NASA Astrophysics Data System (ADS)
Fan, W.; Kabius, B.; Hiller, J. M.; Saha, S.; Carlisle, J. A.; Auciello, O.; Chang, R. P. H.; Ramesh, R.
2003-11-01
The synthesis and fundamental material properties of layered TiAl/Cu/Ta electrodes were investigated to achieve the integration of Cu electrodes with high-dielectric constant (κ) oxide thin films for application to the fabrication of high-frequency devices. The Ta layer is an excellent diffusion barrier to inhibit deleterious Cu diffusion into the Si substrate, while the TiAl layer provides an excellent barrier against oxygen diffusion into the Cu layer to inhibit Cu oxidation during the growth of the high-κ layer in an oxygen atmosphere. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were grown on the Cu-based bottom electrode by rf magnetron sputtering at temperatures in the range 400-600 °C in oxygen, to investigate the performance of BST/Cu-based capacitors. Characterization of the Cu-based layered structure using surface analytical methods showed that two amorphous oxide layers were formed on both sides of the TiAl barrier, such that the oxide layer on the free surface of the TiAl layer correlates with TiAlOx, while the oxide layer at the TiAl/Cu interface is an Al2O3-rich layer. This double amorphous barrier layer structure effectively prevents oxygen penetration towards the underlying Cu and Ta layers. The TiAlOx interfacial layer, which has a relatively low dielectric constant compared with BST, reduced the total capacitance of the BST thin film capacitors. In addition, the layered electrode-oxide interface roughening observed during the growth of BST films at high temperature, due to copper grain growth, resulted in large dielectric loss on the fabricated BST capacitors. These problems were solved by growing the BST layer at 450 °C followed by a rapid thermal annealing at 700 °C. This process significantly reduced the thickness of the TiAlOx layer and interface roughness resulting in BST capacitors exhibiting properties suitable for the fabrication of high-performance high-frequency devices. In summary, relatively high dielectric constant (280), low dielectric loss (0.007), and low leakage current (<2×10-8 A/cm2 at 100 kV/cm) were achieved for BST thin film capacitors with Cu-based electrodes.
Application of RF varactor using Ba(x)Sr(1-x)TiO3/TiO2/HR-Si substrate for reconfigurable radio.
Kim, Ki-Byoung; Park, Chul-Soon
2007-11-01
In this paper, the potential feasibility of integrating Ba(x)Sr(1-x)TiO3 (BST) films into Si wafer by adopting tunable interdigital capacitor (IDC) with TiO2 thin film buffer layer and a RF tunable active bandpass filter (BPF) using BST based capacitor are proposed. TiO2 as a buffer layer is grown onto Si substrate by atomic layer deposition (ALD) and the interdigital capacitor on BST(500 nm)/TiO2 (50 nm)/HR-Si is fabricated. BST interdigital tunable capacitor integrated on HR-Si substrate with high tunability and low loss tangent are characterized for their microwave performances. BST/TiO2/HR-Si IDC shows much enhanced tunability values of 40% and commutation quality factor (CQF) of 56.71. A resonator consists of an active capacitance circuit together with a BST varactor. The active capacitor is made of a field effect transistor (FET) that exhibits negative resistance as well as capacitance. The measured second order active BPF shows bandwidth of 110 MHz, insertion loss of about 1 dB at the 1.81 GHz center frequency and tuning frequency of 230 MHz (1.81-2.04 GHz).
Miniaturized and reconfigurable notch antenna based on a BST ferroelectric thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hung Viet; CEA-LETI, Minatec, 17 avenue des Martyrs, 38054 Grenoble Cedex 9; Benzerga, Ratiba, E-mail: ratiba.benzerga@univ-rennes1.fr
Highlights: • A miniature and agile antenna based on a BST MIM capacitor is simulated and made. • Mn{sup 2+} doped BST thin films are synthesized by chemical deposition and spin coating. • Permittivity and losses of the BST thin film are respectively 225 and 0.02 at 1 GHz. • A miniaturization rate of 70% is obtained with a MIM capacitance of 3.7 pF. • A frequency tunability of 14.5% and a tunability performance of 0.04 are measured. - Abstract: This work deals with the design, realization and characterization of a miniature and frequency agile antenna based on a ferroelectricmore » Ba{sub 0,80}Sr{sub 0,20}TiO{sub 3} thin film. The notch antenna is loaded with a variable metal/insulator/metal (MIM) capacitor and is achieved by a monolithic method. The MIM capacitance is 3.7 pF, which results in a resonant frequency of 670 MHz compared to 2.25 GHz for the unloaded simulated antenna; the resulting miniaturization rate is 70%. The characterization of the antenna prototype shows a frequency tunable rate of 14.5% under an electric field of 375 kV/cm, with a tunability performance η = 0.04.« less
A new SrBi4Ti4O15/CaBi4Ti4O15 thin-film capacitor for excellent electric stability.
Noda, Minoru; Nomura, Shuhei; Uchida, Hiroshi; Yamashita, Kaoru; Funakubo, Horoshi
2012-09-01
SrBi(4)Ti(4)O(15) (SBTi) and CaBi(4)Ti(4)O(15) (CBTi) dielectric films of bismuth layered-structure dielectrics (BLSD) are prepared on Pt(100) film for constructing stacked-type dielectric capacitors; it is observed that they are c-axis singleoriented crystalline films. Compared with the perovskite barium titanate family of (Ba,Sr)TiO(3) (BST), it is observed that the SBTi film keeps a low leakage of 10(-7) A/cm(2) at 250 kV/ cm, which is smaller by an order of magnitude than the BST film, even with thinner SBTi film. The temperature coefficient of capacitance (TCC) of the SBTi or CBTi film is about 100 to 250 ppm/K and is much smaller than that of the perovskite BST film. Because the SBTi and CBTi films have opposite polarities of TCC in this experiment, they are expected to cancel out the temperature dependence in the SBTi/CBTi composite capacitor. These results indicate that the BLSD films of SBTi and CBTi are effective for application in high-temperature and high-permittivity capacitors with the practical barium perovskite oxide family.
NASA Astrophysics Data System (ADS)
Qiu, Jie; Liu, Guozhen; Wolfman, Jérôme
2016-05-01
BaxSr1-xTiO3 (0.1≤x≤0.5) (BST) thin films were prepared on La1.1Sr0.9NiO4 (LSNO)/SrTiO3 (STO) structure by combinatorial pulsed laser deposition (comb-PLD). The capacitances of the Au/BST/LSNO capacitors exhibited strong frequency dependence especially when the applied frequency was higher than 10kHz. On the basis of an equivalent circuit model, we presented a theoretical simulation of the relationships between capacitance and frequency for the capacitors with different electrode serial resistances. Based on the fitting results, the observed strong frequency dependence of the measured capacitance at high frequency in our study could be ascribed to the large serial resistance of 750 Ω for oxide electrode LSNO. Further simulation studies found that large serial resistance (1000 Ω) could result in an apparent deviation from the intrinsic dielectric properties especially at high frequencies (>100kHz) for capacitors with capacitances above 1nF. Our results provide useful information for the design of all-oxide electronic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumann, P. K.; Kaufman, D. Y.; Im, J.
2001-01-01
We have investigated the structural and electrical characteristics of (Ba{sub x}Sr{sub 1-x})Ti{sub 1+y}O{sub 3+z} (BST) thin films synthesized at 650{sup o}C on Pt/SiO{sub 2}/Si substrates using a large area, vertical metalorganic chemical vapor deposition (MOCVD) reactor equipped with a liquid delivery system. Films with a Ba/Sr ratio of 70/30 were studied, as determined using X-ray fluorescence spectroscopy (XRF) and Rutherford backscattering spectrometry (RBS). A substantial reduction of the dielectric loss was achieved when annealing the entire capacitor structure in air at 700{sup o}C. Dielectric tunability as high as 2.3:1 was measured for BST capacitors with the currently optimized processing conditions.
NASA Astrophysics Data System (ADS)
Fan, Wei
To overcome the oxidation and diffusion problems encountered during Copper integration with oxide thin film-based devices, TiAl/Cu/Ta heterostructure has been first developed in this study. Investigation on the oxidation and diffusion resistance of the laminate structure showed high electrical conductance and excellent thermal stability in oxygen environment. Two amorphous oxide layers that were formed on both sides of the TiAl barrier after heating in oxygen have been revealed as the structure that effectively prevents oxygen penetration and protects the integrity of underlying Cu layer. Polycrystalline (BaxSr1-x)TiO3 (BST) thin films were subsequently deposited on the Cu-based bottom electrode by RF magnetron sputtering to investigate the interaction between the oxide and Cu layers. The thickness of the interfacial layer and interface roughness play critical roles in the optimization of the electrical performance of the BST capacitors using Cu-based electrode. It was determined that BST deposition at moderate temperature followed by rapid thermal annealing in pure oxygen yields BST/Cu capacitors with good electrical properties for application to high frequency devices. The knowledge obtained on the study of barrier properties of TiAl inspired a continuous research on the materials science issues related to the application of the hybrid TiAlOx, as high-k gate dielectric in MOSFET devices. Novel fabrication process such as deposition of ultra-thin TiAl alloy layer followed by oxidation with atomic oxygen has been established in this study. Stoichiometric amorphous TiAlOx layers, exhibiting only Ti4+ and Al3+ states, were produced with a large variation of oxidation temperature (700°C to room temperature). The interfacial SiOx formation between TiAlOx and Si was substantially inhibited by the use of the low temperature oxidation process. Electrical characterization revealed a large permittivity of 30 and an improved band structure for the produced TiAlOx layers, compared with pure TiO2. A modified 3-element model was adopted to extract the true C-V behavior of the TiAlOx-based MOS capacitor. Extremely small equivalent oxide thickness (EOT) less than 0.5 nm with dielectric leakage 4˜5 magnitude lower than that for SiO2 has been achieved on TiAlOx layer as a result of its excellent dielectric properties.
NASA Astrophysics Data System (ADS)
Ritums, Dwight Lenards
A materials system has been developed for advanced oxide high permittivity capacitors for use in Dynamic Random Access Memory (DRAM) applications. A capacitor test structure has been fabricated, demonstrating the integration of this materials system onto Si. It is a 3-D stacked electrode structure which uses the high-K dielectric material Ba1- xSrxTiO 3 (BST) and a novel Ni/TiN bottom electrode system. The structure was grown using pulsed laser deposition (PLD), photo-assisted metal-organic chemical vapor deposition (PhA-MOCVD), and electron beam deposition, and resulted in thin film capacitors with dielectric constants over 500. Other advanced oxides, principally SrVO3, were also investigated for use as electrode materials. The fabricated test structure is 3 μgm wide and 1 μm thick. RIE was used to generate the 3-D structure, and an etch gas recipe was developed to pattern the 3-D electrode structure onto the TiN. The Ni was deposited by electron beam deposition, and the BST was grown by PLD and PhA-MOCVD. Conformal coating of the electrode by the BST was achieved. The film structure was analyzed with XRD, SEM, EDS, XPS, AES, and AFM, and the electronic properties of the devices were characterized. Permittivites of up to 500 were seen in the PLD-grown films, and values up to 700 were seen in the MOCVD- deposited films. The proof of concept of a high permittivity material directly integrated onto Si has been demonstrated for this capacitor materials system. With further lithographic developments, this system can be applied toward gigabit device fabrication.
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.
2003-04-01
The interface formation between sputtered barium strontium titanate (BST) films and both Si and SiO2 substrate surfaces has been followed using real-time spectroscopic ellipsometry and the mass spectrometry of recoiled ions. In both substrates an intermixed interface layer was observed and subcutaneous Si oxidation occurred. A model for the interface formation is proposed in which the interface includes an SiO2 film on Si, and an intermixed film on which is pure BST. During the deposition of BST the interfaces films were observed to change in time. Electrical characterization of the resulting metal-BST interface capacitors indicates that those samples with SiO2 on the Si surface had the best electrical characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, C. G.; Li, Y. R.; Zhu, J.
2009-02-15
(100)-Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3} (BST) films were deposited on Pt/Ti/SiO{sub 2}/Si substrates using a low-temperature self-buffered layer. X-ray diffraction and atomic force microscope investigations show that the microstructure of BST films strongly depends on surface morphology of annealed self-buffered layer. The mechanism of nucleus formation and the growth initiation of BST films on self-buffered layers were proposed. It was found that the pyroelectric properties of BST films can be greatly enhanced. The pyroelectric coefficient and material merit figure of (100)-BST films are 1.16x10{sup 4} {mu}C m{sup -2} K{sup -1} and 2.18x10{sup -4} Pa{sup -1/2}, respectively. The detectivity of 9.4x10{sup 7}more » cm Hz{sup 1/2} W{sup -1} was obtained in the (100)-BST film capacitors thermally isolated by 500 nm SiO{sub 2} films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao Bo; Liu Hongrui; Avrutin, Vitaliy
2009-11-23
High quality (001)-oriented Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown on a-plane sapphire (1120) by rf magnetron sputtering using a double bridge layer consisting of (0001)-oriented ZnO (50 nm) and (001)-oriented MgO (10 nm) prepared by plasma-assisted molecular beam epitaxy. X-ray diffraction revealed the formation of three sets of in-plane BST domains, offset from one another by 30 deg., which is consistent with the in-plane symmetry of the MgO layer observed by in situ reflective high electron energy diffraction. The in-plane epitaxial relationship of BST, MgO, and ZnO has been determined to be BST [110]//MgO [110]//ZnO [1120]more » and BST [110]/MgO [110]//ZnO [1100]. Capacitance-voltage measurements performed on BST coplanar interdigitated capacitor structures revealed a high dielectric tunability of up to 84% at 1 MHz.« less
NASA Astrophysics Data System (ADS)
Tombak, Ali
The recent advancement in wireless communications demands an ever increasing improvement in the system performance and functionality with a reduced size and cost. This thesis demonstrates novel RF and microwave components based on ferroelectric and solid-state based tunable capacitor (varactor) technologies for the design of low-cost, small-size and multi-functional wireless communication systems. These include tunable lumped element VHF filters based on ferroelectric varactors, a beam-steering technique which, unlike conventional systems, does not require separate power divider and phase shifters, and a predistortion linearization technique that uses a varactor based tunable R-L-C resonator. Among various ferroelectric materials, Barium Strontium Titanate (BST) is actively being studied for the fabrication of high performance varactors at RF and microwave frequencies. BST based tunable capacitors are presented with typical tunabilities of 4.2:1 with the application of 5 to 10 V DC bias voltages and typical loss tangents in the range of 0.003--0.009 at VHF frequencies. Tunable lumped element lowpass and bandpass VHF filters based on BST varactors are also demonstrated with tunabilities of 40% and 57%, respectively. A new beam-steering technique is developed based on the extended resonance power dividing technique. Phased arrays based on this technique do not require separate power divider and phase shifters. Instead, the power division and phase shifting circuits are combined into a single circuit, which utilizes tunable capacitors. This results in a substantial reduction in the circuit complexity and cost. Phased arrays based on this technique can be employed in mobile multimedia services and automotive collision avoidance radars. A 2-GHz 4-antenna and a 10-GHz 8-antenna extended resonance phased arrays are demonstrated with scan ranges of 20 degrees and 18 degrees, respectively. A new predistortion linearization technique for the linearization of RF/microwave power amplifiers is also presented. This technique utilizes a varactor based tunable R-L-C resonator in shunt configuration. Due to the small number of circuit elements required, linearizers based on this technique offer low-cost and simple circuitry, hence can be utilized in handheld and cellular applications. A 1.8 GHz power amplifier with 9 dB gain is linearized using this technique. The linearizer improves the output 1-dB compression point of the power amplifier from 21 to 22.8 dBm. Adjacent channel power ratio (ACPR) is improved approximately 11 dB at an output RF power level of 17.5 dBm. The thesis is concluded by summarizing the main achievements and discussing the future work directions.
NASA Astrophysics Data System (ADS)
Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.
2006-10-01
Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.
NASA Astrophysics Data System (ADS)
Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.
2009-07-01
Dielectric properties of Ba0.7Sr0.3TiO3 (BST) thin films, which were prepared on silicon-based substrates by ion beam sputtering and postdeposition annealing method, were systematically investigated in different electrode configurations of metal-insulator-metal and coplanar interdigital capacitors. It was found that a large dielectric anisotropy exists in the films with better in-plane dielectric properties (higher dielectric permittivity and tunability) than those along the out-of-plane direction. The observed anisotropic dielectric responses are explained qualitatively in terms of a thermal strain effect that is related to dissimilar film strains along the in-plane and out-of-plane directions. Another reason for the dielectric anisotropy is due to different influences of the interfacial low-dielectric layer between the BST film and the substrate (metal electrode).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaprasad, P. S., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Jayaraj, M. K., E-mail: pskrishnaprasu@gmail.com, E-mail: mkj@cusat.ac.in; Antony, Aldrin
2015-03-28
Epitaxial (111) Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) thin films have been grown by pulsed laser deposition on (0001) Al{sub 2}O{sub 3} substrate with ZnO as buffer layer. The x-ray ω-2θ, Φ-scan and reciprocal space mapping indicate epitaxial nature of BST thin films. The domain matched epitaxial growth of BST thin films over ZnO buffer layer was confirmed using Fourier filtered high resolution transmission electron microscope images of the film-buffer interface. The incorporation of ZnO buffer layer effectively suppressed the lattice mismatch and promoted domain matched epitaxial growth of BST thin films. Coplanar inter digital capacitors fabricated on epitaxial (111) BSTmore » thin films show significantly improved tunable performance over polycrystalline thin films.« less
NASA Astrophysics Data System (ADS)
Im, Jaemo; Auciello, O.; Baumann, P. K.; Streiffer, S. K.; Kaufman, D. Y.; Krauss, A. R.
2000-01-01
Precise control of composition and microstructure is critical for the production of (BaxSr1-x)Ti1+yO3+z (BST) dielectric thin films with the large dependence of permittivity on electric field, low losses, and high electrical breakdown fields that are required for successful integration of BST into tunable high-frequency devices. Here, we present results on composition-microstructure-electrical property relationships for polycrystalline BST films produced by magnetron-sputter deposition, that are appropriate for microwave and millimeter-wave applications such as varactors and frequency triplers. Films with controlled compositions were grown from a stoichiometric Ba0.5Sr0.5TiO3 target by control of the background processing gas pressure. It was determined that the (Ba+Sr)/Ti ratios of these BST films could be adjusted from 0.73 to 0.98 by changing the total (Ar+O2) process pressure, while the O2/Ar ratio did not strongly affect the metal ion composition. Film crystalline structure and dielectric properties as a function of the (Ba+Sr)/Ti ratio are discussed. Optimized BST films yielded capacitors with low dielectric losses (0.0047), among the best reported for sputtered BST, while still maintaining tunabilities suitable for device applications.
All-printed, flexible, reconfigurable frequency selective surfaces
NASA Astrophysics Data System (ADS)
Haghzadeh, Mahdi; Akyurtlu, Alkim
2016-11-01
We demonstrate a new fully printed, conformal, band-pass frequency selective surface (FSS) utilizing a novel interdigitated capacitor (IDC), in which the space between the fingers can be filled with dielectric materials with different dielectric constants. Every dielectric constant corresponds to a different resonance frequency for the FSS, leading to a bandpass performance that can be tuned in a static manner based on the dielectric choice. The 2-D FSS consists of a periodic array of non-resonant and subwavelength structures (i.e., a metallic square loop and a wire grid) printed on either side of a flexible polyimide film using direct-ink writing methodologies. The miniaturized-element nature of this metamaterial-inspired FSS results in localized frequency-selective properties with very low sensitivity to the angle of incidence. Moreover, its symmetric design makes it polarization independent. A multiphase barium strontium titanate/cyclic olefin copolymer (BST/COC) composite with two different BST loadings, corresponding to two different dielectric constants, is the dielectric ink that is printed on the IDCs to vary the resonance frequency of the FSS. Different models of the FSS involving various IDC designs, with a first-order bandpass response at X-band, were simulated, printed, and measured. The center frequency of the template FSS with the air-filled IDC was tuned by 4.52% and 21.08% from 9.96 GHz by printing BST/COC dielectrics with different BST loadings on the IDCs. Moreover, the operation mode of the FSS was switched from a first order filter to a dual-band filter using printed BST/COC ink in a novel FSS design.
NASA Astrophysics Data System (ADS)
Alema, Fikadu; Reinholz, Aaron; Pokhodnya, Konstantin
2013-03-01
We report on the tunable dielectric properties of Mg and Nb co-doped Ba0.45Sr0.55TiO3 (BST) thin film prepared by the magnetron sputtering using BST target (pure and doped with BaMg0.33Nb0.67O3 (BMN)) on Pt/TiO2/SiO2/Al2O3 4'' wafers at 700 °C under oxygen atmosphere. The electrical measurements are conducted on 2432 metal-ferroelectric-metal capacitors using Pt as the top and bottom electrode. The crystalline structure, microstructure, and surface morphology of the films are analyzed and correlated to the films dielectric properties. The BMN doped and undoped BST films have shown tunabilities of 48% and 52%; and leakage current densities of 2.2x10-6 A/cm2 and 3.7x10-5 A/cm2, respectively at 0.5 MV/cm bias field. The results indicate that the BMN doped film exhibits a lower leakage current with no significant decrease in tunability. Due to similar electronegativity and ionic radii, it was suggested that both Mg2+ (accepter-type) and Nb5+ (donor-type) dopants substitutTi4+ ion in BST. The improvement in the film dielectric losses and leakage current with insignificant loss of tunability is attributed to the adversary effects of Mg2+ and Nb5+ in BST.
NASA Technical Reports Server (NTRS)
VanKeuls, Fred W.; Chevalier, Chris T.; Miranda, Felix A.; Carlson, C. M.; Rivkin, T. V.; Parilla, P. A.; Perkins, J. D.; Ginley, D. S.
2001-01-01
Experimental measurements of coplanar waveguide (CPW) circuits atop thin films of ferroelectric Ba(x)Sr(1-x)TiO3 (BST) were made as a function bias from 0 to 200 V and frequency from 0.045 to 20 GHz. The resulting phase shifts are compared with method of moments electromagnetic simulations and a conformal mapping analysis to determine the dielectric constant of the BST films. Based on the correlation between the experimental and the modeled data, an analysis of the extent to which the electromagnetic simulators provide reliable values for the dielectric constant of the ferroelectric in these structures has been performed. In addition, to determine how well the modeled data compare with experimental data, the dielectric constant values were also compared to low frequency measurements of interdigitated capacitor circuits on the same films. Results of these comparisons will be presented.
NASA Astrophysics Data System (ADS)
Laughlin, Brian James
Ferroelectric thin film dielectrics have a non-linear DC bias dependent permittivity and can be used as the dielectric between metal electrodes to make tunable Metal-Insulator-Metal (MIM) capacitors. Varactors can be used to change the resonance frequency of a circuit allowing high speed frequency switching intra- and inter-band. 2-D geometric arrays of circuitry, where resonant frequency is independently controlled by tunable elements in each section of the array, allow electromagnetic radiation to be focused and the wave front spatial trajectory controlled. BST thin films varactors allow large DC fields to be applied with modest voltages providing large tunabilities. If ferroelectric thin film based devices are to complement or supplant semiconductor varactors as tunable elements then devices must be synthesized using a low cost processing techniques. The Film on Foil process methodology for depositing BST thin films on copper foil substrates was used to create BST/Cu specimens. Sputtering conditions were determined via BST deposition on platinized silicon. Sputtered BST thin films were synthesized on Cu foil substrates and densified using high T, controlled pO2 anneals. XRD showed the absence of Cu2O in as-deposited, post crystallization annealed, and post "re-ox" annealed state. Data showed a polycrystalline BST microstructure with a 55--80 nm grain size and no copper oxidation. HRTEM imaging qualitatively showed evidence of an abrupt BST/Cu interface free from oxide formation. Dielectric properties of Cu/BST/Pt MIM devices were measured as a function of DC bias, frequency, and temperature. A permittivity of 725 was observed with tunability >3:1 while zero bias tan delta of 0.02 saturating to tan delta < 0.003 at high DC bias. No significant frequency dispersion was observed over five decades of frequency. Temperature dependent measurements revealed a broad ferroelectric transition with a maximum at -32°C which sustains a large tunability over -150°C to 150°C. Sputtered BST thin films on copper foils show comparable dielectric properties to CVD deposited films on platinized silicon substrates proving sputtered BST/Cu specimens can reproduce excellent properties using a more cost-effective processing approach. A concept for reducing the temperature dependence was explored. Stacks of multiple compositions of BST thin films were considered as an extension of core-shell structures to a thin film format. Temperature profiles of BST/Cu films were modeled and mathematically combined in simulations of multi-composition film stacks. Simulations showed singular composition BST thin films could meet X7R specifications if a film has a 292 K < TC < 330 K. Simulations of series connected film stacks show only modest temperature profile broadening. Parallel connected dual composition film stacks showed a 75°C temperature range with essentially flat capacitance by simulating compositions that create a DeltaTC = 283°C. Maximum permittivity and temperature profile shape independent of film thickness or composition were assumed for simulations. BST/Cu thickness and compositions series were fabricated and dielectric properties characterized. These studies showed films could be grown from 300 nm and approaching 1 mum without changing the dielectric temperature response. In studying BST composition, an increasing TC shift was observed when increasing Ba mole fraction in BST thin films while tunability >3:1 was maintained. These results provide a route for creating temperature stable capacitors using a BST/Cu embodiment. An effort to reduce surface roughness of copper foil substrates adversely impacted BST film integrity by impairing adhesion. XPS analysis of high surface roughness commercially obtained Cu foils revealed a surface treatment of Zn-Cu-O that was not present on smooth Cu, thus an investigation of surface chemistry was conducted. Sessile drop experiments were performed to characterize Cu-BST adhesion and the effects of metallic Zn and ZnO in this system. The study revealed the work of adhesion of Cu-BST, WCu-BSTa ≈ 0.60 J m-2, an intermediate value relative to noble metals commonly used as electrodes and substrates for electroceramics. Examination of metallic Zn-BST adhesion revealed a dramatic decrease of WZn-BSTa ≈ 0.13 J m-2, while increasing the content of Zn in metallic (Cux,Zn1-x) alloys monotonically reduced WCux,Zn1-x -BSTa . Conversely, a Cu-ZnO interface showed a large work of adhesion, WCu-ZnOa = 2.0 J m-2. These results indicate that a ZnO interlayer between the substrate Cu and the BST thin film provides adequate adhesion for robust films on flexible copper foil substrates. Additionally, this study provided characterization of adhesion for Zn-Al2O3 and Zn-BST; data that does not exist in the open literature. A process has been developed for preparing ultra-smooth copper foils by evaporation and subsequent peel-off of copper metal layers from glass slides. These 15 mum thick substrates exhibited roughness values between 1 and 2 nm RMS and 9 nm RMS over 25 mum2 and 100 mum2 analysis areas, respectively. The deposition and crystallization of BST layers on these ultra-smooth foils is demonstrated. The fully processed dielectric layers exhibited field tunability >5:1, and could withstand fields >750 kV cm-1. High field loss tangents below 0.007 were observed, making these materials excellent candidates for microwave devices. Finally, a process of lamination and contact lithography was used to demonstrate patterning of micron-scale features suitable for microwave circuit element designs.
Electronic structure of barium strontium titanate by soft-x-ray absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uehara, Y.; Underwood, J.H.; Gullikson, E.M.
1997-04-01
Perovskite-type titanates, such as Strontium Titanate (STO), Barium Titanate (BTO), and Lead Titanate (PTO) have been widely studied because they show good electric and optical properties. In recent years, thin films of Barium Strontium Titanate (BST) have been paid much attention as dielectrics of dynamic random access memory (DRAM) capacitors. BST is a better insulator with a higher dielectric constant than STO and can be controlled in a paraelectric phase with an appropriate ratio of Ba/Sr composition, however, few studies have been done on the electronic structure of the material. Studies of the electronic structure of such materials can bemore » beneficial, both for fundamental physics research and for improving technological applications. BTO is a famous ferroelectric material with a tetragonal structure, in which Ti and Ba atoms are slightly displaced from the lattice points. On the other hand, BST keeps a paraelectric phase, which means that the atoms are still at the cubic lattice points. It should be of great interest to see how this difference of the local structure around Ti atoms between BTO and BST effects the electronic structure of these two materials. In this report, the authors present the Ti L{sub 2,3} absorption spectra of STO, BTO, and BST measured with very high accuracy in energy of the absorption features.« less
Comparison of interfaces for (Ba,Sr)TiO3 films deposited on Si and SiO2/Si substrates
NASA Astrophysics Data System (ADS)
Suvorova, N. A.; Lopez, C. M.; Irene, E. A.; Suvorova, A. A.; Saunders, M.
2004-03-01
(Ba,Sr)TiO3(BST) thin films were deposited by ion sputtering on both bare and oxidized Si. Spectroscopic ellipsometry results have shown that a SiO2 underlayer of nearly the same thickness (2.6 nm in average) is found at the Si interface for BST sputter depositions onto nominally bare Si, 1 nm SiO2 on Si or 3.5 nm SiO2 on Si. This result was confirmed by high-resolution electron microscopy analysis of the films, and it is believed to be due to simultaneous subcutaneous oxidation of Si and reaction of the BST layer with SiO2. Using the conductance method, capacitance-voltage measurements show a decrease in the interface trap density Dit of an order of magnitude for oxidized Si substrates with a thicker SiO2 underlayer. Further reduction of Dit was achieved for the capacitors grown on oxidized Si and annealed in forming gas after metallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, S. K.; Misra, D.; Agrawal, D. C.
2011-01-01
Recently, high K materials play an important role in microelectronic devices such as capacitors, memory devices, and microwave devices. Now a days ferroelectric barium strontium titanate [Ba{sub x}Sr{sub 1-x}TiO{sub 3}, (BST)] thin film is being actively investigated for applications in dynamic random access memories (DRAM), field effect transistor (FET), and tunable devices because of its properties such as high dielectric constant, low leakage current, low dielectric loss, and high dielectric breakdown strength. Several approaches have been used to optimize the dielectric and electrical properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found thatmore » inserting a ZrO{sub 2} layer in between two BST layers results in a significant reduction in dielectric constant, loss tangent, and leakage current in the multilayer thin films. Also it is shown that the properties of multilayer structure are found to depend strongly on the sublayer thicknesses. In this work the effect of ZrO{sub 2} layer thickness on the dielectric, ferroelectric as well as electrical properties of BST/ZrO{sub 2}/BST multilayer structure is studied. The multilayer Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}/ZrO{sub 2}/Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} film is deposited by a sol-gel process on the platinized Si substrate. The thickness of the middle ZrO{sub 2} layer is varied while keeping the top and bottom BST layer thickness as fixed. It is observed that the dielectric constant, dielectric loss tangent, and leakage current of the multilayer films reduce with the increase of ZrO{sub 2} layer thickness and hence suitable for memory device applications. The ferroelectric properties of the multilayer film also decrease with the ZrO{sub 2} layer thickness.« less
Li, Xue; Niitsoo, Olivia; Couzis, Alexander
2016-03-01
An electrostatically-assisted strategy for fabrication of thin film composite capacitors with controllable dielectric constant (k) has been developed. The capacitor is composed of metal-dielectric core/shell nanoparticle (silver/silica, Ag@SiO2) multilayer films, and a backfilling polymer. Compared with the simple metal particle-polymer mixtures where the metal nanoparticles (NP) are randomly dispersed in the polymer matrix, the metal volume fraction in our capacitor was significantly increased, owing to the densely packed NP multilayers formed by the electrostatically assisted assembly process. Moreover, the insulating layer of silica shell provides a potential barrier that reduces the tunneling current between neighboring Ag cores, endowing the core/shell nanocomposites with a stable and relatively high dielectric constant (k) and low dielectric loss (D). Our work also shows that the thickness of the SiO2 shell plays a dominant role in controlling the dielectric properties of the nanocomposites. Control over metal NP separation distance was realized not only by variation the shell thickness of the core/shell NPs but also by introducing a high k nanoparticle, barium strontium titanate (BST) of relatively smaller size (∼8nm) compared to 80-160nm of the core/shell Ag@SiO2 NPs. The BST assemble between the Ag@SiO2 and fill the void space between the closely packed core/shell NPs leading to significant enhancement of the dielectric constant. This electrostatically assisted assembly method is promising for generating multilayer films of a large variety of NPs over large areas at low cost. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Tork, Hossam S.
This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving directions for phased array antennas, reducing phase error, improving figure of merit (FOM) and phase shifter tunability around center frequency, and also enables the integration of the phase shifters with the microwave circuits on one substrate, thus substantially reducing the size, mass, and cost of the antennas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Z. Q.; Podpirka, A.; Kirchoefer, S. W.
2015-05-04
We report on the native defect and microwave properties of 1 μm thick Ba{sub 0.50}Sr{sub 0.50}TiO{sub 3} (BST) films grown on MgO (100) substrates by molecular beam epitaxy (MBE). Depth-resolved cathodoluminescence spectroscopy (DRCLS) showed high densities of native point defects in as-deposited BST films, causing strong subgap emission between 2.0 eV and 3.0 eV due to mixed cation V{sub C} and oxygen Vo vacancies. Post growth air anneals reduce these defects with 2.2, 2.65, and 3.0 eV V{sub O} and 2.4 eV V{sub C} intensities decreasing with increasing anneal temperature and by nearly two orders of magnitude after 950 °C annealing. These low-defect annealed BSTmore » films exhibited high quality microwave properties, including room temperature interdigitated capacitor tunability of 13% under an electric bias of 40 V and tan δ of 0.002 at 10 GHz and 40 V bias. The results provide a feasible route to grow high quality BST films by MBE through post-air annealing guided by DRCLS.« less
Effect of BST film thickness on the performance of tunable interdigital capacitors grown by MBE
NASA Astrophysics Data System (ADS)
Meyers, Cedric J. G.; Freeze, Christopher R.; Stemmer, Susanne; York, Robert A.
2017-12-01
Voltage-tunable, interdigital capacitors (IDCs) were fabricated on Ba0.29Sr0.71TiO3 grown by hybrid molecular beam epitaxy (MBE). In this growth technique, we utilize the metal-organic precursor titanium tetraisopropoxide rather than solid-source Ti as with conventional MBE. Two samples of varying BaxSr(1-x)TiO3 (BST) thicknesses were fabricated and analyzed. High-quality, epitaxial Pt electrodes were deposited by sputtering from a high-purity Pt target at 825 °C. The Pt electrodes were patterned and etched by argon ion milling, passivated with reactively sputtered SiO2, and then metallized with lift-off Ti/Au. The fabricated devices consisted of two-port IDCs embedded in ground-signal-ground, coplanar waveguide (CPW) transmission lines to enable radio-frequency (RF) probing. The sample included open and thru de-embedding structures to remove pad and CPW parasitic impedances. Two-port RF scattering (S) parameters were measured from 100 MHz to 40 GHz while DC bias was stepped from 0 V to 100 V. The IDCs exhibit a high zero-bias radio-frequency (RF) quality factor (Q) approaching 200 at 1 GHz and better than 2.3:1 capacitance tuning for the 300-nm-thick sample. Differences in the Q(V) and C(V) response with varying thicknesses indicate that unknown higher order material phenomena are contributing to the loss and tuning characteristics of the material.
Ghalem, Areski; Ponchel, Freddy; Remiens, Denis; Legier, Jean-Francois; Lasri, Tuami
2013-05-01
A complete microwave characterization up to 67 GHz using specific coplanar waveguides was performed to determine the dielectric properties (permittivity, losses, and tunability) of sapphire/TiOx/Ba0.3Sr0.7TiO3 (BST) (111)-oriented thin films. To that end, BaxSr1-xTiO3 thin films were deposited by RF magnetron sputtering on sapphire (0001) substrate. To control the preferred (111) orientation, a TiOx buffer layer was deposited on sapphire. According to the detailed knowledge of the material properties, it has been possible to conceive, fabricate, and test interdigitated capacitors, the basic element for future microwave tunable applications. Retention of capacitive behavior up to 67 GHz and a tunability of 32% at 67 GHz at an applied voltage of 30 V (150 kV/cm) were observed. The Q-factor remains greater than 30 over the entire frequency band. The possibility of a complete characterization of the material for the realization of high-performance interdigitated capacitors opens the door to microwave device fabrication.
NASA Astrophysics Data System (ADS)
Basceri, Cem
The electrical and dielectric properties of fiber-textured, MOCVD (Basb{0.7}Srsb{0.3})TiOsb3 (BST) thin film capacitors appropriate for ultra-large scale integration (ULSI) dynamic random access memory (DRAM) applications have been analyzed. Dielectric relaxation, leakage, resistance degradation, and dielectric response phenomena, within a comprehensive matrix of external and material parameters, have been investigated. The phenomenology of the dielectric response of our BST films has been shown to be well-described by Curie-von Schweidler behavior, although the microscopic origin of this behavior has not been presently agreed upon. The time-dependent polarization behavior has been linked to the dispersion in permittivity with respect to frequency. The leakage current through our BST films has been found to be primarily limited by interfacial Schottky barriers whose properties depend on the electrode material, interface microstructure, and deposition conditions. Its temperature and voltage dependence have been interpreted via a thermionic emission model. Analysis in terms of Schottky-barrier limited current flow gave acceptable values for the cathode barrier height. The results have indicated that our BST films, appropriate for DRAM applications, do not possess depletion layers at the film-electrode interfaces. Instead, they must be considered as depleted of charge carriers across their entire thickness. Resistance degradation has been found to be thermally activated and voltage/field dependent. The results have indicated that there is a film thickness effect, which manifests itself as a decrease in the activation energy with respect to temperature for thicker films. A significant stoichiometry effect on the measured resistance degradation lifetimes has been observed. The analyses of the leakage and capacitance-voltage behaviors for the degraded samples have indicated that a demixing of oxygen vacancies occurs during resistance degradation, which causes the Schottky barrier height to decrease, in agreement with the observed relative shift of the peak capacitance as a function of voltage. For all the film thicknesses and compositions studied, extrapolated resistance degradation lifetimes of our BST films, which were obtained by using an appropriate form, are well above the current benchmark of 10 years at the DRAM operating conditions of 1.6 V and 85sp°C. Above the bulk Curie point (˜300 K), the phenomenological approach, i.e., Landau-Ginzburg-Devonshire (LGD) theory, has been demonstrated to account very well for the observed C-V behavior in our BST films. Furthermore, temperature dependent measurements gave evidence that, as expected, the form of the dielectric behavior changes near the bulk Curie point, but that the phase transition appears for some reason to be frustrated. Film thickness has been established to impact primarily the zero-bias permittivity through a thickness dependence of the first order coefficient of the LGD power series. Our analysis does indicate that if it results from a series-connected interfacial layer, that layer must be a nonlinear dielectric, as must the bulk of the film. The dielectric constant has been found to be composition dependent, reaching its highest values for compositions near the stoichiometric values. Furthermore, film stoichiometry has been established to strongly effect both the first order and third order coefficients of the LGD power series.
NASA Astrophysics Data System (ADS)
Yoon, Yong-Kyu; Stevenson Kenney, J.; Hunt, Andrew T.; Allen, Mark G.
2006-02-01
Narrowly spaced thick microelectrodes are fabricated using a self-aligned multiple reverse-side exposure scheme for an improved quality-factor tunable ferroelectric capacitor. The microelectrodes are fabricated on a functional substrate—a thin film ferroelectric (barium strontium titanate, BST; BaxSr1-xTiO3) coated sapphire substrate, which has an electric-field-dependent dielectric property providing tuning functionality, as well as UV transparency permitting an additional degree of freedom in photolithography steps. The microelectrode process has been applied to interdigitated capacitor fabrication, where a critical challenge is maintaining narrow gaps between electrodes for high tunability, while simultaneously forming thick electrodes to minimize conductor loss. A single mask, self-aligned reverse-side exposure through the transparent substrate achieves both these goals. A single-finger test capacitor with an electrode gap of 1.2 µm and an electrode thickness of 2.2 µm is fabricated and characterized. Tunability (T = 100 × (C0 - Cbias)/C0) of 33% at 10 V has been achieved at 100 kHz. The 2.2 µm thick structure shows improvement of Q-factor compared to that of a 0.1 µm thick structure. To demonstrate the scalability of this process, a 102-finger interdigitated capacitor is fabricated and characterized at 100 kHz and 1 GHz. The structure is embedded in a 25 µm thick epoxy resin SU-8 for passivation. A quality factor decrease of 15-25%, tunability decrease of 2-3% and capacitance increase of 6% are observed due to the expoxy resin after passivation. High frequency performance of the capacitor has been measured to be 15.9 pF of capacitance, 28.1% tunability at 10 V and a quality factor of 16 (at a 10 V dc bias) at 1 GHz.
Carrillo, F; Hernández-Cerón, J; Orozco, V; Hernández, J A; Gutiérrez, C G
2007-11-01
Bovine somatotropin (bST) enhances ovarian follicular and embryonic development in sheep and cattle. In the present study, the objective was to assess whether bST given 5 days before the end of progestin-based estrous synchronization improves prolificacy and lambing rate in sheep. Pelibuey ewes (n=92) exhibiting estrous cycles at regular intervals received an intravaginal sponge containing 45mg of FGA for 12 days. Five days before sponge withdrawal, ewes were treated with either 125mg of bST sc (bST group; n=47) or saline solution (control; n=45). After the sponge was removed, ewes were observed for estrus and subsequently mated twice. Lambing rate and prolificacy was determined at birth. Blood samples were taken from the time of treatment until day 15 after estrus in eight ewes from the bST group and nine from the control group. Concentrations of IGF-I were determined by immunoradiometric assay and progesterone by RIA. Treatment with bST increased (P<0.01) the proportion of ewes with more than one lamb (bST, 56% compared with control, 26%) and prolificacy (bST, 1.6 compared with control, 1.3). Treatment with bST increased (P<0.05) the lambing rate of multiparous (bST, 92% compared with control, 67%) but not in ewes at the first time they were mated (bST, 71% compared with control, 87%; P>0.05). IGF-I concentrations were greater (P<0.01) in ewes treated with bST than in control ewes from 2 days after treatment. Progesterone concentrations did not vary (P>0.05) between groups. It is concluded that a single dose of bST 5 days before progestin withdrawal increases lambing rate and prolificacy in sheep. These effects are associated with an increase in circulating concentrations of IGF-I.
Electrically Variable or Programmable Nonvolatile Capacitors
NASA Technical Reports Server (NTRS)
Shangqing, Liu; NaiJuan, Wu; Ignatieu, Alex; Jianren, Li
2009-01-01
Electrically variable or programmable capacitors based on the unique properties of thin perovskite films are undergoing development. These capacitors show promise of overcoming two important deficiencies of prior electrically programmable capacitors: Unlike in the case of varactors, it is not necessary to supply power continuously to make these capacitors retain their capacitance values. Hence, these capacitors may prove useful as components of nonvolatile analog and digital electronic memories. Unlike in the case of ferroelectric capacitors, it is possible to measure the capacitance values of these capacitors without changing the values. In other words, whereas readout of ferroelectric capacitors is destructive, readout of these capacitors can be nondestructive. A capacitor of this type is a simple two terminal device. It includes a thin film of a suitable perovskite as the dielectric layer, sandwiched between two metal or metal oxide electrodes (for example, see Figure 1). The utility of this device as a variable capacitor is based on a phenomenon, known as electrical-pulse-induced capacitance (EPIC), that is observed in thin perovskite films and especially in those thin perovskite films that exhibit the colossal magnetoresistive (CMR) effect. In EPIC, the application of one or more electrical pulses that exceed a threshold magnitude (typically somewhat less than 1 V) gives rise to a nonvolatile change in capacitance. The change in capacitance depends on the magnitude duration, polarity, and number of pulses. It is not necessary to apply a magnetic field or to cool the device below (or heat it above) room temperature to obtain EPIC. Examples of suitable CMR perovskites include Pr(1-x)Ca(x)MnO3, La(1-x)S-r(x)MnO3,and Nb(1-x)Ca(x)MnO3. Figure 2 is a block diagram showing an EPIC capacitor connected to a circuit that can vary the capacitance, measure the capacitance, and/or measure the resistance of the capacitor.
Bell, A; Rodríguez, OA; de Castro e Paula, LA; Padua, MB; Hernández-Cerón, J; Gutiérrez, CG; De Vries, A; Hansen, PJ
2008-01-01
Background Results regarding the use of bovine somatotropin for enhancing fertility in dairy cattle are variable. Here, the hypothesis was tested that a single injection of a sustained-release preparation of bovine somatotropin (bST) during the preovulatory period would improve pregnancy success of lactating dairy cows at first service. Results The first experiment was conducted in a temperate region of Mexico. Cows inseminated following natural estrus or timed artificial insemination were given a single injection of bST or a placebo injection at insemination (n = 100 cows per group). There was no significant difference between bST and control groups in the proportion of inseminated cows diagnosed pregnant (29 vs 31% pregnant). The second experiment was performed during heat stress in Florida. Cows were subjected to an ovulation synchronization regimen for first insemination. Cows treated with bST received a single injection at 3 days before insemination. Controls received no additional treatment. As expected, bST did not increase vaginal temperature. Treatment with bST did not significantly increase the proportion of inseminated cows diagnosed pregnant although it was numerically greater for the bST group (24.2% vs 17.8%, 124–132 cows per group). There was a tendency (p = 0.10) for a smaller percent of control cows to have high plasma progesterone concentrations (≥ 1 ng/ml) at Day 7 after insemination than for bST-treated cows (72.6 vs 81.1%). When only cows that were successfully synchronized were considered, the magnitude of the absolute difference in the percentage of inseminated cows that were diagnosed pregnant between bST and control cows was reduced (24.8 vs 22.4% pregnant for bST and control). Conclusion Results failed to indicate a beneficial effect of bST treatment on fertility of lactating dairy cows. PMID:18582389
NASA Astrophysics Data System (ADS)
Peng, Cheng-Jien
The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could significantly improve the time -dependent dielectric breakdown (TDDB) behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping.
Lacroix, André; Kressig, Reto W; Muehlbauer, Thomas; Gschwind, Yves J; Pfenninger, Barbara; Bruegger, Othmar; Granacher, Urs
2016-01-01
Losses in lower extremity muscle strength/power, muscle mass and deficits in static and particularly dynamic balance due to aging are associated with impaired functional performance and an increased fall risk. It has been shown that the combination of balance and strength training (BST) mitigates these age-related deficits. However, it is unresolved whether supervised versus unsupervised BST is equally effective in improving muscle power and balance in older adults. This study examined the impact of a 12-week BST program followed by 12 weeks of detraining on measures of balance and muscle power in healthy older adults enrolled in supervised (SUP) or unsupervised (UNSUP) training. Sixty-six older adults (men: 25, women: 41; age 73 ± 4 years) were randomly assigned to a SUP group (2/week supervised training, 1/week unsupervised training; n = 22), an UNSUP group (3/week unsupervised training; n = 22) or a passive control group (CON; n = 22). Static (i.e., Romberg Test) and dynamic (i.e., 10-meter walk test) steady-state, proactive (i.e., Timed Up and Go Test, Functional Reach Test), and reactive balance (e.g., Push and Release Test), as well as lower extremity muscle power (i.e., Chair Stand Test; Stair Ascent and Descent Test) were tested before and after the active training phase as well as after detraining. Adherence rates to training were 92% for SUP and 97% for UNSUP. BST resulted in significant group × time interactions. Post hoc analyses showed, among others, significant training-related improvements for the Romberg Test, stride velocity, Timed Up and Go Test, and Chair Stand Test in favor of the SUP group. Following detraining, significantly enhanced performances (compared to baseline) were still present in 13 variables for the SUP group and in 10 variables for the UNSUP group. Twelve weeks of BST proved to be safe (no training-related injuries) and feasible (high attendance rates of >90%). Deficits of balance and lower extremity muscle power can be mitigated by BST in healthy older adults. Additionally, supervised as compared to unsupervised BST was more effective. Thus, it is recommended to counteract intrinsic fall risk factors by applying supervised BST programs for older adults. © 2015 The Author(s) Published by S. Karger AG, Basel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Binita; Halder, Saswata; Sinha, T. P.
2016-05-23
Europium-doped luminescent barium samarium tantalum oxide Ba{sub 2}SmTaO{sub 6} (BST) has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BST and Eu-doped BST have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BST has been discussed. In the case of Eu-doped BST, there is an impurity energy band at the Fermi level, which is formed by seven spin up energy levels of Eu and act as the luminescent centre, which is evident from the band structure calculations.
Formation of solar cells based on Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) ferroelectric thick film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irzaman,, E-mail: irzaman@yahoo.com; Syafutra, H., E-mail: irzaman@yahoo.com; Arif, A., E-mail: irzaman@yahoo.com
2014-02-24
Growth of Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BST) 1 M thick films are conducted with variation of annealing hold time of 8 hours, 15 hours, 22 hours, and 29 hours at a constant temperature of 850 °C on p-type Si (100) substrate using sol-gel method then followed by spin coating process at 3000 rpm for 30 seconds. The BST thick film electrical conductivity is obtained to be 10{sup −5} to 10{sup −4} S/cm indicate that the BST thick film is classified as semiconductor material. The semiconductor energy band gap value of BST thick film based on annealing hold time of 8more » hours, 15 hours, 22 hours, and 29 hours are 2.58 eV, 3.15 eV, 3.2 eV and 2.62 eV, respectively. The I-V photovoltaic characterization shows that the BST thick film is potentially solar cell device, and in accordance to annealing hold time of 8 hours, 15 hours, 22 hours and 29 hours have respective solar cell energy conversion efficiencies of 0.343%, 0.399%, 0.469% and 0.374%, respectively. Optical spectroscopy shows that BST thick film solar cells with annealing hold time of 8 hours, 15 hours, and 22 hours absorb effectively light energy at wavelength of ≥ 700 nm. BST film samples with annealing hold time of 29 hours absorb effectively light energy at wavelength of ≤ 700 nm. The BST thick film refraction index is between 1.1 to 1.8 at light wavelength between ±370 to 870 nm.« less
Intracellular logistics of BST-2/tetherin.
Fujita, Hideaki; Fujimoto, Keiko; Tokunaga, Kenzo; Tanaka, Yoshitaka
2012-06-01
Bone marrow stromal antigen 2 (BST-2) is a type II membrane protein with two targeting signals, one of which is located in the cytoplasmic domain and contains a non-canonical dual tyrosine-based motif responsible for its endocytosis from the plasma membrane, and the other is a C-terminal glycosylphosphatidylinositol anchor that facilitates its association with detergent-resistant membranes/lipid rafts and targeting to the apical domain in polarized epithelial cells. Due to its unusual topology at the membrane, BST-2 takes unique and complicated trafficking routes in cells. Recently, a physiological role for BST-2 as the "tetherin" molecule for viruses, especially for HIV-1, has been extensively examined. These studies have shown that the biosynthesis, intracellular trafficking, localization, and structure of human BST-2 are closely related to its antiviral activity. This review provides an overview of the intracellular logistics of human BST-2.
Fu, Xiaojian; Zeng, Xinxi; Cui, Tie Jun; Lan, Chuwen; Guo, Yunsheng; Zhang, Hao Chi; Zhang, Qian
2016-01-01
We investigate the resonant modes of split-ring resonator (SRR) metamaterials that contain high-permittivity BST block numerically and experimentally. We observe interesting mode-jumping phenomena from the BST-included SRR absorber structure as the excitation wave is incident perpendicularly to the SRR plane. Specifically, when the electric field is parallel to the SRR gap, the BST block in the gap will induce a mode jumping from the LC resonance to plasmonic resonance (horizontal electric-dipole mode), because the displacement current excited by the Mie resonance in the dielectric block acts as a current channel in the gap. When the electric field is perpendicular to the gap side, the plasmonic resonance mode (vertical electric-dipole mode) in SRR changes to two joint modes contributed simultaneously by the back layer, SRR and BST block, as a result of connected back layer and SRR layer by the displacement current in the BST dielectric block. Based on the mode jumping effect as well as temperature and electric-field dependent dielectric constant, the BST-included SRR metamaterials may have great potentials for the applications in electromagnetic switches and widely tunable metamaterial devices. PMID:27502844
The effect of bovine BST2A1 on the release and cell-to-cell transmission of retroviruses.
Liang, Zhibin; Zhang, Yang; Song, Jie; Zhang, Hui; Zhang, Suzhen; Li, Yue; Tan, Juan; Qiao, Wentao
2017-09-06
Human BST2 (hBST2, also called Tetherin) is a host restriction factor that blocks the release of various enveloped viruses. BST2s from different mammals also possess antiviral activity. Bovine BST2s (bBST2s), bBST2A1 and bBST2A2, reduce production of cell-free bovine leukemia virus (BLV) and vesicular stomatitis virus (VSV). However, the effect of bBST2 on other retroviruses remains unstudied. Here, we studied the antiviral activity of wildtype and mutant bBST2A1 proteins on retroviruses including human immunodeficiency virus type 1 (HIV-1), prototypic foamy virus (PFV), bovine foamy virus (BFV) and bovine immunodeficiency virus (BIV). The results showed that wildtype bBST2A1 suppressed the release of HIV-1, PFV and BFV. We also generated bBST2A1 mutants, and found that GPI anchor and dimerization, but not glycosylation, are essential for antiviral activity of bBST2A1. Moreover, unlike hBST2, bBST2A1 displayed no inhibitory effect on cell-to-cell transmission of PFV, BFV and BIV. Our data suggested that bBST2A1 inhibited retrovirus release, however, had no effect on cell-to-cell transmission of retroviruses.
Enhanced tunability of magnetron sputtered Ba0.5Sr0.5TiO3 thin films on c-plane sapphire substrates
NASA Astrophysics Data System (ADS)
Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Reichart, P.
2006-07-01
Thin films of Ba0.5Sr0.5TiO3 (BST) were deposited on c-plane (0001) sapphire by rf magnetron sputtering and investigated by complementary materials analysis methods. Microwave properties of the films, including tunability and Q factor were measured from 1to20GHz by patterning interdigital capacitors (IDCs) on the film surface. The tunability is correlated with texture, strain, and grain size in the deposited films. An enhanced capacitance tunability of 56% at a bias field of 200kV/cm and total device Q of more than 15 (up to 20GHz) were achieved following postdeposition annealing at 900°C.
NASA Astrophysics Data System (ADS)
Simon, William Kurt
Functional oxide thin films often focus on standard cubic substrates that impose an equal biaxial plane stress condition (sigma11 = sigma22) to the film. These internal stresses in thin films reach magnitudes not easily achieved in bulk materials and represent an important influence on the properties of thin films. Equal biaxial plane stress is a small sub-set of stress conditions. Anisotropic stress (sigma11 ≠ sigma 22) represents a wide range of influences that can be utilized to manipulate the properties of thin films. To investigate these conditions, heteroepitaxial thin films of paraelectric Ba0.6Sr0.4TiO3 (BST) were deposited on [100] and [110] oriented single crystal NdGaO 3 (NGO) substrates. Films were grown in the thickness range of 25 to 1200 nm by Pulsed Laser Deposition. The films grown on [100]NGO substrates were [110] oriented, while [110]NGO substrates resulted in [100] oriented BST films. The [100]BST films exhibit a small variation of the epitaxial misfit with direction: -2.6% and -2.8% along the [010]BST and [001 ]BST directions respectively. The epitaxial misfit for the [110]BST films show a greater variation with direction; -1.9% and -2.8% along the [1¯10]BST, and [001]BST directions respectively. The interfacial dislocations that form to relieve stress are found to be dependant on the growth orientation of the film and to contribute to the degree of elastic and dielectric anisotropy. The variation of the residual strains, with thickness and direction are correlated to the non-linear dielectric permittivity at 10 GHz. The relative permittivity is seen to vary from 150 to 500 with in-plane direction of a single [110]BST film. Tunabilities in the same film vary from 30 to 54%, with the greater tunability occurring along the directions with greater permittivity. Analysis of the non-linear polarization curves illustrate that the higher order permittivity terms, which are responsible for tunability, are all adversely affected by strain and reach an elastically saturated limit regardless of growth orientation or in-plane direction. Through the use of unequal epitaxial strains, anisotropy is imparted to the otherwise spherically symmetric permittivity tensor. This asymmetry allows a single film to have a variable response and fill a variety of performance requirements in microwave passive devices.
NASA Astrophysics Data System (ADS)
Maximenko, Yulia; Scipioni, Kane; Wang, Zhenyu; Katmis, Ferhat; Steiner, Charles; Weis, Adam; van Harlingen, Dale; Madhavan, Vidya
Topological insulators Bi2Te3 and Sb2Te3 are promising materials for electronics, but both are naturally prone to vacancies and anti-site defects that move the Fermi energy onto the bulk bands. Fabricating (Bi1-xSbx)2 Te3 (BST) with the tuned x minimizes point defects and unmasks topological surface states by reducing bulk carriers. BST thin films have shown topological surface states and quantum anomalous Hall effect. However, different studies reported variable Sb:Bi ratios used to grow an undoped BST film. Here, we develop a reliable way to grow defect-free subnanometer-flat BST thin films having the Fermi energy tuned to the Dirac point. High-resolution scanning tunneling microscopy (STM) and Landau level spectroscopy prove the importance of crystallinity and surface roughness-not only Sb:Bi ratio-for the final bulk carrier concentration. The BST thin films were doped with Cr and studied with STM with atomic resolution. Counterintuitively, Cr density is anticorrelated with the local band gap due to Cr's antiferromagnetic order. We analyze the correlations and report the relevant band gap values. Predictably, high external magnetic field compromises antiferromagnetic order, and the local band gap increases. US DOE DE-SC0014335; Moore Found. GBMF4860; F. Seitz MRL.
First Report of Prevalence of CTX-M-15-Producing Escherichia coli O25b/ST131 from Iran.
Namaei, Mohammad Hasan; Yousefi, Masoud; Ziaee, Masoud; Salehabadi, Alireza; Ghannadkafi, Malaknaz; Amini, Elham; Askari, Parvin
2017-10-01
The emergence of Escherichia coli sequence type 131 (ST131) as a multidrug-resistant and virulent pathogen represents a major challenge to public health globally. Recently, the O25b/ST131 E. coli producing CTX-M-15 with high virulence potential has been reported worldwide, but has received little attention in Iran. This study is the first in Iran to specifically determine the spread of the O25b/ST131 clone producing CTX-M-15 among E. coli isolates belonging to the B2 phylogenetic group. ST131 clone in phylogenetic group B2 was detected based on PCR detection of ST131-specific single-nucleotide polymorphisms in mdh and gyrB. O25b/ST131 E. coli clone was confirmed utilizing O25b/ST131 clone allele-specific PCR for the pabB gene. All group B2 E. coli isolates were characterized based on antibiotic susceptibility, extended-spectrum β-lactamase (ESBL) enzymes, and virulence traits. Our results demonstrated that 38 out of the 154 B2 group isolates (24.7%) were identified as belonging to the ST131 clone. Furthermore, of these, 28 isolates (73.6%) were detected as O25b/ST131 clone. Antibiotic resistance of ST131 E. coli isolates to ciprofloxacin, gentamicin, cefotaxime, and aztreonam was significantly higher than non-ST131 isolates. Almost all of the O25b/ST131 isolates with the ability for ESBL production were reported as CTX-M-15 producing (95.5%). Our results showed that the most prevalent virulence trait in ST131 clone was ompT (94.7%). This study is the first to report the prevalence of the CTX-M-15-producing O25b/ST131 E. coli in Iran. Our findings reinforce the surveillance of dissemination of ST131 E. coli clone as a major drug-resistant pathogen and an important new public health threat.
ERIC Educational Resources Information Center
Nosik, Melissa R.; Williams, W. Larry; Garrido, Natalia; Lee, Sarah
2013-01-01
In the current study, behavior skills training (BST) is compared to a computer based training package for teaching discrete trial instruction to staff, teaching an adult with autism. The computer based training package consisted of instructions, video modeling and feedback. BST consisted of instructions, modeling, rehearsal and feedback. Following…
Chronic ovine evaluation of a totally implantable electrical left ventricular assist system.
Ramasamy, N; Chen, H; Miller, P J; Jassawalla, J S; Greene, B A; Ocampo, A; Siegel, L C; Oyer, P E; Portner, P M
1989-01-01
The totally implantable Novacor left ventricular assist system (LVAS) comprises a pump/drive unit (VAD), electronic control and power subsystem (ECP), variable volume compensator (VVC), and belt skin transformer (BST). The system is now undergoing chronic in vivo evaluation. Cumulative animal testing of VAD, VVC, and BST subsystems are 12.1, 4.9, and 43 years, respectively. The longest implants were 279 days for the VAD, 767 days for the VVC, and 1,148 days for the BST. A chronic implant of the total system was electively terminated at 260 days. The LVAS was powered via the BST. Continuously monitored hemodynamic and pump parameters have demonstrated normal hemodynamics and LVAS operation. Periodic VVC determinations suggest a 0.8 ml/day diffusive gas loss. Tether-free operation has been demonstrated with an Ag-Zn battery backpack. The animal was healthy and free of infection as indicated by routine hematologic, biochemical and serum enzyme determinations. Hemolysis is minimal (plasma free hemoglobin less than 5 mg%). Pump output ranged from 7 to 8 L/min. Severe valve calcification was the reason for elective termination at 260 days. This preclinical in vivo experience, and in vitro reliability studies, demonstrate efficacy of the total system.
Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection.
Londrigan, Sarah L; Tate, Michelle D; Job, Emma R; Moffat, Jessica M; Wakim, Linda M; Gonelli, Christopher A; Purcell, Damien F J; Brooks, Andrew G; Villadangos, Jose A; Reading, Patrick C; Mintern, Justine D
2015-01-01
BST-2 (tetherin, CD317, HM1.24) restricts virus growth by tethering enveloped viruses to the cell surface. The role of BST-2 during influenza A virus infection (IAV) is controversial. Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine cells. IAV infection increased BST-2 surface expression by primary macrophages, but not alveolar epithelial cells (AEC). BST-2-deficient AEC and macrophages displayed no difference in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played little role in infectious IAV release from either AEC or macrophages. To examine BST-2 during IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and wild type animals. This study rules out a major role for endogenous BST-2 in modulating IAV in the mouse model of infection.
Endogenous Murine BST-2/Tetherin Is Not a Major Restriction Factor of Influenza A Virus Infection
Job, Emma R.; Moffat, Jessica M.; Wakim, Linda M.; Gonelli, Christopher A.; Purcell, Damien F. J.; Brooks, Andrew G.; Villadangos, Jose A.; Reading, Patrick C.; Mintern, Justine D.
2015-01-01
BST-2 (tetherin, CD317, HM1.24) restricts virus growth by tethering enveloped viruses to the cell surface. The role of BST-2 during influenza A virus infection (IAV) is controversial. Here, we assessed the capacity of endogenous BST-2 to restrict IAV in primary murine cells. IAV infection increased BST-2 surface expression by primary macrophages, but not alveolar epithelial cells (AEC). BST-2-deficient AEC and macrophages displayed no difference in susceptibility to IAV infection relative to wild type cells. Furthermore, BST-2 played little role in infectious IAV release from either AEC or macrophages. To examine BST-2 during IAV infection in vivo, we infected BST-2-deficient mice. No difference in weight loss or in viral loads in the lungs and/or nasal tissues were detected between BST-2-deficient and wild type animals. This study rules out a major role for endogenous BST-2 in modulating IAV in the mouse model of infection. PMID:26566124
Improved flexoelectricity in PVDF/barium strontium titanate (BST) nanocomposites
NASA Astrophysics Data System (ADS)
Hu, Xinping; Zhou, Yang; Liu, Jie; Chu, Baojin
2018-04-01
The flexoelectric effect of polymers is normally much weaker than that of ferroelectric oxides. In order to improve the flexoelectric response of the poly(vinylidene fluoride) (PVDF) ferroelectric polymer, PVDF/Ba0.67Si0.33TiO3 (BST) nanocomposites were fabricated. BST nanofibers were prepared by the electrospinning method, and the fibers were further surface modified with H2O2 to achieve a stronger interfacial interaction between the fibers and polymer matrix. Due to the high dielectric properties and strong flexoelectric effect of the BST, both dielectric constant and flexoelectric response of the composite with 25 vol. % surface modified BST are 3-4 times higher than those of PVDF. The dependence of the dielectric constant and the flexoelectric coefficient on the composition of the nanocomposites can be fitted by the empirical Yamada model, and the dielectric constant and the flexoelectric coefficient are correlated by a linear relationship. This study provides an approach to enhance the flexoelectric response of PVDF-based polymers.
The Expression of BTS-2 Enhances Cell Growth and Invasiveness in Renal Cell Carcinoma.
Pham, Quoc Thang; Oue, Naohide; Yamamoto, Yuji; Shigematsu, Yoshinori; Sekino, Yohei; Sakamoto, Naoya; Sentani, Kazuhiro; Uraoka, Naohiro; Tiwari, Mamata; Yasui, Wataru
2017-06-01
Renal cell carcinoma (RCC) is one of the most common types of cancer in developed countries. Bone marrow stromal cell antigen 2 (BST2) gene, which encodes BST2 transmembrane glycoprotein, is overexpressed in several cancer types. In the present study, we analyzed the expression and function of BST2 in RCC. BST2 expression was analyzed by immunohistochemistry in 123 RCC cases. RNA interference was used to inhibit BST2 expression in a RCC cell line. Immunohistochemical analysis showed that 32% of the 123 RCC cases were positive for BST2. BST2 expression was positively associated with tumour stage. Furthermore, BST2 expression was an independent predictor of survival in patients with RCC. BST2 siRNA-transfected Caki-1 cells displayed significantly reduced cell growth and invasive activity relative to negative control siRNA-transfected cells. These results suggest that BST2 plays an important role in the progression of RCC. Because BST2 is expressed on the cell membrane, BST2 is a good therapeutic target for RCC. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Method and apparatus for measuring low currents in capacitance devices
Kopp, M.K.; Manning, F.W.; Guerrant, G.C.
1986-06-04
A method and apparatus for measuring subnanoampere currents in capacitance devices is reported. The method is based on a comparison of the voltages developed across the capacitance device with that of a reference capacitor in which the current is adjusted by means of a variable current source to produce a stable voltage difference. The current varying means of the variable current source is calibrated to provide a read out of the measured current. Current gain may be provided by using a reference capacitor which is larger than the device capacitance with a corresponding increase in current supplied through the reference capacitor. The gain is then the ratio of the reference capacitance to the device capacitance. In one illustrated embodiment, the invention makes possible a new type of ionizing radiation dose-rate monitor where dose-rate is measured by discharging a reference capacitor with a variable current source at the same rate that radiation is discharging an ionization chamber. The invention eliminates high-megohm resistors and low current ammeters used in low-current measuring instruments.
Nosik, Melissa R; Williams, W Larry; Garrido, Natalia; Lee, Sarah
2013-01-01
In the current study, behavior skills training (BST) is compared to a computer based training package for teaching discrete trial instruction to staff, teaching an adult with autism. The computer based training package consisted of instructions, video modeling and feedback. BST consisted of instructions, modeling, rehearsal and feedback. Following training, participants were evaluated in terms of their accuracy on completing critical skills for running a discrete trial program. Six participants completed training; three received behavior skills training and three received the computer based training. Participants in the BST group performed better overall after training and during six week probes than those in the computer based training group. There were differences across both groups between research assistant and natural environment competency levels. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wang, Jiawen; Bian, Shuai; Liu, Meichun; Zhang, Xin; Wang, Siming; Bai, Xueyuan; Zhao, Daqing; Zhao, Yu
2018-06-30
BST-2(tetherin/CD317/HM1.24) has been identified as a cellular antiviral factor that inhibits the release of a wide range of enveloped viruses from infected cells. Orthologs of BST-2 have been identified in several species including humans, monkeys, cows, sheep, pigs, and mice. In this study, we cloned the gene and characterized the protein of the BST-2 homolog from sika deer (Cervus nippon). cnBST-2 shares 37.8% and 74.2% identity with the BST-2 homologs from Homo sapiens and Ovis aries, respectively. The extracellular domain of cnBST-2 has two putative N-linked glycosylation sites and three potential dimerization sites. cnBST-2 was shown to be expressed on the cell surface, like human BST-2. Exogenous expression of cnBST-2 resulted in potent inhibition of HIV-1 particle release in 293T cells; however, this activity resisted antagonism by HIV-1 Vpu. Moreover, cnBST-2 was not able to activate nuclear factor-κB, in contrast to human BST-2. This study is the first report of the isolation and characterization of BST-2 from C. nippon. Copyright © 2018 Elsevier B.V. All rights reserved.
An Intrinsically Switchable Ladder-Type Ferroelectric BST-on-Si Composite FBAR Filter.
Lee, Seungku; Mortazawi, Amir
2016-03-01
This paper presents a ladder-type bulk acoustic wave (BAW) intrinsically switchable filter based on ferroelectric thin-film bulk acoustic resonators (FBARs). The switchable filter can be turned on and off by the application of an external bias voltage due to the electrostrictive effect in thin-film ferroelectrics. In this paper, Barium Strontium Titanate (BST) is used as the ferroelectric material. A systematic design approach for switchable ladder-type ferroelectric filters is provided based on required filter specifications. A switchable filter is implemented in the form of a BST-on-Si composite structure to control the effective electromechanical coupling coefficient of FBARs. As an experimental verification, a 2.5-stage intrinsically switchable BST-on-Si composite FBAR filter is designed, fabricated, and measured. Measurement results for a typical BST-on-Si composite FBAR show a resonator mechanical quality factor (Q(m)) of 971, as well as a (Q(m)) × f of 2423 GHz. The filter presented here provides a measured insertion loss of 7.8 dB, out-of-band rejection of 26 dB, and fractional bandwidth of 0.33% at 2.5827 GHz when the filter is in the on state at a dc bias of 40 V. In its off state, the filter exhibits an isolation of 31 dB.
Pang, Xiaojing; Hu, Siqi; Li, Jian; Xu, Fengwen; Mei, Shan; Zhou, Jinming; Cen, Shan; Jin, Qi; Guo, Fei
2013-08-06
BST-2 (bone marrow stromal cell antigen 2) is an interferon-inducible protein that inhibits virus release by tethering viral particles to the cell surface. This antiviral activity of BST-2 is antagonized by HIV-1 accessory protein Vpu. Vpu physically interacts with BST-2 through their mutual transmembrane (TM) domains. In this study, we utilized the BRET assay and molecular dynamics (MD) simulation method to further characterize the interaction of BST-2 and Vpu. Amino acids I34, L37, P40 and L41 in the TM domain of BST-2, and L11, A18 and W22 in the TM domain of Vpu were identified to be critical for the interaction between BST-2 and Vpu. The residues P40 in the TM domain of BST-2 and L11 in the TM domain of Vpu were shown, for the first time, to be important for their interaction. Furthermore, triple-amino-acid substitutions, 14-16 (AII to VAA) and 26-28 (IIE to AAA) in Vpu TM, not the single-residue mutation, profoundly disrupted BST-2/Vpu interaction. The results of MD simulation revealed significant conformational changes of the BST-2/Vpu complex as a result of mutating P40 of BST-2 and L11, 14-16 (AII to VAA) and 26-28 (IIE to AAA) of Vpu. In addition, disrupting the interaction between BST-2 and Vpu rendered BST-2 resistant to Vpu antagonization. Through use of the BRET assay, we identified novel key residues P40 in the TM domain of BST-2 and L11 in the TM domain of Vpu that are important for their interaction. These results add new insights into the molecular mechanism behind BST-2 antagonization by HIV-1 Vpu.
2013-01-01
Background BST-2 (bone marrow stromal cell antigen 2) is an interferon-inducible protein that inhibits virus release by tethering viral particles to the cell surface. This antiviral activity of BST-2 is antagonized by HIV-1 accessory protein Vpu. Vpu physically interacts with BST-2 through their mutual transmembrane (TM) domains. In this study, we utilized the BRET assay and molecular dynamics (MD) simulation method to further characterize the interaction of BST-2 and Vpu. Results Amino acids I34, L37, P40 and L41 in the TM domain of BST-2, and L11, A18 and W22 in the TM domain of Vpu were identified to be critical for the interaction between BST-2 and Vpu. The residues P40 in the TM domain of BST-2 and L11 in the TM domain of Vpu were shown, for the first time, to be important for their interaction. Furthermore, triple-amino-acid substitutions, 14–16 (AII to VAA) and 26–28 (IIE to AAA) in Vpu TM, not the single-residue mutation, profoundly disrupted BST-2/Vpu interaction. The results of MD simulation revealed significant conformational changes of the BST-2/Vpu complex as a result of mutating P40 of BST-2 and L11, 14–16 (AII to VAA) and 26–28 (IIE to AAA) of Vpu. In addition, disrupting the interaction between BST-2 and Vpu rendered BST-2 resistant to Vpu antagonization. Conclusions Through use of the BRET assay, we identified novel key residues P40 in the TM domain of BST-2 and L11 in the TM domain of Vpu that are important for their interaction. These results add new insights into the molecular mechanism behind BST-2 antagonization by HIV-1 Vpu. PMID:23919512
Preparation and Thermoelectric Properties of Graphite/Bi0.5Sb1.5Te3 Composites
NASA Astrophysics Data System (ADS)
Hu, Wenhua; Zhou, Hongyu; Mu, Xin; He, Danqi; Ji, Pengxia; Hou, Weikang; Wei, Ping; Zhu, Wanting; Nie, Xiaolei; Zhao, Wenyu
2018-06-01
Bismuth telluride zone-melting alloys are the most commercially used thermoelectric materials. However, the zone-melting ingots have weak machinability due to the strong preferred orientation. Here, non-textured graphite/Bi0.5Sb1.5Te3 (G/BST) composites were prepared by a powder metallurgy method combined with cold-pressing and annealing treatments. The composition, microstructure, and thermoelectric properties of the G/BST composites with different mass percentages of G were investigated. It was found that G addition could effectively reduce the thermal conductivity and slightly improve the electrical properties of the BST, which resulted in a large enhancement in the figure-of-merit, ZT. The largest ZT for the xG/BST composites with x = 0.05% reached 1.05 at 320 K, which is increased by 35% as compared with that of the G-free BST materials. This work provided an effective method for preparing non-textured Bi2Te3-based TE materials with a simple process, low cost, and large potential in scale production.
Nishitsuji, Hironori; Sugiyama, Ryuichi; Abe, Makoto; Takaku, Hiroshi
2016-01-01
Here, we identify ATP1B3 and fibrillin-1 as novel BST-2-binding proteins. ATP1B3 depletion in HeLa cells (BST-2-positive cells), but not 293T cells (BST-2-negative cells), induced the restriction of HIV-1 production in a BST-2-dependent manner. In contrast, fibrillin-1 knockdown reduced HIV-1 production in 293T and HeLa cells in a BST-2-independent manner. Moreover, NF-κB activation was enhanced by siATP1B3 treatment in HIV-1- and HIV-1ΔVpu-infected HeLa cells. In addition, ATP1B3 silencing induced high level BST-2 expression on the surface of HeLa cells. These results indicate that ATP1B3 is a co-factor that accelerates BST-2 degradation and reduces BST-2-mediated restriction of HIV-1 production and NF-κB activation. PMID:26694617
Nano-structured variable capacitor based on P(VDF-TrFE) copolymer and carbon nanotubes
NASA Astrophysics Data System (ADS)
Lakbita, I.; El-Hami, K.
2018-02-01
A newly organic capacitor was conceived with a variable capacitance using the inverse piezoelectric effect. The device consists of two parallel plates of carbon nanotubes (CNTs), known for their large surface area, high sensitivity and high electric conductivity, separated by a thin film of a dielectric layer of Polyinylidene fluoride and trifluoroehtylene (P(VDF-TrFE)) promising material for piezoelectric and ferroelectric properties. The obtained architecture is the CNT/PVDF-TrFE/CNT capacitor device. In this study, an ultra-thin film of P(VDF-TrFE) (54/46) with thickness of 20 nm was elaborated on highly oriented pyrolytic graphite (HOPG) by spin-coating. The morphology of the ultra-thin film and the mechanical behavior of CNT/P(VDF-TrFE)/CNT system were studied using the atomic force microscopy (AFM) combined with a lock-in amplifier in contact mode. All changes in applied voltage induce a change in thin film thickness according to the inverse piezoelectric effect that affect, consequently the capacitance. The results showed that the ratio of capacitance change ΔC to initial capacitance C0 is ΔC/C0=5%. This value is sufficient to use P(VDF-TrFE) as variable organic capacitor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Jun; Kaisho, Tsuneyasu; Tomizawa, Hitoshi
1995-04-10
Bone marrow stromal cells regulate B-cell growth and development through their surface molecules and cytokines. In this study, we generated a mAb, RS38, that recognized a novel human membrane protein, BST-2, expressed on bone marrow stromal cell lines and synovial cell lines. We cloned a cDNA encoding BST-2 from a rheumatoid arthritis-derived synovial cell line. BST-2 is a 30- to 36-kDa type II transmembrane protein, consisting of 180 amino acids. The BST-2 gene (HGMW-approved symbol BST2) is located on chromosome 19p13.2. BST-2 is expressed not only on certain bone marrow stromal cell lines but also on various normal tissues, althoughmore » its expression pattern is different from that of another bone marrow stromal cell surface molecule, BST-1. BST-2 surface expression on fibroblast cell lines facilitated the stromal cell-dependent growth of a murine bone marrow-derived pre-B-cell line, DW34. The results suggest that BST-2 may be involved in pre-B-cell growth. 45 refs., 7 figs., 2 tabs.« less
Gustin, Jean K; Bai, Ying; Moses, Ashlee V; Douglas, Janet L
2015-10-01
BST2/tetherin is an innate immune molecule with the unique ability to restrict the egress of human immunodeficiency virus (HIV) and other enveloped viruses, including Ebola virus (EBOV). Coincident with this discovery was the finding that the HIV Vpu protein down-regulates BST2 from the cell surface, thereby promoting viral release. Evidence suggests that the EBOV envelope glycoprotein (GP) also counteracts BST2, although the mechanism is unclear. We find that total levels of BST2 remain unchanged in the presence of GP, whereas surface BST2 is significantly reduced. GP is known to sterically mask surface receptors via its mucin domain. Our evaluation of mutant GP molecules indicate that masking of BST2 by GP is probably responsible for the apparent surface BST2 down-regulation; however, this masking does not explain the observed virus-like particle egress enhancement. We discovered that VP40 coimmunoprecipitates and colocalizes with BST2 in the absence but not in the presence of GP. These results suggest that GP may overcome the BST2 restriction by blocking an interaction between VP40 and BST2. Furthermore, we have observed that GP may enhance BST2 incorporation into virus-like particles. Understanding this novel EBOV immune evasion strategy will provide valuable insights into the pathogenicity of this deadly pathogen. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
BST-2 restricts IAV release and is countered by the viral M2 protein.
Hu, Siqi; Yin, Lijuan; Mei, Shan; Li, Jian; Xu, Fengwen; Sun, Hong; Liu, Xiaoman; Cen, Shan; Liang, Chen; Li, Ailing; Guo, Fei
2017-02-20
BST-2 (tetherin, CD317, and HM1.24) is induced by interferon and restricts virus release by tethering the enveloped viruses to the cell surface. The effect of BST-2 on influenza A virus (IAV) infection has been inconclusive. In the present study, we report that BST-2 diminishes the production of IAV virus-like particles (VLPs) that are generated by viral neuraminidase and hemagglutinin proteins to a much greater degree than it inhibits the production of wild-type IAV particles. This relatively weaker inhibition of IAV is associated with reduction in BST-2 levels, which is caused by the M2 protein that interacts with BST-2 and leads to down-regulation of cell surface BST-2 via the proteasomal pathway. Similarly to the viral antagonist Vpu, M2 also rescues the production of human immunodeficiency virus-1 VLPs and IAV VLPs in the presence of BST-2. Replication of wild-type and the M2-deleted viruses were both inhibited by BST-2, with the M2-deleted IAV being more restricted. These data reveal one mechanism that IAV employs to counter restriction by BST-2. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shiu-Mei; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Huang, Kuo-Jung
2014-01-20
Bone marrow stromal antigen 2 (BST2), an interferon-inducible antiviral factor, has been shown to block the release of various enveloped viruses from cells. It has also been identified as an innate immune system component. Most enveloped viruses subject to BST2 restriction bud at the plasma membrane. Here we report our findings that (a) the production of human coronavirus 229E (HCoV-229E) progeny viruses, whose budding occurs at the ER-Golgi intermediate compartment (ERGIC), markedly decreases in the presence of BST2; and (b) BST2 knockdown expression results in enhanced HCoV-229E virion production. Electron microscopy analyses indicate that HCoV-229E virions are tethered to cellmore » surfaces or intracellular membranes by BST2. Our results suggest that BST2 exerts a broad blocking effect against enveloped virus release, regardless of whether budding occurs at the plasma membrane or intracellular compartments. - Highlights: • BST2 knockdown expression results in enhanced HCoV-229E egress. • HCoV-229E virions are tethered to cell surfaces or intracellular membranes by BST2. • HCoV-229E infection at high MOI can significantly downregulate HeLa BST2 and rescue HIV-1 egress.« less
Decrease in body surface temperature before parturition in ewes.
Nabenishi, Hisashi; Yamazaki, Atusi
2017-04-21
This study investigated the correlation between the body surface temperature (BST) and core body temperature of ewes and changes in BST during the prepartum stage in pregnant ewes. Four non-pregnant adult ewes were used in the first experiment. The BST of the upper neck, vaginal temperature (VT), and ambient temperature (AT) were measured every 10 min for seven days and analyzed for correlations. The mean (± SD) BST and VT of ewes during the study period were 35.4 ± 1.7°C and 39.1 ± 0.4°C, respectively, with a correlation of r = 0.62, P < 0.001. This finding suggested that the BST was associated with core body temperature in ewes. In the subsequent experiment, seven pregnant ewes in their third trimester were used to evaluate changes in BST measured at the upper neck 72 h before parturition. The mean BST at -24-0 h (0 h = time of parturition) was significantly lower than that at -72- -48 h and -48- -24 h (P < 0.05). The BST tended to decrease toward parturition; all BST measurements at -16- -3 h were significantly lower than those at -72 h (P < 0.05). A clear circadian rhythm in the BST was observed at two days and the day before parturition and an unclear circadian rhythm was observed on the day of parturition. Therefore, these findings indicate that the BST also decreases before parturition, as do vaginal and rectal temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.-F.; Chu, Jinn P.; Lin, C.C.
2005-07-01
In this study, thin films prepared from the targets of Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (BST), BST/5 mol % MgO, BST/10 mol % MgO, and BST/20 mol % MgO composites, using radio frequency magnetron sputtering, have been reported. As-deposited films were found to be amorphous and began to crystallize after annealing at temperatures of 650 deg. C and above. The addition of MgO in the BST films resulted in the hindrance of crystallization and inhibition of grain growth. MgO was substituted into the BST lattices to a certain degree. High-resolution transmission electron microscopy results revealed some MgO dispersed in the BSTmore » matrix. The MgO dispersed in the dense BST matrix was found to be around 25 nm in size. The dielectric constant was estimated to be 90 for the pure BST film annealed at 700 deg. C, and observed to be slightly reduced with the MgO addition. The dielectric losses of the Ba{sub 0.3}Sr{sub 0.7}TiO{sub 3} (0.006) and BST/MgO films (0.002-0.004) were much less than those of the Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3}(0.013) and Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} films (0.11-0.13). The leakage current was smaller for the BST/10 mol % MgO film compared to the pure BST film and this low leakage current may be attributed to the substitution of Mg in the B sites of BST lattices which might have behaved as an electron acceptors.« less
Enhanced production of enveloped viruses in BST-2-deficient cell lines.
Yi, Eunbi; Oh, Jinsoo; Giao, Ngoc Q; Oh, Soohwan; Park, Se-Ho
2017-10-01
Despite all the advantages that cell-cultured influenza vaccines have over egg-based influenza vaccines, the inferior productivity of cell-culture systems is a major drawback that must be addressed. BST-2 (tetherin) is a host restriction factor which inhibits budding-out of various enveloped viruses from infected host cells. We developed BST-2-deficient MDCK and Vero cell lines to increase influenza virus release in cell culture. BST-2 gene knock-out resulted in increased release of viral particles into the culture medium, by at least 2-fold and up to 50-fold compared to release from wild-type counterpart cells depending on cell line and virus type. The effect was not influenza virus/MDCK/Vero-specific, but was also present in a broad range of host cells and virus families; we observed similar results in murine, human, canine, and monkey cell lines with viruses including MHV-68 (Herpesviridae), influenza A virus (Orthomyxoviridae), porcine epidemic diarrhea virus (Coronaviridae), and vaccinia virus (Poxviridae). Our results suggest that the elimination of BST-2 expression in virus-producing cell lines can enhance the production of viral vaccines. Biotechnol. Bioeng.2017;114: 2289-2297. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tunable Patch Antennas Using Microelectromechanical Systems
2011-05-11
Figure 28, was selected as most suitable to this application. MetalMUMPs is a surface micromachining process with polysilicon , silicon nitride, nickel...yields. MEMS Variable Capacitor Design The MEMS capacitors reported here were an original design that features nickel and polysilicon layers as...the movable plates of a variable parallel plate capacitor. The polysilicon layer was embedded in silicon nitride for electrical isolation and suspended
Cultivating Effective Pedagogical Skills in In-Service Teachers: The Role of Some Teacher Variables
ERIC Educational Resources Information Center
Amusan, Mosunmola A.
2016-01-01
Researchers have opined that pedagogical skill of the teacher is a powerful force. This study investigated variables that are required to cultivate effective pedagogical skills for teaching basic science and technology (BST) in Ogun State Primary Schools in Nigeria. A survey research design was adopted. A total of 148 teachers across the state…
The great escape: viral strategies to counter BST-2/tetherin.
Douglas, Janet L; Gustin, Jean K; Viswanathan, Kasinath; Mansouri, Mandana; Moses, Ashlee V; Früh, Klaus
2010-05-13
The interferon-induced BST-2 protein has the unique ability to restrict the egress of HIV-1, Kaposi's sarcoma-associated herpesvirus (KSHV), Ebola virus, and other enveloped viruses. The observation that virions remain attached to the surface of BST-2-expressing cells led to the renaming of BST-2 as "tetherin". However, viral proteins such as HIV-1 Vpu, simian immunodeficiency virus Nef, and KSHV K5 counteract BST-2, thereby allowing mature virions to readily escape from infected cells. Since the anti-viral function of BST-2 was discovered, there has been an explosion of research into several aspects of this intriguing interplay between host and virus. This review focuses on recent work addressing the molecular mechanisms involved in BST-2 restriction of viral egress and the species-specific countermeasures employed by various viruses.
Decrease in body surface temperature before parturition in ewes
NABENISHI, Hisashi; YAMAZAKI, Atusi
2017-01-01
This study investigated the correlation between the body surface temperature (BST) and core body temperature of ewes and changes in BST during the prepartum stage in pregnant ewes. Four non-pregnant adult ewes were used in the first experiment. The BST of the upper neck, vaginal temperature (VT), and ambient temperature (AT) were measured every 10 min for seven days and analyzed for correlations. The mean (± SD) BST and VT of ewes during the study period were 35.4 ± 1.7°C and 39.1 ± 0.4°C, respectively, with a correlation of r = 0.62, P < 0.001. This finding suggested that the BST was associated with core body temperature in ewes. In the subsequent experiment, seven pregnant ewes in their third trimester were used to evaluate changes in BST measured at the upper neck 72 h before parturition. The mean BST at –24–0 h (0 h = time of parturition) was significantly lower than that at –72– –48 h and –48– –24 h (P < 0.05). The BST tended to decrease toward parturition; all BST measurements at –16– –3 h were significantly lower than those at –72 h (P < 0.05). A clear circadian rhythm in the BST was observed at two days and the day before parturition and an unclear circadian rhythm was observed on the day of parturition. Therefore, these findings indicate that the BST also decreases before parturition, as do vaginal and rectal temperatures. PMID:28163263
Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors
NASA Astrophysics Data System (ADS)
Haridasan, Vrinda
Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband rejection, and constant bandwidth is designed, simulated, fabricated and measured. The filters are fabricated using barium strontium titanate (BST) varactors. Electromagnetic simulations and measured results of the tunable two-pole ferroelectric filter are analyzed to explore the origins of high insertion loss in ferroelectric filters. The results indicate that the high-permittivity of the BST (a ferroelectric) not only makes the filters tunable and compact, but also increases the conductive loss of the ferroelectric-based tunable resonators which translates into high insertion loss in ferroelectric filters.
NASA Astrophysics Data System (ADS)
Park, Young-Ju; Seok, Su-Jeong; Park, Sang-Ho; Kim, Ohyun
2011-03-01
We propose and simulate an embedded touch sensing circuit for active-matrix organic light-emitting diode (AMOLED) displays. The circuit consists of three thin-film transistors (TFTs), one fixed capacitor, and one variable capacitor. AMOLED displays do not have a variable capacitance characteristic, so we realized a variable capacitor to detect touches in the sensing pixel by exploiting the change in the mutual capacitance between two electrodes that is caused by touch. When a dielectric substance approaches two electrodes, the electric field is shunted so that the mutual capacitance decreases. We use the existing TFT process to form the variable capacitor, so no additional process is needed. We use advanced solid-phase-crystallization TFTs because of their stability and uniformity. The proposed circuit detects multi-touch points by a scanning process.
NASA Astrophysics Data System (ADS)
Suzuki, Masato; Nagata, Kazuma; Tanushi, Yuichiro; Yokoyama, Shin
2007-04-01
We have fabricated Mach-Zhender interferometers (MZIs) using the (Ba,Sr)TiO3 (BST) film sputter-deposited at 450 °C, which is a critical temperature for the process after metallization. An optical modulation of about 10% is achieved when 200 V is applied (electric field in BST is 1.2× 104 V/cm). However, the response time of optical modulation to step function voltage is slow (1.0-6.3 s). We propose a model for the slow transient behavior based on movable ions and a long dielectric relaxation time for the BST film, and good qualitative agreement is obtained with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Mack, E-mail: mroach@radonc.ucsf.ed; Bae, Kyounghwa; Lawton, Colleen
Introduction: It is believed that men diagnosed with prostate cancer and a low baseline serum testosterone (BST) may have more aggressive disease, and it is frequently recommended they forgo testosterone replacement therapy. We used two large Phase III trials involving androgen deprivation therapy and external beam radiation therapy to assess the significance of a BST. Methods and Materials: All patients with a BST and complete data (n = 2,478) were included in this analysis and divided into four categories: 'Very Low BST' (VLBST) {<=}16.5th percentile of BST ({<=}248 ng/dL; n = 408); 'Low BST' (LBST) >16.5th percentile and {<=}33rd percentilemore » (>248 ng/dL but {<=}314 ng/dL; n = 415); 'Average BST' (ABST) >33rd percentile and {<=}67th percentile (314-437 ng/dL; n = 845); and 'High BST' (HBST) >67th percentile (>437 ng/dL; n = 810). Outcomes included overall survival, distant metastasis, biochemical failure, and cause-specific survival. All outcomes were adjusted for the following covariates: treatment arm, BST, age (<70 vs. {>=}70), prostate-specific antigen (PSA; <10 vs. 10 {<=} PSA <20 vs. 20 {<=}), Gleason score (2-6 vs. 7 vs. 8-10); T stage (T1-T2 vs. T3-T4), and Karnofsky Performance Status (60-90 vs. 100). Results: On multivariable analysis age, Gleason score, and PSA were independently associated with an increased risk of biochemical failure, distant metastasis and a reduced cause-specific and overall survival (p < 0.05), but BST was not. Conclusions: BST does not affect outcomes in men treated with external beam radiation therapy and androgen deprivation therapy for prostate cancer.« less
Alves, Fernando H F; Crestani, Carlos C; Busnardo, Cristiane; Antunes-Rodrigues, José; Gomes, Felipe V; Resstel, Leonardo B M; Corrêa, Fernando M A
2011-06-01
Microinjection of the cholinergic agonist carbachol into the bed nucleus of the stria terminalis (BST) has been reported to cause pressor response in unanesthetized rats, which was shown to be mediated by an acute release of vasopressin into the systemic circulation and followed by baroreflex-mediated bradycardia. In the present study, we tested the possible involvement of the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei in the pressor response evoked by carbachol microinjection into the BST of unanesthetized rats. For this, cardiovascular responses following carbachol (1 nmol/100 nL) microinjection into the BST were studied before and after PVN or SON pretreatment, either ipsilateral or contralateral in relation to BST microinjection site, with the nonselective neurotransmission blocker cobalt chloride (CoCl₂, 1 mM/100 nL). Carbachol microinjection into the BST evoked pressor response. Moreover, BST treatment with carbachol significantly increased plasma vasopressin levels, thus confirming previous evidences that carbachol microinjection into the BST evokes pressor response due to vasopressin release into the circulation. SON pretreatment with CoCl₂, either ipsilateral or contralateral in relation to BST microinjection site, inhibited the pressor response to carbachol microinjection into the BST. However, CoCl₂ microinjection into the ipsilateral or contralateral PVN did not affect carbachol-evoked pressor response. In conclusion, our results suggest that pressor response to carbachol microinjection into the BST is mediated by SON magnocellular neurons, without significant involvement of those in the PVN. The results also indicate that responses to carbachol microinjection into the BST are mediated by a neural pathway that depends on the activation of both ipsilateral and contralateral SON. Copyright © 2011 Elsevier B.V. All rights reserved.
Takahashi, Yoshiaki; Seki, Hirokazu
2009-01-01
This paper proposes a novel regenerative braking control system of electric wheelchairs for senior citizen. "Electric powered wheelchair", which generates the driving force by electric motors according to the human operation, is expected to be widely used as a mobility support system for elderly people. This study focuses on the braking control to realize the safety and smooth stopping motion using the regenerative braking control technique based on fuzzy algorithm. The ride quality improvement and energy recycling can be expected by the proposed control system with stopping distance estimation and variable frequency control on the step-up/down chopper type of capacitor regenerative circuit. Some driving experiments confirm the effectiveness of the proposed control system.
Montero-Pardo, A; Hernández-Cerón, J; Rojas-Maya, S; Valencia, J; Rodríguez-Cortez, A; Gutiérrez, C G
2011-05-01
Treatment with bovine somatotropin (bST) during estrous synchronization increased fertility and prolificacy in sheep. In the present study, a single dose of bST 5 days before the end of progestin treatment improved cleavage and embryo development. Stage of estrous cycle was synchronized in ewes (n=32) with progestin and superovulation was induced by use of FSH. Five days before the end of progestin treatment, ewes were randomly assigned to two groups: bST group (n=16) received a depot injection of 125 mg of bST sc (Lactotropina, Elanco, México) and the control group (n=16) received saline solution. Estrous was detected with rams fitted with an apron every 2 h and estrous sheep were mated every 8 h whilst in estrous. Embryos were recovered on Day 7 post mating, assessed microscopically and fixed in 4% paraformaldehyde. Cell number in blastocysts was counted after Hoechst 33342 staining. Plasma concentrations of IGF-I, insulin and progesterone were determined in eight sheep per group from the day of bST treatment to the day of embryo recovery. Cleavage rate, percentage of transferable embryos (transferable embryos/cleaved) and percentage of embryos reaching the blastocyst stage (blastocyst/cleaved) were compared between groups by logistic regression. IGF-I, insulin and progesterone plasma concentrations were analyzed by ANOVA for repeated measurements and cell number by ANOVA. Cleavage rate was greater (P<0.01) in bST treatment group (86%) than in the control group (62%). Similarly, the proportion of embryos reaching the blastocyst stage (bST=68.7 vs control=42.5) and the number of cells per blastocyst (bST group 91.8±5.5 compared to control group 75±6) were greater (P<0.01) in the bST-treated sheep. Plasma concentrations of IGF-I and insulin were greater (P<0.01) in the bST-treated group. No changes were observed in progesterone concentrations (P=0.5). It is concluded that bST injection 5 days before progestin removal increases cleavage rate and the proportion of embryos that reach the blastocyst stage. These effects are associated with an increase in IGF-I and insulin concentrations. Copyright © 2011 Elsevier B.V. All rights reserved.
Evaluating the performance of microbial fuel cells powering electronic devices
NASA Astrophysics Data System (ADS)
Dewan, Alim; Donovan, Conrad; Heo, Deukhyoun; Beyenal, Haluk
A microbial fuel cell (MFC) is capable of powering an electronic device if we store the energy in an external storage device, such as a capacitor, and dispense that energy intermittently in bursts of high-power when needed. Therefore its performance needs to be evaluated using an energy-storing device such as a capacitor which can be charged and discharged rather than other evaluation techniques, such as continuous energy dissipation through a resistor. In this study, we develop a method of testing microbial fuel cell performance based on storing energy in a capacitor. When a capacitor is connected to a MFC it acts like a variable resistor and stores energy from the MFC at a variable rate. In practice the application of this method to testing microbial fuel cells is very challenging and time consuming; therefore we have custom-designed a microbial fuel cell tester (MFCT). The MFCT evaluates the performance of a MFC as a power source. It uses a capacitor as an energy storing device and waits until a desired amount of energy is stored then discharges the capacitor. The entire process is controlled using an analog-to-digital converter (ADC) board controlled by a custom-written computer program. The utility of our method and the MFCT is demonstrated using a laboratory microbial fuel cell (LMFC) and a sediment microbial fuel cell (SMFC). We determine (1) how frequently a MFC can charge a capacitor, (2) which electrode is current-limiting, (3) what capacitor value will allow the maximum harvested energy from a MFC, which is called the "optimum charging capacitor value," and (4) what capacitor charging potential will harvest the maximum energy from a MFC, which is called the "optimum charging potential." Using a LMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 108 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 300 mV. Using a SMFC we find that (1) the time needed to charge a 3-F capacitor from 0 to 500 mV is 5 min, (2) the optimum charging capacitor value is 3 F, and (3) the optimum charging potential is 500 mV. Our results demonstrate that the developed method and the MFCT can be used to evaluate and optimize energy harvesting when a MFC is used with a capacitor to power wireless sensors monitoring the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xiaobing, E-mail: xiaobing-yan@126.com, E-mail: mseyanx@nus.edu.sg; Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore 117576; Li, Yucheng
2016-01-18
Oxygen vacancies are widely thought to be responsible for resistive switching (RS) effects based on polycrystalline oxides films. It is also well known that grain boundaries (GB) serve as reservoirs for accumulating oxygen vacancies. Here, Ar gas was introduced to enlarge the size of GB and increase the quantity of oxygen vacancies when the Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) films were deposited by pulse laser deposition technique. The experimental results indicate that the RS properties of the device exhibits better in the Ar-introduced BST films than in the O{sub 2}-grown BST films. High resolution transmission electron microscopy images show thatmore » an amorphous region GB with large size appears between two lattice planes corresponding to oxygen vacancies defects in the Ar-introduced BST. Fourier-transform infrared reflectivity spectroscopy results also reveal highly accumulated oxygen vacancies in the Ar-introduced BST films. And we propose that the conduction transport of the cell was dominantly contributed from not ions migration of oxygen vacancies but the electrons in our case according to the value of activation energies of two kinds of films.« less
Physical properties of bifunctional BST/LSMO nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beltran-Huarac, Juan, E-mail: baristary26@gmail.com; Morell, Gerardo; Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 00936
2014-02-28
We report the fabrication of bifunctional nanocomposites consisting of ferroelectric Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) and ferromagnetic La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) at different concentrations via a high-temperature solid state route. The structural, dielectric, electrical, magnetodielectric (MD), magnetoelectric (ME) and magnetic properties of BST/LSMO nanocomposites were systematically investigated over a wide range of temperatures and frequencies. The X-Ray Diffraction analyses reveal the nanocrystalline nature of the heterostructures, wherein both perovskite phases co-exist. No parasitic phases were observed. The study of the dielectric properties shows that the nanocomposites exhibit relaxor ferroelectric character, with ferroelectric-paraelectric phase transition temperatures around 287–292 K that domore » not follow the Curie-Weiss law. The electrical measurements indicate that ac conductivities of the nanocomposites follow the Jonscher's universal power law, with activation energies of 0.42–0.63 eV based on Arrhenius-type behavior at high temperatures. The nanocomposites exhibit well-defined ferromagnetic hysteresis loops at room temperature (RT). The MD and ME measurements at RT indicate that BST/LSMO exhibits a nonlinear ME effect at low frequencies, with a threshold near 0.5 T. The magnetocapacitance (MC{sub p}) measurements evidence a quadratic dependence on magnetic field, further confirming the multiferroic nature of BST/LSMO. The order of MC{sub p} was found to be ∼7% per Tesla. The analysis of the MC{sub p} measurements indicates that one of the BST/LSMO compositions studied can be considered as a new multiferroic compound.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Hongliang; Zhou Wancheng; Luo Fa
The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less
Liu, Wei; Zou, Zui; Huang, Xin; Shen, Hui; He, Li Juan; Chen, Si Min; Li, Li Ping; Yan, Lan; Zhang, Shi Qun; Zhang, Jun Dong; Xu, Zheng; Xu, Guo Tong; An, Mao Mao; Jiang, Yuan Ying
2016-01-01
Glycosylphosphatidyl inositol anchored proteins (GPI-APs) on fungal cell wall are essential for invasive infections. While the function of inositol deacylation of GPI-APs in mammalian cells has been previously characterized the impact of inositol deacylation in fungi and implications to host infection remains largely unexplored. Herein we describe our identification of BST1, an inositol deacylase of GPI-Aps in Candida albicans, was critical for GPI-APs cell wall attachment and host infection. BST1-deficient C. albicans (bst1Δ/Δ) was associated with severely impaired cell wall anchorage of GPI-APs and subsequen unmasked β-(1,3)-glucan. Consistent with the aberrant cell wall structures, bst1Δ/Δ strain did not display an invasive ability and could be recognized more efficiently by host immune systems. Moreover, BST1 null mutants or those expressing Bst1 variants did not display inositol deacylation activity and exhibited severely attenuated virulence and reduced organic colonization in a murine systemic candidiasis model. Thus, Bst1 can facilitate cell wall anchorage of GPI-APs in C. albicans by inositol deacylation, and is critical for host invasion and immune escape. PMID:27708385
Atroszko, Paweł Andrzej; Andreassen, Cecilie Schou; Griffiths, Mark D.; Pallesen, Ståle
2016-01-01
Background and aims “Study addiction” has recently been conceptualized as a behavioral addiction and defined within the framework of work addiction. Using a newly developed measure to assess this construct, the Bergen Study Addiction Scale (BStAS), the present study examined the 1-year stability of study addiction and factors related to changes in this construct over time, and is the first longitudinal investigation of study addiction thus far. Methods The BStAS and the Ten Item Personality Inventory were administered online together with questions concerning demographics and study-related variables in two waves. In Wave 1, a total of 2,559 students in Norway and 2,177 students in Poland participated. A year later, in Wave 2, 1,133 Norwegians and 794 Polish, who were still students completed the survey. Results The test–retest reliability coefficients for the BStAS revealed that the scores were relatively stable over time. In Norway, scores on the BStAS were higher in Wave 2 than in Wave 1, whereas in Poland, the reverse pattern was observed. Learning time outside classes at Wave 1 was positively related to escalation of study addiction symptoms over time in both samples. Being female and scoring higher on neuroticism was related to an increase in study addiction in the Norwegian sample only. Conclusions Study addiction appears to be temporally stable, and the amount of learning time spent outside classes predicts changes in study addiction 1 year later. PMID:27156381
Méthot, Stéphane; Changoor, Adele; Tran-Khanh, Nicolas; Hoemann, Caroline D.; Stanish, William D.; Restrepo, Alberto; Shive, Matthew S.; Buschmann, Michael D.
2016-01-01
Objective The efficacy and safety of BST-CarGel, a chitosan-based medical device for cartilage repair, was compared with microfracture alone at 1 year during a multicenter randomized controlled trial (RCT) in the knee. The quality of repair tissue of osteochondral biopsies collected from a subset of patients was compared using blinded histological assessments. Methods The international RCT evaluated repair tissue quantity and quality by 3-dimensional quantitative magnetic resonance imaging as co-primary endpoints at 12 months. At an average of 13 months posttreatment, 21/41 BST-CarGel and 17/39 microfracture patients underwent elective second look arthroscopies as a tertiary endpoint, during which ICRS (International Cartilage Repair Society) macroscopic scoring was carried out, and osteochondral biopsies were collected. Stained histological sections were evaluated by blinded readers using ICRS I and II histological scoring systems. Collagen organization was evaluated using a polarized light microscopy score. Results BST-CarGel treatment resulted in significantly better ICRS macroscopic scores (P = 0.0002) compared with microfracture alone, indicating better filling, integration, and tissue appearance. Histologically, BST-CarGel resulted in a significant improvement of structural parameters—Surface Architecture (P = 0.007) and Surface/Superficial Assessment (P = 0.042)—as well as cellular parameters—Cell Viability (P = 0.006) and Cell Distribution (P = 0.032). No histological parameters were significantly better for the microfracture group. BST-CarGel treatment also resulted in a more organized repair tissue with collagen stratification more similar to native hyaline cartilage, as measured by polarized light microscopy scoring (P = 0.0003). Conclusion Multiple and independent analyses in this biopsy substudy demonstrated that BST-CarGel treatment results in improved structural and cellular characteristics of repair tissue at 1 year posttreatment compared with microfracture alone, supporting previously reported results by quantitative magnetic resonance imaging. PMID:26958314
Lee, Hao-Yuan; Huang, Chih-Wei; Chen, Chyi-Liang; Wang, Yi-Hsin; Chang, Chee-Jen; Chiu, Cheng-Hsun
2015-12-01
Acinetobacter baumannii is one of the most important nosocomial pathogens worldwide. This study aimed to use multilocus sequence typing (MLST) for the epidemiological surveillance of A. baumannii isolates in Taiwan and analyze the clinical presentations and patients' outcome. MLST according to both Bartual's PubMLST and Pasteur's MLST schemes was applied to characterize bloodstream imipenem-resistant A. baumannii (IRAB) infection in intensive care units in a medical center. A total of 39 clinical IRAB bloodstream isolates in 2010 were enrolled. We also collected 13 imipenem-susceptible A. baumannii (ISAB) bloodstream isolates and 30 clinical sputum isolates (24 IRAB and 6 ISAB) for comparison. Clinical presentations and outcome of the patients were analyzed. We found that infection by ST455(B)/ST2(P) and inappropriate initial therapy were statistically significant risk factors for mortality. More than one-third of the IRAB isolates belonged to ST455(B)/ST2(P). Most ST455(B)/ST2(P) (80%) carried ISAba1-blaOXA-23, including 10 (66.7%) with Tn2006 (ISAba1-blaOXA-23-ISAba1) in an AbaR4-type resistance island. ST455(B)/ST2(P) appears to evolve from ST208(B)/ST2(P) of clonal complex (CC) 92(B)/CC2(P). In this hospital-based study, A. baumannii ST455 accounted for 38.5% of IRAB bacteremia, with a high mortality of 86.7%. Approximately 85% of ST455(B)/ST2(P)bacteremia had a primary source of ventilation-associated pneumonia. We report the emergence in Taiwan of IRAB ST455(B)/ST2(P), which is the current predominant clone of IRAB in our hospital and has been causing bacteremia with high mortality in critical patients. Copyright © 2015. Published by Elsevier B.V.
Yamamoto-Katayama, S; Sato, A; Ariyoshi, M; Suyama, M; Ishihara, K; Hirano, T; Nakamura, H; Morikawa, K; Jingami, H
2001-01-01
Cyclic ADP ribose (cADPR) is a novel second messenger that releases calcium from intracellular calcium stores, but works independently of inositol 1,4,5-trisphosphate. In mammals ADP-ribosyl cyclase function is found in two membrane proteins, CD38 and bone marrow stromal cell antigen 1 (BST-1)/CD157. These enzymes are exposed extracellularly and also possess cADPR hydrolase activity, but an intracellular soluble ADP-ribosyl cyclase has been reported in human T-cells. Previously, a soluble form of BST-1/CD157 (sBST-1), which lacked the glycosylphosphatidylinositol-anchored portion, was expressed by a baculovirus-insect-cell system. In this study, we have purified the sBST-1, and it migrated as two major bands by SDS/PAGE, suggesting that it is post-translationally modified. BST-1 contains four putative N-glycosylation sites. Tunicamycin treatment reduced sBST-1 expression in the culture medium, indicating that N-glycosylation is essential for secretion. Site-directed mutagenesis was performed to generate sBST-1 mutants (N1-N4), each preserving a single N-glycosylation site. N1, N3 and N4 were well secreted into the medium, and were each detected as a single band. Although N3 and N4 retained the ADP-ribosyl cyclase activity, the cADPR-hydrolase activity was retained only in N4. We conclude that N-glycosylation of sBST-1 facilitates the folding of the nascent polypeptide chain into a conformation that is conductive for intracellular transport and enzymic activity. Furthermore a crystal has been obtained using the N4 mutant, but not the wild-type sBST-1. Thus the artificial engineering of N-glycosylation sites could be an effective method to generate homogeneous material for structural studies. PMID:11439087
Ribosomal protein L24 defect in Belly spot and tail (Bst), a mouse Minute
Oliver, Edward R.; Saunders, Thomas L.; Tarlé, Susan A.; Glaser, Tom
2008-01-01
Summary Ribosomal protein mutations, termed Minutes, have been instrumental in studying the coordination of cell and tissue growth in Drosophila. Although abundant in flies, equivalent defects in mammals are relatively unknown. Belly spot and tail (Bst) is a semidominant mouse mutation that disrupts pigmentation, somitogenesis and retinal cell fate determination. Here, we identify Bst as a deletion within the Rpl24 riboprotein gene. Bst significantly impairs Rpl24 splicing and ribosome biogenesis. Bst/+ cells have decreased rates of protein synthesis and proliferation, and are outcompeted by wild-type cells in C57BLKS↔ROSA26 chimeras. Bacterial artificial chromosome (BAC) and cDNA transgenes correct the mutant phenotypes. Our findings establish Bst as a mouse Minute and provide the first detailed characterization of a mammalian ribosomal protein mutation. PMID:15289434
NASA Astrophysics Data System (ADS)
Wang, Yi; Liu, Baoting; Wei, Feng; Yang, Zhimin; Du, Jun
2007-01-01
The authors report the fabrication of (Ba0.6Sr0.4)TiO3 (BST) film on Pt /Si(001) substrate without Ti adhesion layer by magnetron sputtering. X-ray diffraction technique is used to characterize the orientation and phase purity of BST/Pt heterostructure. It is found that both BST and Pt films are (111) textured. The (111) BST films are observed to have high tunability of 49.4%; the dielectric constant and dielectric loss of the BST film are about 682 and 0.015, respectively. The leakage current density of BST film agrees well with the space-charge-limited current theory at room temperature and is only 3.90×10-8A/cm2 at 455kV/cm.
Zhou, Jinming; Zhang, Zhixin; Mi, Zeyun; Wang, Xin; Zhang, Quan; Li, Xiaoyu; Liang, Chen; Cen, Shan
2012-02-14
Bone marrow stromal cell antigen 2 (BST-2) inhibits the release of enveloped viruses from the cell surface. Various viral counter measures have been discovered, which allow viruses to escape BST-2 restriction. Human immunodeficiency virus type 1 (HIV-1) encodes viral protein U (Vpu) that interacts with BST-2 through their transmembrane domains and causes the downregulation of cell surface BST-2. In this study, we used a computer modeling method to establish a molecular model to investigate the binding interface of the transmembrane domains of BST-2 and Vpu. The model predicts that the interface is composed of Vpu residues I6, A10, A14, A18, V25, and W22 and BST-2 residues L23, I26, V30, I34, V35, L41, I42, and T45. Introduction of mutations that have been previously reported to disrupt the Vpu-BST-2 interaction led to a calculated higher binding free energy (MMGBSA), which supports our molecular model. A pharmacophore was also generated on the basis of this model. Our results provide a precise model that predicts the detailed interaction occurring between the transmembrane domains of Vpu and BST-2 and should facilitate the design of anti-HIV agents that are able to disrupt this interaction.
Downward Slope Driving Control for Electric Powered Wheelchair Based on Capacitor Regenerative Brake
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Takahashi, Yoshiaki
This paper describes a novel capacitor regenerative braking control scheme of electric powered wheelchairs for efficient driving on downward slopes. An electric powered wheelchair, which generates the driving force by electric motors, is expected to be widely used as a mobility support system for elderly people and disabled people; however the energy efficiency has to be further improved because it is driven only by battery energy. This study proposes a capacitor regenerative braking circuit and two types of velocity control schemes with variable duty ratio. The proposed regenerative braking circuit is based on the step-up/down circuit with additional resistance and connects right and left motors in series in order to obtain a larger braking power. Some driving experiments on a practical downward slope show the effectiveness of the proposed control system.
Mercadante, V R G; Fontes, P L P; Ciriaco, F M; Henry, D D; Moriel, P; Ealy, A D; Johnson, S E; DiLorenzo, N; Lamb, G C
2016-05-01
The effects of administration of recombinant bovine ST (bST) on plasma hormone concentrations of cows, conceptus development, and postnatal calf performance were examined. Lactating beef cows ( = 190) were exposed to a fixed-time AI (TAI) protocol from d -10 to 0 (TAI on d 0). Cows were blocked by breed and stratified by days postpartum and then randomly assigned to receive, subcutaneously 1) 2 injections of saline (1 mL of 0.9% saline), 1 on d 0 at TAI and a second injection on d 14 (CTRL; = 53); 2) an injection of 325 mg of bST on d 0 and a saline injection on d 14 (bST0; = 48); 3) a saline injection on d 0 and an injection of 325 mg of bST on d 14 (bST14; = 49); or 4) 2 injections of 325 mg of bST, 1 on d 0 and a second injection on d 14 (bST0+14; = 40). Pregnancy status, crown-to-rump length (CRL) on Day 35, and crown-to-nose length (CNL) on Day 65 were determined via transrectal ultrasonography. Blood samples were collected on d 0, 7, 14, 21, 35, and 65, relative to TAI, to determine plasma concentrations of progesterone (P4), IGF-1, and pregnancy-specific protein B (PSPB) and also on d 18 and 21 for isolation of peripheral blood leukocytes for RNA extraction and measurement of interferon-stimulated genes transcript abundance. Individual calf BW was determined at birth and every 30 d until weaning. A subset of 24 calves was randomly selected for liver biopsies at birth to determine mRNA expression of target genes. Administration of bST to cows increased ( < 0.0001) concentrations of plasma IGF-1 for 14 d after injection compared with CTRL but did not affect fetal CRL and CNL ( = 0.23). Cows receiving bST only on d 0 had a greater ( = 0.05) transcript abundance in myxovirus resistance 2 on d 21 compared with 2bST cows (2.0- and 0.8-fold for bST0 and 2bST, respectively), whereas cows receiving bST14 and CTRL were intermediate (1.2- and 0.9-fold, respectively). Calf BW did not differ ( ≥ 0.100) among treatments on d 0, 30, 60, 90, 120, and 150 relative to birth. Injection of bST only on d 0 tended ( = 0.062) to increase calf liver mRNA expression of at birth compared with the calves born to cows in other treatments. Therefore, during a TAI protocol, the administration of 1 or 2 injections of 325 mg of bST to lactating beef cows enhanced their plasma concentrations of IGF-1 but failed to improve fetal size and plasma concentrations of maternal PSPB and P4 and had no effect on postnatal calf growth performance.
Brozos, C N; Saratsis, P; Boscos, C; Kyriakis, S C; Alexopoulos, C
1999-08-16
Twenty-two polytocous lactating Chios ewes were used to test the effects of bovine somatotropin (bST) on reproduction, progesterone concentration and LH secretion during estrus. Half of the ewes were injected every second week with 160 mg bST in a prolonged release vehicle, from the fifth day post partum until the end of lactation, while the remaining ones were used as controls. All animals were fed the same amount of ration. Supplementation with bST resulted in an increase of milk production (P<0.05) and an insignificant trend for delayed resumption of normal estrous cycles. Although there were no differences between groups, there was also a tendency for the bST group to display lower progesterone concentrations during the first three fortnights after the onset of normal estrous cycles and higher ones during the last three fortnights of the experiment, compared with the control group. Duration of the first normal luteal phase after delivery of the bST group was found to be shorter compared with the control group (P<0.05). After estrous synchronization the bST group showed a shorter estrus compared with the control group (P<0.05). Average and baseline LH concentrations during synchronized estrous in the bST group was lower (P<0.001) compared with the control group. Additionally, the conception rate did not differ between the two groups. This study supports the concept that the beneficial effects of bST treatment on milk production outweigh the potential deleterious effects on reproduction.
Wilcox, Meredith Leigh; Acuña, Juan Manuel; de la Vega, Pura Rodriguez; Castro, Grettel; Madhivanan, Purnima
2015-05-01
The United States Black population is disproportionately affected by colorectal cancer (CRC) in terms of incidence and mortality. Studies suggest that screening rates are lower among Blacks compared with non-Hispanic Whites (NHWs). However, studies on CRC screening within Black subgroups are lacking. This study examined disparities in blood stool test (BST) compliance and colonoscopy use by race/ethnicity (Haitian, NHW, non-Hispanic Black [NHB], and Hispanic) among randomly selected households in Little Haiti, Miami-Dade County, Florida.This study used cross-sectional, health and wellness data from a random-sample, population-based survey conducted within 951 households in Little Haiti between November 2011 and December 2012. BST compliance and colonoscopy use were self-reported and defined, conservatively, as the use of BST within the past 2 years and the ever use of colonoscopy by any household member. Factors associated with BST compliance and colonoscopy use were identified using logistic regression models. Analyses were restricted to households containing at least 1 member ≥50 years (n = 666).Nearly half of the households were compliant with BST (rate [95% confidence interval (CI)] = 45% [41%-49%]) and completed colonoscopy (rate [95% CI] = 53% [49%-58%]). Compliance with BST was not associated with race/ethnicity (P = 0.76). Factors independently associated with BST compliance included low educational attainment (adjusted odds ratio [AOR] = 0.63, P = 0.03), being single (AOR = 0.47, P = 0.004), retirement (AOR = 1.96, P = 0.01), and the presence of diagnosed health problems (AOR = 1.24, P = 0.01). Colonoscopy use was lower among Haitian households (46%) compared with NHW (63%), NHB (62%), and Hispanic households (54%) (P = 0.002). Factors independently associated with colonoscopy use included identifying as NHB (compared with Haitian) (AOR = 1.80, P = 0.05), being single (AOR = 0.44, P = 0.001), retirement (AOR = 1.86, P = 0.02), lack of continuous insurance (AOR = 0.45, P < 0.001), and the presence of diagnosed health problems (AOR = 1.44, P < 0.001) and physical limitations/disabilities (AOR = 1.88, P = 0.05).Compliance with BST and use of colonoscopy are low within households in the Little Haiti community. Significant disparities in the use of colonoscopy exist between Haitian and NHB households. Barriers and facilitators of colonoscopy within each racial/ethnic group need to be identified as the next step to developing culturally appropriate, community-based interventions aimed at increasing colonoscopy use in this large minority population.
Moallem, U; Kaim, M; Folman, Y; Sklan, D
1997-09-01
This study examined the mechanisms by which calcium soaps of fatty acids and bovine somatotropin (bST) affect production and reproduction of high producing cows. Calcium soaps of fatty acids were fed at 2.2% dry matter, and 500 mg of Zn-sometribove (Monsanto Inc., St Louis, MO) were injected subcutaneously every 14 d from 10 to 150 d in milk (DIM). Production of fat-corrected milk was increased by 3.5 kg/d when calcium soaps of fatty acids were fed, by 6.1 kg/d when bST was administered, and by 7.4 kg/d when calcium soaps of fatty acids were fed and bST was administered. Body weight was similar for cows on all treatments until 85 DIM after which cows that were treated with bST had lower body weights. Body condition scores decreased more for cows treated with bST and began increasing later and more slowly. Treatment with bST resulted in more cows that experienced first ovulation after 30 DIM, and more cows on the control treatment exhibited first estrus before 35 DIM. Days open were greater when bST was administered. After the first artificial insemination, conception rates were similar for cows on the control treatment and for cows fed calcium soaps of fatty acids; conception rates after the first artificial insemination were low for all cows treated with bST. Pregnancy rates at 120 and 150 DIM were decreased by bST. Number of DIM to first ovulation, number of DIM to first estrus, and days open were negatively correlated with glucose and cholesterol concentrations in plasma. Production of fat-corrected milk was correlated with days open and with concentrations of triglycerides in plasma, nonesterified fatty acids, and cholesterol. Increased production had different effects on reproduction when induced by calcium soaps of fatty acids or bST treatment. Some of the adverse effects of bST treatments were alleviated by calcium soaps of fatty acids.
NASA Technical Reports Server (NTRS)
VanKeuls, F. W.; Mueller, C. H.; Romanofsky, R. R.; Warner, J. D.; Miranda, F. A.; Jiang, H.
2002-01-01
Historically, tunable dielectric devices using thin crystalline Ba(x)Sr(1-x)TiO3 (BST) films deposited on lattice-matched substrates, such as LaAlO3, have generally been grown using pulsed laser deposition (PLD). Highly oriented BST films can be grown by PLD but large projects are hampered by constraints of deposition area, deposition time and expense. The Metal-Organic Chemical Liquid Deposition (MOCLD) process allows for larger areas, faster turnover and lower cost. Several BST films deposited on LaAlO3 by MOCLD have been tested in 16 GHz coupled microstrip phase shifters. They can be compared with many PLD BST films tested in the same circuit design. The MOCLD phase shifter performance of 293 deg. phase shift with 53 V/micron dc bias and a figure of merit of 47 deg./dB is comparable to the most highly oriented PLD BST films. The PLD BST films used here have measured XRD full-width-at-half-maxima (FWHM) as low as 0.047 deg.. The best FWHM of these MOCLD BST films has been measured to be 0.058 deg.
Kamada, Anselmo J; Bianco, Anna M; Zupin, Luisa; Girardelli, Martina; Matte, Maria C C; Medeiros, Rúbia Marília de; Almeida, Sabrina Esteves de Matos; Rocha, Marineide M; Segat, Ludovica; Chies, José A B; Kuhn, Louise; Crovella, Sergio
2016-07-01
Bone marrow stromal cell antigen-2 (BST-2)/Tetherin is a restriction factor that prevents Human immunodeficiency virus type 1 (HIV-1) release from infected cells and mediates pro-inflammatory cytokine production. This study investigated the risk conferred by single nucleotide polymorphisms (rs919266, rs9192677, and rs9576) at BST-2 coding gene (BST2) in HIV-1 mother-to-child transmission and in disease progression. Initially, 101 HIV-1+ pregnant women and 331 neonates exposed to HIV-1 from Zambia were enrolled. Additional BST2 single nucleotide polymorphism analyses were performed in 2 cohorts with acquired immunodeficiency syndrome (AIDS) progression: an adult Brazilian cohort (37 rapid, 30 chronic and 21 long-term non-progressors) and an Italian pediatric cohort (21 rapid and 67 slow progressors). The rs9576A allele was nominally associated with protection during breastfeeding (P = 0.019) and individuals carrying rs919266 GA showed slower progression to AIDS (P = 0.033). Despite the influence of rs919266 and rs9576 on BST2 expression being still undetermined, a preventive role by BST2 polymorphisms was found during HIV-1 infection.
Park, Hyun-Jung; Shim, Hyun Soo; Kim, Jeom Yong; Kim, Joo Young; Park, Sun Kyu; Shim, Insop
2015-01-01
Cancer related fatigue (CRF) is one of the most common side effects of cancer and its treatments. A large proportion of cancer patients experience cancer-related physical and central fatigue so new strategies are needed for treatment and improved survival of these patients. BST204 was prepared by incubating crude ginseng extract with ginsenoside-β-glucosidase. The purpose of the present study was to examine the effects of BST204, mixture of ginsenosides on 5-fluorouracil (5-FU)-induced CRF, the glycogen synthesis, and biochemical parameters in mice. The mice were randomly divided into the following groups: the naïve normal (normal), the HT-29 cell inoculated (xenograft), xenograft and 5-FU treated (control), xenograft + 5-FU + BST204-treated (100 and 200 mg/kg) (BST204), and xenograft + 5-FU + modafinil (13 mg/kg) treated group (modafinil). Running wheel activity and forced swimming test were used for evaluation of CRF. Muscle glycogen, serum inflammatory cytokines, aspartic aminotransferase (AST), alanine aminotransferase (ALT), creatinine (CRE), white blood cell (WBC), neutrophil (NEUT), red blood cell (RBC), and hemoglobin (HGB) were measured. Treatment with BST204 significantly increased the running wheel activity and forced swimming time compared to the control group. Consistent with the behavioral data, BST204 markedly increased muscle glycogen activity and concentrations of WBC, NEUT, RBC, and HGB. Also, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), AST, ALT, and CRE levels in the serum were significantly reduced in the BST204-treated group compared to the control group. This result suggests that BST204 may improve chemotherapy-related fatigue and adverse toxic side effects.
Haldavnekar, Richa Vivek; Tekur, Padmini; Nagarathna, Raghuram; Nagendra, Hongasandra Ramarao
2014-01-01
Background: Studies have shown that Integrated Yoga reduces pain, disability, anxiety and depression and increases spinal flexibility and quality-of-life in chronic low back pain (CLBP) patients. Objective: The objective of this study was to compare the effect of two yoga practices namely laghu shankha prakshalana (LSP) kriya, a yogic colon cleansing technique and back pain specific asanas (Back pain special technique [BST]) on pain, disability, spinal flexibility and state anxiety in patients with CLBP. Materials and Methods: In this randomized control (self as control) study, 40 in-patients (25 were males, 15 were females) between 25 and 70 years (44.05 ± 13.27) with CLBP were randomly assigned to receive LSP or BST sessions. The measurements were taken immediately before and after each session of either of the practices (30 min) in the same participant. Randomization was used to decide the day of the session (3rd or 5th day after admission) to ensure random distribution of the hang over effect of the two practices. Statistical analysis was performed using the repeated measures analysis of variance. Results: Significant group * time interaction (P < 0.001) was observed in 11 point numerical rating scale, spinal flexibility (on Leighton type Goniometer) and (straight leg raise test in both legs), Oswestry Disability Index, State Anxiety (XI component of Spieldberger's state and trait anxiety inventory. There was significantly (P < 0.001, between groups) better reduction in LSP than BST group on all variables. No adverse effects were reported by any participant. Conclusion: Clearing the bowel by yoga based colon cleansing technique (LSP) is safe and offers immediate analgesic effect with reduced disability, anxiety and improved spinal flexibility in patients with CLBP. PMID:25035620
Thomas, Benjamin R; Lafasakis, Michael; Spector, Vicki
2016-12-01
The aim of this study was to evaluate the effects of behavioral skills training (BST) on the skateboarding skills of an 11-year-old male with autism spectrum disorder (ASD). BST was used in a multiple-probe across skills design to teach five target skateboarding skills. Imitation of an additional skill was also assessed outside of BST sessions. The overall percentage of correct skateboarding skills improved following BST. Performance gains were stable in probes across settings, and additional imitations increased across the study.
Herrero-Fresno, Ana; Espinel, Irene Cartas; Spiegelhauer, Malene Roed; Guerra, Priscila Regina; Andersen, Karsten Wiber; Olsen, John Elmerdahl
2018-01-01
In a previous study, a novel virulence gene, bstA , identified in a Salmonella enterica serovar Typhimurium sequence type 313 (ST313) strain was found to be conserved in all published Salmonella enterica serovar Dublin genomes. In order to analyze the role of this gene in the host-pathogen interaction in S Dublin, a mutant where this gene was deleted ( S Dublin Δ bstA ) and a mutant which was further genetically complemented with bstA ( S Dublin 3246-C) were constructed and tested in models of in vitro and in vivo infection as well as during growth competition assays in M9 medium, Luria-Bertani broth, and cattle blood. In contrast to the results obtained for a strain of S Typhimurium ST313, the lack of bstA was found to be associated with increased virulence in S Dublin. Thus, S Dublin Δ bstA showed higher levels of uptake than the wild-type strain during infection of mouse and cattle macrophages and higher net replication within human THP-1 cells. Furthermore, during mouse infections, S Dublin Δ bstA was more virulent than the wild type following a single intraperitoneal infection and showed an increased competitive index during competitive infection assays. Deletion of bstA did not affect either the amount of cytokines released by THP-1 macrophages or the cytotoxicity toward these cells. The histology of the livers and spleens of mice infected with the wild-type strain and the S Dublin Δ bstA mutant revealed similar levels of inflammation between the two groups. The gene was not important for adherence to or invasion of human epithelial cells and did not influence bacterial growth in rich medium, minimal medium, or cattle blood. In conclusion, a lack of bstA affects the pathogenicity of S Dublin by decreasing its virulence. Therefore, it might be regarded as an antivirulence gene in this serovar. Copyright © 2017 American Society for Microbiology.
Otero-Garcia, Marcos; Martin-Sanchez, Ana; Fortes-Marco, Lluis; Martínez-Ricós, Joana; Agustin-Pavón, Carmen; Lanuza, Enrique; Martínez-García, Fernando
2014-05-01
Quantitative analysis of the immunoreactivity for arginine-vasopressin (AVP-ir) in the telencephalon of male (intact and castrated) and female CD1 mice allows us to precisely locate two sexually dimorphic (more abundant in intact than castrated males and females) AVP-ir cell groups in the posterior bed nucleus of the stria terminalis (BST) and the amygdala. Chemoarchitecture (NADPH diaphorase) reveals that the intraamygdaloid AVP-ir cells are located in the intra-amygdaloid BST (BSTIA) rather than the medial amygdala (Me), as previously thought. Then, we have used for the first time tract tracing (combined with AVP immunofluorescence) and fiber-sparing lesions of the BST to analyze the projections of the telencephalic AVP-ir cell groups. The results demonstrate that the posterior BST originates the sexually dimorphic innervation of the lateral septum, the posterodorsal Me and a substance P-negative area in the medioventral striato-pallidum (mvStP).The BSTIA may also contribute to some of these terminal fields. Our material also reveals non-dimorphic AVP-ir processes in two locations of the amygdala. First, the ventral Me shows dendrite-like AVP-ir processes apparently belonging supraoptic neurons, whose possible functions are discussed. Second, the Ce shows sparse, thick AVP-ir axons with high individual variability in density and distribution, whose possible influence on stress coping in relation to the affiliative or agonistic behaviors mediated by the Me are discussed. Finally, we propose that the region of the mvStP showing sexually dimorphic AVP-ir innervation is part of the brain network for socio-sexual behavior, in which it would mediate motivational aspects of chemosensory-guided social interactions.
Teaching Safety Responding to Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Rossi, Margaret R.; Vladescu, Jason C.; Reeve, Kenneth F.; Gross, Amy C.
2017-01-01
Children have been taught to demonstrate a safety response when they encounter a dangerous stimulus using behavioral skills training (BST). However, little research has evaluated the usefulness of BST to teach safety skills to children with autism spectrum disorder (ASD). In the current study, we evaluated BST to establish a generalized repertoire…
Effect of bottom electrode on dielectric property of sputtered-(Ba,Sr)TiO{sub 3} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Shinichi; Yamada, Tomoaki; Takahashi, Kenji
2009-03-15
(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (BST) films were deposited on (111)Pt/TiO{sub 2}/SiO{sub 2}/Al{sub 2}O{sub 3} substrates by rf sputtering. By inserting a thin layer of SrRuO{sub 3} in between BST film and (111)Pt electrode, the BST films grew fully (111)-oriented without any other orientations. In addition, it enables us to reduce the growth temperature of BST films while keeping the dielectric constant and tunability as high as those of BST films directly deposited on Pt at higher temperatures. The dielectric loss of the films on SrRuO{sub 3}-top substrates was comparable to that on Pt-top substrates for the same level of dielectricmore » constant. The results suggest that the SrRuO{sub 3} thin layer on (111)Pt electrode is an effective approach to growing highly crystalline BST films with (111) orientation at lower deposition temperatures.« less
Bovine somatotropin supplementation of dairy cows. Is the milk safe?
Daughaday, W H; Barbano, D M
Complex, biologically active proteins (eg, enzymes and hormones) can be manufactured safely and cost-effectively through applications of biotechnology. Some of these proteins (eg, human insulin, human somatotropin, rennet for cheese manufacture) are currently approved for medical or food processing applications. Bovine somatotropin (bST) for lactating dairy cattle is another product that can be produced via biotechnology and may allow dairy farmers to produce milk at a lower cost. In 1985, based on an evaluation of toxicological data, the Food and Drug Administration concluded that milk and meat from bST-supplemented cows was safe and wholesome. The Food and Drug Administration has authorized the use of milk and meat from bST-supplemented cows in the commercial food supply. Its evaluation of the impact of bST supplementation on the long-term health of dairy cattle is near completion, and bST may be approved for commercial use in early 1991.
Guan, Qingdong; Li, Yun; Shpiruk, Tanner; Bhagwat, Swaroop; Wall, Donna A
2018-05-01
Establishment of a potency assay in the manufacturing of clinical-grade mesenchymal stromal cells (MSCs) has been a challenge due to issues of relevance to function, timeline and variability of responder cells. In this study, we attempted to develop a potency assay for MSCs. Clinical-grade bone marrow-derived MSCs were manufactured. The phenotype and immunosuppressive functions of the MSCs were evaluated based on the International Society for Cellular Therapy guidelines. Resting MSCs licensed by interferon (IFN)-γ exposure overnight were evaluated for changes in immune suppression and immune-relevant proteins. The relationship of immune-relevant protein expression with immunosuppression of MSCs was analyzed. MSC supressed third-party T-lymphocyte proliferation with high inter-donor and inter-test variability. The suppression of T-lymphocyte proliferation by IFN-γ-licensed MSCs correlated with that by resting MSCs. Many cellular proteins were up-regulated after IFN-γ exposure, including indoleamine 2,3-dioxygenase 1 (IDO-1), programmed death ligand 1 (PD-L1), vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1) and bone marrow stromal antigen 2 (BST-2). The expression levels of IDO-1 and PD-L1 on licensed MSCs, not VCAM-1, ICAM-1 or BST-2 on licensed MSCs, correlated with MSC suppression of third-party T-cell proliferation. A flow cytometry-based assay of MSCs post-IFN-γ exposure measuring expression of intracellular protein IDO-1 and cell surface protein PD-L1 captures two mechanisms of suppression and offers the potential of a relevant, rapid assay for MSC-mediated immune suppression that would fit with the manufacturing process. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Yu, Guoliang; Sharp, Burt M.
2012-01-01
Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part due to altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN; but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, since GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor (CRF) neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN CRF neurons, an essential component of the amplified HPA response to stress by nicotine. PMID:22578217
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiecki, M.; Allaire, M.; Scheaffer, S.
2011-01-28
BST-2/tetherin is a host antiviral molecule that functions to potently inhibit the release of enveloped viruses from infected cells. In return, viruses have evolved antagonists to this activity. BST-2 traps budding virions by using two separate membrane-anchoring regions that simultaneously incorporate into the host and viral membranes. Here, we detailed the structural and biophysical properties of the full-length BST-2 ectodomain, which spans the two membrane anchors. The 1.6-{angstrom} crystal structure of the complete mouse BST-2 ectodomain reveals an {approx}145-{angstrom} parallel dimer in an extended {alpha}-helix conformation that predominantly forms a coiled coil bridged by three intermolecular disulfides that are requiredmore » for stability. Sequence analysis in the context of the structure revealed an evolutionarily conserved design that destabilizes the coiled coil, resulting in a labile superstructure, as evidenced by solution x-ray scattering displaying bent conformations spanning 150 and 180 {angstrom} for the mouse and human BST-2 ectodomains, respectively. Additionally, crystal packing analysis revealed possible curvature-sensing tetrameric structures that may aid in proper placement of BST-2 during the genesis of viral progeny. Overall, this extended coiled-coil structure with inherent plasticity is undoubtedly necessary to accommodate the dynamics of viral budding while ensuring separation of the anchors.« less
Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials
NASA Astrophysics Data System (ADS)
Xu, Huiwen
Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.
Critical evaluation of a badminton-specific endurance test.
Fuchs, Michael; Faude, Oliver; Wegmann, Melissa; Meyer, Tim
2014-03-01
To overcome the limitations of traditional 1-dimensional fitness tests in analyzing physiological properties of badminton players, a badminton-specific endurance test (BST) was created. This study aimed at analyzing the influence of various fitness dimensions on BST performance. 18 internationally competing male German badminton players (22.4 ± 3.2 y, 79.2 ± 7.7 kg, 1.84 ± 0.06 m, world-ranking position [WRP] 21-501) completed a straight-sprint test, a change-of-direction speed test, various jump tests (countermovement jump, drop jump, standing long jump), a multistage running test (MST), and the BST. During this on-court field test players have to respond to a computerized sign indicating direction and speed of badminton-specific movements by moving into the corresponding corners. Significant correlations were found between performance in MST and BST (individual anaerobic threshold [IAT], r = .63, P = .005; maximum velocity [Vmax], r = .60, P = .009). A negative correlation (r = -.59, P = .014) was observed between IAT in BST and drop-jump contact time. No further associations between performance indices could be detected. Apart from a small portion explained by MST results (IAT, R2 = .40; Vmax, R2 = .36), the majority of BST performance cannot be explained by the determined physiological correlates. Moreover, it was impossible to predict the WRP of a player on the basis of BST results (r = -.15, P = .55). Neither discipline-specific performance nor basic physiological properties were appropriately reflected by a BST in elite badminton players. This does not substantiate its validity for regular use as a testing tool. However, it may be useful for monitoring on-court training sessions.
Celestino, Michele; Calistri, Arianna; Del Vecchio, Claudia; Salata, Cristiano; Chiuppesi, Flavia; Pistello, Mauro; Borsetti, Alessandra; Palù, Giorgio; Parolin, Cristina
2012-06-01
Tetherin (BST2) is the host cell factor that blocks the particle release of some enveloped viruses. Two putative feline tetherin proteins differing at the level of the N-terminal coding region have recently been described and tested for their antiviral activity. By cloning and comparing the two reported feline tetherins (called here cBST2(504) and cBST2*) and generating specific derivative mutants, this study provides evidence that feline tetherin has a shorter intracytoplasmic domain than those of other known homologues. The minimal tetherin promoter was identified and assayed for its ability to drive tetherin expression in an alpha interferon-inducible manner. We also demonstrated that cBST2(504) is able to dimerize, is localized at the cellular membrane, and impairs human immunodeficiency virus type 1 (HIV-1) particle release, regardless of the presence of the Vpu antagonist accessory protein. While cBST2(504) failed to restrict wild-type feline immunodeficiency virus (FIV) egress, FIV mutants, bearing a frameshift at the level of the envelope-encoding region, were potently blocked. The transient expression of the FIV envelope glycoprotein was able to rescue mutant particle release from feline tetherin-positive cells but did not antagonize human BST2 activity. Moreover, cBST2(504) was capable of specifically immunoprecipitating the FIV envelope glycoprotein. Finally, cBST2(504) also exerted its function on HIV-2 ROD10 and on the simian immunodeficiency virus SIVmac239. Taken together, these results show that feline tetherin does indeed have a short N-terminal region and that the FIV envelope glycoprotein is the predominant factor counteracting tetherin restriction.
An Evaluation of Computerized Behavioral Skills Training to Teach Safety Skills to Young Children
ERIC Educational Resources Information Center
Vanselow, Nicholas R.; Hanley, Gregory P.
2014-01-01
Previous research has demonstrated the efficacy of behavioral skills training (BST) and in situ training (IST) for teaching children to protect themselves. However, BST may be resource intensive and difficult to implement on a large scale. We evaluated a computerized version of BST (CBST) to teach safety skills and determined the extent to which…
NASA Astrophysics Data System (ADS)
Lee, Su-Jae; Moon, Seung-Eon; Ryu, Han-Cheol; Kwak, Min-Hwan; Kim, Young-Tae
2002-07-01
Highly (h00)-oriented (Ba,Sr)TiO3 [BST] thin films were deposited by pulsed laser depositi on on the perovskite LaNiO3 metallic oxide layer as a bottom electrode. The LaNiO3 films were deposited on SiO2/Si substrates by the rf-magnetron sputtering method. The crystal line phases of the BST film were characterized by X-ray θ-2θ, ω-rocking curve and Φ-scan diffraction measurements. The surface microstructure observed by scanning electron mi croscopy was very dense and smooth. The low-frequency dielectric responses of the BST films grown at various substrate temperatures were measured as a function of frequency in the frequency range from 0.1 Hz to 10 MHz. The BST films have the dielectric constant of 265 at 1 kHz and showed multiple dielectric relaxations in the measured frequency region. The origins of these low-frequency dielectric relaxations are attributed to ionized space charge carriers such as the oxygen vacancies and defects in the BST film, the interfacial polarization in the grain boundary region and the electrode polarization. We also studied the capacitance-voltage characteristics of BST films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Tianjin; Wang Jinzhao; Zhang Baishun
2008-03-04
Compositionally graded (Ba{sub 1-x}Sr{sub x})TiO{sub 3} (BST) thin films, with x decreasing from 0.3 to 0, were deposited on Pt/Ti/SiO{sub 2}/Si and Ru/SiO{sub 2}/Si substrates by radio frequency magnetron sputtering technology. The microstructure and dielectric properties of the graded BST thin films were investigated. It was found that the films on Ru electrode have better crystallization, and that RuO{sub 2} is present between the Ru bottom electrode and the graded BST thin films by X-ray diffraction and SEM analysis. Dielectric measurement reveals that the graded BST thin films deposited on Ru bottom electrode have higher dielectric constant and tunability. Themore » enhanced dielectric behavior is attributed to better crystallization as well as smaller space charge capacitance width and the formation of RuO{sub 2} that is more compatible with the BST films. The graded BST films on Ru electrode show higher leakage current due to lower barrier height and rougher surface of bottom electrode.« less
NASA Astrophysics Data System (ADS)
Becker, B. A.; Johnson, H. D.; Li, R.; Collier, R. J.
1990-09-01
A study was conducted to evaluate the effect of bovine somatotropin (BST) supplementation in twelve lactating dairy cows maintained in cold environmental conditions. Six cows were injected daily with 25 mg of BST; the other six were injected with a control vehicle. Cows were maintained under standard dairy management during mid-winter for 30 days. Milk production was recorded twice daily, and blood samples were taken weekly. Animals were then transferred to environmentally controlled chambers and exposed to cycling thermoneutral (15° to 20° C) and cycling cold (-5° to +5° C) temperatures for 10 days in a split-reversal design. Milk production, feed and water intake, body weights and rectal temperatures were monitored. Blood samples were taken on days 1, 3, 5, 8 and 10 of each period and analyzed for plasma triiodothyronine (T3), thyroxine (T4), cortisol, insulin and prolactin. Under farm conditions, BST-treated cows produced 11% more milk than control-treated cows and in environmentally controlled chambers produced 17.4% more milk. No differences due to BST in feed or water intake, body weights or rectal temperatures were found under laboratory conditions. Plasma T3 and insulin increased due to BST treatment while no effect was found on cortisol, prolactin or T4. The results showed that the benefits of BST supplementation in lactating dairy cows were achieved under cold environmental conditions.
Yu, Guoliang; Sharp, Burt M
2012-08-01
Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part because of the altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, and bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN, but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, as GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN corticotrophin-releasing factor neurons, an essential component of the amplified HPA response to stress by nicotine. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
NASA Astrophysics Data System (ADS)
Shadmand, Mohammad Bagher
Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.
Rivera, F; Narciso, C; Oliveira, R; Cerri, R L A; Correa-Calderón, A; Chebel, R C; Santos, J E P
2010-04-01
The objectives of this study were to evaluate the effect of administering 500 mg of recombinant bovine somatotropin (bST) every 10 d on ovulatory responses, estrous behavior, and fertility of lactating Holstein cows. Lactating dairy cows were assigned to 1 of 2 treatments: a control with no administration of bST (73 primiparous and 120 multiparous cows) or 6 consecutive administrations of 500 mg of bST (83 primiparous and 123 multiparous cows) given subcutaneously at 10-d intervals starting 61+/-3 d postpartum (study d 0), concurrent with the initiation of the timed artificial insemination (AI). Blood samples were collected thrice weekly from 61+/-3 to 124+/-3 d in milk (DIM), and plasma samples were analyzed for concentrations of estradiol, glucose, insulin, insulin-like growth factor 1, and progesterone. The estrous cycle of cows was presynchronized with 2 injections of PGF(2alpha) at 37+/-3 and 51+/-3 DIM, and the Ovsynch timed AI protocol was initiated at 61+/-3 DIM. Ovaries were scanned to determine ovulatory responses during the Ovsynch protocol. Pregnancy was diagnosed at 33 and 66 d after AI. Body condition was scored on study d 0, 10, 42, and 76. Sixty-four cows were fitted with a pressure mounting sensor with radiotelemetric transmitters to monitor estrous behavior. Treatment of lactating dairy cows with 500 mg of bST at 10-d intervals increased yields of milk and milk components in the first 2 mo after treatment. Body condition of bST-treated cows remained unaltered, whereas control cows gained BCS. Treatment with bST increased concentrations of insulin-like growth factor 1 chronically, but concentrations of insulin and glucose increased only transiently in the first 7 d after the first injection of bST. Concentrations of progesterone during and after the Ovsynch protocol remained unaltered after treatment with bST; likewise, ovulatory responses during the Ovsynch protocol were mostly unaltered by treatment. Concentration of estradiol tended to be greater for bST cows than for control cows immediately before induction of ovulation in the Ovsynch protocol. Similarly, the mean and the peak concentrations of estradiol were greater for bST cows than for control cows when monitored during spontaneous estrus. Nevertheless, duration of estrus and the median number of standing events were less for bST cows than for control cows. Pregnancies per AI after the first and second postpartum inseminations were not affected by bST treatment. Treatment of lactating dairy cows with 500 mg of bST every 10 d improved lactation performance, but it did not affect pregnancies per AI and it reduced expression of estrus. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Martello, Luciane S.; Savastano Junior, Holmer; Silva, Saulo L.; Balieiro, Júlio Cesar C.
2010-11-01
This study was conducted to determine the relationship among temperatures measured at different anatomical sites of the animal body and their daily pattern as indicative of the thermal stress in lactating dairy cows under tropical conditions. Environmental dry bulb (DBT) and black globe (BGT) temperatures and relative humidity (RH) were recorded. Rectal temperature (RT), respiratory frequency (RF), body surface (BST), internal base of tail (TT), vulva (VT) and auricular temperatures (AT) were collected, from 37 Black and White Holstein cows at 0700, 1300 and 1800 hours. RT showed a moderately and positive correlations with all body temperatures, ranging from 0.59 with TT to 0.64 with BST. Correlations among AT, VT and TT with RF were very similar (from 0.63 to 0.64) and were greater than those observed for RF with RT (0.55) or with BST (0.54). RF and RT were positively correlated to TT (0.63 and 0.59, respectively), AT (
Optical Modulation of BST/STO Thin Films in the Terahertz Range
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shi, Songjie; Zhou, Ling; Ling, Furi; Yao, Jianquan
2018-04-01
The {Ba}_{0.7} {Sr}_{0.3} {TiO}3 (BST) thin film (30.3 nm) deposited on a {SrTiO}3 (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2-1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement-electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.
NASA Astrophysics Data System (ADS)
Lu, Shengbo; Xu, Zhengkui
2009-09-01
Ba0.6Sr0.4TiO3 (BST) thin films were deposited on La0.7Sr0.3CoO3 (LSCO) buffered and unbuffered Pt (111)/Ti/SiO2/Si substrates by pulsed laser deposition. The former exhibits a (100) preferred orientation and the latter a random orientation, respectively. Grazing incident x-ray diffraction study revealed that the tensile residual stress observed in the latter is markedly reduced in the former. As a result, the dielectric property of the LSCO buffered BST thin film is greatly improved, which shows a larger dielectric constant and tunability, smaller loss tangent, and lower leakage current than those of the unbuffered BST thin film. The relaxation of the larger tensile residual stress is attributed to the larger grain size in the buffered BST thin film and to a closer match of thermal expansion coefficient between the BST and the LSCO buffer layer.
Optical Modulation of BST/STO Thin Films in the Terahertz Range
NASA Astrophysics Data System (ADS)
Zeng, Ying; Shi, Songjie; Zhou, Ling; Ling, Furi; Yao, Jianquan
2018-07-01
The {Ba}_{0.7} {Sr}_{0.3} {TiO}3 (BST) thin film (30.3 nm) deposited on a {SrTiO}3 (STO) film/silicon substrate sample was modulated by 532 nm continuous-wave laser in the range of 0.2-1 THz at room temperature. The refractive index variation was observed to linearly increase at the highest 3.48 for 0.5 THz with the pump power increasing to 400 mW. It was also found that the BST/STO sample had a larger refractive index variation and was more sensitive to the external optical field than a BST monolayer due to the epitaxial strain induced by the STO film. The electric displacement-electric field loops results revealed that the increasing spontaneous polarization with the STO film that was induced was responsible for the larger refractive index variation of the BST/STO sample. In addition, the real and imaginary part of the permittivity were observed increasing along with the external field increasing, due to the soft mode hardening.
Properties of barium strontium titanate at millimeter wave frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osman, Nurul; Free, Charles
2015-04-24
The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangentmore » for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.« less
ERIC Educational Resources Information Center
Thomas, Benjamin R.; Lafasakis, Michael; Spector, Vicki
2016-01-01
The aim of this study was to evaluate the effects of behavioral skills training (BST) on the skateboarding skills of an 11-year-old male with autism spectrum disorder (ASD). BST was used in a multiple-probe across skills design to teach five target skateboarding skills. Imitation of an additional skill was also assessed outside of BST sessions.…
Dielectric Properties of BST/(Y 2O 3) x(ZrO 2) 1-x/BST Trilayer Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Santosh K.; Misra, D.
2011-01-31
Thin films of Ba1-xSrxTiO3 (BST) are being actively investigated for applications in dynamic random access memories (DRAM) because of their properties such as high dielectric constant, low leakage current, and high dielectric breakdown strength. Various approaches have been used to improve the dielectric properties of BST thin films such as doping, graded compositions, and multilayer structures. We have found that inserting a ZrO2 layer in between two BST layers results in a significant reduction in dielectric constant as well as dielectric loss. In this work the effect of Y2O3 doped ZrO2 on the dielectric properties of BST/ZrO2/BST trilayer structure ismore » studied. The structure Ba0.8Sr0.2TiO3/(Y2O3)x(ZrO2)1-x/Ba0.8Sr0.2TiO3 is deposited by a sol-gel process on platinized Si substrate. The composition (x) of the middle layer is varied while keeping the total thickness of the trilayer film constant. The dielectric constant of the multilayer film decreases with the increase of Y2O3 amount in the film whereas there is a slight variation in dielectric loss. In Y2O3 doped multilayer thin films, the dielectric loss is lower in comparison to other films and also there is good frequency stability in the loss in the measured frequency range and hence very suitable for microwave device applications.« less
Raymaekers, S; Luyten, L; Bervoets, C; Gabriëls, L; Nuttin, B
2017-01-01
We previously found that electrical stimulation in the anterior limb of the internal capsule/bed nucleus of the stria terminalis (IC/BST) alleviates depressive symptoms in severe treatment-resistant obsessive-compulsive disorder (OCD) patients. Here we tested the hypothesis that electrical stimulation in either IC/BST or in the inferior thalamic peduncle (ITP) effectively reduces depressive symptoms in treatment-resistant major depressive disorder (TRD). In a double-blind crossover design, the effects of electrical stimulation at both targets were compared in TRD patients. The 17-item Hamilton Depression Rating scale (HAM-D) was the primary outcome measure. During the first crossover, patients received IC/BST stimulation versus no stimulation in random order (2 × 1 weeks). During the second crossover (3 × 2 months), patients received IC/BST versus ITP versus no stimulation. Patients and evaluators were blinded for stimulation conditions. All patients (n=7) were followed up for at least 3 years (3–8 years) after implantation. Six patients completed the first crossover and five patients completed the second. During the first crossover, mean (s.d.) HAM-D scores were 21.5 (2.7) for no stimulation and 11.5 (8.8) for IC/BST stimulation. During the second crossover, HAM-D scores were 15.4 (7.5) for no stimulation, 7.6 (3.8) for IC/BST stimulation and 11.2 (7.5) for ITP stimulation. The final sample size was too small to statistically analyze this second crossover. At last follow-up, only one patient preferred ITP over IC/BST stimulation. Two patients, with a history of suicide attempts before implantation, committed suicide during the follow-up phases of this study. Our data indicate that, in the long term, both ITP and IC/BST stimulation may alleviate depressive symptoms in patients suffering from TRD. PMID:29087373
Raymaekers, S; Luyten, L; Bervoets, C; Gabriëls, L; Nuttin, B
2017-10-31
We previously found that electrical stimulation in the anterior limb of the internal capsule/bed nucleus of the stria terminalis (IC/BST) alleviates depressive symptoms in severe treatment-resistant obsessive-compulsive disorder (OCD) patients. Here we tested the hypothesis that electrical stimulation in either IC/BST or in the inferior thalamic peduncle (ITP) effectively reduces depressive symptoms in treatment-resistant major depressive disorder (TRD). In a double-blind crossover design, the effects of electrical stimulation at both targets were compared in TRD patients. The 17-item Hamilton Depression Rating scale (HAM-D) was the primary outcome measure. During the first crossover, patients received IC/BST stimulation versus no stimulation in random order (2 × 1 weeks). During the second crossover (3 × 2 months), patients received IC/BST versus ITP versus no stimulation. Patients and evaluators were blinded for stimulation conditions. All patients (n=7) were followed up for at least 3 years (3-8 years) after implantation. Six patients completed the first crossover and five patients completed the second. During the first crossover, mean (s.d.) HAM-D scores were 21.5 (2.7) for no stimulation and 11.5 (8.8) for IC/BST stimulation. During the second crossover, HAM-D scores were 15.4 (7.5) for no stimulation, 7.6 (3.8) for IC/BST stimulation and 11.2 (7.5) for ITP stimulation. The final sample size was too small to statistically analyze this second crossover. At last follow-up, only one patient preferred ITP over IC/BST stimulation. Two patients, with a history of suicide attempts before implantation, committed suicide during the follow-up phases of this study. Our data indicate that, in the long term, both ITP and IC/BST stimulation may alleviate depressive symptoms in patients suffering from TRD.
Multicomponent doped barium strontium titanate thin films for tunable microwave applications
NASA Astrophysics Data System (ADS)
Alema, Fikadu Legesse
In recent years there has been enormous progress in the development of barium strontium titanate (BST) films for tunable microwave applications. However, the properties of BST films still remain inferior compared to bulk materials, limiting their use for microwave technology. Understanding the film/substrate mismatch, microstructure, and stoichiometry of BST films and finding the necessary remedies are vital. In this work, BST films were deposited via radio frequency magnetron sputtering method and characterized both analytically and electrically with the aim of optimizing their properties. The stoichiometry, crystal structure, and phase purity of the films were studied by varying the oxygen partial pressure (OPP) and total gas pressure (TGP) in the chamber. A better stoichiometric match between film and target was achieved when the TGP is high (> 30 mTorr). However, the O2/Ar ratio should be adjusted as exceeding a threshold of 2 mTorr in OPP facilitates the formation of secondary phases. The growth of crystalline film on platinized substrates was achieved only with a lower temperature grown buffer layer, which acts as a seed layer by crystallizing when the temperature increases. Concurrent Mg/Nb doping has significantly improved the properties of BST thin films. The doped film has shown an average tunability of 53%, which is only ˜8 % lower than the value for the undoped film. This drop is associated with the Mg ions whose detrimental effects are partially compensated by Nb ions. Conversely, the doping has reduced the dielectric loss by ˜40 % leading to a higher figure of merit. Moreover, the two dopants ensure a charge neutrality condition which resulted in significant leakage current reduction. The presence of large amounts of empty shallow traps related to Nb Ti localize the free carriers injected from the contacts; thus increase the device control voltage substantially (>10 V). A combinatorial thin film synthesis method based on co-sputtering of two BST sources doped with Mg/Nb and Ce, respectively, was applied. The composition and the dielectric properties of the deposited film were correlated and the optimal concentration of dopants corresponding to high tunability and low dielectric loss was determined in a timely fashion.
Projectable Basic Electronics Kit.
ERIC Educational Resources Information Center
H'ng, John; And Others
1982-01-01
Outlines advantages derived from constructing and using a Projectable Basic Electronics Kit and provides: (1) list of components; (2) diagrams of 10 finished components (resistor; capacitor; diode; switch; bulb; transistor; meter; variable capacitor; coil; connecting terminal); and (3) diode and transistor activities. (JN)
Vacuum-induced quantum memory in an opto-electromechanical system
NASA Astrophysics Data System (ADS)
Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun
2018-03-01
We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, Brian S; Mather, Barry A; Cho, Gyu-Jung
Capacitor banks have been generally installed and utilized to support distribution voltage during period of higher load or on longer, higher impedance, feeders. Installations of distributed energy resources in distribution systems are rapidly increasing, and many of these generation resources have variable and uncertain power output. These generators can significantly change the voltage profile across a feeder, and therefore when a new capacitor bank is needed analysis of optimal capacity and location of the capacitor bank is required. In this paper, we model a particular distribution system including essential equipment. An optimization method is adopted to determine the best capacitymore » and location sets of the newly installed capacitor banks, in the presence of distributed solar power generation. Finally we analyze the optimal capacitor banks configuration through the optimization and simulation results.« less
Gat, Itai; Pessach-Gelblum, Liat; Givati, Gili; Haim, Nadav; Paluch-Shimon, Shani; Unterman, Avraham; Bar-Shavit, Yochay; Grabler, Galit; Sagi, Doron; Achiron, Anat; Ziv, Amitai
2016-01-01
Introduction Patient bedside is the ideal setting for teaching physical examination, medical interviewing, and interpersonal skills. Herein we describe a novel model for bedside teaching (BST) practiced during tutor training workshop and its resulting effect on practitioners’ self assessment of teaching skills and perceptions. Methods One-day tutor training workshop included theoretical knowledge supplementation regarding tutors’ roles as well as implementing practical tools for clinical education, mainly BST model. The model, which emphasizes simultaneous clinical and communication teaching in a stepwise approach, was practiced by consecutive simulations with a gradual escalation of difficulty and adjusted instruction approaches. Pre- and post-workshop-adjusted questionnaires using a Likert scale of 1 to 4 were completed by participants and compared. Results Analysis was based on 25 out of 48 participants who completed both questionnaires. Significantly improved teaching skills were demonstrated upon workshop completion (mean 3.3, SD 0.5) compared with pre-training (mean 2.6, SD 0.6; p<0.001) with significant increase in most examined parameters. Significantly improved tutor's roles internalization was demonstrated after training completion (mean 3.7, SD 0.3) compared with pre-workshop (mean 3.5 SD 0.5; p=0.002). Discussion Successful BST involves combination of clinical and communication skills. BST model practiced during the workshop may contribute to improved teaching skills in this challenging environment. PMID:26894587
Teaching Reading Comprehension Skills to a Child with Autism Using Behaviour Skills Training.
Singh, Binita D; Moore, Dennis W; Furlonger, Brett E; Anderson, Angelika; Busacca, Margherita L; English, Derek L
2017-10-01
A multiple probe design across skills was used to examine the effects of behaviour skills training (BST) on teaching four reading comprehension skills (predicting, questioning, clarifying, and summarizing) to a 7th grade student with autism. Following baseline, the student received 12 sessions of BST during which each skill was taught to criterion. At each session, data was also collected on the accuracy of oral responses to 10 comprehension questions. BST was associated with clear gains in the participant's performance on each comprehension skill, along with concomitant gains in reading comprehension both on the daily probes and a standardized measure. Skills maintained at follow-up support the conclusion that BST was effective in improving the comprehension skills of a child with autism.
Characteristics of Radio-Frequency Circuits Utilizing Ferroelectric Capacitors
NASA Technical Reports Server (NTRS)
Eskridge, Michael; Gui, Xiao; MacLeod, Todd; Ho, Fat D.
2011-01-01
Ferroelectric capacitors, most commonly used in memory circuits and variable components, were studied in simple analog radio-frequency circuits such as the RLC resonator and Colpitts oscillator. The goal was to characterize the RF circuits in terms of frequency of oscillation, gain, etc, using ferroelectric capacitors. Frequencies of oscillation of both circuits were measured and studied a more accurate resonant frequency can be obtained using the ferroelectric capacitors. Many experiments were conducted and data collected. A model to simulate the experimental results will be developed. Discrepancies in gain and frequency in these RF circuits when conventional capacitors are replaced with ferroelectric ones were studied. These results will enable circuit designers to anticipate the effects of using ferroelectric components in their radio- frequency applications.
Mihalka, A.M.
1984-06-05
The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.
Enhanced biennial variability in the Pacific due to Atlantic capacitor effect.
Wang, Lei; Yu, Jin-Yi; Paek, Houk
2017-03-20
The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The 'charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and 'discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events.
Enhanced biennial variability in the Pacific due to Atlantic capacitor effect
Wang, Lei; Yu, Jin-Yi; Paek, Houk
2017-01-01
The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The ‘charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and ‘discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events. PMID:28317857
Enhanced biennial variability in the Pacific due to Atlantic capacitor effect
NASA Astrophysics Data System (ADS)
Wang, Lei; Yu, Jin-Yi; Paek, Houk
2017-03-01
The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The `charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and `discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events.
High Temperature DC Bus Capacitor Cost Reduction & Performance Improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yializis, Angelo; Taylor, Ralph S.
The goal of this DOE program is to develop high temperature, high energy density, lower cost DC- Link capacitors, for inverters used in electric drive vehicles. Most electric motors in Hybrid Electric Vehicles (“HEVs”), Plug-in Hybrid Vehicles (“PHVs”) and Electric Vehicles (“EVs”) are driven with variable AC voltage supplied by an inverter/converter power module that converts the DC battery voltage to three-phase AC voltage. A key component of the inverter circuit is the DC- Link capacitor used to minimize ripple current, voltage fluctuation, and transient suppression. The DC-Link capacitor is one of the largest, costliest, and most failure-prone components inmore » today’s electric drive invertersystems. The principal weakness of present day DC- Link capacitors is their reliance on a low temperature thermoplastic polypropylene (“PP”) film dielectric. PP is the dielectric of choice for inverter capacitor applications due to its high breakdown strength and low dissipation factor. Major limitations of metallized PP film capacitors include volumetric efficiency, performance under high thermal loads and cost. The latter is especially effectual at lower voltage applications (400V) where PP films with a thickness of about 2.5 m are required that are costly to process. Metallized PP capacitors also do not meet the traditional “under-the-hood” requirements for automotive electronics. The standard temperature requirement for most passive components in the automotive industry has been 125ºC and it is evolving to 140°C. The industry has addressed this problem by reducing the ambient temperature specification for PP capacitors from 125ºC to 105ºC, and also by placing the capacitors on a water-cooled bus bar to extend their life and reliably. The supply chain for the production of PP capacitors is, for the most part, horizontally integrated. It includes the producer of the PP film, the toll metallizer, that deposits a patterned aluminum conductor onto the PP film, and the capacitor producer that winds the metallized film, forms electrical connections, and packages the capacitor (some large capacitor OEMs also metallize their films). The horizontal nature of the supply chain is principally due to the very high capital costs required to integrate the film production process as well as the corresponding depreciation costs. The result is that hundreds of capacitor OEMs use the same base films and capacitor products vary mainly in the way they are wound, formed and packaged, with little or no ability to innovate. Sigma Technologies (“Sigma”) has developed a disruptive process for producing polymer dielectric capacitors that overcome the limitations of PP film capacitors. Metallized self-supported films are replaced with deposited polymer dielectrics, metallized in-line with the polymer deposition process. Highly cross linked, high temperature polymers are formed, that have a thickness as low as 0.1μm, a wide range of dielectric constants and breakdown strength higher than that of PP. The supply chain for producing such capacitors is reduced to a single step performed by the capacitor OEM, in which aluminum wire and a liquid monomer are introduced into a machine to create a large area bulk capacitor material. Polymer Multi-Layer (PML) capacitors are produced by depositing 1000s of dielectric and aluminum electrode on a rotating process drum, forming a nanolaminate “mother capacitor” material, that is segmented and processed into individual capacitor elements. The PML process combines the conventional stepsof a) polymer dielectric formation, b) electrode deposition, and c) winding the capacitor, into a single continuous process performed in a single machine. This allows for complete vertical integration of the capacitor production process, where the capacitor OEM has complete control the dielectric chemistry, the polymer thickness and the electrode metallization process. Sigma partnered with Delphi Automotive Systems (“Delphi”) and Oak Ridge National Labs (“ORNL”) to respond to a DOE Vehicle Technologies Office solicitation to develop a DC-Link capacitor with reduced cost, lower volume and superior thermal properties. The major objectives of the development program included: • Optimization of the polymer dielectric to meet an 140ºC operating environment • Improvements to Sigma’s PML capacitor pilot line to allow the production of sample quantities of DC-Link capacitors • Evaluation of the thermal properties of the PML capacitors • Development of a thermal model to predict capacitor performance under various operating conditions • Electrical and environmental evaluation of PML capacitors based on AEC Q200 standard • Development of a package for PML capacitors • Development of a business plan to transition the PML capacitor technology into production.« less
Regulatory interactions of stress and reward on rat forebrain opioidergic and GABAergic circuitry.
Christiansen, A M; Herman, J P; Ulrich-Lai, Y M
2011-03-01
Palatable food intake reduces stress responses, suggesting that individuals may consume such ?comfort? food as self-medication for stress relief. The mechanism by which palatable foods provide stress relief is not known, but likely lies at the intersection of forebrain reward and stress regulatory circuits. Forebrain opioidergic and gamma-aminobutyric acid ergic signaling is critical for both reward and stress regulation, suggesting that these systems are prime candidates for mediating stress relief by palatable foods. Thus, the present study (1) determines how palatable ?comfort? food alters stress-induced changes in the mRNA expression of inhibitory neurotransmitters in reward and stress neurocircuitry and (2) identifies candidate brain regions that may underlie comfort food-mediated stress reduction. We used a model of palatable ?snacking? in combination with a model of chronic variable stress followed by in situ hybridization to determine forebrain levels of pro-opioid and glutamic acid decarboxylase (GAD) mRNA. The data identify regions within the extended amygdala, striatum, and hypothalamus as potential regions for mediating hypothalamic-pituitary-adrenal axis buffering following palatable snacking. Specifically, palatable snacking alone decreased pro-enkephalin-A (ENK) mRNA expression in the anterior bed nucleus of the stria terminalis (BST) and the nucleus accumbens, and decreased GAD65 mRNA in the posterior BST. Chronic stress alone increased ENK mRNA in the hypothalamus, nucleus accumbens, amygdala, and hippocampus; increased dynorphin mRNA in the nucleus accumbens; increased GAD65 mRNA in the anterior hypothalamus and BST; and decreased GAD65 mRNA in the dorsal hypothalamus. Importantly, palatable food intake prevented stress-induced gene expression changes in subregions of the hypothalamus, BST, and nucleus accumbens. Overall, these data suggest that complex interactions exist between brain reward and stress pathways and that palatable snacking can mitigate many of the neurochemical alterations induced by chronic stress.
NASA Astrophysics Data System (ADS)
Li, H. W.; Pan, Z. Y.; Ren, Y. B.; Wang, J.; Gan, Y. L.; Zheng, Z. Z.; Wang, W.
2018-03-01
According to the radial operation characteristics in distribution systems, this paper proposes a new method based on minimum spanning trees method for optimal capacitor switching. Firstly, taking the minimal active power loss as objective function and not considering the capacity constraints of capacitors and source, this paper uses Prim algorithm among minimum spanning trees algorithms to get the power supply ranges of capacitors and source. Then with the capacity constraints of capacitors considered, capacitors are ranked by the method of breadth-first search. In term of the order from high to low of capacitor ranking, capacitor compensation capacity based on their power supply range is calculated. Finally, IEEE 69 bus system is adopted to test the accuracy and practicality of the proposed algorithm.
Novel speed test for evaluation of badminton-specific movements.
Madsen, Christian M; Karlsen, Anders; Nybo, Lars
2015-05-01
In this study, we developed a novel badminton-specific speed test (BST). The test was designed to mimic match play. The test starts in the center of the court and consists of 5 maximal actions to sensors located in each of the 4 corners of the court. The 20 actions are performed in randomized order as dictated by computer screen shots displayed 1 second after completion of the previous action. We assessed day-to-day variation in elite players, and specificity of the test was evaluated by comparing 30-m sprint performance and time to complete the BST in 20 elite players, 21 skilled players, and 20 age-matched physical active subjects (non-badminton players). Sprint performance was similar across groups, whereas the elite players were significantly (p ≤ 0.05) faster in the BST (total test time: 32.3 ± 1.1 seconds; average: 1.6 seconds per action) than the skilled (34.1 ± 2.0 seconds) and non-badminton players (35.7 ± 1.7 seconds). Day-to-day coefficient of variation (CV) of the BST was 0.7% for the elite players, whereas CV for repeated tests on the same day was 1.7% for elite, 2.6% for skilled, and 2.5% for non-badminton players. On this basis, we suggest that the BST may be valuable for evaluation of short-term maximal movement speed in badminton players. Thus, the BST seems to be sport specific, as it may discriminate between groups (elite, less trained players, and non-badminton players) with similar sprinting performance, and the low test-retest variation may allow for using the BST to evaluate longitudinal changes, for example, training effects or seasonal variations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, S.; Ma, B.; Narayanan, M.
2012-01-01
Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) films were deposited by pulsed laser deposition on copper foils with low-temperature self-buffered layers. The deposition conditions included a low oxygen partial pressure and a temperature of 700 C to crystallize the films without the formation of secondary phases and substrate oxidation. The results from x-ray diffraction and scanning electron microscopy indicated that the microstructure of the BST films strongly depended on the growth temperature. The use of the self-buffered layer improved the dielectric properties of the deposited BST films. The leakage current density of the BST films on the copper foil was 4.4 xmore » 10{sup -9} A cm{sup -2} and 3.3 x 10{sup -6} A cm{sup -2} with and without the self-buffered layer, respectively. The ferroelectric hysteresis loop for the BST thin film with buffer layer was slim, in contrast to the distorted loop observed for the film without the buffer layer. The permittivity (7 0 0) and dielectric loss tangent (0.013) of the BST film on the copper foil with self-buffered layer at room temperature were comparable to those of the film on metal and single-crystal substrates.« less
NASA Astrophysics Data System (ADS)
Zhu, Xiaohong; Defaÿ, Emmanuel; Aïd, Marc; Ren, Yinjuan; Zhang, Caiyun; Zhu, Jiliang; Zhu, Jianguo; Xiao, Dingquan
2013-03-01
Ba0.7Sr0.3TiO3 (BST) thin films, about 100 nm in thickness, were prepared on unannealed and 700 °C-preannealed Pt bottom electrodes by the ion beam sputtering and post-deposition annealing method. It was found that the preannealed Pt layer has a more compact structure, making it not only a bottom electrode but also a good template for high-quality BST thin film growth. The BST films deposited on preannealed Pt bottom electrodes showed (0 0 l)-preferred orientation, dense and uniform microstructure with no intermediate phase formed at the film/electrode interface, and thus enhanced dielectric properties. As a result, the typical relative dielectric constant and tunability (under a dc electric field of 1 MV cm-1) reach 180 and 50.1%, respectively, for the BST thin films with preannealed Pt bottom electrodes, which are significantly higher than those (166 and 41.3%, respectively) for the BST thin films deposited on unannealed Pt bottom electrodes.
Network Hubs Buffer Environmental Variation in Saccharomyces cerevisiae
Levy, Sasha F; Siegal, Mark L
2008-01-01
Regulatory and developmental systems produce phenotypes that are robust to environmental and genetic variation. A gene product that normally contributes to this robustness is termed a phenotypic capacitor. When a phenotypic capacitor fails, for example when challenged by a harsh environment or mutation, the system becomes less robust and thus produces greater phenotypic variation. A functional phenotypic capacitor provides a mechanism by which hidden polymorphism can accumulate, whereas its failure provides a mechanism by which evolutionary change might be promoted. The primary example to date of a phenotypic capacitor is Hsp90, a molecular chaperone that targets a large set of signal transduction proteins. In both Drosophila and Arabidopsis, compromised Hsp90 function results in pleiotropic phenotypic effects dependent on the underlying genotype. For some traits, Hsp90 also appears to buffer stochastic variation, yet the relationship between environmental and genetic buffering remains an important unresolved question. We previously used simulations of knockout mutations in transcriptional networks to predict that many gene products would act as phenotypic capacitors. To test this prediction, we use high-throughput morphological phenotyping of individual yeast cells from single-gene deletion strains to identify gene products that buffer environmental variation in Saccharomyces cerevisiae. We find more than 300 gene products that, when absent, increase morphological variation. Overrepresented among these capacitors are gene products that control chromosome organization and DNA integrity, RNA elongation, protein modification, cell cycle, and response to stimuli such as stress. Capacitors have a high number of synthetic-lethal interactions but knockouts of these genes do not tend to cause severe decreases in growth rate. Each capacitor can be classified based on whether or not it is encoded by a gene with a paralog in the genome. Capacitors with a duplicate are highly connected in the protein–protein interaction network and show considerable divergence in expression from their paralogs. In contrast, capacitors encoded by singleton genes are part of highly interconnected protein clusters whose other members also tend to affect phenotypic variability or fitness. These results suggest that buffering and release of variation is a widespread phenomenon that is caused by incomplete functional redundancy at multiple levels in the genetic architecture. PMID:18986213
Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front
Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.
1998-01-01
Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.
2014-07-01
BST) is a complex oxide material with ferroic properties which has been considered for applications ranging from non-volatile memory to microwave...utilizing self-aligned etching to create metal-insulator-metal (MIM) varactors . As part of this method we employed reactive ion etching (RIE) to remove BST...of BST removed vs. etch time for Ar:SF6. .........................................................4 Figure 3. SEM cross-section of varactor showing
NASA Astrophysics Data System (ADS)
Alema, Fikadu; Pokhodnya, Konstantin
2015-11-01
Ba(Mg1/3Nb2/3)O3 (BMN) doped and undoped Ba0.45Sr0.55TiO3 (BST) thin films were deposited via radio frequency magnetron sputtering on Pt/TiO2/SiO2/Al2O3 substrates. The surface morphology and chemical state analyses of the films have shown that the BMN doped BST film has a smoother surface with reduced oxygen vacancy, resulting in an improved insulating properties of the BST film. Dielectric tunability, loss, and leakage current (LC) of the undoped and BMN doped BST thin films were studied. The BMN dopant has remarkably reduced the dielectric loss (˜38%) with no significant effect on the tunability of the BST film, leading to an increase in figure of merit (FOM). This is attributed to the opposing behavior of large Mg2+ whose detrimental effect on tunability is partially compensated by small Nb5+ as the two substitute Ti4+ in the BST. The coupling between MgTi″ and VO•• charged defects suppresses the dielectric loss in the film by cutting electrons from hopping between Ti ions. The LC of the films was investigated in the temperature range of 300-450K. A reduced LC measured for the BMN doped BST film was correlated to the formation of defect dipoles from MgTi″, VO•• and NbTi• charged defects. The carrier transport properties of the films were analyzed in light of Schottky thermionic emission (SE) and Poole-Frenkel (PF) emission mechanisms. The result indicated that while the carrier transport mechanism in the undoped film is interface limited (SE), the conduction in the BMN doped film was dominated by bulk processes (PF). The change of the conduction mechanism from SE to PF as a result of BMN doping is attributed to the presence of uncoupled NbTi• sitting as a positive trap center at the shallow donor level of the BST.
Moallem, U; Dahl, G E; Duffey, E K; Capuco, A V; Erdman, R A
2004-11-01
The objectives of this study were to determine the effects of dietary rumen-undegradable protein (RUP) and bovine somatotropin (bST) during the period from weaning until puberty on body weight (BW) and skeletal growth rates and age at puberty. Fifty-one Holstein heifers at 90 d of age were randomly assigned to 4 treatment groups consisting of 0.1 mg/kg BW per day of bST and 2% added dietary RUP (dry matter basis) applied in a 2 x 2 factorial design (n = 13 per group, except bST with no RUP group, n = 12). From 90 to 314 d, bST increased average daily gain (ADG) by 0.07 kg/d and BW by 16.2 kg, while added RUP increased ADG by 0.10 kg/d and BW by 21.4 kg. Both bST and added RUP effects on BW and ADG were additive. Skeletal growth rates, as measured by withers height (WH) and hip height (HH) were increased by both bST and added RUP. Somatotropin and RUP increased WH by 1.8 and 2.7 cm and hip height by 2.5 and 4.0 cm, respectively, at 314 d of age. Growth curves showed that added RUP effects on rates of BW, WH, and HH growth were greatest from 90 to 150 d age and diminished thereafter, suggesting that protein was limiting during this time period. Conversely, bST effects tended to be greater as the heifers approached puberty, but only in the presence of added RUP. Age at puberty was not affected by treatment, averaging 314 d of age across treatments. From 314 to 644 d of age, rates of BW, WH, and HH growth were similar among treatment groups. However, treatment differences present at 314 d of age persisted through 644 d of age, more than 10 mo after treatments ceased. These results suggest that protein during the early postweaning period and bST during the 200 to 300 d of age period just prior to puberty could be used to accelerate simultaneous increases in both BW and skeletal growth rates in dairy heifers without reducing age at puberty.
Low power interface IC's for electrostatic energy harvesting applications
NASA Astrophysics Data System (ADS)
Kempitiya, Asantha
The application of wireless distributed micro-sensor systems ranges from equipment diagnostic and control to real time structural and biomedical monitoring. A major obstacle in developing autonomous micro-sensor networks is the need for local electric power supply, since using a battery is often not a viable solution. This void has sparked significant interest in micro-scale power generators based on electrostatic, piezoelectric and electromagnetic energy conversion that can scavenge ambient energy from the environment. In comparison to existing energy harvesting techniques, electrostatic-based power generation is attractive as it can be integrated using mainstream silicon technologies while providing higher power densities through miniaturization. However the power output of reported electrostatic micro-generators to date does not meet the communication and computation requirements of wireless sensor nodes. The objective of this thesis is to investigate novel CMOS-based energy harvesting circuit (EHC) architectures to increase the level of harvested mechanical energy in electrostatic converters. The electronic circuits that facilitate mechanical to electrical energy conversion employing variable capacitors can either have synchronous or asynchronous architectures. The later does not require synchronization of electrical events with mechanical motion, which eliminates difficulties in gate clocking and the power consumption associated with complex control circuitry. However, the implementation of the EHC with the converter can be detrimental to system performance when done without concurrent optimization of both elements, an aspect mainly overlooked in the literature. System level analysis is performed to show that there is an optimum value for either the storage capacitor or cycle number for maximum scavenging of ambient energy. The analysis also shows that maximum power is extracted when the system approaches synchronous operation. However, there is a region of interest where the storage capacitor can be optimized to produce almost 70% of the ideal power taken as the power harvested with synchronous converters when neglecting the power consumption associated with synchronizing control circuitry. Theoretical predictions are confirmed by measurements on an asynchronous EHC implemented with a macro-scale electrostatic converter prototype. Based on the preceding analysis, the design of a novel ultra low power electrostatic integrated energy harvesting circuit is proposed for efficient harvesting of mechanical energy. The fundamental challenges of designing reliable low power sensing circuits for charge constrained electrostatic energy harvesters with capacity to self power its controller and driver stages are addressed. Experimental results are presented for a controller design implemented in AMI 0.7muM high voltage CMOS process using a macro-scale electrostatic converter prototype. The EHC produces 1.126muW for a power investment of 417nW with combined conduction and controller losses of 450nW which is a 20-30% improvement compared to prior art on electrostatic EHCs operating under charge constrain. Inherently dual plate variable capacitors harvest energy only during half of the mechanical cycle with the other half unutilized for energy conversion. To harvest mechanical energy over the complete mechanical vibration cycle, a low power energy harvesting circuit (EHC) that performs charge constrained synchronous energy conversion on a tri-plate variable capacitor for maximizing energy conversion is proposed. The tri-plate macro electrostatic generator with capacitor variation of 405pF to 1.15nF and 405pF to 1.07nF on two complementary adjacent capacitors is fabricated and used in the characterization of the designed EHC. The integrated circuit fabricated in AMI 0.7muM high voltage CMOS process, produces a total output power of 497nW to a 10muF reservoir capacitor from a 98Hz vibration signal. In summary, the thesis lays out the theoretical and experimental foundation for overcoming the main challenges associated with the design of charge constrained synchronous EHC's, making electrostatic converters a possible candidate for powering emerging communication transceivers and portable electronics.
Strain engineered barium strontium titanate for tunable thin film resonators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khassaf, H.; Khakpash, N.; Sun, F.
2014-05-19
Piezoelectric properties of epitaxial (001) barium strontium titanate (BST) films are computed as functions of composition, misfit strain, and temperature using a non-linear thermodynamic model. Results show that through adjusting in-plane strains, a highly adaptive rhombohedral ferroelectric phase can be stabilized at room temperature with outstanding piezoelectric response exceeding those of lead based piezoceramics. Furthermore, by adjusting the composition and the in-plane misfit, an electrically tunable piezoelectric response can be obtained in the paraelectric state. These findings indicate that strain engineered BST films can be utilized in the development of electrically tunable and switchable surface and bulk acoustic wave resonators.
Johnson, Brigitte M; Miltenberger, Raymond G; Knudson, Peter; Egemo-Helm, Kristin; Kelso, Pamela; Jostad, Candice; Langley, Linda
2006-01-01
Although child abduction is a low-rate event, it presents a serious threat to the safety of children. The victims of child abduction face the threat of physical and emotional injury, sexual abuse, and death. Previous research has shown that behavioral skills training (BST) is effective in teaching children abduction-prevention skills, although not all children learn the skills. This study compared BST only to BST with an added in situ training component to teach abduction-prevention skills in a small-group format to schoolchildren. Results showed that both programs were effective in teaching abduction-prevention skills. In addition, the scores for the group that received in situ training were significantly higher than scores for the group that received BST alone at the 3-month follow-up assessment. PMID:16602383
NASA Astrophysics Data System (ADS)
Kim, Hyun-Suk; Hyun, Tae-Seon; Kim, Ho-Gi; Kim, Il-Doo; Yun, Tae-Soon; Lee, Jong-Chul
2006-07-01
The effect of texture with (100) and (110) preferred orientations on dielectric properties of Ba0.6Sr0.4TiO3 (BST) thin films grown on SrO (9nm) and CeO2 (70nm ) buffered Si substrates, respectively, was investigated. The coplanar waveguide (CPW) phase shifter using (100) oriented BST films on SrO buffered Si exhibited a much-enhanced figure of merit of 24.7°/dB, as compared to that (10.2°/dB) of a CPW phase shifter using (110) oriented BST films on CeO2 buffered Si at 12GHz. This work demonstrates that the microwave properties of the Si-integrated BST thin films are highly correlated with crystal orientation.
Diamagnetism to ferromagnetism in Sr-substituted epitaxial BaTiO{sub 3} thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Prater, John T.; Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695
2016-04-04
We report on the ferromagnetic-like behavior in otherwise diamagnetic BaTiO{sub 3} (BTO) thin films upon doping with non-magnetic element Sr having the composition Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST). The epitaxial integration of BST (∼800 nm) thick films on Si (100) substrate was achieved using MgO (40 nm) and TiN (20 nm) as buffer layers to prepare BST/MgO/TiN/Si (100) heterostructure by pulsed laser deposition. The c-axis oriented and cube-on-cube epitaxial BST is formed on Si (100) as evidenced by the in-plane and out-of-plane X-ray diffraction. All the deposited films are relaxed through domain matching epitaxy paradigm as observed from X-ray diffraction pattern and A{submore » 1}TO{sub 3} mode (at 521.27 cm{sup −1}) of Raman spectra. As-deposited BST thin films reveal ferromagnetic-like properties, which persist up to 400 K. The magnetization decreases two-fold upon oxygen annealing. In contrast, as-deposited un-doped BTO films show diamagnetism. Electron spin resonance measurements reveal no evidence of external magnetic impurities. XRD and X-ray photoelectron spectroscopy spectra show significant changes influenced by Sr doping in BTO. The ferromagnetic-like behavior in BST could be due to the trapped electron donors from oxygen vacancies resulting from Sr-doping.« less
Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front
Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.
1998-07-14
Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.
Powder based superdielectric materials for novel Capacitor design
2017-06-01
SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN by Clayton W. Petty June 2017 Thesis Advisor: Jonathan Phillips Second Reader: Anthony...thesis 4. TITLE AND SUBTITLE POWDER-BASED SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN 5. FUNDING NUMBERS 6. AUTHOR(S) Clayton W...unlimited. POWDER-BASED SUPERDIELECTRIC MATERIALS FOR NOVEL CAPACITOR DESIGN Clayton W. Petty Lieutenant, Junior Grade, United States Navy B.S
The relationship between study addiction and work addiction: A cross-cultural longitudinal study.
Atroszko, Paweł A; Andreassen, Cecilie Schou; Griffiths, Mark D; Pallesen, Ståle
2016-12-01
Aims Recent empirical studies investigating "study addiction" have conceptualized it as a behavioral addiction, defined within the framework of work addiction. This study is the first attempt to examine the longitudinal relationship between study addiction and work addiction. Methods The Bergen Study Addiction Scale (BStAS), the Bergen Work Addiction Scale (BWAS), and the Ten-Item Personality Inventory were administered online together with questions concerning demographics and study-related variables in two waves. In Wave 1, a total of 2,559 students in Norway and 2,177 students in Poland participated. A year later, in Wave 2, 379 Norwegians and 401 Polish who began to work professionally completed the survey. Results The intraclass correlation between BStAS and BWAS revealed that the scores were somewhat related; however, the relationship was slightly weaker than the temporal stability of both constructs. In the Norwegian sample, scoring higher on neuroticism and lower on learning time outside educational classes in Wave 1 was positively related to work addiction in Wave 2, whereas gender was unrelated to work addiction in Wave 2 when controlling for other studied variables in either samples. Conclusion Study addiction and work addiction appear to be closely related suggesting that the former may be a precursor for (or an early form of) the latter.
The relationship between study addiction and work addiction: A cross-cultural longitudinal study
Atroszko, Paweł A.; Andreassen, Cecilie Schou; Griffiths, Mark D.; Pallesen, Ståle
2016-01-01
Aims Recent empirical studies investigating “study addiction” have conceptualized it as a behavioral addiction, defined within the framework of work addiction. This study is the first attempt to examine the longitudinal relationship between study addiction and work addiction. Methods The Bergen Study Addiction Scale (BStAS), the Bergen Work Addiction Scale (BWAS), and the Ten-Item Personality Inventory were administered online together with questions concerning demographics and study-related variables in two waves. In Wave 1, a total of 2,559 students in Norway and 2,177 students in Poland participated. A year later, in Wave 2, 379 Norwegians and 401 Polish who began to work professionally completed the survey. Results The intraclass correlation between BStAS and BWAS revealed that the scores were somewhat related; however, the relationship was slightly weaker than the temporal stability of both constructs. In the Norwegian sample, scoring higher on neuroticism and lower on learning time outside educational classes in Wave 1 was positively related to work addiction in Wave 2, whereas gender was unrelated to work addiction in Wave 2 when controlling for other studied variables in either samples. Conclusion Study addiction and work addiction appear to be closely related suggesting that the former may be a precursor for (or an early form of) the latter. PMID:27842448
A Study of Three Phase and Single Phase High Frequency Distribution Systems
1989-09-20
single Schwarz converter which operates in a variable frequency mode and acts as a regulated dc power supply . This mode of operation is used to maintain a...conditioning stages. The first stage contains a single Schwarz converter which operates in a variable frequency mode and acts as a regulated dc power supply ...dependent upon the amount of current ripple the capacitor must sink. This determines the capacitor heating since the power dissipated is equal to 2R
Size effects and realiability of barium strontium titanate thin films
NASA Astrophysics Data System (ADS)
Parker, Charles Bernard
Thin films of (Ba,Sr)TiO3 (BST) deposited by Liquid Source MOCVD were investigated. BST is a candidate dielectric for future-generation DRAM and as a tunable dielectric. Two areas of both scientific and commercial interest were investigated. The first area is the effect of decreasing dimension on ferroelectric properties. Several theories of size effects in ferroelectrics were evaluated. The dielectric response of a set of BST films of thicknesses from 15 to 580 nm was measured from 85 to 580 K. These films were extensively characterized and the boundary conditions that often influence size effects measurements were considered, including strain, finite screening length in the electrode, depolarization fields in the ferroelectric, atmospheric effects, control of stochiometry, and others. The data set was compared to the theoretical predictions and it was determined that Finite Size Scaling provided the best fit to the data. Using this theory, the predicted dielectric response was compared to the requirements of future generations of DRAM and was found to be sufficient, if film strain can be controlled. The second area is reliability. The types of lifetime-limiting electrical failure observed in BST are resistance degradation, time dependant dielectric breakdown (tddb), and noisy breakdown. Previous work on BST reliability has largely focused on resistance degradation at high temperature. This condition is only a small subset of experimental space. This work extends the understanding of BST failure into the low temperature regime and evaluates the effects of both DC and AC stress. It was found that tddb is the dominant failure mode at low temperature and resistance degradation is the dominant failure modes at high temperature. Synthesizing this work with previous work on resistance degradation allowed a failure framework to be developed. Rigorous extrapolation of resistance degradation and tddb lifetimes was compared to the requirements of future generations of DRAM and was found that while resistance degradation will not limit device lifetimes, tddb will. Refinement of BST processing will be necessary to reduce the defect causing tddb failure.
Moallem, U; Dahl, G E; Duffey, E K; Capuco, A V; Wood, D L; McLeod, K R; Baldwin, R L; Erdman, R A
2004-11-01
The objectives of this study were to determine the effect of recombinant bovine somatotropin (bST) and added dietary rumen undegradable protein (RUP) on organ and tissue weights and body composition in growing dairy heifers. Thirty-two Holstein heifers were in the experiment, 8 killed initially at 3 mo of age, with the remaining 24 Holstein heifers randomly assigned to treatments (n = 6) consisting of 0.1 mg/kg of body weight per day of bST and 2% added dietary RUP (dry matter basis) applied in a 2 x2 factorial design. A total of 6 heifers per treatment group (3 each at 5 and 10 mo of age), were slaughtered to determine body composition and organ masses. Feed intake measured from group intakes were increased by 0.25 and 0.35 kg/d with bST and RUP, respectively. Administration of bST tended to increase the weights of visceral organs including heart, kidney, and spleen by 16, 16, and 38%, respectively. At 10 mo of age, there was a trend for increased empty body weights (EBW) and non-carcass components for heifers treated with bST, but there were no effects of RUP. Body components and organ weights, expressed as a percentage of BW were not affected by RUP or bST. Somatotropin increased ash weight at 10 mo without affecting amounts of protein, fat, and energy. Rates of ash deposition between 3 and 10 mo of age were increased 7 and 4 g/d by bST and RUP, respectively. There were no treatment effects on rates of body fat, protein, and energy deposition. Bovine somatotropin and RUP altered the metabolism of growing heifers in a manner that was consistent with increased rates of skeletal growth. This suggests that nutritional and endocrine manipulations could increase growth rates of skeletal tissues without increasing fat deposition in prepubertal dairy heifers.
THE STUDY OF HIGH DIELECTRIC CONSTANT MECHANISM OF La-DOPED Ba0.67Sr0.33TiO3 CERAMICS
NASA Astrophysics Data System (ADS)
Xu, Jing; He, Bo; Liu, Han Xing
It is a common and effective method to enhance the dielectric properties of BST ceramics by adding rare-earth elements. In this paper, it is important to analyze the cause of the high dielectric constant behavior of La-doped BST ceramics. The results show that proper rare earth La dopant (0.2≤x≤0.7) may greatly increase the dielectric constant of BST ceramics, and also improve the temperature stability, evidently. According to the current-voltage (J-V) characteristics, the proper La-doped BST ceramics may reach the better semiconductivity, with the decrease and increase in La doping, the ceramics are insulators. By using the Schottky barrier model and electric microstructure model to find the surface or grain boundary potential barrier height, the width of the depletion layer and grain size do play an important role in impacting the dielectric constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osinsky, A.V.; Fuflyigin, V.N.; Wang, F.
2000-07-01
Recent advances in the processing of complex-oxide materials has allowed the authors to monolithically grow ferroelectrics of lead lanthanum zirconate titanate (PLZT) and barium strontium titanate (BST) systems on a GaN/sapphire structure. High quality films of PLZT and BST were grown on GaN/c-Al{sub 2}O{sub 3} in a thickness range of 0.3--5 {micro}m by a sol-gel technique. Field-induced birefringence, as large as 0.02, was measured from a PLZT layer grown on a buffered GaN/sapphire structure. UV illumination was found to result in more symmetrical electrooptic hysteresis loop. BST films on GaN demonstrated a low frequency dielectric constant of up to 800more » with leakage current density as low as 5.5 {center_dot} 10{sup {minus}8} A/cm{sup 2}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun Sining; Department of Materials Physics, School of Science, Xi'an Jiaotong University, Xi'an 710049; Wang Xiaoli
2008-08-04
Barium strontium titanate (BST) with the molar formula (Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3}) has been prepared by two different processing methods: mixed-oxide (BST-MO) and reaction-sintering (BST-RS). X-ray powder diffraction study shows differences in grain size and crystal symmetry for both these ceramics. The former shows a tetragonal symmetry while the latter presents a cubic symmetry. The occurrence of polar micro-regions associated with the higher chemical non-homogeneous distribution of ion defects from the influence of the processing parameters is the main reason for the higher peak dielectric constant (K{sub m}), the higher remanent polarization (P{sub r}), the higher coercive field (E{sub c}),more » the higher peak current density (J{sub m}), and the lower temperature of peak dielectric constant (T{sub m}) in BST-MO ceramics.« less
PLL jitter reduction by utilizing a ferroelectric capacitor as a VCO timing element.
Pauls, Greg; Kalkur, Thottam S
2007-06-01
Ferroelectric capacitors have steadily been integrated into semiconductor processes due to their potential as storage elements within memory devices. Polarization reversal within ferroelectric capacitors creates a high nonlinear dielectric constant along with a hysteresis profile. Due to these attributes, a phase-locked loop (PLL), when based on a ferroelectric capacitor, has the advantage of reduced cycle-to-cycle jitter. PLLs based on ferroelectric capacitors represent a new research area for reduction of oscillator jitter.
X-ray diffraction and surface acoustic wave analysis of BST/Pt/TiO{sub 2}/SiO{sub 2}/Si thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mseddi, Souhir; Hedi Ben Ghozlen, Mohamed; Njeh, Anouar
2011-11-15
High dielectric constant and electrostriction property of (Ba, Sr)Ti0{sub 3} (BST) thin films result in an increasing interest for dielectric devices and microwave acoustic resonator. Barium strontium titanate (Ba{sub 0.645}Sr{sub 0.355}TiO{sub 3}) films of about 300 nm thickness are grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrates by rf magnetron sputtering deposition techniques. X-ray diffraction is applied for the microstructural characterization. The BST films exhibit a cubic perovskite structure with a dense and smooth surface. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in the BST films. Young's modulus E and the Poisson ratio {nu}more » of TiO{sub 2,} Pt and BST films in different propagation directions are derived from the measured dispersion curves. Estimation of BST elastics constants are served in SAW studies. Impact of stratification process on SAW, propagating along [100] and [110] directions of silicon substrate, has been interpreted on the basis of ordinary differential equation (ODE) and stiffness matrix method (SMM). A good agreement is observed between experimental and calculated dispersion curves. The performed calculations are strongly related to the implemented crystallographic data of each layer. Dispersion curves are found to be sensitive to the SAW propagation direction and the stratification process for the explored frequency ranges 50-250 MHz, even though it corresponds to a wave length clearly higher than the whole films thickness.« less
NASA Astrophysics Data System (ADS)
Wu, Huaping; Ma, Xuefu; Zhang, Zheng; Zhu, Jun; Wang, Jie; Chai, Guozhong
2016-04-01
A nonlinear thermodynamic model based on the vertically aligned nanocomposite (VAN) thin films of ferroelectric-metal oxide system has been developed to investigate the physical properties of the epitaxial Ba0.6Sr0.4TiO3 (BST) films containing vertical Sm2O3 (SmO) nanopillar arrays on the SrTiO3 substrate. The phase diagrams of out-of-plane lattice mismatch vs. volume fraction of SmO are calculated by minimizing the total free energy. It is found that the phase transformation and dielectric response of BST-SmO VAN systems are extremely dependent on the in-plane misfit strain, the out-of-plane lattice mismatch, the volume fraction of SmO phase, and the external electric field applied to the nanocomposite films at room temperature. In particular, the BST-SmO VAN systems exhibit higher dielectric properties than pure BST films. Giant dielectric response and maximum tunability are obtained near the lattice mismatch where the phase transition occurs. Under the in-plane misfit strain of umf=0.3 % and the out-of-plane lattice mismatch of u3=0.002 , the dielectric tunability can be dramatically enhanced to 90% with the increase of SmO volume fraction, which is well consistent with previous experimental results. This work represents an approach to further understand the dependence of physical properties on the lattice mismatch (in-plane and out-of-plane) and volume fraction, and to manipulate or optimize functionalities in the nanocomposite oxide thin films.
Effect of Detergents on Galactoside Binding by Melibiose Permeases.
Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan
2015-09-29
The effect of various detergents on the stability and function of the melibiose permeases of Escherichia coli (MelBEc) and Salmonella typhimurium (MelBSt) was studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141 → Cys, Arg295 → Cys, or Arg363 → Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIA(Glc) is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all of the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from the relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent.
Effect of detergents on galactoside binding by melibiose permeases
Amin, Anowarul; Hariharan, Parameswaran; Chae, Pil Seok; Guan, Lan
2015-01-01
The effect of various detergents on the stability and function of melibiose permeases of Escherichia coli (MelBEc) or Salmonella typhimurium (MelBSt) were studied. In n-dodecyl-β-d-maltoside (DDM) or n-undecyl-β-d-maltoside (UDM), WT MelBSt binds melibiose with an affinity similar to that in the membrane. However, with WT MelBEc or MelBSt mutants (Arg141→Cys, Arg295→Cys or Arg363→Cys), galactoside binding is not detected in these detergents, but binding to the phosphotransferase protein IIAGlc is maintained. In the amphiphiles lauryl maltose neopentyl glycol (MNG-3) or glyco-diosgenin (GDN), galactoside binding with all the MelB proteins is observed, with slightly reduced affinities. MelBSt is more thermostable than MelBEc, and the thermostability of either MelB is largely increased in MNG-3 or GDN. Therefore, the functional defect with DDM or UDM likely results from relative instability of the sensitive MelB proteins, and stability, as well as galactoside binding, is retained in MNG-3 or GDN. Furthermore, isothermal titration calorimetry of melibiose binding with MelBSt shows that the favorable entropic contribution to the binding free energy is decreased in MNG-3, indicating that the conformational dynamics of MelB is restricted in this detergent. PMID:26352464
Sharma, Surender Kumar; Shyam, Anurag
2015-02-01
High energy capacitor bank is used for primary electrical energy storage in pulsed power drivers. The capacitors used in these pulsed power drivers have low inductance, low internal resistance, and less dc life, so it has to be charged rapidly and immediately discharged into the load. A series resonant converter based 45 kV compact power supply is designed and developed for rapid charging of the capacitor bank with constant charging current up to 150 mA. It is short circuit proof, and zero current switching technique is used to commute the semiconductor switch. A high frequency resonant inverter switching at 10 kHz makes the overall size small and reduces the switching losses. The output current of the power supply is limited by constant on-time and variable frequency switching control technique. The power supply is tested by charging the 45 kV/1.67 μF and 15 kV/356 μF capacitor banks. It has charged the capacitor bank up to rated voltage with maximum charging current of 150 mA and the average charging rate of 3.4 kJ/s. The output current of the power supply is limited by reducing the switching frequency at 5 kHz, 3.3 kHz, and 1.7 kHz and tested with 45 kV/1.67 μF capacitor bank. The protection circuit is included in the power supply for over current, under voltage, and over temperature. The design details and the experimental testing results of the power supply for resonant current, output current, and voltage traces of the power supply with capacitive, resistive, and short circuited load are presented and discussed.
NASA Astrophysics Data System (ADS)
Qiu, Fei; Xu, Zhimou
2009-08-01
In this study, the amorphous Ba0.7Sr0.3TiO3 (BST0.7) thin films were grown onto fused quartz and silicon substrates at low temperature by using a metal organic decomposition (MOD)-spin-coating procedure. The optical transmittance spectrum of amorphous BST0.7 thin films on fused quartz substrates has been recorded in the wavelength range 190~900 nm. The films were highly transparent for wavelengths longer than 330 nm; the transmission drops rapidly at 330 nm, and the cutoff wavelength occurs at about 260 nm. In addition, we also report the amorphous BST0.7 thin film groove-buried type waveguides with 90° bent structure fabricated on Si substrates with 1.65 μm thick SiO2 thermal oxide layer. The design, fabrication and optical losses of amorphous BST0.7 optical waveguides were presented. The amorphous BST0.7 thin films were grown onto the SiO2/Si substrates by using a metal organic decomposition (MOD)-spin-coating procedure. The optical propagation losses were about 12.8 and 9.4 dB/cm respectively for the 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. The 90° bent structures with a small curvature of micrometers were designed on the basis of a double corner mirror structure. The bend losses were about 1.2 and 0.9 dB respectively for 5 and 10 μm wide waveguides at the wavelength of 632.8 nm. It is expected for amorphous BST0.7 thin films to be used not only in the passive optical interconnection in monolithic OEICs but also in active waveguide devices on the Si chip.
Moallem, U; Folman, Y; Bor, A; Arav, A; Sklan, D
1999-11-01
The effect of fat and bovine somatotropin (bST) on preovulatory follicular hormones and lipids was evaluated by feeding cows for 150 d from parturition a control diet, a control diet plus 0.55 kg/d of calcium soaps of fatty acids, or a control diet with 500 mg of bST injected every 14 d. Fourteen days after a synchronized or natural estrus, cows were injected with a PGF2 alpha analogue; 48 h later, follicular fluid from all ovarian follicles > 8 mm was aspirated. Cows fed fat or injected with bST produced more milk and milk solids than did control cows, and cows on the bST treatment lost more body condition after calving than did cows on the other treatments. Both treatments changed the proportion of estradiol-active follicles (> 400 ng of estradiol/ml of follicular fluid) and the correlation between follicular fluid estradiol concentration and the total number large follicles per cow. In follicles aspirated between 60 and 90 DIM the percentage of estradiol-active follicles was 67, 40, and 0 for cows on the control, calcium soaps of fatty acids, and bST treatments, respectively. After 90 DIM, no differences existed between treatments in the percentage of estradiol-active follicles. Estradiol concentration in follicular fluid was correlated with DIM at follicle aspiration (r = 0.51). The proportion of oleic acid in free fatty acids in plasma at 50 DIM was lower in control cows and was lower in follicular fluid of estradiol-active follicles. Both calcium soaps of fatty acids and bST had a considerable effect on follicular development and activity and the composition of fatty acids in follicles.
Balogh, Orsolya; Brodszky, Valentin; Gulácsi, László; Herédi, Emese; Herszényi, Krisztina; Jókai, Hajnalka; Kárpáti, Sarolta; Baji, Petra; Remenyik, Éva; Szegedi, Andrea; Holló, Péter
2014-05-01
Despite the widespread availability of biological drugs in psoriasis, there is a shortage of disease burden studies. To assess the cost-of-illness and quality of life of patients with moderate to severe psoriasis in Hungary. Consecutive patients with Psoriasis Area and Severity Index (PASI) > 10 and Dermatology Life Quality Index (DLQI) > 10, or treated with traditional systemic (TST) or biological systemic treatment (BST) were included. Demographic data, clinical characteristics, psoriasis related medication, health care utilizations and employment status in the previous 12 months were recorded. Costing was performed from the societal perspective applying the human capital approach. Quality of life was assessed using DLQI and EQ-5D measures. Two-hundred patients were involved (females 32%) with a mean age of 51 (SD 13) years, 103 (52%) patients were on BST. Mean PASI, DLQI and EQ-5D scores were 8 (SD 10), 6 (SD 7) and 0.69 (SD 0.3), respectively. The mean total cost was €9,254/patient/year (SD 8,502) with direct costs accounting for 86%. The main cost driver was BST (mean €7,339/patient/year). Total costs differed significantly across treatment subgroups, mean (SD): no systemic therapy €2,186 (4,165), TST €2,388 (4,106) and BST €15,790 (6,016) (p < 0,001). Patients with BST had better PASI and DLQI scores (p < 0.01) than the other two subgroups. Patients with biological treatment have a significantly better quality of life and higher total costs than patients with or without traditional systemic treatment. Our study is the largest in Europe and the first in the CEE region that provides cost-of-illness data in psoriasis involving patients with BST.
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
This presentation includes a summary of NEPP-funded deliverables for the Base-Metal Electrodes (BMEs) capacitor task, development of a general reliability model for BME capacitors, and a summary and future work.
2014 NEPP Tasks Update for Ceramic and Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Presentation describes recent development in research on MnO2, wet, and polymer tantalum capacitors. Low-voltage failures in multilayer ceramic capacitors and techniques to reveal precious metal electrode (PME) and base metal electrode (BME) capacitors with cracks are discussed. A voltage breakdown technique is suggested to select high quality low-voltage BME ceramic capacitors.
Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.
Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor
2011-03-01
We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.
ELECTRONIC INTEGRATING CIRCUIT
Englemann, R.H.
1963-08-20
An electronic integrating circuit using a transistor with a capacitor connected between the emitter and collector through which the capacitor discharges at a rate proportional to the input current at the base is described. Means are provided for biasing the base with an operating bias and for applying a voltage pulse to the capacitor for charging to an initial voltage. A current dividing diode is connected between the base and emitter of the transistor, and signal input terminal means are coupled to the juncture of the capacitor and emitter and to the base of the transistor. At the end of the integration period, the residual voltage on said capacitor is less by an amount proportional to the integral of the input signal. Either continuous or intermittent periods of integration are provided. (AEC)
Coordinated distribution network control of tap changer transformers, capacitors and PV inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin
A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less
Coordinated distribution network control of tap changer transformers, capacitors and PV inverters
Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin
2017-06-08
A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less
Nasimi, Ali; Kafami, Marzieh
2016-07-01
The bed nucleus of the stria terminalis (BST) is involved in cardiovascular regulation. The angiotensin II (Ang II) receptor (AT1), and angiotensinogen were found in the BST. In our previous study we found that microinjection of Ang II into the BST produced a pressor response. This study was performed to find the mechanisms mediating this response in anesthetized rats. Ang II was microinjected into the BST and the cardiovascular responses were re-tested after systemic injection of a blocker of autonomic or vasopressin V1 receptor. The ganglionic nicotinic receptor blocker, hexamethonium dichloride, attenuated the pressor response to Ang II, indicating that the cardiovascular sympathetic system is involved in the pressor effect of Ang II. A selective vasopressin V1 receptor antagonist greatly attenuated the pressor effect of Ang II, indicating that the Ang II increases the arterial pressure via stimulation of vasopressin release as well. In conclusion, in the BST, Ang II as a neurotransmitter increases blood pressure by exciting cardiovascular sympathetic system and directly or indirectly causing vasopressin to release into bloodstream by VPN. This is an interesting new finding that not only circulating Ang II but also brain Ang II makes vasopressin release. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Catechol-chitosan redox capacitor for added amplification in electrochemical immunoanalysis.
Yan, Kun; Liu, Yi; Guan, Yongguang; Bhokisham, Narendranath; Tsao, Chen-Yu; Kim, Eunkyoung; Shi, Xiao-Wen; Wang, Qin; Bentley, William E; Payne, Gregory F
2018-05-22
Antibodies are common recognition elements for molecular detection but often the signals generated by their stoichiometric binding must be amplified to enhance sensitivity. Here, we report that an electrode coated with a catechol-chitosan redox capacitor can amplify the electrochemical signal generated from an alkaline phosphatase (AP) linked immunoassay. Specifically, the AP product p-aminophenol (PAP) undergoes redox-cycling in the redox capacitor to generate amplified oxidation currents. We estimate an 8-fold amplification associated with this redox-cycling in the capacitor (compared to detection by a bare electrode). Importantly, this capacitor-based amplification is generic and can be coupled to existing amplification approaches based on enzyme-linked catalysis or magnetic nanoparticle-based collection/concentration. Thus, the capacitor should enhance sensitivities in conventional immunoassays and also provide chemical to electrical signal transduction for emerging applications in molecular communication. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Li, Qi; Trinh, Wei; Lu, Qianli; Cho, Heejin; Wang, Qing; Chen, Lei
2017-07-01
The objective of this paper is to design and optimize the high temperature metalized thin-film polymer capacitor by a combined computational and experimental method. A finite-element based thermal model is developed to incorporate Joule heating and anisotropic heat conduction arising from anisotropic geometric structures of the capacitor. The anisotropic thermal conductivity and temperature dependent electrical conductivity required by the thermal model are measured from the experiments. The polymer represented by thermally crosslinking benzocyclobutene (BCB) in the presence of boron nitride nanosheets (BNNSs) is selected for high temperature capacitor design based on the results of highest internal temperature (HIT) and the time to achieve thermal equilibrium. The c-BCB/BNNS-based capacitor aiming at the operating temperature of 250 °C is geometrically optimized with respect to its shape and volume. "Safe line" plot is also presented to reveal the influence of the cooling strength on capacitor geometry design.
Sardinha, Luís B.; Magalhães, João P.; Santos, Diana A.; Júdice, Pedro B.
2017-01-01
Background: Sedentary behavior has been considered an independent risk factor for type-2 diabetes (T2D), with a negative impact on several physiological outcomes, whereas breaks in sedentary time (BST) have been proposed as a viable solution to mitigate some of these effects. However, little is known about the independent associations of sedentary pursuits, physical activity, and cardiorespiratory fitness (CRF) variables with glycemic control. We investigated the independent associations of total sedentary time, BST, moderate-to-vigorous physical activity (MVPA), and CRF with glycemic outcomes in patients with T2D. Methods: Total sedentary time, BST, and MVPA were assessed in 66 participants (29 women) with T2D, using accelerometry. Glucose and insulin were measured during a mixed meal tolerance test, with the respective calculations of HOMA-IR and Matsuda index. Glycated hemoglobin (HbA1c) was also analyzed. CRF was measured in a maximal treadmill test with breath-by-breath gases analysis. Multiple regressions were used for data analysis. Results: Regardless of CRF, total sedentary time was positively associated with HbA1c (β = 0.25, p = 0.044). Adjusting for MVPA, total sedentary time was related to fasting glucose (β = 0.32, p = 0.037). No associations between total sedentary time and the remaining glycemic outcomes, after adjusting for MVPA. BST had favorable associations with HOMA-IR (β = −0.28, p = 0.047) and fasting glucose (β = −0.25, p = 0.046), when adjusted for MVPA, and with HOMA-IR (β = −0.25, p = 0.036), Matsuda index (β = 0.26, p = 0.036), and fasting glucose (β = −0.22, p = 0.038), following adjustment for CRF. When adjusting for total sedentary time, only CRF yielded favorable associations with HOMA-IR (β = −0.29, p = 0.039), fasting glucose (β = −0.32, p = 0.012), and glucose at 120-min (β = −0.26, p = 0.035), and no associations were found for MVPA with none of the metabolic outcomes. Conclusion: The results from this study suggest that sedentary time and patterns are relevant for the glycemic control in patients with T2D. Still, MVPA and CRF counteracted most of the associations for total sedentary time but not for the BST. MVPA was not associated with metabolic outcomes, and CRF lost some of the associations with glycemic indicators when adjusted for total sedentary time. Future interventions aiming to control/improve T2D must consider reducing and breaking up sedentary time as a viable strategy to improve glycemic control. PMID:28503154
Real-time observations of interface formation for barium strontium titanate films on silicon
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Suvorova, N. A.; Irene, E. A.; Auciello, O.; Schultz, J. A.
2002-05-01
Ba.5Sr.5TiO3 (BST) film growth by ion sputtering on bare and thermally oxidized silicon was observed in real time using in-situ spectroscopic ellipsometry and time of flight ion scattering and recoil spectrometry techniques. At the outset of BST film deposition on silicon, an approximately 30 Å film with intermediate static dielectric constant (K˜12) and refractive index (n˜2.6 at photon energies of 1.5-3.25 eV) interface layer formed on bare silicon. The interface layer growth rate was greatly reduced on an oxidized silicon substrate. The results have profound implications on the static dielectric constant of BST.
Precision digital pulse phase generator
McEwan, T.E.
1996-10-08
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.
Precision digital pulse phase generator
McEwan, Thomas E.
1996-01-01
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.
Derde, L J; Gomand, S V; Courtin, C M; Delcour, J A
2012-11-15
Maltogenic α-amylase from Bacillus stearothermophilus (BStA) is widely used as bread crumb anti-firming enzyme. A maltotetraose-forming α-amylase from Pseudomonas saccharophila (PSA) was recently proposed as alternative, hence the need to compare both exo-acting enzymes with some endo-action component. A purely exo-acting thermostable β-amylase from Clostridium thermosulfurogenes (CTB) was included for reference purposes. Under the experimental conditions used, temperature optima of the enzymes are rather similar (60-65 °C), but temperature stability decreased in the order BStA, PSA and CTB. The action of the enzymes on different substrates and their impact on the rheological behaviour of maize starch suspensions demonstrated that, while CTB acts exclusively through an exo-action mechanism, BStA displayed limited endo-action which became more pronounced at higher temperatures. PSA has more substantial endo-action than BStA, which is rather temperature independent. This is important for their impact in processes such as breadmaking, where temperature is gradually increased. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yin; Chen, Chen; Gao, Ran
2015-11-02
Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transitionmore » from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.« less
Hybrid modeling in biochemical systems theory by means of functional petri nets.
Wu, Jialiang; Voit, Eberhard
2009-02-01
Many biological systems are genuinely hybrids consisting of interacting discrete and continuous components and processes that often operate at different time scales. It is therefore desirable to create modeling frameworks capable of combining differently structured processes and permitting their analysis over multiple time horizons. During the past 40 years, Biochemical Systems Theory (BST) has been a very successful approach to elucidating metabolic, gene regulatory, and signaling systems. However, its foundation in ordinary differential equations has precluded BST from directly addressing problems containing switches, delays, and stochastic effects. In this study, we extend BST to hybrid modeling within the framework of Hybrid Functional Petri Nets (HFPN). First, we show how the canonical GMA and S-system models in BST can be directly implemented in a standard Petri Net framework. In a second step we demonstrate how to account for different types of time delays as well as for discrete, stochastic, and switching effects. Using representative test cases, we validate the hybrid modeling approach through comparative analyses and simulations with other approaches and highlight the feasibility, quality, and efficiency of the hybrid method.
A mathematical model of insulin resistance in Parkinson's disease.
Braatz, Elise M; Coleman, Randolph A
2015-06-01
This paper introduces a mathematical model representing the biochemical interactions between insulin signaling and Parkinson's disease. The model can be used to examine the changes that occur over the course of the disease as well as identify which processes would be the most effective targets for treatment. The model is mathematized using biochemical systems theory (BST). It incorporates a treatment strategy that includes several experimental drugs along with current treatments. In the past, BST models of neurodegeneration have used power law analysis and simulation (PLAS) to model the system. This paper recommends the use of MATLAB instead. MATLAB allows for more flexibility in both the model itself and in data analysis. Previous BST analyses of neurodegeneration began treatment at disease onset. As shown in this model, the outcomes of delayed, realistic treatment and full treatment at disease onset are significantly different. The delayed treatment strategy is an important development in BST modeling of neurodegeneration. It emphasizes the importance of early diagnosis, and allows for a more accurate representation of disease and treatment interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting
2013-07-01
A Comparison of Electrolytic Capacitors and Supercapacitors for Piezo-Based Energy Harvesting by Matthew H. Ervin, Carlos M. Pereira, John R...Capacitors and Supercapacitors for Piezo-Based Energy Harvesting Matthew H. Ervin Sensors and Electronic Devices Directorate, ARL Carlos M. Pereira... Supercapacitors for Piezo-Based Energy Harvesting 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew H
Perera, Varahenage R.; Lapek, John D.; Newton, Gerald L.; Gonzalez, David J.; Pogliano, Kit
2018-01-01
Bacillithiol is a low molecular weight thiol found in Firmicutes that is analogous to glutathione, which is absent in these bacteria. Bacillithiol transferases catalyze the transfer of bacillithiol to various substrates. The S-transferase-like (STL) superfamily contains over 30,000 putative members, including bacillithiol transferases. Proteins in this family are extremely divergent and are related by structural rather than sequence similarity, leaving it unclear if all share the same biochemical activity. Bacillus subtilis encodes eight predicted STL superfamily members, only one of which has been shown to be a bacillithiol transferase. Here we find that the seven remaining proteins show varying levels of metal dependent bacillithiol transferase activity. We have renamed the eight enzymes BstA-H. Mass spectrometry and gene expression studies revealed that all of the enzymes are produced to varying levels during growth and sporulation, with BstB and BstE being the most abundant and BstF and BstH being the least abundant. Interestingly, several bacillithiol transferases are induced in the mother cell during sporulation. A strain lacking all eight bacillithiol transferases showed normal growth in the presence of stressors that adversely affect growth of bacillithiol-deficient strains, such as paraquat and CdCl2. Thus, the STL bacillithiol transferases represent a new group of proteins that play currently unknown, but potentially significant roles in bacillithiol-dependent reactions. We conclude that these enzymes are highly divergent, perhaps to cope with an equally diverse array of endogenous or exogenous toxic metabolites and oxidants. PMID:29451913
Acoustoelastic effect of textured (Ba,Sr)TiO{sub 3} thin films under an initial mechanical stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamel, Marwa; Mseddi, Souhir; Njeh, Anouar
Acoustoelastic (AE) analysis of initial stresses plays an important role as a nondestructive tool in current engineering. Two textured BST (Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3}) thin films, with different substrate to target distance, were grown on Pt(111)/TiO{sub 2}/SiO{sub 2}/Si(001) substrate by rf-magnetron sputtering deposition techniques. A conventional “sin{sup 2} ψ” method to determine residual stress and strain in BST films by X-ray diffraction is applied. A laser acoustic waves (LA-waves) technique is used to generate surface acoustic waves (SAW) propagating in both samples. Young's modulus E and Poisson ratio ν of BST films in different propagation directions are derived from the measuredmore » dispersion curves. Estimation of effective second-order elastic constants of BST thin films in stressed states is served in SAW study. This paper presents an original investigation of AE effect in prestressed Ba{sub 0.65}Sr{sub 0.35}TiO{sub 3} films, where the effective elastic constants and the effect of texture on second and third order elastic tensor are considered and used. The propagation behavior of Rayleigh and Love waves in BST thin films under residual stress is explored and discussed. The guiding velocities affected by residual stresses, reveal some shifts which do not exceed four percent mainly in the low frequency range.« less
The effect of bovine somatotropin on the cost of producing milk: Estimates using propensity scores.
Tauer, Loren W
2016-04-01
Annual farm-level data from New York dairy farms from the years 1994 through 2013 were used to estimate the cost effect from bovine somatotropin (bST) using propensity score matching. Cost of production was computed using the whole-farm method, which subtracts sales of crops and animals from total costs under the assumption that the cost of producing those products is equal to their sales values. For a farm to be included in this data set, milk receipts on that farm must have comprised 85% or more of total receipts, indicating that these farms are primarily milk producers. Farm use of bST, where 25% or more of the herd was treated, ranged annually from 25 to 47% of the farms. The average cost effect from the use of bST was estimated to be a reduction of $2.67 per 100 kg of milk produced in 2013 dollars, although annual cost reduction estimates ranged from statistical zero to $3.42 in nominal dollars. Nearest neighbor matching techniques generated a similar estimate of $2.78 in 2013 dollars. These cost reductions estimated from the use of bST represented a cost savings of 5.5% per kilogram of milk produced. Herd-level production increase per cow from the use of bST over 20 yr averaged 1,160 kg. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Fox, Andrew S; Shackman, Alexander J
2017-11-30
Anxiety disorders impose a staggering burden on public health, underscoring the need to develop a deeper understanding of the distributed neural circuits underlying extreme fear and anxiety. Recent work highlights the importance of the central extended amygdala, including the central nucleus of the amygdala (Ce) and neighboring bed nucleus of the stria terminalis (BST). Anatomical data indicate that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated to assemble states of fear and anxiety. Neuroimaging studies show that the Ce and BST are engaged by a broad spectrum of potentially threat-relevant cues. Mechanistic work demonstrates that the Ce and BST are critically involved in organizing defensive responses to a wide range of threats. Studies in rodents have begun to reveal the specific molecules, cells, and microcircuits within the central extended amygdala that underlie signs of fear and anxiety, but the relevance of these tantalizing discoveries to human experience and disease remains unclear. Using a combination of focal perturbations and whole-brain imaging, a new generation of nonhuman primate studies is beginning to close this gap. This work opens the door to discovering the mechanisms underlying neuroimaging measures linked to pathological fear and anxiety, to understanding how the Ce and BST interact with one another and with distal brain regions to govern defensive responses to threat, and to developing improved intervention strategies. Copyright © 2017. Published by Elsevier B.V.
Bhullar, Indermeet S; Frykberg, Eric R; Siragusa, Daniel; Chesire, David; Paul, Julia; Tepas, Joseph J; Kerwin, Andrew J
2012-05-01
To determine whether angioembolization (AE) in hemodynamically stable adult patients with blunt splenic trauma (BST) at high risk for failure of nonoperative management (NOM) (contrast blush [CB] on computed tomography, high-grade IV-V injuries, or decreasing hemoglobin) results in lower failure rates than reported. The records of patients with BST from July 2000 to December 2010 at a Level I trauma center were retrospectively reviewed using National Trauma Registry of the American College of Surgeons. Failure of NOM (FNOM) occurred if splenic surgery was required after attempted NOM. Logistic regression analysis was used to identify factors associated with FNOM. A total of 1,039 patients with BST were found. Pediatric patients (age <17 years), those who died in the emergency department, and those requiring immediate surgery for hemodynamic instability were excluded. Of the 539 (64% of all BST) hemodynamically stable patients who underwent NOM, 104 (19%) underwent AE and 435 (81%) were observed without AE (NO-AE). FNOM for the various groups were as follows: overall NOM (4%), NO-AE (4%), and AE (4%). There was no significant difference in FNOM for NO-AE versus AE for grades I to III: grade I (1% vs. 0%, p = 1), grade II (2% vs. 0%, p = 0.318), and grade III (5% vs. 0%, p = 0.562); however, a significant decrease in FNOM was noted with the addition of AE for grades IV to V: grade IV (23% vs. 3%, p = 0.04) and grade V (63% vs. 9%, p = 0.03). Statistically significant independent risk factors for FNOM were grade IV to V injuries and CB. Application of strictly defined selection criteria for NOM and AE in patients with BST resulted in one of the lowest overall FNOM rates (4%). Hemodynamically stable BST patients are candidates for NOM with selective AE for high-risk patients with grade IV to V injuries, CB on initial computed tomography, and/or decreasing hemoglobin levels. III, therapeutic study.
Flores, R; Looper, M L; Rorie, R W; Lamb, M A; Reiter, S T; Hallford, D M; Kreider, D L; Rosenkrans, C F
2007-05-01
Ninety-nine multiparous Brahman-influenced (1/4 to 3/8 Brahman) cows were managed to achieve low (BCS = 4.3 +/- 0.1; n = 50) or moderate (BCS = 6.1 +/- 0.1; n = 49) body condition (BC) to determine the influence of bovine somatotropin (bST) on estrous characteristics, reproductive performance, and concentrations of serum GH and plasma NEFA. Beginning 32 d postpartum, cows within each BC were assigned randomly to treatment with or without bST. Non-bST-treated cows received no treatment, and treated cows were administered bST (Posilac, 500 mg s.c.) on d -35, -21, and -7 before initiation of the breeding season. On d -7, all cows received an intravaginal, controlled internal drug-releasing (CIDR) device. On d 0 (initiation of the 70-d breeding season), the CIDR were removed and cows received prostaglandin F2alpha (PGF2alpha). Blood samples were collected from the median caudal vein of the cows at each bST treatment and at d -28 and 0. Estrous behavior was monitored by radiotelemetry during the first 30 d of the breeding season. Growth hormone was increased (P < 0.05) in low and moderate BC cows treated with bST. The percentage of cows detected in estrus during the first 30 d of the breeding season was decreased (P = 0.05) for low BC (64%) compared with moderate BC (82%) cows. The interval to first estrus tended (P = 0.07) to be shorter in low BC-bST-treated cows (3.7 +/- 1.9 d) than in moderate BC-bST-treated cows (9.6 +/- 1.8 d). During the first 30 d of the breeding season, cows in low BC had a decreased (P = 0.02) number of mounts received and increased (P = 0.001) quiescence between mounts compared with cows in moderate BC. The number of mounts received was reduced (P = 0.04) in bST-treated cows. More (P = 0.02) cows treated with bST became pregnant during the first 3 d of the breeding season compared with non-bST-treated cows. The cumulative first-service conception rate tended (P = 0.07) to be greater for bST-low BC cows than non-bST-treated cows in low or moderate BC. On d 0, NEFA were greater (P < 0.05) in bST-treated vs. non-bST-treated cows. Low BC and bST reduced the intensity of behavioral estrus in postpartum Brahman-influenced cows. However, bST increased the first-service conception rate during the first 30 d of breeding and pregnancy rates during the first 3 d of breeding in postpartum Brahman-influenced cows.
Dhakal, Rajendra; Kim, E S; Jo, Yong-Hwa; Kim, Sung-Soo; Kim, Nam-Young
2017-03-01
We present a concept for the characterization of micro-fabricated based resonator incorporating air-bridge metal-insulator-semiconductor (MIS) capacitor to continuously monitor an individual's state of glucose levels based on frequency variation. The investigation revealed that, the micro-resonator based on MIS capacitor holds considerable promise for implementation and recognition as a glucose sensor for human serum. The discrepancy in complex permittivity as a result of enhanced capacitor was achieved for the detection and determination of random glucose concentration levels using a unique variation of capacitor that indeed results in an adequate variation of the resonance frequency. Moreover, the design and development of micro-resonator with enhanced MIS capacitor generate a resolution of 112.38 × 10 -3 pF/mg/dl, minimum detectable glucose level of 7.45mg/dl, and a limit of quantification of 22.58mg/dl. Additionally, this unique approach offers long-term reliability for mediator-free glucose sensing with a relative standard deviation of less than 0.5%. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
The Two-Capacitor Problem Revisited: A Mechanical Harmonic Oscillator Model Approach
ERIC Educational Resources Information Center
Lee, Keeyung
2009-01-01
The well-known two-capacitor problem, in which exactly half the stored energy disappears when a charged capacitor is connected to an identical capacitor, is discussed based on the mechanical harmonic oscillator model approach. In the mechanical harmonic oscillator model, it is shown first that "exactly half" the work done by a constant applied…
Teaching Reading Comprehension Skills to a Child with Autism Using Behaviour Skills Training
ERIC Educational Resources Information Center
Singh, Binita D.; Moore, Dennis W.; Furlonger, Brett E.; Anderson, Angelika; Busacca, Margherita L.; English, Derek L.
2017-01-01
A multiple probe design across skills was used to examine the effects of behaviour skills training (BST) on teaching four reading comprehension skills (predicting, questioning, clarifying, and summarizing) to a 7th grade student with autism. Following baseline, the student received 12 sessions of BST during which each skill was taught to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikheev, Evgeny; Kajdos, Adam P.; Hauser, Adam J.
2012-12-17
We report on the dielectric properties of Ba{sub x}Sr{sub 1-x}TiO{sub 3} (BST) films grown by molecular beam epitaxy on epitaxial Pt bottom electrodes. Paraelectric films (x Less-Than-Or-Equivalent-To 0.5) exhibit dielectric losses that are similar to those of BST single crystals and ceramics. Films with device quality factors greater than 1000 and electric field tunabilities exceeding 1:5 are demonstrated. The results provide evidence for the importance of stoichiometry control and the use of a non-energetic deposition technique for achieving high figures of merit of tunable devices with BST thin films.
NASA Technical Reports Server (NTRS)
Liu, David (Donhang); Sampson, Michael J.
2011-01-01
Base-metal-electrode (BME) ceramic capacitors are being investigated for possible use in high-reliability spacelevel applications. This paper focuses on how BME capacitors construction and microstructure affects their lifetime and reliability. Examination of the construction and microstructure of commercial off-the-shelf (COTS) BME capacitors reveals great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and 0.5 m, which is much less than that of most PME capacitors. BME capacitors can be fabricated with more internal electrode layers and thinner dielectric layers than PME capacitors because they have a fine-grained microstructure and do not shrink much during ceramic sintering. This makes it possible for BME capacitors to achieve a very high capacitance volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT). Most BME capacitors were found to fail with an early avalanche breakdown, followed by a regular dielectric wearout failure during the HALT test. When most of the early failures, characterized with avalanche breakdown, were removed, BME capacitors exhibited a minimum mean time-to-failure (MTTF) of more than 105 years at room temperature and rated voltage. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically around 12 for a number of BME capacitors with a rated voltage of 25V. This may suggest that the number of grains per dielectric layer is more critical than the thickness itself for determining the rated voltage and the life expectancy of the BME capacitor. The leakage current characterization and the failure analysis results suggest that most of these early avalanche failures are due to the extrinsic minor construction defects introduced during fabrication of BME capacitors. The concentration of the extrinsic defects must be reduced if the BME capacitors are considered for high reliability applications. There are two approaches that can reduce or prevent the occurrence of early failure in BME capacitors: (1) to reduce the defect concentration with improved processing control; (2) to prevent the use of BME capacitors under harsh external stress levels so that the extrinsic defects will never be triggered for a failure. In order to do so appropriate dielectric layer thickness must be determined for a given rated voltage.
Ni-BaTiO3-Based Base-Metal Electrode (BME) Ceramic Capacitors for Space Applications
NASA Technical Reports Server (NTRS)
Liu, Donhang; Fetter, Lula; Meinhold, Bruce
2015-01-01
A multi-layer ceramic capacitor (MLCC) is a high-temperature (1350C typical) co-fired ceramic monolithic that is composed of many layers of alternately stacked oxide-based dielectric and internal metal electrodes. To make the dielectric layers insulating and the metal electrode layers conducting, only highly oxidation-resistant precious metals, such as platinum, palladium, and silver, can be used for the co-firing of insulating MLCCs in a regular air atmosphere. MLCCs made with precious metals as internal electrodes and terminations are called precious-metal electrode (PME) capacitors. Currently, all military and space-level applications only address the use of PME capacitors.
Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2016-01-01
Time dependence of absorption voltages (Vabs) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on Vabs, cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on Vabs, are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks. Index Terms: Ceramic capacitor, insulation resistance, dielectric absorption, cracking.
NASA Astrophysics Data System (ADS)
McCormick, Mark Alan
The goal of this work was to produce BaTiO3 and BaxSr (1-x)TiO3 (BST) thin films with high dielectric constants, using a low-temperature (<100°C) hydrothermal synthesis route. To accomplish this, titanium metal-organic precursor films were spin-cast onto metal-coated glass substrates and converted to polycrystalline BaTiO3 or BST upon reacting in aqueous solutions of Ba(OH)2 or Ba(OH)2 and Sr(OH)2. The influences of solution molarity, processing temperature, and reaction time on thin film reaction kinetics, microstructure, and dielectric properties were examined for BaTiO3 films. Post-deposition annealing at temperatures as low as 200°C substantially affected the lattice parameter, dielectric constant, and dielectric loss. This behavior is explained in terms of hydroxyl defect incorporation during film formation. Current-voltage (I-V) measurements were performed to determine the dominant conduction mechanism(s) during application of a do field, and to extract the metal/ceramic barrier height. In particular, Schottky barrier-limited conduction and Poole-Frenkel conduction were investigated as potential leakage mechanisms. For BST thin films, film stoichiometry deviated from the initial solution composition, with a preferred incorporation of Sr2+ into the perovskite lattice. The dielectric constant of the BST films was measured as a function of composition (Ba:Sr ratio) and temperature over the range 25--150°C. Finally, capacitance-voltage (C-V) measurements were made for BST films to determine the influence of film composition on dielectric tunability.
Humidity Testing of PME and BME Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.; Herzberger, Jaemi
2014-01-01
Cracks in ceramic capacitors are one of the major causes of failures during operation of electronic systems. Humidity testing has been successfully used for many years to verify the absence of cracks and assure quality of military grade capacitors. Traditionally, only precious metal electrode (PME) capacitors were used in high reliability applications and the existing requirements for humidity testing were developed for this type of parts. With the advance of base metal electrode (BME) capacitors, there is a need for assessment of the applicability of the existing techniques for the new technology capacitors. In this work, variety of different PME and BME capacitors with introduced cracks were tested in humid environments at different voltages and temperatures. Analysis of the test results indicates differences in the behavior and failure mechanisms for BME and PME capacitors and the need for different testing conditions.
Performance of thin-film ferroelectric capacitors for EMC decoupling.
Li, Huadong; Subramanyam, Guru
2008-12-01
This paper studied the effects of thin-film ferroelectrics as decoupling capacitors for electromagnetic compatibility applications. The impedance and insertion loss of PZT capacitors were measured and compared with the results from commercial off-the-shelf capacitors. An equivalent circuit model was extracted from the experimental results, and a considerable series resistance was found to exist in ferroelectric capacitors. This resistance gives rise to the observed performance difference around series resonance between ferroelectric PZT capacitors and normal capacitors. Measurements on paraelectric (Ba,Sr)TiO(3)-based integrated varactors do not show this significant resistance. Some analyses were made to investigate the mechanisms, and it was found that it can be due to the hysteresis in the ferroelectric thin films.
Rakowska, Jadwiga Małgorzata
2015-01-01
Little is known about the impact of interventions targeting chronic stress levels on clinical outcomes among myocardial infarction (MI) patients with increased levels of stress. To examine the impact of the addition of brief strategic therapy (BST) to usual care (UC) on clinical outcomes in first MI patients with increased levels of stress. Eighty-one patients were randomly assigned to BST in conjunction with UC (medical treatment, risk factor information, and guidance on unhealthy behavior change) or to UC. The outcome measures were scores on the Perceived Stress Scale, reinfarction and cardiac mortality rates, and scores on the Health Survey. Measures were taken before, post-treatment, and at two follow-ups. Patients subjected to BST showed reduced perceived stress at post-treatment and maintained decreased levels at follow-ups. At 1-year follow-up, they had a lower rate of non-fatal reinfarction, and at 2.5-year follow-up, they had a lower rate of fatal reinfarction. Their mental and physical health was improved at post-treatment and this was sustained at follow-ups. The addition of BST to UC favorably influences the disease course after MI in patients with increased levels of stress.
NASA Astrophysics Data System (ADS)
Maiwa, Hiroshi
2017-10-01
The electrocaloric properties of Ba(Zr,Ti)O3 and (Ba,Sr)TiO3 ceramics (BZT and BST, respectively) were investigated by the indirect estimation and direct measurement of temperature-electric field (T-E) hysteresis loops. The measured T-E loops had shapes similar to those of the strain-electric field (s-E) loops. The measured temperature changes (ΔTs) at around 30 °C of the BZT ceramics sintered at 1450 °C and BST ceramics sintered at 1600 °C upon the release of the electric field from 30 kV/cm to 0 were 0.34 and 0.57 K, respectively. The temperature dependences of the electromechanical and electrocaloric properties were investigated. The BZT ceramics sintered at 1450 °C exhibited the largest electromechanical and electrocaloric properties at around 30 °C, which corresponds to the phase transition temperature. BST is more temperature dependent than BZT. BST ceramics sintered at 1600 °C exhibited the largest electromechanical and electrocaloric properties at around 29 °C, which is about 10 °C higher than the phase transition temperature.
Ultrahigh frequency tunability of aperture-coupled microstrip antenna via electric-field tunable BST
NASA Astrophysics Data System (ADS)
Du, Hong-Lei; Xue, Qian; Gao, Xiao-Yang; Yao, Feng-Rui; Lu, Shi-Yang; Wang, Ye-Long; Liu, Chun-Heng; Zhang, Yong-Cheng; Lü, Yue-Guang; Li, Shan-Dong
2015-12-01
A composite ceramic with nominal composition of 45.0 wt%(Ba0.5Sr0.5)TiO3-55.0 wt%MgO (acronym is BST-MgO) is sintered for fabricating a frequency reconfigurable aperture-coupled microstrip antenna. The calcined BST-MgO composite ceramic exhibits good microwave dielectric properties at X-band with appropriate dielectric constant ɛr around 85, lower dielectric loss tan δ about 0.01, and higher permittivity tunability 14.8% at 8.33 kV/cm. An ultrahigh E-field tunability of working frequency up to 11.0% (i.e., from 9.1 GHz to 10.1 GHz with a large frequency shift of 1000 MHz) at a DC bias field from 0 to 8.33 kV/cm and a considerably large center gain over 7.5 dB are obtained in the designed frequency reconfigurable microstrip antenna. These results demonstrate that BST materials are promising for the frequency reconfigurable antenna. Project supported by the National Natural Science Foundation of China (Grant No. 11074040) and the Key Project of Shandong Provincial Department of Science and Technology, China (Grant No. ZR2012FZ006).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uddin, Sarir; Materials Research Laboratory, Institute of Physics and Electronics, University of Peshawar, Peshawar 25120; Zheng, Guang-Ping, E-mail: mmzheng@polyu.edu.hk
2013-12-07
The microscopic mechanisms of the negative electrocaloric effect (ECE) of the single-phase (1−x)(0.94Bi{sub 1/2}Na{sub 1/2}TiO{sub 3}-0.06BaTiO{sub 3})-xBa{sub 1/2}Sr{sub 1/2}TiO{sub 3} (BNT-BT-BST) perovskite solid solutions fabricated via the sol-gel technique are explored in this study. Dielectric and mechanical relaxation analyses are employed to investigate the ferroelectric and structural transitions of the samples. The electrocaloric properties of the samples were measured by thermodynamics Maxwell relations. The difference between the depolarization temperature (T{sub d}) and the maximum dielectric constant temperature (T{sub m}) was found to decrease with increasing BST content. Doping with BST stabilized the ferroelectric phase along with unifying the EC temperaturemore » changes (ΔT) to only negative values. The origin of the uniform negative ECE of BNT-BT-BST is discussed.« less
Kodejska, Milos; Mokry, Pavel; Linhart, Vaclav; Vaclavik, Jan; Sluka, Tomas
2012-12-01
An adaptive system for the suppression of vibration transmission using a single piezoelectric actuator shunted by a negative capacitance circuit is presented. It is known that by using a negative-capacitance shunt, the spring constant of a piezoelectric actuator can be controlled to extreme values of zero or infinity. Because the value of spring constant controls a force transmitted through an elastic element, it is possible to achieve a reduction of transmissibility of vibrations through the use of a piezoelectric actuator by reducing its effective spring constant. Narrow frequency range and broad frequency range vibration isolation systems are analyzed, modeled, and experimentally investigated. The problem of high sensitivity of the vibration control system to varying operational conditions is resolved by applying an adaptive control to the circuit parameters of the negative capacitor. A control law that is based on the estimation of the value of the effective spring constant of a shunted piezoelectric actuator is presented. An adaptive system which achieves a self-adjustment of the negative capacitor parameters is presented. It is shown that such an arrangement allows the design of a simple electronic system which offers a great vibration isolation efficiency under variable vibration conditions.
Energy Efficient Graphene Based High Performance Capacitors.
Bae, Joonwon; Kwon, Oh Seok; Lee, Chang-Soo
2017-07-10
Graphene (GRP) is an interesting class of nano-structured electronic materials for various cutting-edge applications. To date, extensive research activities have been performed on the investigation of diverse properties of GRP. The incorporation of this elegant material can be very lucrative in terms of practical applications in energy storage/conversion systems. Among various those systems, high performance electrochemical capacitors (ECs) have become popular due to the recent need for energy efficient and portable devices. Therefore, in this article, the application of GRP for capacitors is described succinctly. In particular, a concise summary on the previous research activities regarding GRP based capacitors is also covered extensively. It was revealed that a lot of secondary materials such as polymers and metal oxides have been introduced to improve the performance. Also, diverse devices have been combined with capacitors for better use. More importantly, recent patents related to the preparation and application of GRP based capacitors are also introduced briefly. This article can provide essential information for future study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Cortes, Francisco Javier Quintero; Phillips, Jonathan
2015-01-01
The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC), with energy density greater than 200 J·cm−3, which rival the best reported energy density of electric double layer capacitors (EDLC), also known as supercapacitors, are reported. The first generation super dielectric materials (SDM) are multi-material mixtures with dielectric constants greater than 1.0 × 105, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM), introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO2 based TSDM were found to have dielectric constants at ~0 Hz greater than 107 in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM. PMID:28793561
Cortes, Francisco Javier Quintero; Phillips, Jonathan
2015-09-17
The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC), with energy density greater than 200 J·cm - ³, which rival the best reported energy density of electric double layer capacitors (EDLC), also known as supercapacitors, are reported. The first generation super dielectric materials (SDM) are multi-material mixtures with dielectric constants greater than 1.0 × 10⁵, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM), introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO₂ based TSDM were found to have dielectric constants at ~0 Hz greater than 10⁷ in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.
Enhanced Biennial Variability in the Pacific due to Atlantic Capacitor Effect after the Early 1990s
NASA Astrophysics Data System (ADS)
WANG, L.; Yu, J. Y.; Paek, H.
2016-12-01
The El Niño-Southern Oscillation (ENSO) and Pacific subtropical highs (PSHs) have major impacts on social and ecological systems through their influences on severe natural hazards including tropical storms, coastal erosions, droughts and floods. The ability to forecast ENSO and PSHs requires an understanding of the underlying physical mechanisms that drive their variability. Here we present an Atlantic capacitor effect mechanism to suggest the Atlantic as a key pacemaker of the biennial variability in the Pacific including ENSO and PSHs in recent decades, while the pacemaker was previously considered to be mainly lied within the Pacific or Indian Oceans. The "charging" (i.e., ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and "discharging" (i.e., the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) process works alternately, generating the biennial rhythmic changes in the Pacific. After the early-1990s, the positive phase of the Atlantic Multidecadal Oscillation and global warming provides more favorable background states over the NTA that enable the Atlantic capacitor effect to operate more efficiently, giving rise to enhanced biennial variability in the Pacific which may increase the occurrence frequency of severe natural hazard events. The results highlight the increasing important role of the Atlantic-Pacific coupling as an important pacemaker of the ENSO cycle in recent decades.
Hassan, Mahfuz; Simpson, Andrea; Danaher, Katey; Haesen, James; Makela, Tanya; Thomson, Kendra
2018-06-01
Limited research has explored how to best train caregivers to support their child with autism spectrum disorder (ASD) despite caregivers being well suited to promote generalization and maintenance of their child's skills in the natural environment. Children with ASD have been shown to benefit from social skill training, which is not always conducted in the natural context. This research examined the efficacy of behavioral skills training (BST) with, and without in situ training (IST), for teaching caregivers how to also use BST to support their child's context-specific social skills. Although caregivers met mastery criterion within BST sessions, their skills did not generalize to the natural environment until IST was introduced. The implications of the findings are discussed.
Development and experimental study of oil-free capacitor module for plasma focus device
NASA Astrophysics Data System (ADS)
Sharma, Ravindra Kumar; Sharma, Archana
2017-03-01
This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μ F , 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.
Development and experimental study of oil-free capacitor module for plasma focus device.
Sharma, Ravindra Kumar; Sharma, Archana
2017-03-01
This development is concerned with the compact capacitor module for a plasma focus device. Oil-free, non-standard geometry capacitors are designed and developed for high current delivery in sub-microseconds time. Metalized dielectric film based pulse capacitor becomes progressively less viable at currents above 10 kA. It is due to reliability and energy scaling difficulties, based on effects such as vaporization, high resistivity, and end connection. Bipolar electrolytic capacitors are also not preferred due to their limited life and comparatively low peak current delivery. Bi-axially oriented polypropylene (BOPP) film with extended aluminum foil is a combination to deliver moderately high power. But, electrically weak points, relative permittivity, and the edge gap margins have made its adoption difficult. A concept has been developed in lab for implementing the above combination in a less complex and costly manner. This paper concerns the development and testing process techniques for quite different hollow cylindrical, oil-free capacitors (4 μF, 10 kV, 20 nH). Shot life of 1000 has been experimentally performed on the test bed at its rated energy density level. The technological methods and engineering techniques are now available and utilized for manufacturing and testing of BOPP film based oil-free capacitors.
Pyrrole-Based Conductive Polymers For Capacitors
NASA Technical Reports Server (NTRS)
Nagasubramanian, Ganesan; Di Stefano, Salvador
1994-01-01
Polypyrrole films containing various dopant anions exhibit superior capacitance characteristics. Used with nonaqueous electrolytes. Candidate for use in advanced electrochemical double-layer capacitors capable of storing electrical energy at high densities. Capacitors made of these films used in automobiles and pulsed power supplies.
A sampling and classification item selection approach with content balancing.
Chen, Pei-Hua
2015-03-01
Existing automated test assembly methods typically employ constrained combinatorial optimization. Constructing forms sequentially based on an optimization approach usually results in unparallel forms and requires heuristic modifications. Methods based on a random search approach have the major advantage of producing parallel forms sequentially without further adjustment. This study incorporated a flexible content-balancing element into the statistical perspective item selection method of the cell-only method (Chen et al. in Educational and Psychological Measurement, 72(6), 933-953, 2012). The new method was compared with a sequential interitem distance weighted deviation model (IID WDM) (Swanson & Stocking in Applied Psychological Measurement, 17(2), 151-166, 1993), a simultaneous IID WDM, and a big-shadow-test mixed integer programming (BST MIP) method to construct multiple parallel forms based on matching a reference form item-by-item. The results showed that the cell-only method with content balancing and the sequential and simultaneous versions of IID WDM yielded results comparable to those obtained using the BST MIP method. The cell-only method with content balancing is computationally less intensive than the sequential and simultaneous versions of IID WDM.
NASA Technical Reports Server (NTRS)
Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)
2010-01-01
A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.
A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
The evaluation of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material for potential space project applications requires an in-depth understanding of their reliability. A general reliability model for Ni-BaTiO3 MLCC is developed and discussed. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitor's reliability life responds to the external stresses, and an empirical function that defines contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.
A General Reliability Model for Ni-BaTiO3-Based Multilayer Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
The evaluation for potential space project applications of multilayer ceramic capacitors (MLCCs) with Ni electrode and BaTiO3 dielectric material requires an in-depth understanding of the MLCCs reliability. A general reliability model for Ni-BaTiO3 MLCCs is developed and discussed in this paper. The model consists of three parts: a statistical distribution; an acceleration function that describes how a capacitors reliability life responds to external stresses; and an empirical function that defines the contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size A. Application examples are also discussed based on the proposed reliability model for Ni-BaTiO3 MLCCs.
NASA Technical Reports Server (NTRS)
Arepalli, S.; Fireman, H.; Huffman, C.; Maloney, P.; Nikolaev, P.; Yowell, L.; Kim, K.; Kohl, P. A.; Higgins, C. D.; Turano, S. P.
2005-01-01
Electrochemical double-layer capacitors, or supercapacitors, have tremendous potential as high-power energy sources for use in low-weight hybrid systems for space exploration. Electrodes based on single-wall carbon nanotubes (SWCNTs) offer exceptional power and energy performance due to the high surface area, high conductivity, and the ability to functionalize the SWCNTs to optimize capacitor properties. This paper will report on the preparation of electrochemical capacitors incorporating SWCNT electrodes and their performance compared with existing commercial technology. Preliminary results indicate that substantial increases in power and energy density are possible. The effects of nanotube growth and processing methods on electrochemical capacitor performance is also presented. The compatibility of different SWCNTs and electrolytes was studied by varying the type of electrolyte ions that accumulate on the high-surface-area electrodes.
ERIC Educational Resources Information Center
Geiger, Kaneen Barbara
2012-01-01
Discrete trial teaching is an effective procedure for teaching a variety of skills to children with autism. However, it must be implemented with high integrity to produce optimal learning. Behavioral Skills Training (BST) is a staff training procedure that has been demonstrated to be effective. However, BST is time and labor intensive, and with…
ERIC Educational Resources Information Center
Miltenberger, Raymond; Gross, Amy; Knudson, Peter; Bosch, Amanda; Jostad, Candice; Breitwieser, Carrie Brower
2009-01-01
This study compared the effectiveness of behavioral skills training (BST) to BST plus simulated in situ training (SIT) for teaching safety skills to children to prevent gun play. The results were evaluated in a posttest only control group design. Following the first assessment, participants in both training groups and the control group who did not…
Moreira, A R; Paolicchi, F; Morsella, C; Zumarraga, M; Cataldi, A; Fabiana, B; Alicia, A; Piet, O; van Soolingen, D; Isabel, R M
1999-12-01
Sixty-one Mycobacterium avium subsp. paratuberculosis isolates from cattle and deer from the Buenos Aires province, an important livestock region in Argentina, were typed by restriction fragment length polymorphisms (RFLP) analysis based on IS900. Four different RFLP patterns (designated 'A', 'B', 'C' and 'E') were identified in BstEII digests of genomic DNA. The most frequently observed type, pattern 'A', was found in 46 isolates (75%). The second, pattern 'E', included 8 isolates (13%), while the third, pattern 'B', included 6 isolates (10%). Pattern 'C' was found for only one isolate. All of the deer isolates were classified as pattern 'A', while cattle isolates represented all four RFLP patterns. Twenty-one isolates representing the four different BstEII-RFLP patterns were digested with PstI. Twenty isolates showed identical PstI-RFLP pattern. BstEII-RFLP patterns from Argentine cattle and deer were compared with patterns found in cattle, goat, deer, rabbit, and human isolates from Europe. The most common pattern in Argentina, pattern 'A', was identical to a less frequently occurring pattern R9 (C17) from Europe. The other Argentine patterns 'B', 'C' and 'E', were not found in the Europe. These results indicate that the distribution of M. avium subsp. paratuberculosis genotypes in the Buenos Aires province of Argentina is different from that found in Europe.
Ferraz, M L; Sá Filho, M F; Batista, E O S; Watanabe, Y F; Watanabe, M R; Dayan, A; Joaquim, D C; Accorsi, M R; Gimenes, L U; Vieira, L M; Baruselli, P S
2015-03-01
The aim of the present study was to evaluate the effect of bovine somatotropin (bST; 500mg) administration on lactating buffalo donors submitted to two different ovum pick-up (OPU) and in vitro embryo production schemes with a 7 or 14d intersession OPU interval. A total of 16 lactating buffalo cows were randomly assigned into one of four experimental groups according to the bST treatment (bST or No-bST) and the OPU intersession interval (7 or 14d) in a 2×2 factorial design (16 weeks of OPU sessions). The females submitted to OPU every 14d had a larger (P<0.001) number of ovarian follicles suitable for puncture (15.6±0.7 vs. 12.8±0.4) and an increased (P=0.004) number of cumulus-oocyte complexes (COCs) recovered (10.0±0.5 vs. 8.5±0.3) compared to the 7d interval group. However, a 7 or 14d interval between OPU sessions had no effect (P=0.34) on the number of blastocysts produced per OPU (1.0±0.1 vs. 1.3±0.2, respectively). In addition, bST treatment increased (P<0.001) the number of ovarian follicles suitable for puncture (15.3±0.5 vs. 12.1±0.4) but reduced the percentage (18.9% vs. 10.9%; P=0.009) and the number (1.4±0.2 vs. 0.8±0.1; P=0.003) of blastocysts produced per OPU session compared with the non-bST-treated buffaloes. In conclusion, the 14d interval between OPU sessions and bST treatment efficiently increased the number of ovarian follicles suitable for puncture. However, the OPU session interval had no effect on embryo production, and bST treatment reduced the in vitro blastocyst outcomes in lactating buffalo donors. Copyright © 2015 Elsevier B.V. All rights reserved.
Ayo, Joseph O.
2016-01-01
Studies on daily rhythmicity in livestock under natural conditions are limited, and there is mounting evidence that rhythm patterns differ between chronobiological studies conducted in the laboratory and studies conducted under pronounced natural seasonality. Here, we investigated the influence of cold-dry (harmattan) and hot-dry seasons on daily rhythmicity of rectal (RT) and body surface temperatures (BST) in indigenous sheep and goats under natural light-dark cycles. The RT and BST of the animals, and the ambient temperature (AT) and relative humidity (RH) inside the pen, were measured every three hours for a period of two days, twice on separate days during the hot-dry and the harmattan seasons, respectively. The AT and RH had minimum values of 16°C and 15% recorded during the harmattan and maximum values of 32°C and 46% recorded during the hot-dry season, respectively. A trigonometric statistical model was applied to characterize the main rhythmic parameters according to the single cosinor procedure. The result showed that RT and BST exhibited different degrees of daily rhythmicity, and their oscillatory patterns differed with the seasons (larger amplitude during the harmattan season than during the hot-dry season). The goats displayed greater (p < 0.05) amplitude of BST than the sheep in all seasons. The acrophases were restricted to the light phase of the light-dark cycle. The mesor of RT in goats was not affected by the season, but mesors of BST in both species were significantly higher (p < 0.05) during the hot-dry than the harmattan season. The goats had a more robust RT rhythm (70%) as compared to the sheep (56%). Overall, the results demonstrated that seasonal changes influenced considerably the daily rhythmicity of RT and BST in sheep and goats under natural light-dark cycle. Awareness of these changes may be useful in the improvement of diagnosis, treatment and prevention of diseases, and welfare and productivity of sheep and goats under cold-dry and hot-dry conditions.
Prévost, Jérémie; von Bredow, Benjamin; Ding, Shilei; Brassard, Nathalie; Medjahed, Halima; Coutu, Mathieu; Melillo, Bruno; Bibollet-Ruche, Frédéric; Hahn, Beatrice H.; Kaufmann, Daniel E.; Smith, Amos B.; Sodroski, Joseph; Sauter, Daniel; Kirchhoff, Frank; Gee, Katrina; Neil, Stuart J.; Evans, David T.
2017-01-01
ABSTRACT Antibodies recognizing conserved CD4-induced (CD4i) epitopes on human immunodeficiency virus type 1 (HIV-1) Env and able to mediate antibody-dependent cellular cytotoxicity (ADCC) have been shown to be present in sera from most HIV-1-infected individuals. These antibodies preferentially recognize Env in its CD4-bound conformation. CD4 downregulation by Nef and Vpu dramatically reduces exposure of CD4i HIV-1 Env epitopes and therefore reduce the susceptibility of HIV-1-infected cells to ADCC mediated by HIV-positive (HIV+) sera. Importantly, this mechanism of immune evasion can be circumvented with small-molecule CD4 mimetics (CD4mc) that are able to transition Env into the CD4-bound conformation and sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. However, HIV-1 developed additional mechanisms to avoid ADCC, including Vpu-mediated BST-2 antagonism, which decreases the overall amount of Env present at the cell surface. Accordingly, BST-2 upregulation in response to alpha interferon (IFN-α) was shown to increase the susceptibility of HIV-1-infected cells to ADCC despite the activity of Vpu. Here we show that BST-2 upregulation by IFN-β and interleukin-27 (IL-27) also increases the surface expression of Env and thus boosts the ability of CD4mc to sensitize HIV-1-infected cells to ADCC by sera from HIV-1-infected individuals. IMPORTANCE HIV-1 evolved sophisticated strategies to conceal Env epitopes from ADCC-mediating antibodies present in HIV+ sera. Vpu-mediated BST-2 downregulation was shown to decrease ADCC responses by limiting the amount of Env present at the cell surface. This effect of Vpu was shown to be attenuated by IFN-α treatment. Here we show that in addition to IFN-α, IFN-β and IL-27 also affect Vpu-mediated BST-2 downregulation and greatly enhance ADCC responses against HIV-1-infected cells in the presence of CD4mc. These findings may inform strategies aimed at HIV prevention and eradication. PMID:28331088
Design of a variable width pulse generator feasible for manual or automatic control
NASA Astrophysics Data System (ADS)
Vegas, I.; Antoranz, P.; Miranda, J. M.; Franco, F. J.
2017-01-01
A variable width pulse generator featuring more than 4-V peak amplitude and less than 10-ns FWHM is described. In this design the width of the pulses is controlled by means of the control signal slope. Thus, a variable transition time control circuit (TTCC) is also developed, based on the charge and discharge of a capacitor by means of two tunable current sources. Additionally, it is possible to activate/deactivate the pulses when required, therefore allowing the creation of any desired pulse pattern. Furthermore, the implementation presented here can be electronically controlled. In conclusion, due to its versatility, compactness and low cost it can be used in a wide variety of applications.
NASA Technical Reports Server (NTRS)
Liu, David (Donghang)
2011-01-01
This paper reports reliability evaluation of BME ceramic capacitors for possible high reliability space-level applications. The study is focused on the construction and microstructure of BME capacitors and their impacts on the capacitor life reliability. First, the examinations of the construction and microstructure of commercial-off-the-shelf (COTS) BME capacitors show great variance in dielectric layer thickness, even among BME capacitors with the same rated voltage. Compared to PME (precious-metal-electrode) capacitors, BME capacitors exhibit a denser and more uniform microstructure, with an average grain size between 0.3 and approximately 0.5 micrometers, which is much less than that of most PME capacitors. The primary reasons that a BME capacitor can be fabricated with more internal electrode layers and less dielectric layer thickness is that it has a fine-grained microstructure and does not shrink much during ceramic sintering. This results in the BME capacitors a very high volumetric efficiency. The reliability of BME and PME capacitors was investigated using highly accelerated life testing (HALT) and regular life testing as per MIL-PRF-123. Most BME capacitors were found to fail· with an early dielectric wearout, followed by a rapid wearout failure mode during the HALT test. When most of the early wearout failures were removed, BME capacitors exhibited a minimum mean time-to-failure of more than 10(exp 5) years. Dielectric thickness was found to be a critical parameter for the reliability of BME capacitors. The number of stacked grains in a dielectric layer appears to play a significant role in determining BME capacitor reliability. Although dielectric layer thickness varies for a given rated voltage in BME capacitors, the number of stacked grains is relatively consistent, typically between 10 and 20. This may suggest that the number of grains per dielectric layer is more critical than the thickness itself for determining the rated voltage and the life expectancy of the BME capacitor. Since BME capacitors have a much smaller grain size than PME capacitors, it is reasonable to predict that BME capacitors with thinner dielectric layers may have an equivalent life expectancy to that of PME capacitors with thicker dielectric layers.
Monajjemi, Majid
2015-12-01
Cell membrane has a unique feature of storing biological energies in a physiologically relevant environment. This study illustrates a capacitor model of biological cell membrane including DPPC structures. The electron density profile models, electron localization function (ELF) and local information entropy have been applied to study the interaction of proteins with lipid bilayers in the cell membrane. The quantum and coulomb blockade effects of different thicknesses in the membrane have also been specifically investigated. It has been exhibited the quantum effects can appear in a small region of the free space within the membrane thickness due to the number and type of phospholipid layers. In addition, from the viewpoint of quantum effects by Heisenberg rule, it is shown the quantum tunneling is allowed in some micro positions while it is forbidden in other forms of membrane capacitor systems. Due to the dynamical behavior of the cell membrane, its capacitance is not fixed which results a variable capacitor. In presence of the external fields through protein trance membrane or ions, charges exert forces that can influence the state of the cell membrane. This causes to appear the charge capacitive susceptibility that can resonate with self-induction of helical coils; the resonance of which is the main reason for various biological pulses. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective. PMID:24349105
Zhu, Lingyu; Ji, Shengchang; Shen, Qi; Liu, Yuan; Li, Jinyu; Liu, Hao
2013-01-01
The capacitors in high-voltage direct-current (HVDC) converter stations radiate a lot of audible noise which can reach higher than 100 dB. The existing noise level prediction methods are not satisfying enough. In this paper, a new noise level prediction method is proposed based on a frequency response function considering both electrical and mechanical characteristics of capacitors. The electro-mechanical frequency response function (EMFRF) is defined as the frequency domain quotient of the vibration response and the squared capacitor voltage, and it is obtained from impulse current experiment. Under given excitations, the vibration response of the capacitor tank is the product of EMFRF and the square of the given capacitor voltage in frequency domain, and the radiated audible noise is calculated by structure acoustic coupling formulas. The noise level under the same excitations is also measured in laboratory, and the results are compared with the prediction. The comparison proves that the noise prediction method is effective.
Tuned sensitivity towards H{sub 2}S and NH{sub 3} with Cu doped barium strontium titanate materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simion, C. E., E-mail: simion@infim.ro; Teodorescu, V. S.; Stănoiu, A.
2014-11-05
The different amount of Cu-doped Barium Strontium Titanate (BST) thick film materials have been tested for their gas-sensing performances towards NH{sub 3} and H{sub 2}S under dry and 50% relative humidity (RH) background conditions. The optimum NH{sub 3} sensitivity was attained with 0.1mol% Cu-doped BST whereas the selective detection of H{sub 2}S was highlighted using 5mol% Cu-doped BST material. No cross-sensitivity effects to CO, NO{sub 2}, CH{sub 4} and SO{sub 2} were observed for all tested materials operated at their optimum temperature (200°C) under humid conditions (50% RH). The presence of humidity clearly enhances the gas sensitivity to NH{sub 3}more » and H{sub 2}S detection.« less
NASA Astrophysics Data System (ADS)
Dickens, Gerald R.
2003-08-01
Prominent negative δ13C excursions characterize several past intervals of abrupt (<100 kyr) environmental change. These anomalies, best exemplified by the >2.5‰ drop across the Paleocene/Eocene thermal maximum (PETM) ca. 55.5 Ma, command our attention because they lack explanation with conventional models for global carbon cycling. Increasingly, Earth scientists have argued that they signify massive release of CH4 from marine gas hydrates, although typically without considering the underlying process or the ensuing ramifications of such an interpretation. At the most basic level, a large, dynamic 'gas hydrate capacitor' stores and releases 13C-depleted carbon at rates linked to external conditions such as deep ocean temperature. The capacitor contains three internal reservoirs: dissolved gas, gas hydrate, and free gas. Carbon enters and leaves these reservoirs through microbial decomposition of organic matter, anaerobic oxidation of CH4 in shallow sediment, and seafloor gas venting; carbon cycles between these reservoirs through several processes, including fluid flow, precipitation and dissolution of gas hydrate, and burial. Numerical simulations show that simple gas hydrate capacitors driven by inferred changes in bottom water warming during the PETM can generate a global δ13C excursion that mimics observations. The same modeling extended over longer time demonstrates that variable CH4 fluxes to and from gas hydrates can partly explain other δ13C excursions, rapid and slow, large and small, negative and positive. Although such modeling is rudimentary (because processes and variables in modern and ancient gas hydrate systems remain poorly constrained), acceptance of a vast, externally regulated gas hydrate capacitor forces us to rethink δ13C records and the operation of the global carbon cycle throughout time.
Vanadium based materials as electrode materials for high performance supercapacitors
NASA Astrophysics Data System (ADS)
Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo
2016-10-01
As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.
Effects of electrodes on the properties of sol-gel PZT based capacitors in FeRAM
NASA Astrophysics Data System (ADS)
Zhang, Ming-Ming; Jia, Ze; Ren, Tian-Ling
2009-05-01
The effects of electrodes on the properties of capacitors applied in ferroelectric random access memories (FeRAM) are investigated in this work. Pt and Ir are used as bottom and top electrodes (BE and TE), respectively, in sol-gel Pb(Zr xTi 1-x)O 3 (PZT) based capacitors. Bottom electrodes are found to play a dominant role in the properties of PZT films and capacitors. Capacitors using Pt as bottom electrode have larger remnant polarization (2Pr) than those using Ir which may result from the different orientations of PZT films. The higher Schottky barrier, more dense film and smaller roughness are believed to be the reasons for the better leakage performance of capacitors using Pt as bottom electrodes. Different vacancies types and interface conditions are believed to be the main reasons for the better fatigue (less than 10% initial 2Pr loss after 10 11 fatigue cycles) and better imprint properties of TE/PZT/Ir capacitors. Top electrodes are found to have smaller impact on the properties of capacitors compared with bottom electrodes. A decrease in 2Pr is found when Ir is used as top electrode instead of Pt for PZT/Pt, which is believed to be caused by the stress resulting from lattice mismatch. The different thermal processes that top and bottom electrodes suffered are believed to be the reason for the different impacts they have on capacitors.
Alkaline Capacitors Based on Nitride Nanoparticles
NASA Technical Reports Server (NTRS)
Aldissi, Matt
2003-01-01
High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.
NASA Astrophysics Data System (ADS)
Rodriguez, Brian Joseph
Nanoscale characterization of the piezoelectric and polarization related properties of III-Nitrides by piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) resulted in the measurement of piezoelectric constants, surface charge and surface potential. Photo-electron emission microscopy (PEEM) was used to determine the local electronic band structure of a GaN-based lateral polarity heterostructure (GaN-LPH). Nanoscale characterization of the imprint and switching behavior of ferroelectric thin films by PFM resulted in the observation of domain pinning, while nanoscale characterization of the spatial variations in the imprint and switching behavior of integrated (111)-oriented PZT-based ferroelectric random access memory (FRAM) capacitors by PFM have revealed a significant difference in imprint and switching behavior between the inner and outer parts of capacitors. The inner regions of the capacitors are typically negatively imprinted and consequently tend to switch back after being poled by a positive bias, while regions at the edge of the capacitors tend to exhibit more symmetric hysteresis behavior. Evidence was obtained indicating that mechanical stress conditions in the central regions of the capacitors can lead to incomplete switching. A combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively) has been used to map the out-of-plane and in-plane polarization distribution, respectively, of integrated (111)-oriented PZT-based capacitors, which revealed poled capacitors are in a polydomain state.
Physics Based Modeling and Prognostics of Electrolytic Capacitors
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan; Ceyla, Jose R.; Biswas, Gautam; Goebel, Kai
2012-01-01
This paper proposes first principles based modeling and prognostics approach for electrolytic capacitors. Electrolytic capacitors have become critical components in electronics systems in aeronautics and other domains. Degradations and faults in DC-DC converter unit propagates to the GPS and navigation subsystems and affects the overall solution. Capacitors and MOSFETs are the two major components, which cause degradations and failures in DC-DC converters. This type of capacitors are known for its low reliability and frequent breakdown on critical systems like power supplies of avionics equipment and electrical drivers of electromechanical actuators of control surfaces. Some of the more prevalent fault effects, such as a ripple voltage surge at the power supply output can cause glitches in the GPS position and velocity output, and this, in turn, if not corrected will propagate and distort the navigation solution. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.
NASA Astrophysics Data System (ADS)
Thapaswini, P. Prabhu; Padma, R.; Balaram, N.; Bindu, B.; Rajagopal Reddy, V.
2016-05-01
Au/Ba0.6Sr0.4TiO3 (BST)/n-InP metal/insulator/semiconductor (MIS) Schottky diodes have been analyzed by current-voltage (I-V) and capacitance-voltage (C-V) measurements. The surface morphology of the BST films on InP is fairly smooth. The Au/BST/n-InP MIS Schottky diode shows better rectification ratio and low leakage current compared to the conventional Au/n-InP metal-semiconductor (MS) Schottky diode. Higher barrier height is achieved for the MIS Schottky diode compared to the MS Schottky diode. The Norde and Cheung's methods are employed to determine the barrier height, ideality factor and series resistance. The interface state density (NSS) is determined from the forward bias I-V data for both the MS and MIS Schottky diodes. Results reveal that the NSS of the MIS Schottky diode is lower than that of the MS Schottky diode. The Poole-Frenkel emission is found dominating the reverse current in both Au/n-InP MS and Au/BST/n-InP MIS Schottky diodes, indicating the presence of structural defects and trap levels in the dielectric film.
NASA Astrophysics Data System (ADS)
Zhu, X. H.; Guigues, B.; Defaÿ, E.; Dubarry, C.; Aïd, M.
2009-02-01
Ba0.7Sr0.3TiO3 (BST) thick films with thickness up to 1 μm were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 °C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 μm thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively larger tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 μm thick film; besides, strong defect-related inhomogeneous strains (˜0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.
NASA Astrophysics Data System (ADS)
Chaabani, Anouar; Njeh, Anouar; Donner, Wolfgang; Klein, Andreas; Hédi Ben Ghozlen, Mohamed
2017-05-01
Ba0.65Sr0.35TiO3 (BST) thin films of 300 nm were deposited on Pt(111)/TiO2/SiO2/Si(001) substrates by radio frequency magnetron sputtering. Two thin films with different (111) and (001) fiber textures were prepared. X-ray diffraction was applied to measure texture. The raw pole figure data were further processed using the MTEX quantitative texture analysis software for plotting pole figures and calculating elastic constants and Young’s modulus from the orientation distribution function (ODF) for each type of textured fiber. The calculated elastic constants were used in the theoretical studies of surface acoustics waves (SAW) propagating in two types of multilayered BST systems. Theoretical dispersion curves were plotted by the application of the ordinary differential equation (ODE) and the stiffness matrix methods (SMM). A laser acoustic waves (LAW) technique was applied to generate surface acoustic waves (SAW) propagating in the BST films, and from a recursive process, the effective Young’s modulus are determined for the two samples. These methods are used to extract and compare elastic properties of two types of BST films, and quantify the influence of texture on the direction-dependent Young’s modulus.
High voltage pulse generator. [Patent application
Fasching, G.E.
1975-06-12
An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.
Spatio-temporal distributions of meso convective systems in NE China and its vicinity
NASA Astrophysics Data System (ADS)
Yuan, Meiying; Li, Zechun; Zhang, Xiaoling; Li, Xun
2008-08-01
Based on the IR cloud imagery from the Chinese FY-2C satellite for June ~ August, 2005 - 2007, statistics is undertaken of meso convective systems (MCS) over NE China and its neighborhood, obtaining the space - time distributions of MCS. MCS include elliptical type( MCC's) , persistent elongated type (PECS's), in shape. Dividing the total MCS into MαMCS, MβMCS and MCC (PECS) . Results show that the number of meso-α MCS (dominantly PECS's) is considerably more than that of meso-β MCS (largely MCCss), which are observed mainly in the NE China plain and Daxing'an Mountains, especially in the entrance to the plain as well as its central ~ northern portion; the MCS occur mainly in June ~ August, particularly in June; the extratropical MCS show two peak phases, one being in 1500-2200 BST the other being 0000-0700 BST as the secondary peaking interval.
Lead zirconate titanate (PZT)-based thin film capacitors for embedded passive applications
NASA Astrophysics Data System (ADS)
Kim, Taeyun
Investigations on the key processing parameters and properties relationship for lead zirconate titanate (PZT, 52/48) based thin film capacitors for embedded passive capacitor application were performed using electroless Ni coated Cu foils as substrates. Undoped and Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil by chemical solution deposition. For PZT (52/48) thin film capacitors on electroless Ni coated Cu foil, voltage independent (zero tunability) capacitance behavior was observed. Dielectric constant reduced to more than half of the identical capacitor processed on Pt/SiO2/Si. Dielectric properties of the capacitors were mostly dependent on the crystallization temperature. Capacitance densities of almost 350 nF/cm2 and 0.02˜0.03 of loss tangent were routinely measured for capacitors crystallized at 575˜600°C. Leakage current showed dependence on film thickness and crystallization temperature. From a two-capacitor model, the existence of a low permittivity interface layer (permittivity ˜30) was suggested. For Ca-doped PZT (52/48) thin film capacitors prepared on Pt, typical ferroelectric and dielectric properties were measured up to 5 mol% Ca doping. When Ca-doped PZT (52/48) thin film capacitors were prepared on electroless Ni coated Cu foil, phase stability was influenced by Ca doping and phosphorous content. Dielectric properties showed dependence on the crystallization temperature and phosphorous content. Capacitance density of ˜400 nF/cm2 was achieved, which is an improvement by more than 30% compared to undoped composition. Ca doping also reduced the temperature coefficient of capacitance (TCC) less than 10%, all of them were consistent in satisfying the requirements of embedded passive capacitor. Leakage current density was not affected significantly by doping. To tailor the dielectric and reliability properties, ZrO2 was selected as buffer layer between PZT and electroless Ni. Only RF magnetron sputtering process could yield stable ZrO2 layers on electroless Ni coated Cu foil. Other processes resulted in secondary phase formation, which supports the reaction between PZT capacitor and electroless Ni might be dominated by phosphorous component. (Abstract shortened by UMI.)
A Proficiency-Based Cost Estimate of Surface Warfare Officer On-the-Job Training
2011-12-01
established later in the chapter. 30 b. Proficiency Gained at Initial Training Formal training learning outcomes contribute the most to the initial...different billets call for different levels of training. Additionally, BST learning outcomes are not necessarily based on SWO PQS, and therefore...process. Without knowing BDOC learning outcomes , it is difficult to quantify proficiency-based OJT cost reductions. However, it is certain that
Failure Modes in Capacitors When Tested Under a Time-Varying Stress
NASA Technical Reports Server (NTRS)
Liu, David (Donhang)
2011-01-01
Steady step surge testing (SSST) is widely applied to screen out potential power-on failures in solid tantalum capacitors. The test simulates the power supply's on and off characteristics. Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors for decoupling applications. On the other hand, the SSST can also be reviewed as an electrically destructive test under a time-varying stress. It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. Highly accelerated life testing (HALT) is usually a time-efficient method for determining the failure mechanism in capacitors; however, a destructive test under a time-varying stress like SSST is even more effective. It normally takes days to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating specific time-varying stress into a statistical model is significant in providing an alternative life test method for quickly revealing the failure modes in capacitors. In this paper, a time-varying stress has been incorporated into the Weibull model to characterize the failure modes. The SSST circuit and transient conditions to correctly test the capacitors is discussed. Finally, the SSST was applied for testing polymer aluminum capacitors (PA capacitors), Ta capacitors, and multi-layer ceramic capacitors with both precious metal electrode (PME) and base-metal-electrodes (BME). It appears that testing results are directly associated to the dielectric layer breakdown in PA and Ta capacitors and are independent on the capacitor values, the way the capacitors being built, and the manufactures. The testing results also reveal that ceramic capacitors exhibit breakdown voltages more than 20 times the rated voltage, and the breakdown voltages are inverse proportional to the dielectric layer thickness. The possibility of ceramic capacitors in front-end decoupling applications to block the surge noise from a power supply is also discussed.
Asymmetric Supercapacitor for Long-Duration Power Storage
NASA Technical Reports Server (NTRS)
Rangan, Krishnaswamy K.; Sudarshan, Tirumalai S.
2012-01-01
A document discusses a project in which a series of novel hybrid positive electrode materials was developed and tested in asymmetric capacitors with carbon negative electrodes. The electrochemical performance of the hybrid capacitors was characterized by cyclic voltammetry and a DC charge/discharge test. The hybrid capacitor exhibited ideal capacitor behavior with an extended operating voltage of 1.6 V in aqueous electrolyte, and energy density higher than activated carbon-based supercapacitors. Nanostructured MnO2 is a promising material for electrochemical capacitors (ECS) because of its low cost, environmentally friendly nature, and reasonably high specific capacitance. The charge capacity of the capacitors can be further improved by increasing the specific surface area of the MnO2 electrode material. The power density and space radiation stability of the capacitors can be enhanced by coating the MnO2 nanoparticles with conducting polymers. The conducting polymer coating also helps in radiation-hardening the ECS.
NASA Technical Reports Server (NTRS)
Celaya, Jose; Kulkarni, Chetan; Biswas, Gautam; Saha, Sankalita; Goebel, Kai
2011-01-01
A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Kulkarni, Chetan S.; Biswas, Gautam; Goebel, Kai
2012-01-01
A remaining useful life prediction methodology for electrolytic capacitors is presented. This methodology is based on the Kalman filter framework and an empirical degradation model. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their comparatively low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. We present here also, experimental results of an accelerated aging test under electrical stresses. The data obtained in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors. In addition, the use degradation progression data from accelerated aging, provides an avenue for validation of applications of the Kalman filter based prognostics methods typically used for remaining useful life predictions in other applications.
Fladberg, Øyvind Andreas; Jørgensen, Silje Bakken; Aamot, Hege Vangstein
2017-01-01
Cephalosporin resistance in clinical E. coli isolates is increasing internationally. The increase has been caused by virulent and often multidrug-resistant clones, especially the extended spectrum β-lactamase (ESBL) producing E. coli clone O25b-ST131. In Norway, recommended empirical treatment of sepsis consists of gentamicin and penicillin combined, or a broad-spectrum cephalosporin. To investigate if increased gentamicin and cephalosporins resistance rates in our hospital could be caused by specific clones, we conducted a retrospective study on E. coli blood culture isolates from 2011 through 2015. All E. coli isolates non-susceptible to gentamicin and/or third-generation cephalosporins were genotyped using multiple-locus variable-number of tandem repeat analysis (MLVA) and compared with antibiotic susceptible isolates. The frequency of the most common genes causing ESBL production ( bla CTX-M , bla ampC ) was examined by Real-Time PCR. A total of 158 cephalosporin and/or gentamicin resistant and 97 control isolates were differentiated into 126 unique MLVA types. Of these, 31% of the isolates belonged to a major MLVA cluster consisting of 41% of the gentamicin resistant and 35% of the cephalosporin resistant isolates. The majority (65/80 isolates) of this MLVA cluster contained MLVA types associated with the E. coli O25b-ST131 clone. Genes encoding CTX-M enzyme phylogroups 1 and 9 occurred in 65% and 19% of cephalosporin resistant isolates, respectively, whereas bla ampC-CIT was identified in 3%. No local E. coli bacteraemia clone was identified. Antibiotic resistance was dispersed over a variety of genotypes. However, association with the international E. coli O25b-ST131 clone was frequent and may be an important driver behind increased resistance rates. Monitoring and preventing dissemination of these resistant clones are important for continued optimal treatment.
Gulia, A; Puri, A; Chorge, S; Panda, P K
2016-01-01
This study was conducted to know the spectrum and number of bone and soft tissue (BST) tumors presenting to our institute. We needed to assess the gap between the number of patients seen and infrastructure available, and based on this information, help formulate guidelines for optimum utilization of resources and to provide best possible evidence-based cancer care. This is a prospective observational study (epidemiological). This study included all new patients seen in BST-disease management group (DMG) in the year 2010. An audit form was devised to capture all the relevant information. A comparison of our data with other national and international studies was also done. Out of total 31,951 new patients registered at our institute, 2007 patients availed BST-DMG services. Sixty percent were bone tumors and 36% were soft tissue tumors. In bone tumor, 66% were malignant, 15% were benign, and 19% were non-neoplastic. Osteosarcoma (43%) was the most common malignant tumor followed by primitive neuroectodermal tumor/Ewing's (27%) and chondrosarcoma (11%). Giant cell tumor was the most common benign bone tumor. Eighty-one percent of all soft tissue lesions were malignant, of which 75% were of mesenchymal origin and 25% were of cutaneous origin. This is an attempt to document the epidemiology of musculoskeletal tumors presenting to our institution while guiding the institute to frame and implement disease-specific protocols and generate further research questions. Continued data collection and follow-up can provide valuable information on long-term survival and treatment-related toxicities. This data (within limitations) may be extrapolated to national level to identify the need for infrastructure and human resources.
Li, Yingru; Sheng, Kaixuan; Yuan, Wenjing; Shi, Gaoquan
2013-01-11
A fibre-shaped solid electrochemical capacitor based on electrochemically reduced graphene oxide has been fabricated, exhibiting high specific capacitance and rate capability, long cycling life and attractive flexibility.
Failure Modes in Capacitors When Tested Under a Time-Varying Stress
NASA Technical Reports Server (NTRS)
Liu, David (Donhang)
2011-01-01
Power-on failure has been the prevalent failure mechanism for solid tantalum capacitors in decoupling applications. A surge step stress test (SSST) has been previously applied to identify the critical stress level of a capacitor batch to give some predictability to the power-on failure mechanism [1]. But SSST can also be viewed as an electrically destructive test under a time-varying stress (voltage). It consists of rapidly charging the capacitor with incremental voltage increases, through a low resistance in series, until the capacitor under test is electrically shorted. When the reliability of capacitors is evaluated, a highly accelerated life test (HALT) is usually adopted since it is a time-efficient method of determining the failure mechanism; however, a destructive test under a time-varying stress such as SSST is even more time efficient. It usually takes days or weeks to complete a HALT test, but it only takes minutes for a time-varying stress test to produce failures. The advantage of incorporating a specific time-varying stress profile into a statistical model is significant in providing an alternative life test method for quickly revealing the failure mechanism in capacitors. In this paper, a time-varying stress that mimics a typical SSST has been incorporated into the Weibull model to characterize the failure mechanism in different types of capacitors. The SSST circuit and transient conditions for correctly surge testing capacitors are discussed. Finally, the SSST was applied for testing Ta capacitors, polymer aluminum capacitors (PA capacitors), and multi-layer ceramic (MLC) capacitors with both precious metal electrodes (PME) and base metal electrodes (BME). The test results are found to be directly associated with the dielectric layer breakdown in Ta and PA capacitors and are independent of the capacitor values, the way the capacitors were built, and the capacitors manufacturers. The test results also show that MLC capacitors exhibit surge breakdown voltages much higher than the rated voltage and that the breakdown field is inversely proportional to the dielectric layer thickness. The SSST data can also be used to comparatively evaluate the voltage robustness of capacitors for decoupling applications.
2016-02-01
BST barium strontium titanate εr dielectric constant MIM metal /insulator/ metal MOSD metal organic spin deposition PtSi platinum silicide RF...improvement. In addition, BST films processed via solution metal organic spin deposition, which yield a lower dielectric range of 150–335, also...layers. This report details how we used solution and physical deposition to fabricate thin films via radio frequency (RF) sputtering and metal
NASA Astrophysics Data System (ADS)
Mulyadi; Rika, W.; Sulidah; Irzaman; Hardhienata, Hendradi
2017-01-01
Barium Strontium Titanate(BST) is a promising material for sensor devices such as temperature and infrared sensor. BaxSr1-xTiO3 thin films with affordable Si substrate were prepared by chemical solution deposition method and spin coating technique for 30 seconds with variation in rotation speed (3000 rpm, 5500 rpm and 8000 rpm). A high baking temperature at 8500C has been used for 15 hours during the annealing process. The thickness of BST film was calculated via gravimetric calculation. USB 2000 VIS-NIR was used to characterize the optical properties of BST thin film. The obtained reflectance curve showed that the most reflected wavelengths were in the range of 408-452 nm respectively. The result of the optical film characterization is very important for further development as a sensor in satellite technology.
Phononic Crystal Tunable via Ferroelectric Phase Transition
NASA Astrophysics Data System (ADS)
Xu, Chaowei; Cai, Feiyan; Xie, Shuhong; Li, Fei; Sun, Rong; Fu, Xianzhu; Xiong, Rengen; Zhang, Yi; Zheng, Hairong; Li, Jiangyu
2015-09-01
Phononic crystals (PCs) consisting of periodic materials with different acoustic properties have potential applications in functional devices. To realize more smart functions, it is desirable to actively control the properties of PCs on demand, ideally within the same fabricated system. Here, we report a tunable PC made of Ba0.7Sr0.3Ti O3 (BST) ceramics, wherein a 20-K temperature change near room temperature results in a 20% frequency shift in the transmission spectra induced by a ferroelectric phase transition. The tunability phenomenon is attributed to the structure-induced resonant excitation of A0 and A1 Lamb modes that exist intrinsically in the uniform BST plate, while these Lamb modes are sensitive to the elastic properties of the plate and can be modulated by temperature in a BST plate around the Curie temperature. The study finds opportunities for creating tunable PCs and enables smart temperature-tuned devices such as the Lamb wave filter or sensor.
Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors
Zhou, Junshuang; Li, Na; Gao, Faming; Zhao, Yufeng; Hou, Li; Xu, Ziming
2014-01-01
Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC2N nanotube arrays (VA-BC2NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC2NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC2NNTAs exhibit an extremely high specific capacitance, 547 Fg−1, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC2NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC2NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC). PMID:25124300
Absorption Voltages and Insulation Resistance in Ceramic Capacitors with Cracks
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2014-01-01
Time dependence of absorption voltages (V(sub abs)) in different types of low-voltage X5R and X7R ceramic capacitors was monitored for a maximum duration of hundred hours after polarization. To evaluate the effect of mechanical defects on V(sub abs)), cracks in the dielectric were introduced either mechanically or by thermal shock. The maximum absorption voltage, time to roll-off, and the rate of voltage decrease are shown to depend on the crack-related leakage currents and insulation resistance in the parts. A simple model that is based on the Dow equivalent circuit for capacitors with absorption has been developed to assess the insulation resistance of capacitors. Standard measurements of the insulation resistance, contrary to the measurements based on V(sub abs)), are not sensitive to the presence of mechanical defects and fail to reveal capacitors with cracks.
Physical and Electrical Characterization of Aluminum Polymer Capacitors
NASA Technical Reports Server (NTRS)
Liu, David (Donghang)
2010-01-01
Conductive polymer aluminum capacitor (PA capacitor) is an evolution of traditional wet electrolyte aluminum capacitors by replacing liquid electrolyte with a solid, highly conductive polymer. On the other hand, the cathode construction in polymer aluminum capacitors with coating of carbon and silver epoxy for terminal connection is more like a combination of the technique that solid tantalum capacitor utilizes. This evolution and combination result in the development of several competing capacitor construction technologies in manufacturing polymer aluminum capacitors. The driving force of this research on characterization of polymer aluminum capacitors is the rapid progress in IC technology. With the microprocessor speeds exceeding a gigahertz and CPU current demands of 80 amps and more, the demand for capacitors with higher peak current and faster repetition rates bring conducting polymer capacitors to the center o( focus. This is because this type of capacitors has been known for its ultra-low ESR and high capacitance. Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were obtained and tested. The construction analysis of the capacitors revealed three different constructions: conventional rolled foil, the multilayer stacking V-shape, and a dual-layer sandwich structure. The capacitor structure and its impact on the electrical characteristics has been revealed and evaluated. A destructive test with massive current over stress to fail the polymer aluminum capacitors reveals that all polymer aluminum capacitors failed in a benign mode without ignition, combustion, or any other catastrophic failures. The extraordinary low ESR (as low as 3 mOMEGA), superior frequency independence reported for polymer aluminum capacitors have been confirmed. For the applications of polymer aluminum capacitors in space programs, a thermal vacuum cycle test was performed. The results, as expected, show no impact on the electrical characteristics of the capacitors. The breakdown voltage of polymer capacitors has been evaluated using a steady step surge test. Initial results show the uniform distribution in the breakdown voltage for polymer aluminum capacitors. Polymer aluminum capacitors with a combination of very high capacitance, extraordinary low ESR, excellent frequency stability, and non-ignite benign failure mode make it a niche fit in space applications for both today and future. Polymer capacitors are apparently also the best substitutes of the currently used MnO2-based tantalum capacitors in the low voltage range. However, some critical aspects are still to be addressed in the next phase of the investigation for PA capacitors. These include the long term reliability test of 125 C dry life and 85 C/85%RH humidity, the failure mechanism and de-rating, the radiation tolerance, and the high temperature performance. All of the above requires the continuous NEPP funding and support.
Graphene Quantum Capacitors for High Frequency Tunable Analog Applications.
Moldovan, Clara F; Vitale, Wolfgang A; Sharma, Pankaj; Tamagnone, Michele; Mosig, Juan R; Ionescu, Adrian M
2016-08-10
Graphene quantum capacitors (GQC) are demonstrated to be enablers of radio-frequency (RF) functions through voltage-tuning of their capacitance. We show that GQC complements MEMS and MOSFETs in terms of performance for high frequency analog applications and tunability. We propose a CMOS compatible fabrication process and report the first experimental assessment of their performance at microwaves frequencies (up to 10 GHz), demonstrating experimental GQCs in the pF range with a tuning ratio of 1.34:1 within 1.25 V, and Q-factors up to 12 at 1 GHz. The figures of merit of graphene variable capacitors are studied in detail from 150 to 350 K. Furthermore, we describe a systematic, graphene specific approach to optimize their performance and predict the figures of merit achieved if such a methodology is applied.
Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors.
Yin, Jiao; Qi, Li; Wang, Hongyu
2012-05-01
The lithium-based energy storage technology is currently being considered for electric automotive industry and even electric grid storage. However, the hungry demand for vast energy sources in the modern society will conflict with the shortage of lithium resources on the earth. The first alternative choice may be sodium-related materials. Herein, we propose an electric energy storage system (sodium-ion capacitor) based on porous carbon and sodium titanate nanotubes (Na-TNT, Na(+)-insertion compounds) as positive and negative electrode materials, respectively, in conjunction with Na(+)-containing non-aqueous electrolytes. As a low-voltage (0.1-2 V) sodium insertion nanomaterial, Na-TNT was synthesized via a simple hydrothermal reaction. Compared with bulk sodium titanate, the predominance of Na-TNT is the excellent rate performance, which exactly caters to the need for electrochemical capacitors. The sodium-ion capacitors exhibited desirable energy density and power density (34 Wh kg(-1), 889 W kg(-1)). Furthermore, the sodium-ion capacitors had long cycling life (1000 cycles) and high coulombic efficiency (≈ 98 % after the second cycle). More importantly, the conception of sodium-ion capacitor has been put forward.
Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber.
Ren, Jing; Bai, Wenyu; Guan, Guozhen; Zhang, Ye; Peng, Huisheng
2013-11-06
A flexible and weaveable electric double-layer capacitor wire is developed by twisting two aligned carbon nanotube/ordered mesoporous carbon composite fibers with remarkable mechanical and electronic properties as electrodes. This capacitor wire exhibits high specific capacitance and long life stability. Compared with the conventional planar structure, the capacitor wire is also lightweight and can be integrated into various textile structures that are particularly promising for portable and wearable electronic devices. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wei, Lei; Liu, Qi-Xuan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Lu, Hong-Liang; Jiang, Anquan; Zhang, David Wei
2016-12-01
Highly powered electrostatic capacitors based on nanostructures with a high aspect ratio are becoming critical for advanced energy storage technology because of their high burst power and energy storage capability. We report the fabrication process and the electrical characteristics of high capacitance density capacitors with three-dimensional solid-state nanocapacitors based on a ZnO nanowire template. Stand-up ZnO nanowires are grown face down on p-type Si substrates coated with a ZnO seed layer using a hydrothermal method. Stacks of AlZnO/Al2O3/AlZnO are then deposited sequentially on the ZnO nanowires using atomic layer deposition. The fabricated capacitor has a high capacitance density up to 92 fF/μm(2) at 1 kHz (around ten times that of the planar capacitor without nanowires) and an extremely low leakage current density of 3.4 × 10(-8) A/cm(2) at 2 V for a 5-nm Al2O3 dielectric. Additionally, the charge-discharge characteristics of the capacitor were investigated, indicating that the resistance-capacitance time constants were 550 ns for both the charging and discharging processes and the time constant was not dependent on the voltage. This reflects good power characteristics of the fabricated capacitors. Therefore, the current work provides an exciting strategy to fabricate low-cost and easily processable, high capacitance density capacitors for energy storage.
Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat
2015-05-13
Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.
Pietrabissa, Giada; Manzoni, Gian Mauro; Gibson, Padraic; Boardman, Donald; Gori, Alessio; Castelnuovo, Gianluca
2016-01-01
Introduction Obsessive–compulsive disorder (OCD) is a disabling psychopathology. The mainstay of treatment includes cognitive–behavioural therapy (CBT) and medication management. However, individual suffering, functional impairments as well as the direct and indirect costs associated with the disease remain substantial. New treatment programmes are necessary and the brief strategic therapy (BST) has recently shown encouraging results in clinical practice but no quantitative study has as yet been conducted. Methods and analysis The clinical effectiveness of the OCD-specific BST protocol will be evaluated in a one-group observational study. Participants will be sequentially recruited from a state community psychotherapy clinic in Dublin, Ireland. Outcome measures will be the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and the Beck Depression Inventory-II (BDI-II). Data will be collected at baseline, at treatment termination and at 3 month follow-up. The statistical significance of the post-treatment effect will be assessed by the paired-sample Student t test, while clinical significance will be evaluated by means of the equivalence testing method, which will be also used to assess the maintenance of effect at follow-up. Ethics/dissemination The present study is approved by the Hesed House Ethics Board in Dublin. Findings will enhance the evidence-based knowledge about the clinical effectiveness of BST in treating OCD symptoms, prior to assessing its efficacy in a randomised and controlled clinical trial, and will be disseminated through publication in peer-reviewed journals and conference presentations. PMID:27013594
75 FR 47565 - Notice of Availability of Government-Owned Inventions; Available for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-06
.... Patent No. 6,965,509: Poly(3,4-alkylenedioxythiophene)-based capacitors using ionic liquids as supporting electrolytes, Navy Case No. 83733//U.S. Patent No. 7,578,859: Poly(3,4-alkylenedioxythiophene)-based capacitors...
Cracking Problems and Mechanical Characteristics of PME and BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2018-01-01
Most failures in MLCCs are caused by cracking that create shorts between opposite electrodes of the parts. A use of manual soldering makes this problem especially serious for space industry. Experience shows that different lots of ceramic capacitors might have different susceptibility to cracking under manual soldering conditions. This simulates a search of techniques that would allow revealing capacitors that are most robust to soldering-induced stresses. Currently, base metal electrode (BME) capacitors are introduced to high-reliability applications as a replacement of precious metal electrode (PME) parts. Understanding the difference in the susceptibility to cracking between PME and BME capacitors would facilitate this process. This presentation gives a review of mechanical characteristics measured in-situ on MLCCs that includes flexural strength, Vickers hardness, indentation fracture toughness, and the board flex testing and compare characteristics of BME and PME capacitors. A history case related to cracking in PME capacitors that caused flight system malfunctions and mechanisms of failure are considered. Possible qualification tests that would allow evaluation of the resistance of MLCCs to manual soldering are suggested and perspectives related to introduction of BME capacitors discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, X. H.; Defaye, E.; Aied, M.
2009-02-15
Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (BST) thick films with thickness up to 1 {mu}m were deposited on Pt-coated silicon substrates by ion beam sputtering, followed by an annealing treatment. It is demonstrated that pure well-crystallized perovskite phase could be obtained in thick BST films by a low temperature process (535 deg. C). The BST thick films show highly tunable dielectric properties with tunability (at 800 kV/cm) up to 51.0% and 66.2%, respectively, for the 0.5 and 1 {mu}m thick films. The relationship between strains and dielectric properties was systematically investigated in the thick films. The results suggest that a comparatively largermore » tensile thermal in-plane strain (0.15%) leads to the degradation in dielectric properties of the 0.5 {mu}m thick film; besides, strong defect-related inhomogeneous strains ({approx}0.3%) make the dielectric peaks smearing and broadening in the thick films, which, however, preferably results in high figure-of-merit factors over a wide operating temperature range. Moreover, the leakage current behavior in the BST thick films was found to be dominated by the space-charge-limited-current mechanism, irrespective of the film thickness.« less
Study of Lead Free Ferroelectric Films for New Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fasquelle, D.; Mascot, M.; Carru, J. C.
2009-09-14
We report on the deposition by a sol-gel process of Ba{sub 0.8}Sr{sub 0.2}TiO{sub 3} and Ba{sub 0.9}Sr{sub 0.1}TiO{sub 3} films on platinum coated silicon substrates. X-Ray diffraction patterns show that the films are (111) preferentially oriented. The surface morphology is smooth, without cracks and the grain size is about 50 nm as determined by AFM and SEM. The dielectric constant measured from 10{sup 2} to 10{sup 6} Hz decreases slightly and is around 400 at 10{sup 4} Hz. The losses are constant in a first approximation for a 1.5 {mu}m thick BST(80/20) film with a value of 0.03 at 10more » kHz. The existence of an hysteresis cycle attests that the films, whatever their thickness, are in a ferroelectric state. Pyroelectric coefficients have been determined and the best figure of merit obtained on BST(90/10) at 293 K and 10 kHz is of 149 {mu}C/m{sup 3}/K. The best dielectric and pyroelectric properties (tg{delta} = 0.006 at 1 MHz, tunability = 30%, {gamma} = 340 {mu}C/m{sup 2}/K) were obtained on the 400 nm BST(90/10) film. Work is in progress to characterize the piezoelectric and photovoltaic properties of our BST films.« less
Capacitor charging FET switcher with controller to adjust pulse width
Mihalka, Alex M.
1986-01-01
A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.
Ferroelectric thin-film capacitors and piezoelectric switches for mobile communication applications.
Klee, Mareike; van Esch, Harry; Keur, Wilco; Kumar, Biju; van Leuken-Peters, Linda; Liu, Jin; Mauczok, Rüdiger; Neumann, Kai; Reimann, Klaus; Renders, Christel; Roest, Aarnoud L; Tiggelman, Mark P J; de Wild, Marco; Wunnicke, Olaf; Zhao, Jing
2009-08-01
Thin-film ferroelectric capacitors have been integrated with resistors and active functions such as ESD protection into small, miniaturized modules, which enable a board space saving of up to 80%. With the optimum materials and processes, integrated capacitors with capacitance densities of up to 100 nF/mm2 for stacked capacitors combined with breakdown voltages of 90 V have been achieved. The integration of these high-density capacitors with extremely high breakdown voltage is a major accomplishment in the world of passive components and has not yet been reported for any other passive integration technology. Furthermore, thin-film tunable capacitors based on barium strontium titanate with high tuning range and high quality factor at 1 GHz have been demonstrated. Finally, piezoelectric thin films for piezoelectric switches with high switching speed have been realized.
Electric Field Simulation of Surge Capacitors with Typical Defects
NASA Astrophysics Data System (ADS)
Zhang, Chenmeng; Mao, Yuxiang; Xie, Shijun; Zhang, Yu
2018-03-01
The electric field of power capacitors with different typical defects in DC working condition and impulse oscillation working condition is studied in this paper. According to the type and location of defects and considering the influence of space charge, two-dimensional models of surge capacitors with different typical defects are simulated based on ANSYS. The distribution of the electric field inside the capacitor is analyzed, and the concentration of electric field and its influence on the insulation performance are obtained. The results show that the type of defects, the location of defects and the space charge all affect the electric field distribution inside the capacitor in varying degrees. Especially the electric field distortion in the local area such as sharp corners and burrs is relatively larger, which increases the probability of partial discharge inside the surge capacitor.
Fabrication of ultrathin film capacitors by chemical solution deposition
Brennecka, Geoff L.; Tuttle, Bruce A.
2007-10-01
We present that a facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm 2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Furthermore, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nmmore » but are still macroscopically addressable with specific capacitance values >160 nF/mm 2.« less
Yao, Fei; Pham, Duy Tho; Lee, Young Hee
2015-07-20
A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Evaluation of Case Size 0603 BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2015-01-01
High volumetric efficiency of commercial base metal electrode (BME) ceramic capacitors allows for a substantial reduction of weight and sizes of the parts compared to currently used military grade precious metal electrode (PME) capacitors. Insertion of BME capacitors in space applications requires a thorough analysis of their performance and reliability. In this work, six types of cases size 0603 BME capacitors from three vendors have been evaluated. Three types of multilayer ceramic capacitors (MLCCs) were designed for automotive industry and three types for general purposes. Leakage currents in the capacitors have been measured in a wide range of voltages and temperatures, and measurements of breakdown voltages (VBR) have been used to assess the proportion and severity of defects in the parts. The effect of soldering-related thermal shock stresses was evaluated by analysis of distributions of VBR for parts in 'as is' condition and after terminal solder dip testing at 350 C. Highly Accelerated Life Testing (HALT) at different temperatures was used to assess the activation energy of degradation of leakage currents and predict behavior of the parts at life test and normal operating conditions. To address issues related to rework and manual soldering, capacitors were soldered onto different substrates at different soldering conditions. The results show that contrary to a common assumption that large-size capacitors are mostly vulnerable to soldering stresses, cracking in small size capacitors does happen unless special measures are taken during assembly processes.
Self-discharge of electrochemical capacitors based on soluble or grafted quinone.
Shul, Galyna; Bélanger, Daniel
2016-07-28
The self-discharge of hybrid electrochemical capacitors based on the redox activity of electrolyte additives or grafted species to the electrode material is investigated simultaneously for the cell and each individual electrode. Electrochemical capacitors using a redox-active electrolyte consisting in hydroquinone added to the electrolyte solution and a redox-active electrode based on anthraquinone-grafted carbon as a negative electrode are investigated. The results are analyzed by using Conway kinetic models and compared to those of a common electrochemical double layer capacitor. The self-discharge investigation is complemented by charge/discharge cycling and it is shown that processes affecting galvanostatic charge/discharge cycling and the self-discharge rate occurring at each electrode of an electrochemical capacitor are different but related to each other. The electrochemical capacitor containing hydroquinone in the electrolyte exhibits a much quicker self-discharge rate than that using a negative electrode based on grafted anthraquinone with a 50% decay of the cell voltage of the fully charged device in 0.6 and 6 h, respectively. The fast self-discharge of the former is due to the diffusion of benzoquinone molecules (formed at the positive electrode during charging) to the negative electrode, where they are reduced, causing a quick depolarization. The grafting of anthraquinone molecules on the carbon material of the negative electrode led to a much slower self-discharge, which nonetheless occurred, by the reaction of the reduced form of the grafted species with electrolyte species.
Electrochemical fabrication of capacitors
Mansour, Azzam N.; Melendres, Carlos A.
1999-01-01
A film of nickel oxide is anodically deposited on a graphite sheet held in osition on an electrochemical cell during application of a positive electrode voltage to the graphite sheet while exposed to an electrolytic nickel oxide solution within a volumetrically variable chamber of the cell. An angularly orientated x-ray beam is admitted into the cell for transmission through the deposited nickel oxide film in order to obtain structural information while the film is subject to electrochemical and in-situ x-ray spectroscopy from which optimum film thickness, may be determined by comparative analysis for capacitor fabrication purposes.
Arc lamp power supply using a voltage multiplier
NASA Technical Reports Server (NTRS)
Leighty, Bradley D.
1988-01-01
A power supply is provided for an arc discharge lamp which includes a relatively low voltage high current power supply section and a high voltage starter circuit. The low voltage section includes a transformer, rectifier, variable resistor and a bank of capacitors, while the starter circuit comprises several diodes and capacitors connected as a Cockcroft-Walton multiplier. The starting circuit is effectively bypassed when the lamp arc is established and serves to automatically provide a high starting voltage to re-strike the lamp arc if the arc is extinguished by a power interruption.
Mueller, Shane T.; Esposito, Alena G.
2015-01-01
We describe the Bivalent Shape Task (BST), software using the Psychology Experiment Building Language (PEBL), for testing of cognitive interference and the ability to suppress interference. The test is available via the GNU Public License, Version 3 (GPLv3), is freely modifiable, and has been tested on both children and adults and found to provide a simple and fast non-verbal measure of cognitive interference and suppression that requires no reading. PMID:26702358
Research on laser detonation pulse circuit with low-power based on super capacitor
NASA Astrophysics Data System (ADS)
Wang, Hao-yu; Hong, Jin; He, Aifeng; Jing, Bo; Cao, Chun-qiang; Ma, Yue; Chu, En-yi; Hu, Ya-dong
2018-03-01
According to the demand of laser initiating device miniaturization and low power consumption of weapon system, research on the low power pulse laser detonation circuit with super capacitor. Established a dynamic model of laser output based on super capacitance storage capacity, discharge voltage and programmable output pulse width. The output performance of the super capacitor under different energy storage capacity and discharge voltage is obtained by simulation. The experimental test system was set up, and the laser diode of low power pulsed laser detonation circuit was tested and the laser output waveform of laser diode in different energy storage capacity and discharge voltage was collected. Experiments show that low power pulse laser detonation based on super capacitor energy storage circuit discharge with high efficiency, good transient performance, for a low power consumption requirement, for laser detonation system and low power consumption and provide reference light miniaturization of engineering practice.
Low-dimensional carbon and MXene-based electrochemical capacitor electrodes.
Yoon, Yeoheung; Lee, Keunsik; Lee, Hyoyoung
2016-04-29
Due to their unique structure and outstanding intrinsic physical properties such as extraordinarily high electrical conductivity, large surface area, and various chemical functionalities, low-dimension-based materials exhibit great potential for application in electrochemical capacitors (ECs). The electrical properties of electrochemical capacitors are determined by the electrode materials. Because energy charge storage is a surface process, the surface properties of the electrode materials greatly influence the electrochemical performance of the cell. Recently, graphene, a single layer of sp(2)-bonded carbon atoms arrayed into two-dimensional carbon nanomaterial, has attracted wide interest as an electrode material for electrochemical capacitor applications due to its unique properties, including a high electrical conductivity and large surface area. Several low-dimensional materials with large surface areas and high conductivity such as onion-like carbons (OLCs), carbide-derived carbons (CDCs), carbon nanotubes (CNTs), graphene, metal hydroxide, transition metal dichalcogenides (TMDs), and most recently MXene, have been developed for electrochemical capacitors. Therefore, it is useful to understand the current issues of low-dimensional materials and their device applications.
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam
2012-01-01
Electrolytic capacitors are used in several applications ranging from power supplies on safety critical avionics equipment to power drivers for electro-mechanical actuators. This makes them good candidates for prognostics and health management research. Prognostics provides a way to assess remaining useful life of components or systems based on their current state of health and their anticipated future use and operational conditions. Past experiences show that capacitors tend to degrade and fail faster under high electrical and thermal stress conditions that they are often subjected to during operations. In this work, we study the effects of accelerated aging due to thermal stress on different sets of capacitors under different conditions. Our focus is on deriving first principles degradation models for thermal stress conditions. Data collected from simultaneous experiments are used to validate the desired models. Our overall goal is to derive accurate models of capacitor degradation, and use them to predict performance changes in DC-DC converters.
Flexoelectricity in Nanostructures: Theory, Nanofabrication and Characterization
2017-09-13
public release; distribution is unlimited. Major Goals: The objective of this project is to investigate, theoretically and experimentally , the... experimental approach. Accomplishments: In this report, we investigated the thermal polarization effect where the temperature- dependent dielectric...through an analytical model, which was experimentally verified. Secondly, based on the existence of the converse flexoelectric effect in materials, BST
ERIC Educational Resources Information Center
Christopher, Rose; Horsley, Sarah
2016-01-01
The Dudley Behavioural Support Team (BST) was set up based on Positive Behavioural Support (PBS) principles to support individuals with behaviours that challenge. The Winterbourne Review emphasises the importance of developing high-quality specialist community services and the Ensuring Quality Services (Local Government Association & NHS…
Evaluation of Commercial Automotive-Grade BME Capacitors
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
Three Ni-BaTiO3 ceramic capacitor lots with the same specification (chip size, capacitance, and rated voltage) and the same reliability level, made by three different manufacturers, were degraded using highly accelerated life stress testing (HALST) with the same temperature and applied voltage conditions. The reliability, as characterized by mean time to failure (MTTF), differed by more than one order of magnitude among the capacitor lots. A theoretical model based on the existence of depletion layers at grain boundaries and the entrapment of oxygen vacancies has been proposed to explain the MTTF difference among these BME capacitors. It is the conclusion of this model that reliability will not be improved simply by increasing the insulation resistance of a BME capacitor. Indeed, Ni-BaTiO3 ceramic capacitors with a smaller degradation rate constant K will always give rise to a longer reliability life.
Evaluation of Commercial Automotive-Grade BME Capacitors
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
Three Ni-BaTiO3 ceramic capacitor lots with the same specification (chip size, capacitance, and rated voltage) and the same reliability level, made by three different manufacturers, were degraded using highly accelerated life stress testing (HALST) with the same temperature and applied voltage conditions. The reliability, as characterized by mean time to failure (MTTF), differed by more than one order of magnitude among the capacitor lots. A theoretical model based on the existence of depletion layers at grain boundaries and the entrapment of oxygen vacancies has been proposed to explain the MTTF difference among these BME capacitors. It is the conclusion of this model that reliability will not be improved simply by increasing the insulation resistance of a BME capacitor. Indeed, Ni-BaTiO3 ceramic capacitors with a smaller degradation rate constant K will always give rise to a longer reliability life
Towards Prognostics of Electrolytic Capacitors
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Kulkarni, Chetan; Biswas, Gautam; Goegel, Kai
2011-01-01
A remaining useful life prediction algorithm and degradation model for electrolytic capacitors is presented. Electrolytic capacitors are used in several applications ranging from power supplies on critical avionics equipment to power drivers for electro-mechanical actuators. These devices are known for their low reliability and given their criticality in electronics subsystems they are a good candidate for component level prognostics and health management research. Prognostics provides a way to assess remaining useful life of a capacitor based on its current state of health and its anticipated future usage and operational conditions. In particular, experimental results of an accelerated aging test under electrical stresses are presented. The capacitors used in this test form the basis for a remaining life prediction algorithm where a model of the degradation process is suggested. This preliminary remaining life prediction algorithm serves as a demonstration of how prognostics methodologies could be used for electrolytic capacitors.
High dynamic range charge measurements
De Geronimo, Gianluigi
2012-09-04
A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.
Stretchable Dual-Capacitor Multi-Sensor for Touch-Curvature-Pressure-Strain Sensing.
Jin, Hanbyul; Jung, Sungchul; Kim, Junhyung; Heo, Sanghyun; Lim, Jaeik; Park, Wonsang; Chu, Hye Yong; Bien, Franklin; Park, Kibog
2017-09-07
We introduce a new type of multi-functional capacitive sensor that can sense several different external stimuli. It is fabricated only with polydimethylsiloxane (PDMS) films and silver nanowire electrodes by using selective oxygen plasma treatment method without photolithography and etching processes. Differently from the conventional single-capacitor multi-functional sensors, our new multi-functional sensor is composed of two vertically-stacked capacitors (dual-capacitor). The unique dual-capacitor structure can detect the type and strength of external stimuli including curvature, pressure, strain, and touch with clear distinction, and it can also detect the surface-normal directionality of curvature, pressure, and touch. Meanwhile, the conventional single-capacitor sensor has ambiguity in distinguishing curvature and pressure and it can detect only the strength of external stimulus. The type, directionality, and strength of external stimulus can be determined based on the relative capacitance changes of the two stacked capacitors. Additionally, the logical flow reflected on a tree structure with its branches reaching the direction and strength of the corresponding external stimulus unambiguously is devised. This logical flow can be readily implemented in the sensor driving circuit if the dual-capacitor sensor is commercialized actually in the future.
Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3.
Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Yue, Jin; Liu, Chang
2015-01-01
Transparent and flexible capacitors based on nanolaminate Al2O3/TiO2/Al2O3 dielectrics have been fabricated on indium tin oxide-coated polyethylene naphthalate substrates by atomic layer deposition. A capacitance density of 7.8 fF/μm(2) at 10 KHz was obtained, corresponding to a dielectric constant of 26.3. Moreover, a low leakage current density of 3.9 × 10(-8) A/cm(2) at 1 V has been realized. Bending test shows that the capacitors have better performances in concave conditions than in convex conditions. The capacitors exhibit an average optical transmittance of about 70% in visible range and thus open the door for applications in transparent and flexible integrated circuits.
Barium-strontium-titanate etching characteristics in chlorinated discharges
NASA Astrophysics Data System (ADS)
Stafford, Luc; Margot, Joëlle; Langlois, Olivier; Chaker, Mohamed
2003-07-01
The etching characteristics of barium-strontium-titanate (BST) were investigated using a high-density plasma sustained by surface waves at 190 MHz in Ar/Cl2 gas mixtures. The etch rate was examined as a function of both the total gas pressure and the Cl2 fraction in Ar/Cl2 using a wafer temperature of 10 °C. The results were correlated to positive ion density and plasma composition obtained from Langmuir probes and mass spectrometry. The BST etch rate was found to increase linearly with the positive ion density and to decrease with increasing chlorine atom concentration. This result indicates that for the temperature conditions used, the interaction between chlorine and BST yields compounds having a volatility that is lower than the original material. As a consequence, the contribution of neutral atomic Cl atoms to the etch mechanism is detrimental, thereby reducing the etch rate. As the wafer temperature increases, the role of chemistry in the etching process is enhanced.
Physical Modeling of the Polyfrequency Filter-Compensating Device Based on the Capacitor-Coil
NASA Astrophysics Data System (ADS)
Butyrin, P. A.; Gusev, G. G.; Mikheev, D. V.; Shakirzianov, F. N.
2017-12-01
The paper presents the results of physical modeling and experimental study of the frequency characteristics of the polyfrequency filter-compensating device (PFCD) based on a capacitor-coil. The amplitude- frequency and phase-frequency characteristics of the physical PFCD model were constructed and its equivalent parameters were identified. The feasibility of a PFCD in the form of a single technical device with high technical and economic characteristics was experimentally proven. In the paper, recommendations for practical applications of the capacitor-coil-based PFCD are made and the advantages of the device over known standard passive filter-compensating devices are evaluated.
Rababah, A S; Walsh, S J; Manoharan, G; Walsh, P R; Escalona, O J
2016-07-01
Intracardiac impedance (ICI) is a major determinant of success during internal cardioversion of atrial fibrillation (AF). However, there have been few studies that have examined the dynamic behaviour of atrial impedance during internal cardioversion in relation to clinical outcome. In this study, voltage and current waveforms captured during internal cardioversion of acute AF in ovine models using novel radiofrequency (RF) generated low-tilt rectilinear and conventional capacitor-discharge based shock waveforms were retrospectively analysed using a digital signal processing algorithm to investigate the dynamic behaviour of atrial impedance during cardioversion. The algorithm was specifically designed to facilitate the simultaneous analysis of multiple impedance parameters, including: mean intracardiac impedance (Z M), intracardiac impedance variance (ICIV) and impedance amplitude spectrum area (IAMSA) for each cardioversion event. A significant reduction in ICI was observed when comparing two successive shocks of increasing energy where cardioversion outcome was successful. In addition, ICIV and IAMSA variables were found to inversely correlate to the magnitude of energy delivered; with a stronger correlation found to the former parameter. In conclusion, ICIV and IAMSA have been evidenced as two key dynamic intracardiac impedance variables that may prove useful in better understanding of the cardioversion process and that could potentially act as prognostic markers with respect to clinical outcome.
Singh, Deepa; Deepak; Garg, Ashish
2017-03-15
P(VDF-TrFE), the best known ferroelectric polymer, suffers from a rather low piezoelectric response as well as poor electrical fatigue life, hampering its application potential. Herein, we report the fabrication of fatigue free poly(vinylidenedifluoride-trifluoroethylene) P(VDF-TrFE)-based capacitors with record piezoelectric coefficients and excellent thermal stability. We proposed a cost-effective and simple solution-based process to fabricate P(VDF-TrFE)-based memory capacitors with large polarization (8.9 μC cm -2 ), low voltage operation (15 V), and excellent fatigue endurance with 100% polarization retention up to 10 8 electrical switching cycles. The thin film capacitors fabricated using methyl ethyl ketone (MEK) and dimethyl sulfoxide (DMSO) as co-solvents also show a much higher piezoelectric coefficient (d 33 = -60 pm V -1 ) than the previously reported capacitors and are also thermally stable up to 380 K, making them ideal candidates for ferro-, piezo-, and pyro-electric applications, even in devices operating above room temperature. The observed results are well supported by first principles calculations, FTIR, XPS, and evaluation of cohesion energy for crystallization by DSC.
Auger, Catherine J.; Coss, Dylan; Auger, Anthony P.; Forbes-Lorman, Robin M.
2011-01-01
Although some DNA methylation patterns are altered by steroid hormone exposure in the developing brain, less is known about how changes in steroid hormone levels influence DNA methylation patterns in the adult brain. Steroid hormones act in the adult brain to regulate gene expression. Specifically, the expression of the socially relevant peptide vasopressin (AVP) within the bed nucleus of the stria terminalis (BST) of adult brain is dependent upon testosterone exposure. Castration dramatically reduces and testosterone replacement restores AVP expression within the BST. As decreases in mRNA expression are associated with increases in DNA promoter methylation, we explored the hypothesis that AVP expression in the adult brain is maintained through sustained epigenetic modifications of the AVP gene promoter. We find that castration of adult male rats resulted in decreased AVP mRNA expression and increased methylation of specific CpG sites within the AVP promoter in the BST. Similarly, castration significantly increased estrogen receptor α (ERα) mRNA expression and decreased ERα promoter methylation within the BST. These changes were prevented by testosterone replacement. This suggests that the DNA promoter methylation status of some steroid responsive genes in the adult brain is actively maintained by the presence of circulating steroid hormones. The maintenance of methylated or demethylated states of some genes in the adult brain by the presence of steroid hormones may play a role in the homeostatic regulation of behaviorally relevant systems. PMID:21368111
Han, Jae Pil; Hong, Su Jin; Kim, Shin Hee; Choi, Jong Hyo; Jung, Hee Jae; Cho, Youn Hee; Ko, Bong Min; Lee, Moon Sung
2014-08-01
Self-expandable metal stents (SEMSs) have been used as palliative treatment or bridge to surgery for obstructions caused by colorectal cancer (CRC). We assessed the long-term outcomes of palliative SEMSs and evaluated the risk factors influencing complications. One hundred and seventy-five patients underwent SEMS placement for acute malignant colorectal obstruction. Of the 72 patients who underwent palliative treatment for primary CRC, 30 patients received chemotherapy (CT) for primary cancer (CT group) and 42 underwent best supportive treatment (BST) without CT (BST group). There was a significant difference in late migration between the CT group and the BST group (20.0% in CT group, 2.4% in BST group, p = 0.018). Response to CT influenced the rate of late obstruction (0% in disease control, 35.7% in disease progression, p = 0.014). However, late obstruction was not associated with stent properties, such as diameter or type (≤22 mm vs. >22 mm, 13.5% vs. 14.3%, p = 1.00; uncovered stent vs. covered stent, 15.5% vs. 7.1%, p = 0.675) and migration (≤22 mm vs. >22 mm, 16.2% vs. 2.9%, p = 0.108; uncovered stent vs. covered stent, 8.6% vs. 14.3%, p = 0.615) in palliative SEMS. The administration of CT increases the rate of stent migration, and disease control by CT can reduce the risk of obstruction by maintaining the luminal patency of palliative SEMSs.
Hartlieb, Kathryn Brogan; Naar, Sylvie; Ledgerwood, David M; Templin, Thomas N; Ellis, Deborah A; Donohue, Bradley; Cunningham, Phillippe B
2015-12-07
Contingency management (CM) interventions, which use operant conditioning principles to encourage completion of target behavioral goals, may be useful for improving adherence to behavioral skills training (BST). Research-to-date has yet to explore CM for weight loss in minority adolescents. To examine the effects of CM in improving adolescent weight loss when added to BST. The study utilized an innovative experimental design that builds upon multiple baseline approaches as recommended by the National Institutes of Health. Six obese African-American youth and their primary caregivers living in Detroit, Michigan, USA. Adolescents received between 4 and 12 weeks of BST during a baseline period and subsequently received CM targeting weight loss. Youth weight. Linear mixed effects modeling was used in the analysis. CM did not directly affect adolescent weight loss above that of BST (p=0.053). However, when caregivers were involved in CM session treatment, contingency management had a positive effect on adolescent weight loss. The estimated weight loss due to CM when caregivers also attended was 0.66 kg/week (p<0.001, [95% CI; -1.96, -0.97]) relative to the baseline trajectory. This study demonstrates application of a novel experimental approach to intervention development and demonstrated the importance of parent involvement when delivering contingency management for minority youth weight loss. Lessons learned from contingency management program implementation are also discussed in order to inform practice.
NEPP Evaluation of Automotive Grade Tantalum Chip Capacitors
NASA Technical Reports Server (NTRS)
Sampson, Mike; Brusse, Jay
2018-01-01
Automotive grade tantalum (Ta) chip capacitors are available at lower cost with smaller physical size and higher volumetric efficiency compared to military/space grade capacitors. Designers of high reliability aerospace and military systems would like to take advantage of these attributes while maintaining the high standards for long-term reliable operation they are accustomed to when selecting military-qualified established reliability tantalum chip capacitors (e.g., MIL-PRF-55365). The objective for this evaluation was to assess the long-term performance of off-the-shelf automotive grade Ta chip capacitors (i.e., manufacturer self-qualified per AEC Q-200). Two (2) lots of case size D manganese dioxide (MnO2) cathode Ta chip capacitors from 1 manufacturer were evaluated. The evaluation consisted of construction analysis, basic electrical parameter characterization, extended long-term (2000 hours) life testing and some accelerated stress testing. Tests and acceptance criteria were based upon manufacturer datasheets and the Automotive Electronics Council's AEC Q-200 qualification specification for passive electronic components. As-received a few capacitors were marginally above the specified tolerance for capacitance and ESR. X-ray inspection found that the anodes for some devices may not be properly aligned within the molded encapsulation leaving less than 1 mil thickness of the encapsulation. This evaluation found that the long-term life performance of automotive grade Ta chip capacitors is generally within specification limits suggesting these capacitors may be suitable for some space applications.
Regulated Capacitor Charging Circuit Using a High Reactance Transformer
1999-06-01
REGULATED CAPACITOR CHARGING CIRCUIT USING A HIGH REACTANCE TRANSFORMER1 Diana L. Loree and James P. O’Loughlin Air Force Research Laboratory...Directed Energy Directorate Kirtland Air Force Base, NM 87117-5776 Abstract A high reactance transformer circuit is used to provide for the compact...simple, economic and reliable charging of a capacitor energy store to a predetermined and regulated voltage. The circuit can be operated from a
Zhang, Hui; Yang, Yin; Dong, Huilei; Cai, Chenxin
2016-12-15
DNA methyltransferase (MTase) activity is highly correlated with the occurrence and development of cancer. This work reports a superstructure-based electrochemical assay for signal-amplified detection of DNA MTase activity using M.SssI as an example. First, low-density coverage of DNA duplexes on the surface of the gold electrode was achieved by immobilized mercaptohexanol, followed by immobilization of DNA duplexes. The duplex can be cleaved by BstUI endonuclease in the absence of DNA superstructures. However, the cleavage is blocked after the DNA is methylated by M.SssI. The DNA superstructures are formed with the addition of helper DNA. By using an electroactive complex, RuHex, which can bind to DNA double strands, the activity of M.SssI can be quantitatively detected by differential pulse voltammetry. Due to the high site-specific cleavage by BstUI and signal amplification by the DNA superstructure, the biosensor can achieve ultrasensitive detection of DNA MTase activity down to 0.025U/mL. The method can be used for evaluation and screening of the inhibitors of MTase, and thus has potential in the discovery of methylation-related anticancer drugs. Copyright © 2016 Elsevier B.V. All rights reserved.
An overview of the applications of graphene-based materials in supercapacitors.
Huang, Yi; Liang, Jiajie; Chen, Yongsheng
2012-06-25
Due to their unique 2D structure and outstanding intrinsic physical properties, such as extraordinarily high electrical conductivity and large surface area, graphene-based materials exhibit great potential for application in supercapacitors. In this review, the progress made so far for their applications in supercapacitors is reviewed, including electrochemical double-layer capacitors, pseudo-capacitors, and asymmetric supercapacitors. Compared with traditional electrode materials, graphene-based materials show some novel characteristics and mechanisms in the process of energy storage and release. Several key issues for improving the structure of graphene-based materials and for achieving better capacitor performance, along with the current outlook for the field, are also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Split-Ring Resonator Loaded Miniaturised Slot for the Slotted Waveguide Antenna Stiffened Structure
2011-03-01
explains the material analysis of BST varactors using the new sputterer so the varactors can be fabricated at RMIT university and utilised for the SRR...44-0093 (*) - Barium Strontium Titanium Oxide - Ba0.77Sr0.23TiO3 - Y: 0.10 % - d x by: 1. - WL: 1.5406 - Tetragonal - Operations: Import D:\\Sensors...unknown unknown BST on sapphire - 2 44-0093 (*) - Barium Strontium Titanium Oxide - Ba0.77Sr0.23TiO3 - Y: 0.10 % - d x by: 1. - WL: 1.5406 - 0
Effect of Preconditioning and Soldering on Failures of Chip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Soldering of molded case tantalum capacitors can result in damage to Ta205 dielectric and first turn-on failures due to thermo-mechanical stresses caused by CTE mismatch between materials used in the capacitors. It is also known that presence of moisture might cause damage to plastic cases due to the pop-corning effect. However, there are only scarce literature data on the effect of moisture content on the probability of post-soldering electrical failures. In this work, that is based on a case history, different groups of similar types of CWR tantalum capacitors from two lots were prepared for soldering by bake, moisture saturation, and longterm storage at room conditions. Results of the testing showed that both factors: initial quality of the lot, and preconditioning affect the probability of failures. Baking before soldering was shown to be effective to prevent failures even in lots susceptible to pop-corning damage. Mechanism of failures is discussed and recommendations for pre-soldering bake are suggested based on analysis of moisture characteristics of materials used in the capacitors' design.
Graphene-Based Flexible and Transparent Tunable Capacitors.
Man, Baoyuan; Xu, Shicai; Jiang, Shouzheng; Liu, Aihua; Gao, Shoubao; Zhang, Chao; Qiu, Hengwei; Li, Zhen
2015-12-01
We report a kind of electric field tunable transparent and flexible capacitor with the structure of graphene-Bi1.5MgNb1.5O7 (BMN)-graphene. The graphene films with low sheet resistance were grown by chemical vapor deposition. The BMN thin films were fabricated on graphene by using laser molecular beam epitaxy technology. Compared to BMN films grown on Au, the samples on graphene substrates show better quality in terms of crystallinity, surface morphology, leakage current, and loss tangent. By transferring another graphene layer, we fabricated flexible and transparent capacitors with the structure of graphene-BMN-graphene. The capacitors show a large dielectric constant of 113 with high dielectric tunability of ~40.7 % at a bias field of 1.0 MV/cm. Also, the capacitor can work stably in the high bending condition with curvature radii as low as 10 mm. This flexible film capacitor has a high optical transparency of ~90 % in the visible light region, demonstrating their potential application for a wide range of flexible electronic devices.
Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong
2013-05-22
In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Celaya, Jose R.; Goebel, Kai; Biswas, Gautam
2012-01-01
Electrolytic capacitors are used in several applications ranging from power supplies for safety critical avionics equipment to power drivers for electro-mechanical actuator. Past experiences show that capacitors tend to degrade and fail faster when subjected to high electrical or thermal stress conditions during operations. This makes them good candidates for prognostics and health management. Model-based prognostics captures system knowledge in the form of physics-based models of components in order to obtain accurate predictions of end of life based on their current state of heal th and their anticipated future use and operational conditions. The focus of this paper is on deriving first principles degradation models for thermal stress conditions and implementing Bayesian framework for making remaining useful life predictions. Data collected from simultaneous experiments are used to validate the models. Our overall goal is to derive accurate models of capacitor degradation, and use them to remaining useful life in DC-DC converters.
Dielectric properties of inorganic fillers filled epoxy thin film
NASA Astrophysics Data System (ADS)
Norshamira, A.; Mariatti, M.
2015-07-01
The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe2O3) and Titanium Dioxide (TiO2) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types of fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.
Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.
Slaughter, Gymama; Kulkarni, Tanmay
2017-05-03
Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsunobu, Y; Shiotsuki, K; Morishita, J
Purpose: Fingerprints, dental impressions, and DNA are used to identify unidentified bodies in forensic medicine. Cranial Computed tomography (CT) images and/or dental radiographs are also used for identification. Radiological identification is important, particularly in the absence of comparative fingerprints, dental impressions, and DNA samples. The development of an automated radiological identification system for unidentified bodies is desirable. We investigated the potential usefulness of bone structure for matching chest CT images. Methods: CT images of three anthropomorphic chest phantoms were obtained on different days in various settings. One of the phantoms was assumed to be an unidentified body. The bone imagemore » and the bone image with soft tissue (BST image) were extracted from the CT images. To examine the usefulness of the bone image and/or the BST image, the similarities between the two-dimensional (2D) or threedimensional (3D) images of the same and different phantoms were evaluated in terms of the normalized cross-correlation value (NCC). Results: For the 2D and 3D BST images, the NCCs obtained from the same phantom assumed to be an unidentified body (2D, 0.99; 3D, 0.93) were higher than those for the different phantoms (2D, 0.95 and 0.91; 3D, 0.89 and 0.80). The NCCs for the same phantom (2D, 0.95; 3D, 0.88) were greater compared to those of the different phantoms (2D, 0.61 and 0.25; 3D, 0.23 and 0.10) for the bone image. The difference in the NCCs between the same and different phantoms tended to be larger for the bone images than for the BST images. These findings suggest that the image-matching technique is more useful when utilizing the bone image than when utilizing the BST image to identify different people. Conclusion: This preliminary study indicated that evaluating the similarity of bone structure in 2D and 3D images is potentially useful for identifying of an unidentified body.« less
Is non-operative management safe and effective for all splenic blunt trauma? A systematic review
2013-01-01
Introduction The goal of non-operative management (NOM) for blunt splenic trauma (BST) is to preserve the spleen. The advantages of NOM for minor splenic trauma have been extensively reported, whereas its value for the more severe splenic injuries is still debated. The aim of this systematic review was to evaluate the available published evidence on NOM in patients with splenic trauma and to compare it with the operative management (OM) in terms of mortality, morbidity and duration of hospital stay. Methods For this systematic review we followed the "Preferred Reporting Items for Systematic Reviews and Meta-analyses" statement. A systematic search was performed on PubMed for studies published from January 2000 to December 2011, without language restrictions, which compared NOM vs. OM for splenic trauma injuries and which at least 10 patients with BST. Results We identified 21 non randomized studies: 1 Clinical Controlled Trial and 20 retrospective cohort studies analyzing a total of 16,940 patients with BST. NOM represents the gold standard treatment for minor splenic trauma and is associated with decreased mortality in severe splenic trauma (4.78% vs. 13.5% in NOM and OM, respectively), according to the literature. Of note, in BST treated operatively, concurrent injuries accounted for the higher mortality. In addition, it was not possible to determine post-treatment morbidity in major splenic trauma. The definition of hemodynamic stability varied greatly in the literature depending on the surgeon and the trauma team, representing a further bias. Moreover, data on the remaining analyzed outcomes (hospital stay, number of blood transfusions, abdominal abscesses, overwhelming post-splenectomy infection) were not reported in all included studies or were not comparable, precluding the possibility to perform a meaningful cumulative analysis and comparison. Conclusions NOM of BST, preserving the spleen, is the treatment of choice for the American Association for the Surgery of Trauma grades I and II. Conclusions are more difficult to outline for higher grades of splenic injury, because of the substantial heterogeneity of expertise among different hospitals, and potentially inappropriate comparison groups. PMID:24004931
Is non-operative management safe and effective for all splenic blunt trauma? A systematic review.
Cirocchi, Roberto; Boselli, Carlo; Corsi, Alessia; Farinella, Eriberto; Listorti, Chiara; Trastulli, Stefano; Renzi, Claudio; Desiderio, Jacopo; Santoro, Alberto; Cagini, Lucio; Parisi, Amilcare; Redler, Adriano; Noya, Giuseppe; Fingerhut, Abe
2013-09-03
The goal of non-operative management (NOM) for blunt splenic trauma (BST) is to preserve the spleen. The advantages of NOM for minor splenic trauma have been extensively reported, whereas its value for the more severe splenic injuries is still debated. The aim of this systematic review was to evaluate the available published evidence on NOM in patients with splenic trauma and to compare it with the operative management (OM) in terms of mortality, morbidity and duration of hospital stay. For this systematic review we followed the "Preferred Reporting Items for Systematic Reviews and Meta-analyses" statement. A systematic search was performed on PubMed for studies published from January 2000 to December 2011, without language restrictions, which compared NOM vs. OM for splenic trauma injuries and which at least 10 patients with BST. We identified 21 non randomized studies: 1 Clinical Controlled Trial and 20 retrospective cohort studies analyzing a total of 16,940 patients with BST. NOM represents the gold standard treatment for minor splenic trauma and is associated with decreased mortality in severe splenic trauma (4.78% vs. 13.5% in NOM and OM, respectively), according to the literature. Of note, in BST treated operatively, concurrent injuries accounted for the higher mortality. In addition, it was not possible to determine post-treatment morbidity in major splenic trauma. The definition of hemodynamic stability varied greatly in the literature depending on the surgeon and the trauma team, representing a further bias. Moreover, data on the remaining analyzed outcomes (hospital stay, number of blood transfusions, abdominal abscesses, overwhelming post-splenectomy infection) were not reported in all included studies or were not comparable, precluding the possibility to perform a meaningful cumulative analysis and comparison. NOM of BST, preserving the spleen, is the treatment of choice for the American Association for the Surgery of Trauma grades I and II. Conclusions are more difficult to outline for higher grades of splenic injury, because of the substantial heterogeneity of expertise among different hospitals, and potentially inappropriate comparison groups.
Suryawanshi, Gajendra W.; Hoffmann, Alexander
2015-01-01
Human immunodeficiency virus-1 (HIV-1) employs accessory proteins to evade innate immune responses by neutralizing the anti-viral activity of host restriction factors. Apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G, A3G) and bone marrow stromal cell antigen 2 (BST2) are host resistance factors that potentially inhibit HIV-1 infection. BST2 reduces viral production by tethering budding HIV-1 particles to virus producing cells, while A3G inhibits the reverse transcription (RT) process and induces viral genome hypermutation through cytidine deamination, generating fewer replication competent progeny virus. Two HIV-1 proteins counter these cellular restriction factors: Vpu, which reduces surface BST2, and Vif, which degrades cellular A3G. The contest between these host and viral proteins influences whether HIV-1 infection is established and progresses towards AIDS. In this work, we present an age-structured multi-scale viral dynamics model of in vivo HIV-1 infection. We integrated the intracellular dynamics of anti-viral activity of the host factors and their neutralization by HIV-1 accessory proteins into the virus/cell population dynamics model. We calculate the basic reproductive ratio (Ro) as a function of host-viral protein interaction coefficients, and numerically simulated the multi-scale model to understand HIV-1 dynamics following host factor-induced perturbations. We found that reducing the influence of Vpu triggers a drop in Ro, revealing the impact of BST2 on viral infection control. Reducing Vif’s effect reveals the restrictive efficacy of A3G in blocking RT and in inducing lethal hypermutations, however, neither of these factors alone is sufficient to fully restrict HIV-1 infection. Interestingly, our model further predicts that BST2 and A3G function synergistically, and delineates their relative contribution in limiting HIV-1 infection and disease progression. We provide a robust modeling framework for devising novel combination therapies that target HIV-1 accessory proteins and boost antiviral activity of host factors. PMID:26385832
Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material
NASA Technical Reports Server (NTRS)
Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.
1999-01-01
A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.
Bovine somatotropin and lactation: from basic science to commercial application.
Bauman, D E
1999-10-01
Bovine somatotropin (bST) results in increased milk yield and an unprecedented improvement in efficiency. Beginning in the 1930s to present day, investigations have examined animal-related factors such as nutrition, bioenergetics, metabolism, health and well being and consumer-related factors such as milk quality, manufacturing characteristics, and product safety. Overall, bST is a homeorhetic control involved in orchestrating many physiological processes. Direct effects involve adaptations in many tissues and the metabolism of all nutrient classes--carbohydrates, lipids, protein, and minerals. Mechanisms include alterations in key enzymes, intracellular signal transduction systems, and tissue response to homeostatic signals. Indirect effects involve the mammary gland and are thought to be mediated by the insulin-like growth factor (IGF) system. Specific changes include increased cellular rates of milk synthesis and enhanced maintenance of secretory cells. Indirect effects are modulated by environment and management factors, especially nutritional status. This modulation is a central component in allowing ST to play a key role in regulating nutrient utilization across a range of physiological situations. U.S. commercial use began in 1994, and adoption has been extensive. From a consumer perspective, bST was unique, and special interest groups loudly predicted dire consequences. However, introduction of bST had no impact on milk consumption, and milk labeled as recombinant bST-free occupies a minor niche market. From a producer perspective, commercial use verified scientific studies and enhanced net farm income. Overall, ST is a key homeorhetic control regulating nutrient partitioning, and the ST/IGF system plays a key role in animal performance and well being across a range of physiological situations.
NASA Astrophysics Data System (ADS)
Craciun, V.; Singh, R. K.
2000-04-01
Ba0.5Sr0.5TiO3 (BST) thin films grown on Si by an in situ ultraviolet-assisted pulsed laser deposition (UVPLD) technique exhibited significantly higher dielectric constant and refractive index values and lower leakage current densities than films grown by conventional PLD under similar conditions. X-ray photoelectron spectroscopy (XPS) investigations have shown that the surface layer of the grown films contained, besides the usual BST perovskite phase, an additional phase with Ba atoms in a different chemical state. PLD grown films always exhibited larger amounts of this phase, which was homogeneously mixed with the BST phase up to several nm depth, while UVPLD grown films exhibited a much thinner (˜1 nm) and continuous layer. The relative fraction of this phase was not correlated with the amount of C atoms present on the surface. Fourier transform infrared spectroscopy did not find any BaCO3 contamination layer, which was believed to be related to this new phase. X-ray diffraction measurement showed that although PLD grown films contained less oxygen atoms, the lattice parameter was closer to the bulk value than that of UVPLD grown films. After 4 keV Ar ion sputtering for 6 min, XPS analysis revealed a small suboxide Ba peak for the PLD grown films. This finding indicates that the average Ba-O bonds are weaker in these films, likely due to the presence of oxygen vacancies. It is suggested here that this new Ba phase corresponds to a relaxed BST surface layer.
Limiting factors for carbon based chemical double layer capacitors
NASA Technical Reports Server (NTRS)
Rose, M. Frank; Johnson, C.; Owens, T.; Stevens, B.
1993-01-01
The Chemical Double Layer (CDL) capacitor improves energy storage density dramatically when compared with conventional electrolytic capacitors. When compared to batteries, the CDL Capacitor is much less energy dense; however, the power density is orders of magnitude better. As a result, CDL-battery combinations present an interesting pulse power system with many potential applications. Due to the nature of the CDL it is inherently a low voltage device. The applications of the CDL can be tailored to auxiliary energy and burst mode storages which require fast charge/discharge cycles. Typical of the applications envisioned are power system backup, directed energy weapons concepts, electric automobiles, and electric actuators. In this paper, we will discuss some of the general characteristics of carbon-based CDL technology describing the structure, performance parameters, and methods of construction. Further, analytical and experimental results which define the state of the art are presented and described in terms of impact on applications.
Electrochemical capacitor materials based on carbon and luminophors doped with lanthanide ions
NASA Astrophysics Data System (ADS)
Kubasiewicz, Konrad; Slesinski, Adam; Gastol, Dominika; Lis, Stefan; Frackowiak, Elzbieta
2017-10-01
The described research is focused on the hybrid, bi-functional composite materials dedicated to the electrochemical capacitor electrodes. The novel material exhibits both luminescent and capacitive properties. The fabrication process of semi-products and the final composite is described. The structure and homogeneity of luminophors are confirmed with the XRD analysis. The morphology of materials is also determined by TEM and SEM images. The detailed spectroscopic characterization includes excitation and emission spectra, luminescence decay curves, emission lifetimes, CIE chromaticity indexes. The electrochemical studies of composite electrodes carried out by cyclic voltammetry and impedance spectroscopy exhibit good charge propagation. For the first time, inorganic luminophors containing doped LaF3 and GdVO4 have been successfully used for electrochemical capacitor. It is the primary stage to design a new generation of light emitting capacitors utilizing more stable inorganic luminophors than organic-based ones.
Capacitance-Based Dosimetry of Co-60 Radiation using Fully-Depleted Silicon-on-Insulator Devices
Li, Yulong; Porter, Warren M.; Ma, Rui; Reynolds, Margaret A.; Gerbi, Bruce J.; Koester, Steven J.
2015-01-01
The capacitance based sensing of fully-depleted silicon-on-insulator (FDSOI) variable capacitors for Co-60 gamma radiation is investigated. Linear response of the capacitance is observed for radiation dose up to 64 Gy, while the percent capacitance change per unit dose is as high as 0.24 %/Gy. An analytical model is developed to study the operational principles of the varactors and the maximum sensitivity as a function of frequency is determined. The results show that FDSOI varactor dosimeters have potential for extremely-high sensitivity as well as the potential for high frequency operation in applications such as wireless radiation sensing. PMID:27840451
A MEMS Multi-Cantilever Variable Capacitor On Metamaterial
2009-03-26
tuning range [38]. 21 Bakri- Kassem and Mansour [39] have developed a parallel-plate variable capac- itor with carrier beams between the plates to...downwards, however, the carrier beams slightly bend down with the movable plate, still prevent- ing it from pulling-in. Bakri- Kassem and Mansour’s... Kassem and R. R. Mansour, “A high-tuning-range mems variable ca- pacitor using carrier beams,” Canadian Journal of Electrical and Computer En- gineering
NASA Astrophysics Data System (ADS)
Huang, Hui; Shi, Peng; Wang, Minqiang; Yao, Xi; Tan, O. K.
2006-06-01
Mist plasma evaporation (MPE) technique has been developed to deposit Ba0.6Sr0.4TiO3 (BST) thin films on SiO2/Si and Pt/Ti/SiO2/Si substrates at atmospheric pressure using metal nitrate aqueous solution as precursor. MPE is characterized by the injection of liquid reactants into thermal plasma where the source materials in the droplets are evaporated by the high temperature of the thermal plasma. Nanometer-scale clusters are formed in the tail flame of the plasma, and then deposited and rearranged on the substrate at a lower temperature. Due to the high temperature annealing process of the thermal plasma before deposition, well-crystallized BST films were deposited at substrate temperature of 630 °C. The dielectric constant and dielectric loss of the film at 100 kHz are 715 and 0.24, respectively. Due to the good crystallinity of the BST films deposited by MPE, high dielectric tunability up to 39.3% is achieved at low applied electric field of 100 kV cm-1.
NASA Astrophysics Data System (ADS)
Matsumoto, Takeshi; Niino, Atsushi; Ohtsu, Yasunori; Misawa, Tatsuya; Yonesu, Akira; Fujita, Hiroharu; Miyake, Shoji
2004-03-01
(Ba,Sr)TiO3 (BST) films were deposited by electron cyclotron resonance (ECR) plasma sputtering with mirror confinement. DC bias voltage was applied to Pt/Ti/SiO2/Si substrates during deposition to vary the intensity of bombardment of energetic ions and to modify film properties. BST films deposited on the substrates at floating potential (approximately +20 V) were found to be amorphous, while films deposited on +40 V-biased substrates were crystalline in spite of a low substrate temperature below 648 K. In addition, atomic diffusion, which causes deterioration in the electrical properties of the films, was hardly observed in the crystallized films deposited with +40 V bias perhaps due to the low substrate temperature. Plasma diagnoses revealed that application of a positive bias to the substrate reduced the energy of ion bombardment and increased the density of excited neutral particles, which was assumed to result in the promotion of chemical reactions during deposition and the crystallization of BST films at a low temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Lihui; UMR CNRS 8520, IEMN-DOAE-MIMM Team, Bat. P3, Cite Scientifique, Villeneuve d'Ascq, 59655 Lille; Ponchel, Freddy
2010-10-18
Perovskite Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (BST) thin films have been grown on Al{sub 2}O{sub 3}(0001) substrates without/with inserting an ultrathin TiO{sub x} seeding layer by rf magnetron sputtering. X-ray diffraction and pole figure studies reveal that the film with the TiO{sub x} layer (12-A-thick) is highly oriented along the (111) direction and exhibits a good in-plane relationship of BST(111)||Al{sub 2}O{sub 3}(0001). The high frequency dielectric measurements demonstrate that the complex permittivity ({epsilon}={epsilon}{sup '}-j{epsilon}{sup ''}) is well described by a Curie-von Scheidler dispersion with an exponent of 0.40. The resulting epitaxial BST films show high permittivity ({approx}428) and tunability ({approx}41%, atmore » 300 kV/cm and 40 GHz) and their microwave properties (1-40 GHz) potentially could be made suitable for tunable devices.« less
Groenland, A W; Wolters, R A M; Kovalgin, A Y; Schmitz, J
2011-09-01
In this work, metal-insulator-metal (MIM) and metal-insulator-silicon (MIS) capacitors are studied using titanium nitride (TiN) as the electrode material. The effect of structural defects on the electrical properties on MIS and MIM capacitors is studied for various electrode configurations. In the MIM capacitors the bottom electrode is a patterned 100 nm TiN layer (called BE type 1), deposited via sputtering, while MIS capacitors have a flat bottom electrode (called BE type 2-silicon substrate). A high quality 50-100 nm thick SiO2 layer, made by inductively-coupled plasma CVD at 150 degrees C, is deposited as a dielectric on top of both types of bottom electrodes. BE type 1 (MIM) capacitors have a varying from low to high concentration of structural defects in the SiO2 layer. BE type 2 (MIS) capacitors have a low concentration of structural defects and are used as a reference. Two sets of each capacitor design are fabricated with the TiN top electrode deposited either via physical vapour deposition (PVD, i.e., sputtering) or atomic layer deposition (ALD). The MIM and MIS capacitors are electrically characterized in terms of the leakage current at an electric field of 0.1 MV/cm (I leak) and for different structural defect concentrations. It is shown that the structural defects only show up in the electrical characteristics of BE type 1 capacitors with an ALD TiN-based top electrode. This is due to the excellent step coverage of the ALD process. This work clearly demonstrates the sensitivity to process-induced structural defects, when ALD is used as a step in process integration of conductors on insulation materials.
NASA Astrophysics Data System (ADS)
Klee, M.; Boots, H.; Kumar, B.; van Heesch, C.; Mauczok, R.; Keur, W.; de Wild, M.; van Esch, H.; Roest, A. L.; Reimann, K.; van Leuken, L.; Wunnicke, O.; Zhao, J.; Schmitz, G.; Mienkina, M.; Mleczko, M.; Tiggelman, M.
2010-02-01
Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm2, high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85°C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.
NASA Astrophysics Data System (ADS)
Wu, Jia-Jia; Li, Lin
2018-04-01
In this paper, a compact low-pass filter (LPF) with wide stopband is proposed based on interdigital capacitor loaded hairpin resonator. The structure composed of an upper high-impedance transmission line, a middle interdigital capacitor, and a pair of inter-coupled symmetrical stepped-impedance stubs. Detailed investigation into this structure based on even-odd mode approach reveals that up to four transmission zeros can be generated and reallocated by choosing the proper circuit parameters. And owing to the aid of transmission zeros, the fabricated quasi-elliptic LPFs experimentally demonstrate a wide 20dB stopband from 1.4fc to 5.1fc using a compact size of only 0.005 λg2.
Pietrabissa, Giada; Manzoni, Gian Mauro; Gibson, Padraic; Boardman, Donald; Gori, Alessio; Castelnuovo, Gianluca
2016-03-24
Obsessive-compulsive disorder (OCD) is a disabling psychopathology. The mainstay of treatment includes cognitive-behavioural therapy (CBT) and medication management. However, individual suffering, functional impairments as well as the direct and indirect costs associated with the disease remain substantial. New treatment programmes are necessary and the brief strategic therapy (BST) has recently shown encouraging results in clinical practice but no quantitative study has as yet been conducted. The clinical effectiveness of the OCD-specific BST protocol will be evaluated in a one-group observational study. Participants will be sequentially recruited from a state community psychotherapy clinic in Dublin, Ireland. Outcome measures will be the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and the Beck Depression Inventory-II (BDI-II). Data will be collected at baseline, at treatment termination and at 3 month follow-up. The statistical significance of the post-treatment effect will be assessed by the paired-sample Student t test, while clinical significance will be evaluated by means of the equivalence testing method, which will be also used to assess the maintenance of effect at follow-up. The present study is approved by the Hesed House Ethics Board in Dublin. Findings will enhance the evidence-based knowledge about the clinical effectiveness of BST in treating OCD symptoms, prior to assessing its efficacy in a randomised and controlled clinical trial, and will be disseminated through publication in peer-reviewed journals and conference presentations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Koryazhkina, M. N.; Tikhov, S. V.; Mikhaylov, A. N.; Belov, A. I.; Korolev, D. S.; Antonov, I. N.; Karzanov, V. V.; Gorshkov, O. N.; Tetelbaum, D. I.; Karakolis, P.; Dimitrakis, P.
2018-03-01
Bipolar resistive switching in metal-insulator-semiconductor (MIS) capacitor-like structures with an inert Au top electrode and a Si3N4 insulator nanolayer (6 nm thick) has been observed. The effect of a highly doped n +-Si substrate and a SiO2 interlayer (2 nm) is revealed in the changes in the semiconductor space charge region and small-signal parameters of parallel and serial equivalent circuit models measured in the high- and low-resistive capacitor states, as well as under laser illumination. The increase in conductivity of the semiconductor capacitor plate significantly reduces the charging and discharging times of capacitor-like structures.
Mora, Azucena; Mamani, Rosalia; López, Cecilia; Blanco, Miguel; Dahbi, Ghizlane; Herrera, Alexandra; Marzoa, Juan; Fernández, Val; de la Cruz, Fernando; Martínez-Martínez, Luis; Alonso, María Pilar; Nicolas-Chanoine, Marie-Hélène; Johnson, James R.; Johnston, Brian; López-Cerero, Lorena; Pascual, Álvaro; Rodríguez-Baño, Jesús
2013-01-01
A total of 1,021 extended-spectrum-β-lactamase-producing Escherichia coli (ESBLEC) isolates obtained in 2006 during a Spanish national survey conducted in 44 hospitals were analyzed for the presence of the O25b:H4-B2-ST131 (sequence type 131) clonal group. Overall, 195 (19%) O25b-ST131 isolates were detected, with prevalence rates ranging from 0% to 52% per hospital. Molecular characterization of 130 representative O25b-ST131 isolates showed that 96 (74%) were positive for CTX-M-15, 15 (12%) for CTX-M-14, 9 (7%) for SHV-12, 6 (5%) for CTX-M-9, 5 (4%) for CTX-M-32, and 1 (0.7%) each for CTX-M-3 and the new ESBL enzyme CTX-M-103. The 130 O25b-ST131 isolates exhibited relatively high virulence scores (mean, 14.4 virulence genes). Although the virulence profiles of the O25b-ST131 isolates were fairly homogeneous, they could be classified into four main virotypes based on the presence or absence of four distinctive virulence genes: virotypes A (22%) (afa FM955459 positive, iroN negative, ibeA negative, sat positive or negative), B (31%) (afa FM955459 negative, iroN positive, ibeA negative, sat positive or negative), C (32%) (afa FM955459 negative, iroN negative, ibeA negative, sat positive), and D (13%) (afa FM955459 negative, iroN positive or negative, ibeA positive, sat positive or negative). The four virotypes were also identified in other countries, with virotype C being overrepresented internationally. Correspondingly, an analysis of XbaI macrorestriction profiles revealed four major clusters, which were largely virotype specific. Certain epidemiological and clinical features corresponded with the virotype. Statistically significant virotype-specific associations included, for virotype B, older age and a lower frequency of infection (versus colonization), for virotype C, a higher frequency of infection, and for virotype D, younger age and community-acquired infections. In isolates of the O25b:H4-B2-ST131 clonal group, these findings uniquely define four main virotypes, which are internationally distributed, correspond with pulsed-field gel electrophoresis (PFGE) profiles, and exhibit distinctive clinical-epidemiological associations. PMID:23926164
Electrochemical capacitors: mechanism, materials, systems, characterization and applications.
Wang, Yonggang; Song, Yanfang; Xia, Yongyao
2016-10-24
Electrochemical capacitors (i.e. supercapacitors) include electrochemical double-layer capacitors that depend on the charge storage of ion adsorption and pseudo-capacitors that are based on charge storage involving fast surface redox reactions. The energy storage capacities of supercapacitors are several orders of magnitude higher than those of conventional dielectric capacitors, but are much lower than those of secondary batteries. They typically have high power density, long cyclic stability and high safety, and thus can be considered as an alternative or complement to rechargeable batteries in applications that require high power delivery or fast energy harvesting. This article reviews the latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications. In particular, the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour, which bridges the gap between battery behaviour and conventional pseudocapacitive behaviour, is also clarified for comparison. Finally, the prospects and challenges associated with supercapacitors in practical applications are also discussed.
A Thermal Runaway Failure Model for Low-Voltage BME Ceramic Capacitors with Defects
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2017-01-01
Reliability of base metal electrode (BME) multilayer ceramic capacitors (MLCCs) that until recently were used mostly in commercial applications, have been improved substantially by using new materials and processes. Currently, the inception of intrinsic wear-out failures in high quality capacitors became much greater than the mission duration in most high-reliability applications. However, in capacitors with defects degradation processes might accelerate substantially and cause infant mortality failures. In this work, a physical model that relates the presence of defects to reduction of breakdown voltages and decreasing times to failure has been suggested. The effect of the defect size has been analyzed using a thermal runaway model of failures. Adequacy of highly accelerated life testing (HALT) to predict reliability at normal operating conditions and limitations of voltage acceleration are considered. The applicability of the model to BME capacitors with cracks is discussed and validated experimentally.
Temperature responsive transmitter
NASA Technical Reports Server (NTRS)
Kleinberg, Leonard L. (Inventor)
1987-01-01
A temperature responsive transmitter is provided in which frequency varies linearly with temperature. The transmitter includes two identically biased transistors connected in parallel. A capacitor, which reflects into the common bases to generate negative resistance effectively in parallel with the capacitor, is connected to the common emitters. A crystal is effectively in parallel with the capacitor and the negative resistance. Oscillations occur if the magnitude of the absolute value of the negative resistance is less than the positive resistive impedance of the capacitor and the inductance of the crystal. The crystal has a large linear temperature coefficient and a resonant frequency which is substantially less than the gain-bandwidth product of the transistors to ensure that the crystal primarily determines the frequency of oscillation. A high-Q tank circuit having an inductor and a capacitor is connected to the common collectors to increase the collector current flow which in turn enhances the radiation of the oscillator frequency by the inductor.
Polarization fatigue of organic ferroelectric capacitors
Zhao, Dong; Katsouras, Ilias; Li, Mengyuan; Asadi, Kamal; Tsurumi, Junto; Glasser, Gunnar; Takeya, Jun; Blom, Paul W. M.; de Leeuw, Dago M.
2014-01-01
The polarization of the ferroelectric polymer P(VDF-TrFE) decreases upon prolonged cycling. Understanding of this fatigue behavior is of great technological importance for the implementation of P(VDF-TrFE) in random-access memories. However, the origin of fatigue is still ambiguous. Here we investigate fatigue in thin-film capacitors by systematically varying the frequency and amplitude of the driving waveform. We show that the fatigue is due to delamination of the top electrode. The origin is accumulation of gases, expelled from the capacitor, under the impermeable top electrode. The gases are formed by electron-induced phase decomposition of P(VDF-TrFE), similar as reported for inorganic ferroelectric materials. When the gas barrier is removed and the waveform is adapted, a fatigue-free ferroelectric capacitor based on P(VDF-TrFE) is realized. The capacitor can be cycled for more than 108 times, approaching the programming cycle endurance of its inorganic ferroelectric counterparts. PMID:24861542
An Inverter Packaging Scheme for an Integrated Segmented Traction Drive System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Gui-Jia; Tang, Lixin; Ayers, Curtis William
The standard voltage source inverter (VSI), widely used in electric vehicle/hybrid electric vehicle (EV/HEV) traction drives, requires a bulky dc bus capacitor to absorb the large switching ripple currents and prevent them from shortening the battery s life. The dc bus capacitor presents a significant barrier to meeting inverter cost, volume, and weight requirements for mass production of affordable EVs/HEVs. The large ripple currents become even more problematic for the film capacitors (the capacitor technology of choice for EVs/HEVs) in high temperature environments as their ripple current handling capability decreases rapidly with rising temperatures. It is shown in previous workmore » that segmenting the VSI based traction drive system can significantly decrease the ripple currents and thus the size of the dc bus capacitor. This paper presents an integrated packaging scheme to reduce the system cost of a segmented traction drive.« less
Dielectric properties of inorganic fillers filled epoxy thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norshamira, A., E-mail: myra.arshad@gmail.com; Mariatti, M., E-mail: mariatti@usm.my
2015-07-22
The demand on the small size and high performance electronics has driven changes in the electronic packaging requirements from discrete capacitor to embedded capacitor. Embedded capacitor can improve electrical performance compared with discrete capacitor. This study aimed to achieve high dielectric of epoxy thin film composite that were targeted for application as embedded capacitor. In this study, inorganic fillers such as Calcium Copper Titanate (CCTO), Iron(III) Oxide (Fe{sub 2}O{sub 3}) and Titanium Dioxide (TiO{sub 2}) were loaded in epoxy system at 5 and 20vol%. Morphology and dielectric properties were investigated to identify the effect of fillers loading and types ofmore » fillers on the properties of epoxy thin film composite. Based on the study, CCTO with 20vol% loading was found to have good dielectric properties compared to other type of fillers.« less
Design and fabrication of a continuously tuned capacitor by microfluidic actuation
NASA Astrophysics Data System (ADS)
Habbachi, Nizar; Boussetta, Hatem; Boukabache, Ali; Adel Kallala, Mohamed; Pons, Patrick; Besbes, Kamel
2018-03-01
This paper presents the design and fabrication of a continuously tunable RF MEMS capacitor using micro fluidics as a tuning parameter. The impedance variation principle is based on the modification of the capacitor gap permittivity produced by the presence of deionized (DI) water and its displacement in a channel inserted between electrodes. In addition, the electric field distribution changes in an equiponderant way according to the DI water positions in the channel. This change modifies the capacitive coupling, the stored energy and, consequently, the self-resonant frequency. The fabrication process is based on two parts: metallic paths having a spiral form, and obtained by electroplating a 7 µm thick gold layer to constitute electrodes; and fluidic channels, realized by super imposing two SU-8 films. The measurements show a nonlinear variation of the capacitor value according to the water positions. The tuning range is very large, reaching to 4650% for capacitance, and 335% for resonant frequency. However, the quality factor reaches Q max = 79 at 550 MHz if the capacitor is empty and decreases with the fluid displacement to Q min = 3.13.
NASA Astrophysics Data System (ADS)
Sani, A.; Siahaan, S.; Mubarakah, N.; Suherman
2018-02-01
Supercapacitor is a new device of energy storage, which has much difference between ordinary capacitors and batteries. Supercapacitor have higher capacitance and energy density than regular capacitors. The supercapacitor also has a fast charging time, as well as a long life. To be used as a battery replacement please note the internal parameters of the battery to be replaced. In this paper conducted a simulation study to utilize supercapacitor as a replacement battery. The internal parameters of the battery and the supercapacitor are obtained based on the characteristics of charging and discharging current using a predefined equivalent circuit model. The battery to be replaced is a 12-volt lead-acid type, 6.5 Ah which is used on motorcycles with 6A charging and discharging currents. Super capacitor replacement capacitor is a capacity of 1600F, 2.7V which is connected in series as many as 6 pieces with 16.2 volt terminal voltage and charging current 12A. To obtain the same supercapacitor characteristic as the battery characteristic to be replaced, modification of its internal parameters is made. The results show that the super-capacitor can replace the battery function for 1000 seconds.
A Reliability Model for Ni-BaTiO3-Based (BME) Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Liu, Donhang
2014-01-01
The evaluation of multilayer ceramic capacitors (MLCCs) with base-metal electrodes (BMEs) for potential NASA space project applications requires an in-depth understanding of their reliability. The reliability of an MLCC is defined as the ability of the dielectric material to retain its insulating properties under stated environmental and operational conditions for a specified period of time t. In this presentation, a general mathematic expression of a reliability model for a BME MLCC is developed and discussed. The reliability model consists of three parts: (1) a statistical distribution that describes the individual variation of properties in a test group of samples (Weibull, log normal, normal, etc.), (2) an acceleration function that describes how a capacitors reliability responds to external stresses such as applied voltage and temperature (All units in the test group should follow the same acceleration function if they share the same failure mode, independent of individual units), and (3) the effect and contribution of the structural and constructional characteristics of a multilayer capacitor device, such as the number of dielectric layers N, dielectric thickness d, average grain size r, and capacitor chip size S. In general, a two-parameter Weibull statistical distribution model is used in the description of a BME capacitors reliability as a function of time. The acceleration function that relates a capacitors reliability to external stresses is dependent on the failure mode. Two failure modes have been identified in BME MLCCs: catastrophic and slow degradation. A catastrophic failure is characterized by a time-accelerating increase in leakage current that is mainly due to existing processing defects (voids, cracks, delamination, etc.), or the extrinsic defects. A slow degradation failure is characterized by a near-linear increase in leakage current against the stress time; this is caused by the electromigration of oxygen vacancies (intrinsic defects). The two identified failure modes follow different acceleration functions. Catastrophic failures follow the traditional power-law relationship to the applied voltage. Slow degradation failures fit well to an exponential law relationship to the applied electrical field. Finally, the impact of capacitor structure on the reliability of BME capacitors is discussed with respect to the number of dielectric layers in an MLCC unit, the number of BaTiO3 grains per dielectric layer, and the chip size of the capacitor device.
NASA Astrophysics Data System (ADS)
Subarwanti, Y.; Safitri, R. D.; Supriyanto, A.; Iriani, Y.; Jamaludin, A.
2017-02-01
Barium Strontium Titanate (BST) have been made with variation strontium (Sr) 10%, 30% and 50% by co-precipitation method. This study aims to determine influence addition Sr against the crystal structure, crystallite size, lattice parameter, grain size and dielectric constant. Samples have been made by co-precipitation method and then the samples were sintered by furnace at 1100°C with holding time 4 hours. Characterization of BST use X-Ray Diffraction instrument, Scanning Electron Microscopy and Resistance Capacitance Inductance (RCL meter). Based on result obtained, the larger Sr content cause the diffraction angle shift to the right (the greater) and crystallinity increasing. But, the value of dielectric constant, crystallite size and grain size decreasing with additional Sr content. Measurement of dielectric constant (K) performed in the frequency range 1 kHz to 100 kHz and the highest value at Sr content 0.1 i.e. 258.35. The addition of Sr content 30% and 50% change the crystal structure from tetragonal to cubic which has paraelectric phase.
Wang, Yucheng; Zhang, Yuming; Pang, Tiqiang; Xu, Jie; Hu, Ziyang; Zhu, Yuejin; Tang, Xiaoyan; Luan, Suzhen; Jia, Renxu
2017-05-24
Organic-inorganic metal halide perovskites are promising semiconductors for optoelectronic applications. Despite the achievements in device performance, the electrical properties of perovskites have stagnated. Ion migration is speculated to be the main contributing factor for the many unusual electrical phenomena in perovskite-based devices. Here, to understand the intrinsic electrical behavior of perovskites, we constructed metal-oxide-semiconductor (MOS) capacitors based on perovskite films and performed capacitance-voltage (C-V) and current-voltage (I-V) measurements of the capacitors. The results provide direct evidence for the mixed ionic-electronic transport behavior within perovskite films. In the dark, there is electrical hysteresis in both the C-V and I-V curves because the mobile negative ions take part in charge transport despite frequency modulation. However, under illumination, the large amount of photoexcited free carriers screens the influence of the mobile ions with a low concentration, which is responsible for the normal C-V properties. Validation of ion migration for the gate-control ability of MOS capacitors is also helpful for the investigation of perovskite MOS transistors and other gate-control photovoltaic devices.
Chen, Zhongxue; Yuan, Tianci; Pu, Xiangjun; Yang, Hanxi; Ai, Xinping; Xia, Yongyao; Cao, Yuliang
2018-04-11
Batteries and electrochemical capacitors play very important roles in the portable electronic devices and electric vehicles and have shown promising potential for large-scale energy storage applications. However, batteries or capacitors alone cannot meet the energy and power density requirements because rechargeable batteries have a poor power property, whereas supercapacitors offer limited capacity. Here, a novel symmetric sodium-ion capacitor (NIC) is developed based on low-cost Na 0.44 MnO 2 nanorods. The Na 0.44 MnO 2 with unique nanoarchitectures and iso-oriented feature offers shortened diffusion path lengths for both electronic and Na + transport and reduces the stress associated with Na + insertion and extraction. Benefiting from these merits, the symmetric device achieves a high power density of 2432.7 W kg -1 , an improved energy density of 27.9 Wh kg -1 , and a capacitance retention of 85.2% over 5000 cycles. Particularly, the symmetric NIC based on Na 0.44 MnO 2 permits repeatedly reverse-polarity characteristics, thus simplifying energy management system and greatly enhancing the safety under abuse condition. This cost-effective, high-safety, and high-performance symmetric NIC can balance the energy and power density between batteries and capacitors and serve as an electric power source for future low-maintenance large-scale energy storage systems.
Online Estimation of Model Parameters of Lithium-Ion Battery Using the Cubature Kalman Filter
NASA Astrophysics Data System (ADS)
Tian, Yong; Yan, Rusheng; Tian, Jindong; Zhou, Shijie; Hu, Chao
2017-11-01
Online estimation of state variables, including state-of-charge (SOC), state-of-energy (SOE) and state-of-health (SOH) is greatly crucial for the operation safety of lithium-ion battery. In order to improve estimation accuracy of these state variables, a precise battery model needs to be established. As the lithium-ion battery is a nonlinear time-varying system, the model parameters significantly vary with many factors, such as ambient temperature, discharge rate and depth of discharge, etc. This paper presents an online estimation method of model parameters for lithium-ion battery based on the cubature Kalman filter. The commonly used first-order resistor-capacitor equivalent circuit model is selected as the battery model, based on which the model parameters are estimated online. Experimental results show that the presented method can accurately track the parameters variation at different scenarios.
Preparation Process and Dielectric Properties of Ba(0.5)Sr(0.5)TiO3-P(VDF-CTFE) Nanocomposites
NASA Technical Reports Server (NTRS)
Zhang, Lin; Wu, Peixuang; Li, Yongtang; Cheng, Z. -Y.; Brewer, Jeffrey C.
2014-01-01
Ceramic-polymer 0-3 nanocomposites, in which nanosized Ba(0.5)Sr(0.5)TiO3 (BST) powders were used as ceramic filler and P(VDF-CTFE) 88/12 mol% [poly(vinylidene fluoridechlorotrifluoroethylene)] copolymer was used as matrix, were studied over a concentration range from 0 to 50 vol.% of BST powders. It is found that the solution cast composites are porous and a hot-press process can eliminate the porosity, which results in a dense composite film. Two different configurations used in the hot-press process are studied. Although there is no clear difference in the uniformity and microstructure of the composites prepared using these two configurations, the composite prepared using one configuration exhibit a higher dielectric constant with a lower loss. For the composite with 40 vol. BST, a dielectric constant of 70 with a loss of 0.07 at 1 kHz is obtained at room temperature. The composites exhibit a lower dielectric loss than the polymer matrix at high frequency. However, at low frequency, the composites exhibit a higher loss than the polymer matrix due to a low frequency relaxation process that appears in the composites. It is believed that this relaxation process is related to the interfacial layer formed between BST particle and the polymer matrix. The temperature dependence of the dielectric property of the composites was studied. It is found that the dielectric constant of these composites is almost independent of the temperature over a temperature range from 20 to 120 C. Key words: A. Polymer-matrix composites (PMCs); B. Electrical Properties; E. Casting; E. Heat treatment; Dielectric properties.
Delayed grafting of fetal CNS tissue into chronic compression lesions of the adult cat spinal cord.
Anderson, D K; Reier, P J; Wirth Iii, E D; Theele, D P; Mareci, T; Brown, S A
1991-01-01
This review summarizes a series of experiments involving transplants of embryonic feline CNS tissue into chronic compression lesions of the adult cat spinal cord. Fetal spinal cord (FSC), caudal brainstem (BSt), neocortex (NCx) or a combination of either FSC/NCx or FSC/BSt was transplanted as solid pieces or as a suspension of dissociated cells into the developed cystic cavities produced by static-load compression trauma 2-10 weeks prior to grafting. All cats were immunosuppressed with cyclosporin A and their locomotor function was assessed for 6-30 weeks. Following the period of evaluation, all recipients were perfused with fixative and tissue specimens, taken at the transplantation site, were processed for general histological and/or immunocytochemical analysis. Viable graft tissue was found in all animals with the exception of two cats which showed active rejection of their transplants. All of the viable intraspinal grafts were extensively vascularized and did not show any signs of imminent or on-going tissue rejection. Fetal cat CNS grafts showed an extended maturational phase in that features of immature neural tissue (e.g. a paucity of myelination) were still seen even 6-9 weeks after transplantation. By 20-30 weeks, FSC and BSt grafts had attained a more advanced stage of maturation. Transplants in these chronic lesions were extensively blended with both the gray and white matter of the host spinal cord and could be visualized by magnetic resonance imaging (MRI). MRI could also detect regions of cavitation at the graft-host interface, as well as within some transplants. While preliminary evidence from behavioral studies suggest that the FSC and BSt grafts may improve or spare locomotor function in some recipients, a more rigorous analysis of post-grafting locomotor function is required to determine conclusively the functionality of these transplants.
Capuco, A V; Dahl, G E; Wood, D L; Moallem, U; Erdman, R E
2004-11-01
Rapid body growth during the prepubertal period may be associated with reductions in mammary parenchymal growth and subsequent milk yield. The objective of this study was to test effects of dietary rumen-undegradable protein (RUP) and administration of recombinant bovine somatotropin (bST) during the prepubertal period on mammary growth and milk yield of dairy heifers. Seventy-two Holstein heifers were used in the experiment. At 90 d of age, 8 heifers were slaughtered before initiation of treatment. Remaining heifers were assigned randomly to 1 of 4 treatments. Treatments consisted of a control diet (5.9% RUP, 14.9% CP, DM basis) or RUP-supplemented diet (control diet plus 2% added RUP) with or without 0.1 mg of bST/kg of BW per day applied in a 2 x 2 factorial design. A total of 6 heifers per treatment (3 each at 5 and 10 mo of age) were slaughtered for mammary tissue analysis. Remaining heifers were bred to evaluate impact of treatment on subsequent milk yield and composition. Mammary parenchymal growth was not affected by RUP or bST treatment. Total parenchymal mass increased from 16 to 364 g, and parenchymal DNA from 58 to 1022 mg from 3 to 10 mo of age, respectively. Furthermore, number of mammary epithelial cells likely was not affected by diet or bST because the epithelial cell proliferation index, assessed by Ki-67 labeling, was not affected by treatment, nor was total parenchymal DNA and lipid content. Neither deleterious effects of increased rates of gain nor positive effects of bST were evident in prepubertal mammary growth. Subsequent milk production and composition was not different among treatments.
NASA Astrophysics Data System (ADS)
Ivković, Saša S.; Marković, Marija Z.; Ivković, Dragica Ž.; Cvetanović, Nikola
2017-09-01
Equivalent series resistance (ESR) represents the measurement of total energy loss in a capacitor. In this paper a simple method for measuring the ESR of ceramic capacitors based on the analysis of the oscillations of an LCR circuit is proposed. It is shown that at frequencies under 3300 Hz, the ESR is directly proportional to the period of oscillations. Based on the determined dependence of the ESR on the period, a method is devised and tested for measuring coil inductance. All measurements were performed using the standard equipment found in student laboratories, which makes both methods very suitable for implementation at high school and university levels.
A robust low quiescent current power receiver for inductive power transmission in bio implants
NASA Astrophysics Data System (ADS)
Helalian, Hamid; Pasandi, Ghasem; Jafarabadi Ashtiani, Shahin
2017-05-01
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC-DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC-DC converter has variable conversion ratios and synchronous controller that lets the DC-DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0-10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.
MEMS based pyroelectric thermal energy harvester
Hunter, Scott R; Datskos, Panagiotis G
2013-08-27
A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.
Humic acids as pseudocapacitive electrolyte additive for electrochemical double layer capacitors
NASA Astrophysics Data System (ADS)
Wasiński, Krzysztof; Walkowiak, Mariusz; Lota, Grzegorz
2014-06-01
Novel electrolyte additive for electrochemical capacitors has been reported. It has been demonstrated for the first time that addition of humic acids (HA) to KOH-based electrolyte significantly increases capacitance of symmetrical capacitors with electrodes made of activated carbon. Specific capacitances determined by means of galvanostatic charge/discharge, cyclic voltammetry and electrochemical impedance spectroscopy consistently showed increases for HA concentrations ranging from 2% w/w up to saturated solution with maximum positive effect observed for 5% w/w of the additive. The capacitance increase has been attributed to complex faradaic processes involving oxygen-containing groups of HA molecules. Due to abundant resources, low cost and easy processability the reported solution can find application in electrochemical capacitor technologies.
NASA Astrophysics Data System (ADS)
Subramanyam, Guru; Cole, M. W.; Sun, Nian X.; Kalkur, Thottam S.; Sbrockey, Nick M.; Tompa, Gary S.; Guo, Xiaomei; Chen, Chonglin; Alpay, S. P.; Rossetti, G. A.; Dayal, Kaushik; Chen, Long-Qing; Schlom, Darrell G.
2013-11-01
There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.
Thin-Film Ferro Electric-Coupled Microstripline Phase Shifters With Reduced Device Hysteresis
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Romanofsky, Robert; Mueller, Carl H.; VanKeuls, Frederick
2010-01-01
This work deals with the performance of coupled microstripline phase shifters (CMPS) fabricated using BaxSr 1 -xTiO 3 (BST) ferroelectric thin films. The CMPS were fabricated using commercially available pulsed laser deposition BST films with Ba:Sr ratios of 30:70 and 20:80. Microwave characterization of these CMPS was performed at upper Kuband frequencies, particularly at frequencies near 16 and 18 GHz. X-ray diffraction studies indicate that the 30:70 films exhibit almost a 1:1 ratio between the in-plane and out-of-plane lattice parameters, suggesting that their cubics create strain -free films suitable for producing CMPS devices with reduced hysteresis in the paraelectric state. The quality of performance of the CMPS was studied based on their relative phase shift and insertion loss within the DC bias range of 0 to 400 V (i.e., E-field ranges within 0 to 53 V/micron). The performance of the CMPS was tested as a function of temperature to investigate their operation in the paraelectric, as well as in the ferroelectric, state (i.e., above and below the Curie temperature, respectively). The novel behavior discussed here is based on the experimental observation of the CMPS. This behavior, observed for the aforementioned cation ratio, highlights the relevance of good crystalline structure for high-quality CMPS.
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2016-01-01
Cracking of multilayer ceramic capacitors, MLCCs, remains a serious problem for space systems. This problem increases substantially for large size capacitors and in cases when manual soldering is involved or the system experiences mechanical shock or vibration. In any case, a fracture occurs when the sum of external and internal mechanical stresses exceeds the strength of the part. To reduce the probability of cracking, the level of stress should be reduced, e.g. by optimizing the assembly workmanship and rules for board design, and the strength of the parts increased by selecting the most mechanically robust capacitors. The latter might possibly be achieved by selecting MLCCs based on the in-situ measurements of mechanical characteristics using four types of tests: flexural strength, hardness, fracture toughness, and flex bend testing. Note that military specifications MIL-PRF-123 and MIL-PRF-55681 do not have requirements for mechanical testing of the parts. However, specifications for automotive industry components employ two types of mechanical tests: beam load (break strength) test per AEC-Q200-003 and board flex test per AEC-Q200-005. A recent military specification for thin dielectric capacitors, MIL-PRF-32535, has one mechanical test, board flex testing, that is similar to AEC-Q200-005. The purpose of this report was assessment of the efficiency of different mechanical tests for selection robust capacitors and comparison of mechanical characteristics of Base Metal Electrode (BME) and Precious Metal Electrode (PME) capacitors. The report has three parts related to the first three mechanical tests mentioned above.
Room-Temperature Ionic Liquids for Electrochemical Capacitors
NASA Technical Reports Server (NTRS)
Fireman, Heather; Yowell, Leonard; Moloney, Padraig G.; Arepalli, Sivaram; Nikolaev, P.; Huffman, C.; Ready, Jud; Higgins, C.D.; Turano, S. P.; Kohl, P.A.;
2009-01-01
A document discusses room-temperature ionic liquids (RTILs) used as electrolytes in carbon-nanotube-based, electrochemical, double-layer capacitors. Unlike the previous electrolyte (EtNB4 in acetonitrile), the RTIL used here does not produce cyanide upon thermal decomposition and does not have a moisture sensitivity.
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-01-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.
NASA Astrophysics Data System (ADS)
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-02-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of -84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering.
Sheng, Kaixuan; Sun, Yiqing; Li, Chun; Yuan, Wenjing; Shi, Gaoquan
2012-01-01
The recent boom in multifunction portable electronic equipments requires the development of compact and miniaturized electronic circuits with high efficiencies, low costs and long lasting time. For the operation of most line-powered electronics, alternating current (ac) line-filters are used to attenuate the leftover ac ripples on direct current (dc) voltage busses. Today, aluminum electrolytic capacitors (AECs) are widely applied for this purpose. However, they are usually the largest components in electronic circuits. Replacing AECs by more compact capacitors will have an immense impact on future electronic devices. Here, we report a double-layer capacitor based on three-dimensional (3D) interpenetrating graphene electrodes fabricated by electrochemical reduction of graphene oxide (ErGO-DLC). At 120-hertz, the ErGO-DLC exhibited a phase angle of −84 degrees, a specific capacitance of 283 microfaradays per centimeter square and a resistor-capacitor (RC) time constant of 1.35 milliseconds, making it capable of replacing AECs for the application of 120-hertz filtering. PMID:22355759
NASA Astrophysics Data System (ADS)
García, H.; González, M. B.; Mallol, M. M.; Castán, H.; Dueñas, S.; Campabadal, F.; Acero, M. C.; Sambuco Salomone, L.; Faigón, A.
2018-04-01
The γ-radiation effects on the electrical characteristics of metal-insulator-semiconductor capacitors based on HfO2, and on the resistive switching characteristics of the structures have been studied. The HfO2 was grown directly on silicon substrates by atomic layer deposition. Some of the capacitors were submitted to a γ ray irradiation using three different doses (16 kGy, 96 kGy and 386 kGy). We studied the electrical characteristics in the pristine state of the capacitors. The radiation increased the interfacial state densities at the insulator/semiconductor interface, and the slow traps inside the insulator near the interface. However, the leakage current is not increased by the irradiation, and the conduction mechanism is Poole-Frenkel for all the samples. The switching characteristics were also studied, and no significant differences were obtained in the performance of the devices after having been irradiated, indicating that the fabricated capacitors present good radiation hardness for its use as a RS element.
NASA Astrophysics Data System (ADS)
Yoon, Bongno; Sung, Man Young; Yeon, Sujin; Oh, Hyun S.; Kwon, Yoonjoo; Kim, Chuljin; Kim, Kyung-Ho
2009-03-01
With the circuits using metal-ferroelectric-metal (MFM) capacitor, rf operational signal properties are almost the same or superior to those of polysilicon-insulator-polysilicon, metal-insulator-metal, and metal-oxide-semiconductor (MOS) capacitors. In electronic product code global class-1 generation-2 uhf radio-frequency identification (RFID) protocols, the MFM can play a crucial role in satisfying the specifications of the inventoried flag's persistence times (Tpt) for each session (S0-S3, SL). In this paper, we propose and design a new MFM capacitor based memory scheme of which persistence time for S1 flag is measured at 2.2 s as well as indefinite for S2, S3, and SL flags during the period of power-on. A ferroelectric random access memory embedded RFID tag chip is fabricated with an industry-standard complementary MOS process. The chip size is around 500×500 μm2 and the measured power consumption is about 10 μW.
Inkjet printing of metal-oxide-based transparent thin-film capacitors
NASA Astrophysics Data System (ADS)
Matavž, A.; Malič, B.; Bobnar, V.
2017-12-01
We report on the inkjet printing of transparent, thin-film capacitors (TTFCs) composed of indium-zinc-oxide electrodes and a tantalum-oxide-based dielectric on glass substrates. The printing parameters were adapted for the sequential deposition of functional layers, resulting in approximately 100-nm-thick transparent capacitors with a uniform thickness. The relatively high electrical resistivity of the electrodes is reflected in the frequency dispersive dielectric behaviour, which is explained in terms of an equivalent circuit. The resistivity of the electrode strongly decreases with the number of printing passes; consequently, any misalignment of the printed layers is detected in the measured response. At low frequency, the TTFCs show a stable intrinsic dielectric response and a high capacitance density of ˜280 nF/cm2. The good dielectric performance as well as the low leakage-current density (8 × 10-7 A/cm2 at 1 MV cm-1) of our capacitors indicates that inkjet printing can be used to produce all-printed, high-quality electrical devices.
Ghaffari, Mehdi; Zhou, Yue; Xu, Haiping; Lin, Minren; Kim, Tae Young; Ruoff, Rodney S; Zhang, Q M
2013-09-20
Ultra-high volumetric performance electrochemical double layer capacitors based on high density aligned nano-porous microwave exfoliated graphite oxide have been studied. Elimination of macro-, meso-, and larger micro-pores from electrodes and controlling the nano-morphology results in very high volumetric capacitance, energy, and power density values. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization and evaluation of single-cell whole-genome multiple displacement amplification.
Spits, C; Le Caignec, C; De Rycke, M; Van Haute, L; Van Steirteghem, A; Liebaers, I; Sermon, K
2006-05-01
The scarcity of genomic DNA can be a limiting factor in some fields of genetic research. One of the methods developed to overcome this difficulty is whole genome amplification (WGA). Recently, multiple displacement amplification (MDA) has proved very efficient in the WGA of small DNA samples and pools of cells, the reaction being catalyzed by the phi29 or the Bst DNA polymerases. The aim of the present study was to develop a reliable, efficient, and fast protocol for MDA at the single-cell level. We first compared the efficiency of phi29 and Bst polymerases on DNA samples and single cells. The phi29 polymerase generated accurately, in a short time and from a single cell, sufficient DNA for a large set of tests, whereas the Bst enzyme showed a low efficiency and a high error rate. A single-cell protocol was optimized using the phi29 polymerase and was evaluated on 60 single cells; the DNA obtained DNA was assessed by 22 locus-specific PCRs. This new protocol can be useful for many applications involving minute quantities of starting material, such as forensic DNA analysis, prenatal and preimplantation genetic diagnosis, or cancer research. (c) 2006 Wiley-Liss, Inc.
Capacitor assembly and related method of forming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lili; Tan, Daniel Qi; Sullivan, Jeffrey S.
A capacitor assembly is disclosed. The capacitor assembly includes a housing. The capacitor assembly further includes a plurality of capacitors disposed within the housing. Furthermore, the capacitor assembly includes a thermally conductive article disposed about at least a portion of a capacitor body of the capacitors, and in thermal contact with the capacitor body. Moreover, the capacitor assembly also includes a heat sink disposed within the housing and in thermal contact with at least a portion of the housing and the thermally conductive article such that the heat sink is configured to remove heat from the capacitor in a radialmore » direction of the capacitor assembly. Further, a method of forming the capacitor assembly is also presented.« less
An electrostatic CMOS/BiCMOS Lithium ion vibration-based harvester-charger IC
NASA Astrophysics Data System (ADS)
Torres, Erick Omar
Self-powered microsystems, such as wireless transceiver microsensors, appeal to an expanding application space in monitoring, control, and diagnosis for commercial, industrial, military, space, and biomedical products. As these devices continue to shrink, their microscale dimensions allow them to be unobtrusive and economical, with the potential to operate from typically unreachable environments and, in wireless network applications, deploy numerous distributed sensing nodes simultaneously. Extended operational life, however, is difficult to achieve since their limited volume space constrains the stored energy available, even with state-of-the-art technologies, such as thin-film lithium-ion batteries (Li Ion) and micro-fuel cells. Harvesting ambient energy overcomes this deficit by continually replenishing the energy reservoir and, as a result, indefinitely extending system lifetime. In this work, an electrostatic harvester that harnesses ambient kinetic energy from vibrations to charge an energy-storage device (e.g., a battery) is investigated, developed, and evaluated. The proposed harvester charges and holds the voltage across a vibration-sensitive variable capacitor so that vibrations can induce it to generate current into the battery when capacitance decreases (as its plates separate). The challenge is that energy is harnessed at relatively slow rates, producing low output power, and the electronics required to transfer it to charge a battery can easily demand more than the power produced. To this end, the system reduces losses by time-managing and biasing its circuits to operate only when needed and with just enough energy while charging the capacitor through an efficient quasi-lossless inductor-based precharger. As result, the proposed energy harvester stores a net energy gain in the battery during every vibration cycle. Two energy-harvesting integrated circuits (IC) were analyzed, designed, developed, and validated using a 0.7-im BiCMOS process and a 30-Hz mechanical variable capacitor. The precharger, harvester, monitoring, and control microelectronics of the first prototype draw sufficient power to operate and at the same time produce experimentally 1.27, 2.14, and 2.87 nJ per vibration cycle for battery voltages at 2.7, 3.5, and 4.2 V, which with 30-Hz vibrations produce 38.1, 64.2, and 86.1 nW. By incorporating into the system a self-tuning loop that adapts optimally the inductor-based precharger to varying battery voltages, the second prototype harnessed and gained 1.93, 2.43, and 3.89 nJ per vibration cycle at battery voltages 2.7, 3.5, and 4.2 V, generating 57.89, 73.02, and 116.55 nW at 30 Hz. The harvester ultimately charges from 2.7 to 4.2 V a 1-muF capacitor (which emulates a small thin-film Li Ion) in approximately 69 s, harnessing in the same length of time 47.9% more energy than with a non-adapting harvester.
Development of a high temperature capacitive pressure transducer
NASA Technical Reports Server (NTRS)
Egger, R. L.
1977-01-01
High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.
NASA Astrophysics Data System (ADS)
Balasoiu, Maria; Bica, Ioan
The fabrication of composite magnetorheological elastomers (MRECs) based on silicone rubber, carbonyl iron microparticles (10% vol.) and polyurethane elastomer doped with 0%, 10% and 20% volume concentration TiO2 microparticles is presented. The obtained MRECs have the shape of thin foils and are used as dielectric materials for manufacturing plane capacitors. Using the plane capacitor method and expression of capacitance as a function of magnetic field intensity, combined with linear elasticity theory, the static magnetoelastic model of the composite is obtained and analyzed.
Sun, Zixiong; Ma, Chunrui; Wang, Xi; Liu, Ming; Lu, Lu; Wu, Ming; Lou, Xiaojie; Wang, Hong; Jia, Chun-Lin
2017-05-24
A large energy storage density (ESD) of 30.4 J/cm 3 and high energy efficiency of 81.7% under an electrical field of 3 MV/cm was achieved at room temperature by the fabrication of environmentally friendly lead-free BaZr 0.2 Ti 0.8 O 3 epitaxial thin films on Nb-doped SrTiO 3 (001) substrates by using a radio-frequency magnetron sputtering system. Moreover, the BZT film capacitors exhibit great thermal stability of the ESD from 16.8 J/cm 3 to 14.0 J/cm 3 with efficiency of beyond 67.4% and high fatigue endurance (up to 10 6 cycles) in a wide temperature range from room temperature to 125 °C. Compared to other BaTiO 3 -based energy storage capacitor materials and even Pb-based systems, BaZr 0.2 Ti 0.8 O 3 thin film capacitors show either high ESD or great energy efficiency. All of these excellent results revealed that the BaZr 0.2 Ti 0.8 O 3 film capacitors have huge potential in the application of modern electronics, such as locomotive and pulse power, in harsh working environments.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Corr, Lawrence R.; Ma, Tianwei
2018-02-01
To further advance the existing knowledge base on rectified vibration energy harvester design, this study investigates the fundamental effects of electrical loads containing non-resistive components (e.g., rectifiers and capacitors) on electromagnetic energy harvester performance. Three types of electrical loads, namely (I) a resistor with a rectifier, (II) a resistor with a rectifier and a capacitor, and (III) a simple charging circuit consisting of a rectifier and a capacitor, were considered. A linear electromagnetic energy harvester was used as an illustrative example. Results have verified that device performance obtained from pure-resistive loads cannot be generalized to applications involving rectifier and/or capacitor loads. Such generalization caused not only an overestimation in the maximum power delivered to the load resistance for cases (I) and (II), but also an underestimation of the optimal load resistance and an overestimation of device natural frequency for case (II). Results obtained from case (II) also showed that it is possible to tune the mechanical natural frequency of device using an adjustable regulating capacitor. For case (III), it was found that a larger storing capacitor, with a low rectifier voltage drop, improves the performance of the electromagnetic harvester.
NASA Astrophysics Data System (ADS)
Ben Fathallah, Mohamed Ali; Ben Othman, Afef; Besbes, Mongi
2018-02-01
Photovoltaic energy is very important to meet the consumption needs of electrical energy in remote areas and for other applications. Energy storage systems are essential to avoid the intermittent production of photovoltaic energy and to cover peaks in energy demand. The super capacitor, also known as electrochemical double layer capacitor, is a storage device which has a very high power density compared to conventional battery and is capable of storing a large amount of electrical energy in short time periods, which reflects its interest to be used for the storage of photovoltaic energy. From this principle, this paper represents a three-branch RC model of super capacitor to describe its different dynamics of operation during the charging, discharging and rest phases. After having validated the good functioning of this model with the experimental study of Zubieta, The super capacitor performance has been demonstrated and compared with a conventional battery in a photovoltaic converter chain to power AC machine.
Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.; Celaya, Jose Ramon; Biswas, Gautam; Goebel, Kai
2012-01-01
This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions. Electrolytic capacitors have higher failure rates than other components in electronic systems like power drives, power converters etc. Our current work focuses on developing first-principles-based degradation models for electrolytic capacitors under varying electrical and thermal stress conditions. Prognostics and health management for electronic systems aims to predict the onset of faults, study causes for system degradation, and accurately compute remaining useful life. Accelerated life test methods are often used in prognostics research as a way to model multiple causes and assess the effects of the degradation process through time. It also allows for the identification and study of different failure mechanisms and their relationships under different operating conditions. Experiments are designed for aging of the capacitors such that the degradation pattern induced by the aging can be monitored and analyzed. Experimental setups and data collection methods are presented to demonstrate this approach.
Nanodomain Engineering in Ferroelectric Capacitors with Graphene Electrodes.
Lu, Haidong; Wang, Bo; Li, Tao; Lipatov, Alexey; Lee, Hyungwoo; Rajapitamahuni, Anil; Xu, Ruijuan; Hong, Xia; Farokhipoor, Saeedeh; Martin, Lane W; Eom, Chang-Beom; Chen, Long-Qing; Sinitskii, Alexander; Gruverman, Alexei
2016-10-12
Polarization switching in ferroelectric capacitors is typically realized by application of an electrical bias to the capacitor electrodes and occurs via a complex process of domain structure reorganization. As the domain evolution in real devices is governed by the distribution of the nucleation centers, obtaining a domain structure of a desired configuration by electrical pulsing is challenging, if not impossible. Recent discovery of polarization reversal via the flexoelectric effect has opened a possibility for deterministic control of polarization in ferroelectric capacitors. In this paper, we demonstrate mechanical writing of arbitrary-shaped nanoscale domains in thin-film ferroelectric capacitors with graphene electrodes facilitated by a strain gradient induced by a tip of an atomic force microscope (AFM). A phase-field modeling prediction of a strong effect of graphene thickness on the threshold load required to initiate mechanical switching has been confirmed experimentally. Deliberate voltage-free domain writing represents a viable approach for development of functional devices based on domain topology and electronic properties of the domains and domain walls.
The Significance of Breakdown Voltages for Quality Assurance of Low-Voltage BME Ceramic Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander A.
2014-01-01
Application of thin dielectric, base metal electrode (BME) ceramic capacitors for high-reliability applications requires development of testing procedures that can assure high quality and reliability of the parts. In this work, distributions of breakdown voltages (VBR) in variety of low-voltage BME multilayer ceramic capacitors (MLCCs) have been measured and analyzed. It has been shown that analysis of the distributions can indicate the proportion of defective parts in the lot and significance of the defects. Variations of the distributions after solder dip testing allow for an assessment of the robustness of capacitors to soldering-related stresses. The drawbacks of the existing screening and qualification methods to reveal defects in high-value, low-voltage MLCCs and the importance of VBR measurements are discussed. Analysis has shown that due to a larger concentration of oxygen vacancies, defect-related degradation of the insulation resistance (IR) and failures are more likely in BME compared to the precious metal electrode (PME) capacitors.
NASA Astrophysics Data System (ADS)
Ajuria, Jon; Redondo, Edurne; Arnaiz, Maria; Mysyk, Roman; Rojo, Teófilo; Goikolea, Eider
2017-08-01
In this work, we are presenting both lithium and sodium ion capacitors (LIC and NIC) entirely based on electrodes designed from recycled olive pit bio-waste derived carbon materials. On the one hand, olive pits were pyrolized to obtain a low specific surface area semigraphitic hard carbon to be used as the ion intercalation (battery-type) negative electrode. On the other hand, the same hard carbon was chemically activated with KOH to obtain a high specific surface area activated carbon that was further used as the ion-adsorption (capacitor-type) positive electrode. Both electrodes were custom-made to be assembled in a hybrid cell to either build a LIC or NIC in the corresponding Li- and Na-based electrolytes. For comparison purposes, a symmetric EDLC supercapacitor cell using the same activated carbon in 1.5 M Et4NBF4/acetonitrile electrolyte was also built. Both LIC and NIC systems demonstrate remarkable energy and power density enhancement over its EDLC counterpart while showing good cycle life. This breakthrough offers the possibility to easily fabricate versatile hybrid ion capacitors, covering a wide variety of applications where different requirements are demanded.
NASA Technical Reports Server (NTRS)
DiNardo, Anne Marie
2016-01-01
Colorado-based Black Swift Technologies (BST) created a small unmanned aircraft system(sUAS) to help NASA get a clearer picture of soil moisture through the Small Business Innovation Research (SBIR) program. Soil moisture is defined in terms of volume of water per unit volume of soil. Using BSTs sUAS, NASA scientists can gather ground truth measurements for a clearer observation by getting closer to the source. This can help rule out misleading results generated by satellite imagery.
NASA Astrophysics Data System (ADS)
Batra, V.; Kotru, S.
2017-12-01
We report the effects of illumination on the ferroelectric and photovoltaic properties of the Pb0.95La0.05Zr0.54Ti0.46O3 (PLZT) thin film based asymmetric metal/ferroelectric/metal capacitor structure, using Au as a top electrode and Pt as a bottom electrode. Conductive-AFM (atomic force microscopy) measurements demonstrate the evolution of charge carriers in PLZT films on illumination. The capacitance-voltage, the polarization-electric field, and the leakage current-voltage characteristics of the asymmetric Au/PLZT/Pt capacitor are discussed under dark and illuminated conditions. The light generates charge carriers in the film, which increase the coercive field and net remnant polarization and decrease the capacitance. The leakage current of the capacitor increases by an order of magnitude upon illumination. The leakage current data analyzed to study the conduction mechanism shows that the capacitor structure follows the Schottky emission "1/4" law. The illuminated current density-voltage curve of the capacitor shows non-zero photovoltaic parameters. An open circuit voltage (Voc) of -0.19 V and a short circuit current density (Jsc) of 1.48 μA/cm2 were obtained in an unpoled film. However, after positive poling, the illuminated curve shifts towards a higher voltage value resulting in a Voc of -0.93 V. After negative poling, the curve shows no change in the Voc value. For both poling directions, the Jsc values decrease. The photocurrent in the capacitor shows a linear variation with the incident illumination intensity.
Qureshi, Anjum; Niazi, Javed H; Kallempudi, Saravan; Gurbuz, Yasar
2010-06-15
In this study, a highly sensitive and label-free multianalyte capacitive immunosensor was developed based on gold interdigitated electrodes (GID) capacitor arrays to detect a panel of disease biomarkers. C-reactive protein (CRP), TNFalpha, and IL6 have strong and consistent relationships between markers of inflammation and future cardiovascular risk (CVR) events. Early detection of a panel of biomarkers for a disease could enable accurate prediction of a disease risk. The detection of protein biomarkers was based on relative change in capacitive/dielectric properties. Two different lab-on-a-chip formats were employed for multiple biomarker detection on GID-capacitors. In format I, capacitor arrays were immobilized with pure forms of anti-CRP, -TNFalpha, and -IL6 antibodies in which each capacitor array contained a different immobilized antibody. Here, the CRP and IL6 were detected in the range 25 pg/ml to 25 ng/ml and 25 pg/ml to 1 ng/ml for TNFalpha in format I. Sensitive detection was achieved with chips co-immobilized (diluted) with equimolar mixtures of anti-CRP, -IL6, and -TNFalpha antibodies (format II) in which all capacitors in an array were identical and tested for biomarkers with sequential incubation. The resulting response to CRP, IL6, and TNFalpha in format II for all biomarkers was found to be within 25 pg/ml to 25 ng/ml range. The capacitive biosensor for panels of inflammation and CVR markers show significant clinical value and provide great potential for detection of biomarker panel in suspected subjects for early diagnosis. Copyright 2010 Elsevier B.V. All rights reserved.
ZnS-paper based flexible piezoelectric nanogenerator
NASA Astrophysics Data System (ADS)
Sultana, Ayesha; Middya, Tapas Ranjan; Mandal, Dipankar
2018-04-01
Here, we presented a novel, cost effective approach to fabricate flexible piezoelectric nanogenerator (NG) consisting of ZnS nanowires (NWs) grown upon cellulose. An output voltage of 4 V is generated from the nanocomposite paper (NC-paper) based NG. Subsequently, it has the capability to power Light Emitting Diode (LED) and charging up capacitor. The corresponding energy stored in the capacitor (1 µF) is 16 µJ. Thus, the fabricated NC-paper based NG can be used for smart textile structures, wearable and self-powered nanodevices.
Two-Stage Series-Resonant Inverter
NASA Technical Reports Server (NTRS)
Stuart, Thomas A.
1994-01-01
Two-stage inverter includes variable-frequency, voltage-regulating first stage and fixed-frequency second stage. Lightweight circuit provides regulated power and is invulnerable to output short circuits. Does not require large capacitor across ac bus, like parallel resonant designs. Particularly suitable for use in ac-power-distribution system of aircraft.
Capacitance of carbon-based electrical double-layer capacitors.
Ji, Hengxing; Zhao, Xin; Qiao, Zhenhua; Jung, Jeil; Zhu, Yanwu; Lu, Yalin; Zhang, Li Li; MacDonald, Allan H; Ruoff, Rodney S
2014-01-01
Experimental electrical double-layer capacitances of porous carbon electrodes fall below ideal values, thus limiting the practical energy densities of carbon-based electrical double-layer capacitors. Here we investigate the origin of this behaviour by measuring the electrical double-layer capacitance in one to five-layer graphene. We find that the capacitances are suppressed near neutrality, and are anomalously enhanced for thicknesses below a few layers. We attribute the first effect to quantum capacitance effects near the point of zero charge, and the second to correlations between electrons in the graphene sheet and ions in the electrolyte. The large capacitance values imply gravimetric energy storage densities in the single-layer graphene limit that are comparable to those of batteries. We anticipate that these results shed light on developing new theoretical models in understanding the electrical double-layer capacitance of carbon electrodes, and on opening up new strategies for improving the energy density of carbon-based capacitors.
A new time calibration method for switched-capacitor-array-based waveform samplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H.; Chen, C. -T.; Eclov, N.
2014-08-24
Here we have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibrationmore » is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. Ultimately, the new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.« less
A new time calibration method for switched-capacitor-array-based waveform samplers
NASA Astrophysics Data System (ADS)
Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.
2014-12-01
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be 2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.
Chemical modification of graphene aerogels for electrochemical capacitor applications.
Hong, Jin-Yong; Wie, Jeong Jae; Xu, Yu; Park, Ho Seok
2015-12-14
Graphene aerogel is a relatively new type of aerogel that is ideal for energy storage applications because of its large surface area, high electrical conductivity and good chemical stability. Also, three dimensional interconnected macropores offer many advantages such as low density, fast ion and mass transfer, and easy access to storage sites. Such features allow graphene aerogels to be intensively applied for electrochemical capacitor applications. Despite the growing interest in graphene aerogel-based electrochemical capacitors, however, the graphene aerogels still suffer from their low capacitive performances and high fragility. Both relatively low capacitance and brittleness of physically crosslinked graphene aerogels remain a critical challenge. Until now, a number of alternative attempts have been devoted to overcome these shortcomings. In this perspective, we summarize the recent research progress towards the development of advanced graphene aerogel-based electrochemical capacitors according to the different approaches (e.g. porosity, composition and structure controls). Then, the recently proposed chemical strategies to improve the capacitive performances and mechanical durability of graphene aerogels for practical applications are highlighted. Finally, the current challenges and perspectives in this emerging material are also discussed.
A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers.
Kim, H; Chen, C-T; Eclov, N; Ronzhin, A; Murat, P; Ramberg, E; Los, S; Moses, W; Choong, W-S; Kao, C-M
2014-12-11
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration.
A New Time Calibration Method for Switched-capacitor-array-based Waveform Samplers
Kim, H.; Chen, C.-T.; Eclov, N.; Ronzhin, A.; Murat, P.; Ramberg, E.; Los, S.; Moses, W.; Choong, W.-S.; Kao, C.-M.
2014-01-01
We have developed a new time calibration method for the DRS4 waveform sampler that enables us to precisely measure the non-uniform sampling interval inherent in the switched-capacitor cells of the DRS4. The method uses the proportionality between the differential amplitude and sampling interval of adjacent switched-capacitor cells responding to a sawtooth-shape pulse. In the experiment, a sawtooth-shape pulse with a 40 ns period generated by a Tektronix AWG7102 is fed to a DRS4 evaluation board for calibrating the sampling intervals of all 1024 cells individually. The electronic time resolution of the DRS4 evaluation board with the new time calibration is measured to be ~2.4 ps RMS by using two simultaneous Gaussian pulses with 2.35 ns full-width at half-maximum and applying a Gaussian fit. The time resolution dependencies on the time difference with the new time calibration are measured and compared to results obtained by another method. The new method could be applicable for other switched-capacitor-array technology-based waveform samplers for precise time calibration. PMID:25506113
Low Profile Tunable Dipole Antennas Using BST Varactors for Biomedical Applications
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas; Price, Tony; Miranda, Felix A.
2013-01-01
In this presentation a 2.4 GHz low profile (lambda45) tunable dipole antenna is evaluated in the presence of a human core model (HCM) body phantom. The antenna uses a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells and its performance is compared to a similar low profile antenna that uses an FSS with semiconductor varactor diodes. The measured data of the antenna demonstrate tunability from 2.2 GHz to 2.55 GHz in free space and impedance match improvement in the presence of a HCM at different distances. This antenna has smaller size, lower cost and less weight compared to the semiconductor varactor diode counterpart.
Low Profile Tunable Dipole Antenna Using BST Varactors for Biomedical Applications
NASA Technical Reports Server (NTRS)
Cure, David; Weller, Thomas M.; Miranda, Felix A.; Price, Tony
2013-01-01
In this paper a 2.4 GHz low profile (lambda/47) tunable dipole antenna is evaluated in the presence of a human core model (HCM) body phantom. The antenna uses a frequency selective surface (FSS) with interdigital barium strontium titanate (BST) varactor-tuned unit cells and its performance is compared to a similar low profile antenna that uses an FSS with semiconductor varactor diodes. The measured data of the antenna demonstrate tunability from 2.2 GHz to 2.55 GHz in free space and impedance match improvement in the presence of a HCM at different distances. This antenna has smaller size, lower cost and less weight compared to the semiconductor varactor diode counterpart.
Multifunctional Oxide Films for Advanced Multifunction RF Systems
2007-09-14
during the epitaxy runs. Effusion cells (SVT) provide perovskite and rocksalt matrix elements (Ti, Ba , Sr , Mg). An e-gun evaporator (MDC):can be used to...sample that best matched the targeted stoichiometry. 10 5 MgO Ba 0 . Sr 1.4 TiO3/MgO 10 000 BS I 102 3~) ;101 0~ 0 (a) RHiEED of BST rowthonM 0 105O... Ba 0. Sr .. iO3 /SrMO. 5 200 1Is V STO10 -STO 3 -10 _ 10 2 30S 15 10 100 10 20 30 40 50 60 70 80 90 20 (b) RHEED of BST growth on STO (c) XRD scan of
Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors.
Zhou, Qinqin; Zhang, Miao; Chen, Ji; Hong, Jong-Dal; Shi, Gaoquan
2016-08-17
The commercialized aluminum electrolytic capacitors (AECs) currently used for alternating current (AC) line-filtering are usually the largest components in the electronic circuits because of their low specific capacitances and bulky sizes. Herein, nitrogen-doped holey graphene (NHG) films were prepared by thermal annealing the composite films of polyvinylpyrrolidone (PVP), graphene oxide (GO), and ferric oxide (Fe2O3) nanorods followed by chemical etching with hydrochloride acid. The typical electrochemical capacitor with NHG electrodes exhibited high areal and volumetric specific capacitances of 478 μF cm(-2) and 1.2 F cm(-3) at 120 Hz, ultrafast frequency response with a phase angle of -81.2° and a resistor-capacitor time constant of 203 μs at 120 Hz, as well as excellent cycling stability. Thus, it is promising to replace conventional AEC for AC line-filtering in miniaturized electronics.
NASA Astrophysics Data System (ADS)
Abbas, Qamar; Béguin, François
2016-06-01
We demonstrate that an activated carbon (AC)-based electrochemical capacitor implementing aqueous lithium sulfate electrolyte in 7:3 vol:vol water/methanol mixture can operate down to -40 °C with good electrochemical performance. Three-electrode cell investigations show that the faradaic contributions related with hydrogen chemisorption in the negative AC electrode are thermodynamically unfavored at -40 °C, enabling the system to work as a typical electrical double-layer (EDL) capacitor. After prolonged floating of the AC/AC capacitor at 1.6 V and -40°C, the capacitance, equivalent series resistance and efficiency remain constant, demonstrating the absence of ageing related with side redox reactions at this temperature. Interestingly, when temperature is increased back to 24 °C, the redox behavior due to hydrogen storage reappears and the system behaves as a freshly prepared one.
Variable-speed wind power system with improved energy capture via multilevel conversion
Erickson, Robert W.; Al-Naseem, Osama A.; Fingersh, Lee Jay
2005-05-31
A system and method for efficiently capturing electrical energy from a variable-speed generator are disclosed. The system includes a matrix converter using full-bridge, multilevel switch cells, in which semiconductor devices are clamped to a known constant DC voltage of a capacitor. The multilevel matrix converter is capable of generating multilevel voltage wave waveform of arbitrary magnitude and frequencies. The matrix converter can be controlled by using space vector modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.
Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less
NASA Astrophysics Data System (ADS)
Zhu, Jianxiong; Guo, Xiaoyu; Huang, Run
2018-06-01
We study asymmetric disappearance and period asymmetric phenomena starting with a rocking dynamic in micro dual-capacitive energy harvester. The mathematical model includes nonlinear electrostatic forces from the variable dual capacitor, the numerical functioned forces provided by suspending springs, linear damping forces and an external vibration force. The suspending plate and its elastic supports were designed in a symmetric structure in the micro capacitor, however, the reported energy harvester was unavoidable starting with a asymmetric motion in the real vibration environment. We found that the designed dual energy capacitive harvester can harvest ˜6 µW with 10V input voltage, and under 0.8 time's resonant frequency vibration. We also discovered that the rocking dynamics of the suspended plate can be showed with an asymmetric disappearance or periodic asymmetric phenomena starting with an asymmetric motion. The study of these asymmetric disappearance and period asymmetric phenomena were not only important for the design of the stability of the micro capacitor for sensor or the energy harvesting, but also gave a deep understanding of the rocking nonlinear dynamics of the complex micro structures and beams.
Impedance matched, high-power, rf antenna for ion cyclotron resonance heating of a plasma
Baity, Jr., Frederick W.; Hoffman, Daniel J.; Owens, Thomas L.
1988-01-01
A resonant double loop radio frequency (rf) antenna for radiating high-power rf energy into a magnetically confined plasma. An inductive element in the form of a large current strap, forming the radiating element, is connected between two variable capacitors to form a resonant circuit. A real input impedance results from tapping into the resonant circuit along the inductive element, generally near the midpoint thereof. The impedance can be matched to the source impedance by adjusting the separate capacitors for a given tap arrangement or by keeping the two capacitances fixed and adjustng the tap position. This results in a substantial reduction in the voltage and current in the transmission system to the antenna compared to unmatched antennas. Because the complete circuit loop consisting of the two capacitors and the inductive element is resonant, current flows in the same direction along the entire length of the radiating element and is approximately equal in each branch of the circuit. Unidirectional current flow permits excitation of low order poloidal modes which penetrate more deeply into the plasma.
Performance Analysis of a Static Synchronous Compensator (STATCOM)
NASA Astrophysics Data System (ADS)
Kambey, M. M.; Ticoh, J. D.
2018-02-01
Reactive power and voltage are some of the problems in electric power supply and A Gate Turn Off (GTO) Static Synchronous Compensator (STATCOM) is one of the type of FACTS with shunt which can supply variable reactive power and regulate the voltage of the bus where it is connected. This study only discuss about the performance characteristic of the three phase six-pulse STATCOM by analysing the current wave flowing through DC Capacitor which depend on switching current and capacitor voltage wave. Simulation methods used in this research is started with a mathematical analysis of the ac current, dc voltage and current equations that pass STATCOM from a literature. The result shows the presence of the capacitor voltage ripple also alters the ac current waveform, even though the errors to be not very significant and the constraint of the symmetry circuit is valid if the source voltages have no zero sequence components and the impedances in all the three phases are identical. There for to improve STATCOM performance it is necessary to use multi-pulse 12, 24, 36, 48 or more, and/or with a multilevel converter.
High output lamp with high brightness
Kirkpatrick, Douglas A.; Bass, Gary K.; Copsey, Jesse F.; Garber, Jr., William E.; Kwong, Vincent H.; Levin, Izrail; MacLennan, Donald A.; Roy, Robert J.; Steiner, Paul E.; Tsai, Peter; Turner, Brian P.
2002-01-01
An ultra bright, low wattage inductively coupled electrodeless aperture lamp is powered by a solid state RF source in the range of several tens to several hundreds of watts at various frequencies in the range of 400 to 900 MHz. Numerous novel lamp circuits and components are disclosed including a wedding ring shaped coil having one axial and one radial lead, a high accuracy capacitor stack, a high thermal conductivity aperture cup and various other aperture bulb configurations, a coaxial capacitor arrangement, and an integrated coil and capacitor assembly. Numerous novel RF circuits are also disclosed including a high power oscillator circuit with reduced complexity resonant pole configuration, parallel RF power FET transistors with soft gate switching, a continuously variable frequency tuning circuit, a six port directional coupler, an impedance switching RF source, and an RF source with controlled frequency-load characteristics. Numerous novel RF control methods are disclosed including controlled adjustment of the operating frequency to find a resonant frequency and reduce reflected RF power, controlled switching of an impedance switched lamp system, active power control and active gate bias control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, VFG; Xie, HK
2014-07-01
This paper presents the fabrication and characterization of a high-density multilayer stacked metal-insulator-metal (MIM) capacitor based on a novel process of depositing the MIM multilayer on pillars followed by polishing and selective etching steps to form a stacked capacitor with merely three photolithography steps. In this paper, the pillars were made of glass to prevent substrate loss, whereas an oxide-nitride-oxide dielectric was employed for lower leakage, better voltage/frequency linearity, and better stress compensation. MIM capacitors with six dielectric layers were successfully fabricated, yielding capacitance density of 3.8 fF/mu m(2), maximum capacitance of 2.47 nF, and linear and quadratic voltage coefficientsmore » of capacitance below 21.2 ppm/V and 2.31 ppm/V-2. The impedance was measured from 40 Hz to 3 GHz, and characterized by an analytically derived equivalent circuit model to verify the radio frequency applicability. The multilayer stacking-induced plate resistance mismatch and its effect on the equivalent series resistance (ESR) and effective capacitance was also investigated, which can be counteracted by a corrected metal thickness design. A low ESR of 800 m Omega was achieved, whereas the self-resonance frequency was >760 MHz, successfully demonstrating the feasibility of this method to scale up capacitance densities for high-quality-factor, high-frequency, and large-value MIM capacitors.« less
Information processing through a bio-based redox capacitor: signatures for redox-cycling.
Liu, Yi; Kim, Eunkyoung; White, Ian M; Bentley, William E; Payne, Gregory F
2014-08-01
Redox-cycling compounds can significantly impact biological systems and can be responsible for activities that range from pathogen virulence and contaminant toxicities, to therapeutic drug mechanisms. Current methods to identify redox-cycling activities rely on the generation of reactive oxygen species (ROS), and employ enzymatic or chemical methods to detect ROS. Here, we couple the speed and sensitivity of electrochemistry with the molecular-electronic properties of a bio-based redox-capacitor to generate signatures of redox-cycling. The redox capacitor film is electrochemically-fabricated at the electrode surface and is composed of a polysaccharide hydrogel with grafted catechol moieties. This capacitor film is redox-active but non-conducting and can engage diffusible compounds in either oxidative or reductive redox-cycling. Using standard electrochemical mediators ferrocene dimethanol (Fc) and Ru(NH3)6Cl3 (Ru(3+)) as model redox-cyclers, we observed signal amplifications and rectifications that serve as signatures of redox-cycling. Three bio-relevant compounds were then probed for these signatures: (i) ascorbate, a redox-active compound that does not redox-cycle; (ii) pyocyanin, a virulence factor well-known for its reductive redox-cycling; and (iii) acetaminophen, an analgesic that oxidatively redox-cycles but also undergoes conjugation reactions. These studies demonstrate that the redox-capacitor can enlist the capabilities of electrochemistry to generate rapid and sensitive signatures of biologically-relevant chemical activities (i.e., redox-cycling). Published by Elsevier B.V.
Superamphiphobic Surfaces Prepared by Coating Multifunctional Nanofluids.
Esmaeilzadeh, Pouriya; Sadeghi, Mohammad Taghi; Bahramian, Alireza; Fakhroueian, Zahra; Zarbakhsh, Ali
2016-11-23
Construction of surfaces with the capability of repelling both water and oil is a challenging issue. We report the superamphiphobic properties of mineral surfaces coated with nanofluids based on synthesized Co-doped and Ce-doped Barium Strontium Titanate (CoBST and CeBST) nanoparticles and fluorochemicals of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOS) and polytetrafluoroethylene (PTFE). Coating surfaces with these nanofluids provides both oil (with surface tensions as low as 23 mN/m) and water repellency. Liquids with high surface tension (such as water and ethylene glycol) roll off the coated surface without tilting. A water drop released from 8 mm above the coated surface undergoes first a lateral displacement from its trajectory and shape deformation, striking the surface after 23 ms, bouncing and rolling off freely. These multifunctional coating nanofluids impart properties of self-cleaning. Applications include coating surfaces where cleanliness is paramount such as in hospitals and domestic environments as well as the maintenance of building facades and protection of public monuments from weathering. These superamphiphobic-doped nanofluids have thermal stability up to 180 °C; novel industrial applications include within fracking and the elimination of condensate blockage in gas reservoirs.
Transistor-based filter for inhibiting load noise from entering a power supply
Taubman, Matthew S
2013-07-02
A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal. The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.
Transistor-based filter for inhibiting load noise from entering a power supply
Taubman, Matthew S
2015-02-24
A transistor-based filter for inhibiting load noise from entering a power supply is disclosed. The filter includes a first transistor having an emitter coupled to a power supply, a collector coupled to a load, and a base. The filter also includes a first capacitor coupled between the base of the first transistor and a ground terminal The filter further includes an impedance coupled between the base and a node between the collector and the load, or a second transistor and second capacitor. The impedance can be a resistor or an inductor.
Petrini, Paula A; Silva, Ricardo M L; de Oliveira, Rafael F; Merces, Leandro; Bof Bufon, Carlos C
2018-06-29
Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc ) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al 2 O 3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al 2 O 3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.
NASA Astrophysics Data System (ADS)
Petrini, Paula A.; Silva, Ricardo M. L.; de Oliveira, Rafael F.; Merces, Leandro; Bof Bufon, Carlos C.
2018-06-01
Considerable advances in the field of molecular electronics have been achieved over the recent years. One persistent challenge, however, is the exploitation of the electronic properties of molecules fully integrated into devices. Typically, the molecular electronic properties are investigated using sophisticated techniques incompatible with a practical device technology, such as the scanning tunneling microscopy. The incorporation of molecular materials in devices is not a trivial task as the typical dimensions of electrical contacts are much larger than the molecular ones. To tackle this issue, we report on hybrid capacitors using mechanically-compliant nanomembranes to encapsulate ultrathin molecular ensembles for the investigation of molecular dielectric properties. As the prototype material, copper (II) phthalocyanine (CuPc) has been chosen as information on its dielectric constant (k CuPc) at the molecular scale is missing. Here, hybrid nanomembrane-based capacitors containing metallic nanomembranes, insulating Al2O3 layers, and the CuPc molecular ensembles have been fabricated and evaluated. The Al2O3 is used to prevent short circuits through the capacitor plates as the molecular layer is considerably thin (<30 nm). From the electrical measurements of devices with molecular layers of different thicknesses, the CuPc dielectric constant has been reliably determined (k CuPc = 4.5 ± 0.5). These values suggest a mild contribution of the molecular orientation on the CuPc dielectric properties. The reported nanomembrane-based capacitor is a viable strategy for the dielectric characterization of ultrathin molecular ensembles integrated into a practical, real device technology.
All-printed capacitors with continuous solution dispensing technology
NASA Astrophysics Data System (ADS)
Ge, Yang; Plötner, Matthias; Berndt, Andreas; Kumar, Amit; Voit, Brigitte; Pospiech, Doris; Fischer, Wolf-Joachim
2017-09-01
Printed electronics have been introduced into the commercial markets in recent years. Various printing technologies have emerged aiming to process printed electronic devices with low cost, environmental friendliness, and compatibility with large areas and flexible substrates. The aim of this study is to propose a continuous solution dispensing technology for processing all-printed thin-film capacitors on glass substrates using a leading-edge printing instrument. Among all printing technologies, this study provides concrete proof of the following outstanding advantages of this technology: high tolerance to inks, high throughput, low cost, and precise pattern transfers. Ag nanoparticle ink based on glycol ethers was used to print the electrodes. To obtain dielectric ink, a copolymer powder of poly(methyl methacrylate-co-benzoylphenyl methacrylate) containing crosslinkable side groups was dissolved in anisole. Various layouts were designed to support multiple electronic applications. Scanning electron microscopy and atomic force microscopy were used to investigate the all-printed capacitor layers formed using the proposed process. Additionally, the printed capacitors were electrically characterized under direct current and alternating current. The measured electrical properties of the printed capacitors were consistent with the theoretical results.
NASA Astrophysics Data System (ADS)
Khomenko, V.; Raymundo-Piñero, E.; Béguin, F.
A new type of low cost and high energy asymmetric capacitor based on only activated carbons for both electrodes has been developed in a safe and environment friendly aqueous electrolyte. In such electrolyte, the charges are stored in the electrical double-layer and through fast faradaic charge transfer processes. By taking profit of different redox reactions occurring in the positive and negative ranges of potential, it is possible to optimize the capacitor either by balancing the mass of the electrodes or by using different optimized carbons for the positive and negative electrodes. The best results are obtained in the latter case, by utilizing different pseudo-faradaic properties of carbons in order to increase the capacitance and to shift the potentials of water decomposition and destructive oxidation of activated carbon to more negative and positive values, respectively. After an additional adjustment of potentials by mass-balancing the two electrodes, the electrochemical capacitor can be reversibly charged/discharged at 1.6 V in aqueous medium, with energy densities close to the values obtained with electrical double-layer capacitors working in organic electrolytes, while avoiding their disadvantages.
Pseudo-capacitor device for aqueous electrolytes
Prakash, Jai; Thackeray, Michael M.; Dees, Dennis W.; Vissers, Donald R.; Myles, Kevin M.
1998-01-01
A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A.sub.2 ›B.sub.2-x Pb.sub.x !O.sub.7-y, where A=Pb, Bi, and B=Ru, Ir, and O
Pseudo-capacitor device for aqueous electrolytes
Prakash, J.; Thackeray, M.M.; Dees, D.W.; Vissers, D.R.; Myles, K.M.
1998-11-24
A pseudo-capacitor having a high energy storage capacity develops a double layer capacitance as well as a Faradaic or battery-like redox reaction, also referred to as pseudo-capacitance. The Faradaic reaction gives rise to a capacitance much greater than that of the typical ruthenate oxide ultracapacitor which develops only charge separation-based double layer capacitance. The capacitor employs a lead and/or bismuth/ruthenate and/or iridium system having the formula A{sub 2}[B{sub 2{minus}x}Pb{sub x}]O{sub 7{minus}y}, where A=Pb, Bi, and B=Ru, Ir, and O
Thin-film decoupling capacitors for multi-chip modules
NASA Astrophysics Data System (ADS)
Dimos, D.; Lockwood, S. J.; Schwartz, R. W.; Rogers, M. S.
Thin-film decoupling capacitors based on ferroelectric lead lanthanum zirconate titanate (PLZT) films are being developed for use in advanced packages, such as multi-chip modules. These thin-film decoupling capacitors are intended to replace multi-layer ceramic capacitors for certain applications, since they can be more fully integrated into the packaging architecture. The increased integration that can be achieved should lead to decreased package volume and improved high-speed performance, due to a decrease in interconnect inductance. PLZT films are fabricated by spin coating using metal carboxylate/alkoxide solutions. These films exhibit very high dielectric constants ((var epsilon) greater than or equal to 900), low dielectric losses (tan(delta) = 0.01), excellent insulation resistances (rho greater than 10(exp 13) (Omega)-cm at 125 C), and good breakdown field strengths (E(sub B) = 900 kV/cm). For integrated circuit applications, the PLZT dielectric is less than 1 micron thick, which results in a large capacitance/area (8-9 nF/sq mm). The thin-film geometry and processing conditions also make these capacitors suitable for direct incorporation onto integrated circuits and for packages that require embedded components.
A New Ferroelectric Varactor from Water Based Inorganic Precursors
2003-04-03
See Equation 2). 0 0 4 OH +-)4T H13< Equation 2. Idealized Reaction of Titanium Isopropoxide with 2-ethylhexanoic acid. Inconsistent results with the...Equation 3). Equation 3. Reaction of 2-ethylhexanoic anhydride with Titanium Isopropoxide We have made over one hundred batches of both BST and SBTN MOD...aliphatic acids used in the more common MOD precursors. Equation 4 shows a comparison of the decomposition products of Titanium MOD precursors made from 2
Contributions of the Central Extended Amygdala to Fear and Anxiety.
Shackman, Alexander J; Fox, Andrew S
2016-08-03
It is widely thought that phasic and sustained responses to threat reflect dissociable circuits centered on the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST), the two major subdivisions of the central extended amygdala. Early versions of this hypothesis remain highly influential and have been incorporated into the National Institute of Mental Health Research Research Domain Criteria framework. However, new observations encourage a different perspective. Anatomical studies show that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated and used to assemble states of fear and anxiety. Imaging studies in humans and monkeys show that the Ce and BST exhibit similar functional profiles. Both regions are sensitive to a range of aversive challenges, including uncertain or temporally remote threat; both covary with concurrent signs and symptoms of fear and anxiety; both show phasic responses to short-lived threat; and both show heightened activity during sustained exposure to diffusely threatening contexts. Mechanistic studies demonstrate that both regions can control the expression of fear and anxiety during sustained exposure to diffuse threat. These observations compel a reconsideration of the central extended amygdala's contributions to fear and anxiety and its role in neuropsychiatric disease. Copyright © 2016 the authors 0270-6474/16/368050-14$15.00/0.
Contributions of the Central Extended Amygdala to Fear and Anxiety
2016-01-01
It is widely thought that phasic and sustained responses to threat reflect dissociable circuits centered on the central nucleus of the amygdala (Ce) and the bed nucleus of the stria terminalis (BST), the two major subdivisions of the central extended amygdala. Early versions of this hypothesis remain highly influential and have been incorporated into the National Institute of Mental Health Research Research Domain Criteria framework. However, new observations encourage a different perspective. Anatomical studies show that the Ce and BST form a tightly interconnected unit, where different kinds of threat-relevant information can be integrated and used to assemble states of fear and anxiety. Imaging studies in humans and monkeys show that the Ce and BST exhibit similar functional profiles. Both regions are sensitive to a range of aversive challenges, including uncertain or temporally remote threat; both covary with concurrent signs and symptoms of fear and anxiety; both show phasic responses to short-lived threat; and both show heightened activity during sustained exposure to diffusely threatening contexts. Mechanistic studies demonstrate that both regions can control the expression of fear and anxiety during sustained exposure to diffuse threat. These observations compel a reconsideration of the central extended amygdala's contributions to fear and anxiety and its role in neuropsychiatric disease. PMID:27488625
Role of surfactant on thermoelectric behaviors of organic-inorganic composites
NASA Astrophysics Data System (ADS)
Shin, Sunmi; Roh, Jong Wook; Kim, Hyun-Sik; Chen, Renkun
2018-05-01
Hybrid organic/inorganic composites have recently attracted intensive interests as a promising candidate for flexible thermoelectric (TE) devices using inherently soft polymers as well as for increasing the degree of freedom to control TE properties. Experimentally, however, enhanced TE performance in hybrid composites has not been commonly observed, primarily due to inhomogeneous mixing between the inorganic and organic components which leads to limited electrical conduction in the less conductive component and consequently a low power factor in the composites compared to their single-component counterparts. In this study, we investigated the effects of different surfactants on the uniformity of mixing and the TE behaviors of the hybrid composites consisting of Bi0.5Sb1.5Te3 (BST) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). We found that compared to dimethyl sulfoxide, which is the most widely used surfactant, Triton X-100 (TX-100) can lead to homogenous dispersion of BST in PEDOT:PSS. By systematically studying the effects of the surfactant concentration, we can attribute the better mixing capability of TX-100 to its non-ionic property, which results in homogenous mixing with a lower critical micelle concentration. Consequently, we observed simultaneous increase in electrical conductivity and Seebeck coefficient in the BST/PEDOT:PSS composites with the TX-100 surfactant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miah, Mohammad J., E-mail: mmjulhash@yahoo.com; Department of Physics, Comilla University, Comilla; Khan, M. N. I.
Multiferroic xBa{sub 0.95}Sr{sub 0.05}TiO{sub 3}-(1-x)BiFe{sub 0.90}Gd{sub 0.10}O{sub 3} [xBST-(1-x)BFGO] (x = 0.00, 0.10 and 0.20) ceramics were prepared by the standard solid-state reaction technique. Crystal structure of the ceramics was determined by X-ray diffraction pattern. All the compositions exhibited rhombohedral crystal structure. The tolerance factor ‘t’ varied from 0.847 to 0.864. The AC conductivity spectrum followed the Jonscher’s power law. The Nyquist plots indicated that only grains have the contribution to the resistance in this material and the values of grain resistance (R{sub g}) increased with BST content. The real part of complex initial permeability decreased with the increase inmore » frequency and increased with increasing BST content. Magnetoelectric coefficient was determined for all compositions. The maximum value of magnetoelectric coefficient was found to be 1.467 mV.cm{sup −1}.Oe{sup −1} for x = 0.20.« less
Fujii, Shinya; Schlaug, Gottfried
2013-01-01
Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session.
Fujii, Shinya; Schlaug, Gottfried
2013-01-01
Humans have the abilities to perceive, produce, and synchronize with a musical beat, yet there are widespread individual differences. To investigate these abilities and to determine if a dissociation between beat perception and production exists, we developed the Harvard Beat Assessment Test (H-BAT), a new battery that assesses beat perception and production abilities. H-BAT consists of four subtests: (1) music tapping test (MTT), (2) beat saliency test (BST), (3) beat interval test (BIT), and (4) beat finding and interval test (BFIT). MTT measures the degree of tapping synchronization with the beat of music, whereas BST, BIT, and BFIT measure perception and production thresholds via psychophysical adaptive stair-case methods. We administered the H-BAT on thirty individuals and investigated the performance distribution across these individuals in each subtest. There was a wide distribution in individual abilities to tap in synchrony with the beat of music during the MTT. The degree of synchronization consistency was negatively correlated with thresholds in the BST, BIT, and BFIT: a lower degree of synchronization was associated with higher perception and production thresholds. H-BAT can be a useful tool in determining an individual's ability to perceive and produce a beat within a single session. PMID:24324421
Health as normal function: a weak link in Daniels's theory of just health distribution.
Krag, Erik
2014-10-01
Drawing on Christopher Boorse's Biostatistical Theory (BST), Norman Daniels contends that a genuine health need is one which is necessary to restore normal functioning - a supposedly objective notion which he believes can be read from the natural world without reference to potentially controversial normative categories. But despite his claims to the contrary, this conception of health harbors arbitrary evaluative judgments which make room for intractable disagreement as to which conditions should count as genuine health needs and therefore which needs should be met. I begin by offering a brief summary of Boorse's BST, the theory to which Daniels appeals for providing the conception of health as normal functioning upon which his overall distributive scheme rests. Next, I consider what I call practical objections to Daniels's use of Boorse's theory. Finally I recount Elseljin Kingma's theoretical objection to Boorse's BST and discuss its impact on Daniels's overall theory. Though I conclude that Boorse's view, so weakened, will no longer be able to sustain the judgments which Daniels's theory uses it to reach, in the end, I offer Daniels an olive branch by briefly sketching an alternative strategy for reaching suitably objective conclusions regarding the health and/or disease status of various conditions. © 2012 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanyam, Guru, E-mail: gsubramanyam1@udayton.edu; Cole, M. W., E-mail: melanie.w.cole.civ@mail.mil; Sun, Nian X.
2013-11-21
There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstratedmore » in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.« less
Development and characterization of a ferroelectric non-volatile memory for flexible electronics
NASA Astrophysics Data System (ADS)
Mao, Duo
Flexible electronics have received significant attention recently because of the potential applications in displays, sensors, radio frequency identification (RFID) tags and other integrated circuits. Electrically addressable non-volatile memory is a key component for these applications. The major challenges are to fabricate the memory at a low temperature compatible with plastic substrates while maintaining good device reliability, by being compatible with process as needed to integrate with other electronic components for system-on-chip applications. In this work, ferroelectric capacitors fabricated at low temperature were developed. Based on that, a ferroelectric random access memory (FRAM) for flexible electronics was developed and characterized. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer was used as a ferroelectric material and a photolithographic process was developed to fabricate ferroelectric capacitors. Different characterization methods including atomic force microscopy, x-ray diffraction and Fourier-transform infrared reflection-absorption spectroscopy were used to study the material properties of the P(VDF-TrFE) film. The material properties were correlated with the electrical characteristics of the ferroelectric capacitors. To understand the polarization switching behavior of the P(VDF-TrFE) ferroelectric capacitors, a Nucleation-Limited-Switching (NLS) model was used to study the switching kinetics. The switching kinetics were characterized over the temperature range from -60 °C to 100 °C. Fatigue characteristics were studied at different electrical stress voltages and frequencies to evaluate the reliability of the ferroelectric capacitor. The degradation mechanism is attributed to the increase of the activation field and the suppression of the switchable polarization. To develop a FRAM circuit for flexible electronics, an n-channel thin film transistor (TFT) based on CdS as the semiconductor was integrated with a P(VDF-TrFE) ferroelectric capacitor for a one-transistor-one-capacitor (1T1C) memory cell. The 1T1C devices were fabricated at low temperature and demonstrated a memory window (DeltaVBL) of 2.3 V and 3.5 V, depending on the device dimensions. Next, FRAM arrays (4-bit, 16-bit and 64-bit) based on the two-transistor-two-capacitor (2T2C) memory cell architecture were designed and fabricated using a photolithographic process with 9 masks. The fabricated FRAM arrays were packaged in 28-pin ceramic packages. The read/write schemes were developed and the FRAM arrays show successful program and erase with a memory window of approximately 1 V at the output of the sense amplifier.
Pattern of distribution of serotonergic fibers to the amygdala and extended amygdala in the rat.
Linley, Stephanie B; Olucha-Bordonau, Francisco; Vertes, Robert P
2017-01-01
As is well recognized, serotonergic (5-HT) fibers distribute widely throughout the forebrain, including the amygdala. Although a few reports have examined the 5-HT innervation of select nuclei of the amygdala in the rat, no previous report has described overall 5-HT projections to the amygdala in the rat. Using immunostaining for the serotonin transporter, SERT, we describe the complete pattern of distribution of 5-HT fibers to the amygdala (proper) and to the extended amygdala in the rat. Based on its ontogenetic origins, the amygdala was subdivided into two major parts, pallial and subpallial components, with the pallial component further divided into superficial and deep nuclei (Olucha-Bordonau et al. 2015). SERT + fibers were shown to distributed moderately to densely to the deep and cortical pallial nuclei, but, by contrast, lightly to the subpallial nuclei. Specifically, 1) of the deep pallial nuclei, the lateral, basolateral, and basomedial nuclei contained a very dense concentration of 5-HT fibers; 2) of the cortical pallial nuclei, the anterior cortical and amygdala-cortical transition zone rostrally and the posteromedial and posterolateral nuclei caudally contained a moderate concentration of 5-HT fibers; and 3) of the subpallial nuclei, the anterior nuclei and the rostral part of the medial (Me) nuclei contained a moderate concentration of 5-HT fibers, whereas caudal regions of Me as well as the central nuclei and the intercalated nuclei contained a sparse/light concentration of 5-HT fibers. With regard to the extended amygdala (primarily the bed nucleus of stria terminalis; BST), on the whole, the BST contained moderate numbers of 5-HT fibers, spread fairly uniformly throughout BST. The findings are discussed with respect to a critical serotonergic influence on the amygdala, particularly on the basal complex, and on the extended amygdala in the control of states of fear and anxiety. J. Comp. Neurol. 525:116-139, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Loading system mechanism for dielectric elastomer generators with equi-biaxial state of deformation
NASA Astrophysics Data System (ADS)
Fontana, M.; Moretti, G.; Lenzo, B.; Vertechy, R.
2014-03-01
Dielectric Elastomer Generators (DEGs) are devices that employ a cyclically variable membrane capacitor to produce electricity from oscillating sources of mechanical energy. Capacitance variation is obtained thanks to the use of dielectric and conductive layers that can undergo different states of deformation including: uniform or non-uniform and uni- or multi-axial stretching. Among them, uniform equi-biaxial stretching is reputed as being the most effective state of deformation that maximizes the amount of energy that can be extracted in a cycle by a unit volume of Dielectric Elastomer (DE) material. This paper presents a DEG concept, with linear input motion and tunable impedance, that is based on a mechanical loading system for inducing uniform equi-biaxial states of deformation. The presented system employs two circular DE membrane capacitors that are arranged in an agonist-antagonist configuration. An analytical model of the overall system is developed and used to find the optimal design parameters that make it possible to tune the elastic response of the generator over the range of motion of interest. An apparatus is developed for the equi-biaxial testing of DE membranes and used for the experimental verification of the employed numerical models.
Guimarães, T; Miranda, C; Pinto, M; Silva, E; Damásio, L; Costa, A L; Correia, M J; Duarte, J C; Cosinha, C; Lopes, G; Thompson, G; Rocha, A
2014-12-01
A possible role of breeding activities in the composition of the microbial population in stallions' external genitalia (EG) and the relationship between micro-organisms colonizing the skin of the abdomen and the ones colonizing the EG have not been studied. In experiment 1, EG microbiological samples were collected from 41 stallions used for both natural cover and semen collection (BST) and from 18 non-breeding stallions (NBST). A higher (p < 0.05) frequency of isolation of potentially pathogenic species was found for BST. Age did not influence number of micro-organism species isolated both in BST and NBST. In experiment 2, the microbial content of the EG and semen was compared in 23 BST. Most micro-organisms isolated from the EG were present in semen, albeit with a numerically lower prevalence. In 7 stallions, six microbial species isolated from semen were absent from the EG cultures, suggesting contamination by the operator. In experiment 3, a numerically higher number of micro-organism species was isolated from the EG of 31 stallions, than from their skin of the ventral abdomen in contact with the penis or from the skin of the thorax. With the sole exception of Escherichia coli, potentially pathogenic bacteria were only isolated from the EG but not from the skin. Results suggest that breeding activity increased the number of species colonizing the EG; most species isolated from the EG were also found in semen even if with a lower frequency, and additional semen contamination seemed to occur during its manipulation. Many micro-organism species of the skin were also isolated from the penis, but independently of being or not in contact with the penis, skin did not seem to provide an adequate environment for the growth of potentially pathogenic bacteria that were isolated from EG, with the sole exception for E. coli. © 2014 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Jegert, Gunther; Kersch, Alfred; Weinreich, Wenke; Lugli, Paolo
2011-01-01
In this paper, we investigate the influence of electrode roughness on the leakage current in TiN/high-κ ZrO2/TiN (TZT) thin-film capacitors which are used in dynamic random access memory cells. Based on a microscopic transport model, which is expanded to incorporate electrode roughness, we assess the ultimate scaling potential of TZT capacitors in terms of equivalent oxide thickness, film smoothness, thickness fluctuations, defect density and distribution, and conduction band offset (CBO). The model is based on three-dimensional, fully self-consistent, kinetic Monte Carlo transport simulations. Tunneling transport in the bandgap of the dielectric is treated, which includes defect-assisted transport mechanisms. Electrode roughness is described in the framework of fractal geometry. While the short-range roughness of the electrodes is found not to influence significantly the leakage current, thickness fluctuations of the dielectric have a major impact. For thinner dielectric films they cause a transformation of the dominant transport mechanism from Poole-Frenkel conduction to trap-assisted tunneling. Consequently, the sensitivity of the leakage current on electrode roughness drastically increases on downscaling. Based on the simulations, optimization of the CBO is suggested as the most viable strategy to extend the scalability of TZT capacitors over the next chip generations.
R Dump Converter without DC Link Capacitor for an 8/6 SRM: Experimental Investigation
Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran
2015-01-01
The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation. PMID:25642452
Fabrication of PVDF-TrFE based bilayered PbTiO3/PVDF-TrFE films capacitor
NASA Astrophysics Data System (ADS)
Nurbaya, Z.; Wahid, M. H.; Rozana, M. D.; Annuar, I.; Alrokayan, S. A. H.; Khan, H. A.; Rusop, M.
2016-07-01
Development of high performance capacitor is reaching towards new generation where the ferroelectric materials take places as the active dielectric layer. The motivation of this study is to produce high capacitance device with long life cycle. This was configured by preparing bilayered films where lead titanate as an active dielectric layer and stacked with the top dielectric layer, poly(vinyledenefluoride-trifluoroethylene). Both of them are being referred that have one in common which is ferroelectric behavior. Therefore the combination of ceramic and polymer ferroelectric material could perform optimum dielectric characteristic for capacitor applications. The fabrication was done by simple sol-gel spin coating method that being varied at spinning speed property for polymer layers, whereas maintaining the ceramic layer. The characterization of PVDF-TrFE/PbTiO3 was performed according to metal-insulator-metal stacked capacitor measurement which includes structural, dielectric, and ferroelectric measurement.
R dump converter without DC link capacitor for an 8/6 SRM: experimental investigation.
Kavitha, Pasumalaithevan; Umamaheswari, Bhaskaran
2015-01-01
The objective of this paper is to investigate the performance of 8/6 switched reluctance motor (SRM) when excited with sinusoidal voltage. The conventional R dump converter provides DC excitation with the help of capacitor. In this paper the converter used is the modified R dump converter without DC link capacitor providing AC or sinusoidal excitation. Torque ripple and speed ripple are investigated based on hysteresis current control. Constant and sinusoidal current references are considered for comparison in both DC and AC excitation. Extensive theoretical and experimental investigations are made to bring out the merits and demerits of AC versus DC excitation. It is shown that the constructionally simple SRM can be favorably controlled with simple R dump converter with direct AC excitation without need for DC link capacitor. A 4-phase 8/6 0.5 kW SRM is used for experimentation.
NASA Astrophysics Data System (ADS)
Le Comte, Annaïg; Reynier, Yvan; Vincens, Christophe; Leys, Côme; Azaïs, Philippe
2017-09-01
Hybrid supercapacitors, combining capacitive carbon-based positive electrode with a Li-ion battery-type negative electrode have been developed in the pursuit of increasing the energy density of conventional supercapacitor without impacting the power density. However, lithium-ion capacitors yet hardly meet the specifications of automotive sector. Herein we report for the first time the development of new hybrid potassium-ion capacitor (KIC) technology. Compared to lithium-ion capacitor (LIC) all strategic materials (lithium and copper) have been replaced. Excellent electrochemical performance have been achieved at a pouch cell scale, with cyclability superior to 55 000 cycles at high charge/discharge regime. For the same cell scale, the energy density is doubled compared to conventional supercapacitor up to high power regime (>1.5 kW kg-1). Finally, the technology was successfully scaled up to 18650 format leading to very promising prospects for transportation applications.
Capacitor-Chain Successive-Approximation ADC
NASA Technical Reports Server (NTRS)
Cunningham, Thomas
2003-01-01
A proposed successive-approximation analog-to-digital converter (ADC) would contain a capacitively terminated chain of identical capacitor cells. Like a conventional successive-approximation ADC containing a bank of binary-scaled capacitors, the proposed ADC would store an input voltage on a sample-and-hold capacitor and would digitize the stored input voltage by finding the closest match between this voltage and a capacitively generated sum of binary fractions of a reference voltage (Vref). However, the proposed capacitor-chain ADC would offer two major advantages over a conventional binary-scaled-capacitor ADC: (1) In a conventional ADC that digitizes to n bits, the largest capacitor (representing the most significant bit) must have 2(exp n-1) times as much capacitance, and hence, approximately 2(exp n-1) times as much area as does the smallest capacitor (representing the least significant bit), so that the total capacitor area must be 2(exp n) times that of the smallest capacitor. In the proposed capacitor-chain ADC, there would be three capacitors per cell, each approximately equal to the smallest capacitor in the conventional ADC, and there would be one cell per bit. Therefore, the total capacitor area would be only about 3(exp n) times that of the smallest capacitor. The net result would be that the proposed ADC could be considerably smaller than the conventional ADC. (2) Because of edge effects, parasitic capacitances, and manufacturing tolerances, it is difficult to make capacitor banks in which the values of capacitance are scaled by powers of 2 to the required precision. In contrast, because all the capacitors in the proposed ADC would be identical, the problem of precise binary scaling would not arise.
Sun, Jie; Fan, Xing; Guo, Weiling; Liu, Lihui; Liu, Xin; Deng, Jun; Xu, Chen
2015-01-01
A capacitor-based circuit model is proposed to explain the electrochemical delamination of two-dimensional materials from their native substrates where produced gas bubbles squeeze into the interface. The delamination is actually the electric breakdown of the capacitor formed between the solution and substrate. To facilitate the procedure, the backside of the ubstrate has to be shielded so that the capacitor breakdown voltage can be reached. The screening effect can be induced either by nonreactive ions around the electrode or, more effectively, by an undetachable insulator. This mechanism serves as a guideline for the surface science and applications involving the bubbling delamination. PMID:26694406
Sun, Jie; Fan, Xing; Guo, Weiling; Liu, Lihui; Liu, Xin; Deng, Jun; Xu, Chen
2015-12-16
A capacitor-based circuit model is proposed to explain the electrochemical delamination of two-dimensional materials from their native substrates where produced gas bubbles squeeze into the interface. The delamination is actually the electric breakdown of the capacitor formed between the solution and substrate. To facilitate the procedure, the backside of the ubstrate has to be shielded so that the capacitor breakdown voltage can be reached. The screening effect can be induced either by nonreactive ions around the electrode or, more effectively, by an undetachable insulator. This mechanism serves as a guideline for the surface science and applications involving the bubbling delamination.
NASA Astrophysics Data System (ADS)
Kim, Won-Ho; Kwon, Jin-Hyuk; Park, Gyeong-Tae; Kim, Jae-Hyun; Bae, Jin-Hyuk; Zhang, Xue; Park, Jaehoon
2014-09-01
Organic ferroelectric capacitors were fabricated using pentacene and poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) as an organic semiconductor and a ferroelectric material, respectively. A paraelectric poly(vinyl cinnamate) layer was adopted as an interlayer between the PVDF-TrFE layer and the bottom electrode. The paraelectric interlayer induced a depolarization field opposite to the direction of the polarization formed in the ferroelectric PVDF-TrFE insulator, thereby suppressing spontaneous polarization. As a result, the Mott-Schottky model could be used to evaluate, from the extracted flat-band voltages, the density of the charge trapped in the organic ferroelectric capacitors.
A Wireless Implantable Switched-Capacitor Based Optogenetic Stimulating System
Lee, Hyung-Min; Kwon, Ki-Yong; Li, Wen
2015-01-01
This paper presents a power-efficient implantable optogenetic interface using a wireless switched-capacitor based stimulating (SCS) system. The SCS efficiently charges storage capacitors directly from an inductive link and periodically discharges them into an array of micro-LEDs, providing high instantaneous power without affecting wireless link and system supply voltage. A custom-designed computer interface in LabVIEW environment wirelessly controls stimulation parameters through the inductive link, and an optrode array enables simultaneous neural recording along with optical stimulation. The 4-channel SCS system prototype has been implemented in a 0.35-μm CMOS process and combined with the optrode array. In vivo experiments involving light-induced local field potentials verified the efficacy of the SCS system. An implantable version of the SCS system with flexible hermetic sealing is under development for chronic experiments. PMID:25570099
Soliton production with nonlinear homogeneous lines
Elizondo-Decanini, Juan M.; Coleman, Phillip D.; Moorman, Matthew W.; ...
2015-11-24
Low- and high-voltage Soliton waves were produced and used to demonstrate collision and compression using diode-based nonlinear transmission lines. Experiments demonstrate soliton addition and compression using homogeneous nonlinear lines. We built the nonlinear lines using commercially available diodes. These diodes are chosen after their capacitance versus voltage dependence is used in a model and the line design characteristics are calculated and simulated. Nonlinear ceramic capacitors are then used to demonstrate high-voltage pulse amplification and compression. The line is designed such that a simple capacitor discharge, input signal, develops soliton trains in as few as 12 stages. We also demonstrated outputmore » voltages in excess of 40 kV using Y5V-based commercial capacitors. The results show some key features that determine efficient production of trains of solitons in the kilovolt range.« less
Infant-mortality testing of high-energy-density capacitors used on Nova
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, B.T.; Whitham, K.
1983-01-01
Nova is a solid-state large laser for inertial-confinement fusion research. Its flashlamps are driven by a 60-MJ capacitor bank. Part of this bank is being built with high-energy-density capacitors, 52-..mu..F, 22 kV, 12.5 kJ. A total of 2645 of these capacitors have been purchased from two manufacturers. Each capacitor was infant-mortality tested. The first test consisted of a high-potential test, bushing-to-case, since these capacitors have dual bushings. Then the capacitors were discharged 500 times with circuit conditions approximating the capacitors normal flashlamp load. Failure of either of these tests or if the capacitor was leaking was cause for rejection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pahuja, Poonam, E-mail: poonampahuja123@gmail.com; Tandon, R. P., E-mail: ram-tandon@hotmail.com
2015-05-15
Multiferroic composites (1-x) Ba{sub 0.95}Sr{sub 0.05}TiO{sub 3} + (x) Ni{sub 0.8}Co{sub 0.2}Fe{sub 2}O{sub 4} (where x = 0.1, 0.2, 0.3, 0.4) has been prepared by solid state reaction method. X-ray diffraction analysis of the composite samples confirmed the presence of both barium strontium titanate (BST) and nickel cobalt ferrite (NCF) phases. FESEM images indicated the well dispersion of NCF grains among BST grains. Dielectric constant and loss of the composite samples decreases with increase in frequency following Maxwell-Wagner relaxation mechanism. Composite sample with highest ferrite content possesses highest values of remanent and saturation magnetization.
Enhance D. C. resistivity of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by acceptor (Mn) doping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hakikat, E-mail: sharmahakikat@yahoo.in; Arya, G. S.; Pramar, Kusum
2015-05-15
In the present work, we prepared Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} and Mn (2 and 3 at % on Ti site) doped Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} ceramic by sol- gel method. The samples were characterized by X-ray diffraction (XRD). The XRD patterns reveled that Mn ions did not change the perovskite structure of BST (70/30). The dielectric measurements proved that dielectric constant decreased with Mn doping. The dc resistivity was studied by using I-V measurements. The dc resistivity of the BST increased with Mn doping, which suppressed the leakage current.
Continuous supercritical synthesis and dielectric behaviour of the whole BST solid solution.
Reverón, H; Elissalde, C; Aymonier, C; Bousquet, C; Maglione, M; Cansell, F
2006-07-28
In this study we show that pure and well crystallized nanoparticles of Ba(x)Sr(1-x)TiO(3) (BST) can be synthesized over the entire range of composition through the hydrolysis and further crystallization of alkoxide precursors under supercritical conditions. To our knowledge, this is the first time that the whole ferroelectric solid solution has been produced in a continuous way, using the same experimental conditions. The composition of the powder can be easily controlled by adjusting the feed solution composition. The powders consist of soft-aggregated monocrystalline nanoparticles with an average particle size ranging from approximately 20 to 40 nm. Ferroelectric ceramics with accurately adjustable Curie temperature (100-390 K) can thus be obtained by sintering.
Nishizawa, K; Izawa, E-I; Watanabe, S
2011-12-01
Large-billed crows (Corvus macrorhynchos), highly social birds, form stable dominance relationships based on the memory of win/loss outcomes of first encounters and on individual discrimination. This socio-cognitive behaviour predicts the existence of neural mechanisms for integration of social behaviour control and individual discrimination. This study aimed to elucidate the neural substrates of memory-based dominance in crows. First, the formation of dominance relationships was confirmed between males in a dyadic encounter paradigm. Next, we examined whether neural activities in 22 focal nuclei of pallium and subpallium were correlated with social behaviour and stimulus familiarity after exposure to dominant/subordinate familiar individuals and unfamiliar conspecifics. Neural activity was determined by measuring expression level of the immediate-early-gene (IEG) protein Zenk. Crows displayed aggressive and/or submissive behaviour to opponents less frequently but more discriminatively in subsequent encounters, suggesting stable dominance based on memory, including win/loss outcomes of the first encounters and individual discrimination. Neural correlates of aggressive and submissive behaviour were found in limbic subpallium including septum, bed nucleus of the striae terminalis (BST), and nucleus taeniae of amygdala (TnA), but also those to familiarity factor in BST and TnA. Contrastingly, correlates of social behaviour were little in pallium and those of familiarity with exposed individuals were identified in hippocampus, medial meso-/nidopallium, and ventro-caudal nidopallium. Given the anatomical connection and neural response patterns of the focal nuclei, neural networks connecting pallium and limbic subpallium via hippocampus could be involved in the integration of individual discrimination and social behaviour control in memory-based dominance in the crow. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Tang, Dianping; Zhang, Bing; Liu, Bingqian; Chen, Guonan; Lu, Minghua
2014-05-15
A new digital multimeter (DMM)-based immunosensing system was designed for quantitative monitoring of biomarker (prostate-specific antigen, PSA used in this case) by coupling with an external capacitor and an enzymatic catalytic reaction. The system consisted of a salt bridge-linked reaction cell and a capacitor/DMM-joined electronic circuit. A sandwich-type immunoreaction with target PSA between the immobilized primary antibody and glucose oxidase (GOx)-labeled detection antibody was initially carried out in one of the two half-cells. Accompanying the sandwiched immunocomplex, the conjugated GOx could catalyze the oxidation of glucose, simultaneously resulting in the conversion of [Fe(CN)6](3-) to [Fe(CN)6](4-). The difference in the concentrations of [Fe(CN)6](3-)/[Fe(CN)6](4-) in two half-cells automatically produced a voltage that was utilized to charge an external capacitor. With the closing circuit switch, the capacitor discharged through the DMM, which could provide a high instantaneous current. Under the optimal conditions, the resulting currents was indirectly proportional to the concentration of target PSA in the dynamic range of 0.05-7 ng mL(-1) with a detection limit (LOD) of 6 pg mL(-1). The reproducibility, precision, and selectivity were acceptable. In addition, the methodology was validated by analyzing 12 clinical serum specimens, receiving a good accordance with the referenced values for the detection of PSA. Copyright © 2013 Elsevier B.V. All rights reserved.
Norbornylene-based polymer systems for dielectric applications
Dirk, Shawn M [Albuquerque, NM; Wheeler, David R [Albuquerque, NM
2012-07-17
A capacitor having at least one electrode pair being separated by a dielectric component, with the dielectric component being made of a polymer such as a norbornylene-containing polymer with a dielectric constant greater than 3 and a dissipation factor less than 0.1 where the capacitor has an operating temperature greater than 100.degree. C. and less than 170.degree. C.
Le, Zaiyuan; Liu, Fang; Nie, Ping; Li, Xinru; Liu, Xiaoyan; Bian, Zhenfeng; Chen, Gen; Wu, Hao Bin; Lu, Yunfeng
2017-03-28
Sodium-ion capacitors can potentially combine the virtues of high power capability of conventional electrochemical capacitors and high energy density of batteries. However, the lack of high-performance electrode materials has been the major challenge of sodium-based energy storage devices. In this work, we report a microwave-assisted synthesis of single-crystal-like anatase TiO 2 mesocages anchored on graphene as a sodium storage material. The architecture of the nanocomposite results in pseudocapacitive charge storage behavior with fast kinetics, high reversibility, and negligible degradation to the micro/nanostructure. The nanocomposite delivers a high capacity of 268 mAh g -1 at 0.2 C, which remains 126 mAh g -1 at 10 C for over 18 000 cycles. Coupling with a carbon-based cathode, a full cell of sodium-ion capacitor successfully demonstrates a high energy density of 64.2 Wh kg -1 at 56.3 W kg -1 and 25.8 Wh kg -1 at 1357 W kg -1 , as well as an ultralong lifespan of 10 000 cycles with over 90% of capacity retention.
Demonstration that a new flow sensor can operate in the clinical range for cerebrospinal fluid flow
Raj, Rahul; Lakshmanan, Shanmugamurthy; Apigo, David; Kanwal, Alokik; Liu, Sheng; Russell, Thomas; Madsen, Joseph R.; Thomas, Gordon A.; Farrow, Reginald C.
2015-01-01
A flow sensor has been fabricated and tested that is capable of measuring the slow flow characteristic of the cerebrospinal fluid in the range from less than 4 mL/h to above 100 mL/h. This sensor is suitable for long-term implantation because it uses a wireless external spectrometer to measure passive subcutaneous components. The sensors are pressure-sensitive capacitors, in the range of 5 pF with an air gap at atmospheric pressure. Each capacitor is in series with an inductor to provide a resonant frequency that varies with flow rate. At constant flow, the system is steady with drift <0.3 mL/h over a month. At variable flow rate, V̇, the resonant frequency, f0, which is in the 200–400 MHz range, follows a second order polynomial with respect to V̇. For this sensor system the uncertainty in measuring f0 is 30 kHz which corresponds to a sensitivity in measuring flow of ΔV̇= 0.6 mL/hr. Pressures up to 20 cm H2O relative to ambient pressure were also measured. An implantable twin capacitor system is proposed that can measure flow, which is fully compensated for all hydrostatic pressures. For twin capacitors, other sources of systematic variation within clinical range, such as temperature and ambient pressure, are smaller than our sensitivity and we delineate a calibration method that should maintain clinically useful accuracy over long times. PMID:26543321
Calculus, Radio Dials and the Straight-Line Frequency Variable Capacitor
ERIC Educational Resources Information Center
Boyadzhiev, Khristo N.
2010-01-01
Most often radio dials of analogue radios are not uniformly graded; the frequencies are cramped on the left side or on the right side. This makes tuning more difficult. Why are dials made this way? We shall see here that simple calculus can help understand this problem and solve it. (Contains 7 figures.)
Liquid electrolyte-free cylindrical Al polymer capacitor review: Materials and characteristics
NASA Astrophysics Data System (ADS)
Yoo, Jeeyoung; Kim, Jaegun; Kim, Youn Sang
2015-06-01
The manufacturing methods for liquid electrolyte-free Al polymer capacitors are introduced by using new materials like novel oxidants, separators and negative current collectors. The Al polymer capacitor is constructed by an Al foil as an anode, Al2O3 as a dielectric, and poly(3, 4-ethylenedioxythiophene) (PEDOT) as a cathode. There are also various synthetic methods of 3, 4-ethylenedioxythiophene (EDOT) and the chemical polymerization of PEDOT from EDOT using iron benzenesulfonate as a new oxidant and dopant. Furthermore, various cathodic current collectors such as conventional Al foils, carbon and titanium dioxide deposited on Al foils or substrates, as well as various separators with manila-esparto paper and synthetic fibers (series of acryl, PET, etc.) are studied. The Al polymer capacitors with the newly introduced oxidant (iron benzenesulfonate), separator (aramid based synthetic fibers) and current collector (TiO2) exhibit considerably enhanced capacitance values and the extremely low resistance (7 mΩ), so there is low power consumption and high reliability. Additionally, the newly developed Al polymer capacitor is guaranteed for 5,000 h at 125 °C, which means there is a long life time operation over ∼ 5 × 106 h at 65 °C.
Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation
Vidal, Jose; Ghovanloo, Maysam
2013-01-01
We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987
NASA Astrophysics Data System (ADS)
Gifford, Kenneth Douglas
Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to ~2times10^ {10} switching cycles), low dc leakage current, and excellent retention are observed in capacitor structures containing polycrystalline PZT (exhibiting dominant (001) and (100) XRD reflections), a Pt-RuO_2 hybrid bottom electrode (Type IA), and an RuO _2 top electrode. These results, and electrical characterization results on capacitors containing co-deposited Pt-RuO_2 hybrid electrodes (Type II), show potential for application of these capacitor structures in NVRAM and DRAM memory devices.
NASA Technical Reports Server (NTRS)
Viterna, Larry A.
1997-01-01
A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.
Variable frequency matching to a radiofrequency source immersed in vacuum
NASA Astrophysics Data System (ADS)
Charles, C.; Boswell, R. W.; Bish, A.
2013-09-01
A low-weight (0.12 kg) low-volume fixed ceramic capacitor impedance matching system is developed for frequency agile tuning of a radiofrequency (rf) Helicon plasma thruster. Three fixed groups of capacitors are directly mounted onto a two loop rf antenna with the thruster immersed in a vacuum chamber. Optimum plasma tuning at the resonance frequency is demonstrated via measurements of the load impedance, power transfer efficiency and plasma density versus driving frequency in the 12.882-14.238 MHz range. The resonance frequency with the plasma on is higher than the resonance frequency in vacuum. The minimum rf power necessary for ignition decreases when the ignition frequency is shifted downwards from the resonance frequency. This development has direct applications in space qualification and space use of rf plasma thrusters.
ERIC Educational Resources Information Center
Trotter, Donald M., Jr.
1988-01-01
Presents a historical backdrop for a discussion of capacitor design and function. Discusses the production, importance, and function of two types of miniature capacitors; electrolytic and multilayer ceramic capacitors. Describes the function of these miniature capacitors in comparison to the Leyden jar, a basic demonstration of capacitance. (CW)
BioCapacitor: A novel principle for biosensors.
Sode, Koji; Yamazaki, Tomohiko; Lee, Inyoung; Hanashi, Takuya; Tsugawa, Wakako
2016-02-15
Studies regarding biofuel cells utilizing biocatalysts such as enzymes and microorganisms as electrocatalysts have been vigorously conducted over the last two decades. Because of their environmental safety and sustainability, biofuel cells are expected to be used as clean power generators. Among several principles of biofuel cells, enzyme fuel cells have attracted significant attention for their use as alternative energy sources for future implantable devices, such as implantable insulin pumps and glucose sensors in artificial pancreas and pacemakers. However, the inherent issue of the biofuel cell principle is the low power of a single biofuel cell. The theoretical voltage of biofuel cells is limited by the redox potential of cofactors and/or mediators employed in the anode and cathode, which are inadequate for operating any devices used for biomedical application. These limitations inspired us to develop a novel biodevice based on an enzyme fuel cell that generates sufficient stable power to operate electric devices, designated "BioCapacitor." To increase voltage, the enzyme fuel cell is connected to a charge pump. To obtain a sufficient power and voltage to operate an electric device, a capacitor is used to store the potential generated by the charge pump. Using the combination of a charge pump and capacitor with an enzyme fuel cell, high voltages with sufficient temporary currents to operate an electric device were generated without changing the design and construction of the enzyme fuel cell. In this review, the BioCapacitor principle is described. The three different representative categories of biodevices employing the BioCapacitor principle are introduced. Further, the recent challenges in the developments of self-powered stand-alone biodevices employing enzyme fuel cells combined with charge pumps and capacitors are introduced. Finally, the future prospects of biodevices employing the BioCapacitor principle are addressed. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
High speed capacitor-inverter based carbon nanotube full adder.
Navi, K; Rashtian, M; Khatir, A; Keshavarzian, P; Hashemipour, O
2010-03-18
Carbon Nanotube filed-effect transistor (CNFET) is one of the promising alternatives to the MOS transistors. The geometry-dependent threshold voltage is one of the CNFET characteristics, which is used in the proposed Full Adder cell. In this paper, we present a high speed Full Adder cell using CNFETs based on majority-not (Minority) function. Presented design uses eight transistors and eight capacitors. Simulation results show significant improvement in terms of delay and power-delay product in comparison to contemporary CNFET Adder Cells. Simulations were carried out using HSPICE based on CNFET model with 0.6 V VDD.
NASA Astrophysics Data System (ADS)
Kiyota, Yuji; Itaka, Kenji; Iwashita, Yuta; Adachi, Tetsuya; Chikyow, Toyohiro; Ogura, Atsushi
2011-06-01
We investigated zirconia (ZrO2)-based material libraries in search of new dielectric materials for dynamic random-access memory (DRAM) by combinatorial-pulsed laser deposition (combi-PLD). We found that the substitution of yttrium (Y) to Zr sites in the ZrO2 system suppressed the leakage current effectively. The metal-insulator-metal (MIM) capacitor property of this system showed a leakage current density of less than 5×10-7 A/cm2 and the dielectric constant was 20. Moreover, the addition of titanium (Ti) or tantalum (Ta) to this system caused the dielectric constant to increase to ˜25 within the allowed leakage level of 5×10-7 A/cm2. Therefore, Zr-Y-Ti-O and Zr-Y-Ta-O systems have good potentials for use as new materials with high dielectric constants of DRAM capacitors instead of silicon dioxides (SiO2).
Caracterisation des mecanismes d'usure en cavitation de revetements HVOF a base de CaviTec
NASA Astrophysics Data System (ADS)
Lavigne, Sebastien
The increasing demand for high performance power conversion systems continuously pushes for improvement in efficiency and power density. This dissertation focuses on a topological effort to efficiently utilize the active and passive devices. In particular, a hybrid approach is adopted, where both capacitors and inductors are used in the voltage conversion and power transfer process. Conventional capacitor-based converters, called switched-capacitor (SC) converters, suffer from poor efficiency due to the inevitable charge redistribution process. With a strategic placement of one or more inductors, the charge redistribution loss can be eliminated by inductively charging/discharging the capacitors, a process called soft-charging operation. As a result, the capacitor size can be greatly reduced without reducing the efficiency. A general analytical framework is presented, which determines whether an arbitrary SC topology is able to achieve full soft-charging operation with a single inductor. For topologies that cannot, a split-phase control technique is introduced, which amends existing two-phase controls to completely eliminate the charge redistribution loss. In addition, alternative placements of inductors are explored to extend the family of hybrid converters. The hybrid converters can have two modes of operation, the fixed-ratio mode and pulse width modulated (PWM) mode. The fixed-conversion-ratio hybrid converters operate in a similar manner to that of a conventional SC converter, with the addition of a soft-charging inductor. The switching frequency of such converters can be adjusted to operate in either zero current switching (ZCS) mode or continuous conduction mode (CCM), which allows for the trade-off of switching loss and conduction loss. It is shown that the capacitor and inductor values can be selected to achieve a minimal passive component volume, which can be significantly smaller than that of a conventional SC converter or a magnetic-based converter. On the other hand, PWM-based hybrid converters generate a PWM rectangular wave as the terminal voltage to the inductor, similar to the operation of a buck converter. In contrast to conventional SC converters, such hybrid converters can achieve lossless and continuous regulation of the output voltage. Compared to buck converters, the required inductor is greatly reduced, as well as the switch stress. A 80-170 V input, 12-24 V output prototype PWM Dickson converter is implemented using GaN switches. The measured peak efficiency is 97%, and high efficiency can be maintained over the entire input and output operating range. In addition, the similarity between multilevel converters (for example, flying capacitor multilevel (FCML) converters) and the PWM-based hybrid SC converters is discussed. Both types of converters can be seen as a hybrid converter which uses both capacitors and inductors for energy transfer. A general framework to compare these converters, along with conventional buck converters, is proposed. In this framework, the power losses (including conduction loss and switching loss) are kept constant, while the total passive component volume is used as the figure of merit. Based on the principle of maximizing energy utilization of passive components, a 7-level FCML converter and an active energy buffer are designed and implemented for single phase dc-ac applications. In addition, the stand-alone system includes a start-up circuitry, EMC filter and auxiliary power supply. The enclosed box achieves a combined power density of 216 W/in3 and an efficiency of 97.4%, and compares favorably against the state-of-the-art designs under the same specification. To further improve the efficiency and power density, soft-switching techniques are investigated and applied on the hybrid converters. A zero voltage switching (ZVS) technique is introduced for both the fixed-ratio mode and the PWM mode operated hybrid converters. The previous hardware prototypes are modified for ZVS operation, and prove the feasibility of simultaneous soft-charging and soft-switching operation. Last but not the least, some of the practical issues associated with the hybrid converter are discussed, such as practical capacitor selection, capacitor voltage balancing and other circuit implementation challenges. Future work based on these topics is given. In summary, these hybrid converters are suited for applications where extreme efficiency and power density are critical. Through efficient utilization of active and passive devices, the hybrid topologies can offer a greater optimization opportunity and ability to take advantage of technology improvement than is possible with conventional designs.
NASA Astrophysics Data System (ADS)
Sharma, Subhash; Singh, Vikash; Anshul, Avneesh; Siqueiros, J. M.; Dwivedi, R. K.
2018-05-01
Multiferroic samples with composition (1-x)BiFeO3-(x)(Ba0.70Sr0.30)TiO3 (BFO-BST) were synthesized using a sol-gel route to study the effect of BST doping on structural, transport, and magnetic properties in BiFeO3 (BFO). X-ray diffraction studies with Rietveld analysis revealed that a phase transition occurred from rhombohedral (R3c) (0.0 ≤ × ≤ 0.15) to tetragonal (P4 mm) for x = 0.20 and nanocrystalline nature confirmed by transmission electron microscopy measurements. Piezoelectric properties improved as x increased from x = 0.0 (58 pC/N) to x = 0.20 (112 pC/N) increasing distortion in the crystal structure as evinced by Williamson-Hall analysis. Ferromagnetism was observed in doped BFO, different from the antiferromagnetic ordering in bulk BFO, indicating the noteworthy size effects and Fe-O-Fe bond angle variations in the magnetic ordering of BFO. An improvement in ferroelectric properties is observed with doping of BST compared to pristine BFO. Thermally activated conduction behavior occurred at low and high temperature regions as revealed by temperature dependent dc resistivity measurement. Effective improvements in dielectric response, meaning high dielectric constant with a low dielectric loss, were found in the doped samples.
High Throughput Biodegradation-Screening Test To Prioritize and Evaluate Chemical Biodegradability.
Martin, Timothy J; Goodhead, Andrew K; Acharya, Kishor; Head, Ian M; Snape, Jason R; Davenport, Russell J
2017-06-20
Comprehensive assessment of environmental biodegradability of pollutants is limited by the use of low throughput systems. These are epitomized by the Organisation for Economic Cooperation and Development (OECD) Ready Biodegradability Tests (RBTs), where one sample from an environment may be used to assess a chemical's ability to readily biodegrade or persist universally in that environment. This neglects the considerable spatial and temporal microbial variation inherent in any environment. Inaccurate designations of biodegradability or persistence can occur as a result. RBTs are central in assessing the biodegradation fate of chemicals and inferring exposure concentrations in environmental risk assessments. We developed a colorimetric assay for the reliable quantification of suitable aromatic compounds in a high throughput biodegradation screening test (HT-BST). The HT-BST accurately differentiated and prioritized a range of structurally diverse aromatic compounds on the basis of their assigned relative biodegradabilities and quantitative structure-activity relationship (QSAR) model outputs. Approximately 20 000 individual biodegradation tests were performed, returning analogous results to conventional RBTs. The effect of substituent group structure and position on biodegradation potential demonstrated a significant correlation (P < 0.05) with Hammett's constant for substituents on position 3 of the phenol ring. The HT-BST may facilitate the rapid screening of 100 000 chemicals reportedly manufactured in Europe and reduce the need for higher-tier fate and effects tests.
Design and performance of a pulse transformer based on Fe-based nanocrystalline core.
Yi, Liu; Xibo, Feng; Lin, Fuchang
2011-08-01
A dry-type pulse transformer based on Fe-based nanocrystalline core with a load of 0.88 nF, output voltage of more than 65 kV, and winding ratio of 46 is designed and constructed. The dynamic characteristics of Fe-based nanocrystalline core under the impulse with the pulse width of several microseconds were studied. The pulse width and incremental flux density have an important effect on the pulse permeability, so the pulse permeability is measured under a certain pulse width and incremental flux density. The minimal volume of the toroidal pulse transformer core is determined by the coupling coefficient, the capacitors of the resonant charging circuit, incremental flux density, and pulse permeability. The factors of the charging time, ratio, and energy transmission efficiency in the resonant charging circuit based on magnetic core-type pulse transformer are analyzed. Experimental results of the pulse transformer are in good agreement with the theoretical calculation. When the primary capacitor is 3.17 μF and charge voltage is 1.8 kV, a voltage across the secondary capacitor of 0.88 nF with peak value of 68.5 kV, rise time (10%-90%) of 1.80 μs is obtained.
Extracting renewable energy from a salinity difference using a capacitor.
Brogioli, Doriano
2009-07-31
Completely renewable energy can be produced by using water solutions of different salinity, like river water and sea water. Many different methods are already known, but development is still at prototype stage. Here I report a novel method, based on electric double-layer capacitor technology. Two porous electrodes, immersed in the salt solution, constitute a capacitor. It is first charged, then the salt solution is brought into contact with fresh water. The electrostatic energy increases as the salt concentration of the solution is reduced due to diffusion. This device can be used to turn sources of salinity difference into completely renewable sources of energy. An experimental demonstration is given, and performances and possible improvements are discussed.
Full-wave receiver architecture for the homodyne motion sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haugen, Peter C.; Dallum, Gregory E.; Welsh, Patrick A.
A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting ofmore » a RF signal received at the receiver input, thereby enhancing receiver sensitivity.« less
Full-wave receiver architecture for the homodyne motion sensor
Haugen, Peter C; Dallum, Gregory E; Welsh, Patrick A; Romero, Carlos E
2013-11-19
A homodyne motion sensor or detector based on ultra-wideband radar utilizes the entire received waveform through implementation of a voltage boosting receiver. The receiver includes a receiver input and a receiver output. A first diode is connected to the receiver output. A first charge storage capacitor is connected from between the first diode and the receiver output to ground. A second charge storage capacitor is connected between the receiver input and the first diode. A second diode is connected from between the second charge storage capacitor and the first diode to ground. The dual diode receiver performs voltage boosting of a RF signal received at the receiver input, thereby enhancing receiver sensitivity.
BioRadioTransmitter: a self-powered wireless glucose-sensing system.
Hanashi, Takuya; Yamazaki, Tomohiko; Tsugawa, Wakako; Ikebukuro, Kazunori; Sode, Koji
2011-09-01
Although an enzyme fuel cell can be utilized as a glucose sensor, the output power generated is too low to power a device such as a currently available transmitter and operating system, and an external power source is required for operating an enzyme-fuel-cell-based biosensing system. We proposed a novel biosensor that we named BioCapacitor, in which a capacitor serves as a transducer. In this study, we constructed a new BioCapacitor-based system with an added radio-transmitter circuit and a miniaturized enzyme fuel cell. A miniaturized direct-electron-transfer-type compartmentless enzyme fuel cell was constructed with flavin adenine dinucleotide-dependent glucose dehydrogenase complex-based anode and a bilirubin-oxidase-based cathode. For construction of a BioRadioTransmitter wireless sensing system, a capacitor, an ultra-low-voltage charge-pump-integrated circuit, and Hartley oscillator circuit were connected to the miniaturized enzyme fuel cell. A radio-receiver circuit, comprising two field-effect transistors and a coil as an antenna, was used to amplify the signal generated from the biofuel cells. Radio wave signals generated by the BioRadioTransmitter were received, amplified, and converted from alternate to direct current by the radio receiver. When the capacitor discharges in the presence of glucose, the BioRadioTransmitter generates a radio wave, which is monitored by a radio receiver connected wirelessly to the sensing device. Magnitude of the radio wave transmission frequency change observed at the radio receiver was correlated to glucose concentration in the fuel cells. We constructed a stand-alone, self-powered, wireless glucose-sensing system called a BioRadioTransmitter by using a radio transmitter in which the radio wave transmission frequency changes with the glucose concentration in the fuel cell. The BioRadioTransmitter is a significant advance toward construction of an implantable continuous glucose monitor. © 2011 Diabetes Technology Society.
Development of capacitive multiplexing circuit for SiPM-based time-of-flight (TOF) PET detector
NASA Astrophysics Data System (ADS)
Choe, Hyeok-Jun; Choi, Yong; Hu, Wei; Yan, Jianhua; Jung, Jin Ho
2017-04-01
There has been great interest in developing a time-of-flight (TOF) PET to improve the signal-to-noise ratio of PET image relative to that of non-TOF PET. Silicon photomultiplier (SiPM) arrays have attracted attention for use as a fast TOF PET photosensor. Since numerous SiPM arrays are needed to construct a modern human PET, a multiplexing method providing both good timing performance and high channel reduction capability is required to develop a SiPM-based TOF PET. The purpose of this study was to develop a capacitive multiplexing circuit for the SiPM-based TOF PET. The proposed multiplexing circuit was evaluated by measuring the coincidence resolving time (CRT) and the energy resolution as a function of the overvoltage using three different capacitor values of 15, 30, and 51 pF. A flood histogram was also obtained and quantitatively assessed. Experiments were performed using a 4× 4 array of 3× 3 mm2 SiPMs. Regarding the capacitor values, the multiplexing circuit using a smaller capacitor value showed the best timing performance. On the other hand, the energy resolution and flood histogram quality of the multiplexing circuit deteriorated as the capacitor value became smaller. The proposed circuit was able to achieve a CRT of 260+/- 4 ps FWHM and an energy resolution of 17.1 % with a pair of 2× 2× 20 mm3 LYSO crystals using a capacitor value of 30 pF at an overvoltage of 3.0 V. It was also possible to clearly resolve a 6× 6 array of LYSO crystals in the flood histogram using the multiplexing circuit. The experiment results indicate that the proposed capacitive multiplexing circuit is useful to obtain an excellent timing performance and a crystal-resolving capability in the flood histogram with a minimal degradation of the energy resolution, as well as to reduce the number of the readout channels of the SiPM-based TOF PET detector.
Method of measuring interface area of activated carbons in condensed phase
NASA Astrophysics Data System (ADS)
Dmitriyev, D. S.; Agafonov, D. V.; Kiseleva, E. A.; Mikryukova, M. A.
2018-01-01
In this work, we investigated the correlation between the heat of wetting of super-capacitor electrode material (activated carbon) with condensed phases (electrolytes based on homologous series of phosphoric acid esters) and the capacity of the supercapacitor. The surface area of the electrode-electrolyte interface was calculated according to the obtained correlations using the conventional formula for calculating the capacitance of a capacitor.
A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link
Lee, Hyung-Min; Ghovanloo, Maysam
2014-01-01
A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35-μm 4-metal 2-poly standard CMOS process in 2.1 mm2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μF capacitors up to ±2 V in 420 μs, achieving a high measured charging efficiency of 82%. PMID:24678284
A Power-Efficient Wireless Capacitor Charging System Through an Inductive Link.
Lee, Hyung-Min; Ghovanloo, Maysam
2013-10-01
A power-efficient wireless capacitor charging system for inductively powered applications has been presented. A bank of capacitors can be directly charged from an ac source by generating a current through a series charge injection capacitor and a capacitor charger circuit. The fixed charging current reduces energy loss in switches, while maximizing the charging efficiency. An adaptive capacitor tuner compensates for the resonant capacitance variations during charging to keep the amplitude of the ac input voltage at its peak. We have fabricated the capacitor charging system prototype in a 0.35- μ m 4-metal 2-poly standard CMOS process in 2.1 mm 2 of chip area. It can charge four pairs of capacitors sequentially. While receiving 2.7-V peak ac input through a 2-MHz inductive link, the capacitor charging system can charge each pair of 1 μ F capacitors up to ±2 V in 420 μ s, achieving a high measured charging efficiency of 82%.
Park, No-Won; Ahn, Jay-Young; Park, Tae-Hyun; Lee, Jung-Hun; Lee, Won-Yong; Cho, Kwanghee; Yoon, Young-Gui; Choi, Chel-Jong; Park, Jin-Seong; Lee, Sang-Kwon
2017-06-01
Recently, significant progress has been made in increasing the figure-of-merit (ZT) of various nanostructured materials, including thin-film and quantum dot superlattice structures. Studies have focused on the size reduction and control of the surface or interface of nanostructured materials since these approaches enhance the thermopower and phonon scattering in quantum and superlattice structures. Currently, bismuth-tellurium-based semiconductor materials are widely employed for thermoelectric (TE) devices such as TE energy generators and coolers, in addition to other sensors, for use at temperatures under 400 K. However, new and promising TE materials with enhanced TE performance, including doped zinc oxide (ZnO) multilayer or superlattice thin films, are also required for designing solid-state TE power generating devices with the maximum output power density and for investigating the physics of in-plane TE generators. Herein, we report the growth of Al 2 O 3 /ZnO (AO/ZnO) superlattice thin films, which were prepared by atomic layer deposition (ALD), and the evaluation of their electrical and TE properties. All the in-plane TE properties, including the Seebeck coefficient (S), electrical conductivity (σ), and thermal conductivity (κ), of the AO/ZnO superlattice (with a 0.82 nm-thick AO layer) and AO/ZnO films (with a 0.13 nm-thick AO layer) were evaluated in the temperature range 40-300 K, and the measured S, σ, and κ were -62.4 and -17.5 μV K -1 , 113 and 847 (Ω cm) -1 , and 0.96 and 1.04 W m -1 K -1 , respectively, at 300 K. Consequently, the in-plane TE ZT factor of AO/ZnO superlattice films was found to be ∼0.014, which is approximately two times more than that of AO/ZnO films (ZT of ∼0.007) at 300 K. Furthermore, the electrical power generation efficiency of the TE energy generator consisting of four couples of n-AO/ZnO superlattice films and p-Bi 0.5 Sb 1.5 Te 3 (p-BST) thin-film legs on the substrate was demonstrated. Surprisingly, the output power of the 100 nm-thick n-AO/ZnO superlattice film/p-BST TE energy generator was determined to be ∼1.0 nW at a temperature difference of 80 K, corresponding to a significant improvement of ∼130% and ∼220% compared to the 100 nm-thick AO/ZnO film/p-BST and n-BT/p-BST film generators, respectively, owing to the enhancement of the TE properties, including the power factor of the superlattice film.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sbrockey, N. M., E-mail: sbrockey@structuredmaterials.com; Tompa, G. S.; Kalkur, T. S.
2016-08-01
A solidly mounted acoustic resonator was fabricated using a Ba{sub 0.60}Sr{sub 0.40}TiO{sub 3} (BST) film deposited by metal organic chemical vapor deposition. The device was acoustically isolated from the substrate using a Bragg reflector consisting of three pairs of Ta{sub 2}O{sub 5}/SiO{sub 2} layers deposited by chemical solution deposition. Transmission electron microscopy verified that the Bragg reflector was not affected by the high temperatures and oxidizing conditions necessary to process high quality BST films. Electrical characterization of the resonator demonstrated a quality factor (Q) of 320 and an electromechanical coupling coefficient (K{sub t}{sup 2}) of 7.0% at 11 V.
NASA Astrophysics Data System (ADS)
Panda, B.; Roy, A.; Dhar, A.; Ray, S. K.
2007-03-01
Polycrystalline Ba1-xSrxTiO3 (BST) thin films with three different compositions have been deposited by radio-frequency magnetron sputtering technique on platinum coated silicon substrates. Samples with buffer and barrier layers for different film thicknesses and processing temperatures have been studied. Crystallite size of BST films has been found to increase with increasing substrate temperature. Thickness dependent dielectric constant has been studied and discussed in the light of an interfacial dead layer and the finite screening length of the electrode. Ferroelectric properties of the films have also been studied for various deposition conditions. The electrical resistivity of the films measured at different temperatures shows a positive temperature coefficient of resistance under a constant bias voltage.
Elastic resistance change and action potential generation of non-faradaic Pt/TiO2/Pt capacitors.
Lim, Hyungkwang; Jang, Ho Won; Lee, Doh-Kwon; Kim, Inho; Hwang, Cheol Seong; Jeong, Doo Seok
2013-07-21
Electric current in the mixed ionic-electronic conductor TiO2 is hysteretic, i.e. history-dependent, and its use is versatile in electronic devices. Nowadays, biologically inspired, analogue-type computing systems, known as neuromorphic systems, are being actively investigated owing to their new and intriguing physical concepts. The realization of artificial synapses is important for constructing neuromorphic systems. In mammalians' brains, the plasticity of synapses between neighbouring nerve cells arises from action potential firing. Emulating action potential firing via inorganic systems has therefore become important in neuromorphic engineering. In this work, the current-voltage hysteresis of TiO2-based non-faradaic capacitors is investigated to primarily focus on the correlation between the blocking contact and the elasticity, i.e. non-plasticity, of the capacitors' resistance change, in experimental and theoretical methods. The similarity between the action potential firing behaviour in nerve cells and the elasticity of the non-faradaic capacitors is addressed.
Effect of Post-HALT Annealing on Leakage Currents in Solid Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2010-01-01
Degradation of leakage currents is often observed during life testing of tantalum capacitors and is sometimes attributed to the field-induced crystallization in amorphous anodic tantalum pentoxide dielectrics. However, degradation of leakage currents and the possibility of annealing of degraded capacitors have not been investigated yet. In this work the effect of annealing after highly accelerated life testing (HALT) on leakage currents in various types of solid tantalum capacitors was analyzed. Variations of leakage currents with time during annealing at temperatures from 125 oC to 180 oC, thermally stimulated depolarization (TSD) currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. Annealing resulted in a gradual decrease of leakage currents and restored their initial values. Repeat HALT after annealing resulted in reproducible degradation of leakage currents. The observed results are explained based on ionic charge instability (drift/diffusion of oxygen vacancies) in the tantalum pentoxide dielectrics using a modified Schottky conduction mechanism.
Fabrication of PVDF-TrFE based bilayered PbTiO{sub 3}/PVDF-TrFE films capacitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurbaya, Z., E-mail: nurbayazainal@gmail.com; Razak School of Engineering and Advanced Technology, Universiti Teknologi Malaysia, 54100 Kuala Lumpur; Wahid, M. H.
2016-07-06
Development of high performance capacitor is reaching towards new generation where the ferroelectric materials take places as the active dielectric layer. The motivation of this study is to produce high capacitance device with long life cycle. This was configured by preparing bilayered films where lead titanate as an active dielectric layer and stacked with the top dielectric layer, poly(vinyledenefluoride-trifluoroethylene). Both of them are being referred that have one in common which is ferroelectric behavior. Therefore the combination of ceramic and polymer ferroelectric material could perform optimum dielectric characteristic for capacitor applications. The fabrication was done by simple sol-gel spin coatingmore » method that being varied at spinning speed property for polymer layers, whereas maintaining the ceramic layer. The characterization of PVDF-TrFE/PbTiO3 was performed according to metal-insulator-metal stacked capacitor measurement which includes structural, dielectric, and ferroelectric measurement.« less
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Capacitors. 173.176 Section 173.176 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.176 Capacitors. (a) Capacitors, including capacitors containing an electrolyte that does not meet the definition of any hazard...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Capacitors. 173.176 Section 173.176 Transportation... PACKAGINGS Non-bulk Packaging for Hazardous Materials Other Than Class 1 and Class 7 § 173.176 Capacitors. (a) Capacitors, including capacitors containing an electrolyte that does not meet the definition of any hazard...
Physical and Electrical Characterization of Aluminum Polymer Capacitors
NASA Technical Reports Server (NTRS)
Liu, David; Sampson, Michael J.
2010-01-01
Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.
Physical and Electrical Characterization of Polymer Aluminum Capacitors
NASA Technical Reports Server (NTRS)
Liu, David; Sampson, Michael J.
2010-01-01
Polymer aluminum capacitors from several manufacturers with various combinations of capacitance, rated voltage, and ESR values were physically examined and electrically characterized. The physical construction analysis of the capacitors revealed three different capacitor structures, i.e., traditional wound, stacked, and laminated. Electrical characterization results of polymer aluminum capacitors are reported for frequency-domain dielectric response at various temperatures, surge breakdown voltage, and other dielectric properties. The structure-property relations in polymer aluminum capacitors are discussed.
PRECISION INTEGRATOR FOR MINUTE ELECTRIC CURRENTS
Hemmendinger, A.; Helmer, R.J.
1961-10-24
An integrator is described for measuring the value of integrated minute electrical currents. The device consists of a source capacitor connected in series with the source of such electrical currents, a second capacitor of accurately known capacitance and a source of accurately known and constant potential, means responsive to the potentials developed across the source capacitor for reversibly connecting the second capacitor in series with the source of known potential and with the source capacitor and at a rate proportional to the potential across the source capacitor to maintain the magnitude of the potential across the source capacitor at approximately zero. (AEC)
Silicon-Based Lithium-Ion Capacitor for High Energy and High Power Application
NASA Technical Reports Server (NTRS)
Wu, James J.; Demattia, Brianne; Loyselle, Patricia; Reid, Concha; Kohout, Lisa
2017-01-01
Si-based Li-ion capacitor has been developed and demonstrated. The results show it is feasible to improve both power density and energy density in this configuration. The applied current density impacts the power and energy density: low current favors energy density while high current favors power density. Active carbon has a better rate capability than Si. Next StepsFuture Directions. Si electrode needs to be further studied and improved. Further optimization of SiAC ratio and evaluation of its impact on energy density and power density.
Transient Response of a Second Order System Using State Variables.
ERIC Educational Resources Information Center
LePage, Wilbur R.
This programed booklet is designed for the engineering student who is familiar with the techniques of integral calculus and electrical networks. The booklet teaches how to determine the current and voltages across a resistor, inductor, and capacitor after the switch in a network has been closed. This is a classical problem in engineering, the…
Hot Thermal Storage in a Variable Power, Renewable Energy System
2014-06-01
vehicle PV photovoltaic SCES super capacitors energy storage SPIDERS Smart Power Infrastructure Demonstration for Energy Reliability TE thermoelectric ...4 Figure 3. Photovoltaic solar resources of the United States, from [24]. ...........................9 Figure 4. Annual...collectors, solar photovoltaic collectors and small wind turbines coupled with facility suitable thermal storage systems. D. LITERATURE REVIEW The
Wirelessly Interrogated Position or Displacement Sensors
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Taylor, Bryant D.
2007-01-01
Two simple position or displacement sensors based on inductance-capacitance resonant circuits have been conceived. These sensors are both powered and interrogated without use of wires and without making contact with other objects. Instead, excitation and interrogation are accomplished by means of a magnetic-field-response recorder. Both of the present position or displacement sensors consist essentially of variable rectangular parallel-plate capacitors electrically connected in series with fixed inductors. Simple inductance-capacitance circuits of the type used in these sensors are inherently robust; their basic mode of operation does not depend on maintenance of specific environmental conditions. Hence, these sensors can be used under such harsh conditions as cryogenic temperatures, high pressures, and radioactivity.
Helldal, Lisa; Karami, Nahid; Welinder-Olsson, Christina; Moore, Edward R B; Åhren, Christina
2017-01-06
To identify the spread of nosocomial infections and halt outbreak development caused by Escherichia coli that carry multiple antibiotic resistance factors, such as extended-spectrum beta-lactamases (ESBLs) and carbapenemases, is becoming demanding challenges due to the rapid global increase and constant and increasing influx of these bacteria from the community to the hospital setting. Our aim was to assess a reliable and rapid typing protocol for ESBL-E. coli, with the primary focus to screen for possible clonal relatedness between isolates. All clinical ESBL-E. coli isolates, collected from hospitals (n = 63) and the community (n = 41), within a single geographical region over a 6 months period, were included, as well as clinical isolates from a polyclonal outbreak (ST131, n = 9, and ST1444, n = 3). The sporadic cases represented 36 STs, of which eight STs dominated i.e. ST131 (n = 33 isolates), ST648 (n = 10), ST38 (n = 9), ST12 and 69 (each n = 4), ST 167, 405 and 372 (each n = 3). The efficacy of multiple-locus variable number tandem repeat analysis (MLVA) was evaluated using three, seven or ten loci, in comparison with that of pulsed-field gel electrophoresis (PFGE) and multi locus sequence typing (MLST). MLVA detected 39, 55 and 60 distinct types, respectively, using three (GECM-3), seven (GECM-7) or ten (GECM-10) loci. For GECM-7 and -10, 26 STs included one type and eleven STs each included several types, the corresponding numbers for GECM-3 were 29 and 8. The highest numbers were seen for ST131 (7,7 and 8 types, respectively), ST38 (5,5,8) and ST648 (4,5,5). Good concordance was observed with PFGE and GECM-7 and -10, despite fewer types being identified with MLVA; 78 as compared to 55 and 60 types. The lower discriminatory power of MLVA was primarily seen within the O25b-ST131 lineage (n = 34) and its H30-Rx subclone (n = 21). Epidemiologically unrelated O25b-ST131 isolates were clustered with O25b-ST131 outbreak isolates by MLVA, whereas the ST1444 outbreak isolates were accurately distinguished from unrelated isolates. MLVA, even when using only three loci, represents an easy initial typing tool for epidemiological screening of ESBL-E. coli. For the ST131-O25b linage, complementary methods may be needed to obtain sufficient resolution.
NASA Technical Reports Server (NTRS)
Williams, J. F.; Wiedeman, D. H.
1973-01-01
This investigation describes the capacitor failures and to identify the cause of the failure mechanism. Early failures were thought to have happened because of age and/or abuse since the failed capacitors were dated 1967. It is shown that all 1967 capacitors were replaced with 1972 capacitors.
High Temperature Evaluation of Tantalum Capacitors - Test 1
Cieslewski, Grzegorz
2014-09-28
Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.
Effect of Compressive Stresses on Leakage Currents in Microchip Tantalum Capacitors
NASA Technical Reports Server (NTRS)
Teverovsky, Alexander
2012-01-01
Microchip tantalum capacitors are manufactured using new technologies that allow for production of small size capacitors (down to EIA case size 0402) with volumetric efficiency much greater than for regular chip capacitors. Due to a small size of the parts and leadless design they might be more sensitive to mechanical stresses that develop after soldering onto printed wiring boards (PWB) compared to standard chip capacitors. In this work, the effect of compressive stresses on leakage currents in capacitors has been investigated in the range of stresses up to 200 MPa. Significant, up to three orders of magnitude, variations of currents were observed after the stress exceeds a certain critical level that varied from 10 MPa to 180 MPa for capacitors used in this study. A stress-induced generation of electron traps in tantalum pentoxide dielectric is suggested to explain reversible variations of leakage currents in tantalum capacitors. Thermo-mechanical characteristics of microchip capacitors have been studied to estimate the level of stresses caused by assembly onto PWB and assess the risk of stress-related degradation and failures. Keywords: tantalum capacitors, leakage current, soldering, reliability, mechanical stress.
NASA Astrophysics Data System (ADS)
Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi
2016-09-01
We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.
Eiler, William J A; June, Harry L
2007-06-01
The dopamine (DA) mesolimbic pathway, which originates from DA cell bodies within the ventral tegmental area (VTA), has been shown by various studies to play a role in the mediation of various drugs of abuse including alcohol (EtOH). It has been suggested that the VTA's control of EtOH reward is mediated in part by the D2 receptors within the VTA. These receptors may be under the regulation of reciprocal GABAergic inputs from forebrain components of the mesolimbic path such as the nucleus accumbens (NAcc), a classic EtOH reward substrate, and the bed nucleus of the stria terminalis, a substrate recently implicated in EtOH reinforcement, forming a self-regulating feedback loop. To test this hypothesis, D2 regulation of EtOH self-administration (SA) was evaluated by the microinfusion of the D2 antagonist eticlopride into the VTA of P rats, which produced profound reductions in EtOH SA in the highest (20.0 and 40.0microg) doses tested in both BST/VTA and NAcc/VTA implanted P rats. To determine the role of GABA in the mediation of EtOH SA, a 32.0ng dose the non-selective GABA antagonist SR 95531 was microinfused into the BST producing no effect on responding for EtOH and into the NAcc which lead to a reduction in EtOH responding. Finally, the hypothesis that GABA innervation of the VTA from the mesolimbic forebrain may influence EtOH SA was examined by the simultaneous infusion of eticlopride (40.0microg) into the VTA and SR 95531 (32.0ng) into either the BST or NAcc. This combination infusion completely attenuated the reduction in EtOH SA observed with the 40.0microg dose of eticlopride alone in both groups of animals. These results suggest that while the D2 receptors within the VTA regulate EtOH-motivated behaviors, this is modulated by GABAergic input from the mesolimbic forebrain, specifically from the BST and NAcc.
El-Badawy, Mohamed F; Tawakol, Wael M; Maghrabi, Ibrahim A; Mansy, Moselhy S; Shohayeb, Mohamed M; Ashour, Mohammed S
2017-09-01
The extensive use of β-lactam antibiotics has led to emergence and spread of extended-spectrum β-lactamases (ESBLs). This study was conducted to investigate the prevalence of 7 different ESBL genes (bla TEM , bla SHV , bla CTX-M , bla VEB , bla PER , bla GES , and bla OXA-10 ) and O25b-ST131 high-risk clone among 61 clinical isolates of Escherichia coli. Also, one broad-spectrum β-lactamase (bla OXA-1 ) was investigated. This study was also constructed to evaluate iodometric overlay method in detection of ESBL production. Phenotypic identification of E. coli isolates using API 20E revealed 18 distinct biotypes. DNA fingerprinting using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) differentiated all isolates into 2 main phylogenetic groups with 60 distinct genetic profiles. Elevated values of minimal inhibitory concentration (MIC) 50 and MIC 90 for third- and fourth-generation cephalosporins were observed. Phenotypic tests revealed that 85.24% of isolates were ESBL producers. The incidence rates of bla TEM , bla SHV , bla CTX-M , bla GES , bla OXA-1 , and bla OXA-10 among E. coli ESBL producer phenotype were 69.23%, 25%, 96.15%, 3.85%, 11.54%, and 48%, respectively. On the other hand, bla VEB and bla PER were not detected. Sequencing of bla TEM and bla SHV revealed that bla TEM-214 and bla SHV-11 were the most prevalent variants. Group characterization of bla CTX-M revealed that bla CTX-M-1 was the most prevalent group of bla CTX-M family. It was found that 30.77% of E. coli ESBL producers belonged to O25b-ST131 clone harboring bla CTX-M-15 . This study concluded that iodometric overlay method was 100% sensitive in detection of ESBL production. To our knowledge, this is the first Egyptian study that declares the emergence of E. coli O25b-ST131 harboring bla GES .
Matsumura, Y; Nagao, M; Iguchi, M; Yagi, T; Komori, T; Fujita, N; Yamamoto, M; Matsushima, A; Takakura, S; Ichiyama, S
2013-02-01
Plasmid-mediated AmpC β-lactamase-producing Escherichia coli (AmpC-E) bacteraemia was characterized by comparison with bacteraemia caused by extended-spectrum β-lactamase (ESBL)-producing E. coli (ESBL-E) and non-resistant E. coli (NR-E) in the era of the worldwide spread of the CTX-M-15-producing O25b-ST131-B2 clone. Of 706 bloodstream E. coli isolates collected between 2005 and 2010 in three Japanese university hospitals, 111 ESBL screening-positive isolates were analysed for AmpC and ESBL genes by PCR. A case-control study was performed in which the cases consisted of all of the patients with AmpC-E bacteraemia. Phylogenetic groups, sequence types and O25b serotype were determined. Twenty-seven AmpC-E isolates (26 of which were of the CMY-2 type) were identified, and 54 ESBL-E and 54 NR-E isolates were selected for the controls. Nineteen AmpC-E isolates were also positive for ESBL. CTX-M-14 was the most prevalent ESBL type among both the AmpC-E and ESBL-E isolates. The O25b-ST131-B2 clone was the most prevalent among the ESBL-E isolates (26%) and the second most prevalent among the NR-E isolates (13%), but only one O25b-ST131-B2 clone was found among the AmpC-E isolates. Twenty-three different sequence types were identified among the AmpC-E isolates. When compared with bacteraemia with ESBL-E, previous isolation of multidrug-resistant bacteria and intravascular catheterization were independently associated with a lower risk for AmpC-E. When compared with NR-E bacteraemia, prior use of antibiotics was the only significant risk factor for AmpC-E. Unlike the spread of the O25b-ST131-B2 clone between ESBL-E and NR-E, the AmpC-E isolates were not dominated by any specific clone. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.
Shen, Laifa; Lv, Haifeng; Chen, Shuangqiang; Kopold, Peter; van Aken, Peter A; Wu, Xiaojun; Maier, Joachim; Yu, Yan
2017-07-01
Lithium ion capacitors are new energy storage devices combining the complementary features of both electric double-layer capacitors and lithium ion batteries. A key limitation to this technology is the kinetic imbalance between the Faradaic insertion electrode and capacitive electrode. Here, we demonstrate that the Li 3 VO 4 with low Li-ion insertion voltage and fast kinetics can be favorably used for lithium ion capacitors. N-doped carbon-encapsulated Li 3 VO 4 nanowires are synthesized through a morphology-inheritance route, displaying a low insertion voltage between 0.2 and 1.0 V, a high reversible capacity of ≈400 mAh g -1 at 0.1 A g -1 , excellent rate capability, and long-term cycling stability. Benefiting from the small nanoparticles, low energy diffusion barrier and highly localized charge-transfer, the Li 3 VO 4 /N-doped carbon nanowires exhibit a high-rate pseudocapacitive behavior. A lithium ion capacitor device based on these Li 3 VO 4 /N-doped carbon nanowires delivers a high energy density of 136.4 Wh kg -1 at a power density of 532 W kg -1 , revealing the potential for application in high-performance and long life energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An aqueous electrolyte of the widest potential window and its superior capability for capacitors.
Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul
2017-03-21
A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO 2 and Fe 3 O 4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg -1 , which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts.
Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon.
Pech, David; Brunet, Magali; Durou, Hugo; Huang, Peihua; Mochalin, Vadym; Gogotsi, Yury; Taberna, Pierre-Louis; Simon, Patrice
2010-09-01
Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s(-1), which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.
Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon
NASA Astrophysics Data System (ADS)
Pech, David; Brunet, Magali; Durou, Hugo; Huang, Peihua; Mochalin, Vadym; Gogotsi, Yury; Taberna, Pierre-Louis; Simon, Patrice
2010-09-01
Electrochemical capacitors, also called supercapacitors, store energy in two closely spaced layers with opposing charges, and are used to power hybrid electric vehicles, portable electronic equipment and other devices. By offering fast charging and discharging rates, and the ability to sustain millions of cycles, electrochemical capacitors bridge the gap between batteries, which offer high energy densities but are slow, and conventional electrolytic capacitors, which are fast but have low energy densities. Here, we demonstrate microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume that are an order of magnitude higher. We also measured discharge rates of up to 200 V s-1, which is three orders of magnitude higher than conventional supercapacitors. The microsupercapacitors are produced by the electrophoretic deposition of a several-micrometre-thick layer of nanostructured carbon onions with diameters of 6-7 nm. Integration of these nanoparticles in a microdevice with a high surface-to-volume ratio, without the use of organic binders and polymer separators, improves performance because of the ease with which ions can access the active material. Increasing the energy density and discharge rates of supercapacitors will enable them to compete with batteries and conventional electrolytic capacitors in a number of applications.
An aqueous electrolyte of the widest potential window and its superior capability for capacitors
Tomiyasu, Hiroshi; Shikata, Hirokazu; Takao, Koichiro; Asanuma, Noriko; Taruta, Seiichi; Park, Yoon-Yul
2017-01-01
A saturated aqueous solution of sodium perchlorate (SSPAS) was found to be electrochemically superior, because the potential window is remarkably wide to be approximately 3.2 V in terms of a cyclic voltammetry. Such a wide potential window has never been reported in any aqueous solutions, and this finding would be of historical significance for aqueous electrolyte to overcome its weak point that the potential window is narrow. In proof of this fact, the capability of SSPAS was examined for the electrolyte of capacitors. Galvanostatic charge-discharge measurements showed that a graphite-based capacitor containing SSPAS as an electrolyte was stable within 5% deviation for the 10,000 times repetition at the operating voltage of 3.2 V without generating any gas. The SSPAS worked also as a functional electrolyte in the presence of an activated carbon and metal oxides in order to increase an energy density. Indeed, in an asymmetric capacitor containing MnO2 and Fe3O4 mixtures in the positive and negative electrodes, respectively, the energy density enlarged to be 36.3 Whkg−1, which belongs to the largest value in capacitors. Similar electrochemical behaviour was also confirmed in saturated aqueous solutions of other alkali and alkaline earth metal perchlorate salts. PMID:28322349
Andrews, W.H. Jr.
1984-08-01
A capacitance measuring circuit is provided in which an unknown capacitance is measured by comparing the charge stored in the unknown capacitor with that stored in a known capacitance. Equal and opposite voltages are repetitively simultaneously switched onto the capacitors through an electronic switch driven by a pulse generator to charge the capacitors during the ''on'' portion of the cycle. The stored charge is compared by summing discharge currents flowing through matched resistors at the input of a current sensor during the ''off'' portion of the switching cycle. The net current measured is thus proportional to the difference in value of the two capacitances. The circuit is capable of providing much needed accuracy and stability to a great variety of capacitance-based measurement devices at a relatively low cost.
NASA Technical Reports Server (NTRS)
Nevin, J. H.
1983-01-01
Construction, capacitance and dissipation factor, and electrode materials for single layer capacitors are discussed. Basic construction, phosphosilicate glass, ten layer capacitors, twenty layer capacitors, stress measurements, buffered oxide layers, and 30 layer capacitors are also discussed. Spin-on phosphosilicate glass is addressed. Polymers as dielectric materials are also considered.
Arrangement for damping the resonance in a laser diode
NASA Technical Reports Server (NTRS)
Katz, J.; Yariv, A.; Margalit, S. (Inventor)
1985-01-01
An arrangement for damping the resonance in a laser diode is described. This arrangement includes an additional layer which together with the conventional laser diode form a structure (35) of a bipolar transistor. Therein, the additional layer serves as the collector, the cladding layer next to it as the base, and the active region and the other cladding layer as the emitter. A capacitor is connected across the base and the collector. It is chosen so that at any frequency above a certain selected frequency which is far below the resonance frequency the capacitor impedance is very low, effectively shorting the base to the collector.
Ultrathin Graphene Membranes as Flexible Electrodes for Electrochemical Double Layer Capacitors
NASA Astrophysics Data System (ADS)
Talapatra, Saikat; Kar, Swastik; Shah, Rakesh; Ghosh, Sujoy; An, Xiaohong; Simmons, Trevor; Washington, Morris; Nayak, Saroj
2010-03-01
We will present the results of our investigations of electrochemical double layer capacitors (EDLCs) or supercapacitors (SC) fabricated using graphene based ultra thin membranes. These EDLC's show far superior performance compared to other carbon nanomaterials based EDLC's devices. We found that the graphene based devices possess specific capacitance values as high as 120 F/g, with impressive power densities (˜105 kW/kg) and energy densities (˜9.2 Wh/kg). Further, these devices indicated rapid charge transfer response even without the use of any binders or specially prepared current collectors. Our ultracapacitors reflect a significant improvement over previously reported graphene-based ultracapacitors and are substantially better than those obtained with carbon nanotubes.
NASA Astrophysics Data System (ADS)
Xue, F.; Gao, W.; Duan, Y.; Zheng, R.; Hu, Y.
2018-02-01
This paper presents a 12-bit pipelined successive approximation register (SAR) ADC for CZT-based hard X-ray Imager. The proposed ADC is comprised of a first-stage 6-bit SAR-based Multiplying Digital Analog Converter (MDAC) and a second-stage 8-bit SAR ADC. A novel MDAC architecture using Vcm-based Switching method is employed to maximize the energy efficiency and improve the linearity of the ADC. Moreover, the unit-capacitor array instead of the binary-weighted capacitor array is adopted to improve the conversion speed and linearity of the ADC in the first-stage MDAC. In addition, a new layout design method for the binary-weighted capacitor array is proposed to reduce the capacitor mismatches and make the routing become easier and less-time-consuming. Finally, several radiation-hardened-by-design technologies are adopted in the layout design against space radiation effects. The prototype chip was fabricated in 0.18 μm mixed-signal 1.8V/3.3V process and operated at 1.8 V supply. The chip occupies a core area of only 0.58 mm2. The proposed pipelined SAR ADC achieves a peak signal-to-noise-and-distortion ratio (SNDR) of 66.7 dB and a peak spurious-free dynamic range (SFDR) of 78.6 dB at 10 MS/s sampling rate and consumes 10 mW. The figure of merit (FOM) of the proposed ADC is 0.56 pJ/conversion-step.
A 800 kV compact peaking capacitor for nanosecond generator.
Jia, Wei; Chen, Zhiqiang; Tang, Junping; Chen, Weiqing; Guo, Fan; Sun, Fengrong; Li, Junna; Qiu, Aici
2014-09-01
An extremely compact high voltage peaking capacitor is developed. The capacitor has a pancake structure with a diameter of 315 mm, a thickness of 59 mm, and a mass of 6.1 kg. The novel structural design endows the capacitor with a better mechanical stability and reliability under hundreds of kilovolts pulse voltage and an inner gas pressure of more than 1.5 MPa. The theoretical value of the capacitor self-inductance is near to 17 nH. Proved by series of electrical experiments, the capacitor can endure a high-voltage pulse with a rise time of about 20 ns, a half-width duration of around 25 ns, and an amplitude of up to 800 kV in a single shot model. When the capacitor was used in an electromagnetic pulse simulator as a peaking capacitor, the rise time of the voltage pulse can be reduced from 20 ns to less than 3 ns. The practical value of the capacitor's inductance deduced from the experimental date is no more than 25 nH.
A compact 100 kV high voltage glycol capacitor.
Wang, Langning; Liu, Jinliang; Feng, Jiahuai
2015-01-01
A high voltage capacitor is described in this paper. The capacitor uses glycerol as energy storage medium, has a large capacitance close to 1 nF, can hold off voltages of up to 100 kV for μs charging time. Allowing for low inductance, the capacitor electrode is designed as coaxial structure, which is different from the common structure of the ceramic capacitor. With a steady capacitance at different frequencies and a high hold-off voltage of up to 100 kV, the glycol capacitor design provides a potential substitute for the ceramic capacitors in pulse-forming network modulator to generate high voltage pulses with a width longer than 100 ns.
The design and implementation of on-line monitoring system for UHV compact shunt capacitors
NASA Astrophysics Data System (ADS)
Tao, Weiliang; Ni, Xuefeng; Lin, Hao; Jiang, Shengbao
2017-08-01
Because of the large capacity and compact structure of the UHV compact shunt capacitor, it is difficult to take effective measures to detect and prevent the faults. If the fault capacitor fails to take timely maintenance, it will pose a threat to the safe operation of the system and the life safety of the maintenance personnel. The development of UHV compact shunt capacitor on-line monitoring system can detect and record the on-line operation information of UHV compact shunt capacitors, analyze and evaluate the early fault warning signs, find out the fault capacitor or the capacitor with fault symptom, to ensure safe and reliable operation of the system.