, were assessed for activity against Trypanosoma and Leishmania spp. Using a variety of techniques, the effects of choline analogue exposure on the parasites were documented and a preliminary investigation of their mode of action was performed. Results The activities of choline-derived compounds against Trypanosoma brucei and Leishmania mexicana were determined. The compounds displayed promising anti-kinetoplastid activity, particularly against T. brucei, to which 4/7 displayed submicromolar EC50 values for the wild-type strain. Low micromolar concentrations of most compounds cleared trypanosome cultures within 24–48 h. The compounds inhibit a choline transporter in Leishmania, but their entry may not depend only on this carrier; T. b. brucei lacks a choline carrier and the mode of uptake remains unclear. The compounds had no effect on the overall lipid composition of the cells, cell cycle progression or cyclic adenosine monophosphate production or short-term effects on intracellular calcium levels. However, several of the compounds, displayed pronounced effects on the mitochondrial membrane potential; this action was not associated with production of reactive oxygen species but rather with a slow rise of intracellular calcium levels and DNA fragmentation. Conclusions The choline analogues displayed strong activity against kinetoplastid parasites, particularly against T. b. brucei. In contrast to their antimalarial activity, they did not act on trypanosomes by disrupting choline salvage or phospholipid metabolism, instead disrupting mitochondrial function, leading to chromosomal fragmentation. PMID:21078603
Mariño, Karina; Güther, M. Lucia Sampaio; Wernimont, Amy K.; Qiu, Wei; Hui, Raymond; Ferguson, Michael A. J.
2011-01-01
A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed. PMID:21531872
Identification of the meiotic life cycle stage of Trypanosoma brucei in the tsetse fly
Peacock, Lori; Ferris, Vanessa; Sharma, Reuben; Sunter, Jack; Bailey, Mick; Carrington, Mark; Gibson, Wendy
2011-01-01
Elucidating the mechanism of genetic exchange is fundamental for understanding how genes for such traits as virulence, disease phenotype, and drug resistance are transferred between pathogen strains. Genetic exchange occurs in the parasitic protists Trypanosoma brucei, T. cruzi, and Leishmania major, but the precise cellular mechanisms are unknown, because the process has not been observed directly. Here we exploit the identification of homologs of meiotic genes in the T. brucei genome and demonstrate that three functionally distinct, meiosis-specific proteins are expressed in the nucleus of a single specific cell type, defining a previously undescribed developmental stage occurring within the tsetse fly salivary gland. Expression occurs in clonal and mixed infections, indicating that the meiotic program is an intrinsic but hitherto cryptic part of the developmental cycle of trypanosomes. In experimental crosses, expression of meiosis-specific proteins usually occurred before cell fusion. This is evidence of conventional meiotic division in an excavate protist, and the functional conservation of the meiotic machinery in these divergent organisms underlines the ubiquity and basal evolution of meiosis in eukaryotes. PMID:21321215
Cestari, Igor; Haas, Paige; Moretti, Nilmar Silvio; Schenkman, Sergio; Stuart, Ken
2016-05-19
Kinetoplastids cause Chagas disease, human African trypanosomiasis, and leishmaniases. Current treatments for these diseases are toxic and inefficient, and our limited knowledge of drug targets and inhibitors has dramatically hindered the development of new drugs. Here we used a chemogenetic approach to identify new kinetoplastid drug targets and inhibitors. We conditionally knocked down Trypanosoma brucei inositol phosphate (IP) pathway genes and showed that almost every pathway step is essential for parasite growth and infection. Using a genetic and chemical screen, we identified inhibitors that target IP pathway enzymes and are selective against T. brucei. Two series of these inhibitors acted on T. brucei inositol polyphosphate multikinase (IPMK) preventing Ins(1,4,5)P3 and Ins(1,3,4,5)P4 phosphorylation. We show that IPMK is functionally conserved among kinetoplastids and that its inhibition is also lethal for Trypanosoma cruzi. Hence, IP enzymes are viable drug targets in kinetoplastids, and IPMK inhibitors may aid the development of new drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bringaud, Frederic; Baltz, Dominique; Baltz, Theo
1998-01-01
Trypanosomatids are parasitic protists that have an ATP-dependent glycolysis with no indication of PPi-dependent metabolism. Most of the glycolysis takes place in peroxisome-like organelles, the glycosomes. We characterized in Trypanosoma brucei a single-copy gene encoding a PPi-dependent enzyme, pyruvate, phosphate dikinase (PPDK), which was expressed functionally in Escherichia coli. Specific antibodies detected a 100-kDa protein in procyclic forms but not in mammalian forms of T. brucei, indicating a differential expression. Glycosomal localization of PPDK was determined by immunofluorescence analysis and was confirmed by Western blot analysis on glycosomal fractions by using anti-PPDK antibodies. Expression and localization of recombinant PPDKs in procyclic forms of T. brucei showed that the AKL motif at the C-terminal extremity of PPDK is necessary for glycosomal targeting. PPDK was detected in every trypanosomatid tested—Trypanosoma congolense, Trypanosoma vivax, Trypanosoma cruzi, Phytomonas, Crithidia and Leishmania—with a good correlation between amount of protein and enzymatic activity. The precise role of PPDK in trypanosomatid carbohydrate metabolism remains to be clarified. PMID:9653123
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byres, Emma; Martin, David M. A.; Hunter, William N., E-mail: w.n.hunter@dundee.ac.uk
2005-06-01
The gene encoding the putative mevalonate diphosphate decarboxylase, an enzyme from the mevalonate pathway of isoprenoid precursor biosynthesis, has been cloned from T. brucei. Recombinant protein has been expressed, purified and highly ordered crystals obtained and characterized to aid the structure–function analysis of this enzyme. Mevalonate diphosphate decarboxylase catalyses the last and least well characterized step in the mevalonate pathway for the biosynthesis of isopentenyl pyrophosphate, an isoprenoid precursor. A gene predicted to encode the enzyme from Trypanosoma brucei has been cloned, a highly efficient expression system established and a purification protocol determined. The enzyme gives monoclinic crystals in spacemore » group P2{sub 1}, with unit-cell parameters a = 51.5, b = 168.7, c = 54.9 Å, β = 118.8°. A Matthews coefficient V{sub M} of 2.5 Å{sup 3} Da{sup −1} corresponds to two monomers, each approximately 42 kDa (385 residues), in the asymmetric unit with 50% solvent content. These crystals are well ordered and data to high resolution have been recorded using synchrotron radiation.« less
Robinson, Nicholas P; McCulloch, Richard; Conway, Colin; Browitt, Alison; Barry, J David
2002-07-19
We demonstrate, by gene deletion analysis, that Mre11 has a critical role in maintaining genomic integrity in Trypanosoma brucei. mre11(-/-) null mutant strains exhibited retarded growth but no delay or disruption of cell cycle progression. They showed also a weak hyporecombination phenotype and the accumulation of gross chromosomal rearrangements, which did not involve sequence translocation, telomere loss, or formation of new telomeres. The trypanosome mre11(-/-) strains were hypersensitive to phleomycin, a mutagen causing DNA double strand breaks (DSBs) but, in contrast to mre11(-/-) null mutants in other organisms and T. brucei rad51(-/-) null mutants, displayed no hypersensitivity to methyl methanesulfonate, which causes point mutations and DSBs. Mre11 therefore is important for the repair of chromosomal damage and DSBs in trypanosomes, although in this organism the intersection of repair pathways appears to differ from that in other organisms. Mre11 inactivation appears not to affect VSG gene switching during antigenic variation of a laboratory strain, which is perhaps surprising given the importance of homologous recombination during this process.
Macêdo, Juan P.; Kunz Renggli, Christina; Bütikofer, Peter; Rentsch, Doris; Mäser, Pascal
2017-01-01
CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium. PMID:29244877
ATP-driven and AMPK-independent autophagy in an early branching eukaryotic parasite.
Li, Feng-Jun; Xu, Zhi-Shen; Soo, Andy D S; Lun, Zhao-Rong; He, Cynthia Y
2017-04-03
Autophagy is a catabolic cellular process required to maintain protein synthesis, energy production and other essential activities in starved cells. While the exact nutrient sensor(s) is yet to be identified, deprivation of amino acids, glucose, growth factor and other nutrients can serve as metabolic stimuli to initiate autophagy in higher eukaryotes. In the early-branching unicellular parasite Trypanosoma brucei, which can proliferate as procyclic form (PCF) in the tsetse fly or as bloodstream form (BSF) in animal hosts, autophagy is robustly triggered by amino acid deficiency but not by glucose depletion. Taking advantage of the clearly defined adenosine triphosphate (ATP) production pathways in T. brucei, we have shown that autophagic activity depends on the levels of cellular ATP production, using either glucose or proline as a carbon source. While autophagosome formation positively correlates with cellular ATP levels; perturbation of ATP production by removing carbon sources or genetic silencing of enzymes involved in ATP generation pathways, also inhibited autophagy. This obligate energy dependence and the lack of glucose starvation-induced autophagy in T. brucei may reflect an adaptation to its specialized, parasitic life style.
Trypanosoma brucei Metacaspase 4 Is a Pseudopeptidase and a Virulence Factor*
Proto, William R.; Castanys-Munoz, Esther; Black, Alana; Tetley, Laurence; Moss, Catherine X.; Juliano, Luiz; Coombs, Graham H.; Mottram, Jeremy C.
2011-01-01
Metacaspases are caspase family cysteine peptidases found in plants, fungi, and protozoa but not mammals. Trypanosoma brucei is unusual in having five metacaspases (MCA1–MCA5), of which MCA1 and MCA4 have active site substitutions, making them possible non-enzymatic homologues. Here we demonstrate that recombinant MCA4 lacks detectable peptidase activity despite maintaining a functional peptidase structure. MCA4 is expressed primarily in the bloodstream form of the parasite and associates with the flagellar membrane via dual myristoylation/palmitoylation. Loss of function phenotyping revealed critical roles for MCA4; rapid depletion by RNAi caused lethal disruption to the parasite's cell cycle, yet the generation of MCA4 null mutant parasites (Δmca4) was possible. Δmca4 had normal growth in axenic culture but markedly reduced virulence in mice. Further analysis revealed that MCA4 is released from the parasite and is specifically processed by MCA3, the only metacaspase that is both palmitoylated and enzymatically active. Accordingly, we have identified that the multiple metacaspases in T. brucei form a membrane-associated proteolytic cascade to generate a pseudopeptidase virulence factor. PMID:21949125
In vitro trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors.
Brun, R; Bühler, Y; Sandmeier, U; Kaminsky, R; Bacchi, C J; Rattendi, D; Lane, S; Croft, S L; Snowdon, D; Yardley, V; Caravatti, G; Frei, J; Stanek, J; Mett, H
1996-01-01
A series of novel aromatic derivatives based on the structure of methylglyoxal bis(guanylhydrazone) (MGBG) was examined for in vitro antitrypanosomal activities and cytotoxicities for human cells. One-third of the compounds tested showed trypanocidal activity at concentrations below 0.5 microM after an incubation period of 72 h. Structure-activity analysis revealed that bicyclic compounds with homocyclic rings and unmodified termini were the most active compounds. Results obtained in three laboratories employing different methods and trypanosome populations consistently ranked compound CGP 40215A highest. This compound had a 50% inhibitory concentration of 0.0045 microM for Trypanosoma brucei rhodesiense, was also active against other trypanosome species, including a multidrug-resistant Trypanosoma brucei brucei, and was significantly less toxic than other compounds tested for a human adenocarcinoma cell line, with a 50% inhibitory concentration of 1.14 mM. The effect of CGP 40215A was time and dose dependent, and low concentrations of the compound required exposure times of > 2 days to exert trypanocidal activity. Compounds were inactive against Leishmania donovani and Trypanosoma cruzi amastigotes in murine macrophages in vitro. PMID:8726017
Evidence that explains absence of a latent period for Xylella fastidiosa in its sharpshooter vectors
USDA-ARS?s Scientific Manuscript database
The glassy-winged sharpshooter (GWSS), Homalodisca vitripennis (Germar), and other sharpshooter (Cicadelline) leafhoppers transmit Xylella fastidiosa (Xf), the causative agent of Pierce’s disease of grapevine and other scorch diseases. Past research has supported that vectors have virtually no late...
Prevalence of antibodies to Sarcocystis neurona in cats from Virginia and Pennsylvania
USDA-ARS?s Scientific Manuscript database
Sarcocystis neurona is best known as the causative agent of equine protozoal myeloencephalitis of horses in the Americas. Domestic cats (Felis domesticus) were the first animals described as an intermediate host for S. neurona. Sarcocystis neurona associated encephalitis has been reported in natur...
Assessing the potential for Burkholderia pseudomallei in the southeastern United States
USDA-ARS?s Scientific Manuscript database
Burkholderia pseudomallei, the causative agent of melioidosis, is an underreported zoonosis in many countries where environmental conditions may be favorable for B. pseudomallei. This soil saprophyte is most often detected in tropical areas such as Southeast Asia and Northern Australia where the cas...
CRYPTOSPORIDIUM AND GIARDIA IN STORMWATER AS A THREAT TO DRINKING WATER SUPPLIES
Since the first identified Cryptosporidium outbreak in the United Kingdom in 1983, the pathogens Cryptosporidium and Giardia have become the subject of growing local, state, and national concern. In the last decade, these organisms have been the causative agent of many gastroint...
EVALUATING CRYPTOSPORIDIUM AND GIARDIA IN STORMWATER AS A THREAT TO DRINKING WATER SUPPLIES
Since the first identified Cryptosporidium outbreak in the United Kingdom in 1983, the
pathogens Cryptosporidium and Giardia have become the subject of growing local, state, and
national concern. Both organisms have been the causative agent of many gastrointestinal
illn...
Sensitivity of Mycobacterium bovis to common beef processing interventions
USDA-ARS?s Scientific Manuscript database
Objective. Mycobacterium bovis is the causative agent of bovine tuberculosis, a relevant zoonosis that can spread to humans through inhalation or by ingestion. M. bovis multiplies slowly, so infected animals may be sent to slaughter during the early stages of the disease before diagnosis and when ...
Microbial control of the emerald ash borer
Leah S. Bauer; Houping Liu; Deborah L. Miller
2004-01-01
In June 2002, emerald ash borer (EAB), Agrilus planipennis Fairmaire, a buprestid native to several Asian countries, was identified as the causative agent of ash (Fraxinus spp.) mortality in southeastern Michigan and southwestern Ontario. Currently, the only method known to control EAB is limited to identifying and destroying...
Evaluation of the antibody response to the LV-359-01 strain of flavobacterium columnare
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare, the causative agent of columnaris disease produces substantial mortality worldwide among numerous freshwater farmed finfish species. As aquaculture production continues to increase the frequency of columnaris disease will only continue to rise. Add to this an increase in re...
Bovine viral diarrhea virus modulation of monocyte derived macrophages
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is a single stranded, positive sense RNA virus and is the causative agent of bovine viral diarrhea (BVD). Disease can range from persistently infected (PI) animals displaying no clinical symptoms of disease to an acute, severe disease. Presently, limited studies ha...
Enterococci are common members of the gut microbiome and frequent causative agents of nosocomial infection. Because of their enteric lifestyle and ease of culturing, enterococci have been used worldwide as indicators of fecal pollution of waters. However, enterococci were recentl...
Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar
Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.
2015-01-01
Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632
Factors controlling vegetation fires in protected and non-protected areas of myanmar.
Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O
2015-01-01
Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.
An Alternative Model for the Role of RP2 Protein in Flagellum Assembly in the African Trypanosome*
Andre, Jane; Kerry, Louise; Qi, Xin; Hawkins, Erica; Drižytė, Kristina; Ginger, Michael L.; McKean, Paul G.
2014-01-01
The tubulin cofactor C domain-containing protein TbRP2 is a basal body (centriolar) protein essential for axoneme formation in the flagellate protist Trypanosoma brucei, the causal agent of African sleeping sickness. Here, we show how TbRP2 is targeted and tethered at mature basal bodies and provide novel insight into TbRP2 function. Regarding targeting, understanding how several hundred proteins combine to build a microtubule axoneme is a fundamental challenge in eukaryotic cell biology. We show that basal body localization of TbRP2 is mediated by twinned, N-terminal TOF (TON1, OFD1, and FOP) and LisH motifs, motifs that otherwise facilitate localization of only a few conserved proteins at microtubule-organizing centers in animals, plants, and flagellate protists. Regarding TbRP2 function, there is a debate as to whether the flagellar assembly function of specialized, centriolar tubulin cofactor C domain-containing proteins is processing tubulin, the major component of axonemes, or general vesicular trafficking in a flagellum assembly context. Here we report that TbRP2 is required for the recruitment of T. brucei orthologs of MKS1 and MKS6, proteins that, in animal cells, are part of a complex that assembles at the base of the flagellum to regulate protein composition and cilium function. We also identify that TbRP2 is detected by YL1/2, an antibody classically used to detect α-tubulin. Together, these data suggest a general processing role for TbRP2 in trypanosome flagellum assembly and challenge the notion that TbRP2 functions solely in assessing tubulin “quality” prior to tubulin incorporation into the elongating axoneme. PMID:24257747
USDA-ARS?s Scientific Manuscript database
In lower vertebrates, the contribution of the spleen to anti-bacterial immunity is poorly understood. Researchers have previously reported a phenotypic and genetic correlation between resistance to Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD) and spleen so...
Genome assemblies for 11 Yersinia pestis strains isolated in the Caucasus region
Zhgenti, Ekaterine; Johnson, Shannon L.; Davenport, Karen W.; ...
2015-09-17
Yersinia pestis, the causative agent of plague, is endemic to the Caucasus region but few reference strain genome sequences from that region are available. We present the improved draft or finished assembled genomes from 11 strains isolated in the nation of Georgia and surrounding countries.
Partial proteome of the corynetoxin-producing Gram-positive bacterium, Rathayibacter toxicus
USDA-ARS?s Scientific Manuscript database
Rathayibacter toxicus is a Gram-positive bacterium that is the causative agent of annual ryegrass toxicity (ARGT), a disease that causes devastating losses in the Australian livestock industry. R. toxicus exhibits a complex life cycle, using the nematode Anguina funesta as a physical vector to carry...
USDA-ARS?s Scientific Manuscript database
Anthracnose is one of the most destructive diseases of strawberry which may cause fruit rot, leaf and petiole lesions, crown rot, wilt, and death. Crop loss due to anthracnose diseases can reach into the millions of dollars. Three species of Colletotrichum are considered causative agents of anthr...
USDA-ARS?s Scientific Manuscript database
Flavbacterium Columnare, the causative agent of Columnaris disease (CD), is distributed around the world in fresh water sources, infecting freshwater finfish species. Recently it has been identified as an emerging problem for the rainbow trout aquaculture industry in the US. Two live-attenuated va...
USDA-ARS?s Scientific Manuscript database
A continuous water disinfection process can be used to prevent the introduction and accumulation of obligate and opportunistic fish pathogens in recirculating aquaculture systems (RAS), especially during a disease outbreak when the causative agent would otherwise proliferate within the system. To p...
USDA-ARS?s Scientific Manuscript database
Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis, is a non-segmented negative-sense RNA virus belonging to the family of Paramyxoviridae, the subfamily Pneumovirinae, and the genus Metapneumovirus. aMPV is the causative agent of respiratory tract infection and ...
USDA-ARS?s Scientific Manuscript database
The spirochete Treponema pallidum is the causative agent of syphilis, a chronic, sexually transmitted bacterial infection characterized by multiple symptomatic and asymptomatic stages. Treponema pallidum is significantly more invasive than other treponemal species, being able to cross both the blood...
VIRULENCE OF Flavobacterium columnare GENOMOVARS IN RAINBOW TROUT (Oncorhynchus mykiss)
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the causative agent of columnaris disease and is responsible for significant economic losses in aquaculture. F. columnare is a Gram-negative bacterium, and five genetic types or genomovars have been described based on restriction fragment length polymorphism of the 16S rR...
Cultivation of Candidatus Liberibacter asiaticus and Ca. L. americanus associated with Huanglongbing
USDA-ARS?s Scientific Manuscript database
A new medium designated Liber A has been designed and used to successfully cultivate all three Candidatus Liberibacter species, the suspect causative agents of Huanglongbing (HLB) in citrus. The medium containing citrus vein extract and a growth factor sustained growth of Ca. Liberibacter species fo...
Novel Mycobacterium tuberculosis complex pathogen, M. mungi.
Alexander, Kathleen A; Laver, Pete N; Michel, Anita L; Williams, Mark; van Helden, Paul D; Warren, Robin M; Gey van Pittius, Nicolaas C
2010-08-01
Seven outbreaks involving increasing numbers of banded mongoose troops and high death rates have been documented. We identified a Mycobacterium tuberculosis complex pathogen, M. mungi sp. nov., as the causative agent among banded mongooses that live near humans in Chobe District, Botswana. Host spectrum and transmission dynamics remain unknown.
Regulation of flagellum biosynthesis within the fish pathogen Yersinia ruckeri
USDA-ARS?s Scientific Manuscript database
Yersinia ruckeri, a Gram negative Enterobacterium, is the causative agent of enteric red mouth disease (ERM) within farmed rainbow trout (Oncorhynchus mykiss, Walbaum). There has been an increase of ERM outbreaks in previously vaccinated trout caused by a recently emerged, non-motile variant of Y. r...
Fungi isolated from house flies (Diptera: Muscidae) on penned cattle in South Texas
USDA-ARS?s Scientific Manuscript database
Musca domestica L. were collected from cattle diagnosed with bovine ringworm to evaluate the potential of the house fly to disseminate Trichophyton verrucosum E. Bodin, a fungal dermatophyte that is the causative agent for ringworm in cattle. Fungal isolates were cultured from 45 individual flies on...
Assessment of Food as a Source of Exposure to Mycobacterium avium Subspecies Paratuberculosis (MAP)
USDA-ARS?s Scientific Manuscript database
The National Advisory Committee on Microbiological Criteria for Foods (NACMCF or Committee) was asked to assess the importance of food as a source of exposure to Mycobacterium avium subspecies paratuberculosis (MAP), the causative agent of Johne’s disease, which affects primarily the small intestin...
Can Herpes Simplex Virus Encephalitis Cause Aphasia?
ERIC Educational Resources Information Center
Naude, H.; Pretorius, E.
2003-01-01
Aphasia implies the loss or impairment of language caused by brain damage. The key to understanding the nature of aphasic symptoms is the neuro-anatomical site of brain damage, and not the causative agent. However, because "Herpes simplex" virus (HSV) encephalitis infection usually affects the frontal and temporal lobes, subcortical…
Molecular epidemiology of infectious laryngotracheitis: a review
USDA-ARS?s Scientific Manuscript database
Falconid herpesvirus type 1 (FHV-1) is the causative agent of falcon inclusion body disease, an acute, highly contagious disease of raptors. The complete nucleotide sequence of the genome of FHV-1 has been determined. The genome is arranged as a D-type genome with large inverted repeats flanking a ...
Novel DNA binding and regulatory activities for s54 (RpoN) in Salmonella Typhimurium 14028s
USDA-ARS?s Scientific Manuscript database
Salmonella enterica subspecies enterica serovar Typhimurium, the causative agent of gastrointestinal disease and septicemia in humans, has been extensively studied, providing a comprehensive model system in which to study how pathogens respond to the rapidly changing conditions during persistence in...
USDA-ARS?s Scientific Manuscript database
The non-culturable bacterium ‘Candidatus Liberibacter solanacearum’ (Lso) is the causative agent of zebra chip disease in potato. Computational analysis of the Lso genome revealed a serralysin-like gene based on conserved domains characteristic of genes encoding metalloprotease enzymes similar to se...
Phytochemicals attenuating aberrant activation of ß-catenin in cancer cells
USDA-ARS?s Scientific Manuscript database
Phytochemicals are a rich source of chemoprevention agents but their effects on modulating the Wnt/ß-catenin signaling pathway have remained largely uninvestigated. Aberrantly activated Wnt signaling can result in the abnormal stabilization of ß-catenin, a key causative step in a broad spectrum of c...
USDA-ARS?s Scientific Manuscript database
Aims: To determine whether Venturia effusa (basyonym: Fusicladium effusum) the causative fungal agent of Pecan Scab harbors a bacterial symbiont. Methods and Results: Beginning with monoconidial isolates, V. effusa was maintained on potato dextrose agar amended with antibiotics (chloramphenicol 10...
USDA-ARS?s Scientific Manuscript database
Campylobacter jejuni, a Gram-negative rod bacterium, is the leading causative agent of human acute bacterial gastroenteritis worldwide. Consumption and handling of raw or undercooked poultry are regarded as a major source for human infection. Because bacterial chemotaxis guides microorganisms to c...
Leukogram abnormalities in gnotobiotic pigs infected with porcine circovirus type 2
USDA-ARS?s Scientific Manuscript database
Porcine circovirus type 2 (PCV2) is a single-stranded circular DNA virus that is the causative agent of porcine circovirus associated disease (PCVAD), a disease complex affecting swine around the world. Although this virus is believed to negatively affect the host's immune system, the mechanism by ...
Survey and identification of panicle blanking bacteria in Arkansas
USDA-ARS?s Scientific Manuscript database
Outbreaks of bacterial panicle blight (BPB) of rice in recent past years have resulted in severe yield losses in the Southern United States including Arkansas. Bacterial species, Burkholderia glumae was identified as the main causative agent among others causing BPB in rice. The symptoms of BPB inc...
USDA-ARS?s Scientific Manuscript database
Copper sulfate (CuSO4) and potassium permanganate (KMnO4) were evaluated for their effectiveness to curtail mortality and decrease bacterial load in fish tissues and water in channel catfish Ictalurus punctatus naturally infected with Flavobacterium columnare, the causative agent of columnaris. Fis...
Establishment of an Aerosal-Based Marek's Disease Virus Infection Model
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV), which is the causative agent of Marek’s disease (MD), is shed by infected chickens and transmitted to other chickens through the respiratory route. Experimental reproduction of MD has been commonly done either by intra-abdominal inoculation of cell-associated MDV or by e...
Natural antimicrobials to control biofilms formed by environmental isolates of Salmonella
USDA-ARS?s Scientific Manuscript database
Fresh produce account for 9.5 million (12%) of the ~76 million U.S. foodborne illnesses annually. Salmonella is the leading causative agent of an estimated 35% hospitalizations and 28% deaths. Fresh produce can be contaminated by Salmonella at farm level via contaminated manure, irrigation water, w...
EPA ORD/REGION 2 COOPERATIVE EFFORT: EVALUATING CRYPTOSPORIDIUM AND GIARDIA IN URBAN STORMWATER
Since the first identified Cryptosporidium outbreak in the United Kingdom in 1983, the pathogens Cryptosporidium and Giardia have become the subject of growing local, state, and national concern. Both organisms have been the causative agent of many gas...
Submission of nucleotide sequence clostridium perfringens alpha-toxin to genbank database
USDA-ARS?s Scientific Manuscript database
Clostridium perfringens (CP) is ubiquitous in the nature, and a normal inhabitant in the intestinal tracts of animals and humans. However, pathogenic CP is also a causative agent of poultry disease necrotic enteritis (NE). Clostridium perfringens alpha toxin is a toxin produced by the bacterium Clo...
USDA-ARS?s Scientific Manuscript database
Clostridium perfringens (CP) is ubiquitous in the nature, and a normal inhabitant in the intestinal tracts of animals and humans. However, pathogenic CP is also a causative agent of poultry disease necrotic enteritis (NE). Clostridium-related poultry diseases such as necrotic enteritis (NE) and gang...
Submission of nucleotide sequence clostridium perfringens elongation factor-tu to genbank database
USDA-ARS?s Scientific Manuscript database
Clostridium perfringens (CP) is ubiquitous in the nature, and a normal inhabitant in the intestinal tracts of animals and humans. However, pathogenic CP is also a causative agent of poultry disease necrotic enteritis (NE). Clostridium-related poultry diseases such as necrotic enteritis (NE) and gang...
Genetics of the pig tapeworm in Madagascar reveal a history of human dispersal and colonization
USDA-ARS?s Scientific Manuscript database
An intricate history of human dispersal and geographic colonization has strongly affected the distribution of obligate parasites circulating among people. Among these parasites, the pig tapeworm Taenia solium occurs throughout the world as the causative agent of cysticercosis, one of the most serio...
Shotgun proteomic analysis of Yersinia ruckeri isolates under normal and iron-limited conditions
USDA-ARS?s Scientific Manuscript database
Yersinia ruckeri is the causative agent of enteric redmouth disease of fish and causes significant economic losses, particularly in salmonids. Iron is an essential nutrient for many cellular processes and is involved in host sensing and virulence regulation in many bacteria. Bacterial pathogens diff...
USDA-ARS?s Scientific Manuscript database
Leptospira interrogans is the causative agent of leptospirosis, a zoonosis of global significance. Iron is essential for growth of most bacterial species. Since availability of iron is low in the host, pathogens have evolved complex iron acquisition mechanisms to survive and establish infection. In ...
Natural enemies of emerald ash borer in southeastern Michigan
Leah S. Bauer; Houping Liu; Robert A. Haack; Toby R. Petrice; Deborah L. Miller
2004-01-01
Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), the emerald ash borer (EAB), is native to China, Japan, Korea, Mongolia, Russian Far East, and Taiwan. In 2002, EAB was identified as the causative agent of extensive ash (Fraxinus spp.) mortality in southeastern Michigan and nearby southwestern Ontario. EAB was inadvertently...
Early immune responses to Marek’s disease vaccines
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV), a highly cell-associated lymphotropic 'alpha-herpesvirus, is the causative agent of Marek’s disease (MD) in domestic chickens. MDV replicates in chicken lymphocytes and establishes a latent infection within CD4+ T cells. The latently infected CD4+ T cells carry the vir...
USDA-ARS?s Scientific Manuscript database
Paratuberculosis (Johne’s disease) is an incurable infectious, chronically progressive enteric disease affecting domestic and exotic ruminants. The causative agent is Mycobacterium Avium Paratuberculosis (M Johnei). In this study, the occurrence of subclinical Johne’s disease in Awassi sheep is inve...
Disseminated sporotrichosis in an immunocompetent patient.
Hassan, Kareem; Turker, Tolga; Zangeneh, Tirdad
2016-01-01
Sporothrix schenckii, the causative agent of sporotrichosis, is a relatively rare infection. Local infection usually occurs through direct inoculation of the organism through the skin; disseminated disease is rarely seen. This article describes a case of disseminated sporotrichosis in a middle-aged man without the commonly seen risk factors for dissemination.
Persistence of salmonella typhimurium in nopal cladodes
USDA-ARS?s Scientific Manuscript database
Fresh produce associated outbreaks have increased in the last few years. E.coli O157:H7 and Salmonella have been causative agents of infection in these outbreaks. Fresh produce is consumed raw, and in the absence of terminal kill treatment, it is imperative to understand sources of contamination o...
Envelope protein complexes of Mycobacterium avium subsp. paratuberculosis and their antigenicity
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease, a chronic enteric disease of ruminant animals. In the present study, blue native PAGE electrophoresis and 2D SDS-PAGE were used to separate MAP envelope protein complexes, followed by mass spectrometry (MS) ...
One of the significant discoveries following the bioterrorist episodes beginning in October 2001 was that a modified form of Bacillus anthracis (Ames strain) was the causative agent. Physical alteration of the inoculum had occurred; the electrostatic charge had been removed and t...
Evaluating innate resistance to Flavobacterium Columnare in rainbow trout (Oncorhynchus mykiss)
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare (Fc) is the causative agent for columnaris disease and a problem for several fish species. Recently, columnaris has been recognized as an emerging problem in farmed trout cultured within the Hagerman valley of Idaho. A long term breeding program at the NCCCWA has produced ...
Purcell, M.K.; Murray, A.L.; Elz, A.; Park, L.K.; Marcquenski, S.V.; Winton, J.R.; Alcorn, S.W.; Pascho, R.J.; Elliott, D.G.
2008-01-01
In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. in this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection. ?? Copyright by the American Fisheries Society 2008.
A suspected case of rocuronium-sugammadex complex-induced anaphylactic shock after cesarean section.
Yamaoka, Masakazu; Deguchi, Miki; Ninomiya, Kiichiro; Kurasako, Toshiaki; Matsumoto, Mutsuko
2017-02-01
An anaphylactic reaction during a cesarean section occurs rarely, and rocuronium is thought to be one of the common agents causing perioperative anaphylaxis. Here we report an anaphylactic shock after cesarean section that is suggested to be induced by the rocuronium-sugammadex complex. A 36-year-old primigravida underwent an elective cesarean section under general anesthesia due to placenta previa. While the operation was completed uneventfully, she developed anaphylactic shock following sugammadex administration. She was successfully managed with rapid treatments. Serum tryptase level was significantly elevated. Although sugammadex was first suspected to be the causative agent, the result of intradermal skin tests with sugammadex were negative. Surprisingly, a subsequent intradermal test with undiluted rocuronium caused the patient to fall into a state of shock. Furthermore, a later skin-prick test with pre-mixed rocuronium-sugammadex complex also revealed a strong positive reaction, and a test with only rocuronium showed negative. We finally concluded that the rocuronium-sugammadex complex is the causative agent in this case. To the best of our knowledge, this is the first report suggesting anaphylaxis caused by the rocuronium-sugammadex complex. This case highlights the importance of appropriate examinations to determinate the pathogenesis of anaphylaxis in order to establish risk reduction strategies.
Harada, Seiya; Furukawa, Masato; Tokuoka, Eisuke; Matsumoto, Kazutoshi; Yahiro, Shunsuke; Miyasaka, Jiro; Saito, Morihiro; Kamata, Yoichi; Watanabe, Maiko; Irikura, Daisuke; Matsumoto, Hiroshi; Sugita-Konishi, Yoshiko
2013-01-01
More than 27 outbreaks per year of food poisoning caused by consuming horse meat were reported in Kumamoto Prefecture (including Kumamoto City) from January 2009 to September 2011. It was found that the causative agent of the outbreaks was a protein with a molecular weight of 15 kDa that had originated from bradyzoites of Sarcocystis fayeri parasitizing the horse meat. Rabit ileal loop tests showed that pepsin treatment of homogenates of frozen horse meat containing the cysts of S. fayeri induced loss of toxicity, presumably by digestion of the proteinous causative agent(s). Slices of horse meat containing the cysts were frozen at below -20°C for various periods. The cysts were collected after thawing the slices, then treated in an artificial stomach juice containing pepsin. The bradyzoites of the cysts kept at -20°C for 48 hr or more completely disappeared. Simultaneously, the 15 kDa protein also disappeared in the frozen cysts. After notifying the public and recommending freezing treatment of horse meat, no subsequent cases of food poisoning were reported. This indicates that freezing of horse meat is effective to prevent the occurrence of food poisoning caused by consuming raw horse meat containing S. fayeri.
Purcell, Maureen K; Murray, Anthony L; Elz, Anna; Park, Linda K; Marcquenski, Susan V; Winton, James R; Alcorn, Stewart W; Pascho, Ronald J; Elliott, Diane G
2008-12-01
In the late 1960s, Chinook salmon Oncorhynchus tshawytscha from the Green River, Washington, were successfully introduced into Lake Michigan. During spring from 1988 to 1992, large fish die-offs affecting Chinook salmon occurred in the lake. Multiple ecological factors probably contributed to the severity of the fish kills, but the only disease agent found regularly was Renibacterium salmoninarum, the causative agent of bacterial kidney disease. In this study, survival after challenge by R. salmoninarum was compared between two Chinook salmon stocks: a Lake Michigan stock from Wisconsin (WI) and the progenitor stock from the Green River. We found that the WI stock had significantly greater survival than the Green River stock. Next, the WI and Green River stocks were exposed to the marine pathogen Listonella anguillarum (formerly Vibrio anguillarum), one of the causative agents of vibriosis; survival after this challenge was significantly poorer for the WI stock than for the Green River stock. A close genetic relationship between the Green River and WI stocks was confirmed by analyzing 13 microsatellite loci. These results collectively suggest that disease susceptibility of Lake Michigan Chinook salmon has diverged from that of the source population, possibly in response to pathogen-driven selection.
Immediate Type Hypersensitivity to Heparins: Two Case Reports and a Review of the Literature.
Cesana, Philipp; Scherer, Kathrin; Bircher, Andreas J
2016-01-01
Immediate type hypersensitivity reactions due to heparins are rare, and the exact immunologic pathomechanism has not been identified so far. In our 2 case reports, we describe first a 50-year-old female who received dalteparin (Fragmin®) and developed signs of an immediate type hypersensitivity reaction. The personal history revealed a previous application of dalteparin (Fragmin®). Evaluation with a skin prick test showed positive results for dalteparin. The second case deals with a 73-year-old female with a suspected immediate type reaction after the administration of dalteparin (Fragmin®). A skin prick test was negative but intracutaneous tests showed a positive reaction to the causative agent. Both cases indicated cross-reactivity reactions for low-molecular-weight heparin (LMWH) but not for unfractioned heparin (UFH) or fondaparinux. In conclusion, our case reports including a review of published cases of immediate type hypersensitivity reactions after the application of heparins illustrate this rare complication. Mostly, the causative agent can be identified with a skin test, which is highly suggestive of an IgE-mediated reaction. Therapeutic alternatives for patients with sensitization to an LMWH are UFH and fondaparinux. Both agents have a small risk of cross-reactivity compared to heparins of the same substance class. © 2017 S. Karger AG, Basel.
Effects of Manipulation on Attributions of Causation, Free Will, and Moral Responsibility.
Murray, Dylan; Lombrozo, Tania
2017-03-01
If someone brings about an outcome without intending to, is she causally and morally responsible for it? What if she acts intentionally, but as the result of manipulation by another agent? Previous research has shown that an agent's mental states can affect attributions of causal and moral responsibility to that agent, but little is known about what effect one agent's mental states can have on attributions to another agent. In Experiment 1, we replicate findings that manipulation lowers attributions of responsibility to manipulated agents. Experiments 2-7 isolate which features of manipulation drive this effect, a crucial issue for both philosophical debates about free will and attributions of responsibility in situations involving social influence more generally. Our results suggest that "bypassing" a manipulated agent's mental states generates the greatest reduction in responsibility, and we explain our results in terms of the effects that one agent's mental states can have on the counterfactual relations between another agent and an outcome. Copyright © 2016 Cognitive Science Society, Inc.
The molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427.
Melville, S E; Leech, V; Navarro, M; Cross, G A
2000-12-01
We present the molecular karyotype of the megabase chromosomes of Trypanosoma brucei stock 427, clone 221a. This cloned stock is most commonly used in research laboratories in genetic manipulation experiments and in studies of antigenic variation. Using 116 previously characterised chromosome-specific markers, we identify 11 diploid pairs of megabase chromosomes and detect no loss of synteny in EST and gene marker distribution between this stock and the genome project reference stock TREU 927/4. Nevertheless, the chromosomes of 427 are all larger than their homologues in 927, except chromosomes IIa and IXa. The greatest size variation is seen in chromosome I, the smallest of which is 1.1 Mb (927-Ia) and the largest 3.6 Mb (427-Ib). The total nuclear DNA content of both stocks has been estimated by comparison of the mobility of T. brucei and yeast chromosomes. Trypanosomes of stock 427 contain approximately 16.5 Mb more megabase chromosomal DNA than those of stock 927. We have detected the presence of bloodstream-form expression-site-associated sequences on eight or more megabase chromosomes. These sequences are not found on the same chromosomes in each stock. We have determined the chromosomal band location of nine characterised variant surface glycoprotein genes, including the currently expressed VSG 221. Our results demonstrate both the stability of the T. brucei genome, as illustrated by the conservation of syntenic groups of genes in the two stocks, and the polymorphic nature of the genomic regions involved in antigenic variation. We propose that the chromosomes of stock 427 be numbered to correspond to their homologues in the genome project reference stock TREU 927/4.
Gnipová, Anna; Šubrtová, Karolína; Panicucci, Brian; Horváth, Anton; Lukeš, Julius
2015-01-01
The highly conserved ADP/ATP carrier (AAC) is a key energetic link between the mitochondrial (mt) and cytosolic compartments of all aerobic eukaryotic cells, as it exchanges the ATP generated inside the organelle for the cytosolic ADP. Trypanosoma brucei, a parasitic protist of medical and veterinary importance, possesses a single functional AAC protein (TbAAC) that is related to the human and yeast ADP/ATP carriers. However, unlike previous studies performed with these model organisms, this study showed that TbAAC is most likely not a stable component of either the respiratory supercomplex III+IV or the ATP synthasome but rather functions as a physically separate entity in this highly diverged eukaryote. Therefore, TbAAC RNA interference (RNAi) ablation in the insect stage of T. brucei does not impair the activity or arrangement of the respiratory chain complexes. Nevertheless, RNAi silencing of TbAAC caused a severe growth defect that coincides with a significant reduction of mt ATP synthesis by both substrate and oxidative phosphorylation. Furthermore, TbAAC downregulation resulted in a decreased level of cytosolic ATP, a higher mt membrane potential, an elevated amount of reactive oxygen species, and a reduced consumption of oxygen in the mitochondria. Interestingly, while TbAAC has previously been demonstrated to serve as the sole ADP/ATP carrier for ADP influx into the mitochondria, our data suggest that a second carrier for ATP influx may be present and active in the T. brucei mitochondrion. Overall, this study provides more insight into the delicate balance of the functional relationship between TbAAC and the oxidative phosphorylation (OXPHOS) pathway in an early diverged eukaryote. PMID:25616281
Mercer, Luke; Bowling, Tana; Perales, Joe; Freeman, Jennifer; Nguyen, Tien; Bacchi, Cyrus; Yarlett, Nigel; Don, Robert; Jacobs, Robert; Nare, Bakela
2011-02-08
There is an urgent need to develop new, safe and effective treatments for human African trypanosomiasis (HAT) because current drugs have extremely poor safety profiles and are difficult to administer. Here we report the discovery of 2,4-diaminopyrimidines, exemplified by 4-[4-amino-5-(2-methoxy-benzoyl)-pyrimidin-2-ylamino]-piperidine-1-carboxylic acid phenylamide (SCYX-5070), as potent inhibitors of Trypanosoma brucei and the related trypanosomatid protozoans Leishmania spp. In this work we show that loss of T. brucei viability following SCYX-5070 exposure was dependent on compound concentration and incubation time. Pulse incubation of T. brucei with SCYX-5070 demonstrates that a short period of exposure (10-12 hrs) is required to produce irreversible effects on survival or commit the parasites to death. SCYX-5070 cured an acute trypanosomiasis infection in mice without exhibiting signs of compound related acute or chronic toxicity. To identify the molecular target(s) responsible for the mechanism of action of 2,4-diaminopyrimidines against trypanosomatid protozoa, a representative analogue was immobilized on a solid matrix (sepharose) and used to isolate target proteins from parasite extracts. Mitogen-activated protein kinases (MAPKs) and cdc2-related kinases (CRKs) were identified as the major proteins specifically bound to the immobilized compound, suggesting their participation in the pharmacological effects of 2,4-diaminopyrimidines against trypanosomatid protozoan parasites. Results show that 2,4-diaminopyrimidines have a good in vitro and in vivo pharmacological profile against trypanosomatid protozoans and that MAPKs and CRKs are potential molecular targets of these compounds. The 2,4-diminipyrimidines may serve as suitable leads for the development of novel treatments for HAT.
Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Kennedy, Peter G E; Bentivoglio, Marina
2016-12-01
The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.
Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F.; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Bentivoglio, Marina
2016-01-01
Background The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Methodology Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Principal findings Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. Conclusion These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging. PMID:28002454
Horáková, Eva; Changmai, Piya; Paris, Zdeněk; Salmon, Didier; Lukeš, Julius
2015-11-01
ABC transporter mitochondrial 1 (Atm1) and multidrug resistance-like 1 (Mdl) are mitochondrial ABC transporters. Although Atm1 was recently suggested to transport different forms of glutathione from the mitochondrion, which are used for iron-sulfur (Fe-S) cluster maturation in the cytosol, the function of Mdl remains elusive. In Trypanosoma brucei, we identified one homolog of each of these genes, TbAtm and TbMdl, which were downregulated either separately or simultaneously using RNA interference. Individual depletion of TbAtm and TbMdl led to limited growth defects. In cells downregulated for TbAtm, the enzymatic activities of the Fe-S cluster proteins aconitase and fumarase significantly decreased in the cytosol but not in the mitochondrion. Downregulation of TbMdl did not cause any change in activities of the Fe-S proteins. Unexpectedly, the simultaneous downregulation of TbAtm and TbMdl did not result in any growth defect, nor were the Fe-S cluster protein activities altered in either the cytosolic or mitochondrial compartments. Additionally, TbAtm and TbMdl were able to partially restore the growth of the Saccharomyces cerevisiae Δatm1 and Δmdl2 null mutants, respectively. Because T. brucei completely lost the heme b biosynthesis pathway, this cofactor has to be obtained from the host. Based on our results, TbMdl is a candidate for mitochondrial import of heme b, which was markedly decreased in both TbMdl and TbAtm + TbMdl knockdowns. Moreover, the levels of heme a were strongly decreased in the same knockdowns, suggesting that TbMdl plays a key role in heme a biosynthesis, thus affecting the overall heme homeostasis in T. brucei. © 2015 FEBS.
A Type III Protein Arginine Methyltransferase from the Protozoan Parasite Trypanosoma brucei*
Fisk, John C.; Sayegh, Joyce; Zurita-Lopez, Cecilia; Menon, Sarita; Presnyak, Vladimir; Clarke, Steven G.; Read, Laurie K.
2009-01-01
Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle. PMID:19254949
A type III protein arginine methyltransferase from the protozoan parasite Trypanosoma brucei.
Fisk, John C; Sayegh, Joyce; Zurita-Lopez, Cecilia; Menon, Sarita; Presnyak, Vladimir; Clarke, Steven G; Read, Laurie K
2009-04-24
Arginine methylation is a widespread post-translational modification of proteins catalyzed by a family of protein arginine methyltransferases (PRMTs). The ancient protozoan parasite, Trypanosoma brucei, possesses five putative PRMTs, a relatively large number for a single-celled eukaryote. Trypanosomatids lack gene regulation at the level of transcription, instead relying on post-transcriptional control mechanisms that act at the levels of RNA turnover, translation, and editing, all processes that likely involve multiple RNA-binding proteins, which are common targets of arginine methylation. Here, we report the characterization of a trypanosome PRMT, TbPRMT7, which is homologous to human PRMT7. Interestingly, trypanosomatids are the only single-celled eukaryotes known to harbor a PRMT7 homologue. TbPRMT7 differs dramatically from all known metazoan PRMT7 homologues in lacking the second AdoMet binding-like domain that is required for activity of the human enzyme. Nevertheless, bacterially expressed TbPRMT7 exhibits robust methyltransferase activity toward multiple targets in vitro. High resolution ion exchange chromatography analysis of methylated substrates reveals that TbPRMT7 is a type III PRMT, catalyzing the formation of only monomethylarginine, thereby representing the only exclusively type III PRMT identified to date. TbPRMT7 is expressed in both mammalian and insect stage T. brucei and is apparently dispensable for growth in both life cycle stages. The enzyme is cytoplasmically localized and is a component of several higher order complexes in vivo. Together, our studies indicate that TbPRMT7 is a Type III PRMT, and its robust activity and presence in numerous complexes suggest it plays multiple roles during the complex T. brucei life cycle.
The nuclear proteome of Trypanosoma brucei
Goos, Carina; Dejung, Mario; Janzen, Christian J.; Butter, Falk
2017-01-01
Trypanosoma brucei is a protozoan flagellate that is transmitted by tsetse flies into the mammalian bloodstream. The parasite has a huge impact on human health both directly by causing African sleeping sickness and indirectly, by infecting domestic cattle. The biology of trypanosomes involves some highly unusual, nuclear-localised processes. These include polycistronic transcription without classical promoters initiated from regions defined by histone variants, trans-splicing of all transcripts to the exon of a spliced leader RNA, transcription of some very abundant proteins by RNA polymerase I and antigenic variation, a switch in expression of the cell surface protein variants that allows the parasite to resist the immune system of its mammalian host. Here, we provide the nuclear proteome of procyclic Trypanosoma brucei, the stage that resides within the tsetse fly midgut. We have performed quantitative label-free mass spectrometry to score 764 significantly nuclear enriched proteins in comparison to whole cell lysates. A comparison with proteomes of several experimentally characterised nuclear and non-nuclear structures and pathways confirmed the high quality of the dataset: the proteome contains about 80% of all nuclear proteins and less than 2% false positives. Using motif enrichment, we found the amino acid sequence KRxR present in a large number of nuclear proteins. KRxR is a sub-motif of a classical eukaryotic monopartite nuclear localisation signal and could be responsible for nuclear localization of proteins in Kinetoplastida species. As a proof of principle, we have confirmed the nuclear localisation of six proteins with previously unknown localisation by expressing eYFP fusion proteins. While proteome data of several T. brucei organelles have been published, our nuclear proteome closes an important gap in knowledge to study trypanosome biology, in particular nuclear-related processes. PMID:28727848
[Isolation of the causative agent and histopathology of athlete's foot (preliminary report)].
Pelayo Ulacia, S; Dafhnis, D
1980-01-01
Given the incidence of athlete's foot in our environment a study of the causing agent as well as the lesions it determines is made. For that purpose four male patients from an ESBEC (High School in the Countryside), seen at Jovellanos Municipality Hospital in the dermatology section, were studied. Average age was 13. The authors conducted a tissular study with adjusting sampling for isolating the relevant causing agent. The authors showed that the infecting agents were Trichophyton mentagrophytes and Trichophyton rubrum which determined hyperkeratosis with marked and focal parakeratosis; maceration areas with destruction and sphacelus of the corneal layer, a site with abundant necrotic cells and spores; acanthosis; papillomatosis; hyphas, and a lympho-histocytary inflammatory infiltrate in the upper dermis.
Novel 3-Nitro-1H-1,2,4-triazole-based Amides and Sulfonamides as Potential anti-Trypanosomal Agents
Papadopoulou, Maria V.; Bloomer, William D.; Rosenzweig, Howard S.; Chatelain, Eric; Kaiser, Marcel; Wilkinson, Shane R.; McKenzie, Caroline; Ioset, Jean-Robert
2012-01-01
A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-based amides and sulfonamides were characterized for their in vitro anti-trypanosomal and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these active compounds were more potent (up to 58 fold) than the reference drug benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately active (0.5 μM ≤ IC50 < 6.0 μM) against T. b. rhodesiense trypomastigotes, were 5 to 31 fold more active against bloodstream-form T. b. brucei trypomastigotes engineered to overexpress NADH-dependent nitroreductase (TbNTR). Finally, 3 nitrotriazoles displayed a moderate activity against the axenic form of Leishmania donovani. Therefore, 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides are potent anti-trypanosomal agents. PMID:22550999
Gene Transfer in Mycobacterium tuberculosis: Shuttle Phasmids to Enlightenment
JACOBS, WILLIAM R.
2016-01-01
Infectious diseases have plagued humankind throughout history and have posed serious public health problems. Yet vaccines have eradicated smallpox and antibiotics have drastically decreased the mortality rate of many infectious agents. These remarkable successes in the control of infections came from knowing the causative agents of the diseases, followed by serendipitous discoveries of attenuated viruses and antibiotics. The discovery of DNA as genetic material and the understanding of how this information translates into specific phenotypes have changed the paradigm for developing new vaccines, drugs, and diagnostic tests. Knowledge of the mechanisms of immunity and mechanisms of action of drugs has led to new vaccines and new antimicrobial agents. The key to the acquisition of the knowledge of these mechanisms has been identifying the elemental causes (i.e., genes and their products) that mediate immunity and drug resistance. The identification of these genes is made possible by being able to transfer the genes or mutated forms of the genes into causative agents or surrogate hosts. Such an approach was limited in Mycobacterium tuberculosis by the difficulty of transferring genes or alleles into M. tuberculosis or a suitable surrogate mycobacterial host. The construction of shuttle phasmids—chimeric molecules that replicate in Escherichia coli as plasmids and in mycobacteria as mycobacteriophages—was instrumental in developing gene transfer systems for M. tuberculosis. This review will discuss M. tuberculosis genetic systems and their impact on tuberculosis research. “I had to know my enemy in order to prevail against him.”Nelson Mandela PMID:26105819
Attempts to identify the source of avian vacuolar myelinopathy for waterbirds
Rocke, T.E.; Thomas, N.J.; Meteyer, C.U.; Quist, C.F.; Fischer, John R.; Augspurger, T.; Ward, S.E.
2005-01-01
Attempts were made to reproduce avian vacuolar myelinopathy (AVM) in a number of test animals in order to determine the source of the causative agent for birds and to find a suitable animal model for future studies. Submerged vegetation, plankton, invertebrates, forage fish, and sediments were collected from three lakes with ongoing outbreaks of AVM and fed to American coots (Fulica americana), mallard ducks and ducklings (Anas platyrhynchos), quail (Coturnix japonica), and laboratory mice either via gavage or ad libitum. Tissues from AVM-affected coots with brain lesions were fed to ducklings, kestrels (Falco sparverius), and American crows (Corvus brachyrhynchos). Two mallards that ingested one sample of Hydrilla verticillata along with any biotic or abiotic material associated with its external surface developed brain lesions consistent with AVM, although neither of the ducks had clinical signs of disease. Ingestion of numerous other samples of Hydrilla from the AVM affected lakes and a lake with no prior history of AVM, other materials (sediments, algae, fish, invertebrates, and water from affected lakes), or tissues from AVM-affected birds did not produce either clinical signs or brain lesions in any of the other test animals in our studies. These results suggest that waterbirds are most likely exposed to the causative agent of AVM while feeding on aquatic vegetation, but we do not believe the vegetation itself is the agent. We hypothesize that the causative agent of AVM might either be accumulated by aquatic vegetation, such as Hydrilla, or associated with biotic or abiotic material on its external surfaces. In support of that hypothesis, two coots that ingested Hydrilla sampled from a lake with an ongoing AVM outbreak in wild birds developed neurologic signs within 9 days (ataxia, limb weakness, and incoordination), and one of two coots that ingested Hydrilla collected from the same site 13 days later became sick and died within 38 days. None of these three sick coots had definitive brain lesions consistent with AVM by light microscopy, but they had no gross or histologic lesions in other tissues. It is unclear if these birds died of AVM. Perhaps they did not ingest a dose sufficient to produce brain lesions or the lesions were ultrastructural. Alternatively, it is possible that a separate neurotoxic agent is responsible for the morbidity and mortality observed in these coots.
Kishore, Kranti G; Ghashghaei, Ouldouz; Estarellas, Carolina; Mestre, M Mar; Monturiol, Cristina; Kielland, Nicola; Kelly, John M; Francisco, Amanda Fortes; Jayawardhana, Shiromani; Muñoz-Torrero, Diego; Pérez, Belén; Luque, F Javier; Gámez-Montaño, Rocío; Lavilla, Rodolfo
2016-07-25
Trimethylsilyl chloride is an efficient activating agent for azines in isocyanide-based reactions, which then proceed through a key insertion of the isocyanide into a N-Si bond. The reaction is initiated by N activation of the azine, followed by nucleophilic attack of an isocyanide in a Reissert-type process. Finally, a second equivalent of the same or a different isocyanide inserts into the N-Si bond leading to the final adduct. The use of distinct nucleophiles leads to a variety of α-substituted dihydroazines after a selective cascade process. Based on computational studies, a mechanistic hypothesis for the course of these reactions was proposed. The resulting products exhibit significant activity against Trypanosoma brucei and T. cruzi, featuring favorable drug-like properties and safety profiles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics
2015-01-01
Analysis of macromolecular/small-molecule binding pockets can provide important insights into molecular recognition and receptor dynamics. Since its release in 2011, the POVME (POcket Volume MEasurer) algorithm has been widely adopted as a simple-to-use tool for measuring and characterizing pocket volumes and shapes. We here present POVME 2.0, which is an order of magnitude faster, has improved accuracy, includes a graphical user interface, and can produce volumetric density maps for improved pocket analysis. To demonstrate the utility of the algorithm, we use it to analyze the binding pocket of RNA editing ligase 1 from the unicellular parasite Trypanosoma brucei, the etiological agent of African sleeping sickness. The POVME analysis characterizes the full dynamics of a potentially druggable transient binding pocket and so may guide future antitrypanosomal drug-discovery efforts. We are hopeful that this new version will be a useful tool for the computational- and medicinal-chemist community. PMID:25400521
Agrochemicals against malaria, sleeping sickness, leishmaniasis and Chagas disease.
Witschel, Matthias; Rottmann, Matthias; Kaiser, Marcel; Brun, Reto
2012-01-01
In tropical regions, protozoan parasites can cause severe diseases with malaria, leishmaniasis, sleeping sickness, and Chagas disease standing in the forefront. Many of the drugs currently being used to treat these diseases have been developed more than 50 years ago and can cause severe adverse effects. Above all, resistance to existing drugs is widespread and has become a serious problem threatening the success of control measures. In order to identify new antiprotozoal agents, more than 600 commercial agrochemicals have been tested on the pathogens causing the above mentioned diseases. For all of the pathogens, compounds were identified with similar or even higher activities than the currently used drugs in applied in vitro assays. Furthermore, in vivo activity was observed for the fungicide/oomyceticide azoxystrobin, and the insecticide hydramethylnon in the Plasmodium berghei mouse model, and for the oomyceticide zoxamide in the Trypanosoma brucei rhodesiense STIB900 mouse model, respectively.
Agrochemicals against Malaria, Sleeping Sickness, Leishmaniasis and Chagas Disease
Witschel, Matthias; Rottmann, Matthias; Kaiser, Marcel; Brun, Reto
2012-01-01
In tropical regions, protozoan parasites can cause severe diseases with malaria, leishmaniasis, sleeping sickness, and Chagas disease standing in the forefront. Many of the drugs currently being used to treat these diseases have been developed more than 50 years ago and can cause severe adverse effects. Above all, resistance to existing drugs is widespread and has become a serious problem threatening the success of control measures. In order to identify new antiprotozoal agents, more than 600 commercial agrochemicals have been tested on the pathogens causing the above mentioned diseases. For all of the pathogens, compounds were identified with similar or even higher activities than the currently used drugs in applied in vitro assays. Furthermore, in vivo activity was observed for the fungicide/oomyceticide azoxystrobin, and the insecticide hydramethylnon in the Plasmodium berghei mouse model, and for the oomyceticide zoxamide in the Trypanosoma brucei rhodesiense STIB900 mouse model, respectively. PMID:23145187
Neglected disease - african sleeping sickness: recent synthetic and modeling advances.
Paliwal, Sarvesh K; Verma, Ankita Narayan; Paliwal, Shailendra
2011-01-01
Human African Trypanosomiasis (HAT) also called sleeping sickness is caused by subspecies of the parasitic hemoflagellate Trypanosoma brucei that mostly occurs in sub-Saharan Africa. The current chemotherapy of the human trypanosomiases relies on only six drugs, five of which have been developed more than 30 years ago, have undesirable toxic side effects and most of them show drug-resistance. Though development of new anti-trypanosomal drugs seems to be a priority area research in this area has lagged far behind. The given review mainly focus upon the recent synthetic and computer based approaches made by various research groups for the development of newer anti-trypanosomal analogues which may have improved efficacy and oral bioavailability than the present ones. The given paper also attempts to investigate the relationship between the various physiochemical parameters and anti-trypanosomal activity that may be helpful in development of potent anti-trypanosomal agents against sleeping sickness.
Environmental agency in read-alouds
NASA Astrophysics Data System (ADS)
Oliveira, Alandeom W.; Rogers, Patterson; Quigley, Cassie F.; Samburskiy, Denis; Barss, Kimberly; Rivera, Seema
2015-06-01
Despite growing interest in helping students become agents of environmental change who can, through informed decision-making and action-taking, transform environmentally detrimental forms of human activity, science educators have reduced agency to rationality by overlooking sociocultural influences such as norms and values. We tackle this issue by examining how elementary teachers and students negotiate and attribute responsibility, credit, or blame for environmental events during three environmental read-alouds. Our verbal analysis and visual representation of meta-agentive discourse revealed varied patterns of agential attribution. First, humans were simultaneously attributed negative agentive roles (agents of endangerment and imbalance) and positive agentive roles (agents of prevention, mitigation, and balance). Second, while wolves at Yellowstone were constructed as intentional (human-like) agents when they crossed over into the human world to kill livestock in nearby farms, polar bears in the Arctic were denied any form of agential responsibility when they approached people's homes. Third, anthropogenic causation of global warming was constructed as distal and indirect chains of cause and effect (i.e., sophisticated sequences of ripple effects), whereas its mitigation and prevention assumed the form of simple and unidirectional causative links (direct and proximal causality). Fourth, the notion of balance of nature was repeatedly used as a justification for environmental conservation but its cause and dynamic nature remained unclear. And, fifth, while one teacher promoted environmental agency by encouraging students to experience positive emotions such as love of nature, freedom, and oneness with nature, the other teachers encouraged students to experience negative emotions such as self-blame and guilt. This study's main significance is that it highlights the need for environmental educators who set out to promote environmental agency to expand the focus of their instructional efforts beyond rational argumentation and reasoning. It also underscores the importance of increasing school teachers' awareness of implicit discursive messages in particular patterns of environmental agency attribution when discussing environmental issues with students and implementing pedagogical strategies centered on oral deliberation such as read-alouds.
Watier-Grillot, S; Herder, S; Marié, J-L; Bourry, O; Cuny, G; Davoust, B
2016-05-01
This survey screened native dogs (Canis familiaris) in Gabon (Africa) for trypanosome infection. A total of 376 apparently healthy dogs, divided into two populations, were examined. The first group included 252 semi-domesticated dogs inhabiting 16 villages of the Ogooué-Ivindo Province, a rural inland area in northeast Gabon, and the second group 124 dogs belonging to protection companies or families from Libreville (n = 113) and Port-Gentil (n = 11), in the coastal area of Gabon. Both study areas include active or former foci of sleeping sickness in Gabon. Molecular testing (polymerase chain reaction) was performed on blood samples from dogs in both groups. All dogs were negative for T. congolense ("savanna type" and "forest type"). Eighteen dogs (4.7%), however, tested positive for T. brucei s.l.: 3% (8/252) were from the Ogooué-Ivindo Province, and 8% (10/124) from the coastal area. These animals may be potential reservoirs of the parasite T. brucei gambiense, responsible for human African trypanosomiasis. This hypothesis, as well as the role of the dog as a sentinel of human infection by T. brucei gambiense, should be investigated in further studies.
Škodová, Ingrid; Verner, Zdeněk; Bringaud, Fréderic; Fabian, Peter
2013-01-01
Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD+ reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei, while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion. PMID:24142106
Cestari, Igor; Kalidas, Savitha; Monnerat, Severine; Anupama, Atashi; Phillips, Margaret A.
2013-01-01
The genes for all cytoplasmic and potentially all mitochondrial aminoacyl-tRNA synthetases (aaRSs) were identified, and all those tested by RNA interference were found to be essential for the growth of Trypanosoma brucei. Some of these enzymes were localized to the cytoplasm or mitochondrion, but most were dually localized to both cellular compartments. Cytoplasmic T. brucei aaRSs were organized in a multiprotein complex in both bloodstream and procyclic forms. The multiple aminoacyl-tRNA synthetase (MARS) complex contained at least six aaRS enzymes and three additional non-aaRS proteins. Steady-state kinetic studies showed that association in the MARS complex enhances tRNA-aminoacylation efficiency, which is in part dependent on a MARS complex-associated protein (MCP), named MCP2, that binds tRNAs and increases their aminoacylation by the complex. Conditional repression of MCP2 in T. brucei bloodstream forms resulted in reduced parasite growth and infectivity in mice. Thus, association in a MARS complex enhances tRNA-aminoacylation and contributes to parasite fitness. The MARS complex may be part of a cellular regulatory system and a target for drug development. PMID:24126051
Sanchez, M A; Ullman, B; Landfear, S M; Carter, N S
1999-10-15
Nucleoside transporters are likely to play a central role in the biochemistry of the parasite Trypanosoma brucei, since these protozoa are unable to synthesize purines de novo and must salvage them from their hosts. Furthermore, nucleoside transporters have been implicated in the uptake of antiparasitic and experimental drugs in these and other parasites. We have cloned the gene for a T. brucei nucleoside transporter, TbNT2, and shown that this permease is related in sequence to mammalian equilibrative nucleoside transporters. Expression of the TbNT2 gene in Xenopus oocytes reveals that the permease transports adenosine, inosine, and guanosine and hence has the substrate specificity of the P1 type nucleoside transporters that have been previously characterized by uptake assays in intact parasites. TbNT2 mRNA is expressed in bloodstream form (mammalian host stage) parasites but not in procyclic form (insect stage) parasites, indicating that the gene is developmentally regulated during the parasite life cycle. Genomic Southern blots suggest that there are multiple genes related in sequence to TbNT2, implying the existence of a family of nucleoside transporter genes in these parasites.
Sunter, Jack D.; Benz, Corinna; Andre, Jane; Whipple, Sarah; McKean, Paul G.; Gull, Keith; Ginger, Michael L.; Lukeš, Julius
2015-01-01
ABSTRACT The cell shape of Trypanosoma brucei is influenced by flagellum-to-cell-body attachment through a specialised structure – the flagellum attachment zone (FAZ). T. brucei exhibits numerous morphological forms during its life cycle and, at each stage, the FAZ length varies. We have analysed FLAM3, a large protein that localises to the FAZ region within the old and new flagellum. Ablation of FLAM3 expression causes a reduction in FAZ length; however, this has remarkably different consequences in the tsetse procyclic form versus the mammalian bloodstream form. In procyclic form cells FLAM3 RNAi results in the transition to an epimastigote-like shape, whereas in bloodstream form cells a severe cytokinesis defect associated with flagellum detachment is observed. Moreover, we demonstrate that the amount of FLAM3 and its localisation is dependent on ClpGM6 expression and vice versa. This evidence demonstrates that FAZ is a key regulator of trypanosome shape, with experimental perturbations being life cycle form dependent. An evolutionary cell biology explanation suggests that these differences are a reflection of the division process, the cytoskeleton and intrinsic structural plasticity of particular life cycle forms. PMID:26148511
von Wissmann, Beatrix; Fyfe, Jenna; Picozzi, Kim; Hamill, Louise; Waiswa, Charles; Welburn, Susan C
2014-06-01
Uganda has active foci of both chronic and acute HAT with the acute zoonotic form of disease classically considered to be restricted to southeast Uganda, while the focus of the chronic form of HAT was confined to the northwest of the country. Acute HAT has however been migrating from its traditional disease focus, spreading rapidly to new districts, a spread linked to movement of infected cattle following restocking. Cattle act as long-term reservoirs of human infective T. b. rhodesiense showing few signs of morbidity, yet posing a significant risk to human health. It is important to understand the relationship between infected cattle and infected individuals so that an appropriate response can be made to the risk posed to the community from animals infected with human pathogens in a village setting. This paper examines the relationship between human T. b. rhodesiense infection and human infective and non-human T. brucei s.l. circulating in cattle at village level in Kaberamaido and Dokolo Districts, Uganda. The study was undertaken in villages that had reported a case of sleeping sickness in the six months prior to sample collection and those villages that had never reported a case of sleeping sickness. The sleeping sickness status of the villages had a significant effect with higher odds of infection in cattle from case than from non-case villages for T. brucei s.l. (OR: 2.94, 95%CI: 1.38-6.24). Cattle age had a significant effect (p<0.001) on the likelihood of T. brucei s.l. infection within cattle: cattle between 18-36 months (OR: 3.51, 95%CI: 1.63-7.51) and cattle over 36 months (OR: 4.20, 95%CI: 2.08-8.67) had significantly higher odds of T. brucei s. l. infection than cattle under 18 months of age. Furthermore, village human sleeping sickness status had a significant effect (p<0.05) on the detection of T. b. rhodesiense in the village cattle herd, with significantly higher likelihood of T. b. rhodesiense in the village cattle of case villages (OR: 25, 95%CI: 1.2-520.71). Overall a higher than average T. brucei s.l. prevalence (>16.3%) in a village herd over was associated with significantly higher likelihood of T. b. rhodesiense being detected in a herd (OR: 25, 95%CI: 1.2-520.71).
Simo, Gustave; Silatsa, Barberine; Flobert, Njiokou; Lutumba, Pascal; Mansinsa, Philemon; Madinga, Joule; Manzambi, Emile; De Deken, Reginald; Asonganyi, Tazoacha
2012-09-19
The Malanga sleeping sickness focus of the Democratic Republic of Congo has shown an epidemic evolution of disease during the last century. However, following case detection and treatment, the prevalence of the disease decreased considerably. No active survey has been undertaken in this focus for a couple of years. To understand the current epidemiological status of sleeping sickness as well as the animal African trypanosomiasis in the Malanga focus, we undertook the identification of tsetse blood meals as well as different trypanosome species in flies trapped in this focus. Pyramidal traps were use to trap tsetse flies. All flies caught were identified and live flies were dissected and their mid-guts collected. Fly mid-gut was used for the molecular identification of the blood meal source, as well as for the presence of different trypanosome species. About 949 Glossina palpalis palpalis were trapped; 296 (31.2%) of which were dissected, 60 (20.3%) blood meals collected and 57 (19.3%) trypanosome infections identified. The infection rates were 13.4%, 5.1%, 3.5% and 0.4% for Trypanosoma congolense savannah type, Trypanosoma brucei s.l., Trypanosoma congolense forest type and Trypanosoma vivax, respectively. Three mixed infections including Trypanosoma brucei s.l. and Trypanosoma congolense savannah type, and one mixed infection of Trypanosoma vivax and Trypanosoma congolense savannah type were identified. Eleven Trypanosoma brucei gambiense infections were identified; indicating an active circulation of this trypanosome subspecies. Of all the identified blood meals, about 58.3% were identified as being taken on pigs, while 33.3% and 8.3% were from man and other mammals, respectively. The presence of Trypanosoma brucei in tsetse mid-guts associated with human blood meals is indicative of an active transmission of this parasite between tsetse and man. The considerable number of pig blood meals combined with the circulation of Trypanosoma brucei gambiense in this focus suggests a transmission cycle involving humans and domestic animals and could hamper eradication strategies. The various species of trypanosomes identified in the Malanga sleeping sickness focus indicates the coexistence of animal and human African Trypanosomiasis. The development of new strategies integrating control measures for human and animal trypanosomiasis may enable the reduction of the control costs in this locality.
Cardoso, S V; Campolina, S S; Guimarães, A L S; Faria, P R; da C Costa, E M; Gomez, R S; Rocha, A; Caligiorne, R B; Loyola, A M
2007-01-01
This is the first description of solitary phaeohyphomycosis affecting the mucosal surface. The lesion developed in the inferior lip of a 57‐year‐old woman. After surgical resection, histopathological examination evidenced characteristic brownish fungal structures within granulomatous–purulent inflammation. Amplification and sequencing of rDNA obtained from paraffin‐embedded tissue identified Alternaria species, as the causative agent. PMID:17264246
Emergence of Bordetella holmesii as a Causative Agent of Whooping Cough, Barcelona, Spain.
Mir-Cros, Alba; Codina, Gema; Martín-Gómez, M Teresa; Fàbrega, Anna; Martínez, Xavier; Jané, Mireia; Van Esso, Diego; Cornejo, Thais; Rodrigo, Carlos; Campins, Magda; Pumarola, Tomàs; González-López, Juan José
2017-11-01
We describe the detection of Bordetella holmesii as a cause of whooping cough in Spain. Prevalence was 3.9% in 2015, doubling to 8.8% in 2016. This emergence raises concern regarding the contribution of B. holmesii to the reemergence of whooping cough and the effectiveness of the pertussis vaccine.
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the causative agent of columnaris disease and severely affects various freshwater fish species worldwide. Here, we described the phenotypic and genetic characterization of F. columnare isolates isolated from farmed red tilapia in Thailand. Additionally, the virulence as w...
Diagnostic Assay for Rickettsia japonica
Hanaoka, Nozomu; Matsutani, Minenosuke; Kawabata, Hiroki; Yamamoto, Seigo; Fujita, Hiromi; Sakata, Akiko; Azuma, Yoshinao; Ogawa, Motohiko; Takano, Ai; Watanabe, Haruo; Kishimoto, Toshio; Shirai, Mutsunori; Kurane, Ichiro
2009-01-01
We developed a specific and rapid detection system for Rickettsia japonica and R. heilongjiangensis, the causative agents of spotted fever, using a TaqMan minor groove binder probe for a particular open reading frame (ORF) identified by the R. japonica genome project. The target ORF was present only in R. japonica–related strains. PMID:19961684
USDA-ARS?s Scientific Manuscript database
Cattle abortions associated with consumption of pine needles during late gestation are a serious poisonous plant problem in the Western US. Most cases of abortion have been associated with consumption of ponderosa pine (Pinus ponderosa) and the causative agent was identified as the labdane diterpen...
USDA-ARS?s Scientific Manuscript database
tBabesia bovis and Babesia bigemina are causative agents of bovine babesiosis, a tick-borne disease of cattlein tropical and subtropical regions. Babesia spp. infection adversely affects cattle health and can be fatalresulting in considerable economic loss worldwide. Under endemic stability conditio...
Finishing Genomes with Limited Resources: Lessons from an Ensemble of Microbial Genomes
2010-01-01
proteobacteria from the Pasteurellaceae family that is strongly implicated as a causative agent of infective endo- carditis [6]. It can also be found as an...Sequence of Aggregatibacter (Haemophilus) aphrophilus NJB700. J Bacrerio/2009, 191(14):4693-4694. 6. Khairat 0: Endocarditis due to a new species of
USDA-ARS?s Scientific Manuscript database
Newcastle disease virus (NDV), a member of the genus Avulavirus of the family Paramyxoviridae, is the causative agent of Newcastle disease (ND) a highly contagious disease that affects many species of birds and which frequently causes significant economic losses to the poultry industry worldwide. V...
9 CFR 114.5 - Micro-organisms used as seed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...
9 CFR 114.5 - Micro-organisms used as seed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...
9 CFR 114.5 - Micro-organisms used as seed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...
Novel monoclonal antibodies against Stx1d and 1e and their use for improvement of immunoassays
USDA-ARS?s Scientific Manuscript database
Shiga toxins (Stxs) are major causative agents for bloody diarrhea and hemolytic uremic syndrome, a life-threatening disease in humans. No effective treatment is available. Early detection of Stxs in clinical samples is critical for disease management. As bacteria evolve, new Stxs are produced; ther...
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid (ACP) is a phloem feeding insect that can host and transmit the bacterium Candidatus Liberibacter asiaticus (CLas), which is the putative causative agent of the economically important citrus disease, Huanglongbing (HLB). ACP are widespread in Florida, and are spreading in Ca...
USDA-ARS?s Scientific Manuscript database
The apicomplexan hemoparasite Theileria equi is a causative agent of equine piroplasmosis, eradicated from the United States in 1988. However, recent outbreaks have sparked renewed interest in treatment options for infected horses. Imidocarb dipropionate is the current drug of choice, however variat...
Measuring bovine gamma delta T cell function at the site of Mycobacterium bovis infection
USDA-ARS?s Scientific Manuscript database
The causative agent of tuberculosis (TB) in cattle is Mycobacterium bovis. The characteristic lesions of bovine TB are well-organized pulmonary granulomas. Gamma delta T cells are a unique subset of nonconventional T cells that play major roles in both the innate and adaptive arms of the immune sys...
Identification of sero-reactive antigens for the early diagnosis of Johne's disease in cattle
USDA-ARS?s Scientific Manuscript database
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne’s disease (JD), a chronic intestinal inflammatory disease of cattle and other ruminants. JD has a high herd prevalence rate and is recognized as a serious animal health problem and a cause of significant economic loss ...
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus (MDV) is an oncogenic alphaherpesvirus of chickens and the causative agent for Marek’s disease (MD). Vaccination is the primary method to control MD. Despite the success of vaccination, more virulent field strains are evolving, requiring the development of new vaccines. Attenua...
Molecular characterization of the complete genome of falconid herpesvirus strain S-18
USDA-ARS?s Scientific Manuscript database
Falconid herpesvirus type 1 (FHV-1) is the causative agent of falcon inclusion body disease, an acute, highly contagious disease of raptors. The complete nucleotide sequence of the genome of FHV-1 has been determined. The genome is arranged as a D-type genome with large inverted repeats flanking a ...
Bacteremia Caused by Arcobacter butzleri in an Immunocompromised Host
Arguello, Esther; Otto, Caitlin C.; Mead, Peter
2015-01-01
Arcobacter butzleri is an emerging pathogen that has been implicated as the causative agent of persistent watery diarrhea. We describe a case involving a patient with chronic lymphocytic leukemia who developed invasive A. butzleri bacteremia. This case illustrates the unique challenges involved in diagnosing infections caused by emerging gastrointestinal pathogens. PMID:25673792
USDA-ARS?s Scientific Manuscript database
The objective of this study was to compare methods for genomic evaluation in a Rainbow Trout (Oncorhynchus mykiss) population for survival when challenged by Flavobacterium psychrophilum, the causative agent of bacterial cold water disease (BCWD). The used methods were: 1)regular ssGBLUP that assume...
USDA-ARS?s Scientific Manuscript database
Shiga toxins (Stxs) produced by Shiga toxin-producing Escherichia coli (STEC) are considered as the main causative agent, leading to the development of the hemolytic uremic syndrome (HUS); these toxins injure endothelial cells mainly the glomeruli. After passing through the intestinal wall, Stxs hav...
Inactivation of avirulent pgm+ and delta pgm Yersinia pestis by ultraviolet light (UV-C)
USDA-ARS?s Scientific Manuscript database
Yersinia pestis is the causative agent of bubonic plague. Though not considered a foodborne pathogen, Y. pestis can survive, and even grow, in some foods, and the foodborne route of transmission is not without precedent. As such, concerns exist over the possible intentional contamination of foods wi...
USDA-ARS?s Scientific Manuscript database
Plasmodium falciparum is the causative agent of malignant malaria, which is among the most severe human infectious diseases. Despite its overwhelming significance to human health, the parasite’s origins remain unclear. The favored origin hypothesis holds that P. falciparum and its closest known rel...
Getting Them Speaking: Classroom Social Factors and Foreign Language Anxiety
ERIC Educational Resources Information Center
Effiong, Okon
2016-01-01
This study, which focuses on foreign language anxiety (FLA) experienced by Japanese learners of English in four universities, explores causative agents by looking into the classroom. The research questions aim to explore how FLA is influenced by classroom social factors. The study adopted qualitative data collection procedures, and the field work…
ERIC Educational Resources Information Center
Fleitas, Andrea L.; Randall, Lía M.; Möller, Matías N.; Denicola, Ana
2016-01-01
This practical class activity was designed to introduce students to recombinant protein expression and purification. The principal goal is to shed light on basic aspects concerning recombinant protein production, in particular protein expression, chromatography methods for protein purification, and enzyme activity as a tool to evaluate purity and…
USDA-ARS?s Scientific Manuscript database
Staphylococcus aureus is a major causative agent implicated in outbreaks of food poisoning, acting through the production of a range of toxins including staphylococcal enterotoxin type E (SEE). While tests such as enzyme-linked immunosorbent (ELISA) exist to detect the toxin molecules, existing meth...
Medical Surveillance Monthly Report (MSMR). Volume 18, Number 11, November 2011
2011-11-01
served in chicken salad) that had been washed with a hose that had been used to clean fl oor drains that were contaminated Lt Col Alice S. Chapman...been bacterial (e.g., Shigella, Salmonella , Campylobacter, E.coli). How- ever, viruses are becoming increasingly common as the causative agents in
Chronic cutaneous ulcers secondary to Haemophilus ducreyi infection.
Peel, Trisha N; Bhatti, Deepak; De Boer, Jim C; Stratov, Ivan; Spelman, Denis W
2010-03-15
Haemophilus ducreyi is a well recognised causative agent of genital ulcers and chancroid. We report two unusual cases of non-sexually transmitted H. ducreyi infection leading to chronic lower limb ulcers. Both patients were Australian expatriates visiting Australia from the Pacific Islands--one from Papua New Guinea and the other from Vanuatu.
USDA-ARS?s Scientific Manuscript database
Bovine mastitis results in billion dollar losses annually in the United States alone. Among the most relevant causative agents of this disease are members of the genus Streptococcus, particularly the species S. agalactiae (Group B Streptococcus; GBS), S. dysgalactiae (Group C; GCS), and S. uberis....
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid (ACP), transmits the causative agents of citrus greening disease or huanglongbing (HLB), the most devastating disease of citrus trees in the world today. ACP dwelling in noncommercial citrus (neighborhoods, commercial landscapes, etc.) can stymie area-wide management program...
9 CFR 114.5 - Micro-organisms used as seed.
Code of Federal Regulations, 2010 CFR
2010-01-01
... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...
9 CFR 114.5 - Micro-organisms used as seed.
Code of Federal Regulations, 2011 CFR
2011-01-01
... BIOLOGICAL PRODUCTS § 114.5 Micro-organisms used as seed. Micro-organisms used in the preparation of biological products at licensed establishments shall be free from the causative agents of other diseases or... Management and Budget under control number 0579-0059) [39 FR 16869, May 10, 1974, as amended at 48 FR 57473...
Whole-Genome Sequencing of Two Bartonella bacilliformis Strains
Guillen, Yolanda; Casadellà, Maria; García-de-la-Guarda, Ruth; Espinoza-Culupú, Abraham; Paredes, Roger; Ruiz, Joaquim
2016-01-01
Bartonella bacilliformis is the causative agent of Carrion’s disease, a highly endemic human bartonellosis in Peru. We performed a whole-genome assembly of two B. bacilliformis strains isolated from the blood of infected patients in the acute phase of Carrion’s disease from the Cusco and Piura regions in Peru. PMID:27389274
Since the first identified Cryptosporidium outbreak in the United Kingdom in 1983, emerging protozoa pathogens Cryptosporidium and Giardia have become the subject of growing local, state, and national concerns. Both organisms have been the causative agent of many gastrointestina...
Disseminated sporotrichosis in an immunocompetent patient
Hassan, Kareem; Turker, Tolga; Zangeneh, Tirdad
2016-01-01
Abstract Sporothrix schenckii, the causative agent of sporotrichosis, is a relatively rare infection. Local infection usually occurs through direct inoculation of the organism through the skin; disseminated disease is rarely seen. This article describes a case of disseminated sporotrichosis in a middle-aged man without the commonly seen risk factors for dissemination. PMID:27583270
Foot-and-mouth disease virus receptors: multiple gateways to initiate infection
USDA-ARS?s Scientific Manuscript database
Since its discovery over 100 years ago as the causative agent of foot-and-mouth disease (FMD), research has been directed at understanding the biology of the foot-and-mouth disease virus (FMDV) so as to be able to control this devastating and highly contagious disease of cloven-hoofed livestock. Giv...
Mechanism of Ethylene and Carbon Monoxide Production by Septoria musiva
Susan K. Brown-Skrobot; Lewis R. Brown; Ted H. Filer
1985-01-01
S. musiva, a causative agent of premature defoliation of cottonwood trees, has been shown previously to produce ethylene and carbon monoxide (CO) on media containing glucose, methionine, and iron. Chemical analyses have shown that all three substances are present in the cottonwood leaves. Of seven carbohydrates tested, none supported the production...
Two outbreaks of acute gastroenteritis were reported to the Wyoming Department of Health in 2001. The first was reported in February from recent vacationers of a snowmobile lodge. The second was in October among diners of a tourist saloon. The duration and type of symptoms exhibi...
Vysotskiĭ, V V; Smirnova-Mutusheva, M A; Efimova, O G; Bakulina, N A
1983-04-01
The relationship of the bacterial cells in populations and their adhesion activity is at present one of the research priorities in microbiological studies. The stimulating effect of penicillin on the development of morphologically different intercellular bonds (IB) in populations of the pertussis causative agent and first of all derivatives or evaginates of the cell wall membranes was observed. Morphologically similar systems and polytubular IB were detected in populations of meningococcal strains isolated from carriers having no signs of the disease. Correlation between the after-effect of penicillin and the presence of the causative agent in bacterial carriers was shown. Unknown systems of interlacing tubular structures not directly bound with the cells, the walls of which were single contour membranes were determined in the meningococcal populations treated with penicillin. IB were observed in the population in the form of transpopulation cords. Morphologically different IB playing the role of specialized organelles might be considered as factors of the functional unity of the bacterial population as a multicellular system.
Mead, Daniel G; Howerth, Elizabeth W; Murphy, Molly D; Gray, Elmer W; Noblet, Raymond; Stallknecht, David E
2004-01-01
The transmission routes of Vesicular stomatitis New Jersey virus (VSNJV), a causative agent of vesicular stomatitis, an Office International des Epizooties List-A disease, are not completely understood. Epidemiological and entomological studies conducted during the sporadic epidemics in the western United States have identified potential virus transmission routes involving insect vectors and animal-to-animal contact. In the present study we experimentally tested the previously proposed transmission routes which were primarily based on field observations. Results obtained provide strong evidence for the following: (1) hematophagous insects acquire VSNJV by unconventional routes while blood feeding on livestock, (2) clinical course of VSNJV infection in livestock following transmission by an infected insect is related to insect bite site, (3) infection of livestock via insect bite can result in multiple transmission possibilities, including animal-to-animal contact. Taken together, these data significantly add to our understanding of the transmission routes of a causative agent of one of the oldest known infectious diseases of livestock, for which the details have remained largely unknown despite decades of research.
Squalene Synthase As a Target for Chagas Disease Therapeutics
Chan, Hsiu-Chien; Li, Jikun; Zheng, Yingying; Huang, Chun-Hsiang; Ren, Feifei; Chen, Chun-Chi; Zhu, Zhen; Galizzi, Melina; Li, Zhu-Hong; Rodrigues-Poveda, Carlos A.; Gonzalez-Pacanowska, Dolores; Veiga-Santos, Phercyles; de Carvalho, Tecia Maria Ulisses; de Souza, Wanderley; Urbina, Julio A.; Wang, Andrew H.-J.; Docampo, Roberto; Li, Kai; Liu, Yi-Liang; Oldfield, Eric; Guo, Rey-Ting
2014-01-01
Trypanosomatid parasites are the causative agents of many neglected tropical diseases and there is currently considerable interest in targeting endogenous sterol biosynthesis in these organisms as a route to the development of novel anti-infective drugs. Here, we report the first x-ray crystallographic structures of the enzyme squalene synthase (SQS) from a trypanosomatid parasite, Trypanosoma cruzi, the causative agent of Chagas disease. We obtained five structures of T. cruzi SQS and eight structures of human SQS with four classes of inhibitors: the substrate-analog S-thiolo-farnesyl diphosphate, the quinuclidines E5700 and ER119884, several lipophilic bisphosphonates, and the thiocyanate WC-9, with the structures of the two very potent quinuclidines suggesting strategies for selective inhibitor development. We also show that the lipophilic bisphosphonates have low nM activity against T. cruzi and inhibit endogenous sterol biosynthesis and that E5700 acts synergistically with the azole drug, posaconazole. The determination of the structures of trypanosomatid and human SQS enzymes with a diverse set of inhibitors active in cells provides insights into SQS inhibition, of interest in the context of the development of drugs against Chagas disease. PMID:24789335
Kumar, Raj; Swaminathan, T Raja; Kumar, Rahul G; Dharmaratnam, Arathi; Basheer, V S; Jena, J K
2015-09-01
Moribund koi carp, Cyprinus carpio koi, from a farm with 50% cumulative mortality were sampled with the aim of isolating and detecting the causative agent. Three bacterial species viz., Citrobacter freundii (NSCF-1), Klebsiella pneumoniae (NSKP-1) and Proteus hauseri [genomospecies 3 of Proteus vulgaris Bio group 3] (NSPH-1) were isolated, identified and characterized on the basis of biochemical tests and sequencing of the 16S rDNA gene using universal bacterial primers. Challenge experiments with these isolates using healthy koi carp showed that P. hauseri induced identical clinical and pathological states within 3 d of intramuscular injection. The results suggest P. hauseri (NSPH-1) was the causative agent. In phylogenetic analysis, strain NSPH-1 formed a distinct cluster with other P. hauseri reference strains with ≥99% sequence similarity. P. hauseri isolates were found sensitive to Ampicillin, Cefalexin, Ciprofloxacin and Cefixime and resistant to Gentamycin, Oxytetracycline, Chloramphenicol, and Kanamycin. The affected fish recovered from the infection after ciprofloxacin treatment. Copyright © 2015 Elsevier B.V. All rights reserved.
Rudenko, Nataliia; Golovchenko, Maryna; Růzek, Daniel; Piskunova, Natalja; Mallátová, Nadja; Grubhoffer, Libor
2009-03-01
Until recently, three spirochete genospecies were considered to be the causative agents of Lyme borreliosis (LB) in Europe: Borrelia burgdorferi sensu stricto, Borrelia afzelii and Borrelia garinii. However, the DNA of Borrelia valaisiana, Borrelia lusitaniae, Borrelia spielmanii and Borrelia bissettii has already been detected in samples of human origin, or the spirochetes were isolated from the patients with symptoms of LB. Molecular analysis of 12 selected serum samples collected in the regional hospital confirmed the presence of B. bissettii DNA in cases of single and multiple infection in patients with symptomatic borreliosis or chronic borrelial infection. The presence of B. bissettii as a single strain in patients provides strong support of the fact that B. bissettii might be a causative agent of the disease. After the first isolation of B. bissettii from the samples of human origin in Slovenia, following the detection of this species in cardiac valve tissue of the patient with endocarditis and aortic valve stenosis in the Czech Republic, here we present additional molecular data supporting the involvement of B. bissettii in LB in Europe.
Echovirus 15 and autumn meningitis outbreak among children, Patras, Greece, 2005.
Frantzidou, Filanthi; Dumaidi, Kamal; Spiliopoulou, Adamantia; Antoniadis, Antonis; Papa, Anna
2007-09-01
Enteroviruses are the most common cause of aseptic meningitis, presenting in epidemic or endemic form. To determine the causative agent of an aseptic meningitis outbreak in autumn, 2005 in Patras, Greece. Cerebrospinal fluid (CSF) samples taken during May 2005-February 2006 from children admitted to the Children Hospital of Patras with signs of aseptic meningitis were tested for the presence of enteroviral RNA. Typing was performed by nucleotide analysis. Enteroviruses were detected in 11 (57.9%) of 19 tested CSF samples. In a 12-day period (27 October-7 November 2005) five aseptic meningitis cases were observed. Echovirus 15 was detected in all five cases, and differed from the prototype strain by 27.6%. Enteroviruses before and after this cluster of cases were of different serotypes (Echovirus 9, Echovirus 6). All patients with Echovirus 15 infection were male with a mean age of 7.7 years (2 months-13 years), all recovered successfully. This is the first report of a cluster of aseptic meningitis cases caused by Echovirus 15. The causative agent was a new variant of Echovirus 15.
Owens, Gregory P.; Williamson, R. Anthony; Burgoon, Mark P.; Ghausi, Omar; Burton, Dennis R.; Gilden, Donald H.
2000-01-01
In central nervous system (CNS) infectious and inflammatory diseases of known cause, oligoclonal bands represent antibody directed against the causative agent. To determine whether disease-relevant antibodies can be cloned from diseased brain, we prepared an antibody phage display library from the brain of a human with subacute sclerosing panencephalitis (SSPE), a chronic encephalitis caused by measles virus, and selected the library against SSPE brain sections. Antibodies that were retrieved reacted strongly with measles virus cell extracts by enzyme-linked immunosorbent assay and were specific for the measles virus nucleocapsid protein. These antibodies immunostained cells in different SSPE brains but not in control brain. Our data provide the first demonstration that diseased brain can be used to select in situ for antibodies directed against the causative agent of disease and point to the potential usefulness of this approach in identifying relevant antibodies in chronic CNS or systemic inflammatory diseases of unknown cause. PMID:10627565
Taşbakan, Mehmet Sezai; Bacakoğlu, Feza; Başoğlu, Ozen Kaçmaz; Gürgün, Alev; Başarik, Burcu; Citim Tuncel, Senay; Sayiner, Abdullah
2011-01-01
Health-care-associated pneumonia (HCAP) is defined as pneumonia that develops in patients with a history of recent hospitalization, hemodialysis as an outpatient, residence in a nursing home, outpatient intravenous therapy and home wound care. We aimed to compare the initial demographic characteristics, causative agents and prognosis between hospitalized HCAP and community-acquired pneumonia (CAP) patients. HCAP and CAP patients hospitalized between 01 September 2008-01 September 2009 were evaluated retrospectively. Out of 187 patients (131 males, mean age 66.3 ± 14.3 years) who were hospitalized during one-year period, 98 were diagnosed as HCAP and 89 as CAP. Among HCAP patients, 64 (65.3%) had a history of hospitalization in the last 90 days, 26 (26.5%) received outpatient intravenous therapy, 17 (17.3%) had home wound care, 6 (6.1%) were on hemodialysis program in the last 30 days and 4 (4.1%) lived in a nursing home. The causative pathogen was detected in 39 (39.8%) HCAP and 8 (9.0%) CAP patients. The most frequently isolated microorganisms were Pseudomonas aeruginosa and Acinetobacter baumannii in HCAP, and Streptococcus pneumoniae and Haemophilus influenzae in CAP patients. Inappropriate empiric antibiotic treatment was documented in 8 (25.8%) of 39 HCAP patients, in whom a causative agent was isolated whereas the antibiotic treatment was appropriate in all CAP patients. The duration of hospitalization (14.4 ± 11.4 vs. 10.7 ± 7.9 days, p= 0.011) and mortality rate (34.7% vs. 9.0%, p< 0.001) were higher in HCAP compared with CAP patients. As HCAP is different than CAP in terms of patients' characteristics, causative microorganisms and prognosis, it should be considered in all patients hospitalized as CAP. Potentially drug-resistant microorganisms should be taken into consideration in the empirical antibiotic treatment of these patients.
A Virus-like disease of chinook salmon
Ross, A.J.; Pelnar, J.; Rucker, R.R.
1960-01-01
Consideration is given to a recurring disease of early feeding chinook salmon fingerlings at the Coleman, California, Federal Fish Cultural Station. The infection becomes manifest in the early spring months at low water temperatures and abates as the water temperature rises. Bacteriological studies have failed to yield the presence of a disease agent, either by cultural or staining procedures. The disease has been successfully transmitted from infected fish to healthy fish by the injection of bacteria-free filtrates prepared from diseased fish tissue. The causative agent is therefore believed to be a virus-like entity.
Reservoirs and alternate hosts for pathogens of commercially important crustaceans: a review.
Small, Hamish J; Pagenkopp, Katrina M
2011-01-01
There is a considerable body of literature describing the causative agents of many diseases of crustaceans. Given that many of these crustaceans support commercially important fisheries, it is somewhat surprising that comparatively little information is available regarding the natural transmission pathways and reservoirs of many of the disease-causing agents. In this paper we review what is known about reservoirs and alternate hosts for several important diseases of commercially important crustaceans and provide recommendations on future areas of research. Copyright © 2010 Elsevier Inc. All rights reserved.
Heine, Henry S.; England, Marilyn J.; Waag, David M.; Byrne, W. Russell
2001-01-01
In vitro susceptibilities to 28 antibiotics were determined for 11 strains of Burkholderia mallei by the broth microdilution method. The B. mallei strains demonstrated susceptibility to aminoglycosides, macrolides, quinolones, doxycycline, piperacillin, ceftazidime, and imipenem. For comparison and evaluation, 17 antibiotic susceptibilities were also determined by the E-test. E-test values were always lower than the broth dilution values. Establishing and comparing antibiotic susceptibilities of specific B. mallei strains will provide reference information for assessing new antibiotic agents. PMID:11408233
Blood culture-negative endocarditis
Fournier, Pierre-Edouard; Gouriet, Frédérique; Casalta, Jean-Paul; Lepidi, Hubert; Chaudet, Hervé; Thuny, Franck; Collart, Frédéric; Habib, Gilbert; Raoult, Didier
2017-01-01
Abstract Blood culture-negative endocarditis (BCNE) may represent up to 70% of all endocarditis cases, depending on series. From 2001 to 2009, we implemented in our laboratory a multimodal diagnostic strategy for BCNE that included systematized testing of blood, and when available, valvular biopsy specimens using serological, broad range molecular, and histopathological assays. A causative microorganism was identified in 62.7% of patients. In this study from January 2010 to December 2015, in an effort to increase the number of identified causative microorganisms, we prospectively added to our diagnostic protocol specific real-time (RT) polymerase chain reaction (PCR) assays targeting various endocarditis agents, and applied them to all patients with BCNE admitted to the 4 public hospitals in Marseille, France. A total of 283 patients with BCNE were included in the study. Of these, 177 were classified as having definite endocarditis. Using our new multimodal diagnostic strategy, we identified an etiology in 138 patients (78.0% of cases). Of these, 3 were not infective (2.2%) and 1 was diagnosed as having Mycobacterium bovis BCG endocarditis. By adding specific PCR assays from blood and valvular biopsies, which exhibited a significantly greater sensitivity (P < 10−2) than other methods, causative agents, mostly enterococci, streptococci, and zoonotic microorganisms, were identified in an additional 27 patients (14 from valves only, 11 from blood only, and 2 from both). Finally, in another 107 patients, a pathogen was detected using serology in 37, valve culture in 8, broad spectrum PCR from valvular biopsies and blood in 19 and 2, respectively, immunohistochemistry from valves in 3, and a combination of several assays in 38. By adding specific RT-PCR assays to our systematic PCR testing of patients with BCNE, we increased the diagnostic efficiency by 24.3%, mostly by detecting enterococci and streptococci that had not been detected by other diagnostic methods, but also agents requiring specific management such as Mycoplasma hominis and Tropheryma whipplei. PMID:29381916
Broda, D M; Boerema, J A; Bell, R G
2003-01-01
To develop a practical molecular procedure that directly, without isolation, and specifically detects the presence of clostridia which cause 'blown pack' spoilage of vacuum-packed meat. Primer sets and PCR amplification procedures were developed that detect the presence of 16S rDNA gene and/or 16S-23S rDNA internal transcribed spacer fragments of 'blown pack' causing clostridia in meat. The specificity of the developed procedures was evaluated with DNA obtained from close phylogenetic neighbours of 'blown pack' causing clostridia, food clostridia and common meat spoilage microorganisms. The sensitivity of detection was assessed in non-enriched and low-temperature-enriched beef mince inoculated with serially diluted pure cultures of Clostridium estertheticum DSMZ 8809T and Cl. gasigenes DB1AT. The efficacy of detection procedures was evaluated for naturally contaminated vacuum-packed meat samples. Three primer sets, 16SE, 16SDB and EISR, produced amplicons of the expected size with DNA templates from target clostridia, but failed to yield PCR products with DNAs from any other microorganisms tested. With 16SE and 16SDB primers, minimum levels of detection were 104 CFU g(-1) for non-enriched, and 102 CFU g(-1) for enriched meat samples. Based on the established specificity of these primers, as well as DNA sequencing of amplicons, Cl. gasigenes was confirmed as the causative agent of 'blown pack' spoilage in two packs, and Cl. estertheticum as the causative agent in the third. The developed method can be used for rapid detection of 'blown pack' causing clostridia in commercial blown packs, or following low temperature enrichment, for detection of these microorganisms in meat containing as few as 100 clostridial cells per gram. The paper reports practical procedures that can be used for rapid confirmation of the causative agents of clostridial 'blown pack' spoilage in commercial spoiled packs, or for detection of psychrophilic clostridia in epidemiological trace back of 'blown pack' spoilage incidents in meat processing plants.
Ali, Jemal; Yifru, Sisay; Woldeamanuel, Yimtubezinash
2009-10-01
Tinea capitis is a worldwide public health problem that poses specific therapeutic challenge. This dermatophytosis of the scalp is characteristically a fungal infection affecting children between 5 and 15 years of age. A decision on treatment of tinea capitis requires identification of the specific causative fungal agent or at least establishment of the prevalence of a given dermatophyte in a given community. to estimate the prevalence of tinea capitis, assess predisposing risk factors and identify the causative fungal agent in school children in north Gonder zone, Northwest Ethiopia. This was a cross sectional study conducted in two elementary schools in Gondar town. Clinico-dermatological data and questionnaire on socio-demographic information, living and hygienic conditions were collected. Mycological investigation was done by microscopic examination culture. A total of 372 students were screened for Tinea capitis infection, 262 from Meseret elementary school and 110 from Chechela elementary school. Among these, 61% (n = 227) were female and 39% (n = 145) were male. The median age was 10 years old, 98% of the study subjects were within the age range of 5 to 15. From the screened 372 children 47.5% (n = 177) were clinically suspected for Tinea capitis and 174 scalp samples were collected Microscopic examination in KOH (10%)-wet-mount preparation revealed 65.5% (n = 14) had fungal elements (hyphae and/or arthroconidia) in their clinical samples. Out of 174 specimen 50.0% (87) were culture positive. 33.9% (59) were contaminated and in 16.0% (28) were culture negative. From the positive samples 86.2% (75) were identified as Trichophyton violaceum. The rest 13.8% (12) were further sub-cultured at 37 degrees C and studied morphologically, and identified as Trichophyton verrucosum. A high prevalence of Tinea capitis caused by T. violaceum was found in school children in Gondar. Ethiopia. Provisions for prevention and control should be set in the schools focused on hygiene control and health education.
Zorriehzahra, M E J; Ghasemi, M; Ghiasi, M; Karsidani, S Haghighi; Bovo, G; Nazari, A; Adel, M; Arizza, V; Dhama, K
2016-07-15
The present study was conducted on 428 moribund mullet fish samples to isolate and identify the causative agent of a mysterious acute mortality which recently occurred in wild mullets in Iranian waters of Caspian Sea, suspected to be due to viral nervous necrosis (VNN) disease. Disease investigation was carried out employing various diagnostic procedures such as virology, bacteriology, parasitology, haematology, histopathology, IFAT, IHC and nested RT-PCR. Brain and eye samples of affected fishes were collected in sterile conditions and then kept at -80°C for cell culture isolation and nested RT-PCR detection of the causative agent. Other tissue samples were also collected and fixed for histopathology, IHC and EM examinations. CPE was observed in cell cultures at 6days after inoculation. Nine samples were found positive with virological assay. Nested RT-PCR, performed on suspected tissues and CPE positive samples, showed that about 21 tissue samples and all the CPE positive samples were positive for VNN virus (VNNV). IFAT was selected as a confirmatory method for detecting the presence of Betanodavirus antigen, cell culture isolation results and nested RT-PCR findings. Moreover, VNNV particles with 25-30nm in diameter were also visualized in the infected brain and retina. In pathogenicity studies, guppy fishes bathed in VNNV-infected tissue culture (10(-4) TCID50) showed clinical signs similar to naturally infected mullet after 15days post infection (dpi), with mortality rates reaching up to 100% at 30dpi. Affected organ samples as examined by cell culture isolation, IFAT, IHC and histopathology, revealed the presence of VNNV in the guppy fishes. In conclusion, it was confirmed that VNNV was the main causative agent for the disease outbreak in mullet fish in the Caspian Sea, and this is such first official report of VNN disease from Iran. Copyright © 2016 Elsevier B.V. All rights reserved.
Chronic kidney disease of unknown etiology in Sri Lanka
2016-01-01
Introduction In the last two decades, chronic kidney disease of unknown etiology (CKDu) has emerged as a significant contributor to the burden of chronic kidney disease (CKD) in rural Sri Lanka. It is characterized by the absence of identified causes for CKD. The prevalence of CKDu is 15.1–22.9% in some Sri Lankan districts, and previous research has found an association with farming occupations. Methods A systematic literature review in Pubmed, Embase, Scopus, and Lilacs databases identified 46 eligible peer-reviewed articles and one conference abstract. Results Geographical mapping indicates a relationship between CKDu and agricultural irrigation water sources. Health mapping studies, human biological studies, and environment-based studies have explored possible causative agents. Most studies focused on likely causative agents related to agricultural practices, geographical distribution based on the prevalence and incidence of CKDu, and contaminants identified in drinking water. Nonetheless, the link between agrochemicals or heavy metals and CKDu remains to be established. No definitive cause for CKDu has been identified. Discussion Evidence to date suggests that the disease is related to one or more environmental agents, however pinpointing a definite cause for CKDu is challenging. It is plausible that CKDu is multifactorial. No specific guidelines or recommendations exist for treatment of CKDu, and standard management protocols for CKD apply. Changes in agricultural practices, provision of safe drinking water, and occupational safety precautions are recommended by the World Health Organization. PMID:27399161
Chronic kidney disease of unknown etiology in Sri Lanka.
Rajapakse, Senaka; Shivanthan, Mitrakrishnan Chrishan; Selvarajah, Mathu
2016-07-01
In the last two decades, chronic kidney disease of unknown etiology (CKDu) has emerged as a significant contributor to the burden of chronic kidney disease (CKD) in rural Sri Lanka. It is characterized by the absence of identified causes for CKD. The prevalence of CKDu is 15.1-22.9% in some Sri Lankan districts, and previous research has found an association with farming occupations. A systematic literature review in Pubmed, Embase, Scopus, and Lilacs databases identified 46 eligible peer-reviewed articles and one conference abstract. Geographical mapping indicates a relationship between CKDu and agricultural irrigation water sources. Health mapping studies, human biological studies, and environment-based studies have explored possible causative agents. Most studies focused on likely causative agents related to agricultural practices, geographical distribution based on the prevalence and incidence of CKDu, and contaminants identified in drinking water. Nonetheless, the link between agrochemicals or heavy metals and CKDu remains to be established. No definitive cause for CKDu has been identified. Evidence to date suggests that the disease is related to one or more environmental agents, however pinpointing a definite cause for CKDu is challenging. It is plausible that CKDu is multifactorial. No specific guidelines or recommendations exist for treatment of CKDu, and standard management protocols for CKD apply. Changes in agricultural practices, provision of safe drinking water, and occupational safety precautions are recommended by the World Health Organization.
Are Aβ and Its Derivatives Causative Agents or Innocent Bystanders in AD?
Robakis, Nikolaos K.
2010-01-01
Alzheimer's disease (AD) is characterized by neurodegeneration in neocortical regions of the brain. Currently, Aβ-based theories, including amyloid depositions and soluble Aβ, form the basis of most therapeutic approaches to AD. It remains unclear, however, whether Aβ and its derivatives are the primary causative agents of neuronal loss in AD. Reported studies show no significant correlations between brain amyloid depositions and either degree of dementia or loss of neurons, and brain amyloid loads similar to AD are often found in normal individuals. Furthermore, behavioral abnormalities in animal models overexpressing amyloid precursor protein seem independent of amyloid depositions. Soluble Aβ theories propose toxic Aβ42 or its oligomers as the agents that promote cell death in AD. Aβ peptides, however, are normal components of human serum and CSF, and it is unclear under what conditions these peptides become toxic. Presently, there is little evidence of disease-associated abnormalities in soluble Aβ and no toxic oligomers specific to AD have been found. That familial AD mutations of amyloid precursor protein, PS1 and PS2 promote neurodegeneration suggests the biological functions of these proteins play critical roles in neuronal survival. Evidence shows that the PS/γ-secretase system promotes production of peptides involved in cell surface-to-nucleus signaling and gene expression, providing support for the hypothesis that familial AD mutations may contribute to neurodegeneration by inhibiting PS-dependent signaling pathways. PMID:20160455
Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean
2016-09-01
The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.
Senel, Saliha; Karacan, Candemir; Erkek, Nilgun; Gol, Nese
2010-01-01
To assess the prevalence of urinary tract pathogens and their resistance patterns against antimicrobial agents in a single center. In children <16 years of age admitted for urinary tract infection (UTI) to the Dr. Sami Ulus Teaching and Training Hospital from January 2004 to December 2008, positive urine cultures were reviewed. A total of 3,485 positive urine cultures were identified, of which 2,379 (68%) were from females and 106 (32%) from males. Their mean age was 63.5 +/- 40.7 months. Escherichia coli was the most common causative agent both in total and among different age groups. Ampicillin had the highest resistance rate from all the pathogens isolated (63.8%), followed by piperacillin (51.8%) and trimethoprim-sulfamethoxazole (TMP-SMX; 48.6%). Cephalotin also had a high resistance rate (32.7%). The least resistance was for imipenem, amikacin, netilmicin and ciprofloxacin (0.13, 1.7, 2.4 and 7.5%, respectively). None of the Klebsiella and Pseudomonas isolates were resistant to imipenem. None of the Staphylococcus aureus isolates were resistant to teicoplanin and vancomycin. Vancomycin-resistant Enterococcus spp. were isolated from two cultures. E. coli was the most common causative agent of UTI in children. Ampicillin, TMP-SMX or cephalothin and piperacillin had the highest resistance rates against urinary tract pathogens in our center. Copyright 2010 S. Karger AG, Basel.
Mombo, Illich Manfred; Berthet, Nicolas; Lukashev, Alexander N; Bleicker, Tobias; Brünink, Sebastian; Léger, Lucas; Atencia, Rebeca; Cox, Debby; Bouchier, Christiane; Durand, Patrick; Arnathau, Céline; Brazier, Lionel; Fair, Joseph N; Schneider, Bradley S; Drexler, Jan Felix; Prugnolle, Franck; Drosten, Christian; Renaud, François; Leroy, Eric M; Rougeron, Virginie
2015-01-01
Enteroviruses, members of the Picornaviridae family, are ubiquitous viruses responsible for mild to severe infections in human populations around the world. In 2010 Pointe-Noire, Republic of Congo recorded an outbreak of acute flaccid paralysis (AFP) in the humans, caused by wild poliovirus type 1 (WPV1). One month later, in the Tchimpounga sanctuary near Pointe-Noire, a chimpanzee developed signs similar to AFP, with paralysis of the lower limbs. In the present work, we sought to identify the pathogen, including viral and bacterial agents, responsible for this illness. In order to identify the causative agent, we evaluated a fecal specimen by PCR and sequencing. A Human enterovirus C, specifically of the EV-C99 type was potentially responsible for the illness in this chimpanzee. To rule out other possible causative agents, we also investigated the bacteriome and the virome using next generation sequencing. The majority of bacterial reads obtained belonged to commensal bacteria (95%), and the mammalian virus reads matched mainly with viruses of the Picornaviridae family (99%), in which enteroviruses were the most abundant (99.6%). This study thus reports the first identification of a chimpanzee presenting AFP most likely caused by an enterovirus and demonstrates once again the cross-species transmission of a human pathogen to an ape.
Heme-binding activity of methoxyflavones from Pentzia monodiana Maire (Asteraceae).
Ortiz, Sergio; Dali-Yahia, Kamel; Vasquez-Ocmin, Pedro; Grougnet, Raphaël; Grellier, Philippe; Michel, Sylvie; Maciuk, Alexandre; Boutefnouchet, Sabrina
2017-04-01
A heme-binding assay based on mass spectrometry was performed on P. monodiana Maire (Asteraceae) extracts to identify metabolites able to form adducts with heminic part of haemoglobin, as potential antimalarial drugs. Main adducts were characterized and their stability was measured. Isolation of main constituents of P. monodiana Maire lead to identification of the two methoxyflavones 3'-O-methyleupatorin (7) and artemetin (8) involved in the adducts formation. Four seco-tanapartholides (1-4), a guaianolide (5), a germacranolide (6) and two other methoxyflavones (9, 10) were also characterized. Evaluation of isolated compounds on P. falciparum and T. brucei brucei showed a moderate antiprotozoal activity of the two methoxyflavones. Copyright © 2017. Published by Elsevier B.V.
Trypanosome resistance to human innate immunity: targeting Achilles’ heel
Stephens, Natalie A.; Kieft, Rudo; MacLeod, Annette; Hajduk, Stephen L.
2015-01-01
Trypanosome lytic factors (TLFs) are powerful, naturally-occurring toxins in humans that provide sterile protection against infection by several African trypanosomes. These trypanocidal complexes predominantly enter the parasite by binding to the trypanosome haptoglobin/hemoglobin receptor (HpHbR), trafficking to the lysosome, causing membrane damage and ultimately, cell lysis. Despite TLF-mediated immunity, the parasites that cause human African Trypanosomiasis (HAT), Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense, have developed independent mechanisms of resistance to TLF killing. Here we describe the parasite defenses that allow trypanosome infections of humans and discuss how targeting these apparent strengths of the parasite may reveal their Achilles’ heel, leading to new approaches in the treatment of HAT. PMID:23059119
Improved anticancer and antiparasitic activity of new lawsone Mannich bases.
Mahal, Katharina; Ahmad, Aamir; Schmitt, Florian; Lockhauserbäumer, Julia; Starz, Kathrin; Pradhan, Rohan; Padhye, Subhash; Sarkar, Fazlul H; Koko, Waleed S; Schobert, Rainer; Ersfeld, Klaus; Biersack, Bernhard
2017-01-27
Substituted lawsone Mannich bases 2a-e, 3a-e and 4a-e were prepared and tested for their biological activities. The new fatty alkyl substituted compounds 2a-c exhibited strong and selective growth inhibitory activities in the low one-digit micromolar and sub-micromolar range against a panel of human cancer cell lines associated with ROS formation. In addition, compounds 2a-c revealed sub-micromolar anti-trypanosomal activities against parasitic Trypanosoma brucei brucei cells via deformation of the microtubule cytoskeleton. The N-hexadecyl compound 2c was also highly active against locally isolated Entamoeba histolytica parasite samples exceeding the activity of metronidazole. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Ettari, Roberta; Previti, Santo; Maiorana, Santina; Allegra, Alessandro; Schirmeister, Tanja; Grasso, Silvana; Zappalà, Maria
2018-06-13
Curcumin and genistein are two natural products obtained from Curcuma longa L. and soybeans, endowed with many biological properties. Within the last years they were shown to possess also a promising antitrypanosomal activity. In the present paper, we investigated the activity of both curcumin and genistein against rhodesain, the main cysteine protease of Trypanosoma brucei rhodesiense; drug combination studies, according to Chou and Talalay method, allowed us to demonstrate a potent synergistic effect for the combination curcumin-genistein. As a matter of fact, with our experiments we observed that the combination index of curcumin-genistein is < 1 for the reduction from 10 to 90% of rhodesain activity.
Complete Genome Sequence of the Avian-Pathogenic Escherichia coli Strain APEC O18
Nicholson, Bryon A.; Wannemuehler, Yvonne M.; Logue, Catherine M.; Li, Ganwu
2016-01-01
Avian-pathogenic Escherichia coli (APEC) is the causative agent of colibacillosis, a disease that affects all facets of poultry production worldwide, resulting in multimillion dollar losses annually. Here, we report the genome sequence of an APEC O18 sequence type 95 (ST95) strain associated with disease in a chicken. PMID:27811098
Presence of hantavirus in small mammals of the Ouachita Mountains
Roger W. Perry; Ronald E. Thill; Philip A. Tappe; M. Anthony Melchiors
1997-01-01
In 1993, an outbreak of human hantavirus pulmonary syndrome (HPS) occurred in the southwestern United States causing severe pulmonary dysfunction and death among most of those infected. Shortly after the outbreak, the causative agent was identified as the Sin Nombre virus (SNV), a virus of the genus Hantavirus. Several hantaviruses have since been identified in North...
Pfesteria-like toxic- blooms have been implicated as the causative agent responsible for numerous outbreaks of fish lesions and fish kills in the Mid-Atlantic and southeastern U.S. An increase in frequency, intensity, and severity of toxic blooms in recent years is though...
Dubois, Damien; Robin, Frédéric; Bouvier, Damien; Delmas, Julien; Bonnet, Richard; Lesens, Olivier; Hennequin, Claire
2008-08-01
We report a case of Streptobacillus moniliformis spondylodiscitis accompanied by a psoas abscess in an 80-year-old man scratched by a rooster. S. moniliformis was identified from abscess fluid by use of 16S rRNA gene sequencing. After 18 weeks of antimicrobial therapy, the clinical condition of the patient improved.
Farris, Christina M; Pho, Nhien; Myers, Todd E; Richards, Allen L
2016-08-01
We assessed serum samples from 1,000 US Marines deployed to Afghanistan during 2001-2010 to find evidence of 4 rickettsial pathogens. Analysis of predeployment and postdeployment samples showed that 3.4% and 0.5% of the Marines seroconverted for the causative agents of Q fever and spotted fever group rickettsiosis, respectively.
Inactivation of human norovirus in contaminated oysters and clams by high-hydrostatic pressure
USDA-ARS?s Scientific Manuscript database
Human norovirus (NoV) is the most frequent causative agent of foodborne disease associated with shellfish consumption. In this study, the effect of high-hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or Genogroup II.4 (GII.4) NoV were inoculated into oyster ho...
USDA-ARS?s Scientific Manuscript database
Angular leaf spot (ALS) caused by the fungus Pseudocercospora griseola is one of the most important diseases of common bean in Tanzania. Breeding for resistance to this disease is complicated by the variable nature of the pathogen. In Tanzania no thorough analysis of the variability of this pathogen...
Genome Sequences of Four Staphylococcus aureus Strains Isolated from Bovine Mastitis
Taponen, Suvi; Koort, Joanna; Paulin, Lars; Åvall-Jääskeläinen, Silja
2015-01-01
Staphylococcus aureus is a major causative agent of mastitis in dairy cows. The pathogenicity of S. aureus may vary; it is able to cause severe clinical mastitis, but most often it is associated with chronic subclinical mastitis. Here, we present the genome assemblies of four S. aureus strains from bovine mastitis. PMID:25908141
USDA-ARS?s Scientific Manuscript database
Avian metapneumovirus (aMPV), also known as avian pneumovirus or turkey rhinotracheitis virus, is the causative agent of turkey rhinotracheitis, and is associated with swollen head syndrome in chickens. Since its discovery in the 1970s, aMPV has been recognized as an economically important pathogen ...
Genome Sequence of the Rice-Pathogenic Bacterium Acidovorax avenae subsp. avenae RS-1 ▿
Xie, Guan-Lin; Zhang, Guo-Qing; Liu, He; Lou, Miao-Miao; Tian, Wen-Xiao; Li, Bin; Zhou, Xue-Ping; Zhu, Bo; Jin, Gu-Lei
2011-01-01
Acidovorax avenae subsp. avenae is a phytobacterium which is the causative agent of several plant diseases with economic significance. Here, we present the draft genome sequence of strain RS-1, which was isolated from rice shoots in a rice field in China. This strain can cause bacterial stripe of rice. PMID:21742879
Lymphogranuloma venereum in men screened for pharyngeal and rectal infection, Germany.
Haar, Karin; Dudareva-Vizule, Sandra; Wisplinghoff, Hilmar; Wisplinghoff, Fabian; Sailer, Andrea; Jansen, Klaus; Henrich, Birgit; Marcus, Ulrich
2013-03-01
To determine prevalence of lymphogranuloma venereum among men who have sex with men in Germany, we conducted a multicenter study during 2009-2010 and found high rates of rectal and pharyngeal infection in men positive for the causative agent, Chlamydia trachomatis. Many infections were asymptomatic. An adjusted C. trachomatis screening policy is justified in Germany.
Forty-Five Years of Marburg Virus Research
Brauburger, Kristina; Hume, Adam J.; Mühlberger, Elke; Olejnik, Judith
2012-01-01
In 1967, the first reported filovirus hemorrhagic fever outbreak took place in Germany and the former Yugoslavia. The causative agent that was identified during this outbreak, Marburg virus, is one of the most deadly human pathogens. This article provides a comprehensive overview of our current knowledge about Marburg virus disease ranging from ecology to pathogenesis and molecular biology. PMID:23202446
Forty-five years of Marburg virus research.
Brauburger, Kristina; Hume, Adam J; Mühlberger, Elke; Olejnik, Judith
2012-10-01
In 1967, the first reported filovirus hemorrhagic fever outbreak took place in Germany and the former Yugoslavia. The causative agent that was identified during this outbreak, Marburg virus, is one of the most deadly human pathogens. This article provides a comprehensive overview of our current knowledge about Marburg virus disease ranging from ecology to pathogenesis and molecular biology.
USDA-ARS?s Scientific Manuscript database
Marek’s disease virus, a highly cell-associated oncogenic 'alpha-herpesvirus, is the causative agent of a T cell lymphoma and neuropathic disease called Marek’s disease. The skin is the only anatomical site where infectious enveloped cell-free virions are produced and shed into the environment. Stud...
USDA-ARS?s Scientific Manuscript database
Flavobacterium columnare is the causative agent of columnaris disease and causes tremendous morbidity and mortality of farmed fish globally. Previously, we identified a potential lectin-mediator (a rhamnose-binding lectin; RBL1a) of F. columnare adhesion and showed higher RBL1a expression in suscept...