Science.gov

Sample records for btp supported liquid

  1. Selective recovery of minor trivalent actinides from high level liquid waste by R-BTP/SiO2-P adsorbents

    NASA Astrophysics Data System (ADS)

    Sano, Yuichi; Surugaya, Naoki; Yamamoto, Masahiko

    2010-03-01

    Concerning the selective recovery of minor trivalent actinides (MA(III) = Am(III) and Cm(III)) from high level liquid waste (HLLW) by extraction chromatography, adsorption and elution behaviours of MA(III) and fission products (FP) in a nitric acid media were studied using iHex-BTP/SiO2-P adsorbents, which is expected to show high adsorption affinity for MA(III) even in concentrated HNO3 solution, such as HLLW. In the batch experiments, Pd showed strong adsorption on iHex-BTP/SiO2-P adsorbents under any concentration of HNO3. The MA(III) and heavy Ln(III) (Sm(III), Eu(III) and Gd(III)) were also adsorbed at the condition of high HNO3 concentration, but they showed no adsorption under low HNO3concentration. The separation factor for MA(III)/heavy Ln(III) took the maximum value (over 100) at around 1mol/dm3 HNO3. It was difficult to elute MA(III) or heavy Ln(III) selectively by HNO3 from the iHex-BTP/SiO2-P adsorbents degradated by γ-ray irradiation. The chromatographic separation of real HLLW by an iHex-BTP/SiO2-P column showed that MA(III) could be recovered selectively by adjusting the acidity of the feed solution, i.e. HLLW, to 1mol/dm3 and using H2O as eluant. The adsorption of Pd(II) can be decreased by the addition of appropriate complexing reagents, e.g. DTPA, into HLLW without any effects on the MA(III) adsorption.

  2. Supported liquid membranes

    SciTech Connect

    Danesi, P.R.

    1984-01-01

    The possibility of utilizing thin layers of organic solutions of solvent extraction reagents, immobilized on microporous inert supports interposed between two aqueous solutions, for selectively removing metal ions from a mixture represents an attractive alternative to liquid-liquid extraction. A detailed knowledge of the liquid-liquid extraction equilibria and mass transfer kinetics is required to understand and to describe quantitatively the rate laws which control the permeation of metal species through Supported Liquid Membranes (SLM) and to exploit them for separation processes. This paper attempts to understand the mechanism of transport through SLM.

  3. Role of the deposition temperature on the self-assembly of the non-planar molecule benzene-1,3,5-triphosphonic acid (BTP) at the liquid-solid interface.

    PubMed

    Nguyen, Doan Chau Yen; Smykalla, Lars; Nguyen, Thi Ngoc Ha; Mehring, Michael; Hietschold, Michael

    2016-09-21

    Benzene-1,3,5-triphosphonic acid (BTP) contains three non-planar phosphonic acid groups which enable three-dimensional hydrogen bonding. Because of these versatile 3D functional groups, BTP is an interesting intermediate to design both 2D and 3D supramolecular hydrogen-bonded architectures and organic-inorganic hybrid frameworks. However, the adsorption of BTP has surprisingly not been the subject of scanning tunneling microscopy (STM) investigations so far. Here a STM study of the adsorption pattern of BTP as obtained from deposition out of a solution in undecanol on an interface to highly-oriented pyrolytic graphite (HOPG) is presented. Furthermore, the influence of the substrate temperature during the deposition from solution on the self-assembly is investigated. High-resolution STM images reveal that the BTB molecules usually form various structures by co-adsorption with undecanol and that the BTP molecules as parts of self-assembled aggregates adsorb with their benzene ring planes tilted with respect to the substrate plane. The specific supramolecular pattern and the 2D packing density of BTP can be precisely tuned by adjusting the initial substrate temperature during deposition. The experimental results are compared to corresponding model structures obtained from semi-empirical simulations and explained by the influence of temperature on the concentration at the solution-solid interface and the kinetics of the self-assembly process. Based on these results, the control of the deposition substrate temperature has been proven to be a versatile tool to control the polymorphism of molecular patterns deposited out of solutions. PMID:27530556

  4. Role of the deposition temperature on the self-assembly of the non-planar molecule benzene-1,3,5-triphosphonic acid (BTP) at the liquid-solid interface.

    PubMed

    Nguyen, Doan Chau Yen; Smykalla, Lars; Nguyen, Thi Ngoc Ha; Mehring, Michael; Hietschold, Michael

    2016-09-21

    Benzene-1,3,5-triphosphonic acid (BTP) contains three non-planar phosphonic acid groups which enable three-dimensional hydrogen bonding. Because of these versatile 3D functional groups, BTP is an interesting intermediate to design both 2D and 3D supramolecular hydrogen-bonded architectures and organic-inorganic hybrid frameworks. However, the adsorption of BTP has surprisingly not been the subject of scanning tunneling microscopy (STM) investigations so far. Here a STM study of the adsorption pattern of BTP as obtained from deposition out of a solution in undecanol on an interface to highly-oriented pyrolytic graphite (HOPG) is presented. Furthermore, the influence of the substrate temperature during the deposition from solution on the self-assembly is investigated. High-resolution STM images reveal that the BTB molecules usually form various structures by co-adsorption with undecanol and that the BTP molecules as parts of self-assembled aggregates adsorb with their benzene ring planes tilted with respect to the substrate plane. The specific supramolecular pattern and the 2D packing density of BTP can be precisely tuned by adjusting the initial substrate temperature during deposition. The experimental results are compared to corresponding model structures obtained from semi-empirical simulations and explained by the influence of temperature on the concentration at the solution-solid interface and the kinetics of the self-assembly process. Based on these results, the control of the deposition substrate temperature has been proven to be a versatile tool to control the polymorphism of molecular patterns deposited out of solutions.

  5. Supported liquid membrane system

    SciTech Connect

    Takigawa, D.Y.; Bush, H. Jr.

    1990-12-31

    A cell apparatus for a supported liquid membrane including opposing faceplates, each having a spirally configured groove, an inlet groove at a first end of the spirally configured groove, and an outlet groove at the other end of the spirally configured groove, within the opposing faces of the faceplates, a microporous membrane situated between the grooved faces of the faceplates, said microporous membrane containing an extractant mixture selective for a predetermined chemical species within the pores of said membrane, means for aligning the grooves of the faceplates in an directly opposing configuration with the porous membrane being situated therebetween, such that the aligned grooves form a pair of directly opposing channels, separate feed solution and stripping solution compartments connected to respective channels between the faceplates and the membrane, separate pumping means for passing feed solution and stripping solution through the channels is provided.

  6. Supported liquid membrane electrochemical separators

    DOEpatents

    Pemsler, J. Paul; Dempsey, Michael D.

    1986-01-01

    Supported liquid membrane separators improve the flexibility, efficiency and service life of electrochemical cells for a variety of applications. In the field of electrochemical storage, an alkaline secondary battery with improved service life is described in which a supported liquid membrane is interposed between the positive and negative electrodes. The supported liquid membranes of this invention can be used in energy production and storage systems, electrosynthesis systems, and in systems for the electrowinning and electrorefining of metals.

  7. Supported Ionic Liquid Membranes for Gas Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Pennline, H.W.; Luebke, D.R.

    2007-08-01

    Ionic liquids have been rapidly gaining attention for various applications including solvent separation and gas capture. These substances are noted for extremely low vapor pressure and high CO2 solubility making them ideal as transport or capture media for CO2 abatement in power generation applications. Ionic liquids, combined with various supports to form membranes, have been proven selective in CO2 separation. Several ionic liquids and a variety of polymer supports have been studied over a temperature range from 37°C to 300°C and have been optimized for stability. The membranes have demonstrated high permeability and high selectivity since the supported ionic liquid membranes incorporate functionality capable of chemically complexing CO2. A study aimed at improving supported ionic liquid membranes will examine their durability with greater transmembrane pressures and the effects on CO2 permeance, CO2/H2 selectivity and thermal stability.

  8. Method of fabrication of supported liquid membranes

    DOEpatents

    Luebke, David R.; Hong, Lei; Myers, Christina R.

    2015-11-17

    Method for the fabrication of a supported liquid membrane having a dense layer in contact with a porous layer, and a membrane liquid layer within the interconnected pores of the porous layer. The dense layer is comprised of a solidified material having an average pore size less than or equal to about 0.1 nanometer, while the porous layer is comprised of a plurality of interconnected pores and has an average pore size greater than 10 nanometers. The supported liquid membrane is fabricated through the preparation of a casting solution of a membrane liquid and a volatile solvent. A pressure difference is established across the dense layer and porous layer, the casting solution is applied to the porous layer, and the low viscosity casting solution is drawn toward the dense layer. The volatile solvent is evaporated and the membrane liquid precipitates, generating a membrane liquid layer in close proximity to the dense layer.

  9. Phenol removal by supported liquid membranes

    SciTech Connect

    Zha, F.F.; Fane, A.G.; Fell, C.J.D.

    1994-11-01

    This paper examines the application of the supported liquid membrane (SLM) to phenol removal. n-Decanol was proven to be a suitable membrane liquid. The phenol transfer kinetics through the SLMs is quantitatively estimated according to models based on the resistance-in-series concept. The models can be modified to describe the performance of decayed SLMs and thereby provide insight into the effect of membrane liquid loss and penetration of aqueous solutions on the phenol flux. An experimental method is described for the measurement of mass transfer coefficients in the bulk phases using the well-characterized Anopore membrane.

  10. Separation of metals by supported liquid membranes

    SciTech Connect

    Takigawa, D.Y.

    1990-12-31

    A supported liquid membrane system for the separation of a preselected chemical species within a feedstream, preferably an aqueous feedstream, includes a feed compartment containing a feed solution having at least one preselected chemical species therein, a stripping compartment containing a stripping solution therein, and a microporous polybenzimidazole membrane situated between the compartments, the microporous polybenzimidazole membrane containing an extractant mixture selective for the preselected chemical species within the membrane pores is disclosed along with a method of separating preselected chemical species from a feedstream with such a system, and a supported liquid membrane for use in such a system.

  11. Flexible Support Liquid Argon Heat Intercept

    SciTech Connect

    Rudland, D.L.; /Fermilab

    1987-05-18

    A device in the flexible support system for the Central Calorimeter is the Liquid Argon Heat Intercept. The purpose of this apparatus is to intercept heat outside the inner vessel so that bubbles do not form inside. If bubbles did happen to form inside the vessel, they would cause an electric arc between the read-out board and the absorption plates, thus destroying the pre-amplifier. Since this heat intercept is located in the center of the flexible support, it must also support the load of the Central Caloimeter. Figure 1 shows how the intercept works. The subcooled liquid argon is driven through a 1/4-inch x 0.049-inch w tube by hydrostatic pressure. the ambient heat boils the subcooled argon. The gaseous argon flows through the tube and is condensed at the top of the vessel by a 100 kW cooling coil. This process is rpesent in all four flexible support systems.

  12. Radiolysis and Ageing of C2-BTP in Cinnamaldehyde/Hexanol Mixtures

    SciTech Connect

    Fermvik, Anna; Ekberg, Christian; Retegan, Teodora; Skarnemark, Gunnar

    2007-07-01

    The separation of actinides from lanthanides is an important step in the alternative methods for nuclear waste treatment currently under development. Polycyclic molecules containing nitrogen are synthesised and used for solvent extraction. A potential problem in the separation process is the degradation of the molecule due to irradiation or ageing. An addition of nitrobenzene has proved to have an inhibitory effect on degradation when added to a system containing C2-BTP in hexanol before irradiation. In this study, 2,6-di(5,6-diethyl-1,2,4-triazine-3-yl)pyridine (C2-BTP) was dissolved in different mixtures of cinnamaldehyde and hexanol and the effects on extraction after ageing and irradiation were investigated. Similar to nitrobenzene, cinnamaldehyde contains an aromatic ring which generally has a relatively high resistance towards radiolysis. Both C2-BTP in cinnamaldehyde and C2-BTP in hexanol seem to degrade with time. The system with C2-BTP in pure hexanol is relatively stable up to 17 days but then starts slowly to degrade. The solution with pure cinnamaldehyde as diluent started to degrade after only {approx}20 hours. The opposite is true for degradation caused by radiolysis; hexanol systems are more sensitive to radiolysis than cinnamaldehyde systems. Most of the radiolytic degradation took place during the first days of irradiation, up to a dose of 4 kGy. (authors)

  13. A remarkable enhancement in Am³⁺/Eu³⁺ selectivity by an ionic liquid based solvent containing bis-1,2,4-triazinyl pyridine derivatives: DFT validation of experimental results.

    PubMed

    Bhattacharyya, Arunasis; Ansari, Seraj A; Gadly, Trilochan; Ghosh, Sunil K; Mohapatra, Manoj; Mohapatra, P K

    2015-04-01

    Mutual separation of trivalent actinide (An(3+)) and lanthanide (Ln(3+)) using several soft (N) donor ligands (bis(5,6-dialkyl-1,2,4-triazinyl)pyridine (R-BTP)) is attempted for the first time in room temperature ionic liquid (RTIL) medium. The results indicate a spectacular enhancement in the selectivity as compared to that in molecular diluents with a separation factor (S.F.) of >3000 for Am(3+) over Eu(3+) using the methyl derivative (Me-BTP) in RTIL medium using [C(n)mim]·[NTf2] as the diluents (where n = 2, 3, 4, 6 or 8). Such a high S.F. value has never been reported before with any of the R-BTP derivatives in molecular diluents. An opposite trend in the distribution ratio values of both Am(3+) and Eu(3+) with the increasing size of the alkyl (R) group is observed in RTIL medium when compared with that in molecular diluents. The differences in the extraction behaviour of R-BTPs in RTILs vis-à-vis molecular diluents are explained on the basis of the difference in the nature of complexes extracted in these two distinctly different media as supported by the time resolved fluorescence (TRFS) study. An unusually high extractability and selectivity for Am(3+) over Eu(3+) with Me-BTP was attributed to the formation of a 1 : 4 complex for Am(3+), which was never reported earlier with any of the R-BTP derivatives in molecular diluents. DFT studies indicated higher metal 'd' and 'f' orbital participation (covalence) in the bonding with R-BTP in the case of Am(3+) complexes as compared to that in the case of Eu(3+) complexes, which resulted in the selectivity of these classes of ligands. The observed results may have a great significance in the radioactive waste management involving the partitioning and transmutation strategy. PMID:25736729

  14. Separations by supported liquid membrane cascades

    DOEpatents

    Danesi, Pier R.

    1986-01-01

    The invention describes a new separation technique which leads to multi-stage operations by the use of a series (a cascade) of alternated carrier-containing supported-liquid membranes. The membranes contain alternatively a liquid cation exchanger extractant and a liquid anion exchanger extractant (or a neutral extractant) as carrier. The membranes are spaced between alternated aqueous electrolytic solutions of different composition which alternatively provide positively charged extractable species and negatively charged (or zero charged) extractable species, of the chemical species to be separated. The alternated aqueous electrolytic solutions in addition to providing the driving force to the process, simultaneously function as a stripping solution from one type of membrane and as an extraction-promoting solution for the other type of membrane. The aqueous electrolytic solutions and the supported liquid membranes are arranged in such a way to provide a continuous process which leads to the continuous enrichment of the species which show the highest permeability coefficients. By virtue of the very high number of stages which can be arranged, even chemical species having very similar chemical behavior (and consequently very similar permeability coefficients) can be completely separated. The invention also provide a way to concentrate the separated species.

  15. Supported polymeric liquid membranes for wastewater treatment

    SciTech Connect

    Ho, S.V.

    1997-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. A class of membrane has been developed called supported polymeric liquid membranes capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. These membranes are prepared by filling the pores of microfiltration or ultrafiltration membranes with polymeric (oligomeric) liquids having affinity for the organic compounds of interest. With this approach, membrane`s separation characteristics are decoupled from its mechanical stability and depend primarily on the chemical properties of the liquid polymer used. As a result, membranes of diverse separation capabilities can be conveniently prepared using liquid polymers possessing the appropriate functional groups. Physical properties typical of polymeric liquids such as high viscosity, extremely low volatility and insolubility in water contribute to the observed stability of the membranes under broad operating conditions. This membrane process has been successfully applied to several aqueous waste streams. This paper describes the early development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids. Feasibility testings were initially carried out with flat sheet membranes in a small stirred cell. Scaleup was then conducted using hollow fiber membranes, first with small modules prepared in the laboratory, then with a much larger commercial module. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid.

  16. Actinide separations by supported liquid membranes

    SciTech Connect

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution.

  17. Supported liquid membrane battery separators. Final report

    SciTech Connect

    Pemsler, J.P.; Dempsey, M.D.

    1984-07-01

    This study was performed to explore the feasibility of using a supported liquid membrane (SLM) as a separator in the nickel-zinc battery. In particular, SLM separators should prevent zinc dendrite growth from shorting out the cell and might also alleviate capacity loss due to zinc electrode shape changes. A number of ion exchange/solvent modifier systems for incorporation into SLMs were developed under a previous LBL contract. SLMs prepared with these reagents exhibited resistances in the range of 0.4 to 10 ohm cm/sup 2/, selectively transported hydroxyl ions over zincate ions by a factor of 10/sup 6/ to 10/sup 7/, and possessed eletrochemical and chemical stability in alkaline electrolytes. In order to evaluate these SLM separators under conditions closely resembling a commercial Ni-Zn cell, an accelerated cycle life test was devised using commercial electrodes.

  18. A BTP1 prophage gene present in invasive non-typhoidal Salmonella determines composition and length of the O-antigen of the lipopolysaccharide.

    PubMed

    Kintz, Erica; Davies, Mark R; Hammarlöf, Disa L; Canals, Rocío; Hinton, Jay C D; van der Woude, Marjan W

    2015-04-01

    Salmonella Typhimurium isolate D23580 represents a recently identified ST313 lineage of invasive non-typhoidal Salmonellae (iNTS). One of the differences between this lineage and other non-iNTS S. Typhimurium isolates is the presence of prophage BTP1. This prophage encodes a gtrC gene, implicated in O-antigen modification. GtrC(BTP) (1) is essential for maintaining O-antigen length in isolate D23580, since a gtr(BTP) (1) mutant yields a short O-antigen. This phenotype can be complemented by gtrC(BTP) (1) or very closely related gtrC genes. The short O-antigen of the gtr(BTP) (1) mutant was also compensated by deletion of the BTP1 phage tailspike gene in the D23580 chromosome. This tailspike protein has a putative endorhamnosidase domain and thus may mediate O-antigen cleavage. Expression of the gtrC(BTP) (1) gene is, in contrast to expression of many other gtr operons, not subject to phase variation and transcriptional analysis suggests that gtrC is produced under a variety of conditions. Additionally, GtrC(BTP) (1) expression is necessary and sufficient to provide protection against BTP1 phage infection of an otherwise susceptible strain. These data are consistent with a model in which GtrC(BTP) (1) mediates modification of the BTP1 phage O-antigen receptor in lysogenic D23580, and thereby prevents superinfection by itself and other phage that uses the same O-antigen co-receptor. PMID:25586744

  19. Development of Practical Supported Ionic Liquid Membranes: A Systematic Approach

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-11-01

    Supported liquid membranes (SLMs) are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties to optimize membrane performance. These membranes also have the advantage of liquid phase diffusivities, which are higher than those observed in polymers and grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which may possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they are stable at elevated temperatures and have negligible vapor pressure. A study has been conducted evaluating the use of a variety of ionic liquids in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated membrane performance for the resulting materials. Several steps have been taken in the development of practical supported ionic liquid membranes. Proof-of-concept was established by showing that ionic liquids could be used as the transport media in SLMs. Results showed that ionic liquids are suitable media for gas transport, but the preferred polymeric supports were not stable at temperatures above 135oC. The use of cross-linked nylon66 supports was found to produce membranes mechanically stable at temperatures exceeding 300oC but CO2/H2 selectivity was poor. An ionic liquid whose selectivity does not decrease with increasing temperature was needed, and a functionalized ionic liquid that complexes with CO2 was used. An increase in CO2/H2 selectivity with increasing temperature over the range of 37 to 85oC was observed and the dominance of a

  20. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2007-04-01

    Supported liquid membranes are a class of materials that allow the researcher to utilize the wealth of knowledge available on liquid properties as a direct guide in the development of a capture technology. These membranes also have the advantage of liquid phase diffusivities higher than those observed in polymeric membranes which grant proportionally greater permeabilities. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high carbon dioxide solubility relative to light gases such as hydrogen, are an excellent candidate for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of several ionic liquids, including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide, 1-butyl-3-methyl-imidazolium nitrate, and 1-ethyl-3-methyl-imidazolium sulfate in supported ionic liquid membranes for the capture of carbon dioxide from streams containing hydrogen. In a joint project, researchers at the University of Notre Dame lent expertise in ionic liquid synthesis and characterization, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane performance. Initial results have been very promising with carbon dioxide permeabilities as high as 950 barrers and significant improvements in carbon dioxide/hydrogen selectivity over conventional polymers at 37C and at elevated temperatures. Results include a comparison of the performance of several ionic liquids and a number of supports as well as a discussion of innovative fabrication techniques currently under development.

  1. 26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID HYDROGEN TANK FARM; VIEW TO WEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  2. Fabrication of fiber supported ionic liquids and methods of use

    DOEpatents

    Luebke, David R; Wickramanayake, Shan

    2013-02-26

    One or more embodiments relates to the production of a fabricated fiber having an asymmetric polymer network and having an immobilized liquid such as an ionic liquid within the pores of the polymer network. The process produces the fabricated fiber in a dry-wet spinning process using a homogenous dope solution, providing significant advantage over current fabrication methods for liquid-supporting polymers. The fabricated fibers may be effectively utilized for the separation of a chemical species from a mixture based on the selection of the polymer, the liquid, and the solvent utilized in the dope.

  3. Magnetic nanoparticles supported ionic liquids improve firefly luciferase properties.

    PubMed

    Noori, Ali Reza; Hosseinkhani, Saman; Ghiasi, Parisa; Akbari, Jafar; Heydari, Akbar

    2014-03-01

    Ionic liquids as neoteric solvents, microwave irradiation, and alternative energy source are becoming as a solvent for many enzymatic reactions. We recently showed that the incubation of firefly luciferase from Photinus pyralis with various ionic liquids increased the activity and stability of luciferase. Magnetic nanoparticles supported ionic liquids have been obtained by covalent bonding of ionic liquids-silane on magnetic silica nanoparticles. In the present study, the effects of [γ-Fe2O3@SiO2][BMImCl] and [γ-Fe2O3@SiO2][BMImI] were investigated on the structural properties and function of luciferase using circular dichroism, fluorescence spectroscopy, and bioluminescence assay. Enzyme activity and structural stability increased in the presence of magnetic nanoparticles supported ionic liquids. Furthermore, the effect of ingredients which were used was not considerable on K(m) value of luciferase for adenosine-5'-triphosphate and also K(m) value for luciferin.

  4. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project was to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, was used to remove inhibitory byproducts during fermentation; thus, improve the yield while reducing the need for fresh water. The key objectives of this study were: (1) Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems. (2) Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system. (3) Investigate the effect of gravity on emulsion coalescence within the membrane unit. (4) Access the effect of water re-use on fermentation yields in a model microbial system. and (5) Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts (not completed due to lack of funds)

  5. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  6. Carbon Dioxide Separation with Supported Ionic Liquid Membranes

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Pennline, H.W.; Myers, C.R.

    2007-05-01

    A practical form of CO2 capture at water-gas shift conditions in the IGCC process could serve the dual function of producing a pure CO2 stream for sequestration and forcing the equilibrium-limited shift reaction to completion enriching the stream in H2. The shift temperatures, ranging from the low temperature shift condition of 260°C to the gasification condition of 900°C, limit capture options by diminishing associative interactions which favor removal of CO2 from the gas stream. Certain sorption interactions, such as carbonate formation, remain available but generally involve exceptionally high sorbent regeneration energies that contribute heavily to parasitic power losses. Carbon dioxide selective membranes need only establish an equilibrium between the gas phase and sorption states in order to transport CO2, giving them a potential energetic advantage over other technologies. Supported liquid membranes take advantage of high, liquid phase diffusivities and a solution diffusion mechanism similar to that observed in polymeric membranes to achieve superior permeabilities and selectivites. The primary shortcoming of the supported liquid membranes demonstrated in past research has been the lack of stability caused by volatilization of the transport liquid. Ionic liquids, which possess high CO2 solubility relative to light gases such as H2, are excellent candidates for this type of membrane since they have negligible vapor pressure and are not susceptible to evaporation. A study has been conducted evaluating the use of ionic liquids including 1-hexyl-3-methyl-imidazolium bis(trifuoromethylsulfonyl)imide in supported ionic liquid membranes for the capture of CO2 from streams containing H2. In a joint project, researchers at the University of Notre Dame synthesized and characterized ionic liquids, and researchers at the National Energy Technology Laboratory incorporated candidate ionic liquids into supports and evaluated the resulting materials for membrane

  7. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    PubMed Central

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide. PMID:24790972

  8. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal

    NASA Astrophysics Data System (ADS)

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-02-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70 % molar yield towards citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  9. Alkaline ionic liquids applied in supported ionic liquid catalyst for selective hydrogenation of citral to citronellal.

    PubMed

    Salminen, Eero; Virtanen, Pasi; Mikkola, Jyri-Pekka

    2014-01-01

    The challenge in preparation of ionic liquids containing a strong alkaline anion is to identify a suitable cation which can tolerate the harsh conditions induced by the anion. In this study, a commercial quaternary ammonium compound (quat) benzalkonium [ADBA] (alkyldimethylbenzylammonium) was used as a cation in the synthesis of different alkaline ionic liquids. In fact, the precursor, benzalkonium chloride, is a mixture of alkyldimethylbenzylammonium chlorides of various alkyl chain lengths and is commonly used in the formulation of various antiseptic products. The prepared ionic liquids were utilized as Supported Ionic Liquid Catalysts (SILCAs). Typically, a SILCA contains metal nanoparticles, enzymes, or metal complexes in an ionic liquid layer which is immobilized on a solid carrier material such as an active carbon cloth (ACC). The catalysts were applied in the selective hydrogenation of citral to citronellal which is an important perfumery chemical. Interestingly, 70% molar yield toward citronellal was achieved over a catalyst containing the alkaline ionic liquid benzalkonium methoxide.

  10. Extraction of molybdenum by a supported liquid membrane method.

    PubMed

    Basualto, Carlos; Marchese, José; Valenzuela, Fernando; Acosta, Adolfo

    2003-04-10

    This is a report on the extraction of molybdenum(VI) ions using a supported liquid membrane, prepared by dissolving in kerosene, the extractant Alamine 336 (a long-chain tertiary amine) employed as mobile carrier. A flat hydrophobic microporous membrane was utilised as solid support. Appropriate conditions for Mo(VI) extraction through the liquid membrane were obtained from the results of liquid-liquid extraction and stripping partition experiments. The influence of feed solution acidity, the carrier extractant concentration in the organic liquid film and the content of strip agent on the metal flux through membrane were investigated. It was established that maximal extraction of metal is achieved at a pH 2.0 if sulphuric acid is used in the feed solution and at a pH value over 11.0 if Na(2)CO(3) is used as strip agent. Moreover, the molybdenum extraction through membrane is enhanced when a 0.02 mol l(-1) content of the amine carrier in the organic phase is used. The present paper deals with an equilibrium investigation of the extraction of Mo(VI) by Alamine 336 and its permeation conditions through the liquid membrane, and examines a possible mechanism of extraction.

  11. Rejuvenation of Spent Media via Supported Emulsion Liquid Membranes

    NASA Technical Reports Server (NTRS)

    Wiencek, John M.

    2002-01-01

    The overall goal of this project is to maximize the reuseability of spent fermentation media. Supported emulsion liquid membrane separation, a highly efficient extraction technique, is used to remove inhibitory byproducts during fermentation; thus, improving the yield while reducing the need for fresh water. The key objectives of this study are: Develop an emulsion liquid membrane system targeting low molecular weight organic acids which has minimal toxicity on a variety of microbial systems; Conduct mass transfer studies to allow proper modeling and design of a supported emulsion liquid membrane system; Investigate the effect of gravity on emulsion coalescence within the membrane unit; Access the effect of water re-use on fermentation yields in a model microbial system; Develop a perfusion-type fermentor utilizing a supported emulsion liquid membrane system to control inhibitory fermentation byproducts; Work for the coming year will focus on the determination of toxicity of various solvents, selection of the emulsifying agents, as well as characterizing the mass transfer of hollow-fiber contactors.

  12. The btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry.

    PubMed

    Byrne, Joseph P; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2014-08-01

    Ligands containing the btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] motif have appeared with increasing regularity over the last decade. This class of ligands, formed in a one pot ‘click’ reaction, has been studied for various purposes, such as for generating d and f metal coordination complexes and supramolecular self-assemblies, and in the formation of dendritic and polymeric networks, etc. This review article introduces btp as a novel and highly versatile terdentate building block with huge potential in inorganic supramolecular chemistry. We will focus on the coordination chemistry of btp ligands with a wide range of metals, and how it compares with other classical pyridyl and polypyridyl based ligands, and then present a selection of applications including use in catalysis, enzyme inhibition, photochemistry, molecular logic and materials, e.g. polymers, dendrimers and gels. The photovoltaic potential of triazolium derivatives of btp and its interactions with anions will also be discussed.

  13. Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution.

    PubMed

    Elfassy, Eitan; Mastai, Yitzhak; Pontoni, Diego; Deutsch, Moshe

    2016-04-01

    Ionic liquids have been intensively developed for the last few decades and are now used in a wide range of applications, from electrochemistry to catalysis and nanotechnology. Many of these applications involve ionic liquid interfaces with other liquids and solids, the subnanometric experimental study of which is highly demanding, and has been little studied to date. We present here a study of mercury-supported Langmuir films of imidazolium-based ionic liquids by surface tensiometry and X-ray reflectivity. The charge-delocalized ionic liquids studied here exhibit no 2D lateral order but show diffuse surface-normal electron density profiles exhibiting gradual mercury penetration into the ionic liquid film, and surface-normal structure evolution over a period of hours. The effect of increasing the nonpolar alkyl chain length was also investigated. The results obtained provide insights into the interactions between these ionic liquids and liquid mercury and about the time evolution of the structure and composition of their interface. PMID:26963651

  14. Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution.

    PubMed

    Elfassy, Eitan; Mastai, Yitzhak; Pontoni, Diego; Deutsch, Moshe

    2016-04-01

    Ionic liquids have been intensively developed for the last few decades and are now used in a wide range of applications, from electrochemistry to catalysis and nanotechnology. Many of these applications involve ionic liquid interfaces with other liquids and solids, the subnanometric experimental study of which is highly demanding, and has been little studied to date. We present here a study of mercury-supported Langmuir films of imidazolium-based ionic liquids by surface tensiometry and X-ray reflectivity. The charge-delocalized ionic liquids studied here exhibit no 2D lateral order but show diffuse surface-normal electron density profiles exhibiting gradual mercury penetration into the ionic liquid film, and surface-normal structure evolution over a period of hours. The effect of increasing the nonpolar alkyl chain length was also investigated. The results obtained provide insights into the interactions between these ionic liquids and liquid mercury and about the time evolution of the structure and composition of their interface.

  15. Supported liquid inorganic membranes for nuclear waste separation

    SciTech Connect

    Bhave, Ramesh R; DeBusk, Melanie M; DelCul, Guillermo D; Delmau, Laetitia H; Narula, Chaitanya K

    2015-04-07

    A system and method for the extraction of americium from radioactive waste solutions. The method includes the transfer of highly oxidized americium from an acidic aqueous feed solution through an immobilized liquid membrane to an organic receiving solvent, for example tributyl phosphate. The immobilized liquid membrane includes porous support and separating layers loaded with tributyl phosphate. The extracted solution is subsequently stripped of americium and recycled at the immobilized liquid membrane as neat tributyl phosphate for the continuous extraction of americium. The sequestered americium can be used as a nuclear fuel, a nuclear fuel component or a radiation source, and the remaining constituent elements in the aqueous feed solution can be stored in glassified waste forms substantially free of americium.

  16. Feasibility of Surfactant-Free Supported Emulsion Liquid Membrane Extraction

    NASA Technical Reports Server (NTRS)

    Hu, Shih-Yao B.; Li, Jin; Wiencek, John M.

    2001-01-01

    Supported emulsion liquid membrane (SELM) is an effective means to conduct liquid-liquid extraction. SELM extraction is particularly attractive for separation tasks in the microgravity environment where density difference between the solvent and the internal phase of the emulsion is inconsequential and a stable dispersion can be maintained without surfactant. In this research, dispersed two-phase flow in SELM extraction is modeled using the Lagrangian method. The results show that SELM extraction process in the microgravity environment can be simulated on earth by matching the density of the solvent and the stripping phase. Feasibility of surfactant-free SELM (SFSELM) extraction is assessed by studying the coalescence behavior of the internal phase in the absence of the surfactant. Although the contacting area between the solvent and the internal phase in SFSELM extraction is significantly less than the area provided by regular emulsion due to drop coalescence, it is comparable to the area provided by a typical hollow-fiber membrane. Thus, the stripping process is highly unlikely to become the rate-limiting step in SFSELM extraction. SFSELM remains an effective way to achieve simultaneous extraction and stripping and is able to eliminate the equilibrium limitation in the typical solvent extraction processes. The SFSELM design is similar to the supported liquid membrane design in some aspects.

  17. Cooling tower with concrete support structure, fiberglass panels, and a fan supported by the liquid distribution system

    SciTech Connect

    Bardo, C. J.; Clark Jr., J. L.; Dylewski, A. J.; Seawell, J. Q.

    1985-09-24

    A liquid cooling tower includes precast concrete support legs and cross beams and fiberglass reinforced polyester resin side and top panels. A liquid distribution system is supplied with liquid by a vertically extending main pipe, and a fan and fan motor are supported by the main pipe.

  18. Ionic liquids in refinery desulfurization: comparison between biphasic and supported ionic liquid phase suspension processes.

    PubMed

    Kuhlmann, Esther; Haumann, Marco; Jess, Andreas; Seeberger, Andreas; Wasserscheid, Peter

    2009-01-01

    The desulfurization of fuel compounds in the presence of ionic liquids is reported. For this purpose, the desulfurization efficiency of a variety of imidazolium phosphate ionic liquids has been tested. Dibenzothiophene/dodecane and butylmercaptan/decane mixtures were used as model systems. Single-stage extractions reduced the sulfur content from 500 ppm to 200 ppm. In multistage extractions the sulfur content could be lowered to less than 10 ppm within seven stages. Regeneration of the ionic liquid was achieved by distillation or re-extraction procedures. Supported ionic liquid phase (SILP) materials, obtained by dispersing the ionic liquid as a thin film on highly porous silica, exhibited a significantly higher extraction performance owing to their larger surface areas, reducing the sulfur content to less than 100 ppm in one stage. Multistage extraction with these SILP materials reduced the sulfur level to 50 ppm in the second stage. The SILP technology offers very efficient utilization of ionic liquids and circumvents mass transport limitations because of the small film thickness and large surface area, and allows application of the simple packed-bed column extraction technique. PMID:19798713

  19. Polymer-supported ionic-liquid-like phases (SILLPs): transferring ionic liquid properties to polymeric matrices.

    PubMed

    Sans, Victor; Karbass, Naima; Burguete, M Isabel; Compañ, Vicente; García-Verdugo, Eduardo; Luis, Santiago V; Pawlak, Milena

    2011-02-01

    The physico-chemical properties of polymers with ionic-liquid-like moieties covalently bound to their surfaces (SILLPs) have been studied by thermal and spectroscopic techniques, as well as by direct impedance and dielectric measurements, and compared to those of the corresponding bulk ionic liquids. The effective transfer of properties from ionic liquids in solution to the supported species has thereby been demonstrated. The effects of the chemical nature of these tunable "solid solvents" on their macroscopic swelling and microwave heating, as well as the stabilities and activities of different catalytic moieties immobilized on the SILLPs, have been studied. Finally, the experimental effect observed in microwave heating can be directly correlated with the values of tan δ derived from dielectric measurements.

  20. [Preparation and applications of a supported liquid-liquid extraction column with a composite diatomite material].

    PubMed

    Bao, Jianmin; Ma, Zhishuang; Sun, Ying; Wang, Yongzun; Li, Youxin

    2012-08-01

    A rapid and special supported liquid-liquid extraction (SLE) column was developed with a composite diatomite material. The SLE column was evaluated by high performance liquid chromatography (HPLC) with acidic, neutral and alkaline compounds dissolved in water. Furthermore, some real complex samples were also analyzed by HPLC with the SLE method. The recoveries of benzoic acid (acidic), p-nitroaniline (alkaline) and 4-hydroxy-benzoic methyl ester (neutral) treated by the SLE column were 90.6%, 98.1% and 97.7%. However, the recoveries of the three compounds treated by traditional liquid-liquid extraction (LLE) method were 71.9%, 81.9% and 83.9%. The results showed that the SLE technique had higher recoveries than the traditional LLE method. The spiked recoveries of the complex samples, such as benzoic acid in Sprite and dexamethasone acetate, chlorphenamine maleate, indomethacin in bovine serum, were between 80% and 110% and the relative standard deviations (RSDs) were less than 15%. For biological specimen, the results could be accepted. Meantime, many disadvantages associated with traditional LLE method, such as emulsion formation, didn't occur using SLE column. The SLE column technique is a good sample preparation method with many advantages, such as rapid, simple, robust, easily automated, high recovery and high-throughput, which would be widely used in the future. PMID:23256382

  1. Enantioselective separations using chiral supported liquid crystalline membranes.

    PubMed

    Han, Sangil; Rabie, Feras; Marand, Eva; Martin, Stephen M

    2012-07-01

    Porous and nonporous supported liquid crystalline membranes were produced by impregnating porous cellulose nitrate supports with cholesteric liquid crystal (LC) materials consisting of 4-cyano-4'-pentylbiphenyl (5CB) mixed with a cholesterol-based dopant (cholesteryl oleyl carbonate [COC], cholesteryl nonanoate [CN], or cholesteryl chloride [CC]). The membranes exhibit selectivity for R-phenylglycine and R-1-phenylethanol because of increased interactions between the S enantiomers and the left-handed cholesteric phase. The selectivity of both phenylglycine and 1-phenylethanol in 5CB/CN membranes decreases with effective pore diameter while the permeabilities increase, as expected. Phenylglycine, which is insoluble in the LC phase, exhibits no transport in the nonporous (completely filled) membranes; however, 1-phenylethanol, which is soluble in the LC phase, exhibits transport but negligible enantioselectivity. The enantioselectivity for 1-phenylethanol was higher (1.20 in 5CB/COC and 5CB/CN membranes) and the permeability was lower in the cholesteric phase than in the isotropic phase. Enantioselectivity was also higher in the 5CB/COC cholesteric phase than in the nematic phase of undoped 5CB (1.03). Enantioselectivity in the cholesteric phase of 5CB doped with CC (1.1), a dopant lacking hydrogen bonding groups, was lower than in the 5CB/COC phases. Finally, enantioselectivity increases with the dopant concentration up to a plateau value at approximately 17 mol%. PMID:22581655

  2. Separation of metal species by supported liquid membranes

    SciTech Connect

    Danesi, P.R.

    1985-01-01

    The work performed in the Separation Chemistry Group of the Chemistry Division of Argonne National Laboratory on the transport and separation properties of supported liquid membranes (SLM) are reviewed. The models and equations which describe the permeation through SLMs of metal species are described. These models have been tested with various carriers absorbed on flat-sheet and hollow-fiber SLMs by measuring the permeation of several metal species of hydrometallurgical and nuclear interest. An equation for the separation factor of metal species in SLM processes and examples of separations of metal ions are reported. The possibility of bypassing the single stage character of SLM separations by using multilayer composite SLMs, arranged in series, is also analyzed. Finally, the factors which control the stability of SLMs are briefly discussed. 28 references, 27 figures, 6 tables.

  3. Separation of metal species by supported liquid membranes

    SciTech Connect

    Danesi, P.R.

    1984-01-01

    The works performed on the transport and separation properties of supported liquid membranes (SLM) are reviewed. The models and equations which describe the permeation through SLMs of metal species are described. These models have been tested with various carriers absorbed on flat-sheet and hollow-fiber SLMs by measuring the permeation of several metal species of hydrometallurgical and nuclear interest. An equation for the separation factor of metal species in SLM processes and examples of separations of metal ions are reported. The possibility of bypassing the single stage character of SLM separations by using multilayer composite SLMs, arranged in series, is also analyzed. Finally, the factors which control the stability of SLMs are briefly discussed.

  4. Self-assembly formation of a healable lanthanide luminescent supramolecular metallogel from 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligands.

    PubMed

    McCarney, Eoin P; Byrne, Joseph P; Twamley, Brendan; Martínez-Calvo, Miguel; Ryan, Gavin; Möbius, Matthias E; Gunnlaugsson, Thorfinnur

    2015-09-25

    The synthesis of five new 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligands is described: the self-assembly behaviour of the tri-methyl ester, 1, with Eu(III) showed the formation of a luminescent 1:3 Eu : btp complex, Eu13, which was studied in solution and in the solid state; while the tri-carboxylic acid, 2, formed a hydrogel and its corresponding complex Eu23, gave rise to a strongly red luminescent healable metallogel. PMID:26258184

  5. Properties required by extractants and diluents for the decontamination of liquid wastes using supported liquid membranes

    SciTech Connect

    Dozol, J.F.; Rouquette, H.; Eymard, S.; Tournois, B.

    1993-12-31

    Macrocyclic extractants are now being studied more and more often for the decontamination of radioactive liquid wastes: coronands (crown ethers, azacrown...) and cryptands. As these very sophisticated compounds are expensive, the best technique is supported liquid membranes which need a very low extractant inventory. This paper deals with the properties required by the extractant and the diluent in order to be used in an SLM device and to ensure a stable and efficient SLM: solubility of the extractant in organic compounds and in aqueous solutions; size of crown ether cavities; influence of the substituent groups on the selectivity of the crown ether; and influence of the properties of the diluent (polarity, transport of acidity) on the efficiency of the process and on the stability of the membrane (interfacial tension between the organic and aqueous phases, solubility in the aqueous phase). The influence of these parameters is illustrated by experiments performed in order to remove strontium and cesium from high sodium content liquid waste. The studies described in this paper are focused on the decategorization of evaporator concentrates arising from the reprocessing of spent fuel.

  6. The effect of porous support composition and operating parameters on the performance of supported liquid membranes

    SciTech Connect

    Takigawa, D.Y. )

    1992-03-01

    Supported liquid membranes (SLMs) of varying porous support compositions and structures were studied for the transport of metal ions. A microporous polybenzimidazole support was synthesized and prepared in the form of an SLM. This SLM, containing the selective extractant di-(2-ethylhexyl) phosphoric acid, was evaluated for the transport of copper and neodymium. Metal ion transport reaches near completion in less than 3 h, whereas Celgard-polypropylene and Nucleopore-polycarbonate reaches only 50% completion even after 15 h. The transport driving force for acidic extractants is a pH gradient between the feed and strip solutions. Polybenzimidazole, an acid-and radiation-resistant polymer, has two protonatable tertiary nitrogens per repeat unit that may help sustain the pH driving force. Another factor may be the ability of the polybenzimidazole to hydrogen bond with the extractant. Transport through the flat-sheet SLMs was tested by using a unique cell design. Countercurrent flow of the feed and strip solutions was established through machined channels in half-cell face plates that are in a spiral, mirror-image pattern with respect to each other, with the flat-sheet SLM interposed between the two channeled solutions. Advantages comprised in the design of the two clamped half-cells (tangential entry, zero primary pressure, zero pressure differential, controlled flow regimes, no sharp turns, and channeled flow) give operating parameters that will not physically dislodge the liquid membrane from the porous support; consequently, the lifetime of the support is increased. Permeability coefficients remained unchanged after a month of daily use versus 20 to 100% declines for membranes in other cell configurations.

  7. The effect of porous support composition and operating parameters on the performance of supported liquid membranes

    SciTech Connect

    Takigawa, D.Y.

    1991-02-01

    Factors, such as porous support composition and operating parameters, that influence the performance of supported liquid membranes (SLMs) were investigated. SLMs of varying porous support compositions and structures were studied for the transport of metal ions. A microporous polybenzimidazole support was synthesized and prepared in the form of an SLM. This SLM containing the selective extractant di-(2-ethylhexyl)phosphoric acid was evaluated for the transport of copper and neodymium. Dramatically improved performance over that of commercially available membranes was found in tests for removing the metal ions from solution. Metal ion transport reaches near completion in less than 3 hours, whereas Celgard-polypropylene and Nuclepore-polycarbonate reaches only 50% completion even after 15 hours. The transport driving force for acidic extractants is a pH gradient between the feed and strip solutions. Polybenzimidazole, an acid- and radiation-resistant polymer, has two protonatable tertiary nitrogens per repeat unit that may help sustain the pH driving force. Another factor may be the ability of the polybenzimidazole to hydrogen bond with the extractant. Transport through the flat-sheet SLMs were tested using a unique cell design. Countercurrent flow of the feed and strip solutions was established through machined channels in half-cell faceplates that are in a spiral, mirror-image pattern with respect to each other, with the flat-sheet SLM interposed between the two channeled solutions. 7 refs., 14 figs.

  8. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Extravehicular Activity Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T. (Inventor); Gleason, Kevin J. (Inventor); Cowley, Scott W. (Inventor)

    2015-01-01

    There is disclosed a portable life support system with a component for removal of at least one selected gas. In an embodiment, the system includes a supported liquid membrane having a first side and a second side in opposition to one another, the first side configured for disposition toward an astronaut and the second side configured for disposition toward a vacuum atmosphere. The system further includes an ionic liquid disposed between the first side and the second side of the supported liquid membrane, the ionic liquid configured for removal of at least one selected gas from a region housing the astronaut adjacent the first side of the supported liquid membrane to the vacuum atmosphere adjacent the second side of the supported liquid membrane. Other embodiments are also disclosed.

  9. Early Transcriptional Responses of Bovine Chorioallantoic Membrane Explants to Wild Type, ΔvirB2 or ΔbtpB Brucella abortus Infection

    PubMed Central

    Mol, Juliana P. S.; Costa, Erica A.; Carvalho, Alex F.; Sun, Yao-Hui; Tsolis, Reneé M.; Paixão, Tatiane A.; Santos, Renato L.

    2014-01-01

    The pathogenesis of the Brucella-induced inflammatory response in the bovine placenta is not completely understood. In this study we evaluated the role of the B. abortus Type IV secretion system and the anti-inflammatory factor BtpB in early interactions with bovine placental tissues. Transcription profiles of chorioallantoic membrane (CAM) explants inoculated with wild type (strain 2308), ΔvirB2 or ΔbtpB Brucella abortus were compared by microarray analysis at 4 hours post infection. Transcripts with significant variation (>2 fold change; P<0.05) were functionally classified, and transcripts related to defense and inflammation were assessed by quantitative real time RT-PCR. Infection with wild type B. abortus resulted in slightly more genes with decreased than increased transcription levels. Conversely, infection of trophoblastic cells with the ΔvirB2 or the ΔbtpB mutant strains, that lack a functional T4SS or that has impaired inhibition of TLR signaling, respectively, induced more upregulated than downregulated genes. Wild type Brucella abortus impaired transcription of host genes related to immune response when compared to ΔvirB and ΔbtpB mutants. Our findings suggest that proinflammatory genes are negatively modulated in bovine trophoblastic cells at early stages of infection. The virB operon and btpB are directly or indirectly related to modulation of these host genes. These results shed light on the early interactions between B. abortus and placental tissue that ultimately culminate in inflammatory pathology and abortion. PMID:25259715

  10. Liquid metal systems development: reactor vessel support structure evaluation

    SciTech Connect

    McEdwards, J.A.

    1981-01-01

    Results of an evaluation of support structures for the reactor vessel are reported. The U ring, box ring, integral ring, tee ring and tangential beam supports were investigated. The U ring is the recommended vessel support structure configuration.

  11. On-line automated sample preparation for liquid chromatography using parallel supported liquid membrane extraction and microporous membrane liquid-liquid extraction.

    PubMed

    Sandahl, Margareta; Mathiasson, Lennart; Jönsson, Jan Ake

    2002-10-25

    An automated system was developed for analysis of non-polar and polar ionisable compounds at trace levels in natural water. Sample work-up was performed in a flow system using two parallel membrane extraction units. This system was connected on-line to a reversed-phase HPLC system for final determination. One of the membrane units was used for supported liquid membrane (SLM) extraction, which is suitable for ionisable or permanently charged compounds. The other unit was used for microporous membrane liquid-liquid extraction (MMLLE) suitable for uncharged compounds. The fungicide thiophanate methyl and its polar metabolites carbendazim and 2-aminobenzimidazole were used as model compounds. The whole system was controlled by means of four syringe pumps. While extracting one part of the sample using the SLM technique. the extract from the MMLLE extraction was analysed and vice versa. This gave a total analysis time of 63 min for each sample resulting in a sample throughput of 22 samples per 24 h.

  12. Management of flabby ridges using liquid supported denture: a case report

    PubMed Central

    Aras, Meena Ajay; Chitre, Vidya

    2011-01-01

    Flabby ridges commonly occur in edentulous patients. Inadequate retention and stability of a complete denture are the often encountered problems in these patients. A liquid supported denture due to its flexible tissue surface allows better distribution of stress and hence provides an alternate treatment modality in such cases. This case report presents the use of a liquid supported denture in a patient with completely edentulous maxillary arch with flabby tissue in anterior region opposing a partially edentulous mandibular arch. PMID:21503193

  13. Uphill transport of rare-earth metals through a highly stable supported liquid membrane based on an ionic liquid.

    PubMed

    Kubota, Fukiko; Shimobori, Yousuke; Koyanagi, Yusuke; Shimojo, Kojiro; Kamiya, Noriho; Goto, Masahiro

    2010-01-01

    We have developed a highly stable supported liquid membrane based on ionic liquids (ILs) for the separation of rare-earth metals, employing N,N-dioctyldiglycol amic acid as a mobile carrier. The quantitative transport of Y and Eu through the membrane was successfully attained, and separation from metal impurities, Zn, was efficiently accomplished. A membrane stable enough for long-term operation was constructible from imidazolium-based ILs having a longer alkyl chain, such as octyl or dodecyl groups in an imidazolium cation.

  14. SEPARATION PROPERTIES OF SURFACE MODIFIED SILICA SUPPORTED LIQUID MEMBRANES FOR DIVALENT METAL REMOVAL/RECOVERY

    EPA Science Inventory

    The synthesis and separation properties of a mesoporous silica supported liquid membrane (SLM) were studied. The membranes consisted of a silica layer, from dip-coated colloidal silica, on a a-alumina support, modified with DCDMS (dichlorodimethyl silane) to add surface methyl g...

  15. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity. PMID:24616203

  16. Biopolymer-supported ionic-liquid-phase ruthenium catalysts for olefin metathesis.

    PubMed

    Clousier, Nathalie; Filippi, Alexandra; Borré, Etienne; Guibal, Eric; Crévisy, Christophe; Caijo, Fréderic; Mauduit, Marc; Dez, Isabelle; Gaumont, Annie-Claude

    2014-04-01

    Original ruthenium supported ionic liquid phase (SILP) catalysts based on alginates as supports were developed for olefin metathesis reactions. The marine biopolymer, which fulfills most of the requisite properties for a support such as widespread abundance, insolubility in the majority of organic solvents, a high affinity for ionic liquids, high chemical stability, biodegradability, low cost, and easy processing, was impregnated by [bmim][PF6 ] containing an ionically tagged ruthenium catalyst. These biosourced catalysts show promising performances in ring-closing metathesis (RCM) and cross-metathesis (CM) reactions, with a high level of recyclability and reusability combined with a good reactivity.

  17. Modeling of the mass transfer rates of metal ions across supported liquid membranes. 1: Theory

    SciTech Connect

    Elhassadi, A.A.; Do, D.D.

    1999-01-01

    This paper deals with the modeling of the transport and separation of metal ions across supported liquid membranes. The mass transfer resistance at the liquid-membrane interfaces and the interfacial chemical reactions at both the extracting side and the stripping side are taken into account in the model equations. Simple analysis of the time scale of the system shows the influence of various important parameters and their interactions on the overall transport rate. Parametric studies are also dealt with in this paper.

  18. Chiroptical Probing of Lanthanide-Directed Self-Assembly Formation Using btp Ligands Formed in One-Pot Diazo-Transfer/Deprotection Click Reaction from Chiral Amines.

    PubMed

    Byrne, Joseph P; Martínez-Calvo, Miguel; Peacock, Robert D; Gunnlaugsson, Thorfinnur

    2016-01-11

    A series of enantiomeric 2,6-bis(1,2,3-triazol-4-yl)pyridines (btp)-containing ligands was synthesized by a one-pot two-step copper-catalyzed amine/alkyne click reaction. The Eu(III) - and Tb(III) -directed self-assembly formation of these ligands was studied in CH3 CN by monitoring their various photophysical properties, including their emerging circular dichroism and circularly polarized luminescence. The global analysis of the former enabled the determination of both the stoichiometry and the stability constants of the various chiral supramolecular species in solution. PMID:26555573

  19. Spectroscopic studies of amino acid ionic liquid-supported Schiff bases.

    PubMed

    Ossowicz, Paula; Janus, Ewa; Schroeder, Grzegorz; Rozwadowski, Zbigniew

    2013-04-29

    Amino acid ionic liquid-supported Schiff bases, derivatives of salicylaldehyde and various amino acids (L-threonine, L-valine, L-leucine, L-isoleucine and L-histidine) have been investigated by means of various spectroscopic techniques (NMR, UV-Vis, IR, MS) and deuterium isotope effects on ¹³C-NMR chemical shifts. The results have shown that in all studied amino acid ionic liquid-supported Schiff bases (except the L-histidine derivative) a proton transfer equilibrium exists and the presence of the COO⁻ group stabilizes the proton transferred NH-form.

  20. Extraction of aluminum from a pickling bath with supported liquid membrane extraction

    SciTech Connect

    Berends, A.M.; Witkamp, G.J.; Rosmalen, G.M. van

    1999-04-01

    Large amounts of waste are produced yearly in the galvanic and chemical surface treatment industry. Bath liquids used in the various processes lose their function due to contamination. The spent bath liquids have to be replaced and treated prior to disposal, leading to high costs and a high environmental burden. In this paper, a proposed solution to the problem is investigated: the selective removal of the contaminant with supported liquid membrane extraction. The extraction of aluminum, a contaminant at high concentrations, from a pickling bath liquid with hydrofluoric acid and phosphoric acid as its main components has been carried out with the basic extractants Alamine 308 and Alamine 336 in a flat sheet-supported liquid membrane setup. Aluminum transport rates were obtained in the order of 10{sup {minus}6}--10{sup {minus}5} mol/(m{sup 2} {center_dot} s), which are normal values for this technique. The extraction was not completely selective as dissolved phosphorus was coextracted. In all experiments, precipitation took place on the surface of the liquid membrane and in the bulk of the strip phase. Increasing the stripping alkalinity from pH = 8 to pH = 13 reduced the amount of precipitation in the bulk of the strip phase but caused a substantial decrease in the aluminum flux. The precipitation prevents industrial application of the systems investigated.

  1. First application of supported ionic liquid phase (SILP) catalysis for continuous methanol carbonylation.

    PubMed

    Riisager, Anders; Jørgensen, Betina; Wasserscheid, Peter; Fehrmann, Rasmus

    2006-03-01

    A solid, silica-supported ionic liquid phase (SILP) rhodium iodide Monsanto-type catalyst system, [BMIM][Rh(CO)2I2]-[BMIM]I-SiO2, exhibits excellent activity and selectivity towards acetyl products in fixed-bed, continuous gas-phase methanol carbonylation.

  2. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1991-02-02

    This report consists of Detailed Data Acquisition Sheets for Runs E-6 and E-7 for Task 2.2 of the Modification, Operation, and Support Studies of the Liquid Phase Methanol Laporte Process Development Unit. (Task 2.2: Alternate Catalyst Run E-6 and Catalyst Activity Maintenance Run E-7).

  3. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    PubMed Central

    Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Luísa A.; Vorotyntsev, Ilya V.

    2015-01-01

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S. PMID:26729177

  4. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes.

    PubMed

    Akhmetshina, Alsu A; Davletbaeva, Ilsiya M; Grebenschikova, Ekaterina S; Sazanova, Tatyana S; Petukhov, Anton N; Atlaskin, Artem A; Razov, Evgeny N; Zaripov, Ilnaz I; Martins, Carla F; Neves, Luísa A; Vorotyntsev, Ilya V

    2015-12-30

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF₆]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf₂N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N₂, NH₃, H₂S, and CO₂ gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF₆] and [emim][Tf₂N]. The modification of SILMs by nanosize silica particles leads to an increase of NH₃ separation relatively to CO₂ or H₂S.

  5. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution. PMID:26907588

  6. Computing UV/vis spectra using a combined molecular dynamics and quantum chemistry approach: bis-triazin-pyridine (BTP) ligands studied in solution.

    PubMed

    Höfener, Sebastian; Trumm, Michael; Koke, Carsten; Heuser, Johannes; Ekström, Ulf; Skerencak-Frech, Andrej; Schimmelpfennig, Bernd; Panak, Petra J

    2016-03-21

    We report a combined computational and experimental study to investigate the UV/vis spectra of 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)pyridine (BTP) ligands in solution. In order to study molecules in solution using theoretical methods, force-field parameters for the ligand-water interaction are adjusted to ab initio quantum chemical calculations. Based on these parameters, molecular dynamics (MD) simulations are carried out from which snapshots are extracted as input to quantum chemical excitation-energy calculations to obtain UV/vis spectra of BTP ligands in solution using time-dependent density functional theory (TDDFT) employing the Tamm-Dancoff approximation (TDA). The range-separated CAM-B3LYP functional is used to avoid large errors for charge-transfer states occurring in the electronic spectra. In order to study environment effects with theoretical methods, the frozen-density embedding scheme is applied. This computational procedure allows to obtain electronic spectra calculated at the (range-separated) DFT level of theory in solution, revealing solvatochromic shifts upon solvation of up to about 0.6 eV. Comparison to experimental data shows a significantly improved agreement compared to vacuum calculations and enables the analysis of relevant excitations for the line shape in solution.

  7. Supported ionic liquid membranes for removal of dioxins from high-temperature vapor streams.

    PubMed

    Kulkarni, Prashant S; Neves, Luisa A; Coelhoso, Isabel M; Afonso, Carlos A M; Crespo, João G

    2012-01-01

    Dioxins and dioxin-like chemicals are predominantly produced by thermal processes such as incineration and combustion at concentrations in the range of 10-100 ng of I-TEQ/kg (I-TEQ = international toxic equivalents). In this work, a new approach for the removal of dioxins from high-temperature vapor streams using facilitated supported ionic liquid membranes (SILMs) is proposed. The use of ceramic membranes containing specific ionic liquids, with extremely low volatility, for dioxin removal from incineration sources is proposed owing to their stability at very high temperatures. Supported liquid membranes were prepared by successfully immobilizing the ionic liquids tri-C(8)-C(10)-alkylmethylammonium dicyanamide ([Aliquat][DCA]) and 1-n-octyl-3-methylimidazolium dicyanamide ([Omim][DCA]) inside the porous structure of ceramic membranes. The porous inorganic membranes tested were made of titanium oxide (TiO(2)), with a nominal pore size of 30 nm, and aluminum oxide (Al(2)O(3)), with a nominal pore size of 100 nm. The ionic liquids were characterized, and the membrane performance was assessed for the removal of dioxins. Different materials (membrane pore size, type of ionic liquid, and dioxin) and different operating conditions (temperature and flow rate) were tested to evaluate the efficiency of SILMs for dioxin removal. All membranes prepared were stable at temperatures up to 200 °C. Experiments with model incineration gas were also carried out, and the results obtained validate the potential of using ceramic membranes with immobilized ionic liquids for the removal of dioxins from high-temperature vapor sources.

  8. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids.

    PubMed

    Zhang, Jianmin; Zhang, Suojiang; Dong, Kun; Zhang, Yanqiang; Shen, Youqing; Lv, Xingmei

    2006-05-15

    A new type of "task specific ionic liquid", tetrabutylphosphonium amino acid [P(C4)4][AA], was synthesized by the reaction of tetrabutylphosphonium hydroxide [P(C4)4][OH] with amino acids, including glycine, L-alanine, L-beta-alanine, L-serine, and L-lysine. The liquids produced were characterized by NMR, IR spectroscopies, and elemental analysis, and their thermal decomposition temperature, glass transition temperature, electrical conductivity, density, and viscosity were recorded in detail. The [P(C4)4][AA] supported on porous silica gel effected fast and reversible CO2 absorption when compared with bubbling CO2 into the bulk of the ionic liquid. No changes in absorption capacity and kinetics were found after four cycles of absorption/desorption. The CO2 absorption capacity at equilibrium was 50 mol % of the ionic liquids. In the presence of water (1 wt %), the ionic liquids could absorb equimolar amounts of CO2. The CO2 absorption mechanisms of the ionic liquids with and without water were different. PMID:16528787

  9. Evaluation of LMR (liquid metal reactors) core support concepts under seismic events

    SciTech Connect

    Wu, Ting-shu; Seidensticker, R.W.

    1989-01-01

    In the design of the core support system for liquid metal reactors (LMR) against earthquakes, the major concerns are directed toward the structural integrity as well as the reactivity control. This means that, in addition to the stress levels, maximum displacements and accelerations should also be within their allowable limits. This investigation studies the seismic responses of a large pool-type LMR with different design approaches to support the reactor core. Different core support designs yield different frequency ranges and responses. Responses of these designs to the given floor response spectra are required to satisfy a set of criteria which are common to all designs. 5 refs., 4 figs.

  10. Carbon Dioxide Selective Supported Ionic Liquid Membranes: The Effect of Contaminants

    SciTech Connect

    Luebke, D.R.; Ilconich, J.B.; Myers, C.R.; Pennline, H.W.

    2008-04-01

    The integrated gasification combined cycle (IGCC) is widely viewed as a promising technology for the large scale production of energy in a carbon constrained world. These cycles, which include gasification, contaminant removal, water-gas shift, CO2 capture and compression, and combustion of the reduced-carbon fuel gas in a turbine, often have significant efficiency advantages over conventional combustion technologies. A CO2 selective membrane capable of maintaining performance at conditions approaching those of low temperature water-gas shift (260oC) could facilitate the production of carbon-neutral energy by simultaneously driving the shift reaction to completion and concentrating CO2 for sequestration. Supported ionic liquid membranes (SILMs) have been previously evaluated for this application and determined to be physically and chemically stable to temperatures in excess of 300oC. These membranes were based on ionic liquids which interacted physically with CO2 and diminished considerably in selectivity at higher temperatures. To alleviate this problem, the original ionic liquids were replaced with ionic liquids able to form chemical complexes with CO2. These complexing ionic liquid membranes have a local maximum in selectivity which is observed at increasing temperatures for more stable complexes. Efforts are currently underway to develop ionic liquids with selectivity maxima at temperatures greater than 75oC, the best result to date, but other practical concerns must also be addressed if the membrane is to be realistically expected to function under water-gas shift conditions. A CO2 selective membrane must function not only at high temperature, but also in the presence of all the reactants and contaminants likely to be present in coal-derived fuel gas, including water, CO, and H2S. A study has been undertaken which examines the effects of each of these gases on both complexing and physically interacting supported liquid membranes. In a joint project

  11. Development of a Supported Emulsion Liquid Membrane System for Propionic Acid Separation in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Li, Jin; Hu, Shih-Yao B.; Wiencek, John M.

    2001-01-01

    Perstractive fermentation is a good way to increase the productivity of bioreactors. Using Propionibacteria as the model system, the feasibility of using supported emulsion liquid membrane (SELM) for perstractive fermentation is assessed in this study. Five industrial solvents were considered as the solvent for preparing the SELM. The more polar a solvent is, the higher the partition coefficient. However, toxicity of a solvent also increases with its polarity. CO-1055 (industrial decanol/octanol blend) has the highest partition coefficient toward propionic acid among the solvents that has no molecular toxicity toward Propionibacteria. A preliminary extraction study was conducted using tetradecane as solvent in a hydrophobic hollow fiber contactor. The result confirmed that SELM eliminates the equilibrium limitation of conventional liquid-liquid extraction, and allows the use of a non-toxic solvent with low partition coefficient.

  12. Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility

    SciTech Connect

    Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

    2011-10-25

    For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  13. Determination of phthalate ester plasticizers in the aquatic environment using hollow fibre supported liquid membranes

    NASA Astrophysics Data System (ADS)

    Mtibe, A.; Msagati, Titus A. M.; Mishra, Ajay K.; Mamba, Bhekie B.

    Phthalates are known to be carcinogenic, teratogenic as well as endocrine disruptors. The potential risk to human and animals health generated from them has drawn great attention all over the world. Hollow fibre supported liquid membrane (HFSLM) online with high pressure liquid chromatography (HPLC) was used to determine benzyl butyl phthalate (BBP), dibutyl phthalate (DBP) and Diethylhexyl phthalate (DEHP) in wastewater. Toluene, di-n-hexyl ether and undecane were used as liquid barriers separating both donor (sample) and acceptor phase. Toluene performed much better than undecane and was used in sample preparation. The presence of toluene showed the potential for the enrichment and removal of phthalates to the concentrations ranges from 0 to 1.7 mg L-1.

  14. Theoretical analysis of copper-ion extraction through hollow fiber supported liquid membranes

    SciTech Connect

    Shiau, C.Y.; Chen, P.Z. )

    1993-10-01

    An understanding of the extraction of metal ions through hollow fiber supported liquid membranes is important for the design of such systems. In this paper, copper-ion extraction through hollow fiber supported liquid membranes containing D2EHPA as a carrier agent is analyzed. Both a rigorous model and a simple model with varied permeation coefficients for the system are proposed. The once-through mode is first modeled and the parametric effects on the extraction rate are discussed. The recycling mode is then modeled. A comparison between the rigorous model and the simple model with varied/constant permeation coefficients is made. From the models it is found that the permeation coefficient is a function of copper ion concentration. 18 refs., 9 figs., 1 tab.

  15. Ionic liquid-supported aldehyde: a highly efficient scavenger for primary amines.

    PubMed

    Muthayala, Manoj Kumar; Kumar, Anil

    2012-01-01

    Novel aldehyde-functionalized ionic liquids have been synthesized and used as scavengers for primary amines in the synthesis of secondary amines. The yields of secondary amines are high (82-90%) with high purity. The advantages of the protocol over that with a polymer-supported aldehyde scavenger are the shorter reaction time, the homogeneous reaction medium, the high level of loading of the aldehyde group, easy monitoring of reaction, and characterization of intermediates.

  16. A paper-supported graphene-ionic liquid array for e-nose application.

    PubMed

    Zhu, X; Liu, D; Chen, Q; Lin, L; Jiang, S; Zhou, H; Zhao, J; Wu, J

    2016-02-18

    A flexible graphene sensor array has been fabricated by in situ reduction of a graphene oxide (GO) array patterned on a paper chip. To achieve cross-reactive sensing and gas discrimination ability, the surface of each reduced GO (rGO) spot was modified with different types of ionic liquids (ILs), which could significantly alter the semiconductor properties and consequently the gas sensing behaviour of the paper-supported rGO sensor. PMID:26794831

  17. Supported liquid membrane-liquid chromatography-mass spectrometry analysis of cyanobacterial toxins in fresh water systems

    NASA Astrophysics Data System (ADS)

    Mbukwa, Elbert A.; Msagati, Titus A. M.; Mamba, Bhekie B.

    Harmful algal blooms (HABs) are increasingly becoming of great concern to water resources worldwide due to indiscriminate waste disposal habits resulting in water pollution and eutrophication. When cyanobacterial cells lyse (burst) they release toxins called microcystins (MCs) that are well known for their hepatotoxicity (causing liver damage) and have been found in eutrophic lakes, rivers, wastewater ponds and other water reservoirs. Prolonged exposure to low concentrated MCs are equally of health importance as they are known to be bioaccumulative and even at such low concentration do exhibit toxic effects to aquatic animals, wildlife and human liver cells. The application of common treatment processes for drinking water sourced from HABs infested reservoirs have the potential to cause algal cell lyses releasing low to higher amounts of MCs in finished water. Trace microcystins in water/tissue can be analyzed and quantified using Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) following solid-phase extraction (SPE) sample clean-up procedures. However, extracting MCs from algal samples which are rich in chlorophyll pigments and other organic matrices the SPE method suffers a number of drawbacks, including cartridge clogging, long procedural steps and use of larger volumes of extraction solvents. We applied a supported liquid membrane (SLM) based technique as an alternative sample clean-up method for LC-ESI-MS analysis of MCs from both water and algal cells. Four (4) MC variants (MC-RR, -YR, -LR and -WR) from lyophilized cells of Microcystis aeruginosa and water collected from a wastewater pond were identified) and quantified using LC-ESI-MS following a SLM extraction and liquid partitioning step, however, MC-WR was not detected from water extracts. Within 45 min of SLM extraction all studied MCs were extracted and pre-concentrated in approximately 15 μL of an acceptor phase at an optimal pH 2.02 of the donor phase (sample). The highest

  18. An application of supported liquid membranes for removal of inorganic contaminants from groundwater

    SciTech Connect

    Chiarizia, R. |; Horwitz, E.P.; Hodgson, K.M.

    1991-12-31

    This review paper summarizes the results of an investigation on teh use of supported liquid membranes for the removal of uranium (VI) and some anionic contaminants (technetium(VII), chromium(VI) and nitrates) from the Hanford site groundwater. As a membrane carrier for U(VI), bis(2,4,4-trimethylpentyl)phosphinic acid was selected because of its high selectivity over calcium and magnesium. The water soluble complexing agent 1-hydroxyethane-1,1-diphosphonic acid was used as stripping agent. For the anionic contaminants the long-chain aliphatic amines Primene JM-T (primary)., Amberlite LA-1 (secondary) and trilaurylamine (tertiary) were investigated as membrane carriers. Among these amines, Amberlite LA-2 proved to be the most effective carrier for the simultaneous removal of the investigated anion contaminants. A good long-term stability (at least one month) of the liquid membranes was obtained, especially in the uranium(VI) removal. 8 refs., 4 figs., 4 tabs.

  19. An application of supported liquid membranes for removal of inorganic contaminants from groundwater

    SciTech Connect

    Chiarizia, R. Westinghouse Hanford Co., Richland, WA ); Horwitz, E.P. ); Hodgson, K.M. )

    1991-01-01

    This review paper summarizes the results of an investigation on teh use of supported liquid membranes for the removal of uranium (VI) and some anionic contaminants (technetium(VII), chromium(VI) and nitrates) from the Hanford site groundwater. As a membrane carrier for U(VI), bis(2,4,4-trimethylpentyl)phosphinic acid was selected because of its high selectivity over calcium and magnesium. The water soluble complexing agent 1-hydroxyethane-1,1-diphosphonic acid was used as stripping agent. For the anionic contaminants the long-chain aliphatic amines Primene JM-T (primary)., Amberlite LA-1 (secondary) and trilaurylamine (tertiary) were investigated as membrane carriers. Among these amines, Amberlite LA-2 proved to be the most effective carrier for the simultaneous removal of the investigated anion contaminants. A good long-term stability (at least one month) of the liquid membranes was obtained, especially in the uranium(VI) removal. 8 refs., 4 figs., 4 tabs.

  20. A supported polymeric liquid membrane process for removal of carboxylic acids from a waste stream

    SciTech Connect

    Ho, S.V.

    1999-12-31

    The removal or elimination of organic residues from aqueous waste streams represents a major need in the chemical industry. The authors have developed a new class of membrane called supported polymeric liquid membranes that are capable of removing and concentrating low molecular weight organic compounds from dilute aqueous solutions, especially those that also contain high concentrations of inorganic salts. Attractive features of this membrane process include the ability to recover the contaminants in concentrated form for either recycle or more economical disposal, low pressure (ambient) operation, simple scale-up using commercial hollow fiber modules, and ease of in-situ regeneration of the polymeric liquid. The process has shown treatment feasibility for several types of aqueous waste streams. This paper describes the laboratory development activities for treating a waste stream containing a dilute mixture of C2-C6 carboxylic acids and nitric acid.

  1. Mining for liquid gold: midwifery language and practices associated with early breastfeeding support.

    PubMed

    Burns, Elaine; Fenwick, Jenny; Sheehan, Athena; Schmied, Virginia

    2013-01-01

    Internationally, women give mixed reports regarding professional support during the early establishment of breastfeeding. Little is known about the components of midwifery language and the support practices, which assist or interfere with the early establishment of breastfeeding. In this study, critical discourse analysis has been used to describe the language and practices used by midwives when supporting breastfeeding women during the first week after birth. Participant observation at two geographically distant Australian health care settings facilitated the collection of 85 observed audio-recorded dyadic interactions between breastfeeding women and midwives during 2008-2009. Additionally, 23 interviews with women post discharge, 11 interviews with midwives and four focus groups (40 midwives) have also been analysed. Analysis revealed three discourses shaping the beliefs and practices of participating midwives. In the dominant discourse, labelled 'Mining for Liquid Gold', midwives held great reverence for breast milk as 'liquid gold' and prioritised breastfeeding as the mechanism for transfer of this superior nutrition. In the second discourse, labelled 'Not Rocket Science', midwives constructed breastfeeding as 'natural' or 'easy' and something which all women could do if sufficiently committed. The least well-represented discourse constructed breastfeeding as a relationship between mother and infant. In this minority discourse, women were considered to be knowledgeable about their needs and those of their infant. The language and practices of midwives in this approach facilitated communication and built confidence. These study findings suggest the need for models of midwifery care, which facilitate relationship building between mother and infant and mother and midwife.

  2. SUPPORTED LIX-84 LIQUID MEMBRANES FOR METAL ION SEPARATION: A STUDY ON METAL ION SORPTION EQUILIBRIUM AND KINETICS

    EPA Science Inventory

    Supported 2-hydroxy-5-nonyl-acetophenone oxime (LIX-84) liquid membranes have potential applications for the removal (or recovery) of copper ions from waste streams. But, the stability of such a liquid membrane remains the major hurdle for its practical applications. Inorganic su...

  3. SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

    SciTech Connect

    Alan W. Weimer; Peter Czerpak; Patrick Hilbert

    2000-01-01

    A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is non-reactive with sodium, is inexpensive, has high density (i.e. inertia), and can be obtained in various particle sizes and porosities. Force balance modeling has been used to design a surrogate ambient temperature system that is hydrodynamically similar to the real system, thus allowing complementary investigation of the governing fluidization hydrodynamics. The primary objective of this research was to understand the origin of and to quantify the liquid capillary interparticle forces affecting the molten carbonate SLPC fluidized bed process. Substantial theoretical and experimental exploratory results indicate process

  4. Ionic liquid-supported synthesis of piperazine derivatives as potential insecticides.

    PubMed

    Shen, Yan; Wang, Jia-Yi; Song, Gong-Hua

    2014-02-01

    With the purpose of extending our efforts on the search and synthesis of new insecticides with novel acting modes, a series of novel 4-(2-(4-(pyridin-2-yl)piperazin-1-yl)ethoxy)aniline derivatives were designed based on classical serotonin receptor ligands and synthesized through the rapid ionic liquid-supported parallel synthesis with yields up to 88 %. These products were purified through the convenient washing with appropriate solvents and isolated in good yield. In addition, 27 amide or urea derivatives of anilines were also prepared. Bioassay data showed that some of the synthesized compounds displayed selective insecticidal bioactivities against tested pests. PMID:24281924

  5. Supported liquid membranes in radioactive waste treatment processes: Recent experience and perspective

    SciTech Connect

    Nechaev, A.F.; Projaev, V.V.; Kapranchik, V.P.

    1995-12-31

    Recent experience in practical application of Supported Liquid Membranes (SLM or SUPLIM) both in the hydrometallurgy and nuclear technology has been analyzed. The results obtained allow one to consider SUPLIM as a promising technology for radioactive waste treatment. This statement is based on the evaluation of integrated socioeconomic effects, including quantity of additional chemicals, the volume of secondary technological streams and secondary wastes, simplicity and the low costs of equipment used, potential possibility to organize in situ process, and the level of the harmful impact on personnel. 35 refs.

  6. Adiabatic Calorimetry as Support to the Certification of High-Purity Liquid Reference Materials

    NASA Astrophysics Data System (ADS)

    Baldan, A.; Bosma, R.; Peruzzi, A.; van der Veen, A. M. H.; Shimizu, Y.

    2009-02-01

    The certification of high-purity liquid reference materials is supported by several analytical techniques (e.g., gas chromatography, liquid chromatography, Karl Fischer coulometry, inductively coupled plasma mass spectrometry, differential scanning calorimetry, adiabatic calorimetry). Most of them provide information on a limited set of specific impurities present in the sample (indirect methods). Adiabatic calorimetry [1] complementarily provides the overall molar fraction of impurities with sensitivity down to few μmol · mol-1 without giving any information about the nature of the impurities present in the sample (direct method). As the combination of adiabatic calorimetry with one (or more than one) indirect chemical techniques was regarded as an optimal methodology, NMi VSL developed an adiabatic calorimetry facility for the purity determination of high-purity liquid reference materials [2]. Within the framework of collaboration with NMIJ, a benzene-certified reference material (NMIJ CRM 4002) from NMIJ was analyzed by adiabatic calorimetry at NMi VSL. The results of this measurement are reported in this paper. Good agreement with the NMIJ-certified purity value (99.992 ± 0.003) cmol · mol-1 was found. The influence of different data analysis approaches (e.g., extrapolation functions, melting ranges) on the measurement results is reported. The uncertainty of the measured purity was estimated.

  7. Interactions of Aqueous Imidazolium-Based Ionic Liquid Mixtures with Solid-Supported Phospholipid Vesicles

    PubMed Central

    Losada-Pérez, Patricia; Khorshid, Mehran; Renner, Frank Uwe

    2016-01-01

    Despite the environmentally friendly reputation of ionic liquids (ILs), their safety has been recently questioned given their potential as cytotoxic agents. The fundamental mechanisms underlying the interactions between ILs and cells are less studied and by far not completely understood. Biomimetic films are here important biophysical model systems to elucidate fundamental aspects and mechanisms relevant for a large range of biological interaction ranging from signaling to drug reception or toxicity. Here we use dissipative quartz crystal microbalance QCM-D to examine the effect of aqueous imidazolium-based ionic liquid mixtures on solid-supported biomimetic membranes. Specifically, we assess in real time the effect of the cation chain length and the anion nature on a supported vesicle layer of the model phospholipid DMPC. Results indicate that interactions are mainly driven by the hydrophobic components of the IL, which significantly distort the layer and promote vesicle rupture. Our analyses evidence the gradual decrease of the main phase transition temperature upon increasing IL concentration, reflecting increased disorder by weakening of lipid chain interactions. The degree of rupture is significant for ILs with long hydrophobic cation chains and large hydrophobic anions whose behavior is reminiscent of that of antimicrobial peptides. PMID:27684947

  8. Summary of Liquid Propulsion System Needs in Support of the Constellation Program

    NASA Technical Reports Server (NTRS)

    Lorier, Terry; Sumrall, Phil; Baine, Michael

    2008-01-01

    In January 2004, the President of the United States established the Vision for Space Exploration (VSE) to complete the International Space Station, retire the Space Shuttle and develop its replacement, and expand the human presence on the Moon as a stepping stone to human exploration of Mars and worlds beyond. In response, NASA developed the Constellation Program, consisting of the components shown in Figure 1. This paper will summarize the manned spaceflight liquid propulsion system needs in support of the Constellation Program over the next 10 years. It will address all liquid engine needs to support human exploration from low Earth orbit (LEO) to the lunar surface, including an overview of engines currently under contract, those baselined but not yet under contract, and those propulsion needs that have yet to be initiated. There may be additional engine needs for early demonstrators, but those will not be addressed as part of this paper. Also, other portions of the VSE architecture, including the planned Orion abort test boosters and the Lunar Precursor Robotic Program, are not addressed here as they either use solid motors or are focused on unmanned elements of returning humans to the Moon.

  9. New support for high-performance liquid chromatography based on silica coated with alumina particles.

    PubMed

    Silveira, José Leandro R; Dib, Samia R; Faria, Anizio M

    2014-01-01

    A new material based on silica coated with alumina nanoparticles was proposed for use as a chromatographic support for reversed-phase high-performance liquid chromatography. Alumina nanoparticles were synthesized by a sol-gel process in reversed micelles composed of sodium bis(2-ethylhexyl)sulfosuccinate, and the support material was formed by the self-assembly of alumina layers on silica spheres. Spectroscopic and (29)Si nuclear magnetic resonance results showed evidence of chemical bonds between the alumina nanoparticles and the silica spheres, while morphological characterizations showed that the aluminized silica maintained the morphological properties of silica desired for chromatographic purposes after alumina incorporation. Stability studies indicated that bare silica showed high dissolution (~83%), while the aluminized silica remained practically unchanged (99%) after passing one liter of the alkaline mobile phase, indicating high stability under alkaline conditions. The C18 bonded aluminized silica phase showed great potential for use in high-performance liquid chromatography to separate basic molecules in the reversed-phase mode.

  10. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    NASA Astrophysics Data System (ADS)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO2, CeO2, Al2O3 and SiO2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO2 was much smaller than those in im-Pd/TiO2 and pd-Pd/TiO2. Pd particle size of the dp-Pd/TiO2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO2 exhibited a much higher catalytic activity than those on other supports. Furthermore, dp-Pd/TiO2 was found to be more active than im-Pd/TiO2 and pd-Pd/TiO2.

  11. Advanced Supported Liquid Membranes for Carbon Dioxide Control in Cabin Applications

    NASA Technical Reports Server (NTRS)

    Wickham, David T.; Gleason, Kevin J.; Engel, Jeffrey R.; Chullen, Cinda

    2016-01-01

    The development of new, robust, life support systems is critical to NASA's continued progress in space exploration. One vital function is maintaining the carbon dioxide (CO2) concentration in the cabin at levels that do not impair the health or performance of the crew. The CO2 removal assembly (CDRA) is the current CO2 control technology on-board the International Space Station (ISS). Although the CDRA has met the needs of the ISS to date, the repeated cycling of the molecular sieve sorbent causes it to break down into small particles that clog filters or generate dust in the cabin. This reduces reliability and increases maintenance requirements. Another approach that has potential advantages over the current system is a membrane that separates CO2 from air. In this approach, cabin air contacts one side of the membrane while other side of the membrane is maintained at low pressure to create a driving force for CO2 transport across the membrane. In this application, the primary power requirement is for the pump that creates the low pressure and then pumps the CO2 to the oxygen recovery system. For such a membrane to be practical, it must have high CO2 permeation rate and excellent selectivity for CO2 over air. Unfortunately, conventional gas separation membranes do not have adequate CO2 permeability and selectivity to meet the needs of this application. However, the required performance could be obtained with a supported liquid membrane (SLM), which consists of a microporous material filled with a liquid that selectively reacts with CO2 over air. In a recently completed Phase II SBIR project, Reaction Systems, Inc. fabricated an SLM that is very close to meeting permeability and selectivity objectives for use in the advanced space suit portable life support system. This paper describes work carried out to evaluate its potential for use in spacecraft cabin application.

  12. The application of supported liquid extraction in the analysis of benzodiazepines using surface enhanced Raman spectroscopy.

    PubMed

    Doctor, Erika L; McCord, Bruce

    2015-11-01

    Benzodiazepines are among the most frequently prescribed medicines for anxiety disorders and are present in many toxicological screens. These drugs are often administered in the commission of drug facilitated sexual assaults due their effects on the central nervous system. Due to the potency of the drugs, only small amounts are usually given to victims; therefore, the target detection limit for these compounds in biological samples has been set at 50 ng/mL. Currently the standard screening method for detection of this class of drug is the immunoassay; however, screening methods that are more sensitive and selective than immunoassays are needed to encompass the wide range of structural variants of this class of compounds. Surface enhanced Raman spectroscopy (SERS) can be highly sensitive and has been shown to permit analysis of various benzodiazepines with limits of detection as low as 6 ng/mL. This technique permits analytical results in less than 2 min when used on pure drug samples. For biological samples, a key issue for analysis by SERS is removal of exogenous salts and matrix components. In this paper we examine supported liquid extraction as a useful preparation technique for SERS detection. Supported liquid extraction has many of the benefits of liquid-liquid extraction along with the ability to be automated. This technique provides a fast and clean extraction for benzodiazepines from urine at a pH of 5.0, and does not produce large quantities of solvent waste. To validate this procedure we have determined figures of merit and examined simulated urine samples prepared with commonly appearing interferences. It was shown that at a pH 5.0 many drugs that are prevalent in urine samples can be removed, permitting a selective detection of the benzodiazepine of interest. This technique has been shown to provide rapid (less than 20 min), sensitive, and specific detection of benzodiazepines with limits of detection between 32 and 600 ng/mL and dynamic range of 32

  13. Supported Phospholipid Bilayer Defects Created by a Cation or Anion of a Room-Temperature Ionic Liquid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, the independent effects on a supported phospholipid bilayer (SPB) caused by a cation and anion of a room-temperature ionic liquid (RT-IL) were studied via atomic force microscopy (AFM). The supported phospholipid bilayer was composed only of 1,2-dielaidoylphosphatidylcholine (DEPC) an...

  14. Some methods of human liquid and solid wastes utilization in bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. Á.; Tikhomirov, A. Á.; Zolotukhin, I. G.; Gribovskaya, I. V.; Gros, J. B.

    The possibility of stepwise utilization of human liquid and solid wastes with the purpose of an increase of a closure degree of bioregenerative life support systems BLSS and sodium chloride inclusion in the organic matter turnover was investigated On the first stage urine and faeces were subjected to oxidation by Yu A Kudenko physicochemical method On the next stage the products of human liquid and solid wastes oxidation were used for roots nutrition of wheat grown by substrate culture method Soil-like substrate the technology of which was described earlier was used as a substrate After the wheat cultivation the irrigational solution and the solution obtained in the result of substrate washing containing mineral elements not absorbed by the plants were used for cultivation of salt-tolerant Salicornia europaea plants The above-ground biomass of these vegetables can be used as a food and roots washed from dissoluble mineral elements can be added to the soil-like substrate Four consecutive wheat and Salicornia europaea vegetations were cultivated In the result of this complex technology of wheat and Salicornia europaea cultivation the soil-like substrate salinization by NaCl introduced into the irrigational solution together with the products of urine oxidation has considerably decreased

  15. Hollow-fiber supported liquid membrane (HFSLM) for the separation of lanthanides and actinides

    SciTech Connect

    Mohapatra, P.K.; Ansari, S.A.; Bhattacharyya, A.; Manchanda, V.K.; Patil, C.B.

    2008-07-01

    The transport behavior of Nd(III) was investigated using hollow-fiber supported liquid membranes (HFSLM) from an acidic feed solution using N,N,N',N'-tetraoctyl-diglycolamide (TODGA) in normal paraffinic hydrocarbon (NPH) as the carrier. Near quantitative transport (>99%) of Nd(III) from 500 mL of feed containing 1 g/L Nd in 3.5 M HNO{sub 3} was possible in about 45 minutes. Quantitative transport time increased when the volume or Nd(III ) concentration in the feed was increased. The liquid membrane had excellent stability as indicated by eight consecutive runs that gave consistent transport rates. The HFSLM data using Cyanex- 301 in n-dodecane as carrier extractant for the lanthanide-actinide separation with the feed solution 1 M NaNO{sub 3} at pH 3.5 and stripping solution 0.01 M EDTA at a pH 3.5 were promising. (authors)

  16. Life Support Catalyst Regeneration Using Ionic Liquids and In Situ Resources

    NASA Technical Reports Server (NTRS)

    Abney, Morgan B.; Karr, Laurel J.; Paley, Mark S.; Donovan, David N.; Kramer, Teersa J.

    2016-01-01

    Oxygen recovery from metabolic carbon dioxide is an enabling capability for long-duration manned space flight. Complete recovery of oxygen (100%) involves the production of solid carbon. Catalytic approaches for this purpose, such as Bosch technology, have been limited in trade analyses due in part to the mass penalty for high catalyst resupply caused by carbon fouling of the iron or nickel catalyst. In an effort to mitigate this challenge, several technology approaches have been proposed. These approaches have included methods to prolong the life of the catalysts by increasing the total carbon mass loading per mass catalyst, methods for simplified catalyst introduction and removal to limit the resupply container mass, methods of using in situ resources, and methods to regenerate catalyst material. Research and development into these methods is ongoing, but only use of in situ resources and/or complete regeneration of catalyst material has the potential to entirely eliminate the need for resupply. The use of ionic liquids provides an opportunity to combine these methods in a technology approach designed to eliminate the need for resupply of oxygen recovery catalyst. Here we describe the results of an initial feasibility study using ionic liquids and in situ resources for life support catalyst regeneration, we discuss the key challenges with the approach, and we propose future efforts to advance the technology.

  17. Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis

    SciTech Connect

    Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

    1999-11-14

    Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

  18. Transport of europium through supported liquid membrane containing dihexyl-N,N-diethyl-carbamoyl-methyl-phosphonate

    SciTech Connect

    Nakamura, Shigeto; Akiba, Kenichi )

    1989-12-01

    The transport of europium has been studied through a supported liquid membrane (SLM) impregnated with dihexyl-N,N-diethyl-carbamoyl-methyl-phosphonate (CMP). Europium was effectively extracted from the perchlorate solution into SLM, but was insufficiently stripped to a dilute acid solution. The addition of 1-decanol improved the stripping process, and quantitative transport of europium was achieved. By the combination of two SLM systems consisting of diisodecylphosphoric acid and CMP, europium was transported from the feed solution (0.1 M HNO{sub 3}) through the intermediate solution (1 M HClO{sub 4} + 4 M NaClO{sub 4}) to the product solution (0.1 M HNO{sub 3}) and effectively concentrated by a factor of about 20.

  19. Transport of silver(I) ion through a supported liquid membrane using bathocuproine as a carrier

    SciTech Connect

    Saito, Takashi

    1998-04-01

    The active transport of silver ions through a supported liquid membrane (SLM) containing bathocuproine (4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline) as a carrier was investigated under various experimental conditions. The magnitude of the permeation velocity of metallic ions through the SLM was in the order Ag{sup +} > Cd{sup 2+} {much_gt} Zn{sup 2+} > Cu{sup 2+} when nitrite ion was used as the pairing ion species that is cotransported with metallic ion. The permeation velocity of silver(I) ions through an SLM was dependent on the concentrations of the silver ion, bathocuproine, and nitrite ion. An equation for the transport of silver ions, consisting of three important factors, i.e., the concentrations of metallic ion, carrier, and pairing ion species, was derived.

  20. Transport of cadmium(II) ion through a supported liquid membrane containing a bathocuproine

    SciTech Connect

    Saito, Takashi )

    1991-12-01

    The active transport of cadmium ions across a supported liquid membrane (SLM) containing a ligand based on a driving force supplied by the concentration gradient of the chloride ion is described. The SLM used is a microporous polypropylene membrane impregnated with a bathocuproine (4,7-diphenyl-2,9-dimethyl-1,10-phenanthroline) solution in dibenzyl ether as a carrier. The characteristics of the cadmium ion transport system are examined under various experimental conditions. The active transport of cadmium ions through an SLM is dependent on the concentrations of the cadmium ion, ligand, and chloride ion. An equation for the permeation velocity of cadmium ions, consisting of three important factors for this transport system, is proposed.

  1. Attraction of mesoscale objects on the surface of a thin elastic film supported on a liquid.

    PubMed

    Chakrabarti, Aditi; Chaudhury, Manoj K

    2015-02-17

    We study the interaction of two parallel rigid cylinders on the surface of a thin elastic film supported on a pool of liquid. The excess energy of the surface due to the curvature of the stretched film induces attraction of the cylinders that can be quantified by the variation of their gravitational potential energies as they descend into the liquid while still floating on the film. Although the experimental results follow the trend predicted from the balance of the gravitational and elastic energies of the system, they are somewhat underestimated. The origin of this discrepancy is the hysteresis of adhesion between the cylinder and the elastic film that does not allow the conversion of the total available energy into gravitational potential energy, as some part of it is recovered in stretching the film behind the cylinders while they approach each other. A modification of the model accounting for the effects of adhesion hysteresis improves the agreement between theoretical and experimental results. The contribution of the adhesion hysteresis can be reduced considerably by introducing a thin hydrogel layer atop the elastic film that enhances the range of attraction of the cylinders (as well as rigid spheres) in a dramatic way. Morphological instabilities in the gel project corrugated paths to the motion of small spheres, thus leading to a large numbers of particles to aggregate along their defects. These observations suggest that a thin hydrogel layer supported on a deformable elastic film affords an effective model system to study elasticity and defects mediated interaction of particles on its surface.

  2. Effect of Ammonium- and Phosphonium-Based Ionic Liquids on the Separation of Lactic Acid by Supported Ionic Liquid Membranes (SILMs)

    PubMed Central

    Matsumoto, Michiaki; Panigrahi, Abhishek; Murakami, Yuuki; Kondo, Kazuo

    2011-01-01

    Biodegradable polymers have attracted much attention from an environmental point of view. Optically pure lactic acid that can be prepared by fermentation is one of the important raw materials for biodegradable polymer. The separation and purification of lactic acid from the fermentation broth are the major portions of the production costs. We proposed the application of supported ionic liquid membranes to recovering lactic acid. In this paper, the effect of ionic liquids, such as Aliquat 336, CYPHOS IL-101, CYPHOS IL-102, CYPHOS IL-104, CYPHOS IL-109 and CYPHOS IL-111 on the lactic acid permeation have been studied. Aliquat 336, CYPHOS IL-101 and CYPHOS IL-102 were found to be the best membrane solvents as far as membrane stability and permeation of lactic acid are concerned. CYPHOS IL-109 and CYPHOS IL-111 were found to be unsuitable, as they leak out from the pores of the supported liquid membrane (SLM), thereby allowing free transport of lactic acid as well as hydrochloric acid. CYPHOS IL-102 was found to be the most adequate (Permeation rate = 60.41%) among these ionic liquids as far as the separation of lactic acid is concerned. The permeation mechanisms, by which ionic liquid-water complexes act as the carrier of lactate and hydrochloric acid, were proposed. The experimental permeation results have been obtained as opposed to the expected values from the solution-diffusion mechanism. PMID:24957613

  3. Some methods for human liquid and solid waste utilization in bioregenerative life-support systems.

    PubMed

    Ushakova, S A; Zolotukhin, I G; Tikhomirov, A A; Tikhomirova, N A; Kudenko, Yu A; Gribovskaya, I V; Balnokin, Yu; Gros, J B

    2008-12-01

    Bioregenerative life-support systems (BLSS) are studied for developing the technology for a future biological life-support system for long-term manned space missions. Ways to utilize human liquid and solid wastes to increase the closure degree of BLSS were investigated. First, urine and faeces underwent oxidation by Kudenko's physicochemical method. The products were then used for root nutrition of wheat grown by the soil-like substrate culture method. Two means of eliminating sodium chloride, introduced into the irrigation solution together with the products of urine oxidation, were investigated. The first was based on routine electrodialysis of irrigation water at the end of wheat vegetation. Dialysis eliminated about 50% of Na from the solution. This desalinization was performed for nine vegetations. The second method was new: after wheat cultivation, the irrigation solution and the solution obtained by washing the substrate containing mineral elements not absorbed by the plants were used to grow salt-tolerant Salicornia europaea L. plants (saltwort). The above-ground biomass of this plant can be used as a food, and roots can be added to the soil-like substrate. Four consecutive wheat and Salicornia vegetations were cultivated. As a result of this wheat and Salicornia cultivation process, the soil-like substrate salinization by NaCl were considerably decreased.

  4. Some methods for human liquid and solid waste utilization in bioregenerative life-support systems.

    PubMed

    Ushakova, S A; Zolotukhin, I G; Tikhomirov, A A; Tikhomirova, N A; Kudenko, Yu A; Gribovskaya, I V; Balnokin, Yu; Gros, J B

    2008-12-01

    Bioregenerative life-support systems (BLSS) are studied for developing the technology for a future biological life-support system for long-term manned space missions. Ways to utilize human liquid and solid wastes to increase the closure degree of BLSS were investigated. First, urine and faeces underwent oxidation by Kudenko's physicochemical method. The products were then used for root nutrition of wheat grown by the soil-like substrate culture method. Two means of eliminating sodium chloride, introduced into the irrigation solution together with the products of urine oxidation, were investigated. The first was based on routine electrodialysis of irrigation water at the end of wheat vegetation. Dialysis eliminated about 50% of Na from the solution. This desalinization was performed for nine vegetations. The second method was new: after wheat cultivation, the irrigation solution and the solution obtained by washing the substrate containing mineral elements not absorbed by the plants were used to grow salt-tolerant Salicornia europaea L. plants (saltwort). The above-ground biomass of this plant can be used as a food, and roots can be added to the soil-like substrate. Four consecutive wheat and Salicornia vegetations were cultivated. As a result of this wheat and Salicornia cultivation process, the soil-like substrate salinization by NaCl were considerably decreased. PMID:18581263

  5. Application of supported liquid membranes for removal of uranium from groundwater

    SciTech Connect

    Chiarizia, R.; Horwitz, E.P.; Rickert, P.G.; Hodgson, K.M.; Westinghouse Hanford Co., Richland, WA )

    1989-01-01

    The separation of uranium from Hanford site groundwater as studied by hollow-fiber supported liquid membranes, SLM. The carrier bis(2,4,4-trimethylpentyl)phosphinic acid, H(DTMPep), contained in the commercial extractant Cyanex{trademark} 272 was used as a membrane carrier, because of its selectivity for U over calcium and magnesium. The water soluble complexing agent, 1-hydroxyethane-1,1-diphosphonic acid, HEDPA, was used as stripping agent. Polypropylene hollow-fibers and n-dodecane were used as polymeric support and diluent, respectively. Laboratory scale hollow-fiber modules were employed in a recycling mode, using as feed synthetic groundwater at pH 2, to confirm the capability of the proposed SLM system to separate and concentrate U(VI) in the strip solution. Information was obtained on the U(VI) concentration factor and on the long-term performance of the SLMs. Encouraging results were obtained both with a conventional module and with a module containing a carrier solution reservoir. Industrial scale modules were used at Hanford to test the SLM separation of U(VI) from real contaminated groundwater. The uranium concentration was reduced from approximately 3500 ppB to about 1 ppB in a few hours. 9 refs., 8 figs., 4 tabs.

  6. Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography.

    PubMed

    Tao, Yong; Liu, Jing-Fu; Hu, Xia-Lin; Li, Hong-Cheng; Wang, Thanh; Jiang, Gui-Bin

    2009-08-28

    By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C(8)MIM][PF(6)] with 14% TOPO (w/v); donor phase: 4mL, pH 4.5 KH(2)PO(4) with 2M Na(2)SO(4); acceptor phase: 25microL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1-0.4microg/L, RSDor=0.999) were obtained for all the analytes. The presence of humic acid (0-25mg/L dissolved organic carbon) and bovine serum albumin (0-100microg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2-103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.

  7. Glycine enhanced separation of Co(II) and Ni(II) with bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) by liquid-liquid extraction and supported liquid membranes

    SciTech Connect

    Reichley-Yinger, L.; Danesi, P.R.

    1985-01-01

    The extraction behavior of Co and Ni ions from aqueous nitrate solution containing glycine, and their separation by liquid-liquid extraction and supported liquid membranes (SLMs) has been studied. The separation factor between the two metals is greatly enhanced by the presence of glycine. The enhancement is due to the preferential complexation of the Ni ions by glycine. The conditional equilibrium constants of the extraction reactions and the SLM permeability coefficients have been measured. The results indicate that metal glycinate complexes are not extracted and that in presence of glycine very clean Co-Ni separation can be obtained in a single SLM pass.

  8. Facilitated transport of carbon dioxide through supported liquid membranes of aqueous amine solutions

    SciTech Connect

    Teramoto, Masaaki; Nakai, Katsuya; Ohnishi, Nobuaki; Huang, Q.; Watari, Takashi; Matsuyama, Hideto

    1996-02-01

    A series of experiments on the facilitated transport of CO{sub 2} through supported liquid membranes containing monoethanolamine (MEA) and diethanolamine (DEA) was performed. The feed gas was a mixture of CO{sub 2} and CH{sub 4}, and the CO{sub 2} partial pressure p{sub CO{sub 2},F} was in the range from 0.05 to 0.97 atm. Compared to the MEA membranes, the DEA membranes showed a little higher permeation rate of CO{sub 2} since the equilibrium constant of the reaction between CO{sub 2} and MEA is too large for CO{sub 2} to be released to the receiving phase rapidly. When p{sub CO{sub 2},F} and the MEA concentration were 0.05 atm and 4 mol/dm{sup 3}, respectively, the separation factor {alpha}(CO{sub 2}/CH{sub 4}) was about 2,000. It was found that if the membrane thickness multiplied by the square root of the tortuosity factor of the microporous support membrane is used as the effective pore length, the experimentally observed permeation rates of CO{sub 2} can be satisfactorily simulated by the theory of facilitated transport of CO{sub 2} through aqueous amine membranes. A method for estimating the solubilities of CO{sub 2} in the membrane solutions from the permeation rates of CH{sub 4} was also proposed. It was also found that permeation rates of CO{sub 2} through aqueous DEA membranes reported by Guha et al. were quantitatively explained by the proposed theory.

  9. An Efficient, Versatile, and Safe Access to Supported Metallic Nanoparticles on Porous Silicon with Ionic Liquids.

    PubMed

    Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C; Gaillard, Frédéric

    2016-06-03

    The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved.

  10. Troponin T immunosensor based on liquid crystal and silsesquioxane-supported gold nanoparticles.

    PubMed

    Zapp, Eduardo; da Silva, Paulo Sérgio; Westphal, Eduard; Gallardo, Hugo; Spinelli, Almir; Vieira, Iolanda Cruz

    2014-09-17

    A nanostructured immunosensor based on the liquid crystal (E)-1-decyl-4-[(4-decyloxyphenyl)diazenyl]pyridinium bromide (Br-Py) and gold nanoparticles supported by the water-soluble hybrid material 3-n-propyl-4-picolinium silsesquioxane chloride (AuNP-Si4Pic(+)Cl(-)) was built for the detection of troponin T (cTnT), a cardiac marker for acute myocardial infarction (AMI). The functionalized nanostructured surface was used to bind anti-cTnT monoclonal antibodies through electrostatic interaction. The immunosensor (ab-cTnT/AuNP-Si4Pic(+)Cl(-)/Br-Py/GCE) surface was characterized by microscopy techniques. The electrochemical behavior of the immunosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy. A calibration curve was obtained by square-wave voltammetry. The immnunosensor provided a limit of detection of 0.076 ng mL(-1) and a linear range between 0.1 and 0.9 ng mL(-1) (appropriate for AMI diagnosis). PMID:25111622

  11. Carbon-supported ionic liquids as innovative adsorbents for CO₂ separation from synthetic flue-gas.

    PubMed

    Erto, Alessandro; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco; Balsamo, Marco; Lancia, Amedeo; Montagnaro, Fabio

    2015-06-15

    Fixed-bed thermodynamic CO2 adsorption tests were performed in model flue-gas onto Filtrasorb 400 and Nuchar RGC30 activated carbons (AC) functionalized with [Hmim][BF4] and [Emim][Gly] ionic liquids (IL). A comparative analysis of the CO2 capture results and N2 porosity characterization data evidenced that the use of [Hmim][BF4], a physical solvent for carbon dioxide, ended up into a worsening of the parent AC capture performance, due to a dominating pore blocking effect at all the operating temperatures. Conversely, the less sterically-hindered and amino acid-based [Emim][Gly] IL was effective in increasing the AC capture capacity at 353 K under milder impregnation conditions, the beneficial effect being attributed to both its chemical affinity towards CO2 and low pore volume reduction. The findings derived in this work outline interesting perspectives for the application of amino acid-based IL supported onto activated carbons for CO2 separation under post-combustion conditions, and future research efforts should be focused on the search for AC characterized by optimal pore size distribution and surface properties for IL functionalization.

  12. Carbon-supported ionic liquids as innovative adsorbents for CO₂ separation from synthetic flue-gas.

    PubMed

    Erto, Alessandro; Silvestre-Albero, Ana; Silvestre-Albero, Joaquín; Rodríguez-Reinoso, Francisco; Balsamo, Marco; Lancia, Amedeo; Montagnaro, Fabio

    2015-06-15

    Fixed-bed thermodynamic CO2 adsorption tests were performed in model flue-gas onto Filtrasorb 400 and Nuchar RGC30 activated carbons (AC) functionalized with [Hmim][BF4] and [Emim][Gly] ionic liquids (IL). A comparative analysis of the CO2 capture results and N2 porosity characterization data evidenced that the use of [Hmim][BF4], a physical solvent for carbon dioxide, ended up into a worsening of the parent AC capture performance, due to a dominating pore blocking effect at all the operating temperatures. Conversely, the less sterically-hindered and amino acid-based [Emim][Gly] IL was effective in increasing the AC capture capacity at 353 K under milder impregnation conditions, the beneficial effect being attributed to both its chemical affinity towards CO2 and low pore volume reduction. The findings derived in this work outline interesting perspectives for the application of amino acid-based IL supported onto activated carbons for CO2 separation under post-combustion conditions, and future research efforts should be focused on the search for AC characterized by optimal pore size distribution and surface properties for IL functionalization. PMID:25710387

  13. Extraction of phenol using sulfuric acid salts of trioctylamine in a supported liquid membrane

    SciTech Connect

    Wang, M.L.; Hu, K.H. )

    1994-04-01

    The extraction of phenol by trioctylamine sulfate salts in a supported-liquid membrane (SLM) process was investigated. In the extraction process, a transport model, which included the film diffusion of phenol in the aqueous phase, the membrane diffusion within the SLM, and the interfacial chemical reaction, was built. The experimental parameters, such as the cell constant ([beta]), the diffusivity of (TOA)[sub 2]H[sub 2]SO[sub 4][center dot]PhOH in the SLM (D[sub c,b]), and the mass-transfer coefficient of phenol in the aqueous solution (K[sub L]), were determined from experiments. On the basis of the experimental data and the results obtained from the transport model, the rate-controlling step of the extraction of phenol by an SLM during permeation is discussed. The effects of the operating variables and parameters, such as the initial concentration of phenol in the aqueous phase, sulfuric acid, sodium hydroxide, and trioctylamine sulfate salts, on the extraction of phenol were examined.

  14. An Efficient, Versatile, and Safe Access to Supported Metallic Nanoparticles on Porous Silicon with Ionic Liquids

    PubMed Central

    Darwich, Walid; Haumesser, Paul-Henri; Santini, Catherine C.; Gaillard, Frédéric

    2016-01-01

    The metallization of porous silicon (PSi) is generally realized through physical vapor deposition (PVD) or electrochemical processes using aqueous solutions. The former uses a strong vacuum and does not allow for a conformal deposition into the pores. In the latter, the water used as solvent causes oxidation of the silicon during the reduction of the salt precursors. Moreover, as PSi is hydrophobic, the metal penetration into the pores is restricted to the near-surface region. Using a solution of organometallic (OM) precursors in ionic liquid (IL), we have developed an easy and efficient way to fully metallize the pores throughout the several-µm-thick porous Si. This process affords supported metallic nanoparticles characterized by a narrow size distribution. This process is demonstrated for different metals (Pt, Pd, Cu, and Ru) and can probably be extended to other metals. Moreover, as no reducing agent is necessary (the decomposition in an argon atmosphere at 50 °C is fostered by surface silicon hydride groups borne by PSi), the safety and the cost of the process are improved. PMID:27271608

  15. Supporting implementation of evidence-based behavioral interventions: the role of data liquidity in facilitating translational behavioral medicine.

    PubMed

    Abernethy, Amy P; Wheeler, Jane L; Courtney, Paul K; Keefe, Francis J

    2011-03-01

    The advancement of translational behavioral medicine will require that we discover new methods of managing large volumes of data from disparate sources such as disease surveillance systems, public health systems, and health information systems containing patient-centered data informed by behavioral and social sciences. The term "liquidity," when applied to data, refers to its availability and free flow throughout human/computer interactions. In seeking to achieve liquidity, the focus is not on creating a single, comprehensive database or set of coordinated datasets, nor is it solely on developing the electronic health record as the "one-stop shopping" source of health-related data. Rather, attention is on ensuring the availability of secure data through the various methods of collecting and storing data currently existent or under development-so that these components of the health information infrastructure together support a liquid data system. The value of accessible, interoperable, high-volume, reliable, secure, and contextually appropriate data is becoming apparent in many areas of the healthcare system, and health information liquidity is currently viewed as an important component of a patient-centered healthcare system. The translation from research interventions to behavioral and psychosocial indicators challenges the designers of healthcare systems to include this new set of data in the correct context. With the intention of advancing translational behavioral medicine at the local level, "on the ground" in the clinical office and research institution, this commentary discusses data liquidity from the patient's and clinician's perspective, requirements for a liquid healthcare data system, and the ways in which data liquidity can support translational behavioral medicine.

  16. Selective removal and recovery of Black B reactive dye from simulated textile wastewater using the supported liquid membrane process.

    PubMed

    Harruddin, Norlisa; Othman, Norasikin; Ee Sin, Andeline Lim; Raja Sulaiman, Raja Norimie

    2015-01-01

    Effluent containing colour/dyes, especially reactive dyes, becomes a great concern of wastewater treatment because it is toxic to human life and aquatic life. In this study, reactive dye of Black B was separated using the supported liquid membrane process. Commercial polypropylene membrane was used as a support of the kerosene-tridodecylamine liquid membrane. Several parameters were tested and the result showed that almost 100% of 70 ppm Black B was removed and 99% of 70 ppm Black B was recovered at pH 2 of the feed phase containing 0.00001 M Na2SiO3, flow rate of 150 ml/min and 0.2 M NaOH. The membrane support also remained stable for up to 36 hours under an optimum condition.

  17. Modeling of the mass transfer rates of metal ions across supported liquid membranes. 2: Comparison between theory and experiment

    SciTech Connect

    Elhassadi, A.A.; Do, D.D.

    1999-02-01

    The model equations developed in Part 1 were tested using experimental data reported in the literature and produced in this work. It was found that uranium(VI) and thorium(IV) can be selectively separated and concentrated using supported liquid membranes. Depending on the way the liquid membranes are designed, the selectivity toward a specific metal can be predetermined. The effect of the ratio of the effective diffusivity to bulk diffusivity in free solution was found to behave with the same characteristic of systems of preferentially adsorbed solutes.

  18. Interaction of an ionic liquid with a supported phospholipid bilayer is lipid-dependent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Liquid salts, commonly called ionic liquids, are used as solvents to conduct transformation of vegetable oils into new products. These reactions are often catalyzed via immobilized enzymes. However, some enzymes were found to lose activity and are in need of some protection. Phospholipid bilayers...

  19. Transport of chromium(VI) through a supported liquid membrane containing tri-n-octylphosphine oxide

    SciTech Connect

    Huang, T.C.; Huang, C.C.; Chen, D.H.

    1998-09-01

    In this study the transport of chromium(VI) from aqueous solutions of pH 2--4 through a supported liquid membrane (SLM) with tri-n-octylphosphine oxide (TOPO) dissolved in kerosene as a mobile carrier was investigated. The transport flux of Cr(VI) increased with an increase in the concentrations of Cr(VI) in the feed phase and of TOPO in the membrane phase, but with a decrease in pH of the feed phase. Considering the equilibria of various Cr(VI) species in the aqueous phase and of the Cr(VI)-TOPO complexes formed in the membrane phase, a permeation model including the aqueous film diffusion of HCrO{sub 4}{sup {minus}} and Cr{sub 2}O{sub 7}{sup 2{minus}} toward the membrane, the interfacial chemical reaction between them and TOPO, and the membrane diffusion of the Cr(VI)-TOPO complexes ({ovr H{sub 2}CrO{sub 4}{center_dot}(TOPO)} and {ovr H{sub 2}Cr{sub 2}O{sub 7}{center_dot}(TOPO){sub 3}}) was proposed to describe the transport of Cr(VI) through the SLM. By best fitting the transport flux equations of Cr(VI) with the experimental data using the Rosenbrock method, the apparent mass-transfer coefficients of HCrO{sub 4}{sup {minus}} and Cr{sub 2}O{sub 7}{sup 2{minus}} across the aqueous film, and those of {ovr H{sub 2}CrO{sub 4}{center_dot}(TOPO)} and {ovr H{sub 2}Cr{sub 2}O{sub 7}{center_dot}(TOPO){sub 3}} across the membrane phase, were obtained. This work helps to clarify the transport mechanism of Cr(VI) through an SLM.

  20. Comparison of copper speciation in estuarine water measured using analytical voltammetry and supported liquid membrane techniques.

    PubMed

    Ndungu, Kuria; Hurst, Matthew P; Bruland, Kenneth W

    2005-05-01

    The supported liquid membrane (SLM) is a promising separation and preconcentration technique that is well-suited for trace metal speciation in natural waters. The technique is based on the selective complexation of metal ions by a hydrophobic ligand (carrier) dissolved in a water-immiscible organic solvent immobilized in a porous, inert membrane. This membrane separates two aqueous solutions: the test (or donor) solution and the strip (or acceptor) solution. The metal carrier complex is transported by diffusion across the membrane from the source to the strip solution where metal ions are back-extracted. The technique offers great potential to tune the selectivity by incorporating different complexing ligands in the membrane. A SLM was used to analyze the dissolved (<0.45 microm) copper speciation from two sites in the San Francisco Bay estuary; Dumbarton Bridge, [Cu]total approximately 27 nM, and San Bruno Shoals, [Cu]total approximately 23 nM. The sites were also characterized independently by differential pulse anodic stripping voltammetry (DPASV) using a Nafion-coated thin mercury film electrode (NCTMFE). The SLM employed 10 mM lasalocid, a naturally occurring carboxylic polyether ionophore, in nitrophenyl octyl ether (NPOE) asthe membrane complexing ligand, supported by a microporous, polypropylene, hydrophobic membrane. This is the first study where SLM technique has been compared with an independent speciation technique in marine waters. Results of copper speciation measurements from Dumbarton Bridge, a site in South San Francisco Bay where copper speciation has been well-characterized in previous studies using various voltammetric techniques, indicated that only about 3% (0.9 nM) of the total dissolved copper was SLM labile. The corresponding DPASV labile copper fraction was <0.4% (<0.1 nM) of total dissolved copper. The concentration of total copper binding ligands measured by the membrane technique was 471 nM as compared to 354 nM measured by DPASV, more

  1. Determination of short-chain fatty acids in serum by hollow fiber supported liquid membrane extraction coupled with gas chromatography.

    PubMed

    Zhao, Guohua; Liu, Jing-Fu; Nyman, Margareta; Jönsson, Jan Ake

    2007-02-01

    A method based on hollow fiber supported liquid membrane extraction coupled with a gas chromatograph equipped with flame ionization detector (GC-FID) was developed for the determination of six short-chain fatty acids including acetic acid, propionic acid, i-butyric acid, n-butyric acid, i-valeric acid and n-valeric acid in serum. Hollow fiber supported liquid membrane extraction was employed for preconcentration and clean-up of the samples. The fatty acids were extracted from the acidic donor (diluted serum) into a liquid membrane formed in the wall of the hollow fiber with 10% tri-n-octylphoshphine oxide (TOPO) in di-n-hexyl ether, and then extracted back into a basic acceptor solution filled in the lumen of the hollow fiber. After being acidified with HCl, the acceptor was directly analyzed by GC-FID. The acceptor concentration, donor pH, membrane liquid and extracting time were optimized giving an enrichment factor up to 155 times. The good linearity (r(2)>0.980), reasonable recovery (87.2-121%), and satisfactory intra-assay (8.2-11.5%) and inter-assay (6.1-11.6%) precision illustrated the good performance of the present method. Limits of detection (LOD) ranged from 0.04 to 0.24 microM and limits of quantification (LOQ) varied from 0.13 to 0.80 microM. PMID:17070116

  2. Permeation rate of metal species through supported liquid membranes: diffusional and chemical resistances with cationic and anionic carriers

    SciTech Connect

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.G.

    1983-01-01

    Facilitated transport by means of a mobile carrier in an organic diluent and adsorbed on a polymeric film, through supported liquid membranes (SLM), is a new method for the separation and recovery of metal ions. A permeability coefficient equation for this transport was tested. The facilitated transport of Cu/sup 2 +/ and Fe/sup 3 +/ ions through a SLM was characterized with respect to the membrane resistance. Transport of Am/sup 3 +/ through a SLM was also characterized. (DLC)

  3. Poly(ionic liquid) complex with spontaneous micro-/mesoporosity: template-free synthesis and application as catalyst support.

    PubMed

    Zhao, Qiang; Zhang, Pengfei; Antonietti, Markus; Yuan, Jiayin

    2012-07-25

    A facile, template-free synthetic route is reported toward poly(ionic liquid) complexes (PILCs) which for the first time exhibit stable micro-/mesoporous structure. This is accomplished via in situ ionic complexation between imidazolium-based PILs and poly(acrylic acid) in various alkaline organic solvents. The PILC can be highly loaded with copper salts and can be used as a catalytic support for effective aerobic oxidation of activated hydrocarbons under mild conditions. PMID:22780888

  4. Removal and recovery of metals and other materials by supported liquid membranes with strip dispersion.

    PubMed

    Ho, W S Winston

    2003-03-01

    This paper reviews recent advances in supported liquid membranes (SLMs) with strip dispersion for removal and recovery of metals including chromium, copper, zinc, and strontium; it also discusses potential applications of SLMs for removal and recovery of other materials, including cobalt and penicillin G. The technology for chromium that we developed, not only removes the Cr(VI) from about 100-1,000 ppm to less than 0.05 ppm in the treated effluent allowable for discharge or recycle, but also recovers the chromium product at a high concentration of about 20% Cr(VI) (62.3% Na(2)CrO(4)) suitable for resale or reuse. In other words, we have achieved the goals of zero discharge and no sludge. The stability of the SLM is ensured by a modified SLM with strip dispersion, where the aqueous strip solution is dispersed in the organic membrane solution in a mixer. The strip dispersion formed is circulated from the mixer to the membrane module to provide a constant supply of the organic solution to the membrane pores. The copper SLM system that we have identified, not only removed the copper from 150 ppm in the inlet feed to less than 0.15 ppm in the treated feed, but also recovered the copper at a high concentration of greater than 10,000 ppm in the strip solution. For the zinc SLM system identified, zinc at an inlet feed concentration of 550 ppm was removed to less than 0.3 ppm in the treated feed, whereas a high zinc concentration of more than 17,000 ppm was recovered in the strip solution. For strontium removal, we synthesized a family of new extractants, alkyl phenylphosphonic acids. The SLM removed radioactive (90)Sr to the target of 8 pCi/L or lower from feed solutions of 300-1,000 pCi/L. The SLM removed cobalt from about 525 ppm to 0.7 ppm in the treated feed solution, concentrating it to at least 30,000 ppm in the aqueous strip solution. Concerning penicillin G recovery, the SLM removed penicillin G from a feed of 8,840 ppm and concentrated it to a high concentration

  5. Multiresidue determination of sulfonamides in a variety of biological matrices by supported liquid membrane with high pressure liquid chromatography-electrospray mass spectrometry detection.

    PubMed

    Msagati, Titus A M; Nindi, Mathew Muzi

    2004-09-01

    A high performance liquid chromatography (HPLC) coupled to a mass spectrometer (MS) was used for a simultaneous determination of 16 sulfonamide compounds spiked in water, urine, milk, and bovine liver and kidney tissues. Supported liquid membrane (SLM) made up of 5% tri-n-octylphosphine oxide (TOPO) dissolved in hexyl amine was used as a sample clean-up and/or enrichment technique. The sulfonamides mixture was made up of 5-sulfaminouracil, sulfaguanidine, sulfamethoxazole, sulfamerazine, sulfamethizole, sulfamethazine (sulfadimidine), sulfacetamide, sulfapyridine, sulfabenzamide, sulfamethoxypyridazine, sulfamonomethoxine, sulfadimethoxine sulfasalazine, sulfaquinoxaline, sulfadiazine, and sulfathiazole. Some of these compounds, such as, sulfaquinoxaline, sulfadiazine, sulfabenzamide, sulfathiazole and sulfapyridine failed to be trapped efficiently by the same liquid membrane (5% TOPO in hexylamine). The detection limits (DL) obtained were 1.8ppb for sulfaguanidine and sulfamerazine and between 3.3 and 10ppb in bovine liver and kidney tissues for the other sulfonamides that were successfully enriched with SLM; 2.1ppb for sulfaguanidine and sulfamerazine and between 7.5 and 15ppb in cow's urine, whereas the DL values in milk were 12.4ppb for sulfaguanidine and sulfamerazine and between 16.8 and 24.3 for the other compounds that were successfully enriched by the membrane. Several factors affecting the extraction efficiency during SLM enrichment, such as donor pH, acceptor pH, enrichment time and the membrane solvent were studied. PMID:18969572

  6. Analysis and quantification of parabens in cosmetic products by utilizing hollow fibre-supported liquid membrane and high performance liquid chromatography with ultraviolet detection.

    PubMed

    Msagati, T A M; Barri, T; Larsson, N; Jönsson, J A

    2008-08-01

    A simple and direct method based on hollow fibre-supported liquid membrane (HFSLM) extraction and liquid chromatography equipped with a UV detector was developed for analysis and quantification of parabens in cosmetic products. The parabens analysed included methyl, ethyl, propyl, isobutyl and butyl paraben. The HFSLM extraction was carried out by employing di-n-hexyl ether as organic liquid that was immobilized in the hollow fibre membrane. The HFSLM extraction is simple, cheap, minimizes the use of solvents and uses disposable material. In an investigation of 11 paraben-containing cosmetic products, the levels of parabens (sum of all parabens in a product) ranged from 0.43% to 0.79% (w/w) for skin care products, 0.07-0.44% for hair fixing gels and 0.30-0.52% for soap solutions. The levels of individual parabens in individual cosmetic products ranged between 0.03% and 0.42% w/w for skin care products, 0.07% and 0.26% w/w for hair fixing gels and between 0.11% and 0.34% w/w for soap solutions. Parabens were found in the highest concentrations in skin care products followed by soap solutions and the least amounts were found in hair fixing gels. Of the paraben-containing products tested, all of them contained methyl paraben and about 90% contained propyl paraben in addition to methyl paraben. One product contained all the parabens analysed.

  7. Buildings R&D Breakthroughs: Technologies and Products Supported by the Building Technologies Program

    SciTech Connect

    Weakley, Steven A.

    2012-04-15

    The purpose of the project described in this report is to identify and characterize commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects funded by BTP’s Emerging Technologies subprogram from 2005-2011.

  8. Buildings R&D Breakthroughs. Technologies and Products Supported by the Building Technologies Program

    SciTech Connect

    none,

    2012-04-01

    This report identifies and characterizes commercially available products and emerging (near-commercial) technologies that benefited from the support of the Building Technologies Program (BTP) within the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. The investigation specifically focused on technology-oriented research and development (R&D) projects sponsored by BTP’s Emerging Technologies subprogram from 2005-2009.

  9. Piping support system for liquid-metal fast-breeder reactor

    DOEpatents

    Brussalis, Jr., William G.

    1984-01-01

    A pipe support consisting of a rigid link pivotally attached to a pipe and an anchor, adapted to generate stress or strain in the link and pipe due to pipe thermal movement, which stress or strain can oppose further pipe movement and generally provides pipe support. The pipe support can be used in multiple combinations with other pipe supports to form a support system. This support system is most useful in applications in which the pipe is normally operated at a constant elevated or depressed temperature such that desired stress or strain can be planned in advance of pipe and support installation. The support system is therefore especially useful in steam stations and in refrigeration equipment.

  10. Monitoring of N-methyl carbamate pesticide residues in water using hollow fibre supported liquid membrane and solid phase extraction

    NASA Astrophysics Data System (ADS)

    Msagati, Titus A. M.; Mamba, Bhekie B.

    The aim of this work was to develop a method for the determination of N-methyl carbamates in water involving hollow fibre supported liquid membrane (HFSLM) and solid phase extraction (SPE) as sample preparation methods. Four N-methyl carbamate pesticides, aldicarb, carbaryl, carbofuran and methiocarb sulfoxide, were simultaneously extracted and analysed by a liquid chromatograph with a diode array detector (LC-UV/DAD) and a liquid chromatograph coupled to a ion trap quadrupole mass spectrometer (LC-ESI-MS). The high performance liquid chromatography (HPLC) separation of carabamate extracts was performed on a C18 column with water-acetonitrile as the mobile phase. The mass spectrometry analyses were carried out in the positive mode, operating under both the selected ion monitoring (SIM) and full scan modes. The solid phase recoveries of the extracts ranged between 8% and 98%, with aldicarb having the highest recoveries, followed by carbaryl, carbofuran and methiocarb had the lowest recovery. The HFSLM recovery ranged between 8% and 58% and the order of recovery was similar to the SPE trend. Factors controlling the efficiency of the HFSLM extraction such as sample pH, stripping phase pH, enrichment time, stirring speed as well as organic solvent used for entrapment of analytes, were optimised to achieve the highest enrichment factors.

  11. Effects of Silica Nanoparticle Supported Ionic Liquid as Additive on Thermal Reversibility of Human Carbonic Anhydrase II

    PubMed Central

    Fallahbagheri, Azadeh; Saboury, Ali Akbar; Ma'mani, Leila; Taghizadeh, Mohammad; Khodarahmi, Reza; Ranjbar, Samira; Bohlooli, Mousa; Shafiee, Abbas; Foroumadi, Alireza; Sheibani, Nader; Moosavi-Movahedi, Ali Akbar

    2013-01-01

    Silica nanoparticle supported imidazolium ionic liquid [SNImIL] was synthesized and utilized as a biocompatible additive for studying the thermal reversibility of human carbonic anhydrase II (HCA II). For this purpose, we prepared additive by modification of nanoparticles through the grafting of ionic liquids on the surface of nanoparticles (SNImIL). The SNImIL were fully characterized by Fourier Transform Infrared spectroscopy, scanning electron microscopy and thermo gravimetric analysis. The characterization of HCA II was investigated by various techniques including UV–Vis and ANS fluorescence spectrophotometry, differential scanning calorimetry, and docking study. SNImIL induced disaggregation, enhanced protein stability and increased thermal reversibility of HCA II by up to 42% at pH 7.75. PMID:22829053

  12. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing

    SciTech Connect

    Lee, JS; Hillesheim, PC; Huang, DK; Lively, RP; Oh, KH; Dai, S; Koros, WJ

    2012-11-30

    A proof of concept study for a new type of carbon capture system is considered for post-combustion CO2 capture based on porous hollow fiber sorbents with ionic liquids sorbed in the cell walls of the fiber. This study proves that delicate morphological features in the open-celled porous wall can be maintained during the infusion process. Mixtures of task specific ionic liquid (i.e. [BMIM][Tf2N]) and superbase (i.e. DBU) were loaded into polyamide-imide (PAI) fibers by a so-called two-step non-solvent infusion protocol. In the protocol, methanol carries ionic liquids into the pore cell walls of hollow fibers and then hexane carries superbase to create an efficient CO2 sorbent. Our ionic liquid/superbase impregnation technique overcomes a serious increase in mass transfer resistance upon reaction with CO2, thereby allowing its large scale utilization for post-combustion CO2 capture. The investigation on the effect of different pore former additives (different molecular weights of polyvinylpyrrolidone, lithium nitrate, and their mixtures) suggested that a large molecular weight of PVP (M-w; 1300k) including dope composition produces highly interconnected open cell pore structures of PAI hollow fibers. Lastly, a lumen side barrier layer was successfully formed on the bore side of neat PAI fibers by using a mixture of Neoprene (R) with crosslinking agents (TSR-633) via a post-treatment process. The lumen layer will enable heat removal from the fiber sorbents during their application in rapid thermal swing cycling processes. (C) 2012 Elsevier Ltd. All rights reserved.

  13. Liquid and slush hydrogen ground support facilities for aero-space planes

    NASA Astrophysics Data System (ADS)

    Butler, David A.; Moore, Robert B.

    1992-12-01

    A conceptual planning study by the NASP Ground Systems Associate Contractor team has defined an optimal design for liquid and slush hydrogen facilities necessary for flight testing of an aerospace plane. Several technology and component development issues are identified and an approach to resolving these issues in a cost effective manner through early development of a portion of the flight test facility and its utilization as a pilot plant is discussed.

  14. Determination of ketamine, norketamine and dehydronorketamine in urine by hollow-fiber liquid-phase microextraction using an essential oil as supported liquid membrane.

    PubMed

    Bairros, André Valle de; Lanaro, Rafael; Almeida, Rafael Menck de; Yonamine, Mauricio

    2014-10-01

    Here, we present a method for the determination of ketamine (KT) and its main metabolites, norketamine (NK) and dehydronorketamine (DHNK) in urine samples by using hollow-fiber liquid-phase microextraction (HF-LPME) in the three-phase mode. The fiber pores were filled with eucalyptus essential oil and a solution of 1.0mol/L of HCl was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the alkalinized urine containing 10% NaCl, and the system was submitted to lateral shaking (2400rpm) during 30min. Acceptor phase was withdrawn from the fiber, dried and the residue was then derivatized with trifluoroacetic anhydride (TFAA) for further determination by gas chromatography-mass spectrometry (GC-MS). The calibration curves were linear over the specified range and limits of detection (LoDs) obtained for KT, NK and DHNK were below the cut-off value (1.0ng/mL) recommended by the United Nations Office on Drugs and Crime (UNODC). A totally "green chemistry" approach of the sample extraction was obtained by using essential oil as a supported liquid membrane in HF-LPME. The developed method was successfully validated and applied to urine samples collected from two clinical cases in which KT was suspected to be involved.

  15. Determination of ketamine, norketamine and dehydronorketamine in urine by hollow-fiber liquid-phase microextraction using an essential oil as supported liquid membrane.

    PubMed

    Bairros, André Valle de; Lanaro, Rafael; Almeida, Rafael Menck de; Yonamine, Mauricio

    2014-10-01

    Here, we present a method for the determination of ketamine (KT) and its main metabolites, norketamine (NK) and dehydronorketamine (DHNK) in urine samples by using hollow-fiber liquid-phase microextraction (HF-LPME) in the three-phase mode. The fiber pores were filled with eucalyptus essential oil and a solution of 1.0mol/L of HCl was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the alkalinized urine containing 10% NaCl, and the system was submitted to lateral shaking (2400rpm) during 30min. Acceptor phase was withdrawn from the fiber, dried and the residue was then derivatized with trifluoroacetic anhydride (TFAA) for further determination by gas chromatography-mass spectrometry (GC-MS). The calibration curves were linear over the specified range and limits of detection (LoDs) obtained for KT, NK and DHNK were below the cut-off value (1.0ng/mL) recommended by the United Nations Office on Drugs and Crime (UNODC). A totally "green chemistry" approach of the sample extraction was obtained by using essential oil as a supported liquid membrane in HF-LPME. The developed method was successfully validated and applied to urine samples collected from two clinical cases in which KT was suspected to be involved. PMID:24810678

  16. Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid-liquid extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Liu, Hongtao; Huang, Liping; Chen, Yuxin; Guo, Liman; Li, Limin; Zhou, Haiyun; Luan, Tiangang

    2015-06-15

    A rapid, precise and accurate method for the simultaneous determination of 5 polycyclic musks (PCMs) in biological fluids was developed by solid supported liquid-liquid extraction (SLE) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS). All parameters influencing SLE-GC-MS performance, including electron energy of electron-impact ionization source, collision energy for tandem mass spectrometer when operated in selected-reaction monitoring (SRM) mode, type and volume of elution reagent, nitrogen evaporation time, pH and salinity of sample have been carefully optimized. Eight milliliter of n-hexane was finally chosen as elution reagent. Blood and urine sample could be loaded into SLE cartridge without adjusting pH and salinity. Deuterated tonalide (AHTN-d3) was chosen as internal standard. The correlation coefficient (r(2)) of the calibration curves of target compounds ranged from 0.9996 to 0.9998. The dynamic range spanned over two orders of magnitude. The limit of detection (LOD) of target compounds in blood and urine ranged from 0.008 to 0.105μgL(-1) and 0.005 to 0.075μgL(-1), respectively. The developed procedure was successfully applied to the analysis of PCMs in human blood and urine obtaining satisfying recoveries on low, medium and high levels. The method was compared with SLE-GC-MS and shown one to two orders of magnitude improvement in sensitivity. PMID:25965876

  17. Simultaneous determination of polycyclic musks in blood and urine by solid supported liquid-liquid extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Liu, Hongtao; Huang, Liping; Chen, Yuxin; Guo, Liman; Li, Limin; Zhou, Haiyun; Luan, Tiangang

    2015-06-15

    A rapid, precise and accurate method for the simultaneous determination of 5 polycyclic musks (PCMs) in biological fluids was developed by solid supported liquid-liquid extraction (SLE) coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS). All parameters influencing SLE-GC-MS performance, including electron energy of electron-impact ionization source, collision energy for tandem mass spectrometer when operated in selected-reaction monitoring (SRM) mode, type and volume of elution reagent, nitrogen evaporation time, pH and salinity of sample have been carefully optimized. Eight milliliter of n-hexane was finally chosen as elution reagent. Blood and urine sample could be loaded into SLE cartridge without adjusting pH and salinity. Deuterated tonalide (AHTN-d3) was chosen as internal standard. The correlation coefficient (r(2)) of the calibration curves of target compounds ranged from 0.9996 to 0.9998. The dynamic range spanned over two orders of magnitude. The limit of detection (LOD) of target compounds in blood and urine ranged from 0.008 to 0.105μgL(-1) and 0.005 to 0.075μgL(-1), respectively. The developed procedure was successfully applied to the analysis of PCMs in human blood and urine obtaining satisfying recoveries on low, medium and high levels. The method was compared with SLE-GC-MS and shown one to two orders of magnitude improvement in sensitivity.

  18. Thermo-mechanical simulation of liquid-supported stretch blow molding

    SciTech Connect

    Zimmer, J.; Stommel, M.

    2015-05-22

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.

  19. Thermo-mechanical simulation of liquid-supported stretch blow molding

    NASA Astrophysics Data System (ADS)

    Zimmer, J.; Stommel, M.

    2015-05-01

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg˜85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera.

  20. A rope-net support system for the liquid scintillator detector for the SNO+ experiment

    NASA Astrophysics Data System (ADS)

    Bialek, A.; Chen, M.; Cleveland, B.; Gorel, P.; Hallin, A.; Harvey, P. J.; Heise, J.; Kraus, C.; Krauss, C. B.; Lawson, I.; Ng, C. J.; Pinkney, B.; Rogowsky, D. M.; Sibley, L.; Soluk, R.; Soukup, J.; Vázquez-Jáuregui, E.

    2016-08-01

    The detector for the SNO+ experiment consists of 780 000 kg of liquid scintillator contained in an acrylic vessel that is surrounded by water. A mechanical system has been installed to counteract the 1.25 MN of buoyant force on the acrylic and prevent the vessel from moving. The system is a rope net, designed using a Finite Element Analysis to calculate the amount of stress on the acrylic induced by the ropes, hydrostatic pressures and gravity. A dedicated test was performed to measure strains in the acrylic arising from the complex geometry of the knots in the rope system. The ratio between measured and FEA calculated strains was 1.3.

  1. Increased productivity of Clostridium acetobutylicum fermentation of acetone, butanol, and ethanol by pervaporation through supported ionic liquid membrane.

    PubMed

    Izák, Pavel; Schwarz, Katrin; Ruth, Wolfgang; Bahl, Hubert; Kragl, Udo

    2008-03-01

    Pervaporation proved to be one of the best methods to remove solvents out of a solvent producing Clostridium acetobutylicum culture. By using an ionic liquid (IL)-polydimethylsiloxane (PDMS) ultrafiltration membrane (pore size 60 nm), we could guarantee high stability and selectivity during all measurements carried out at 37 degrees C. Overall solvent productivity of fermentation connected with continuous product removal by pervaporation was 2.34 g l(-1) h(-1). The supported ionic liquid membrane (SILM) was impregnated with 15 wt% of a novel ionic liquid (tetrapropylammonium tetracyano-borate) and 85 wt% of polydimethylsiloxane. Pervaporation, accomplished with the optimized SILM, led to stable and efficient removal of the solvents butan-1-ol and acetone out of a C. acetobutylicum culture. By pervaporation through SILM, we removed more butan-1-ol than C. acetobutylicum was able to produce. Therefore, we added an extra dose of butan-1-ol to run fermentation on limiting values where the bacteria would still be able to survive its lethal concentration (15.82 g/l). After pervaporation was switched off, the bacteria died from high concentration of butan-1-ol, which they produced.

  2. Entanglement entropy of composite Fermi liquid states on the lattice: In support of the Widom formula

    NASA Astrophysics Data System (ADS)

    Mishmash, Ryan V.; Motrunich, Olexei I.

    2016-08-01

    Quantum phases characterized by surfaces of gapless excitations are known to violate the otherwise ubiquitous boundary law of entanglement entropy in the form of a multiplicative log correction: S ˜Ld -1logL . Using variational Monte Carlo, we calculate the second Rényi entropy for a model wave function of the ν =1 /2 composite Fermi liquid (CFL) state defined on the two-dimensional triangular lattice. By carefully studying the scaling of the total Rényi entropy and, crucially, its contributions from the modulus and sign of the wave function on various finite-size geometries, we argue that the prefactor of the leading L logL term is equivalent to that in the analogous free fermion wave function. In contrast to the recent results of Shao et al. [Phys. Rev. Lett. 114, 206402 (2015), 10.1103/PhysRevLett.114.206402], we thus conclude that the "Widom formula" holds even in this non-Fermi liquid CFL state. More generally, our results further elucidate—and place on a more quantitative footing—the relationship between nontrivial wave function sign structure and S ˜L logL entanglement scaling in such highly entangled gapless phases.

  3. Homeotropic alignment and director structures in thin films of triphenylamine-based discotic liquid crystals controlled by supporting nanostructured substrates and surface confinement.

    PubMed

    Choudhury, Trirup Dutta; Rao, Nandiraju V S; Tenent, Robert; Blackburn, Jeffrey; Gregg, Brian; Smalyukh, Ivan I

    2011-02-01

    We explore the effects of nanoscale morphology of supporting solid substrates on alignment, defects, and director structures exhibited by thin films of triphenylamine-based discotic liquid crystals. Fluorescence confocal polarizing microscopy and intrinsic polarized fluorescence properties of studied molecules are used to visualize three-dimensional director fields in the liquid crystal films. We demonstrate that, by controlling surface anchoring on supporting or confining solid substrates such as those of carbon nanotube electrodes on glass plates, both uniform homeotropic and in-plane (edge-on) alignment and nonuniform structures with developable domains can be achieved for the same discotic liquid crystal material. PMID:21214228

  4. Electrochemical gas sensors based on paper-supported room-temperature ionic liquids for improved analysis of acid vapours.

    PubMed

    Toniolo, Rosanna; Dossi, Nicolò; Pizzariello, Andrea; Casagrande, Alice; Bontempelli, Gino

    2013-04-01

    A prototype of a fast-response task-specific amperometric gas sensor based on paper-supported room-temperature ionic liquids (RTILs) is proposed here for improved analysis of volatile acid species. It consists of a small filter paper foil soaked with a RTIL mixture containing an ionic liquid whose anion (acetate) displays a basic character, upon which three electrodes are screen printed by carbon ink profiting from a suitable mask. It takes advantage of the high electrical conductivity and negligible vapour pressure of RTILs and of their easy immobilization into a porous and inexpensive supporting material such as paper. The performance of this device, used as a wall-jet amperometric detector for flow injection analyses of headspace samples in equilibrium with aqueous solutions at controlled concentrations, was evaluated for phenol and 1-butanethiol vapours which were adopted as model acid gaseous analytes. The results obtained showed that the quite high potentials required for the detection of these analytes are lowered significantly, thanks to the addition of the basic acetate RTIL. In such a way, overlap with the medium discharge is avoided, and the possible adverse effect of interfering species is minimised. The sensor performance was quite satisfactory (detection limits, ca. 0.3 μM; dynamic range, ca. 1-200 μM, both referred to solution concentrations; correlation coefficients in the range 0.993-0.997; repeatability, ± 6% RSD; long-term stability, 9%); thus suggesting the possible use of this device for manifold applications.

  5. Apparatus for supporting contactors used in extracting nuclear materials from liquids

    DOEpatents

    Leonard, Ralph A.; Frank, Robert C.

    1991-01-01

    Apparatus is provided for supporting one or more contactor stages used to remove radioactive materials from aqueous solutions. The contactor stages include a housing having an internal rotor, a motor secured to the top of the housing for rotating the rotor, and a drain in the bottom of the housing. The support apparatus includes two or more vertical members each secured to a ground support that is horizontal and perpendicular to the frame member, and a horizontally disposed frame member. The frame member may be any suitable shape, but is preferably a rectangular tube having substantially flat, spaced top and bottom surfaces separated by substantially vertical side surfaces. The top and bottom surfaces each have an opening through which the contactor housing is secured so that the motor is above the frame and the drain is below the frame during use.

  6. The Influence of MSI (Metal-Support Interactions) and the Solvent in Liquid-Phase Reactions

    SciTech Connect

    Vannice, M. A.

    2003-05-30

    Results were repeatedly obtained that were consistent with a hypothesis proposed at the beginning of this program, i.e., due to Metal-Support Interactions (MSI), unique active sites can be created in the metal-support interfacial region to enhance activity and improve selectivity in certain types of reactions, especially those involving the hydrogenation of carbonyl and unsaturated C=C bonds. Higher turnover frequencies (TOF-molecule/s/site) and increased selectivity for C=O bond versus C=C bond hydrogenation was established in the hydrogenation reactions of: acetone, crotonaldehyde, acetophenone, phenylethanol, acetylcyclohexane, benzaldehyde, benzyl alcohol, phenylacetaldehyde and citral over Pt/TiO{sub 2} MSI catalysts. Higher rates of hydrogenation benzene, toluene and xylene could be obtained over certain supported Pt and Pd catalysts. Au/TiO{sub 2} catalysts were developed that were active for CO hydrogenation at subambient temperatures. The influence of support and metal crystallite size were established for the adsorption of H{sub 2}, CO and O{sub 2} on families of Pt and Pd catalysts.

  7. Cyanophenyl vs. pyridine substituent: impact on the adlayer structure and formation on HOPG and Au(111).

    PubMed

    Dai, Y; Eggers, B; Metzler, M; Künzel, D; Groß, A; Jacob, T; Ziener, U

    2016-03-01

    A new cyano substituted bis(terpyridine) derivative CN-BTP was synthesized and its adsorption on highly oriented pyrolytic graphite (HOPG) and Au(111) was investigated. CN-BTP is closely related to the previously investigated 2,4'-BTP, where the cyanophenyl groups are replaced by pyridine moieties. The scanning tunneling microscopy (STM) investigation of CN-BTP at the liquid|HOPG interface shows a highly ordered herringbone structure that is stabilized by double weak intermolecular C-HN hydrogen bonds, partially through the -CN substituents, which is different from the most stable square structure of 2,4'-BTP. The adsorption processes were investigated using cyclic voltammetry (CV) on Au(111) in a neutral phosphate buffer. A fast and full adlayer formation could be observed with CN-BTP, whereas an extremely slow process with 2,4'-BTP under the same conditions was found. Our data show that the CN substituents on BTP not only change the structure of the monolayer at the liquid|HOPG interface, but also accelerate the phase transition process in the electrolyte dramatically. This could be explained by the adlayer-substrate interactions, which is supported by DFT calculations. Our findings might be extended more generally to further pyridine comprising self-assembling molecules to fine-tune the adlayer structure and phase transition/adsorption kinetics by replacing pyridine by cyanophenyl moieties.

  8. Dynamic study of nanodroplet nucleation and growth on self-supported nanothick liquid films.

    PubMed

    Barkay, Z

    2010-12-01

    The dynamics of water condensation on self-supported thin films was studied at the nanoscale using transmitted electrons in an environmental scanning electron microscope. The initial stages of nucleation and growth over nanothick water films have been investigated. Irregularities at the water-film boundaries constituted nucleation sites for asymmetric dropwise and filmwise condensation. Nanodroplet growth was associated with center of mass movement, and the dynamic growth power law dependence was explored for the nanoscale.

  9. Liquid phase methanol LaPorte process development unit: Modification, operation, and support studies

    SciTech Connect

    Not Available

    1990-10-23

    The objectives of this program are to implement and test the process improvements identified through the engineering studies of the current program to demonstrate the capability of long-term catalyst activity maintenance, and to perform process and design engineering work that can be applied to a scaled-up Liquid Phase Methanol (LPMEOH) facility. An optional series of PDU runs is offered to extend the testing of the process improvements. A parallel research program will be performed to enhance the LPMEOH technical data base to improve the likelihood of commercialization of the LPMEOH process. Activities this quarter include: Flow sheet development for La Porte PDU modifications continues. A preliminary P ID review was completed and flow sheet modifications were identified and are being incorporated. A preliminary hazards review was completed on 22 May. Some minor flow sheet modifications resulted and a number of action items were identified. The most significant action item is to develop a materials reactivity and compatibility grid for the different alcohols, ethers, and esters which will be produced at the PDU. Heat and material balances were completed for the maximum production case of the mixed DME/MEOH synthesis campaign. An improved rate expression was developed. 1 fig.

  10. Preparation and SO{sub 2} sorption/desorption behavior of an Ionic liquid supported on porous silica particles

    SciTech Connect

    Zhang, Z.M.; Wu, L.B.; Dong, J.; Li, B.G.; Zhu, S.P.

    2009-02-15

    The ionic liquid 1,1,3,3-tetramethylguanidinium lactate (TMGL) was supported onto porous silica particles via a facile impregnation-vaporization method. The TMGL-supported particles gave high porosity and large specific surface area. The SO{sub 2} sorption/desorption properties of the silica-supported TMGL (TMGL-SiO{sub 2}) were evaluated, and high SO{sub 2} sorption capacity and rate were achieved. Its capacity reached 0.6 g SO{sub 2}/g TMGL in 15-30 min with pure SO{sub 2} gas and 0.15 g SO{sub 2}/g TMGL in 17 h with a N{sub 2}/SO{sub 2} mixture gas that contained 2160 ppm SO{sub 2}. The SO{sub 2} concentration was reduced to 12.6 ppm after sorption. The TMGL-SiO{sub 2} system could be reused for many sorption/desorption cycles without change in its capacity. It was also characterized by good mechanical strength and thermal stability at temperature up to 130{sup o}C. The SO{sub 2} sorbent system appears to be useful in gas desulfurization.

  11. Electromembrane extraction of polar basic drugs from plasma with pure bis(2-ethylhexyl) phosphite as supported liquid membrane.

    PubMed

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2016-08-31

    Electromembrane extraction (EME) of polar basic drugs from human plasma was investigated for the first time using pure bis(2-ethylhexyl) phosphite (DEHPi) as the supported liquid membrane (SLM). The polar basic drugs metaraminol, benzamidine, sotalol, phenylpropanolamine, ephedrine, and trimethoprim were selected as model analytes, and were extracted from 300 μL of human plasma, through 10 μL of DEHPi as SLM, and into 100 μL of 10 mM formic acid as acceptor solution. The extraction potential across the SLM was 100 V, and extractions were performed for 20 min. After EME, the acceptor solutions were analyzed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). In contrast to other SLMs reported for polar basic drugs in the literature, the SLM of DEHPi was highly stable in contact with plasma, and the system-current across the SLM was easily kept below 50 μA. Thus, electrolysis in the sample and acceptor solution was kept at an acceptable level with no detrimental consequences. For the polar model analytes, representing a log P range from -0.40 to 1.32, recoveries in the range 25-91% were obtained from human plasma. Strong hydrogen bonding and dipole interactions were probably responsible for efficient transfer of the model analytes into the SLM, and this is the first report on efficient EME of highly polar analytes without using any ionic carrier in the SLM.

  12. A review of the supply of liquid propellants and other fluids in support of the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Churchwell, Stacy E.; Bain, A. L.

    1989-01-01

    In this study, over twenty significant liquid propellants and other fluids were reviewed as to their supply in support of the Space Shuttle Program (SSP), primarily at KSC. The uniqueness of most of the products, either by their application or production characteristics, present a variety of supply issues to contend with. Each, however, is critical to the success of the SSP. It becomes necessary to formulate, and maintain, a logistic approach to assure a continued availability of each product. For convenience, two categories were established. One, labeled limited-availability, represents those products wherein they are single sourced, have production restrictions and/or there has been a history of supply problems. The other, labeled universally-available, is characteristic of those having several sources and/or having little, if any, historical supply problems. This last category was not examined in depth. Through concepts of establishing stockpile inventories, multiple supply contracts, or other arrangements, the supply of liquid propellants and other fluids can be assured.

  13. MAGNETIC LIQUID DEFORMABLE MIRRORS FOR ASTRONOMICAL APPLICATIONS: ACTIVE CORRECTION OF OPTICAL ABERRATIONS FROM LOWER-GRADE OPTICS AND SUPPORT SYSTEM

    SciTech Connect

    Borra, E. F.

    2012-08-01

    Deformable mirrors are increasingly used in astronomy. However, they still are limited in stroke for active correction of high-amplitude optical aberrations. Magnetic liquid deformable mirrors (MLDMs) are a new technology that has the advantages of high-amplitude deformations and low costs. In this paper, we demonstrate extremely high strokes and interactuator strokes achievable by MLDMs which can be used in astronomical instrumentation. In particular, we consider the use of such a mirror to suggest an interesting application for the next generation of large telescopes. We present a prototype 91 actuator deformable mirror made of a magnetic liquid (ferrofluid). This mirror uses a technique that linearizes the response of such mirrors by superimposing a large and uniform magnetic field on the magnetic field produced by an array of small coils. We discuss experimental results that illustrate the performance of MLDMs. A most interesting application of MLDMs comes from the fact they could be used to correct the aberrations of large and lower optical quality primary mirrors held by simple support systems. We estimate basic parameters of the needed MLDMs, obtaining reasonable values.

  14. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation

    PubMed Central

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-01-01

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions. PMID:26574523

  15. Unlocking the potential of supported liquid phase catalysts with supercritical fluids: low temperature continuous flow catalysis with integrated product separation.

    PubMed

    Franciò, Giancarlo; Hintermair, Ulrich; Leitner, Walter

    2015-12-28

    Solution-phase catalysis using molecular transition metal complexes is an extremely powerful tool for chemical synthesis and a key technology for sustainable manufacturing. However, as the reaction complexity and thermal sensitivity of the catalytic system increase, engineering challenges associated with product separation and catalyst recovery can override the value of the product. This persistent downstream issue often renders industrial exploitation of homogeneous catalysis uneconomical despite impressive batch performance of the catalyst. In this regard, continuous-flow systems that allow steady-state homogeneous turnover in a stationary liquid phase while at the same time effecting integrated product separation at mild process temperatures represent a particularly attractive scenario. While continuous-flow processing is a standard procedure for large volume manufacturing, capitalizing on its potential in the realm of the molecular complexity of organic synthesis is still an emerging area that requires innovative solutions. Here we highlight some recent developments which have succeeded in realizing such systems by the combination of near- and supercritical fluids with homogeneous catalysts in supported liquid phases. The cases discussed exemplify how all three levels of continuous-flow homogeneous catalysis (catalyst system, separation strategy, process scheme) must be matched to locate viable process conditions.

  16. CMOS VLSI pilot and support chip for a liquid crystal on silicon 8x8 optical cross connect

    NASA Astrophysics Data System (ADS)

    Lelah, Alan; Vinouze, Bruno; Martel, Gilbert; Perez-Segovia, Tomas; Geoffroy, Philippe; Laval, Jean-Paul; Jayet, Philippe; Senn, Patrice; Gravey, Philippe; Wolffer, Nicole; Lever, Roger; Tan, Antione

    2001-12-01

    With the explosion of Internet and multi-service traffic, telecommunication transport networks today are turning to Wavelength Division Multiplexing. Optical cross-connects (OXCs) allow flexible rerouting of wavelength channels. It has been shown that 2-D free-space beam deflection by nematic liquid crystal gratings provide a good solution for the realization of optical switches in OXCs. Operating in the telecom 1.5 micrometers wavelength region they serve as an active holographic element. Liquid Crystal on Silicon (LCOS) combined with VLSI technologies allow the fabrication of large capacity, low cost and low consumption compact free-space switches. An N X N optical switch can be built by cascading two LCOS-based spatial light modulators (SLMs). The first part of the paper describes a circuit that provides the physical support as well as piloting circuitry for such SLMs. It is capable of piloting beams from a linear array of 8 incoming fibers towards a similar array of 8 outgoing fibers. The electrode command voltages are analog while the external interface as well as on-chip memory is digital. The chip has been implemented in a CMOS 0.5 (mu) process with 600,000 transistors while die size is 320 mm2 (80 mm2 active area).

  17. Selective transport of silver ion through a supported liquid membrane using hexathia-18-crown-6 as carrier.

    PubMed

    Shamsipur, M; Azimi, G; Mashhadizadeh, M H; Madaeni, S S

    2001-04-01

    A facile supported liquid membrane (SLM) system for the selective and efficient transport of silver ion is introduced. The SLM used is a thin porous polyvinyldifluoride membrane impregnated with hexathia-18-crown-6 (HT18C6) dissolved in nitrophenyloctyl ether. HT18C6 acts as a specific carrier for the uphill transport of Ag+ ion as its picrate ion paired complex through the SLM. In the presence of thiosulfate ion as a suitable stripping agent in the strip solution, transport of silver occurs almost quantitatively after 4 h. The selectivity and efficiency of silver transport from aqueous solutions containing other Mn+ cations such as Mg2+, Ca2+, Co2+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+, Hg2+, Fe3+ and Cr3+ ions were investigated. PMID:11990563

  18. Feasible way of Human Solid and Liquid Wastes' Inclusion Into Intersystem Mass Exchange of Biological-Technical Life Support Systems

    NASA Astrophysics Data System (ADS)

    Ushakova, Sofya; Tikhomirov, Alexander A.; Tikhomirova, Natalia; Kudenko, Yurii; Griboskaya, Illiada; Gros, Jean-Bernard; Lasseur, Christophe

    The basic objective arising at use of mineralized human solid and liquid wastes serving as the source of mineral elements for plants cultivation in biological-technical life support systems appears to be NaCl presence in them. The given work is aimed at feasibility study of mineralized human metabolites' utilization for nutrient solutions' preparation for their further employment at a long-term cultivation of uneven-aged wheat and Salicornia europaea L. cenosis in a conveyer regime. Human solid and liquid wastes were mineralized by the "wet incineration" method developed by Yu. Kudenko. On their base the solutions were prepared which were used for cultivation of 5-aged wheat conveyer with the time step-interval of 14 days. Wheat was cultivated by hydroponics method on expanded clay aggregate. For partial demineralization of nutrient solution every two weeks after regular wheat harvesting 12 L of solution was withdrawn from the wheat irrigation tank and used for Salicornia europaea cultivation by the water culture method in a conveyer regime. The Salicornia europaea conveyer was represented by 2 ages with the time step-interval of 14 days. Resulting from repeating withdrawal of the solution used for wheat cultivation, sodium concentration in the wheat irrigation solution did not exceed 400 mg/l, and mineral elements contained in the taken solution were used for Salicornia europaea cultivation. The experiment lasted 7 months. Total wheat biomass productivity averaged 30.1 g*m-2*day-1 at harvest index equal to 36.8The work was carried out under support of SB RAS grant 132 and INTAS 05-1000008-8010

  19. Permeation of iridium(IV) and metal impurity chlorocomplexes through a supported liquid membrane designed for rhodium separation

    SciTech Connect

    Ashrafizadeh, S.N.; Demopoulos, G.P.; Rovira, M.; Sastre, A.M.

    1998-06-01

    A supported liquid membrane (SLM) system previously designed for Rh separation has been examined for its capability to reject the metal impurities which are commonly encountered in industrial Rh chloride solutions. Special attention was paid to Ir(IV) chlorocomplexes and their extraction/transport behavior against both conventional solvent extraction and supported liquid membrane systems of Kelex 100. A lab-scale SLM cell with an effective membrane area of 44 cm{sup 2} was used to conduct the SLM permeation tests. The SLM was composed of a Gore-Tex polymer substrate impregnated with an organic solution of Kelex 100, tridecanol, and kerosene. The impurities tested [in addition to Ir(IV)] were AG(I), As(V), Bi(III), Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II), Pd(II), Pt(IV), Se(IV), Te(IV), and Zn(II). These impurities, based on their response against the SLM, were classified into three groups, i.e., those permeated through [Zn(II), Pb(II), Cd(II), Bi(III), Te(IV), and Ir(IV)], those nonpermeated at all [Ni(II), Co(II), As(V), Se(IV), Cu(II), and Fe(III)], and those blocking the membrane [Pt(IV), Pd(II), Ag(I), Pb(II), and Bi(III)]. The SLM was not capable of discriminating between Rh(III) and Ir(IV) transport at the optimum operating conditions. Complementary upstream and downstream processes are required to separate the impurities from the feed and the product solutions, respectively. Overall, this work revealed the great limitations of SLMs as effective and potentially useful separation media for the extraction of metals from industrial-like multicomponent aqueous feed solutions.

  20. Membrane supported liquid-liquid-liquid microextraction combined with field-amplified sample injection CE-UV for high-sensitivity analysis of six cardiovascular drugs in human urine sample.

    PubMed

    Zhou, Xiaoqing; He, Man; Chen, Beibei; Yang, Qing; Hu, Bin

    2016-05-01

    An effective dual preconcentration method involving off-line membrane supported liquid-liquid-liquid microextraction (MS-LLLME) and on-line field-amplified sample injection (FASI) was proposed for the extraction of six cardiovascular drugs, including mexiletine, xylocaine, propafenone, propranolol, metoprolol, and carvedilol from aqueous solution prior to CE-UV. In MS-LLLME, the analytes were extracted from 9 mL sample solution into toluene, and then back extracted into a drop of acceptor phase of 10 μL 20 mmol/L acetic acid. After that, the acceptor phase was directly introduced into CE for FASI without any modification. In FASI process, water plug was hydrodynamically injected (50 mbar, 3 s) into the capillary prior to sample injection (+6 kV, 18 s). Six target analytes were separated in less than 10 min at 25°C with a BGE consisting of 70 mmol/L Tris-H3 PO4 (pH 2.2) containing 10% v/v methanol. Under the optimized conditions, LODs obtained by the proposed MS-LLLME-FASI-CE-UV method were in the range of 0.02-0.82 μg/L (based on S/N = 3) with enrichment factors of 546- to 7300-fold for the target analytes. The RSDs of the developed method were in the range of 6.7-12.9% (n = 7). Good linearity (R(2) = 0.9928-0.9997) was obtained in concentration range of 0.1-100 μg/L for mexiletine and propranolol, 0.2-100 μg/L for xylocaine and metoprolol, 0.5-100 μg/L for propafenone and 2.0-100 μg/L for carvedilol, respectively. The developed method was successfully applied for real-time determination of metoprolol in human urine samples within 26 h after uptake. PMID:26763094

  1. Membrane supported liquid-liquid-liquid microextraction combined with field-amplified sample injection CE-UV for high-sensitivity analysis of six cardiovascular drugs in human urine sample.

    PubMed

    Zhou, Xiaoqing; He, Man; Chen, Beibei; Yang, Qing; Hu, Bin

    2016-05-01

    An effective dual preconcentration method involving off-line membrane supported liquid-liquid-liquid microextraction (MS-LLLME) and on-line field-amplified sample injection (FASI) was proposed for the extraction of six cardiovascular drugs, including mexiletine, xylocaine, propafenone, propranolol, metoprolol, and carvedilol from aqueous solution prior to CE-UV. In MS-LLLME, the analytes were extracted from 9 mL sample solution into toluene, and then back extracted into a drop of acceptor phase of 10 μL 20 mmol/L acetic acid. After that, the acceptor phase was directly introduced into CE for FASI without any modification. In FASI process, water plug was hydrodynamically injected (50 mbar, 3 s) into the capillary prior to sample injection (+6 kV, 18 s). Six target analytes were separated in less than 10 min at 25°C with a BGE consisting of 70 mmol/L Tris-H3 PO4 (pH 2.2) containing 10% v/v methanol. Under the optimized conditions, LODs obtained by the proposed MS-LLLME-FASI-CE-UV method were in the range of 0.02-0.82 μg/L (based on S/N = 3) with enrichment factors of 546- to 7300-fold for the target analytes. The RSDs of the developed method were in the range of 6.7-12.9% (n = 7). Good linearity (R(2) = 0.9928-0.9997) was obtained in concentration range of 0.1-100 μg/L for mexiletine and propranolol, 0.2-100 μg/L for xylocaine and metoprolol, 0.5-100 μg/L for propafenone and 2.0-100 μg/L for carvedilol, respectively. The developed method was successfully applied for real-time determination of metoprolol in human urine samples within 26 h after uptake.

  2. Total Liquid Ventilation Provides Superior Respiratory Support to Conventional Mechanical Ventilation in a Large Animal Model of Severe Respiratory Failure

    PubMed Central

    Pohlmann, Joshua R; Brant, David O; Daul, Morgan A; Reoma, Junewai L; Kim, Anne C; Osterholzer, Kathryn R; Johnson, Kent J; Bartlett, Robert H; Cook, Keith E; Hirschl, Ronald B

    2011-01-01

    Total liquid ventilation (TLV) has the potential to provide respiratory support superior to conventional mechanical ventilation (CMV) in the acute respiratory distress syndrome (ARDS). However, laboratory studies are limited to trials in small animals for no longer than 4 hours. The objective of this study was to compare TLV and CMV in a large animal model of ARDS for 24 hours. Ten sheep weighing 53 ± 4 (SD) kg were anesthetized and ventilated with 100% oxygen. Oleic acid was injected into the pulmonary circulation until PaO2:FiO2 ≥ 60 mmHg, followed by transition to a protective CMV protocol (n=5) or TLV (n=5) for 24 hours. Pathophysiology was recorded and the lungs were harvested for histological analysis. Animals treated with CMV became progressively hypoxic and hypercarbic despite maximum ventilatory support. Sheep treated with TLV maintained normal blood gases with statistically greater PO2 (p<10−9) and lower PCO2 (p < 10−3) than the CMV group. Survival at 24 hours in the TLV and CMV groups were 100% and 40% respectively (p< 0.05). Thus, TLV provided gas exchange superior to CMV in this laboratory model of severe ARDS. PMID:21084968

  3. Controlled synthesis and electrocatalytic characteristics of Pt nanoparticles-supported nanographene synthesized by in-liquid plasma

    NASA Astrophysics Data System (ADS)

    Kondo, Hiroki; Amano, Tomoki; Ishikawa, Kenji; Sekine, Makoto; Hori, Masaru; Hiramatsu, Mineo; Meijo University Collaboration; Nagoya University Team

    2014-10-01

    We investigated a high-speed synthesis of high-crystallinity nanographenes over 1 micro-gram/min using in-liquid plasma. In this study, nanographene materials with different crystallinity were synthesized using ethanol and 1-butanol. Pt nanoparticles were supported on their surfaces reducing 8 wt%-H2PtCl6 in H2O. G-band and D-band peaks in Raman spectra indicated nanographene materials. Nanographene materials synthesized using ethanol have higher crystallinity than those synthesized using 1-butanol. According to X-ray diffraction patterns, sizes of Pt nanoparticles are almost similar regardless of alcohol types. In cyclic voltammetry characteristics, peaks related to adsorption and desorption of hydrogen were clearly found in the both cases. The platinum effective areas were estimated to be 208.5 and 147.63 m2/g for the cases using ethanol and 1-butanol, respectively. In addition, after potential cycling tests, nanographene materials synthesized using ethanol show almost no degradation, while those using 1-butanol show a drastic degradation. These results indicate that the higher-density Pt nanoparticles can be supported on the higher-crystallinity nanographene material and they show higher durability.

  4. Use of halophytic plants for recycling NaCl in human liquid waste in a bioregenerative life support system

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Nikolai, Myasoedov; Larisa, Popova; Alexander, Tikhomirov; Sofya, Ushakova; Christophe, Lasseur; Jean-Bernard, Gros

    2010-09-01

    The purpose of this work was to develop technology for recycling NaCl containing in human liquid waste as intrasystem matter in a bioregenerative life support system (BLSS). The circulation of Na + and Cl - excreted in urine is achieved by inclusion of halophytes, i.e. plants that naturally inhabit salt-rich soils and accumulate NaCl in their organs. A model of Na + and Cl - recycling in a BLSS was designed, based on the NaCl turnover in the human-urine-nutrient solution-halophytic plant-human cycle. The study consisted of (i) selecting a halophyte suitable for inclusion in a BLSS, and (ii) determining growth conditions supporting maximal Na + and Cl - accumulation in the shoots of the halophyte growing in a nutrient solution simulating mineralized urine. For the selected halophytic plant, Salicornia europaea, growth rate under optimal conditions, biomass production and quantities of Na + and Cl - absorbed were determined. Characteristics of a plant production conveyor consisting of S.europaea at various ages, and allowing continuity of Na + and Cl - turnover, were estimated. It was shown that closure of the NaCl cycle in a BLSS can be attained if the daily ration of fresh Salicornia biomass for a BLSS inhabitant is approximately 360 g.

  5. Novel analytical procedure using a combination of hollow fiber supported liquid membrane and dispersive liquid-liquid microextraction for the determination of aflatoxins in soybean juice by high performance liquid chromatography - Fluorescence detector.

    PubMed

    Simão, Vanessa; Merib, Josias; Dias, Adriana N; Carasek, Eduardo

    2016-04-01

    This study describes a combination between hollow fiber membrane and dispersive liquid-liquid microextraction for determination of aflatoxins in soybean juice by HPLC. The main advantage of this approach is the use of non-chlorinated solvent and small amounts of organic solvents. The optimum extraction conditions were 1-octanol as immobilized solvent; toluene and acetone at 1:5 ratio as extraction and disperser solvents (100 μL), NaCl at 2% of the sample volume and extraction time of 60 min. The optimal condition for the liquid desorption was 150 μL acetonitrile:water (50:50 v/v) and desorption time of 20 min. The linear range varied from 0.03 to 21 μg L(-1), with R(2) coefficients ranging from 0.9940 to 0.9995. The limits of detection and quantification ranged from 0.01 μg L(-1) to 0.03 μg L(-1) and from 0.03 μg L(-1) to 0.1 μg L(-1), respectively. Recovery tests ranged from 72% to 117% and accuracy between 12% and 18%.

  6. Ultrasensitive determination of cadmium in seawater by hollow fiber supported liquid membrane extraction coupled with graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Peng, Jin-feng; Liu, Rui; Liu, Jing-fu; He, Bin; Hu, Xia-lin; Jiang, Gui-bin

    2007-05-01

    A new procedure, based on hollow fiber supported liquid membrane preconcentration coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection, was developed for the determination of trace Cd in seawater samples. With 1-octanol that contained a mixture of dithizone (carrier) and oleic acid immobilized in the pores of the polypropylene hollow fiber as a liquid membrane, Cd was selectively extracted from water samples into 0.05 M HNO 3 that filled the lumen of the hollow fiber as a stripping solution. The main extraction related parameters were optimized, and the effects of salinity and some coexisting interferants were also evaluated. Under the optimum extraction conditions, an enrichment factor of 387 was obtained for a 100-mL sample solution. In combination with graphite furnace atomic absorption spectrometry, a very low detection limit (0.8 ng L - 1 ) and a relative standard deviation (2.5% at 50 ng L - 1 level) were achieved. Five seawater samples were analyzed by the proposed method without dilution, with detected Cd concentration in the range of 56.4-264.8 ng L - 1 and the relative spiked recoveries over 89%. For comparison, these samples were also analyzed by the Inductively Coupled Plasma Mass Spectrometry (ICP-MS) method after a 10-fold dilution for matrix effect elimination. Statistical analysis with a one-way ANOVA shows no significant differences (at 0.05 level) between the results obtained by the proposed and ICP-MS methods. Additionally, analysis of certified reference materials (GBW (E) 080040) shows good agreement with the certified value. These results indicate that this present method is very sensitive and reliable, and can effectively eliminate complex matrix interferences in seawater samples.

  7. Electromembrane extraction of polar basic drugs from plasma with pure bis(2-ethylhexyl) phosphite as supported liquid membrane.

    PubMed

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid; Pedersen-Bjergaard, Stig

    2016-08-31

    Electromembrane extraction (EME) of polar basic drugs from human plasma was investigated for the first time using pure bis(2-ethylhexyl) phosphite (DEHPi) as the supported liquid membrane (SLM). The polar basic drugs metaraminol, benzamidine, sotalol, phenylpropanolamine, ephedrine, and trimethoprim were selected as model analytes, and were extracted from 300 μL of human plasma, through 10 μL of DEHPi as SLM, and into 100 μL of 10 mM formic acid as acceptor solution. The extraction potential across the SLM was 100 V, and extractions were performed for 20 min. After EME, the acceptor solutions were analyzed by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). In contrast to other SLMs reported for polar basic drugs in the literature, the SLM of DEHPi was highly stable in contact with plasma, and the system-current across the SLM was easily kept below 50 μA. Thus, electrolysis in the sample and acceptor solution was kept at an acceptable level with no detrimental consequences. For the polar model analytes, representing a log P range from -0.40 to 1.32, recoveries in the range 25-91% were obtained from human plasma. Strong hydrogen bonding and dipole interactions were probably responsible for efficient transfer of the model analytes into the SLM, and this is the first report on efficient EME of highly polar analytes without using any ionic carrier in the SLM. PMID:27506347

  8. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    PubMed Central

    Couto, Ricardo; Neves, Luísa; Simões, Pedro; Coelhoso, Isabel

    2015-01-01

    In this work, a supported ionic liquid membrane (SILM) was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA]) ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2) and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73) for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids. PMID:25594165

  9. Highly cis-selective and lead-free hydrogenation of 2-hexyne by a supported Pd catalyst with an ionic-liquid layer.

    PubMed

    Schwab, Frederick; Weidler, Natascha; Lucas, Martin; Claus, Peter

    2014-09-18

    A simple Pd/SiO2 catalyst which was modified with the ionic liquid [BMPL][DCA] gave an excellent yield of 88% towards cis-2-hexene in the stereoselective hydrogenation of 2-hexyne. The catalyst outperforms, even at full conversion, the commonly used lead-poisoned, toxic Lindlar catalyst and supported colloidal-based Pd as well. PMID:25069061

  10. Supported phospholipid bilayer interaction with components found in typical room-temperature ionic liquids - a QCM-D and AFM study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quartz crystal microbalance with dissipation monitoring and atomic force microscopy were combined to evaluate the defects created by room-temperature ionic liquid anion and cation in a supported phospholipid bilayer composed of Zwitterionic lipids on a silica surface. The cation 1-octyl-3-methyl im...

  11. Hydrogenation of Liquid Styrene by Alumina Supported Nickel Catalysts: Comparison between Classical and Non-Classical Methods

    NASA Astrophysics Data System (ADS)

    Tan, Y. C.; Abu Bakar, N. H. H.; Tan, W. L.; Abu Bakar, M.

    2016-06-01

    Almina supported Ni catalysts (Ni/Al2O3) with different Ni weight percentages (wt%) were prepared via classical and non-classical methods. All samples were prepared via impregnation technique. The samples prepared via non-classical methods were reduced using KBH4 as the reducing agent. The catalysts were tested for the hydrogenation of styrene in liquid phase. Optimum activation conditions for the hydrogenation reaction were found to be 633 K for 2 hours. Comparison of the catalytic reactivity for all catalysts at these activation conditions showed that catalysts prepared via classical methods exhibited better activity. Furthermore the 7.6wt% Ni-Al2O3/C showed enhanced activity when compared to the 5.9wt% and 13.8wt% Ni-Al2O3/C catalyst. This phenomenon is mainly attributed to the type of Ni active sites available on the catalyst. The surface properties of the catalysts investigated via H2- temperature programmed reduction (H2-TPR), H2-chemisorption and H2-temperature programmed desorption (H2-TPD) confirm this.

  12. Determination of selected pharmaceutical compounds in biosolids by supported liquid extraction and gas chromatography-tandem mass spectrometry.

    PubMed

    Albero, Beatriz; Sánchez-Brunete, Consuelo; Miguel, Esther; Aznar, Ramón; Tadeo, José L

    2014-04-01

    In this work, an analytical method was developed for the determination of pharmaceutical drugs in biosolids. Samples were extracted with an acidic mixture of water and acetone (1:2, v/v) and supported liquid extraction was used for the clean-up of extracts, eluting with ethyl acetate:methanol (90:10, v/v). The compounds were determined by gas chromatography-tandem mass spectrometry using matrix-match calibration after silylation to form their t-butyldimethylsilyl derivatives. This method presents various advantages, such as a fairly simple operation for the analysis of complex matrices, the use of inexpensive glassware and low solvent volumes. Satisfactory mean recoveries were obtained with the developed method ranging from 70 to 120% with relative standard deviations (RSDs) ≤ 13%, and limits of detection between 0.5 and 3.6 ng g(-1). The method was then successfully applied to biosolids samples collected in Madrid and Catalonia (Spain). Eleven of the sixteen target compounds were detected in the studied samples, at levels up to 1.1 μg g(-1) (salicylic acid). Ibuprofen, caffeine, paracetamol and fenofibrate were detected in all of the samples analyzed. PMID:24582395

  13. Direct injection of whole blood for liquid chromatography/tandem mass spectrometry analysis to support single-rodent pharmacokinetic studies.

    PubMed

    Ingelse, Benno A; Vogel, Gerard; Botterblom, Margriet; Nanninga, Dennis; Ooms, Bert

    2008-01-01

    Mass spectrometric developments in the last decade enable (sub)nanomolar detection of drug compounds in biological matrices in a few microliters of blood. However, the sampling and especially the handling of these small blood volumes is not straightforward. We studied the feasibility of a recently developed 'sorbent sampling technique' to handle these small blood volumes and the application to support pharmacokinetic (PK) screening programs. This technique applies 5-10 microL of blood on a fibrous material packed into a cartridge. Blood samples absorbed on these cartridges are eluted directly, on-line onto a solid-phase extraction liquid chromatography/tandem mass spectrometry (SPE-LC/MS/MS) system. It is shown that the sorbent sampling technique can be applied for a range of drug compounds. In spite of issues with recovery and sample clean-up that need further improvement, the sorbent sampling technique provided similar data as compared to conventional analytics. The technique was successfully applied to derive kinetic data from individual mice, thereby decreasing the number of required mice for a PK study from 21 to 3.

  14. Supported liquid membrane-protected molecularly imprinted beads for micro-solid phase extraction of sulfonamides in environmental waters.

    PubMed

    Díaz-Álvarez, M; Barahona, F; Turiel, E; Martín-Esteban, A

    2014-08-29

    In this work, molecularly imprinted polymer (MIP) beads have been prepared and evaluated for the development of a supported liquid membrane-protected micro-solid phase extraction method for the analysis of sulfonamides (SAs) in aqueous samples. The performance of MIP beads was firstly evaluated in cartridges by conventional solid-phase extraction for the simultaneous analysis of SAs. Afterward, beads were packed into a polypropylene hollow fiber protected by an organic solvent immobilized in the pores of the capillary wall. During the process, the analytes were extracted from the aqueous sample to the immobilized organic solvent and then selectively retained by the MIP beads located inside the capillary. The effect of various experimental parameters as sample pH, time and stirring-rate among others, were studied for the establishment of optimum rebinding conditions. Relative recoveries for all sulfonamides tested in river and reservoir water samples by the proposed method using 100mL water sample spiked with 50μg L-1 of each sulfonamide were within 70-120%, with a relative standard deviation (RSD) <10% (n=3). The detection limits (LODs) were within 0.2-3μgL(-1), depending upon the sulfonamide and the type of water used.

  15. Tank 241-C-103 organic vapor and liquid characterization and supporting activities, Hanford Site, Richland, Washington. Environmental Assessment

    SciTech Connect

    Not Available

    1993-08-10

    The action proposed is to sample the vapor space and liquid waste and perform other supporting activities in Tank 241-C-103 located in the 241-C Tank Farm on the Hanford Site. Operations at Tank 241-C-103 are curtailed because of an unreviewed safety question (USQ) concerning flammability issues of the organic waste in the tank. This USQ must be resolved before normal operation and surveillance of the tank can resume. In addition to the USQ, Tank 241-C-103 is thought to be involved in several cases of exposure of individuals to noxious vapors. This safety issue requires the use of supplied air for workers in the vicinity of the tank. Because of the USQ, the US Department of Energy proposes to characterize the waste in the vapor space and the organic and aqueous layers, to determine the volume of the organic layer. This action is needed to: (1) assess potential risks to workers, the public, and the environment from continued routine tank operations and (2) provide information on the waste material in the tank to facilitate a comprehensive safety analysis of this USQ. The information would be used to determine if a flammable condition within the tank is credible. This information would be used to prevent or mitigate an accident during continued waste storage and future waste characterization. Alternatives to the proposed activities have been considered in this analysis.

  16. Utilization of liquid human wastes and introduction into the material cycling in biological life-support systems

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. P.>; Ushakova, S. A.; Gribovskaya, I. V.; Kudenko, U. A.

    The possibilities of step-by-step utilization of liquid human wastes in biological life-support systems on long-functioning space stations have been considered in this work. Utilization involves "wet" urine incineration with hydrogen peroxide at normal pressure and 90 - 95°C temperature, urease-enzymic decomposition of urine and biological desalination in the higher plant link. The soybean flour was used as a source of urease. Growing soya plants as a component of the higher plant link would give a steady source of urease to the system. To decompose urea (9-15g) contained in 1l of incinerated urine we used 0.5 - 1 g of soy flour. The duration of hydrolysis of daily urea excreted by a human is 70 - 95 hours. It is supposed that ammonia excreted in the reaction of urea decomposition will be processed by nitrifying bacteria. The concentration of total nitrogen in urine after urea hydrolysis and removal of ammonia formed during the reaction constituted 0.6 - 1.2 g/l. Further biological desalination was carried out in the higher plant link, for that the edible salt-accumulating halophytes Salicornia europaea were used. To grow this plant under the aqueous culture conditions, the urine was additionally mineralized at 180 °C after incineration and decomposition of urea. The process of additional mineralization was related to the necessity of removal of organic materials and nitrogen residues, which higher concentration under the aqueous culture conditions has negative effect on plants. The volume of the nutrient solution for growing 6 plants of Salicornia europaea was 1.5 l (daily norm of urine excreted by human), the planting area was 0.032 m2. By the end of vegetation the productivity and mineral composition of Salicornia europaea plants were analyzed. The productivity of plants grown on liquid human wastes (the experiment) practically was not different from the productivity of plants grown on the mineral solution with sodium chloride (checkout). In experimental

  17. Backside calibration potentiometry: ion activity measurements with selective supported liquid membranes by calibrating from the inner side of the membrane.

    PubMed

    Malon, Adam; Bakker, Eric; Pretsch, Ernö

    2007-01-15

    In direct potentiometry, the magnitude of the measured potentials is used to determine the composition of the sample. While this places rather formidable demands on the required reproducibility of the associated potential measurements, typically on the order of microvolts, in vitro clinical analyses of blood samples are today successfully performed with direct potentiometry using ion-selective electrodes (ISEs). Unfortunately, most other analytical situations do not permit the sensor to be recalibrated every few minutes, as in environmental monitoring or in vivo measurements, and direct potentiometry is often bound to fail as an accurate method in these circumstances. This paper introduces a novel direction for potentiometric sensing, termed backside calibration potentiometry. Chemical asymmetries across thin supported liquid ISE membranes are assessed by determining the direction of potential drift upon changing the stirring rate on either side of the membrane. Disappearance of this drift indicates the disappearance of concentration gradients across the membrane and is used to determine the sample composition if the solution composition at the backside of the membrane and the interfering ion concentration in the sample are known. For practical determinations, the concentration of either the primary or the interfering ion is varied in the reference solution until the stirring effect disappears. The procedure is demonstrated with a Ca2+-selective membrane using Ba2+ as the dominant interfering ion. Another example includes the determination of Pb2+ in environmental samples where the pH is adjusted to a known level. At pH 4.0, H+ turns out to be the dominant interfering ion. The practical applicability of the method is shown with different environmental water samples, for which the results obtained with the novel method are compared with those obtained by traditional calibration using standard additions. The limitations of the novel method in terms of accuracy and

  18. Pumice-supported Pd-Pt bimetallic catalysts: Synthesis, structural characterization, and liquid-phase hydrogenation of 1,3-cyclooctadiene

    SciTech Connect

    Deganello, G.; Duca, D.; Liotta, L.F.; Martorana, A.; Venezia, M.; Benedetti, A.; Fagherazz, G.

    1995-01-01

    A series of pumice-supported palladium-platinum bimetallic catalysts were prepared and investigated by X-ray scattering (WAXS and SAXS) and XPS techniques. An alloy Pd-Pt was formed. The less abundant metal was found to segregate to the surface. The catalysts were tested in the liquid-phase hydrogenation of 1,3-cyclooctadiene to cyclooctene, and compared with similarly prepared pumice-supported palladium and platinum catalysts and other supported Pd-Pt catalysts reported in the literature. The addition of platinum reduces the activity and the selectivity of the palladium catalysts. Differences between the activity of these pumice-supported catalysts and the activity of previously described Pd and Pd-Pt catalysts on other supports, are attributed to the presence, in the latter, of diffusional processes. 50 refs., 4 figs. 2 tabs.

  19. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation.

    PubMed

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2015-12-15

    Simultaneous removal of two heavy metals, lead(II) and cadmium(II), from mixed feed using supported liquid membrane (SLM) based technique is investigated in this work. The carrier-solvent combination of "sodium salt of Di-2-ethylhexylphosphoric acid (D2EHPA) (4% w/w) in environmentally benign coconut oil" was immobilized into the pores of solid polymeric polyvinylidene fluoride (PVDF) support. Sodium carbonate (Na2CO3) was used as the stripping agent. Carbonate salts of lead(II) and cadmium(II) were formed in the stripping side interface and they were insoluble in water leading to precipitation inside the stripping solution. The transportation of solute is positively affected due to the precipitation. Lead(II) removal was found to be preferential due to its favorable electronic configuration. The conversion of the liquid waste to the solid one was added advantage for the final removal of hazardous heavy metals. PMID:26252994

  20. Analysis of the organic liquid produced from catalytic cracking of crude palm oil in the presence of alumina supported catalysts

    NASA Astrophysics Data System (ADS)

    Ramli, Anita; Razak, Rozlina Abdul

    2012-09-01

    Catalytic cracking of crude palm oil (CPO) was studied in the presence of alumina, 1% Pt/Al2O3 and 1% Pd/Al2O3 as catalyst. The CPO to catalyst weight ratio used was 1:0.05. The experiment was carried out in a simple liquid-phase batch reactor at atmospheric pressure where the sample was heated to 300-350 δC. Products formed were organic liquid products (OLP) and gaseous product with the solid residue remains in the reactor. The total conversion of CPO was only between 25 - 31% where the residue is suggested to be mainly of polimerised CPO. The OLP was analysed using a gas chromatography with FID detector. Analyses show that the selectivity to liquid fuel is influence by the catalyst used whereby Al2O3 gives the highest selectivity to gasoline while 1% Pt/Al2O3 has the highest selectivity to diesel. However, 1% Pd/Al2O3 is not a suitable catalyst for catalytic cracking of CPO to liquid fuel where less than 17.5% of OLP produced could be classified as liquid fuel.

  1. Design, testing, fabrication and launch support of a liquid chemical barium release payload (utilizing the liquid fluorine-barium salt/hydrazine system)

    NASA Technical Reports Server (NTRS)

    Stokes, C. S.; Smith, E. W.; Murphy, W. J.

    1972-01-01

    A payload was designed which included a cryogenic oxidizer tank, a fuel tank, and burner section. Release of 30 lb of chemicals was planned to occur in 2 seconds at the optimum oxidizer to fuel ratio. The chemicals consisted of 17 lb of liquid fluorine oxidizer and 13 lb of hydrazine-barium salt fuel mixture. The fuel mixture was 17% barium chloride, 16% barium nitrate, and 67% hydrazine, and contained 2.6 lb of available barium. Two significant problem areas were resolved during the program: explosive valve development and burner operation. The release payload was flight tested, from Wallops Island, Virginia. The release took place at an altitude of approximately 260 km. The release produced a luminous cloud which expanded very rapidly, disappearing to the human eye in about 20 seconds. Barium ion concentration slowly increased over a wide area of sky until measurements were discontinued at sunrise (about 30 minutes).

  2. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium.

    PubMed

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-05-01

    Electromembrane extraction was used for simultaneous sample cleanup and preconcentration of lithium from untreated human body fluids. The sample of a body fluid was diluted 100 times with 0.5 mM Tris solution and lithium was extracted by electromigration through a supported liquid membrane composed of 1-octanol into 100 mM acetic acid acceptor solution. Matrix compounds, such as proteins, red blood cells, and other high-molecular-weight compounds were efficiently retained on the supported liquid membrane. The liquid membrane was anchored in pores of a short segment of a polypropylene hollow fiber, which represented a low cost, single use, disposable extraction unit and was discarded after each use. Acceptor solutions were analyzed using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4) D) and baseline separation of lithium was achieved in a background electrolyte solution consisting of 18 mM L-histidine and 40 mM acetic acid at pH 4.6. Repeatability of the electromembrane extraction-CE-C(4) D method was evaluated for the determination of lithium in standard solutions and real samples and was better than 0.6 and 8.2% for migration times and peak areas, respectively. The concentration limit of detection of 9 nM was achieved. The developed method was applied to the determination of lithium in urine, blood serum, blood plasma, and whole blood at both endogenous and therapeutic concentration levels.

  3. Comparative Study on the Sulfur Tolerance and Carbon Resistance of Supported Noble Metal Catalysts in Steam Reforming of Liquid Hydrocarbon Fuel

    SciTech Connect

    Xie, Chao; Chen, Yongsheng; Engelhard, Mark H.; Song, Chunshan

    2012-04-18

    This work was conducted to clarify the influence of the type of metal and support on the sulfur tolerance and carbon resistance of supported noble metal catalysts in steam reforming of liquid hydrocarbons. Al2O3-supported noble metal catalysts (Rh, Ru, Pt, and Pd), Rh catalysts on different supports (Al2O3, CeO2, SiO2, and MgO), and Pt catalyst supported on CeO2 and Al2O3, were examined for steam reforming of a liquid hydrocarbon fuel (Norpar13 from Exxon Mobil) at 800 C for 55 h. The results indicate that (1) Rh/Al2O3 shows higher sulfur tolerance than the Ru, Pt, and Pd catalysts on the same support; (2) both Al2O3 and CeO2 are promising supports for Rh catalyst to process sulfur-containing hydrocarbons; and (3) Pt/CeO2 exhibits better catalytic performance than Pt/Al2O3 in the reaction with sulfur. TEM results demonstrate that the metal particles in Rh/Al2O3 were better dispersed (mostly in 1-3 nm) compared with the other catalysts after reforming the sulfur-containing feed. As revealed by XPS, the binding energy of Rh 3d for Rh/Al2O3 is notably higher than that for Rh/CeO2, implying the formation of electron-deficient Rh particles in the former. The strong sulfur tolerance of Rh/Al2O3 may be related to the formation of well-dispersed electron-deficient Rh particles on the Al2O3 support. Sulfur K-edge XANES illustrates the preferential formation of sulfonate and sulfate on Rh/Al2O3, which is believed to be beneficial for improving its sulfur tolerance as their oxygen-shielded sulfur structure may hinder direct Rh-S interaction. Due to its strong sulfur tolerance, the carbon deposition on Rh/Al2O3 was significantly lower than that on the Al2O3-supported Ru, Pt, and Pd catalysts after the reaction with sulfur. The superior catalytic performance of CeO2-supported Rh and Pt catalysts in the presence of sulfur can be ascribed mainly to the promotion effect of CeO2 on carbon gasification, leading to much lower carbon deposition compared with the Rh/Al2O3, Rh/MgO, Rh

  4. Preparation of Poly(ionic liquid)s-Supported Recyclable Organocatalysts for the Asymmetric Nitroaldol (Henry) Reaction.

    PubMed

    Großeheilmann, Julia; Bandomir, Jenny; Kragl, Udo

    2015-12-21

    A novel strategy for the embedding of quinine-based organocatalysts in polymerized ionic liquids-based hydrogels is presented. With this technique, the encapsulated organocatalyst was successfully recovered and reused for four cycles without any loss of enantioselectivity (up to 91% ee) for the asymmetric nitroaldol (Henry) reaction. In this study, high catalyst leaching was significantly reduced (<0.01%) by controlling the water content. After catalyst removal, evaporation of the solvent affords the product in 98% purity without any further purification.

  5. Hydrogen evolution across nano-Schottky junctions at carbon supported MoS2 catalysts in biphasic liquid systems.

    PubMed

    Ge, Peiyu; Scanlon, Micheál D; Peljo, Pekka; Bian, Xiaojun; Vubrel, Heron; O'Neill, Arlene; Coleman, Jonathan N; Cantoni, Marco; Hu, Xile; Kontturi, Kyösti; Liu, Baohong; Girault, Hubert H

    2012-07-01

    The activities of a series of MoS(2)-based hydrogen evolution catalysts were studied by biphasic reactions monitored by UV/Vis spectroscopy. Carbon supported MoS(2) catalysts performed best due to an abundance of catalytic edge sites and strong electronic coupling of catalyst to support.

  6. Investigation of a Nonlinear Outcoupling Feature Observed in Optically-Pumped Cylindrical Liquid Jets Supporting Stimulated Raman Scattering.

    NASA Astrophysics Data System (ADS)

    Ruekgauer, Thomas Eric

    1995-01-01

    Two processes associated with the generation of stimulated Raman scattering (SRS) in optically-pumped cylindrical liquid jets are investigated. First, the mechanism of frequency selectivity occurring in a micro-cavity with a continuum of resonant frequencies is discussed. It appears that the restrictions placed on the continuous parameter beta, which describes the z dependence of the normal modes of the micro-cylinder, results in a discrete emission spectrum for the stimulated processes (e.g., dye-lasing and SRS) occurring in the dielectric micro-cylinder. A simple model, based on geometric optics, describing the gain and leakage loss for a semi-infinite dielectric slab containing a (semi-infinite) gain region is used to illuminate the role which the parameter beta plays in the generation of stimulated processes in the dielectric micro-cylinder. The results of the model, along with various experimental results, indicate that beta = 0 is the preferred condition for the stimulated processes. Second, it appears as if SRS occurring in the optically-pumped cylindrical liquid jets is responsible for the generation of a newly-observed outcoupling (scattering) feature. This geometrically well-defined feature takes the form of a thin ring, lying in the rm e_{r}-rm e_ {phi} plane, with a spatial extent along the cylinder axis direction of <=q 5 mum. The ring feature is found to be a threshold process, as it is observed to outcouple resident SRS light only above a well-defined optical pump intensity. Finally, it is observed that the ring feature can take on a periodic (in phi) character for particular liquids (ethanol and water) and over a range of optical pump intensities. An explanation for the mechanism responsible for the generation of the ring feature based on plasma generation resulting from self-focusing of the SRS fields is offered.

  7. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    SciTech Connect

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-06-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N{prime}-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique.

  8. Simultaneous quantification of amphetamine and methamphetamine in meconium using ISOLUTE HM-N-supported liquid extraction columns and GC-MS.

    PubMed

    Gunn, Joshua A; Sweeney, Brenda; Dahn, Timothy; Bell, Suzanne; Newhouse, Rebecca; Terrell, Andrea R

    2008-09-01

    A procedure is described for the rapid extraction and quantification of amphetamine and methamphetamine from meconium using ISOLUTE HM-N-supported liquid extraction columns and gas chromatography-mass spectrometry (GC-MS). Because of the matrix complexity of meconium samples, extraction and sample preparation prior to instrumental analysis can prove difficult and time-consuming. The present study introduces a novel sample preparation technique for the simultaneous quantification of amphetamine and methamphetamine in meconium using GC-MS. Extraction of both analytes was achieved using ISOLUTE HM-N-supported liquid extraction columns containing a modified form of diatomaceous earth. Limits of detection for both analytes were 30 ng/g and the lower limit of quantitation was 75 ng/g. Linearity was achieved over the range 75-3000 ng/g. The methodology showed excellent intrarun precision with %CV values ranging from 2 to 8% for both analytes. Interrun precision experiments produced %CV values between 7 and 10% for both analytes. The reported methodology proved suitable for the accurate quantification of amphetamine and methamphetamine in meconium samples and greatly reduced the sample preparation time normally required for traditional solid-phase extraction. The development and validation of such analytical methodologies will prove beneficial for the identification of prenatal substance abuse, which is an ongoing concern across socioeconomic lines.

  9. LIQUID PHASE SELECTIVE OXIDATION OF ETHYLBENZENE OVER ACTIVATED AL2O3 SUPPORTED V2O5 CATALYST

    EPA Science Inventory

    Acetophenone, a very useful industrial chemical for fragrance and flavoring agent and a solvent for plastics and resins, is usually produced as a byproduct of phenol production from cumeme. Aluminia supported vandium oxide catalyst is now explored for the selective oxidation of e...

  10. Density-fluctuation symbolic computation on the (3+1)-dimensional variable-coefficient Kudryashov-Sinelshchikov equation for a bubbly liquid with experimental support

    NASA Astrophysics Data System (ADS)

    Gao, Xin-Yi

    2016-06-01

    Liquids with gas bubbles are commonly seen in medical science, natural science, daily life and engineering. Nonlinear-wave symbolic computation on the (3+1)-dimensional variable-coefficient Kudryashov-Sinelshchikov model for a bubbly liquid is hereby performed. An auto-Bäcklund transformation and with some solitonic solutions are obtained. With respect to the density fluctuation of the bubble-liquid mixture, both the auto-Bäcklund transformation and solitonic solutions depend on the bubble-liquid-viscosity, transverse-perturbation, bubble-liquid-nonlinearity and bubble-liquid-dispersion coefficient functions. We note that some shock waves given by our solutions have been observed by the gas-bubble/liquid-mixture experiments. Effects on a bubbly liquid with respect to the bubble-liquid-viscosity, transverse-perturbation, bubble-liquid-nonlinearity and bubble-liquid-dispersion coefficient functions might be detected by the future gas-bubble/liquid-mixture experiments.

  11. Partial oxidation of liquid hydrocarbons in the presence of oxygen-conducting supports: Effect of catalyst layer deposition

    SciTech Connect

    Smith, M.; Berry, D.; Shekhawt, D.; Haynes, D.; Spivey, J.

    2010-01-01

    Ni-substituted barium hexaaluminate (BNHA) catalysts supported onto gadolinium-doped ceria (GDC), an oxygen-conductor, were prepared using two different methods: (1) conventional incipient wetness impregnation (IWI), in which a non-porous GDC support was impregnated in the conventional manner with aqueous precursors, then dried and calcined to form a supported hexaaluminate, and (2) solid-state mixing (SSM), in which solid hexaaluminate and GDC particles were mechanically ground together and thermally treated to produce a final catalyst. These catalysts were compared to bulk, unsupported BNHA; 3 wt% Ni/alumina; and 3 wt% Ni/GDC (the latter two prepared by conventional impregnation) for the partial oxidation (POX) of n-tetradecane. The reaction studies included examining the effect of 50 ppm S as dibenzothiophene (DBT) and 5 wt% 1-methylnaphthalene (MN) on the product yield under POX conditions. Temperature programmed oxidation (TPO) was used to characterize carbon formation in the reactor. The materials were characterized by BET, ICP-OES, XRD, and SEM/EDS prior to the reaction tests. Characterization of the two GDC-supported BNHA catalysts prior to the reaction studies indicated no significant differences in the bulk composition, surface area, and crystal structure. However, SEM images showed a larger amount of exposed GDC support surface area for the material prepared by IWI. Both of the GDC-supported BNHA materials demonstrated greatly reduced deactivation, with significantly reduced carbon formation compared to bulk BNHA. This was attributed to the oxygen-conducting property of the GDC, which reduced the rate of deactivation of the reaction sites by DBT and MN. The material prepared by IWI demonstrated more stable hydrogen and carbon monoxide yield than the material prepared by SSM. Although both catalysts deactivated in the presence of DBT and MN, the activity of the catalyst prepared by IWI recovered activity more quickly after the contaminants were removed

  12. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given.

  13. Liquid-Phase Synthesis of 2′-Methyl-RNA on a Homostar Support through Organic-Solvent Nanofiltration

    PubMed Central

    Gaffney, Piers R J; Kim, Jeong F; Valtcheva, Irina B; Williams, Glynn D; Anson, Mike S; Buswell, Andrew M; Livingston, Andrew G

    2015-01-01

    Due to the discovery of RNAi, oligonucleotides (oligos) have re-emerged as a major pharmaceutical target that may soon be required in ton quantities. However, it is questionable whether solid-phase oligo synthesis (SPOS) methods can provide a scalable synthesis. Liquid-phase oligo synthesis (LPOS) is intrinsically scalable and amenable to standard industrial batch synthesis techniques. However, most reported LPOS strategies rely upon at least one precipitation per chain extension cycle to separate the growing oligonucleotide from reaction debris. Precipitation can be difficult to develop and control on an industrial scale and, because many precipitations would be required to prepare a therapeutic oligonucleotide, we contend that this approach is not viable for large-scale industrial preparation. We are developing an LPOS synthetic strategy for 2′-methyl RNA phosphorothioate that is more amenable to standard batch production techniques, using organic solvent nanofiltration (OSN) as the critical scalable separation technology. We report the first LPOS-OSN preparation of a 2′-Me RNA phosphorothioate 9-mer, using commercial phosphoramidite monomers, and monitoring all reactions by HPLC, 31P NMR spectroscopy and MS. PMID:26012874

  14. Liquid-Phase Synthesis of 2'-Methyl-RNA on a Homostar Support through Organic-Solvent Nanofiltration.

    PubMed

    Gaffney, Piers R J; Kim, Jeong F; Valtcheva, Irina B; Williams, Glynn D; Anson, Mike S; Buswell, Andrew M; Livingston, Andrew G

    2015-06-22

    Due to the discovery of RNAi, oligonucleotides (oligos) have re-emerged as a major pharmaceutical target that may soon be required in ton quantities. However, it is questionable whether solid-phase oligo synthesis (SPOS) methods can provide a scalable synthesis. Liquid-phase oligo synthesis (LPOS) is intrinsically scalable and amenable to standard industrial batch synthesis techniques. However, most reported LPOS strategies rely upon at least one precipitation per chain extension cycle to separate the growing oligonucleotide from reaction debris. Precipitation can be difficult to develop and control on an industrial scale and, because many precipitations would be required to prepare a therapeutic oligonucleotide, we contend that this approach is not viable for large-scale industrial preparation. We are developing an LPOS synthetic strategy for 2'-methyl RNA phosphorothioate that is more amenable to standard batch production techniques, using organic solvent nanofiltration (OSN) as the critical scalable separation technology. We report the first LPOS-OSN preparation of a 2'-Me RNA phosphorothioate 9-mer, using commercial phosphoramidite monomers, and monitoring all reactions by HPLC, (31)P NMR spectroscopy and MS.

  15. Passive extraction and clean-up of phenoxy acid herbicides in samples from a groundwater plume using hollow fiber supported liquid membranes.

    PubMed

    Liu, Jing-Fu; Toräng, Lars; Mayer, Philipp; Jönsson, Jan Ake

    2007-08-10

    Hollow fiber supported liquid membranes were applied for the passive extraction of phenoxy acid herbicides from water samples. Polypropylene hollow fiber membranes (240 microm i.d., 30 microm wall thickness, 0.05 microm pore size, 30 cm length) were impregnated with 2.0% tri-n-octylphosphine oxide (TOPO) in di-n-hexyl ether in the pores of the fiber wall to form a liquid membrane. They were then filled with basic solution in the lumen as acceptor and finally placed into the sample (donor). Complete extraction of phenoxy acid herbicides including 2,4-D, MCPA, dichlorprop, and mecoprop from an acidified sample (4 mL, adjusted to pH 1.5 with HCl) into basic acceptor (10 microL of 0.2M NaOH) was achieved after 4 h of shaking (100 rpm) resulting in an enrichment factor of 400 times. The acceptor was then neutralized by addition of HCl and injected into a HPLC system for the determination of the phenoxy acid herbicides. Environmentally relevant salinity (0-3.5% NaCl) and dissolved organic matter (0-25 mg/L of dissolved organic carbon) had no significant effect on the extraction. The method provided extraction efficiencies of more than 91%, detection limits of 0.3-0.6 microg/L, and combined extraction and clean up in one single step. This procedure was applied to determine aqueous concentrations of phenoxy acid herbicides in groundwater samples collected from an old dumping site (Cheminova, Denmark) with detected concentrations up to 5800 microg/L. Although the samples were very dirty with large amounts of suspended particles, non-aqueous phase liquids (NAPLs) and dissolved organic matters, good spike recoveries (80-126%) were obtained for 10 of the 11 samples.

  16. Equilibrium sampling through membranes of freely dissolved chlorophenols in water samples with hollow fiber supported liquid membrane.

    PubMed

    Liu, Jing-fu; Jönsson, Jan Ake; Mayer, Philipp

    2005-08-01

    The freely dissolved concentration (C(free)) of pollutants is generally believed to be bioavailable and thus responsible for toxic effects. The C(free) of organic weak acids and bases consists of a dissociated and a nondissociated fraction. By using chlorophenols as model compounds, a negligible-depletion extraction technique, equilibrium sampling through membranes (ESTM), was developed for the measurement of the nondissociated part of the C(free). Polypropylene hollow fiber membranes (280-microm i.d., 50-microm wall thickness, 0.1-microm pore size, 15-cm length) were impregnated with undecane in the pores in the fiber wall as liquid membrane and filled with buffer solution in the lumen as acceptor. Then, the hollow fiber membranes were placed into the sample (donor) for an equilibrium extraction after sealing the two ends. The chlorophenol concentrations in the acceptor were then determined by direct injection into a HPLC system. Finally, the C(free) of the nondissociated and the dissociated species of a chlorophenol were calculated based on its measured concentration in the acceptor, its pK(a) value, and the measured pH in sample and acceptor. Theoretically calculated distribution coefficients (D = 8-970) agree well with the experimental enrichment factors (E(e(max)) = 6-1124), and the equilibration time was observed to increase with increasing distribution coefficients (hours to days). The freely dissolved concentration of five chlorophenols, with a wide range of pK(a) (4.9-9.2) and log K(ow) (2.35-5.24), were successfully determined in model solutions of humic acids and at low-ppb levels in river and leachate water. PMID:16053291

  17. Core-Shell Diamond as a Support for Solid-Phase Extraction and High-Performance Liquid Chromatography

    SciTech Connect

    Saini, Gaurav; Jensen, David S.; Wiest, Landon A.; Vail, Michael A.; Dadson, Andrew; Lee, Milton L.; Shutthanandan, V.; Linford, Matthew R.

    2010-06-01

    We report the formation of core-shell diamond particles for solid phase extraction (SPE) and high performance liquid chromatography (HPLC) made by layer-by-layer (LbL) deposition. Their synthesis begins with the amine functionalization of microdiamond by its immersion in an aqueous solution of a primary amine-containing polymer (polyallylamine (PAAm)). The amine-terminated microdiamond is then immersed in an aqueous suspension of nanodiamond, which leads to adsorption of the nanodiamond. Alternating (self-limiting) immersions in the solutions of the amine-containing polymer and the suspension of nanodiamond are continued until the desired number of nanodiamond layers is formed around the microdiamond. Finally, the core-shell particles are cross-linked with 1,2,5,6-diepoxycyclooctane or reacted with 1,2-epoxyoctadecane. Layer-by-layer deposition of PAAm and nanodiamond is also studied on planar Si/SiO2 surfaces, which were characterized by SEM, Rutherford backscattering spectrometry (RBS) and nuclear reaction analysis (NRA). Core-shell particles are characterized by diffuse reflectance infrared Fourier transform spectroscopy (DRIFT), environmental scanning electron microscopy (ESEM), and Brunauer Emmett Teller (BET) surface area and pore size measurements. Larger (ca. 50 μm) core-shell diamond particles have much higher surface areas, and analyte loading capacities in SPE than nonporous solid diamond particles. Smaller (ca. 3 μm), normal and reversed phase, core-shell diamond particles have been used for HPLC, with 36,300 plates per meter for mesitylene in a separation of benzene and alkyl benzenes on a C18 adsorbent, and 54,800 plates per meter for diazinon in a similar separation of two pesticides.

  18. Permeation of mixtures of four phenols through a supported liquid membrane in NaCl 1.0 mol/dm{sup 3} medium

    SciTech Connect

    Arana, G.; Borge, G.; Etxebarria, N.; Fernandez, L.A.

    1999-02-01

    The permeation of four phenols (phenol, 2-chlorophenol, 2-nitrophenol, and 2,4-dichlorophenol) through a supported liquid membrane has been studied in NaCl 1.0 mol/dm{sup 3} medium. The flux of each phenol was determined by measuring in real time the change of their concentration in the strip phase by making use of a fiber optic spectrophotometer and a multivariate calibration. The model for the permeation of phenol alone was first developed by making permeation experiments of a phenol, and then permeation studies of the mixture were carried out and the model was extended to those phenols. It was found that the permeation of a phenol is interfered with by the presence of other phenols.

  19. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry.

    PubMed

    Escudero, Leticia B; Olsina, Roberto A; Wuilloud, Rodolfo G

    2013-11-15

    A simple and green technique named polymer-supported ionic liquid solid phase extraction (PSIL-SPE) was developed for mercury (Hg) species determination. Inorganic Hg (InHg) species was complexed with chloride ions followed by its introduction into a flow injection on-line system to quantitatively retain the anionic chlorocomplex (HgCl4(2-)) in a column packed with CYPHOS(®) IL 101-impregnated resin. The trapped InHg was then reduced with stannous chloride (SnCl2) and eluted with the same flow of reducing agent followed by cold vapor atomic absorption spectrometry (CV-AAS) detection. Organic mercury species (OrgHg) did not interact with the impregnated resin and were not retained into the column. Total concentration of OrgHg was evaluated by difference between total Hg and InHg concentration. A 95% extraction efficiency was achieved for InHg when the procedure was developed under optimal experimental conditions. The limit of detection obtained for preconcentration of 40 mL of sample was 2.4 ng L(-1) InHg. The relative standard deviation (RSD) was 2.7% (at 1 µg L(-1) InHg and n=10) calculated from the peak height of absorbance signals (Gaussian-shape and reproducible peaks). This work reports the first polymer-supported IL solid phase extraction approach implemented in a flow injection on-line system for determination of Hg species in mineral, tap and river water samples.

  20. Influence of Sulfur on the Carbon Deposition in Liquid Hydrocarbon Steam Reforming over CeO2-Al2O3 supported Ni and Rh Catalysts

    SciTech Connect

    C Xie; Y Chen; Y Li; X Wang; C Song

    2011-12-31

    This study was performed to elucidate the influence of sulfur on the carbon deposition in steam reforming of liquid hydrocarbons over CeO{sub 2}-Al{sub 2}O{sub 3} supported Ni and Rh catalysts at 800 C. The characteristics of the carbon deposits on the used catalysts after the reactions without and with sulfur were investigated by temperature-programmed oxidation (TPO), transmission electron microscopy (TEM), scanning transmission X-ray microscopy (STXM), temperature-programmed hydrogenation (TPH), X-ray absorption near edge structure (XANES), and scanning electron microscopy (SEM). Though abundant carbon deposits can accumulate on the pure CeO{sub 2}-Al{sub 2}O{sub 3} support due to fuel thermal cracking, the addition of Ni or Rh metal greatly reduced the carbon deposition in the sulfur-free reaction. The presence of sulfur increased the carbon deposition on both catalysts, which has a much more significant impact for the Ni catalyst. Carbon XANES study on the used catalysts revealed that graphitic carbon was dominant in the presence of sulfur, while oxidized carbon species (quinone-like carbon, carboxyl and carbonate) prevailed without sulfur. Meanwhile, the formation of carboxyl and carbonate more dramatically dropped on the Ni catalyst than that on the Rh catalyst. Our results strongly suggest that (I) the presence of sulfur can suppress carbon gasification and promote the formation of graphitic carbon on reforming catalysts due mainly to its poisoning effect on metals, and (II) Rh catalyst possesses stronger capability to maintain carbon gasification activity than Ni catalyst in the presence of sulfur.

  1. Cadmium accumulation by a Citrobacter sp. immobilized on gel and solid supports: applicability to the treatment of liquid wastes containing heavy metal cations

    SciTech Connect

    Macaskie, L.E.; Wates, J.M.; Dean, A.C.R.

    1987-01-01

    Polyacrylamide gel-immobilized cells of a Citrobacter sp. removed cadmium from flows supplemented with glycerol 2-phosphate, the metal uptake mechanism being mediated by the activity of a cell-bound phosphatase that precipitates liberated inorganic phosphate with heavy metals at the cell surface. The constraints of elevated flow rate and temperature were investigated and the results discussed in terms of the kinetics of immobilized enzymes. Loss in activity with respect to cadmium accumulation but not inorganic phosphate liberation was observed at acid pH and was attributed to the pH-dependent solubility of cadmium phosphate. Similarly high concentrations of chloride ions, and traces of cyanide inhibited cadmium uptake and this was attributed to the ability of these anions to complex heavy metals, especially the ability of CN/sup -/ to form complex anions with Cd/sup 2 +/. The data are discussed in terms of the known chemistry of chloride and cyanide-cadmium complexes and the relevance of these factors in the treatment of metal-containing liquid wastes is discussed. The cells immobilized in polyacrylamide provided a convenient small-scale laboratory model system. It was found that the Citrobacter sp. could be immobilized on glass supports with no chemical treatment or modification necessary. Such cells were also effective in metal accumulation and a prototype system more applicable to the treatment of metal-containing streams on a larger scale is described.

  2. Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC).

    PubMed

    Kuligowski, Julia; Sánchez-Illana, Ángel; Sanjuán-Herráez, Daniel; Vento, Máximo; Quintás, Guillermo

    2015-11-21

    Instrumental developments in sensitivity and selectivity boost the application of liquid chromatography-mass spectrometry (LC-MS) in metabolomics. Gradual changes in the LC-MS instrumental response (i.e. intra-batch effect) are often unavoidable and they reduce the repeatability and reproducibility of the analysis, decrease the power to detect biological responses and hinder the interpretation of the information provided. Because of that, there is interest in the development of chemometric techniques for the post-acquisition correction of batch effects. In this work, the use of quality control (QC) samples and support vector regression (QC-SVRC) and a radial basis function kernel is proposed to correct intra-batch effects. The repeated analysis of a single sample is used for the assessment of both the correction accuracy and the effect of the distribution of QC samples throughout the batch. The QC-SVRC method is evaluated and compared with a recently developed method based on QC samples and robust cubic smoothing splines (QC-RSC). The results show that QC-SVRC slightly outperformed QC-RSC and allows a straightforward fitting of the SVRC parameters to the instrument performance by using the ε-insensitive loss parameter.

  3. Selective transport of copper(I, II), cadmium(II), and zinc(II) ions through a supported liquid membrane containing bathocuproine, neocuproine, or bathophenanthroline

    SciTech Connect

    Saito, Takashi )

    1994-06-01

    Some selective transport systems for heavy metallic ions through a supported liquid membrane (SLM) containing a 2,2[prime]-dipyridyl derivative ligand, 4,7-diphenyl-2,9-dimethyl-1, 10-phenanthroline (bathocuproine), 2,9-dimethyl-1,10-phenanthroline (neocuproine), or 4,7-diphenyl-1,10-phenanthroline (bathophenanthroline), were investigated. The transport of copper(I, II), cadmium(II), zinc(II), lead(II), and cobalt(II) ions was accomplished with a halogen ion such as chloride, bromide, or iodide ion as a pairing ion species for any SLM. The ranking of the permeability of the metallic ions was Cu[sup +,2+], Zn[sup 2+], Cd[sup 2+] [much gt] Pb[sup 2+], Co[sup 2+]. When the oxidation-reduction potential gradient was used as a driving force for metallic ions, the transport of Cu[sup +] ions was higher than those of Cd[sup 2+] and Zn[sup 2+] ions for any SLM containing bathocuproine, neocuproine, or bathophenanthroline. On the other hand, in the transport system which used the concentration gradient of pairing ion species, the permeability of the Cu[sup 2+] ion decreased whereas that of the Cd[sup 2+] ion increased. Moreover, it was found that the different selectivity for the transport of metallic ions is produced by using various pairing ion species. 18 refs., 9 figs.

  4. Determination of the triacylglycerol fraction in fish oil by comprehensive liquid chromatography techniques with the support of gas chromatography and mass spectrometry data.

    PubMed

    Beccaria, Marco; Costa, Rosaria; Sullini, Giuseppe; Grasso, Elisa; Cacciola, Francesco; Dugo, Paola; Mondello, Luigi

    2015-07-01

    Fish oil made from menhaden (Brevoortia tyrannus) can be used as a dietary supplement for the presence of high levels of the long-chained omega-3 fatty acids, viz. epentaenoic and docosahexanoic. In this work, for the first time, two different multidimensional approaches were developed and compared, in terms of peak capacity, for triacylglycerol characterization. In particular, silver ion chromatography with a silver-ion column and non-aqueous reverse-phase liquid chromatography with a C18 column were tested in both comprehensive (stop-flow) and off-line modes. The use of mass spectra attained by atmospheric pressure chemical ionization for both LC approaches, and the fatty acids methyl esters profile of menhaden oil obtained by gas chromatography analysis, greatly supported the elucidation of the triacylglycerol content in menhaden oil. The off-line approach afforded a better separation and, thus, higher peak capacity to allow identifying and semiquantifying more than 250 triacylglycerols. Such a huge number has never been reported for a menhaden oil sample.The main disadvantage of such an approach over the stop-flow one was the longer analysis time, mainly attributable to solvent exchange between the two dimensions. PMID:25963648

  5. Characterization and classification of seven citrus herbs by liquid chromatography-quadrupole time-of-flight mass spectrometry and genetic algorithm optimized support vector machines.

    PubMed

    Duan, Li; Guo, Long; Liu, Ke; Liu, E-Hu; Li, Ping

    2014-04-25

    Citrus herbs have been widely used in traditional medicine and cuisine in China and other countries since the ancient time. However, the authentication and quality control of Citrus herbs has always been a challenging task due to their similar morphological characteristics and the diversity of the multi-components existed in the complicated matrix. In the present investigation, we developed a novel strategy to characterize and classify seven Citrus herbs based on chromatographic analysis and chemometric methods. Firstly, the chemical constituents in seven Citrus herbs were globally characterized by liquid chromatography combined with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS). Based on their retention time, UV spectra and MS fragmentation behavior, a total of 75 compounds were identified or tentatively characterized in these herbal medicines. Secondly, a segmental monitoring method based on LC-variable wavelength detection was developed for simultaneous quantification of ten marker compounds in these Citrus herbs. Thirdly, based on the contents of the ten analytes, genetic algorithm optimized support vector machines (GA-SVM) was employed to differentiate and classify the 64 samples covering these seven herbs. The obtained classifier showed good prediction performance and the overall prediction accuracy reached 96.88%. The proposed strategy is expected to provide new insight for authentication and quality control of traditional herbs.

  6. Liquid level sensing device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A liquid level sensing device comprising a load cell supporting a column or stack of segments freely resting on one another. The density of each element is substantially identical to that of the surrounding liquid. The elements are freely guided within a surrounding tube. As each element is exposed above the liquid level, its weight will be impressed through the column to the load cell, thereby providing a signal at the load cell directly proportional to the liquid level elevation.

  7. A biological method of including mineralized human liquid and solid wastes into the mass exchange of bio-technical life support systems

    NASA Astrophysics Data System (ADS)

    Ushakova, S. A.; Tikhomirov, A. A.; Tikhomirova, N. A.; Kudenko, Yu. A.; Litovka, Yu. A.; Anishchenko, O. V.

    2012-10-01

    The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of "wet incineration" developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m-2 · day-1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m-2 · day-1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.

  8. Analysis of 7 synthetic musks in cream by supported liquid extraction and solid phase extraction followed by GC-MS/MS.

    PubMed

    Dong, Haifeng; Tang, Hua; Chen, Dazhou; Xu, Ting; Li, Lei

    2014-03-01

    A new method for the simultaneous determination of 7 synthetic musks (musk amberette, musk tibetene, musk moskene, musk ketone, musk xylene, phantolide, and tonalide) in cream by means of supporting liquid extraction (SLE) coupled with LC-Alumina-N SPE, then followed by GC-MS/MS has been established. In this study, 7 synthetic musks are extracted and pre-purified by a mixture solution of water and isopropanol from cream, and separated and purified by tandem columns containing SLE column and LC-Alumina-N SPE column, which were seldom reported before. Ultrasonic and mechanical shaking were applied to improve the extraction efficiency. Different experiment conditions, such as the type of extraction solution, extraction time of ultrasonic and mechanical shaking, the type of SLE and SPE column, and matrix effects were optimized and the recoveries of 7 synthetic musks for each part were above 86.61%. In addition, the use of isotope internal standards was systemically discussed. The method showed satisfactory linearity over the range assayed (5-1000 ng g(-1)), and the limits of detections (LODs) ranged from 0.15 to 4.86 ng g(-1), and the limits of quantifications (LOQs) were ranging from 0.49 to 16.21 ng g(-1). The recoveries using this method at three spiked concentration levels (10, 100, and 1000 ng g(-1)) range from 85.6% to 109%. The relative standard deviation was lower than 9.8% in all case. The proposed analytical method has been successfully applied for the analysis of 7 synthetic musks in commercial cream.

  9. Halophytic plants as a component of a bioregenerative life support system for recycling of NaCl contained in human liquid waste.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    Currently, the closure of matter turnover is one of the urgent problems of bioregenerative life support system (BLSS) designing. The important aspect of the problem is involving of substances contained in liquid and solid exometabolites of humans inhabiting BLSS into intrasystem matter turnover. Recycling of Na+ and Cl- contained in human liquid exometabolites, i.e. urine is acknowledged to be among the main tasks of the matter turnover in BLSS. The ions excreted with urine may be returned to human organism with food. A way to allow this is including edible halophytic plants into the phototrophic compartment of BLSS. Halophytes are defined as plants which can grow on saline soils and produce high biomass under these conditions. Some halophytes can take up high quantities of Na+ and Cl- and accumulate the ions in the shoots or extrude them to leaf surface by means of salt glands. To allow Na+ and Cl- recycling through halophyte utilization, the following principal steps should be accomplished: (i) mineralization of the exometabolites by physicochemical methods; (ii) oxidation of ammonia formed during the exometabolite mineralization to nitrate by nitrifying bacteria, (iii) growing the halophyte on the nutrient solution prepared on the basis of the mineralized exometabolites, (iv) introducing the halophyte green biomass into human food. The present work is devoted to the following problems: (i) selection of a salt-accumulating/extruding halophytic plant suitable for Na+ and Cl- recycling in BLSS and (ii) parameter evaluation of a plant conveyor containing the halophytic plants at various ages. Halophytic plants selected for BLSS should meet the following criteria: (i) ability to grow under 24-hour-illumination, (ii) high productivity, (iii) ability to accumulate Na+ and Cl- in high quantities in shoots or to excrete salts to leaf surface, (iv) edibility, and (v) high nutritive value of the biomass. Relying on these criteria, salt-accumulating halophyte Salicornia

  10. High-Surface-Area CO2 Sponge: High Performance CO2 Scrubbing Based on Hollow Fiber-Supported Designer Ionic Liquid Sponges

    SciTech Connect

    2010-09-01

    IMPACCT Project: The team from ORNL and Georgia Tech is developing a new technology that will act like a sponge, integrating a new, alcohol-based ionic liquid into hollow fibers (magnified image, right) to capture CO2 from the exhaust produced by coal-fired power plants. Ionic liquids, or salts that exist in liquid form, are promising materials for carbon capture and storage, but their tendency to thicken when combined with CO2 limits their efficiency and poses a challenge for their development as a cost-effective alternative to current-generation solutions. Adding alcohol to the mix limits this tendency to thicken in the presence of CO2 but can also make the liquid more likely to evaporate, which would add significantly to the cost of CO2 capture. To solve this problem, ORNL is developing new classes of ionic liquids with high capacity for absorbing CO2. ORNL’s sponge would reduce the cost associated with the energy that would need to be diverted from power plants to capture CO2 and release it for storage.

  11. Electrokinetics over liquid/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Squires, Todd M.

    2011-11-01

    Since liquid-liquid interfaces flow in response to an applied stress, one might expect electrokinetic flows at liquid-liquid interfaces to be significantly higher than over liquid-solid interfaces. The earliest predictions for the electrophoretic mobility of charged mercury drops - distinct approaches by Frumkin and Levich (1946), and Booth (1951) - differed by O (a /λD) , where a is the radius of the drop and λD is the Debye screening length. Seeking to reconcile this rather striking discrepancy, Levine (1973) showed double-layer polarization to be the key ingredient. Without a physical mechanism by which electrokinetic effects are enhanced, however, it is difficult to know how general the enhancement is - whether it holds only for liquid metal surfaces, or more generally, for all liquid/liquid surfaces. By considering a series of systems in which a planar metal strip is coated with either a liquid metal or liquid dielectric, we show that the central physical mechanism behind the enhancement predicted by Frumkin and Levich (1946) is the presence of an unmatched electrical stress upon the electrolyte-liquid interface, which establishes a Marangoni stress on the droplet surface and drives it into motion. The source of the unbalanced electrokinetic stress on a liquid metal surface is clear - metals represent equipotential surfaces, so no field exists to drive an equal and opposite force on the surface charge. This might suggest that liquid metals represent a unique system, since dielectric liquids can support finite electric fields, which might be expected to exert an electrical stress on the surface charge that balances the electric stress. We demonstrate, however, that electrical and osmotic stresses on relaxed double-layers internal to dielectric liquids precisely cancel, so that internal electrokinetic stresses generally vanish in closed, ideally polarizable liquids. The enhancement for liquid mercury drops can thus be expected quite generally over clean

  12. Conveyor Cultivation of the Halophytic Plant Salicornia europaea for the Recycling of NaCl from Human Liquid Waste in a Biological Life Support System.

    NASA Astrophysics Data System (ADS)

    Balnokin, Yurii; Myasoedov, Nikolay; Popova, Larissa; Tikhomirov, Alexander A.; Ushakova, Sofya; Tikhomirova, Natalia; Lasseur, Christophe; Gros, Jean-Bernard

    One problem in designing bioregenerative life support systems (BLSS) is developing technolo-gies to include human liquid and solid waste in intrasystem recycling. A specific task is recycling of NaCl excreted in urine by humans. We showed recently that this could be achieved through inclusion of the salt accumulating halophyte Salicornia europaea in the autotrophic compart-ment of the BLSS (Balnokin et al., ASR, 2010, in press). A model of NaCl circulation in BLSS with inclusion of S. europaea was based on the NaCl turnover in the human -urine -nutrient solution -S. europaea -human cycle. Mineralized urine was used as a basis for preparation of a nutrient solution for the halophyte cultivation. The shoots of the halophyte cultivated in the mineralized urine and containing NaCl could to be used by the BLSS inhabitants in their diets. In this report we describe cultivation of S. europaea which allows turnover of NaCl and produces daily shoot biomass containing Na+ and Cl- in quantities approximately equal to those excreted in daily human urine. The plants were grown in water culture in a climatic chamber under controlled conditions. A solution simulating mineralized urine (SSMU) was used as a basis for preparation of a nutri-ent solution for S. europaea cultivation. For continuous biomass production, seedlings of S. europaea, germinated preliminary in moist sand, were being transferred to the nutrient solu-tion at regular intervals (every two days). Duration of the conveyor operation was 112 days. During the first 56 days, the seedlings were being planted in SSMU diluted by a factor of 1.5 (2/3 SSMU). The same solution was introduced into the growth vessels as volumes of growth medium decreased due to plant transpiration. Starting from the 56th day as conveyor operation was initiated, the plants were being harvested every two days; the solutions from the discharged vessels were mixed with the fresh SSMU and the mixture was introduced into all other growth vessels of

  13. Application of hollow fiber-supported liquid-phase microextraction coupled with HPLC for the determination of guaifenesin enantiomer-protein binding.

    PubMed

    Hatami, Mehdi; Farhadi, Khalil

    2012-07-01

    A hollow fiber liquid-phase microextraction technique coupled with high-performance liquid chromatography with fluorescence detection was employed for determination and evaluation of the binding characteristics of drugs to bovine serum albumin (BSA). Enantiomers of guaifenesin (an expectorant drug) were investigated as a model system. After optimization of some influencing parameters on microextraction, the proposed method was used for calculation of the target drug distribution coefficient between n-octanol and the buffer solution as well as study of drug-BSA binding in physiological conditions. The developed method shows a new, improved and simple procedure for determination of free drug concentration in biological fluids and the extent of drug-protein binding. PMID:22102436

  14. Liquid Sloshing Dynamics

    NASA Astrophysics Data System (ADS)

    Ibrahim, Raouf A.

    2005-06-01

    The problem of liquid sloshing in moving or stationary containers remains of great concern to aerospace, civil, and nuclear engineers; physicists; designers of road tankers and ship tankers; and mathematicians. Beginning with the fundamentals of liquid sloshing theory, this book takes the reader systematically from basic theory to advanced analytical and experimental results in a self-contained and coherent format. The book is divided into four sections. Part I deals with the theory of linear liquid sloshing dynamics; Part II addresses the nonlinear theory of liquid sloshing dynamics, Faraday waves, and sloshing impacts; Part III presents the problem of linear and nonlinear interaction of liquid sloshing dynamics with elastic containers and supported structures; and Part IV considers the fluid dynamics in spinning containers and microgravity sloshing. This book will be invaluable to researchers and graduate students in mechanical and aeronautical engineering, designers of liquid containers, and applied mathematicians.

  15. Experimental data and analysis to support the design of an ion-exchange process for the treatment of Hanford tank waste supernatant liquids

    SciTech Connect

    Kurath, D.E.; Bray, L.A.; Brooks, K.P.; Brown, G.N.; Bryan, S.A.; Carlson, C.D.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.; Kim, A.Y.

    1994-12-01

    Hanford`s 177 underground storage tanks contain a mixture of sludge, salt cake, and alkaline supernatant liquids. Disposal options for these wastes are high-level waste (HLW) glass for disposal in a repository or low-level waste (LLW) glass for onsite disposal. Systems-engineering studies show that economic and environmental considerations preclude disposal of these wastes without further treatment. Difficulties inherent in transportation and disposal of relatively large volumes of HLW make it impossible to vitrify all of the tank waste as HLW. Potential environmental impacts make direct disposal of all of the tank waste as LLW glass unacceptable. Although the pretreatment and disposal requirements are still being defined, most pretreatment scenarios include retrieval of the aqueous liquids, dissolution of the salt cakes, and washing of the sludges to remove soluble components. Most of the cesium is expected to be in the aqueous liquids, which are the focus of this report on cesium removal by ion exchange. The main objectives of the ion-exchange process are removing cesium from the bulk of the tank waste (i.e., decontamination) and concentrating the separated cesium for vitrification. Because exact requirements for removal of {sup 137}Cs have not yet been defined, a range of removal requirements will be considered. This study addresses requirements to achieve {sup 137}Cs levels in LLW glass between (1) the Nuclear Regulatory Commission (NRC) Class C (10 CFR 61) limit of 4600 Ci/m{sup 3} and (2) 1/10th of the NRC Class A limit of 1 Ci/m{sup 3} i.e., 0.1/m{sup 3}. The required degrees of separation of cesium from other waste components is a complex function involving interactions between the design of the vitrification process, waste form considerations, and other HLW stream components that are to be vitrified.

  16. Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis

    PubMed Central

    Johnson, Meshell D.; Widdicombe, Jonathan H.; Allen, Lennell; Barbry, Pascal; Dobbs, Leland G.

    2002-01-01

    Transport of lung liquid is essential for both normal pulmonary physiologic processes and for resolution of pathologic processes. The large internal surface area of the lung is lined by alveolar epithelial type I (TI) and type II (TII) cells; TI cells line >95% of this surface, TII cells <5%. Fluid transport is regulated by ion transport, with water movement following passively. Current concepts are that TII cells are the main sites of ion transport in the lung. TI cells have been thought to provide only passive barrier, rather than active, functions. Because TI cells line most of the internal surface area of the lung, we hypothesized that TI cells could be important in the regulation of lung liquid homeostasis. We measured both Na+ and K+ (Rb+) transport in TI cells isolated from adult rat lungs and compared the results to those of concomitant experiments with isolated TII cells. TI cells take up Na+ in an amiloride-inhibitable fashion, suggesting the presence of Na+ channels; TI cell Na+ uptake, per microgram of protein, is ≈2.5 times that of TII cells. Rb+ uptake in TI cells was ≈3 times that in TII cells and was inhibited by 10−4 M ouabain, the latter observation suggesting that TI cells exhibit Na+-, K+-ATPase activity. By immunocytochemical methods, TI cells contain all three subunits (α, β, and γ) of the epithelial sodium channel ENaC and two subunits of Na+-, K+-ATPase. By Western blot analysis, TI cells contain ≈3 times the amount of αENaC/μg protein of TII cells. Taken together, these studies demonstrate that TI cells not only contain molecular machinery necessary for active ion transport, but also transport ions. These results modify some basic concepts about lung liquid transport, suggesting that TI cells may contribute significantly in maintaining alveolar fluid balance and in resolving airspace edema. PMID:11842214

  17. Liquid phase methanol LaPorte PDU [process development unit]: Modification, operation, and support studies; Quarterly technical progress report No. 7, 1 January--31 March 1989

    SciTech Connect

    1989-07-20

    The work under this contract will be to implement and test certain process improvements identified through the engineering studies completed to demonstrate the capability of long-term catalyst activity maintenance, and to perform process and design engineering work that is generic to a scaled-up Liquid Phase Methanol (LPMEOH) facility. A series of process development unit (PDU) runs will be performed to extend the testing of the process improvements. A parallel research program will be conducted to enhance the LPMEOH technical data base to improve the likelihood of commercialization of the LPMEOH process. Research is briefly discussed on catalyst activation. 5 figs.

  18. Ionic liquid supported on an electrodeposited polycarbazole film for the headspace solid-phase microextraction and gas chromatography determination of aromatic esters.

    PubMed

    Feng, Yuanyuan; Zhao, Faqiong; Zeng, Baizhao

    2015-05-01

    A polycarbazole film was electrodeposited on a stainless-steel wire from a solution of N,N-dimethylformamide/propylene carbonate (1:9 v/v) containing 0.10 M carbazole and 0.10 M tetrabutylammonium perchlorate. The obtained polycarbazole fiber was immersed into an ionic liquid (1-hydroxyethyl-3-methyl imidazolium bis[(trifluoromethyl)sulfonyl]imide) solution (in dimethylsulfoxide) for 30 min, followed by drying under an infrared lamp. The resulting polycarbazole/ionic liquid fiber was applied to the headspace solid-phase microextraction and determination of aromatic esters by coupling with gas chromatography and flame ionization detection. Under the optimized conditions, the limits of detection were below 61 ng/L (S/N = 3) and the linear ranges were 0.061-500 μg/L with correlation coefficients above 0.9876. The relative standard deviations were below 4.8% (n = 5) for a single fiber, and below 9.9% for multi-fiber (n = 4). This fiber also exhibited good stability. It could be used for more than 160 times of headspace solid-phase microextraction and could withstand a high temperature up to 350°C.

  19. An Improved Method for the Separation of Lead-210 from Ra-DEF for Radioactive Equilibrium Experiments: Microscale Liquid-Liquid Extraction Using a Polymer-Supported Crown Ether

    NASA Astrophysics Data System (ADS)

    Dietz, Mark L.; Horwitz, E. Philip

    1996-02-01

    A novel extraction chromatographic material, comprised of a solution of a lead-selective macrocyclic polyether (di-t-butylcyclohexano-18-crown-6) in isodecanol sorbed on an inert polymeric support, is shown to provide a rapid and simple means for the separation of lead-210 from its daughter products for subsequent radiochemical experimentation.

  20. 3D-printed polylactic acid supports for enhanced ionization efficiency in desorption electrospray mass spectrometry analysis of liquid and gel samples.

    PubMed

    Elviri, Lisa; Foresti, Ruben; Bianchera, Annalisa; Silvestri, Marco; Bettini, Ruggero

    2016-08-01

    The potential of 3D printing technology was here exploited to prepare tailored polylactic acid (PLA) supports for desorption electrospray ionization (DESI) experiments. PLA rough solid supports presenting wells of different shape (i.e. cylindrical, cubic and hemispherical cavities) were designed to accommodate samples of different physical state. The potentials of such supports in terms of sample loading capacity, sensitivity, signal stability were tested by analysing a peptide (i.e. insulin) and an aminoglycoside antibiotic (i.e. gentamicin sulphate) from solution and a chitosan-based gel. The results obtained were compared with those obtained by using a traditional polytetrafluoroethylene (PTFE) support and discussed. By using PLA support on the flat side, signal intensity improved almost twice with respect to PTFE support, whereas with spherical wells a five times improved signal sensitivity and good stability (RSD<6%) were obtained for the analysis of two model molecules. Limits of detection were in the 3-10nM range and linearity was demonstrated for both analytes in the 0.05-0.5μM range for semi-quantitative or quantitative purposes. The use of a well and the set-up of optimal source parameters allowed the analysis of samples in a gel state with good precision (RSD<10%) and accuracy (86±6-102±9%), otherwise difficult to analyse on a flat smooth surface. These findings are of great interest and stimulus to exploit the advantages of 3D printing technology for the development of devices for a DESI source, presenting different shapes or configuration as a function of the sample types.

  1. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.

    2016-06-01

    The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.

  2. Critical Phenomena in Liquid-Liquid Mixtures

    NASA Astrophysics Data System (ADS)

    Jacobs, D. T.

    2000-04-01

    Critical phenomena provide intriguing and essential insight into many issues in condensed matter physics because of the many length scales involved. Large density or concentration fluctuations near a system's critical point effectively mask the identity of the system and produce universal phenomena that have been well studied in simple liquid-vapor and liquid-liquid systems. Such systems have provided useful model systems to test theoretical predictions which can then be extended to more complicated systems. Along various thermodynamic paths, several quantities exhibit a simple power-law dependence close to the critical point. The critical exponents describing these relationships are universal and should depend only on a universality class determined by the order-parameter and spatial dimensionality of the system. Liquid gas, binary fluid mixtures, uniaxial ferromagnetism, polymer-solvent, and protein solutions all belong to the same (Ising model) universality class. The diversity of critical systems that can be described by universal relations indicates that experimental measurements on one system should yield the same information as on another. Our experimental investigations have tested existing theory and also extended universal behavior into new areas. By measuring the coexistence curve, heat capacity, thermal expansion and static light scattering (turbidity) in various liquid-liquid and polymer-solvent systems, we have determined critical exponents and amplitudes that have sometimes confirmed and other times challenged current theory. Recent experiments investigating the heat capacity and light scattering in a liquid-liquid mixture very close to the critical point will be discussed. This research is currently supported by The Petroleum Research Fund and by NASA grant NAG8-1433 with some student support from NSF-DMR 9619406.

  3. HANFORD DOUBLE SHELL TANK (DST) THERMAL & SEISMIC PROJECT SEISMIC ANALYSIS IN SUPPORT OF INCREASED LIQUID LEVEL IN 241-AP TANK FARMS

    SciTech Connect

    MACKEY TC; ABBOTT FG; CARPENTER BG; RINKER MW

    2007-02-16

    The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford. The "Double-Shell Tank (DST) Integrity Project - DST Thermal and Seismic Project" is in support of Tri-Party Agreement Milestone M-48-14.

  4. Interionic Interactions in Imidazolium-Based Ionic Liquids: The Role of the C2-Position Revealed by Raman Scattering and Supported by IR and NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Noack, Kristina; Paape, Natalia; Kiefer, Johannes; Wasserscheid, Peter; Leipertz, Alfred

    2010-08-01

    Intermolecular interactions determine the state of aggregation of a substance at given temperature. Based on that, changes in intermolecular interactions can lead to microscopic reordering which may be observed macroscopically in terms of altered physicochemical properties. Especially, when chemicals are employed in technical processes, it is important to control and regulate their properties to guarantee product quality. A special group of chemical substances increasingly gaining interest in the field of chemical and process engineering are room temperature ionic liquids (RTILs). In general, RTILs are organic salts with melting points "below the boiling point of water". The variety of possible combinations of cations and anions lead to a wide range of chemical and thermo-physical properties. In fact, it is possible to tune their properties by adjusting the ratio of Coulomb and van der Waals interactions. However, because it is hardly possible to investigate a reasonable fraction of the potential cation-anion combinations, a molecular-based understanding of their properties is crucial to make a rational design possible. In this regard vibrational spectroscopy has proven to be very beneficial for structural analysis and the investigation of interionic and intermolecular interactions. Therein, especially Raman spectroscopy shows a significant advantage of being insensitive to water interference and it is widely applied in the field of ionic liquids. Among others the 1-alkyl-3-methylimidazolium [RMIM] based ILs have been employed as model ILs in structural analysis, and most vibrational studies available in literature have been carried out investigating this kind of ILs. In contrast, spectroscopic data and calculations of C2-methylated 1,2-dialkyl-3-methylimidazolium based ILs, are available to a much lesser extend. The substitution in the C2 position in those ILs disrupts the main hydrogen-bonding interaction between the cation and the anion and is expected to lead

  5. Reaction profiling by ultra high-pressure liquid chromatography/time-of-flight mass spectrometry in support of the synthesis of DNA-encoded libraries.

    PubMed

    Hargiss, Leonard O; Zipp, G Greg; Jessop, Theodore C; Sun, Xuejun; Keyes, Philip; Rawlins, David B; Liang, Zhi; Park, Kum Joo; Gu, Huizhong

    2014-11-15

    An ultra high-pressure liquid chromatography/mass spectrometry (UHPLC/MS) separation and analysis method has been devised for open access analysis of synthetic reactions used in the production of DNA-encoded chemical libraries. The aqueous mobile phase is 100mM hexafluoroisopropanol and 8.6mM triethylamine; the organic mobile phase is methanol. The UHPLC separation uses a C18 OST column (50mm×2.1mm×1.7μm) at 60°C, with a flow rate of 0.6mL/min. Gradient concentration is from 10 to 40% B in 1.0min, increasing to 95% B at 1.2min. Cycle time was about 5min. This method provides a detection limit of a 20-mer oligonucleotide by mass spectrometry of better than 1pmol on-column. Linear UV response for 20-mer extends from 2 to 200pmol/μL in concentration, same-day relative average deviations are less than 5% and bias (observed minus expected) is less than 10%. Deconvoluted mass spectra are generated for components in the predicted mass range using a maximum entropy algorithm. Mass accuracy of deconvoluted spectra is typically 20ppm or better for isotopomers of oligonucleotides up to 7000Da.

  6. A high-performance liquid chromatography-based assay of glutathione transferase omega 1 supported by glutathione or non-physiological reductants.

    PubMed

    Németi, Balázs; Poór, Miklós; Gregus, Zoltán

    2015-01-15

    The unusual glutathione S-transferase GSTO1 reduces, rather than conjugates, endo- and xenobiotics, and its role in diverse cellular processes has been proposed. GSTO1 has been assayed spectrophotometrically by measuring the disappearance of its substrate, S-(4-nitrophenacyl)glutathione (4-NPG), in the presence of 2-mercaptoethanol that regenerates GSTO1 from its mixed disulfide. To assay GSTO1 in rat liver cytosol, we have developed a high-performance liquid chromatography (HPLC)-based procedure with two main advantages: (i) it measures the formation of the 4-NPG reduction product 4-nitroacetophenone, thereby offering improved sensitivity and accuracy, and (ii) it can use glutathione, the physiological reductant of GSTO1, which is impossible to do with the spectrophotometric procedure. Using the new assay, we show that (i) the GSTO1-catalyzed reduction of 4-NPG in rat liver cytosol also yields 1-(4-nitrophenyl)ethanol, whose formation from 4-nitroacetophenone requires NAD(P)H; (ii) the two assays measure comparable activities with 2-mercaptoethanol or tris(2-carboxyethyl)phosphine used as reductant; (iii) the cytosolic reduction of 4-NPG is inhibited by GSTO1 inhibitors (KT53, 5-chloromethylfluorescein diacetate, and zinc), although the inhibitory effect is strikingly influenced by the type of reductant in the assay and by the sequence of reductant and inhibitor addition. Characterization of GSTO1 inhibitors with the improved assay provides better understanding of interaction of these chemicals with the enzyme.

  7. Effect of content of chiral selector and pore size of core-shell type silica support on the performance of amylose tris(3,5-dimethylphenylcarbamate)-based chiral stationary phases in nano-liquid chromatography and capillary electrochromatography.

    PubMed

    Rocchi, Silvia; Fanali, Salvatore; Farkas, Tivadar; Chankvetadze, Bezhan

    2014-10-10

    In this study the separation performance of various chiral stationary phases (CSPs) made of polysaccharide-based chiral selectors coated onto superficially porous (core-shell or fused-core) silica supports were evaluated. The CSPs obtained by coating of various amounts of chiral selector (1-5%) onto supports of various pore size (100 and 300 Å) were studied. Their evaluation was pursued in both chiral nano-liquid chromatography (nano-LC) and chiral capillary electrochromatography (CEC). Among the goals of this study was to re-examine our previous unexpected finding of better performance of superficially porous CSP under CEC conditions compared to nano-LC conditions for a new set of chiral compounds, as well as to study the effect of varying the chiral selector content and nominal pore size of supporting silica on the performance of core-shell silica-based polysaccharide-type CSPs. Based on the results of this study it can be seen that CSPs based on superficially porous silica can successfully be used for the separation of enantiomers in both nano-LC and CEC mode. Only a slight advantage of CEC over nano-LC mode was observed in this study from the viewpoint of plate numbers, especially at higher mobile phase flow rates. It must also be noted that the optimal theoretical plate height is still too high and further optimization of superficially porous CSPs is necessary for both nano-LC and CEC applications.

  8. Liquid film target impingement scrubber

    DOEpatents

    McDowell, William J.; Coleman, Charles F.

    1977-03-15

    An improved liquid film impingement scrubber is provided wherein particulates suspended in a gas are removed by jetting the particle-containing gas onto a relatively small thin liquid layer impingement target surface. The impingement target is in the form of a porous material which allows a suitable contacting liquid from a pressurized chamber to exude therethrough to form a thin liquid film target surface. The gas-supported particles collected by impingement of the gas on the target are continuously removed and flushed from the system by the liquid flow through each of a number of pores in the target.

  9. Supported liquid extraction (SLE) for the analysis of methylamphetamine, methylenedioxymethylamphetamine and delta-9-tetrahydrocannabinol in oral fluid and blood of drivers.

    PubMed

    Rositano, Joanna; Harpas, Peter; Kostakis, Chris; Scott, Timothy

    2016-08-01

    matrix effects were 1.0, 0.97 and 0.78 in DDS buffer and 0.96, 0.96 and 0.62 in blood for MA, MDMA and THC, respectively. Linearity was achieved up to 1250ng/mL for MA and MDMA, and 112ng/mL for THC (r(2)>0.999 for all analytes). The method is designed for easy transfer to an automated liquid handling platform. PMID:26878366

  10. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  11. Solar liquid heating system

    SciTech Connect

    Finn, D.J.

    1990-05-08

    This patent describes a solar heater for heating liquids. It comprises: a heatable bag, a support means supporting the heatable bag, a heatable body of liquid in the heatable bag, the heatable bag being disposed in sunlight so as to become heated thereby, a topside gas bag above the heatable bag, the topside gas bag containing a gas for serving as insulation, a topside fluid bag disposed above the topside gas bag and containing a fluid for further insulation. The bags being substantially gasproof and waterproof and also being flexible whereby the gravity pull on the bags and the flexibility thereof causes the upper sides of the bags to seek horizontal levels.

  12. Nano Pd(0) supported on cellulose: a highly efficient and recyclable heterogeneous catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols under liquid phase catalysis.

    PubMed

    Jamwal, Navjot; Sodhi, Ravinderpal Kour; Gupta, Princy; Paul, Satya

    2011-12-01

    Nano palladium(0) supported on cellulose was found to be highly efficient recyclable heterogeneous catalyst for the Suzuki coupling between aryl bromides and phenyl boronic acid in water and aerobic oxidation of benzyl alcohols using air as the source of molecular oxygen in acetonitrile. The Cell-Pd(0) was prepared by stirring commercially available cellulose with Pd(OAc)(2) in ethanol at 25°C followed by reduction with hydrazine hydrate, leading finally to nano Pd(0) particles uniformly distributed on surface of cellulose. This catalytic system provides biaryls and polyaryls in excellent yields with very high turn over numbers via Suzuki coupling; and benzaldehyde derivatives in high yields and selectivity by oxidation in air. Cell-Pd(0) was characterized by X-ray diffraction techniques (XRD), thermal analysis (TGA), scanning electron microscope (SEM) and transmission electron microscope (TEM).

  13. High-performance liquid chromatography of amino acids, peptides and proteins. CXXIX. Ceramic-based particles as chemically stable chromatographic supports.

    PubMed

    Wirth, H J; Eriksson, K O; Holt, P; Aguilar, M; Hearn, M T

    1993-08-27

    Porous zirconia based particles have been modified using different derivatisation procedures. The modified particles were characterised in terms of their accessible surface areas and degree of surface coverage of the bounded or physicoated phases utilising the strong and specific adsorption of phosphate ions to the zirconia surface. The hydroxyl group density was determined by a 1H NMR technique. The particles were modified by immobilising different silanes to introduce either hydrophobic ligands or reactive groups onto the zirconia surface. In the latter case, various ligands were then covalently attached to the activated supports. Using this type of modification, n-octadecyl- (C18), carbohydrate- and Cibacron Blue F3GA-modified zirconia particles were produced. Furthermore, polymeric coated particles were prepared either by using polybutadiene or by cross-linking the carbohydrate modified sorbents. The pH stability of the different sorbents were determined in batch experiments and under chromatographic conditions. The leakage of ligands was monitored by UV absorption and by employing radioactively labelled ligands. The performance of the C18 reversed-phase modified zirconia in packed columns was also used as an indicator of changes in the surface chemistry following pH stability tests. The experimental results indicate that the Cibacron Blue F3GA dye-modified sorbent was stable up to pH 10.5, the C18 reversed-phase packing up to pH 13 and the carbohydrate-bonded phase up to pH 12. These investigations substantiate the favourable chemical and physical characteristics anticipated for surface modified zirconias for potential use as chromatographic adsorbents. PMID:8408421

  14. Spreading of miscible liquids

    NASA Astrophysics Data System (ADS)

    Walls, Daniel J.; Haward, Simon J.; Shen, Amy Q.; Fuller, Gerald G.

    2016-05-01

    Miscible liquids commonly contact one another in natural and technological situations, often in the proximity of a solid substrate. In the scenario where a drop of one liquid finds itself on a solid surface and immersed within a second, miscible liquid, it will spread spontaneously across the surface. We show experimental findings of the spreading of sessile drops in miscible environments that have distinctly different shape evolution and power-law dynamics from sessile drops that spread in immiscible environments, which have been reported previously. We develop a characteristic time to scale radial data of the spreading sessile drops based on a drainage flow due to gravity. This time scale is effective for a homologous subset of the liquids studied. However, it has limitations when applied to significantly chemically different, yet miscible, liquid pairings; we postulate that the surface energies between each liquid and the solid surface becomes important for this other subset of the liquids studied. Initial experiments performed with pendant drops in miscible environments support the drainage flow observed in the sessile drop systems.

  15. LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Thornton, J.D.

    1957-12-31

    This patent relates to liquid-liquid extraction columns having a means for pulsing the liquid in the column to give it an oscillatory up and down movement, and consists of a packed column, an inlet pipe for the dispersed liquid phase and an outlet pipe for the continuous liquid phase located in the direct communication with the liquid in the lower part of said column, an inlet pipe for the continuous liquid phase and an outlet pipe for the dispersed liquid phase located in direct communication with the liquid in the upper part of said column, a tube having one end communicating with liquid in the lower part of said column and having its upper end located above the level of said outlet pipe for the dispersed phase, and a piston and cylinder connected to the upper end of said tube for applying a pulsating pneumatic pressure to the surface of the liquid in said tube so that said surface rises and falls in said tube.

  16. EXPERIMENTAL LIQUID METAL FUEL REACTOR

    DOEpatents

    Happell, J.J.; Thomas, G.R.; Denise, R.P.; Bunts, J.L. Jr.

    1962-01-23

    A liquid metal fuel nuclear fission reactor is designed in which the fissionable material is dissolved or suspended in a liquid metal moderator and coolant. The liquid suspension flows into a chamber in which a critical amount of fissionable material is obtained. The fluid leaves the chamber and the heat of fission is extracted for power or other utilization. The improvement is in the support arrangement for a segrnented graphite core to permit dif ferential thermal expansion, effective sealing between main and blanket liquid metal flows, and avoidance of excessive stress development in the graphite segments. (AEC)

  17. A study of liquid propellant autoignition

    NASA Technical Reports Server (NTRS)

    Lester, D. H.; Gibbs, A. G.; Lessor, D. L.

    1975-01-01

    Data and theory pertinent to the autoignition of liquid oxygen/liquid hydrogen and liquid oxygen propellants were reviewed. Physical models of the processes supporting or contributing to autoignition were developed. Emphasis was placed on the description of the physical environment and its relationship to the autoignition phenomenon.

  18. Liquid Ventilation

    PubMed Central

    Tawfic, Qutaiba A.; Kausalya, Rajini

    2011-01-01

    Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. PMID:22043370

  19. LIQUID TARGET

    DOEpatents

    Martin, M.D.; Salsig, W.W. Jr.

    1959-01-13

    A liquid handling apparatus is presented for a liquid material which is to be irradiated. The apparatus consists essentially of a reservoir for the liquid, a target element, a drain tank and a drain lock chamber. The target is in the form of a looped tube, the upper end of which is adapted to be disposed in a beam of atomic particles. The lower end of the target tube is in communication with the liquid in the reservoir and a means is provided to continuously circulate the liquid material to be irradiated through the target tube. Means to heat the reservoir tank is provided in the event that a metal is to be used as the target material. The apparatus is provided with suitable valves and shielding to provide maximum safety in operation.

  20. 3-D graphene-supported mesoporous SiO2 @Fe3 O4 composites for the analysis of pesticides in aqueous samples by magnetic solid-phase extraction with high-performance liquid chromatography.

    PubMed

    Wang, Xuemei; Wang, Huan; Lu, Muxin; Ma, Xiaomin; Huang, Pengfei; Lu, Xiaoquan; Du, Xinzhen

    2016-05-01

    Three-dimensional graphene-supported mesoporous silica@Fe3 O4 composites (mSiO2 @Fe3 O4 -G) were prepared by modifying mesoporous SiO2 -coated Fe3 O4 onto hydrophobic graphene nanosheets through a simple adsorption co-condensation method. The obtained composites possess unique properties of large surface area (332.9 m(2) /g), pore volume (0.68 cm(3) /g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2 @Fe3 O4 -G) was used for the magnetic solid-phase extraction of seven pesticides with benzene rings in different aqueous samples before high-performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525-3.30 μg/L) and good linearity (5.0-1000 μg/L, R(2) > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained.

  1. Efficient transport of Am(III) from nitric acid medium using a new conformationally constrained (N,N,N',N'-tetra-2-ethylhexyl)7-oxabicyclo[2.2.1]heptane-2,3-dicarboxamide across a supported liquid membrane.

    PubMed

    Sharma, S; Panja, S; Ghosh, S K; Dhami, P S; Gandhi, P M

    2016-03-15

    Am(III) is one of the most hazardous radionuclide present in nuclear fuel cycle. A new conformationally constrained diamide, (N,N,N',N'-tetra-2-ethylhexyl)7-oxabicyclo[2.2.1]heptane-2,3-dicarboxamide (OBDA) was studied for Am(III) transport from HNO3 medium across a Supported Liquid Membrane. Transport rate was observed to be significantly fast with ∼95% transport of Am(III) within 1h using 0.1M OBDA in the presence of 15% isodecyl alcohol (IDA)/n-dodecane as carrier. The mechanism of transport was investigated by studying various parameters like feed HNO3/NaNO3 concentration, OBDA concentration in the membrane, membrane pore size, membrane thickness etc. From these studies, the mechanism of transport was found to be diffusion controlled with diffusion co-efficient value of 5.1×10(-6)cm(2)/s. The membrane was found to be highly selective for tri- and tetra-valent actinides, and trivalent lanthanides. OBDA based membrane was found to be stable for at least for ten consecutive cycles of operation. PMID:26685064

  2. Liquid-liquid phase transition in supercooled silicon

    NASA Astrophysics Data System (ADS)

    Sastry, Srikanth; Austen Angell, C.

    2003-11-01

    Silicon in its liquid and amorphous forms occupies a unique position among amorphous materials. Obviously important in its own right, the amorphous form is structurally close to the group of 4-4, 3-5 and 2-6 amorphous semiconductors that have been found to have interesting pressure-induced semiconductor-to-metal phase transitions. On the other hand, its liquid form has much in common, thermodynamically, with water and other `tetrahedral network' liquids that show density maxima. Proper study of the `liquid-amorphous transition', documented for non-crystalline silicon by both experimental and computer simulation studies, may therefore also shed light on phase behaviour in these related materials. Here, we provide detailed and unambiguous simulation evidence that the transition in supercooled liquid silicon, in the Stillinger-Weber potential, is thermodynamically of first order and indeed occurs between two liquid states, as originally predicted by Aptekar. In addition we present evidence to support the relevance of spinodal divergences near such a transition, and the prediction that the transition marks a change in the liquid dynamic character from that of a fragile liquid to that of a strong liquid.

  3. PREFACE: Functionalized Liquid Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Girault, Hubert; Kornyshev, Alexei A.; Monroe, Charles W.; Urbakh, Michael

    2007-09-01

    Most natural processes take place at interfaces. For this reason, surface science has been a focal point of modern research. At solid-liquid interfaces one can induce various species to adsorb or react, and thus may study interactions between the substrate and adsorbates, kinetic processes, optical properties, etc. Liquid-liquid interfaces, formed by immiscible liquids such as water and oil, have a number of distinctive features. Both sides of the interface are amenable to detailed physical and chemical analysis. By chemical or electrochemical means, metal or semiconductor nanoparticles can be formed or localised at the interface. Surfactants can be used to tailor surface properties, and also to place organic molecular or supermolecular constructions at the boundary between the liquids. Electric fields can be used to drive ions from one fluid to another, or even change the shape of the interface itself. In many cases, both liquids are optically transparent, making functionalized liquid-liquid interfaces promising for various optical applications based on the transmission or reflection of light. An advantage common to most of these systems is self-assembly; because a liquid-liquid interface is not mechanically constrained like a solid-liquid interface, it can easily access its most stable state, even after it has been driven far from equilibrium. This special issue focuses on four modes of liquid-liquid interfacial functionalization: the controlled adsorption of molecules or nanoparticles, the formation of adlayers or films, electrowetting, and ion transfer or interface-localized reactions. Interfacial adsorption can be driven electrically, chemically, or mechanically. The liquid-liquid interface can be used to study how anisotropic particles orient at a surface under the influence of a field, how surfactants interact with other adsorbates, and how nanoparticles aggregate; the transparency of the interface also makes the chirality of organic adsorbates amenable to

  4. Sulfur poisoning of CeO[subscript 2]-Al[subscript 2]O[subscript 3]-supported mono- and bi-metallic Ni and Rh catalysts in steam reforming of liquid hydrocarbons at low and high temperatures

    SciTech Connect

    Xie, Chao; Chen, Yongsheng; Li, Yan; Wang, Xiaoxing; Song, Chunshan

    2010-12-01

    In order to develop a better understanding on sulfur poisoning of reforming catalysts in fuel processing for hydrogen production, steam reforming of liquid hydrocarbons was performed over CeO{sub 2}-Al{sub 2}O{sub 3} supported monometallic Ni and Rh and bimetallic Rh-Ni catalysts at 550 and 800 C. XANES was used to identify the sulfur species in the used catalysts and to study their impacts on the metal surface properties probed by XPS. It was found that both monometallic catalysts rapidly deactivated at 550 C, and showed poor sulfur tolerance. Although ineffective for the Ni catalyst, increasing the temperature to 800 C dramatically improved the sulfur tolerance of the Rh catalyst. XANES revealed that metal sulfide and organic sulfide are the dominant sulfur species on the used Ni catalyst, while sulfonate and sulfate predominate on the used Rh catalyst. The presence of sulfur induced severe carbon deposition on the Ni catalyst at 800 C. The superior sulfur tolerance of the Rh catalyst at 800 C may be associated with its capability in sulfur oxidation. It is likely that the formation of the oxygen-shielded sulfur structure of sulfonate and sulfate can suppress the poisoning impact of sulfur on Rh by inhibiting direct rhodium-sulfur interaction. Moreover, XPS indicated that the metal surface properties of the Rh catalysts after the reaction without and with sulfur at 800 C are similar, suggesting that sulfur poisoning on Rh was mitigated under the high-temperature condition. Although the Rh-Ni catalyst exhibited better sulfur tolerance than the monometallic catalysts at 550 C, its catalytic performance was inferior compared with the Rh catalyst in the sulfur-containing reaction at 800 C probably due to the severe carbon deposition on the bimetallic catalyst.

  5. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  6. Liquid marbles.

    PubMed

    Aussillous, P; Quéré, D

    2001-06-21

    The transport of a small amount of liquid on a solid is not a simple process, owing to the nature of the contact between the two phases. Setting a liquid droplet in motion requires non-negligible forces (because the contact-angle hysteresis generates a force opposing the motion), and often results in the deposition of liquid behind the drop. Different methods of levitation-electrostatic, electromagnetic, acoustic, or even simpler aerodynamic techniques-have been proposed to avoid this wetting problem, but all have proved to be rather cumbersome. Here we propose a simple alternative, which consists of encapsulating an aqueous liquid droplet with a hydrophobic powder. The resulting 'liquid marbles' are found to behave like a soft solid, and show dramatically reduced adhesion to a solid surface. As a result, motion can be generated using gravitational, electrical and magnetic fields. Moreover, because the viscous friction associated with motion is very small, we can achieve quick displacements of the droplets without any leaks. All of these features are of potential benefit in microfluidic applications, and also permit the study of a drop in a non-wetting situation-an issue of renewed interest following the recent achievement of super-hydrophobic substrates. PMID:11418851

  7. Liquid marbles.

    PubMed

    Aussillous, P; Quéré, D

    2001-06-21

    The transport of a small amount of liquid on a solid is not a simple process, owing to the nature of the contact between the two phases. Setting a liquid droplet in motion requires non-negligible forces (because the contact-angle hysteresis generates a force opposing the motion), and often results in the deposition of liquid behind the drop. Different methods of levitation-electrostatic, electromagnetic, acoustic, or even simpler aerodynamic techniques-have been proposed to avoid this wetting problem, but all have proved to be rather cumbersome. Here we propose a simple alternative, which consists of encapsulating an aqueous liquid droplet with a hydrophobic powder. The resulting 'liquid marbles' are found to behave like a soft solid, and show dramatically reduced adhesion to a solid surface. As a result, motion can be generated using gravitational, electrical and magnetic fields. Moreover, because the viscous friction associated with motion is very small, we can achieve quick displacements of the droplets without any leaks. All of these features are of potential benefit in microfluidic applications, and also permit the study of a drop in a non-wetting situation-an issue of renewed interest following the recent achievement of super-hydrophobic substrates.

  8. Liquid Crystals

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Thermochromic liquid crystals, or TLCs, are a type of liquid crystals that react to changes in temperature by changing color. The Hallcrest/NASA collaboration involved development of a new way to visualize boundary layer transition in flight and in wind tunnel testing of aircraft wing and body surfaces. TLCs offered a new and potentially better method of visualizing the boundary layer transition in flight. Hallcrest provided a liquid crystal formulation technique that afforded great control over the sensitivity of the liquid crystals to varying conditions. Method is of great use to industry, government and universities for aerodynamic and hydrodynamic testing. Company's principal line is temperature indicating devices for industrial use, such as non-destructive testing and flaw detection in electric/electronic systems, medical application, such as diagnostic systems, for retail sale, such as room, refrigerator, baby bath and aquarium thermometers, and for advertising and promotion specials. Additionally, Hallcrest manufactures TLC mixtures for cosmetic applications, and liquid crystal battery tester for Duracell batteries.

  9. Method for treating liquid wastes

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Singh, P.; Ketring, A.R.

    1995-12-26

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering {sup 99}Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of {sup 99}TcO{sub 4}{sup {minus}} from aqueous solutions into organic solvents or mixed organic/polar media, extraction of {sup 99}Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester {sup 99}Tc from those liquids. 6 figs.

  10. Method for treating liquid wastes

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Singh, Prahlad; Ketring, Alan R.

    1995-01-01

    The method of treating liquid waste in a media is accomplished by exposing the media to phosphinimines and sequestering .sup.99 Tc from the media by the phosphinimine (PN) functionalities. The system for treating the liquid waste in the media includes extraction of .sup.99 TcO.sub.4.sup.- from aqueous solutions into organic solvents or mixed organic/polar media, extraction of .sup.99 Tc from solutions on a solid matrix by using a container containing PN functionalities on solid matrices including an inlet and outlet for allowing flow of media through an immobilized phosphinimine ligand system contained within the container. Also, insoluble suspensions of phosphinimine functionalities on solid matrices in liquid solutions or present on supported liquid membranes (SLM) can be used to sequester .sup.99 Tc from those liquids.

  11. Probing liquid surface waves, liquid properties and liquid films with light diffraction

    NASA Astrophysics Data System (ADS)

    Barik, Tarun Kr; Chaudhuri, Partha Roy; Roy, Anushree; Kar, Sayan

    2006-06-01

    Surface waves on liquids act as a dynamical phase grating for incident light. In this paper, we revisit the classical method of probing such waves (wavelengths of the order of mm) as well as inherent properties of liquids and liquid films on liquids, using optical diffraction. A combination of simulation and experiment is proposed to trace out the surface wave profiles in various situations (e.g. for one or more vertical, slightly immersed, electrically driven exciters). Subsequently, the surface tension and the spatial damping coefficient (related to viscosity) of a variety of liquids are measured carefully in order to gauge the efficiency of measuring liquid properties using this optical probe. The final set of results deal with liquid films where dispersion relations, surface and interface modes, interfacial tension and related issues are investigated in some detail, both theoretically and experimentally. On the whole, our observations and analysis seem to support the claim that this simple, low cost apparatus is capable of providing a wealth of information on liquids and liquid surface waves in a non-destructive way.

  12. Macromolecular liquids

    SciTech Connect

    Safinya, C.R.; Safran, S.A. ); Pincus, P.A. )

    1990-01-01

    Liquids include a broad range of material systems which are of high scientific and technological interest. Generally speaking, these are partially ordered or disordered phases where the individual molecular species have organized themselves on length scales which are larger than simple fluids, typically between 10 Angstroms and several microns. The specific systems reported on in this book include membranes, microemulsions, micelles, liquid crystals, colloidal suspensions, and polymers. They have a major impact on a broad spectrum of technological industries such as displays, plastics, soap and detergents, chemicals and petroleum, and pharmaceuticals.

  13. Liquid ventilation

    PubMed Central

    Sarkar, Suman; Paswan, Anil; Prakas, S.

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported. PMID:25886321

  14. Gelled Lyotropic Liquid Crystals.

    PubMed

    Xu, Yang; Laupheimer, Michaela; Preisig, Natalie; Sottmann, Thomas; Schmidt, Claudia; Stubenrauch, Cosima

    2015-08-11

    In our previous work we were able to prove that gelled bicontinuous microemulsions are a novel type of orthogonal self-assembled system. The study at hand aims at complementing our previous work by answering the question of whether gelled lyotropic liquid crystals are also orthogonal self-assembled systems. For this purpose we studied the same system, namely, water-n-decane/12-hydroxyoctadecanoic acid (12-HOA)-n-decyl tetraoxyethylene glycol ether (C10E4). The phase boundaries of the nongelled and the gelled lyotropic liquid crystals were determined visually and with (2)H NMR spectroscopy. Oscillating shear measurements revealed that the absolute values of the storage and loss moduli of the gelled liquid crystalline (LC) phases do not differ very much from those of the binary organogel. While both the phase behavior and the rheological properties of the LC phases support the hypothesis that gelled lyotropic liquid crystals are orthogonal self-assembled systems, freeze-fracture electron microscopy (FFEM) seems to indicate an influence of the gel network on the structure of the Lα phase and vice versa.

  15. Steam generator support system

    DOEpatents

    Moldenhauer, James E.

    1987-01-01

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

  16. Steam generator support system

    DOEpatents

    Moldenhauer, J.E.

    1987-08-25

    A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

  17. Liquid/liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1980-01-01

    Conceptual design for heat exchanger, utilizing two immiscible liquids with dissimilar specific gravities in direct contact, is more efficient mechanism of heat transfer than conventional heat exchangers with walls or membranes. Concept could be adapted for collection of heat from solar or geothermal sources.

  18. Liquid filtration simulation

    SciTech Connect

    Corey, I.; Bergman, W.

    1996-06-01

    We have a developed a computer code that simulates 3-D filtration of suspended particles in fluids in realistic filter structures. This code, being the most advanced filtration simulation package developed to date, provides LLNL and DOE with new capabilities to address problems in cleaning liquid wastes, medical fluid cleaning, and recycling liquids. The code is an integrated system of commercially available and LLNL-developed software; the most critical are the computational fluid dynamics (CFD) solver and the particle transport program. For the CFD solver, we used a commercial package based on Navier-Stokes equations and a LLNL-developed package based on Boltzman-lattice gas equations. For the particle transport program, we developed a cod based on the 3-D Langevin equation of motion and the DLVO theory of electrical interactions. A number of additional supporting packages were purchased or developed to integrate the simulation tasks and to provide visualization output.

  19. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  20. Microfabricated Liquid Rocket Motors

    NASA Technical Reports Server (NTRS)

    Epstein, Alan H.; Joppin, C.; Kerrebrock, J. L.; Schneider, Steven J. (Technical Monitor)

    2003-01-01

    Under NASA Glenn Research Center sponsorship, MIT has developed the concept of micromachined, bipropellant, liquid rocket engines. This is potentially a breakthrough technology changing the cost-performance tradeoffs for small propulsion systems, enabling new applications, and redefining the meaning of the term low-cost-access-to-space. With this NASA support, a liquid-cooled, gaseous propellant version of the thrust chamber and nozzle was designed, built, and tested as a first step. DARPA is currently funding MIT to demonstrate turbopumps and controls. The work performed herein was the second year of a proposed three-year effort to develop the technology and demonstrate very high power density, regeneratively cooled, liquid bipropellant rocket engine thrust chamber and nozzles. When combined with the DARPA turbopumps and controls, this work would enable the design and demonstration of a complete rocket propulsion system. The original MIT-NASA concept used liquid oxygen-ethanol propellants. The military applications important to DARPA imply that storable liquid propellants are needed. Thus, MIT examined various storable propellant combinations including N2O4 and hydrazine, and H2O2 and various hydrocarbons. The latter are preferred since they do not have the toxicity of N2O4 and hydrazine. In reflection of the newfound interest in H2O2, it is once again in production and available commercially. A critical issue for the microrocket engine concept is cooling of the walls in a regenerative design. This is even more important at microscale than for large engines due to cube-square scaling considerations. Furthermore, the coolant behavior of rocket propellants has not been characterized at microscale. Therefore, MIT designed and constructed an apparatus expressly for this purpose. The report details measurements of two candidate microrocket fuels, JP-7 and JP-10.

  1. Pump for Saturated Liquids

    NASA Technical Reports Server (NTRS)

    Elliott, D. G.

    1986-01-01

    Boiling liquids pumped by device based on proven components. Expanding saturated liquid in nozzle and diverting its phases along separate paths in liquid/vapor separator raises pressure of liquid. Liquid cooled in process. Pump makes it unnecessary to pressurize cryogenic liquids in order to pump them. Problems of introducing noncondensable pressurizing gas avoided.

  2. Models for Liquid Impact Onboard Sloshsat FLEVO

    NASA Technical Reports Server (NTRS)

    Vreeburg, Jan P. B.; Chato, David J.

    2000-01-01

    Orbital experiments on the behavior of liquid in spacecraft are planned. The Sloshsat free-flyer is described. Preparation of the experiments, and later evaluation, are supported by models of varying complexity. The characteristics of the models are discussed. Particular attention is given to the momentum transfer between the liquid and the spacecraft, in connection with the liquid impact that may occur at the end of a reorientation maneuver of the spacecraft.

  3. Supported inorganic membranes

    DOEpatents

    Sehgal, Rakesh; Brinker, Charles Jeffrey

    1998-01-01

    Supported inorganic membranes capable of molecular sieving, and methods for their production, are provided. The subject membranes exhibit high flux and high selectivity. The subject membranes are substantially defect free and less than about 100 nm thick. The pores of the subject membranes have an average critical pore radius of less than about 5 .ANG., and have a narrow pore size distribution. The subject membranes are prepared by coating a porous substrate with a polymeric sol, preferably under conditions of low relative pressure of the liquid constituents of the sol. The coated substrate is dried and calcined to produce the subject supported membrane. Also provided are methods of derivatizing the surface of supported inorganic membranes with metal alkoxides. The subject membranes find use in a variety of applications, such as the separation of constituents of gaseous streams, as catalysts and catalyst supports, and the like.

  4. Tech Support.

    ERIC Educational Resources Information Center

    Beem, Kate

    2002-01-01

    Discusses technology-support issues, including staff training, cost, and outsourcing. Describes how various school districts manage technology-support services. Features the Technology Support Index, developed by the International Society for Technology in Education, to gauge the operation of school district technology-support programs. (PKP)

  5. Rotating electric machine with fluid supported parts

    DOEpatents

    Smith, Jr., Joseph L.; Kirtley, Jr., James L.

    1981-01-01

    A rotating electric machine in which the armature winding thereof and other parts are supported by a liquid to withstand the mechanical stresses applied during transient overloads and the like. In particular, a narrow gap is provided between the armature winding and the stator which supports it and this gap is filled with an externally pressurized viscous liquid. The liquid is externally pressurized sufficiently to balance the static loads on the armature winding. Transient mechanical loads which deform the armature winding alter the gap dimensions and thereby additionally pressurize the viscous liquid to oppose the armature winding deformation and more nearly uniformly to distribute the resulting mechanical stresses.

  6. Method of forming supported doped palladium containing oxidation catalysts

    SciTech Connect

    Mohajeri, Nahid

    2014-04-22

    A method of forming a supported oxidation catalyst includes providing a support comprising a metal oxide or a metal salt, and depositing first palladium compound particles and second precious metal group (PMG) metal particles on the support while in a liquid phase including at least one solvent to form mixed metal comprising particles on the support. The PMG metal is not palladium. The mixed metal particles on the support are separated from the liquid phase to provide the supported oxidation catalyst.

  7. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  8. Systems and methods for analyzing liquids under vacuum

    DOEpatents

    Yu, Xiao-Ying; Yang, Li; Cowin, James P.; Iedema, Martin J.; Zhu, Zihua

    2013-10-15

    Systems and methods for supporting a liquid against a vacuum pressure in a chamber can enable analysis of the liquid surface using vacuum-based chemical analysis instruments. No electrical or fluid connections are required to pass through the chamber walls. The systems can include a reservoir, a pump, and a liquid flow path. The reservoir contains a liquid-phase sample. The pump drives flow of the sample from the reservoir, through the liquid flow path, and back to the reservoir. The flow of the sample is not substantially driven by a differential between pressures inside and outside of the liquid flow path. An aperture in the liquid flow path exposes a stable portion of the liquid-phase sample to the vacuum pressure within the chamber. The radius, or size, of the aperture is less than or equal to a critical value required to support a meniscus of the liquid-phase sample by surface tension.

  9. Application of parallel gradient high performance liquid chromatography with ultra-violet, evaporative light scattering and electrospray mass spectrometric detection for the quantitative quality control of the compound file to support pharmaceutical discovery.

    PubMed

    Squibb, Anthony W; Taylor, Mark R; Parnas, Barry L; Williams, Gareth; Girdler, Richard; Waghorn, Peter; Wright, Adrian G; Pullen, Frank S

    2008-05-01

    The success of drug discovery assays, using plate-based technologies, relies heavily on the quality of the substrates being tested. Sample purity, identity and concentration must be assured for a screening hit to be validated. Most major pharmaceutical companies maintain large liquid screening files with often in excess of one million stock solutions, typically dissolved in DMSO. However, due to the inherent inaccuracies of high-throughput gravimetric analysis and automated dilution, stock solution concentrations can vary significantly from the assumed nominal value. Here, we present a rapid and effective method for measuring purity, identity and concentration of these stock solutions using four high-performance liquid chromatography (HPLC) columns with parallel ultraviolet spectrophotometry (UV), electrospray ionisation mass spectrometry (ESI-MS) and evaporative light scattering detection (ELSD) with a throughput of 1 min per sample.

  10. Vapor liquid solid-hydride vapor phase epitaxy (VLS-HVPE) growth of ultra-long defect-free GaAs nanowires: Ab initio simulations supporting center nucleation

    SciTech Connect

    André, Yamina Lekhal, Kaddour; Hoggan, Philip; Avit, Geoffrey; Réda Ramdani, M.; Monier, Guillaume; Colas, David; Ajib, Rabih; Castelluci, Dominique; Gil, Evelyne; Cadiz, Fabian; Rowe, Alistair; Paget, Daniel; Petit, Elodie; Leroux, Christine; Trassoudaine, Agnès

    2014-05-21

    High aspect ratio, rod-like and single crystal phase GaAs nanowires (NWs) were grown by gold catalyst-assisted hydride vapor phase epitaxy (HVPE). High resolution transmission electron microscopy and micro-Raman spectroscopy revealed polytypism-free zinc blende (ZB) NWs over lengths of several tens of micrometers for a mean diameter of 50 nm. Micro-photoluminescence studies of individual NWs showed linewidths smaller than those reported elsewhere which is consistent with the crystalline quality of the NWs. HVPE makes use of chloride growth precursors GaCl of which high decomposition frequency after adsorption onto the liquid droplet catalysts, favors a direct and rapid introduction of the Ga atoms from the vapor phase into the droplets. High influxes of Ga and As species then yield high axial growth rate of more than 100 μm/h. The diffusion of the Ga atoms in the liquid droplet towards the interface between the liquid and the solid nanowire was investigated by using density functional theory calculations. The diffusion coefficient of Ga atoms was estimated to be 3 × 10{sup −9} m{sup 2}/s. The fast diffusion of Ga in the droplet favors nucleation at the liquid-solid line interface at the center of the NW. This is further evidence, provided by an alternative epitaxial method with respect to metal-organic vapor phase epitaxy and molecular beam epitaxy, of the current assumption which states that this type of nucleation should always lead to the formation of the ZB cubic phase.

  11. Liquids at negative pressure

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Heyes, D. M.; Powles, J. G.

    2005-03-01

    We have further explored the final stages of the collapse of an unstable cavity or bubble using the Molecular Dynamics computer simulation technique. A nanometre sized spherical volume of molecules was removed from a bulk Lennard-Jones liquid, which being mechanically and thermodynamically unstable, proceeded to collapse. The molecules with the highest kinetic energy were the first to enter the initially empty cavity. The temperature of individual molecules inside the cavity, while the density was still typical of a gas, could reach at least an order of magnitude larger than that of the surrounding liquid, e.g., equivalent to 6,000 K for water, which is not unreasonable for the sonoluminescence effect to be seen. During the filling in of the cavity, the average temperature decreased, as the contents thermally equilibrated with the surrounding liquid. The bubble partially filled in, and then proceeded to partially empty again, and so on in an oscillatory manner, with ever decreasing amplitude towards the final uniform liquid state. This recoil effect is predicted by classical hydrodynamic treatments and has been observed in experiment for much larger bubbles. The temperature, density and normal pressure component were resolved as a function of radius from the centre of the bubble at selected times during the collapsing process. The simulations support the view that MD can provide a realistic representation of the final stages of cavity collapse. It does not make assumptions about equation of state and transport coefficients as would be required for a comparable solution of the Navier-Stokes hydrodynamics equations, and is therefore an especially appropriate description for the final stages of the collapse.

  12. Changing the Electron Count in Spin Liquids

    NASA Astrophysics Data System (ADS)

    Kelly, Zachary; McQueen, Tyrel

    Materials which possess the resonating valence bond (RVB) ``spin-liquid'' state have been long sought after by scientists due to their predicted exotic properties. Several materials have been identified as potential spin liquid candidates and laboratory studies have only just begun to provide insight into the properties of these materials and their theoretical description. Recently theoretical calculations predict doping of a spin liquid could lead to a rich and unique phase diagram including complex magnetic states, Dirac metal behavior, and superconductivity. We report the results of structural and physical property characterizations of newly synthesized doped candidate spin liquids. This work was supported by a Cottrell Scholar Award.

  13. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  14. Magnetic Liquids

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Ferrofluidics Corporation's recent innovation is a spindle for rotating computer discs that supports the disc's rotating shaft on a film of magnetic fluid instead of conventional ball bearings. According to its developers, the spindle offers greatly increased rotational stability, meaning substantially reduced vibration and mechanical noise, and non- repeatable runout. This allows disc drives to store two to 10 times more information.

  15. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  16. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  17. Gauging Systems Monitor Cryogenic Liquids

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Rocket fuel needs to stay cool - super cool, in fact. The ability to store gas propellants like liquid hydrogen and oxygen at cryogenic temperatures (below -243 F) is crucial for space missions in order to reduce their volumes and allow their storage in smaller (and therefore, less costly) tanks. The Agency has used these cryogenic fluids for vehicle propellants, reactants, and life support systems since 1962 with the Centaur upper stage rocket, which was powered with liquid oxygen and liquid hydrogen. During proposed long-duration missions, super-cooled fluids will also be used in space power systems, spaceports, and lunar habitation systems. In the next generation of launch vehicles, gaseous propellants will be cooled to and stored for extended periods at even colder temperatures than currently employed via a process called densification. Densification sub-cools liquids to temperatures even closer to absolute zero (-459 F), increasing the fluid s density and shrinking its volume beyond common cryogenics. Sub-cooling cryogenic liquid hydrogen, for instance, from 20 K (-423 F) to 15 K (-432.4 F) reduces its mass by 10 percent. These densified liquid gases can provide more cost savings from reduced payload volume. In order to benefit from this cost savings, the Agency is working with private industry to prevent evaporation, leakage, and other inadvertent loss of liquids and gases in payloads - requiring new cryogenic systems to prevent 98 percent (or more) of boil-off loss. Boil-off occurs when cryogenic or densified liquids evaporate, and is a concern during launch pad holds. Accurate sensing of propellants aboard space vehicles is also critical for proper engine shutdown and re-ignition after launch, and zero boil-off fuel systems are also in development for the Altair lunar lander.

  18. Liquid Crystal Devices.

    ERIC Educational Resources Information Center

    Bradshaw, Madeline J.

    1983-01-01

    The nature of liquid crystals and several important liquid crystal devices are described. Ideas for practical experiments to illustrate the properties of liquid crystals and their operation in devices are also described. (Author/JN)

  19. Liquid Crystal Inquiries.

    ERIC Educational Resources Information Center

    Marroum, Renata-Maria

    1996-01-01

    Discusses the properties and classification of liquid crystals. Presents a simple experiment that illustrates the structure of liquid crystals and the differences between the various phases liquid crystals can assume. (JRH)

  20. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  1. Liquid annulus

    NASA Technical Reports Server (NTRS)

    Ludewig, Hans

    1991-01-01

    It is shown that the specific impulse varies with the square root of the temperature and inversely with the square root of the molecular weight of the propellant. Typical values for specific impulse corresponding to various rocket concepts are shown. The Liquid Annulus core concept consists of a fuel element which will be arranged in a moderator block. The advantages as seen for the system are: high specific impulse; structural material will all run at low temperature; and lower fission product inventory because of evaporation. It is felt that this concept is worth at least a first look because of the promise of very high specific impulse. Because of the low thrust, one would probably need a cluster of engines. This is not necessarily bad because there would be some redundancy, but because of the low thrust one might have to refuel while running. Depending on the fuel vaporization, material can be included in the uranium that is injected as one is running along.

  2. Submerged (under-liquid) floating of light objects.

    PubMed

    Bormashenko, Edward; Pogreb, Roman; Grynyov, Roman; Bormashenko, Yelena; Gendelman, Oleg

    2013-08-27

    A counterintuitive submerged floating of objects lighter than the supporting liquid was observed. Polymer plates with dimensions on the order of magnitude of the capillary length were hydrophilized with cold air plasma were floated in an "under-liquid" regime (totally covered by liquid) when immersed in water or glycerol. Profiles of liquid surfaces curved by polymer plates are measured. We propose a model explaining the phenomenon. The floating of Janus plates is reported.

  3. Viscoelastic cushion for patient support

    NASA Technical Reports Server (NTRS)

    Sauers, D. G.

    1971-01-01

    Flexible container, filled with liquid, provides supportive device which conforms to patient's anatomy. Uniform cushion pressure prevents formation of decubitus ulcers, while the porous sponge substructure damps fluid movement through cushion response so that patient is not dumped when his weight shifts.

  4. Family Support.

    ERIC Educational Resources Information Center

    Wieck, Colleen, Ed.; McBride, Marijo, Ed.

    1990-01-01

    This "Feature Issue" of the quarterly journal "Impact" presents 19 brief articles on family support systems in the United States for persons with developmental disabilities and their families. Emphasis is on provisions of Public Law 99-457. Articles include: "Family Support in the United States: Setting a Course for the 1990s" (James Knoll);…

  5. Supporting Teachers

    ERIC Educational Resources Information Center

    Lesaux, Nonie K.; Burkhauser, Mary A.; Kelley, Joan G.

    2013-01-01

    Material resources, personalized support, time to collaborate, and strong principal leadership are necessary for making curricular and instructional shifts. The authors of this article share the lessons they learned about supporting implementation of the Common Core State Standards. They draw on interviews with teachers, as well as field notes…

  6. Thermal support for scale support

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1976-01-01

    The thermal design work completed for the Thermal Protection System (TPS) of the Space Shuttle System (TPS) of the space shuttle vehicle was documented. This work was divided into three phases, the first two of which reported in previous documents. About 22 separate tasks were completed in phase III, such as: hot gas facility (HGF) support, guarded tank support, shuttle external tank (ET) thermal design handbook support, etc.

  7. Retreating behavior of a charged ionic liquid droplet in a dielectric liquid under electric field

    NASA Astrophysics Data System (ADS)

    Ahn, Myung Mo; Im, Do Jin; Kang, In Seok

    2013-11-01

    Ionic liquids show great promise as excellent solvents or catalysts in energy and biological fields due to their unique chemical and physical properties. The ionic liquid droplets in microfluidic systems can also be used as a potential platform for chemical biological reactions. In order to control electrically the ionic liquid droplets in a microfluidic device, the charging characteristics of ionic liquid droplets need to be understood. In this work, the charging characteristics of various ionic liquids are investigated by using the parallel plate electrodes system. Under normal situation, a charged droplet shows bouncing motion between electrodes continuously. However, for some special ionic liquids, interesting retreating behavior of charged ionic liquid droplet has been observed. This retreating behavior of ionic liquid droplet has been analyzed experimentally by the image analysis and the electrometer signal analysis. Based on the hypothesis of charge leakage of the retreating ionic liquid droplets, FT-IR spectroscopy analysis has also been performed. The retreating behavior of ionic liquid droplet is discussed from the intermolecular point of view according to the species of ionic liquids. This research was supported by grant No. 2013R1A1A2011956 funded by the Ministry of Science, ICT and Future Planning (MSIP) and by grant No. 2013R1A1A2010483 funded by the Ministry of Education, Science and Technology (MEST) through the NRF.

  8. Control of plasma-liquid interaction of atmospheric DC glow discharge using liquid electrode

    NASA Astrophysics Data System (ADS)

    Shirai, Naoki; Aoki, Ryuta; Nito, Aihito; Aoki, Takuya; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-10-01

    Atmospheric plasma in contact with liquid have a variety of interesting phenomena and applications. Previously, we investigated the fundamental characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. We tried to control the plasma-liquid interaction by changing the plasma parameter such as gas species, liquid, and applied voltage. Sheath flow system enables another gas (N2, O2, Ar) flow to around the helium core flow. It can control the gas species around the discharge. When liquid (NaCl aq.) cathode DC discharge is generated, Na emission (588 nm) can be observed from liquid surface with increasing discharge current. Na emission strongly depends on the discharge current and liquid temperature. However, when Ar sheath flow is used, the intensity of Na becomes weak. When liquid anode DC discharge is generated, self-organized luminous pattern formation can be observed at the liquid surface. The pattern depends on existence of oxygen gas in gap. By changing the oxygen gas ratio in the gap, variety of pattern formation can be observed. The discharge in contact with liquid also can be used for synthesis of metal nanoparticles at plasma-liquid interface. Size and shape of nanoparticles depend on discharge gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No 21110007) from MEXT, Japan.

  9. Flame Spread Across Liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher J.; Sirignano, William A.; Schiller, David

    1997-01-01

    The principal goal of our recent research on flame spread across liquid pools is the detailed identification of the mechanisms that control the rate and nature of flame spread when the liquid pool is initially at an isothermal bulk temperature that is below the fuel's flash point temperature. In our project, we specialize the subject to highlight the roles of buoyancy-related processes regarding the mechanisms of flame spread, an area of research cited recently by Linan and Williams as one that needs further attention and which microgravity (micro-g) experiments could help to resolve. Toward resolving the effects of buoyancy on this flame spread problem, comparisons - between 1-g and micro-g experimental observations, and between model predictions and experimental data at each of these gravitational levels - are extensively utilized. The present experimental and computational foundation is presented to support identification of the mechanisms that control flame spread in the pulsating flame spread regime for which long-duration, micro-g flame spread experiments have been conducted aboard a sounding rocket.

  10. Ionic Liquids Database- (ILThermo)

    National Institute of Standards and Technology Data Gateway

    SRD 147 Ionic Liquids Database- (ILThermo) (Web, free access)   IUPAC Ionic Liquids Database, ILThermo, is a free web research tool that allows users worldwide to access an up-to-date data collection from the publications on experimental investigations of thermodynamic, and transport properties of ionic liquids as well as binary and ternary mixtures containing ionic liquids.

  11. Pipe support

    DOEpatents

    Pollono, Louis P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems. A section of the pipe to be supported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe.

  12. Ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction for the determination of phenols in seawater samples.

    PubMed

    Guo, Liang; Lee, Hian Kee

    2011-07-15

    For the first time, an ionic liquid based three-phase liquid-liquid-liquid solvent bar microextraction (IL-LLL-SBME) was developed for the analysis of phenols in seawater samples. The ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), was used as the intermediary solvent for LLL-SBME, enhancing the extraction efficiency for polar analytes. In the procedure, the analytes were extracted from the aqueous sample into the ionic liquid intermediary and finally, back-extracted into an aqueous acceptor solution in the lumen of the hollow fiber. The porous polypropylene membrane acted as a filter to prevent potential interfering materials from being extracted, and no additional cleanup was required. After extraction, the acceptor solution could be directly injected into a high-performance liquid chromatographic system for analysis. Six phenols, 2-nitrophenol, 4-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,4,6-trichlorophenol and pentachlorophenol were selected here as model compounds for developing and evaluating the method. The most influential extraction parameters were evaluated, including the ionic liquid, the composition of donor solution and acceptor solution, the extraction time and the extraction temperature, the effect of ionic strength, and the agitation speed. Under the most favorable extraction parameters, the method showed good linearity (from 0.05-50 to 0.5-50 μg/L, depending on the analytes) and repeatability of extractions (RSD below 8.3%, n=5). The proposed method was compared to conventional three-phase LLL-SBME and ionic liquid supported hollow fiber protected three-phase liquid-liquid-liquid microextraction, and showed higher extraction efficiency. The proposed method was demonstrated to be a simple, fast, and efficient method for the analysis of phenols from environmental water samples.

  13. Energy dispersive-EXAFS of Pd nucleation at a liquid/liquid interface

    NASA Astrophysics Data System (ADS)

    Chang, S.-Y.; Booth, S. G.; Uehara, A.; Mosselmans, J. F. W.; Cibin, G.; Pham, V.-T.; Nataf, L.; Dryfe, R. A. W.; Schroeder, S. L. M.

    2016-05-01

    Energy dispersive extended X-ray absorption fine structure (EDE) has been applied to Pd nanoparticle nucleation at a liquid/liquid interface under control over the interfacial potential and thereby the driving force for nucleation. Preliminary analysis focusing on Pd K edge-step height determination shows that under supersaturated conditions the concentration of Pd near the interface fluctuate over a period of several hours, likely due to the continuous formation and dissolution of sub-critical nuclei. Open circuit potential measurements conducted ex-situ in a liquid/liquid electrochemical cell support this view, showing that the fluctuations in Pd concentration are also visible as variations in potential across the liquid/liquid interface. By decreasing the interfacial potential through inclusion of a common ion (tetraethylammonium, TEA+) the Pd nanoparticle growth rate could be slowed down, resulting in a smooth nucleation process. Eventually, when the TEA+ ions reached an equilibrium potential, Pd nucleation and particle growth were inhibited.

  14. Tool to Prioritize Energy Efficiency Investments

    SciTech Connect

    Farese, Philip; Gelman, Rachel; Hendron, Robert

    2012-08-01

    To provide analytic support of the U.S. Department of Energy's Office of the Building Technology Program (BTP), NREL developed a Microsoft Excel-based tool to provide an open and objective comparison of the hundreds of investment opportunities available to BTP. This tool uses established methodologies to evaluate the energy savings and cost of those savings.

  15. Coherent Nonlinear Terahertz Spectroscopy of Halomethane Liquids

    NASA Astrophysics Data System (ADS)

    Finneran, Ian A.; Welsch, Ralph; Allodi, Marco A.; Miller, Thomas F., III; Blake, Geoffrey

    2016-06-01

    The low-energy terahertz motions of liquids greatly influence their behavior, but are not fully understood. Here, we present results from a recently developed heterodyne-detected Terahertz Kerr Effect (TKE) spectrometer, using an intense picosecond terahertz pump pulse, followed by a weak near-infrared femtosecond probe pulse. In the responses of several halomethane liquids, we find evidence for terahertz intramolecular vibrational coupling and the excitation of intermolecular motions. The experimental results are further supported by reduced density matrix and molecular dynamics simulations. With modest improvements in sensitivity, we expect this technique to be applicable to hydrogen-bonded liquids and amorphous solids.

  16. Supportive Care.

    PubMed

    Olsen, Pia Riis; Lorenzo, Rosalía

    2016-01-01

    This chapter takes its point of departure in psychosocial aspects of supportive care in adolescent and young adult cancer care. The purpose is to describe some of the challenges that these young people face following a cancer diagnosis and guide healthcare professionals in how to provide care that improves the quality of life. In most hospitals and healthcare systems, adolescents and young adults are cared for and treated in settings for children or adults. Accordingly, healthcare professionals may lack attention to and knowledge about what characterize young peoples' life situation, their special needs and how to meet them. The topics we include in the chapter are the following: the youth friendly environment, social support and social network, parents, information during a psychosocial crisis event, the use of HEADSS, peer support, fertility, body image and self-esteem, after treatment and future challenges and palliative and end of life care. PMID:27595353

  17. Semiconductor nanorod liquid crystals

    SciTech Connect

    Li, Liang-shi; Walda, Joost; Manna, Liberato; Alivisatos, A. Paul

    2002-01-28

    Rodlike molecules form liquid crystalline phases with orientational order and positional disorder. The great majority of materials in which liquid crystalline phases have been observed are comprised of organic molecules or polymers, even though there has been continuing and growing interest in inorganic liquid crystals. Recent advances in the control of the sizes and shapes of inorganic nanocrystals allow for the formation of a broad class of new inorganic liquid crystals. Here we show the formation of liquid crystalline phases of CdSe semiconductor nanorods. These new liquid crystalline phases may have great importance for both application and fundamental study.

  18. Liquid level detector

    DOEpatents

    Grasso, A.P.

    1984-02-21

    A liquid level detector for low pressure boilers. A boiler tank, from which vapor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  19. Liquid level detector

    DOEpatents

    Grasso, Albert P.

    1986-01-01

    A liquid level detector for low pressure boilers. A boiler tank, from which apor, such as steam, normally exits via a main vent, is provided with a vertical side tube connected to the tank at the desired low liquid level. When the liquid level falls to the level of the side tube vapor escapes therethrough causing heating of a temperature sensitive device located in the side tube, which, for example, may activate a liquid supply means for adding liquid to the boiler tank. High liquid level in the boiler tank blocks entry of vapor into the side tube, allowing the temperature sensitive device to cool, for example, to ambient temperature.

  20. Atmospheric Pressure Glow Discharge with Liquid Electrode

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi

    2013-09-01

    Nonthermal atmospheric pressure plasmas in contact with liquid are widely studied aiming variety of plasma applications. DC glow discharge with liquid electrode is an easy method to obtain simple and stable plasma-liquid interface. When we focus attention on liquid-phase reaction, the discharge system is considered as electrolysis with plasma electrode. The plasma electrode will supply electrons and positive ions to the liquid surface in a different way from the conventional metal electrode. However, the phenomena at plasma-liquid interface have not been understood well. In this work, we studied physical and chemical effect in liquid induced by dc atmospheric pressure glow discharge with liquid electrode. The experiment was carried out using H-shaped Hoffman electrolysis apparatus filled with electrolyte, to separate the anodic and cathodic reactions. Two nozzle electrodes made of stainless steel are set about 2 mm above the liquid surface. By applying a dc voltage between the nozzle electrodes, dc glow discharges as plasma electrodes are generated in contact with liquid. As electrolyte, we used aqueous solutions of NaCl, Na2SO4, AgNO3 and HAuCl4. AgNO3 and HAuCl4 are to discuss the reduction process of metal ions for synthesis of nanoparticles (NPs). OH radical generation yield in liquid was measured by chemical probe method using terephthalic acid. Discharge-induced liquid flow was visualized by Schlieren method. Electron irradiation to liquid surface (plasma cathode) generated OH- and OH radical in liquid while positive ion irradiation (plasma anode) generated H+ and OH radical. The generation efficiency of OH radical was better with plasma anode. Both Ag NPs in AgNO3 and Au NPs in HAuCl4 were synthesized with plasma cathode while only Au NPs were generated with plasma anode. Possible reaction process is qualitatively discussed. The discharge-induced liquid flow such as convection pattern was strongly influenced by the gas flow on the liquid surface. This work

  1. A kinetic model for liquids: Relaxation in liquids, origin of the Vogel-Tammann-Fulcher equation, and the essence of fragility

    NASA Astrophysics Data System (ADS)

    Wang, L. W.; Fecht, H.-J.

    2008-12-01

    On the basis of the kinetic model for liquids, which gave a quantitative description of liquid substructures, atomic relaxations in a model liquid were calculated. A crossover temperature Tcoop was recognized: relaxations were noncooperative at temperatures above Tcoop while cooperative below Tcoop. The cooperation in relaxation was responsible for the very slow dynamics near glass transition, departing significantly from the Arrhenius relation. This found supports in a large variety of glass forming liquids. The degree of cooperation in relaxation was straightforwardly determined by the number of atoms, N, in the liquid substructure and was responsible for the fragility of liquids: the larger the N was, the more fragile a liquid was.

  2. Mirror Support

    NASA Technical Reports Server (NTRS)

    Baron, Richard L. (Inventor)

    2013-01-01

    Disclosed herein is a method of making a mirror support comprising a composite, the composite comprising a plurality of carbon nanotubes, wherein at least two of the plurality of carbon nanotubes are bonded to each other through a bridging moiety bound to each of the two carbon nanotubes, and a laminate comprising the composite.

  3. Administrative Support.

    ERIC Educational Resources Information Center

    Doran, Dorothy; And Others

    This guide is intended to assist business education teachers in administrative support courses. The materials presented are based on the Arizona validated occupational competencies and tasks for the occupations of receptionist, secretary, and administrative assistant. Word processing skills have been infused into each of the three sections. The…

  4. Liquid cryobrines in the subsurface of Mars

    NASA Astrophysics Data System (ADS)

    Möhlmann, Diedrich

    Liquid cryobrines in the subsurface of Mars D. Mühlmann, DLR Institut für Planetenforschung, Berlin (dirk.moehlmann@dlr.de) Thermodynamics shows that undercooled liquid interfacial water must necessarily exist in the upper surface of Mars, at least temporarily. In case of a given presence of soluble salt grains in the soil with attached interfacial water (of atmospheric-or ice-origin) there must evolve liquid brines ("cryobrines"). The eutectic temperature of cryobrines can be far below 0 C and numerous known brines will remain liquid at martian temperatures. Liquid cryobrines are therefore expected to exist at appropriate sites in the subsurface of Mars, at least temporarily but also at present. Properties like eutectic phase diagrams, related water activity and stability of "Mars-relevant" salts and brines under current martian atmospheric conditions are presented and discussed. It is described that the presence of at least temporarily liquid cryobrines in the subsurface soil can be related to rheological phenomena of viscous liquid brines, and that liquid cryobrines are a current challenge in view of their possible support to a habitability of the subsurface of Mars.

  5. Floating liquid bridge charge dynamics

    NASA Astrophysics Data System (ADS)

    Teschke, Omar; Soares, David Mendez; Gomes, Whyllerson Evaristo; Valente Filho, Juracyr Ferraz

    2016-01-01

    The interaction of liquid with electric fields is investigated in a configuration where up to 13 kV are applied between electrodes resulting in a 106 V/m electric field in the capillaries and where there is the formation of a free-standing fluid bridge in the interelectrode gap. The Mott-Gurney equation was fitted to the measured ionization current vs applied voltage curve which indicates that the ionization rate at the high-voltage anode electrode dimethylsulfoxide (DMSO) interface and space charging in the interelectrode gap determine the floating liquid bridge current for a given cathode-to-anode voltage. Space charge effects were measured in the cathode becker and also at the liquid bridge since the ionized charges at the anode migrate to the bridge outer surface and decrease the interfacial tension from 43 mJ/m2 to 29 mJ/m2. Two distinct structural regions then form the bridge, a charged plastic (bulk modulus ˜100 MPa) conducting outer layer with a surface conductivity of ˜10-9 Ω-1, which shapes and supports the floating fluid structure, and an inner liquid cylinder, where DMSO molecules flow.

  6. Liquid-film electron stripper

    DOEpatents

    Gavin, Basil F.

    1986-01-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one said of the disc's periphery and with a highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90.degree. angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  7. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    A precision liquid level sensor utilizes a balanced bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  8. Zero gravity liquid mixer

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Bruce, R. A. (Inventor)

    1973-01-01

    An apparatus for mixing liquids under conditions of zero gravity is disclosed. The apparatus is comprised of a closed reservoir for the liquids, with a means for maintaining a positive pressure on the liquids in the reservoir. A valved liquid supply line is connected to the reservoir for supplying the reservoir with the liquids to be mixed in the reservoir. The portion of the reservoir containing the liquids to be mixed is in communication with a pump which alternately causes a portion of the liquids to flow out of the pump and into the reservoir to mix the liquids. The fluids in the reservoir are in communication through a conduit with the pump which alternately causes a portion of the fluids to flow out of the pump and into the sphere. The conduit connecting the pump and sphere may contain a nozzle or other jet-forming structure such as a venturi for further mixing the fluids.

  9. Liquid medication administration

    MedlinePlus

    ... easily. Oral syringes have some advantages for giving liquid medicines. They are accurate. They are easy to ... cups are also a handy way to give liquid medicines. However, dosing errors have occurred with them. ...

  10. Fluid Mechanics of Liquid-Liquid Systems.

    NASA Astrophysics Data System (ADS)

    Richards, John Reed

    The detailed hydrodynamics of selected liquid -liquid flow systems are investigated to provide a firm foundation for the rational design of separation processes. The implementation of this objective centers on the development of a robust code to simulate liquid-liquid flows. We have applied this code to the realistic simulation of aspects of the complex fluid mechanical behavior, and developed quantitative insight into the underlying processes involved. The Volume of Fluid (VOF) method is combined with the Continuous Surface Force (CSF) algorithm to provide a numerically stable code capable of solving high Reynolds numbers free surface flows. One of the developments during the testing was an efficient method for solving the Young-Laplace equation describing the shape of the meniscus in a vertical cylinder for a constrained liquid volume. The steady-state region near the nozzle for the laminar flow of a Newtonian liquid jet injected vertically into another immiscible Newtonian liquid is investigated for various Reynolds numbers by solving the axisymmetric transient equations of motion and continuity. The analysis takes into account pressure, viscous, inertial, gravitational, and surface tension forces, and comparison with previous experimental measurements shows good agreement. Comparisons of the present numerical method with the numerical results of previous boundary-layer methods help establish their range of validity. A new approximate equation for the shape of the interface of the steady jet, based on an overall momentum balance, is also developed. The full transient from liquid-liquid jet startup to breakup into drops is also simulated numerically. In comparison with experiment, the results of the present numerical method show a greater sensitivity of the jet length to the Reynolds number than the best predictions of previous linear stability analyses. The formation of drops is investigated at low to high Reynolds numbers before and after jet formation. The

  11. Supporting members

    NASA Astrophysics Data System (ADS)

    Life Supporting Members L. Thomas Aldrich Thomas D. Barrow Hugh J . A. Chivers Allan V. Cox Samuel S. Goldich Pembroke J. Hart A. Ivan Johnson Helmut E. Landsberg Paolo Lanzano Murli H. Manghnani L. L. Nettleton Charles B. Officer Hyman Orlin Ned A. Ostenso Erick O. Schonstedt Waldo E. Smith Athelstan Spilhaus A. F. Spilhaus, Jr. John W. Townsend, Jr. James A. Van Allen Leonard W. Weis Charles A. Whitten J. Tuzo Wilson

  12. Liquid detection circuit

    DOEpatents

    Regan, Thomas O.

    1987-01-01

    Herein is a circuit which is capable of detecting the presence of liquids, especially cryogenic liquids, and whose sensor will not overheat in a vacuum. The circuit parameters, however, can be adjusted to work with any liquid over a wide range of temperatures.

  13. Renewable liquid reflection grating

    DOEpatents

    Ryutov, Dmitri D.; Toor, Arthur

    2003-10-07

    A renewable liquid reflection grating. Electrodes are operatively connected to a conducting liquid in an arrangement that produces a reflection grating and driven by a current with a resonance frequency. In another embodiment, the electrodes create the grating by a resonant electrostatic force acting on a dielectric liquid.

  14. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  15. Carbon cloth supported electrode

    DOEpatents

    Lu, Wen-Tong P.; Ammon, Robert L.

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  16. Radiation monitor for liquids

    DOEpatents

    Koster, J.E.; Bolton, R.D.

    1999-03-02

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans. 4 figs.

  17. Radiation monitor for liquids

    DOEpatents

    Koster, James E.; Bolton, Richard D.

    1999-01-01

    A radiation monitor for use with liquids that utilizes air ions created by alpha radiation emitted by the liquids as its detectable element. A signal plane, held at an electrical potential with respect to ground, collects these air ions. A guard plane or guard rings is used to limit leakage currents. In one embodiment, the monitor is used for monitoring liquids retained in a tank. Other embodiments monitor liquids flowing through a tank, and bodies of liquids, such as ponds, lakes, rivers and oceans.

  18. Cosmology with liquid mirror telescopes

    NASA Astrophysics Data System (ADS)

    Hogg, David W.; Gibson, Brad K.; Hickson, Paul

    1993-01-01

    Liquid mirrors provide an exciting means to obtain large optical telescopes for substantially lower costs than conventional technologies. The liquid mirror concept has been demonstrated in the lab with the construction of a diffraction limited 1.5 m mirror. The mirror surface, using liquid mercury, forms a perfect parabolic shape when the mirror cell is rotated at a uniform velocity. A liquid mirror must be able to support a heavy mercury load with minimal flexure and have a fundamental resonant frequency that is as high as possible, to suppress the amplitude of surface waves caused by small vibrations transmitted to the mirror. To minimize the transmission of vibrations to the liquid surface, the entire mirror rests on an air bearing. This necessitates the mirror cell being lightweight, due to the limited load capabilities of the air bearing. The mirror components must also have physical characteristics which minimize the effects of thermal expansion with ambient temperature fluctuations in the observatory. In addition, the 2.7 m mirror construction is designed so that the techniques used may be readily extended to the construction of large mirrors. To attain the goals of a lightweight, rigid mirror, a composite laminant construction was used. The mirror consists of a foam core cut to the desired parabolic shape, with an accuracy of a few mm. An aluminum hub serves as an anchor for the foam and skin, and allows precise centering of the mirror on the air bearing and drive system. Several plys of Kevlar, covered in an epoxy matrix, are then applied to the foam. A final layer of pure epoxy is formed by spin casting. This final layer is parabolic to within a fraction of a mm. An aluminum ring bonded to the circumference of the mirror retains the mercury, and incorporates stainless-steel hard-points for the attachment of balance weights.

  19. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  20. Nanowire liquid pumps

    NASA Astrophysics Data System (ADS)

    Huang, Jian Yu; Lo, Yu-Chieh; Niu, Jun Jie; Kushima, Akihiro; Qian, Xiaofeng; Zhong, Li; Mao, Scott X.; Li, Ju

    2013-04-01

    The ability to form tiny droplets of liquids and control their movements is important in printing or patterning, chemical reactions and biological assays. So far, such nanofluidic capabilities have principally used components such as channels, nozzles or tubes, where a solid encloses the transported liquid. Here, we show that liquids can flow along the outer surface of solid nanowires at a scale of attolitres per second and the process can be directly imaged with in situ transmission electron microscopy. Microscopy videos show that an ionic liquid can be pumped along tin dioxide, silicon or zinc oxide nanowires as a thin precursor film or as beads riding on the precursor film. Theoretical analysis suggests there is a critical film thickness of ~10 nm below which the liquid flows as a flat film and above which it flows as discrete beads. This critical thickness is the result of intermolecular forces between solid and liquid, which compete with liquid surface energy and Rayleigh-Plateau instability.

  1. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  2. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  3. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  4. Linear lateral vibration of axisymmetric liquid briges

    NASA Astrophysics Data System (ADS)

    Ferrera, C.; Montanero, J. M.; Cabezas, M. G.

    A liquid bridge is a mass of liquid sustained by the action of the surface tension force between two parallel supporting disks Apart from their basic scientific interest a liquid bridge can be considered as the simplest idealization of the configuration appearing in the floating zone technique used for crystal growth and purification of high melting point materials footnote Messeguer et al emph Crystal Growth Res bf 5 27 1999 This has conferred considerable interest on the study of liquid bridges not only in fluid mechanics but also in the field of material engineering The axisymmetric dynamics of an isothermal liquid bridge has been frequently analysed over the past years The studies have considered different phenomena such as free oscillations footnote Montanero emph E J Mech B Fluids bf 22 169 2003 footnote Acero and Montanero emph Phys Fluids bf 17 078105 2005 forced vibrations footnote Perales and Messeguer emph Phys Fluids A bf 4 1110 1992 g-jitter effects footnote Messeguer and Perales emph Phys Fluids A bf 3 2332 1991 extensional deformation footnote Zhang et al emph J Fluid Mech bf 329 207 1996 and breakup process footnote Espino et al emph Phys Fluids bf 14 3710 2002 among others Works considering the nonaxisymmetric dynamical behaviour of a liquid bridge has been far less common footnote Sanz and Diez emph J Fluid Mech bf 205 503 1989 In the present study the linear vibration of an axisymmetric liquid

  5. Persistence of Covalent Bonding in Liquid Silicon Probed by Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Okada, J. T.; Sit, P. H.-L.; Watanabe, Y.; Wang, Y. J.; Barbiellini, B.; Ishikawa, T.; Itou, M.; Sakurai, Y.; Bansil, A.; Ishikawa, R.; Hamaishi, M.; Masaki, T.; Paradis, P.-F.; Kimura, K.; Ishikawa, T.; Nanao, S.

    2012-02-01

    Metallic liquid silicon at 1787 K is investigated using x-ray Compton scattering. An excellent agreement is found between the measurements and the corresponding Car-Parrinello molecular dynamics simulations. Our results show persistence of covalent bonding in liquid silicon and provide support for the occurrence of theoretically predicted liquid-liquid phase transition in supercooled liquid states. The population of covalent bond pairs in liquid silicon is estimated to be 17% via a maximally localized Wannier function analysis. Compton scattering is shown to be a sensitive probe of bonding effects in the liquid state.

  6. Forced Oscillations of Supported Drops

    NASA Technical Reports Server (NTRS)

    Wilkes, Edward D.; Basaran, Osman A.

    1996-01-01

    Oscillations of supported liquid drops are the subject of wide scientific interest, with applications in areas as diverse as liquid-liquid extraction, synthesis of ceramic powders, growing of pure crystals in low gravity, and measurement of dynamic surface tension. In this research, axisymmetric forced oscillations of arbitrary amplitude of viscous liquid drops of fixed volume which are pendant from or sessile on a rod with a fixed or moving contact line and surrounded by an inviscid ambient gas are induced by moving the rod in the vertical direction sinusiodally in time. In this paper, a preliminary report is made on the computational analysis of the oscillations of supported drops that have 'clean' interfaces and whose contact lines remain fixed throughout their motions. The relative importance of forcing to damping can be increased by either increasing the amplitude of rod motion A or Reynolds number Re. It is shown that as the ratio of forcing to damping rises, for drops starting from an initial rest state a sharp increase in deformation can occur when they are forced to oscillate in the vicinity of their resonance frequencies, indicating the incipience of hysteresis. However, it is also shown that the existence of a second stable limit cycle and the occurrence of hysteresis can be observed if the drop is subjected to a so-called frequency sweep, where the forcing frequency is first increased and then decreased over a suitable range. Because the change in drop deformation response is abrupt in the vicinity of the forcing frequencies where hysteresis occurs, it should be possible to exploit the phenomenon to accurately measure the viscosity and surface tension of the drop liquid.

  7. Industry Support

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Glenn Research Center (GRC) is responsible for the Advanced Communications for Air Traffic Management (AC/ATM) Project, a sub-element task of the Advanced Air Transportation Technologies (AATT) Project of the NASA Aviation System Capacity Program (ASC). The AC/ATM Project is developing new communications technologies and tools that will improve throughput in the U.S. Air Traffic Control System. The goal of the AC/ATM Project is to enable a communications infrastructure providing the capacity, efficiency, and flexibility necessary to realize benefits of the future mature Free-Flight environment. The capabilities and scope of communications technologies needed to accomplish this goal depend on characteristics of the future Free-Flight environment. There are many operational concepts being proposed for a future ATM system to enable user flexibility and efficiency. GRC s focus is on developing new technologies and techniques to support the digital communication of information involving airborne and ground-based users. However, the technologies and techniques must be integrated with the systems and services that industry and the Federal Aviation Administration (FAA) are developing. Thus, GRC needs to monitor and provide input to the various industry and FAA organizations and committees that are specifying new systems and services. Adoption of technologies by the FAA is partially dependent on acceptance of the technology by the aviation community. The commercial aviation community in particular would like to adopt technologies that can be used throughout the world. As a result, the adoption of common or at least compatible technologies by European countries is a key factor in getting commitments to those technologies by the US aviation community. GRC desires to keep informed of European activities that relate to aviation communication technologies, particularly those that are being supported by Eurocontrol.

  8. Performance after weathering of a liquid solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results from retesting of liquid solar collector described in "Performance evaluation of liquid collector" (M-FS-23931), after long term exposure to natural weathering indicate no detectable degradation in collector performance and no visable deterioration in appearance of collector. Supporting data and pretest/post test efficiency comparison are included.

  9. Mobile impurities in ferromagnetic liquids

    NASA Astrophysics Data System (ADS)

    Kantian, Adrian; Schollwoeck, Ulrich; Giamarchi, Thierry

    2011-03-01

    Recent work has shown that mobile impurities in one dimensional interacting systems may exhibit behaviour that differs strongly from that predicted by standard Tomonaga-Luttinger liquid theory, with the appearance of power-law divergences in the spectral function signifying sublinear diffusion of the impurity. Using time-dependent matrix product states, we investigate a range of cases of mobile impurities in systems beyond the analytically accessible examples to assess the existence of a new universality class of low-energy physics in one-dimensional systems. Correspondence: Adrian.Kantian@unige.ch This work was supported in part by the Swiss SNF under MaNEP and division II.

  10. The HARP liquid hydrogen system

    NASA Astrophysics Data System (ADS)

    van Uden, M. A.; van der Meer, R. L. J.; Bauer, Th. S.; Bron, M.; Buis, R.; de Groen, P. J. M.; Lefevere, Y.; Nooren, G. J. L.; Postma, H.; van der Steenhoven, G.; Willering, H. W.

    1999-03-01

    A liquid hydrogen system has been developed that serves as a scatterer for the High-Acceptance Recoil Polarimeter (HARP). In order to satisfy the conflicting design requirements regarding safety, the volume of the system, the energy loss of the recoiling protons, and the location of the cryogenic unit, a self-supporting thin-walled modular cryogenic system has been developed. The system was successfully operated during two commissioning runs of HARP in a high-luminosity electron scattering environment. The operational parameters of the system have been continuously monitored and are quantitatively understood.

  11. Liquid effluent study: Ground water characterization data

    SciTech Connect

    Not Available

    1990-08-01

    This report is a support document to the Liquid Effluent Study Final Project Report (WHC 1990c). The focus is on sampling and analysis rationale, quality assurance (QA), data validation, and sampling conditions for the groundwater quality assessment. Interpretation of the groundwater data is provided in the final project report. 20 refs., 5 figs., 2 tabs.

  12. Monogroove liquid heat exchanger

    NASA Technical Reports Server (NTRS)

    Brown, Richard F. (Inventor); Edelstein, Fred (Inventor)

    1990-01-01

    A liquid supply control is disclosed for a heat transfer system which transports heat by liquid-vapor phase change of a working fluid. An assembly (10) of monogroove heat pipe legs (15) can be operated automatically as either heat acquisition devices or heat discharge sources. The liquid channels (27) of the heat pipe legs (15) are connected to a reservoir (35) which is filled and drained by respective filling and draining valves (30, 32). Information from liquid level sensors (50, 51) on the reservoir (35) is combined (60) with temperature information (55) from the liquid heat exchanger (12) and temperature information (56) from the assembly vapor conduit (42) to regulate filling and draining of the reservoir (35), so that the reservoir (35) in turn serves the liquid supply/drain needs of the heat pipe legs (15), on demand, by passive capillary action (20, 28).

  13. Liquid level detector

    DOEpatents

    Tshishiku, Eugene M.

    2011-08-09

    A liquid level detector for conductive liquids for vertical installation in a tank, the detector having a probe positioned within a sheath and insulated therefrom by a seal so that the tip of the probe extends proximate to but not below the lower end of the sheath, the lower end terminating in a rim that is provided with notches, said lower end being tapered, the taper and notches preventing debris collection and bubble formation, said lower end when contacting liquid as it rises will form an airtight cavity defined by the liquid, the interior sheath wall, and the seal, the compression of air in the cavity preventing liquid from further entry into the sheath and contact with the seal. As a result, the liquid cannot deposit a film to form an electrical bridge across the seal.

  14. LIQUID CYCLONE CONTACTOR

    DOEpatents

    Whatley, M.E.; Woods, W.M.

    1962-09-01

    This invention relates to liquid-liquid extraction systems. The invention, an improved hydroclone system, comprises a series of serially connected, axially aligned hydroclones, each of which is provided with an axially aligned overflow chamber. The chambers are so arranged that rotational motion of a fluid being passed through the system is not lost in passing from chamber to chamber; consequently, this system is highly efficient in contacting and separating two immiscible liquids. (AEC)

  15. Harvesting contaminants from liquid

    DOEpatents

    Simpson, John T.; Hunter, Scott R.

    2016-05-31

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  16. Arsenic Removal by Liquid Membranes

    PubMed Central

    Marino, Tiziana; Figoli, Alberto

    2015-01-01

    Water contamination with harmful arsenic compounds represents one of the most serious calamities of the last two centuries. Natural occurrence of the toxic metal has been revealed recently for 21 countries worldwide; the risk of arsenic intoxication is particularly high in Bangladesh and India but recently also Europe is facing similar problem. Liquid membranes (LMs) look like a promising alternative to the existing removal processes, showing numerous advantages in terms of energy consumption, efficiency, selectivity, and operational costs. The development of different LM configurations has been a matter of investigation by several researching groups, especially for the removal of As(III) and As(V) from aqueous solutions. Most of these LM systems are based on the use of phosphine oxides as carriers, when the metal removal is from sulfuric acid media. Particularly promising for water treatment is the hollow fiber supported liquid membrane (HFSLM) configuration, which offers high selectivity, easy transport of the targeted metal ions, large surface area, and non-stop flow process. The choice of organic extractant(s) plays an essential role in the efficiency of the arsenic removal. Emulsion liquid membrane (ELM) systems have not been extensively investigated so far, although encouraging results have started to appear in the literature. For such LM configuration, the most relevant step toward efficiency is the choice of the surfactant type and its concentration. PMID:25826756

  17. Swimming bacteria in liquid crystal

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Zhou, Shuang; Aranson, Igor; Lavrentovich, Oleg

    2014-03-01

    Dynamics of swimming bacteria can be very complex due to the interaction between the bacteria and the fluid, especially when the suspending fluid is non-Newtonian. Placement of swimming bacteria in lyotropic liquid crystal produces a new class of active materials by combining features of two seemingly incompatible constituents: self-propelled live bacteria and ordered liquid crystals. Here we present fundamentally new phenomena caused by the coupling between direction of bacterial swimming, bacteria-triggered flows and director orientations. Locomotion of bacteria may locally reduce the degree of order in liquid crystal or even trigger nematic-isotropic phase transition. Microscopic flows generated by bacterial flagella disturb director orientation. Emerged birefringence patterns allow direct optical observation and quantitative characterization of flagella dynamics. At high concentration of bacteria we observed the emergence of self-organized periodic texture caused by bacteria swimming. Our work sheds new light on self-organization in hybrid bio-mechanical systems and can lead to valuable biomedical applications. Was supported by the US DOE, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under the Contract No. DE AC02-06CH11357.

  18. Bent core liquid crystal elastomers

    SciTech Connect

    Verduzco, R.; DiMasi, E.; Luchette, P.; Ho Hong, S.; Harden, J.; Palffy-Muhoray, P.; Kilbey II, S.M.; Sprunt, S.; Gleeson, G.T. Jakli, A.

    2010-07-28

    Liquid crystal (LC) elastomers with bent-core side-groups incorporate the properties of bent-core liquid crystals in a flexible and self-supporting polymer network. Bent-core liquid crystal elastomers (BCEs) with uniform alignment were prepared by attaching a reactive bent-core LC to poly(hydrogenmethylsiloxane) and crosslinking with a divinyl crosslinker. Phase behavior studies indicate a nematic phase over a wide temperature range that approaches room temperature, and thermoelastic measurements show that these BCEs can reversibly change their length by more than a factor of two upon heating and cooling. Small-angle X-ray scattering studies reveal multiple, broad low-angle peaks consistent with short-range smectic C order of the bent-core side groups. A comparison of these patterns with predictions of a Landau model for short-range smectic C order shows that the length scale for smectic ordering in BCEs is similar to that seen in pure bent-core LCs. The combination of rubber elasticity and smectic ordering of the bent-core side groups suggests that BCEs may be promising materials for sensing, actuating, and other advanced applications.

  19. Elasticity of liquid marbles.

    PubMed

    Asare-Asher, Samuel; Connor, Jason N; Sedev, Rossen

    2015-07-01

    Liquid marbles are liquid droplets covered densely with small particles. They exhibit hydrophobic properties even on hydrophilic surfaces and this behaviour is closely related to the Cassie wetting state and the phenomenon of superhydrophobicity. Typical liquid marbles are of millimetre size but their properties are analogous to smaller capsules and droplets of Pickering emulsions. We study water marbles covered with an uneven multilayer of polyethylene particles. Their elastic properties were assessed under quasi-static conditions. The liquid marbles are highly elastic and can sustain a reversible deformation of up to 30%. The spring constant is of the same order of magnitude as that for bare water droplets. Therefore the elasticity of the liquid marble is provided mainly by the liquid menisci between the particles. Upon further compression, the spring constant increases up to the point of breakage. This increase may be due to capillary attraction acting across the emerging cracks in the particle coating. The stress-strain curve for liquid marbles is similar to that obtained with liquid-filled microcapsules. A mechanical scaling description proposed for capsules is qualitatively applicable for liquid marbles. The exact mechanical role of the multilayer particle network remains elusive.

  20. Quantum Hall Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Radzihovsky, Leo

    2003-03-01

    Liquid-crystals, defined as states of matter intermediate in their properties between fully disordered isotropic liquids and fully ordered crystals are ubiquitous in nature. Recent transport measurements on two-dimensional electron systems in moderate magnetic fields suggest the existence of a spontaneously orientationally-ordered, compressible liquid state. I will discuss electronic liquid-crystals interpretation of these experiments, focusing on a recently proposed quantum Hall nematic state that is predicted to exhibit a novel, highly anisotropic q^3 density-director mode and other interesting phenomenology.

  1. PEP liquid level system

    SciTech Connect

    Lauritzen, T.; Sah, R.C.

    1981-03-01

    A liquid level system has been installed in the accelerator housing of the PEP storage ring. This instrument spans the entire 2.2 km circumference of the PEP project, and over one hundred readouts provide reference elevations which are used for the accurate alignment of accelerator components. The liquid level has proven to be extremely precise (+-0.10 mm) and quick to use, and it has contributed to the accurate alignment of PEP before beam turn-on. Since the liquid level readouts are rigidly attached to the accelerator housing, the liquid level has been a convenient means to monitor the settling of the accelerator housing.

  2. Liquid Crystal Optofluidics

    SciTech Connect

    Vasdekis, Andreas E.; Cuennet, J. G.; Psaltis, D.

    2012-10-11

    By employing anisotropic fluids and namely liquid crystals, fluid flow becomes an additional degree of freedom in designing optofluidic devices. In this paper, we demonstrate optofluidic liquid crystal devices based on the direct flow of nematic liquid crystals in microfluidic channels. Contrary to previous reports, in the present embodiment we employ the effective phase delay acquired by light travelling through flowing liquid crystal, without analysing the polarisation state of the transmitted light. With this method, we demonstrate the variation in the diffraction pattern of an array of microfluidic channels acting as a grating. We also discuss our recent activities in integrating mechanical oscillators for on-chip peristaltic pumping.

  3. Liquid explosives detection

    NASA Astrophysics Data System (ADS)

    Burnett, Lowell J.

    1994-03-01

    A Liquid Explosives Screening System capable of scanning unopened bottles for liquid explosives has been developed. The system can be operated to detect specific explosives directly, or to verify the labeled or bar-coded contents of the container. In this system nuclear magnetic resonance (NMR) is used to interrogate the liquid. NMR produces an extremely rich data set and many parameters of the NMR response can be determined simultaneously. As a result, multiple NMR signatures may be defined for any given set of liquids, and the signature complexity then selected according to the level of threat.

  4. Ultrasonic liquid level detector

    DOEpatents

    Kotz, Dennis M.; Hinz, William R.

    2010-09-28

    An ultrasonic liquid level detector for use within a shielded container, the detector being tubular in shape with a chamber at its lower end into which liquid from in the container may enter and exit, the chamber having an ultrasonic transmitter and receiver in its top wall and a reflector plate or target as its bottom wall whereby when liquid fills the chamber a complete medium is then present through which an ultrasonic wave may be transmitted and reflected from the target thus signaling that the liquid is at chamber level.

  5. RENEWABLE LIQUID GETTERING PUMP

    DOEpatents

    Batzer, T.H.

    1962-08-21

    A method and structure were developed for pumping gases by simple absorption into a liquid gettering material. The invention comprises means ror continuously pumping a liquid getterrng material from a reservoir to the top of a generally vertical surface disposed in a vacuum pumping chamber to receive gaseous and other particles in the liquid gettering material which continuously flows downward over the vertical suiface. Means are provided for continuous removal, degassing, and return of a portion of the liquid gettering material from the reservoir connected with collectrng means at the base of the generally vertical plate. (AEC)

  6. Liquid level detector

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A liquid level sensor having a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  7. PREFACE: 6th Liquid Matter Conference

    NASA Astrophysics Data System (ADS)

    Dijkstra, Marjolein; van Roij, René; Vroege, Gert Jan; Lekkerkerker, Henk; Frenkel, Daan

    2005-11-01

    (and often unexpected) trans-disciplinary contacts for joint scientific endeavours. This applies in particular to the area of soft condensed matter such as colloidal suspensions, polymeric systems and biological materials. The conference was held at the Uithof, the campus of the University of Utrecht. The organizers gratefully acknowledge the generosity of the University and City of Utrecht, which enabled us to stage both the scientific part of the conference and several festive and cultural events in some of the most attractive venues of the Netherlands. We were also delighted by the substantial contributions offered by the sponsors of the 6th Liquid Matter Conference. With this support it became possible to support a large number of scientists who would otherwise not have been able to attend. Finally, we owe a great debt of gratitude to the secretarial staff of the conference and the many students, postdocs and other colleagues who helped tirelessly (and very efficiently) to make the conference run smoothly. The Board of the Liquids Section of the European Physical Society decided that the 7th Liquid Matter Conference will be held in Lund (Sweden). The tentative dates are Friday 27 June 2008 to Tuesday 1 July 2008.

  8. Ising universality class for the liquid-liquid critical point of a one component fluid: a finite-size scaling test.

    PubMed

    Gallo, Paola; Sciortino, Francesco

    2012-10-26

    We present a finite-size scaling study of the liquid-liquid critical point in the Jagla model, a prototype model for liquids that present the same thermodynamic anomalies which characterize liquid water. Performing successive umbrella sampling grand canonical Monte Carlo simulations, we evaluate an accurate density of states for different system sizes and determine the size-dependent critical parameters. Extrapolation to infinite size provides estimates of the bulk critical values for this model. The finite-size study allows us to establish that critical fluctuations are consistent with the Ising universality class and to provide definitive evidence for the existence of a liquid-liquid critical point in the Jagla potential. This finding supports the possibility of the existence of a genuine liquid-liquid critical point in anomalous one-component liquids like water. PMID:23215223

  9. Are There Two Forms of Liquid Water?

    NASA Astrophysics Data System (ADS)

    Stanley, H. E.

    We will introduce some of the 73 documented anomalies of the most complex of liquids, water--focusing on recent progress in understanding these anomalies by combining information provided by recent experiments and simulations on water in bulk, nanoconfined and biological environments designed to test the hypothesis that liquid water has behavior consistent with the novel phenomenon of ``liquid polymorphism'' in that water can exist in two distinct phases [1]. We will also discuss very recent work on nanoconfined water anomalies as well as the apparently related, and highly unusual, behavior of water in biological environments. Finally, we will discuss how the general concept of liquid polymorphism is proving useful in understanding anomalies in other liquids, such as silicon, silica, and carbon, as well as metallic glasses, which have in common that they are characterized by two characteristic length scales in their interactions.This work has been supported by the NSF Chemistry Division grant CHE-1213217 and was performed in collaboration with, among others, C. A. Angell, S. V. Buldyrev, S.-H. Chen, D. Corradini, P. G. Debenedetti, G. Franzese, P. Kumar, E. Lascaris, F. Mallamace, O. Mishima, P. H. Poole, S. Sastry, F. Sciortino, and L. Xu. H. E. Stanley, Editor, Liquid Polymorphism, Vol. 152 in Advances in Chemical Physics, S. A. Rice, Series Editor (Wiley, New York, 2013).

  10. Reconfigurable Liquid Whispering Gallery Mode Microlasers.

    PubMed

    Yang, Shancheng; Ta, Van Duong; Wang, Yue; Chen, Rui; He, Tingchao; Demir, Hilmi Volkan; Sun, Handong

    2016-01-01

    Engineering photonic devices from liquid has been emerging as a fascinating research avenue. Reconfigurably tuning liquid optical micro-devices are highly desirable but remain extremely challenging because of the fluidic nature. In this article we demonstrate an all-liquid tunable whispering gallery mode microlaser floating on a liquid surface fabricated by using inkjet print technique. We show that the cavity resonance of such liquid lasers could be reconfigurably manipulated by surface tension alteration originated from the tiny concentration change of the surfactant in the supporting liquid. As such, remarkable sensing of water-soluble organic compounds with a sensitivity of free spectral range as high as 19.85 THz / (mol · mL(-1)) and the detectivity limit around 5.56 × 10(-3) mol · mL(-1) is achieved. Our work provides not only a novel approach to effectively tuning a laser resonator but also new insight into potential applications in biological, chemical and environmental sensing. PMID:27256771

  11. Evidence for Liquid Water on Comets

    NASA Technical Reports Server (NTRS)

    Sheldon, Robert; Hoover, Richard

    2005-01-01

    We have reexamined the arguments for the existence of liquid water on comets, and believe that recent cometary flybys along with pre-Giotto data support its presence on short-period comets. Liquid water would affect cometary dynamics, leaving distinct signatures in precession, orbital dynamics, and potential splitting of comets. Liquid water geysers would affect cometary atmosphere, dust evolution, and non-gravitational forces that perturb the orbit. Liquid water would affect the composition of both the interior and exterior of the comet, producing geologic effects consistent with recent flyby photographs. And most importantly, liquid water suppork the growth of lifeforms, which would make a comet a biofriendly incubator for interplanetary transport. The major objection against liquid water is the necessity of a pressure vessel to prevent sublimation into space. We discuss how such a pressure vessel could naturally evolve as a pristine comet makes its first journey inside the orbit of Mars, and suggest that this type of vessel was observed by Giotto, Deep Space I, and Stardust.

  12. Reconfigurable Liquid Whispering Gallery Mode Microlasers

    PubMed Central

    Yang, Shancheng; Ta, Van Duong; Wang, Yue; Chen, Rui; He, Tingchao; Demir, Hilmi Volkan; Sun, Handong

    2016-01-01

    Engineering photonic devices from liquid has been emerging as a fascinating research avenue. Reconfigurably tuning liquid optical micro-devices are highly desirable but remain extremely challenging because of the fluidic nature. In this article we demonstrate an all-liquid tunable whispering gallery mode microlaser floating on a liquid surface fabricated by using inkjet print technique. We show that the cavity resonance of such liquid lasers could be reconfigurably manipulated by surface tension alteration originated from the tiny concentration change of the surfactant in the supporting liquid. As such, remarkable sensing of water-soluble organic compounds with a sensitivity of free spectral range as high as 19.85 THz / (mol · mL−1) and the detectivity limit around 5.56 × 10−3 mol · mL−1 is achieved. Our work provides not only a novel approach to effectively tuning a laser resonator but also new insight into potential applications in biological, chemical and environmental sensing. PMID:27256771

  13. Reconfigurable Liquid Whispering Gallery Mode Microlasers

    NASA Astrophysics Data System (ADS)

    Yang, Shancheng; Ta, Van Duong; Wang, Yue; Chen, Rui; He, Tingchao; Demir, Hilmi Volkan; Sun, Handong

    2016-06-01

    Engineering photonic devices from liquid has been emerging as a fascinating research avenue. Reconfigurably tuning liquid optical micro-devices are highly desirable but remain extremely challenging because of the fluidic nature. In this article we demonstrate an all-liquid tunable whispering gallery mode microlaser floating on a liquid surface fabricated by using inkjet print technique. We show that the cavity resonance of such liquid lasers could be reconfigurably manipulated by surface tension alteration originated from the tiny concentration change of the surfactant in the supporting liquid. As such, remarkable sensing of water-soluble organic compounds with a sensitivity of free spectral range as high as 19.85 THz / (mol · mL‑1) and the detectivity limit around 5.56 × 10‑3 mol · mL‑1 is achieved. Our work provides not only a novel approach to effectively tuning a laser resonator but also new insight into potential applications in biological, chemical and environmental sensing.

  14. Advanced proteomic liquid chromatography

    SciTech Connect

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-10-26

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput.

  15. Precision liquid level sensor

    DOEpatents

    Field, M.E.; Sullivan, W.H.

    1985-01-29

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge. 2 figs.

  16. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng [Knoxville, TN; Luo, Huimin [Knoxville, TN

    2008-09-09

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic liqand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  17. Synthesis of ionic liquids

    DOEpatents

    Dai, Sheng; Luo, Huimin

    2011-11-01

    Ionic compounds which are liquids at room temperature are formed by the method of mixing a neutral organic ligand with the salt of a metal cation and its conjugate anion. The liquids are hydrophobic, conductive and stable and have uses as solvents and in electrochemical devices.

  18. Liquid Chromatography in 1982.

    ERIC Educational Resources Information Center

    Freeman, David H.

    1982-01-01

    Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)

  19. Column Liquid Chromatography.

    ERIC Educational Resources Information Center

    Majors, Ronald E.; And Others

    1984-01-01

    Reviews literature covering developments of column liquid chromatography during 1982-83. Areas considered include: books and reviews; general theory; columns; instrumentation; detectors; automation and data handling; multidimensional chromatographic and column switching techniques; liquid-solid chromatography; normal bonded-phase, reversed-phase,…

  20. INEEL Liquid Effluent Inventory

    SciTech Connect

    Major, C.A.

    1997-06-01

    The INEEL contractors and their associated facilities are required to identify all liquid effluent discharges that may impact the environment at the INEEL. This liquid effluent information is then placed in the Liquid Effluent Inventory (LEI) database, which is maintained by the INEEL prime contractor. The purpose of the LEI is to identify and maintain a current listing of all liquid effluent discharge points and to identify which discharges are subject to federal, state, or local permitting or reporting requirements and DOE order requirements. Initial characterization, which represents most of the INEEL liquid effluents, has been performed, and additional characterization may be required in the future to meet regulations. LEI information is made available to persons responsible for or concerned with INEEL compliance with liquid effluent permitting or reporting requirements, such as the National Pollutant Discharge Elimination System, Wastewater Land Application, Storm Water Pollution Prevention, Spill Prevention Control and Countermeasures, and Industrial Wastewater Pretreatment. The State of Idaho Environmental Oversight and Monitoring Program also needs the information for tracking liquid effluent discharges at the INEEL. The information provides a baseline from which future liquid discharges can be identified, characterized, and regulated, if appropriate. The review covered new and removed buildings/structures, buildings/structures which most likely had new, relocated, or removed LEI discharge points, and at least 10% of the remaining discharge points.

  1. Experimenting with Liquid Membranes.

    ERIC Educational Resources Information Center

    Lamb, J. D.; And Others

    1980-01-01

    Outlined are two experiments using liquid membranes that illustrate carrier-facilitated transport, where chemical species are ushered across the membrane by selective "carrier" molecules residing in the membrane. The use of liquid membranes as models for studying and describing biological transport mechanisms is explored. (CS)

  2. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  3. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  4. Precision liquid level sensor

    DOEpatents

    Field, Michael E.; Sullivan, William H.

    1985-01-01

    A precision liquid level sensor utilizes a balanced R. F. bridge, each arm including an air dielectric line. Changes in liquid level along one air dielectric line imbalance the bridge and create a voltage which is directly measurable across the bridge.

  5. Chiral separation by enantioselective liquid-liquid extraction.

    PubMed

    Schuur, Boelo; Verkuijl, Bastiaan J V; Minnaard, Adriaan J; de Vries, Johannes G; Heeres, Hero J; Feringa, Ben L

    2011-01-01

    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and chemical engineers in the fields of fine chemicals, pharmaceuticals, agrochemicals, fragrances and foods. In this review the principles and advances of resolution through enantioselective liquid-liquid extraction are discussed, starting with an introduction on the principles of enantioselective liquid-liquid extraction including host-guest chemistry, extraction and phase transfer mechanisms, and multistage liquid-liquid extraction processing. Then the literature on enantioselective liquid-liquid extraction systems is reviewed, structured on extractant classes. The following extractant classes are considered: crown ether based extractants, metal complexes and metalloids, extractants based on tartrates, and a final section with all other types of chiral extractants.

  6. Heat exchanger support apparatus in a fluidized bed

    DOEpatents

    Lawton, Carl W.

    1982-01-01

    A heat exchanger is mounted in the upper portion of a fluidized combusting bed for the control of the temperature of the bed. A support, made up of tubes, is extended from the perforated plate of the fluidized bed up to the heat exchanger. The tubular support framework for the heat exchanger has liquid circulated therethrough to prevent deterioration of the support.

  7. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  8. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  9. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  10. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  11. 49 CFR 195.208 - Welding of supports and braces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Welding of supports and braces. 195.208 Section 195.208 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS... HAZARDOUS LIQUIDS BY PIPELINE Construction § 195.208 Welding of supports and braces. Supports or braces...

  12. Holographic Quantum Liquid

    SciTech Connect

    Karch, A.; Son, D. T.; Starinets, A. O.

    2009-02-06

    Quantum liquids are characterized by the distinctive properties such as the low-temperature behavior of heat capacity and the spectrum of low-energy quasiparticle excitations. In particular, at low temperature, Fermi liquids exhibit the zero sound, predicted by Landau in 1957 and subsequently observed in liquid He-3. In this Letter, we ask whether such characteristic behavior is present in theories with a holographically dual description. We consider a class of gauge theories with fundamental matter fields whose holographic dual in the appropriate limit is given in terms of the Dirac-Born-Infeld action in anti-de Sitter space. We find that these systems also exhibit a sound mode at zero temperature despite having a non-Fermi-liquid behavior of the specific heat. These properties suggest that holography identifies a new type of quantum liquid which potentially could be experimentally realized in strongly correlated systems.

  13. Rotor-Liquid-Fundament System's Oscillation

    NASA Astrophysics Data System (ADS)

    Kydyrbekuly, A.

    The work is devoted to research of oscillation and sustainability of stationary twirl of vertical flexible static dynamically out-of-balance rotor with cavity partly filled with liquid and set on relative frame fundament. The accounting of such factors like oscillation of fundament, liquid oscillation, influence of asymmetry of installation of a rotor on a shaft, anisotropism of shaft support and fundament, static and dynamic out-of-balance of a rotor, an external friction, an internal friction of a shaft, allows to settle an invoice more precisely kinematic and dynamic characteristics of system.

  14. Liquid-liquid phase transition in a two-dimensional system with anomalous liquid properties.

    PubMed

    Urbic, Tomaz

    2013-12-01

    The phase diagram of the two-dimensional particles interacting through a smooth version of Stell-Hemmer interaction was studied using Monte Carlo computer simulations. By evaluating the pressure-volume isotherms, we observed liquid-liquid, liquid-gas phase transitions and three stable crystal phases. The model shows the liquid-liquid critical point in stable liquid phase and is confirmed by observing properties of other thermodynamic functions such as heat capacity and isothermal compressibility, for example. The liquid-gas and the liquid-liquid critical points were estimated within the thermodynamic limit.

  15. Liquid detection trial with x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Harding, G.; Fleckenstein, H.; Olesinski, S.; Zienert, G.

    2010-08-01

    SALOME (an acronym for Small Angle Lab Operation Measuring Equipment) is a versatile, energy-dispersive x-ray diffraction imaging (XDi) test-bed facility commissioned and supported by the Transportation Security Laboratory, Atlantic City, USA. In work presented here, the Inverse Fan-beam (IFB) topology has been realized on SALOME and used to investigate the liquids identification capability of x-ray diffraction (XRD). Liquids were investigated from four classes of materials of relevance to security screening of aircraft passenger luggage; namely: dilute aqueous liquids; concentrated aqueous liquids; hydrocarbon fuels; and oxidizers. A set of features associated with the Molecular Interference Function (MIF) were used to classify the liquids. Within the limited scope of this investigation, XRD proved to have excellent capability for discriminating liquids from one another; in particular, for isolating the threat materials without raising false alarms from either household or innocuous substances. Consequences for XRD-based screening of air passenger luggage are summarized.

  16. Slip effect for thin liquid film on a rotating disk

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Masahiro

    1987-02-01

    A flow for thin liquid films on rotating disks has been theoretically and experimentally studied. Liquid depletion behavior during a spin-coating process is calculated by solving the Navier-Stokes equation, taking into account interface slip between liquid and disk. Excellent agreement is seen between the model prediction and experimental data. According to observed depletion behavior on thin liquid films for various spin-coating parameters, half life falls off at the inverse square of rotational speed, and increases when viscosity increases, although the increasing rate falls off. The interface slip, represented as an external friction coefficient, is thermodynamically explained by the different (Δrc) in critical surface tension (rc) values between the liquid and the disk, which will be proportional to the solubility parameter. An infinite external friction coefficient, representing nonslip flow, may be given, when Δrc is zero. Spin-off experiments for liquids of various rc values, prepared by differing surface treatments, support this consideration.

  17. Liquid cryobrines and habitability in the subsurface of Mars

    NASA Astrophysics Data System (ADS)

    Möhlmann, Diedrich

    Undercooled liquid interfacial water is shown to necessarily exist in the upper surface of Mars, at least temporarily with diurnal and seasonal variations. Thus, there must in case of a given local presence of soluble salt grains in the soil also evolve liquid brines ("cryobrines"). These liquid aqueous salty solutions can have their eutectic temperature far below 0 C and will remain liquid above that temperature. Liquid cryobrines are therefore expected to, also at present, exist at appropriate sites in the subsurface of Mars. Phase diagrams, water activity and stability of "Mars-relevant" salts and related cryobrines in the subsurface of Mars are presented and discussed. The presence of at least temporarily liquid cryobrines in the subsurface soil may, in analogy to terrestrial halophilic bacteria, give conditions, which could support life processes on present Mars. Related "habitability-aspects" and resulting current challenges to "cryobrine-microbiology" are discussed.

  18. Pulsating-gliding transition in the dynamics of levitating liquid nitorgen droplets.

    SciTech Connect

    Snezhko, A.; Jacob, E. B.; Aranson, I. S.; Materials Science Division; Tel-Aviv Univ.

    2008-04-21

    Hot surfaces can cause levitation of small liquid droplets if the temperature is kept above the Leidenfrost point (220 C for water) due to the pressure formed because of rapid evaporation. Here, we demonstrate a new class of pulsating-gliding dynamic transitions in a special setting of the Leidenfrost effect at room temperatures and above a viscous fluid for droplets of liquid nitrogen. A whole range of highly dynamic patterns unfolds when droplets of liquid nitrogen are poured on the surface of another, more viscous liquid at room temperature. We also discovered that the levitating droplets induce vortex motion in the supporting viscous liquid. Depending on the viscosity of the supporting liquid, the nitrogen droplets either adopt an oscillating (pulsating) star-like shape with different azimuthal symmetries (from 2-9 petals) or glide on the surface with random trajectories. Thus, by varying the viscosity of the supporting liquid, we achieve controlled morphology and dynamics of Leidenfrost droplets.

  19. Dynamical and structural heterogeneities close to liquid-liquid phase transitions: The case of gallium

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Cajahuaringa, Samuel; de Koning, Maurice

    2013-03-01

    Liquid-liquid phase transitions (LLPT) have been proposed in order to explain the thermodynamic anomalies exhibited by some liquids. Recently, it was found, through molecular dynamics simulations, that liquid elemental gallium, described by a modified embedded-atom model, exhibits a LLPT between a high-density liquid (HDL) and a low-density liquid (LDL), about 60 K below the melting temperature. In this work, we studied the dynamics of supercooled liquid gallium close to the LLPT. Our results show a large increase in the plateau of the self-intermediate scattering function (β-relaxation process) and in the non-Gaussian parameter, indicating a pronounced dynamical heterogeneity upon the onset of the LLPT. The dynamical heterogeneity of the LDL is closely correlated to its structural heterogeneity, since the fast diffusing atoms belong to high-density domains of predominantly 9-fold coordinated atoms, whereas the slow diffusing ones are mostly in low-density domains of 8-fold coordinated atoms. The energetics suggests that the reason for the sluggish dynamics of LDL is due to its larger cohesive energy as compared to that of the HDL. Work supported by FAPESP, CNPq, CAPES, and FAEPEX/UNICAMP

  20. Developments in liquid membrane separation of beta-lactam antibiotics.

    PubMed

    Ghosh, A C; Bora, M M; Dutta, N N

    1996-04-01

    This paper presents an overview on the developments in liquid membrane separation and purification of commercially important beta-lactam antibiotics. Reactive extraction via liquid-liquid ion exchange or ion-pair extraction mechanism can be exploited to develop liquid membrane processes for separation and concentration of penicillins and cephalosporins. Because of high selectivity and flux, liquid membrane processes can be adopted for direct extraction of beta-lactams from fermentation broth. Other advantages of liquid membrane technologies are low capital and operating costs, compact unit installation in commercial plants, low material inventory, etc. Both emulsion liquid membrane and supported liquid membrane techniques can be effective under the reactive extraction conditions. However, the stability problems of liquid membrane should be resolved before commercial application can be established. Alternately, reactive extraction in non-dispersive mode with hollow fiber membranes can be an attractive and viable strategy for practical application. Applicability of the liquid membrane processes has been discussed from process engineering and design considerations.

  1. Liquid-feeding strategy of the proboscis of butterflies

    NASA Astrophysics Data System (ADS)

    Lee, Seung Chul; Lee, Sang Joon; CenterBiofluid; Biomimic Research Team

    2015-11-01

    The liquid-feeding strategy of the proboscis of butterflies was experimentally investigated. Firstly, the liquid uptake from a pool by the proboscis of a nectar-feeding butterfly, cabbage white (Pieris rapae) was tested. Liquid-intake flow phenomenon at the submerged proboscis was visualized by micro-particle image velocimetry. The periodic liquid-feeding flow is induced by the systaltic motion of the cibarial pump. Reynolds number and Womersley number of the liquid-intake flow in the proboscis are low enough to assume quasi-steady laminar flow. Next, the liquid feeding from wet surfaces by the brush-tipped proboscis of a nymphalid butterfly, Asian comma (Polygonia c-aureum) was investigated. The tip of the proboscis was observed especially brush-like sensilla styloconica. The liquid-feeding flow between the proboscis and wet surfaces was also quantitatively visualized. During liquid drinking from the wet surface, the sensilla styloconica enhance liquid uptake rate with accumulation of liquid. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  2. Liquid sampling system

    DOEpatents

    Larson, Loren L.

    1987-01-01

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed.

  3. Liquid sampling system

    DOEpatents

    Larson, L.L.

    1984-09-17

    A conduit extends from a reservoir through a sampling station and back to the reservoir in a closed loop. A jet ejector in the conduit establishes suction for withdrawing liquid from the reservoir. The conduit has a self-healing septum therein upstream of the jet ejector for receiving one end of a double-ended cannula, the other end of which is received in a serum bottle for sample collection. Gas is introduced into the conduit at a gas bleed between the sample collection bottle and the reservoir. The jet ejector evacuates gas from the conduit and the bottle and aspirates a column of liquid from the reservoir at a high rate. When the withdrawn liquid reaches the jet ejector the rate of flow therethrough reduces substantially and the gas bleed increases the pressure in the conduit for driving liquid into the sample bottle, the gas bleed forming a column of gas behind the withdrawn liquid column and interrupting the withdrawal of liquid from the reservoir. In the case of hazardous and toxic liquids, the sample bottle and the jet ejector may be isolated from the reservoir and may be further isolated from a control station containing remote manipulation means for the sample bottle and control valves for the jet ejector and gas bleed. 5 figs.

  4. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  5. Liquid-level detector

    DOEpatents

    Not Available

    1981-01-29

    Aliquid level sensor is described which has a pair of upright conductors spaced by an insulator defining a first high resistance path between the conductors. An electrically conductive path is interposed between the upright conductors at a discrete location at which liquid level is to be measured. It includes a liquid accessible gap of a dimension such that the electrical resistance across the conductor when the gap is filled with the liquid is detectably less than when the gap is emptied. The conductor might also be physically altered by temperature changes to serve also as an indicator of elevated temperature.

  6. Liquid-metal corrosion

    SciTech Connect

    Chopra, O.K.; DeVan, J.H.; Smith, D.L.; Sze, D.K.; Tortorelli, P.F.

    1985-09-01

    A review of corrosion and environmental effects on the mechanical properties of candidate structural alloys for use with liquid metals in fusion reactors is presented. The corrosion/mass transfer behavior of austenitic and ferritic steels and vanadium-base alloys is evaluated to determine the preliminary operating temperature limits for circulating and static liquid-lithium and Pb-17Li systems. The influence of liquid-metal environment on the mechanical properties of structural materials is discussed. Corrosion effects of nitrate and fluoride salts are presented. Requirements for additional data are identified.

  7. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  8. Encapsulated liquid sorbents for carbon dioxide capture.

    PubMed

    Vericella, John J; Baker, Sarah E; Stolaroff, Joshuah K; Duoss, Eric B; Hardin, James O; Lewicki, James; Glogowski, Elizabeth; Floyd, William C; Valdez, Carlos A; Smith, William L; Satcher, Joe H; Bourcier, William L; Spadaccini, Christopher M; Lewis, Jennifer A; Aines, Roger D

    2015-02-05

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  9. Liquid cooled approaches for high density avionics

    NASA Astrophysics Data System (ADS)

    Levasseur, Robert

    Next-generation aircraft will require avionics that provide greater system performance in a smaller volume, a process that requires highly developed thermal management techniques. To meet this need, a liquid-cooled approach has been developed to replace the conventional air-cooled approach for high-power applications. Liquid-cooled chassis and flow-through modules have been developed to limit junction temperatures to acceptable levels. Liquid cooling also permits emergency operation after loss of coolant for longer time intervals, which is desirable for flight-critical airborne applications. Activity to date has emphasized the development of chassis and modules that support the US Department of Defense's (DoD) two-level maintenance initiative as governed by the Joint Integrated Avionics Working Group (JIAWG).

  10. Maintenance evaluation for space station liquid systems

    NASA Technical Reports Server (NTRS)

    Flugel, Charles

    1987-01-01

    Many of the thermal and environmental control life support subsystems as well as other subsystems of the space station utilize various liquids and contain components which are either expendables or are life-limited in some way. Since the space station has a 20-year minimum orbital lifetime requirement, there will also be random failures occurring within the various liquid-containing subsystems. These factors as well as the planned space station build-up sequence require that maintenance concepts be developed prior to the design phase. This applies to the equipment which needs maintenance as well as the equipment which may be required at a maintenance work station within the space station. This paper presents several maintenance concepts for liquid-containing items and a flight experiment program which would allow for evaluation and improvement of these concepts so they can be incorporated in the space station designs at the outset of its design phase.

  11. Encapsulated liquid sorbents for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Vericella, John J.; Baker, Sarah E.; Stolaroff, Joshuah K.; Duoss, Eric B.; Hardin, James O.; Lewicki, James; Glogowski, Elizabeth; Floyd, William C.; Valdez, Carlos A.; Smith, William L.; Satcher, Joe H.; Bourcier, William L.; Spadaccini, Christopher M.; Lewis, Jennifer A.; Aines, Roger D.

    2015-02-01

    Drawbacks of current carbon dioxide capture methods include corrosivity, evaporative losses and fouling. Separating the capture solvent from infrastructure and effluent gases via microencapsulation provides possible solutions to these issues. Here we report carbon capture materials that may enable low-cost and energy-efficient capture of carbon dioxide from flue gas. Polymer microcapsules composed of liquid carbonate cores and highly permeable silicone shells are produced by microfluidic assembly. This motif couples the capacity and selectivity of liquid sorbents with high surface area to facilitate rapid and controlled carbon dioxide uptake and release over repeated cycles. While mass transport across the capsule shell is slightly lower relative to neat liquid sorbents, the surface area enhancement gained via encapsulation provides an order-of-magnitude increase in carbon dioxide absorption rates for a given sorbent mass. The microcapsules are stable under typical industrial operating conditions and may be used in supported packing and fluidized beds for large-scale carbon capture.

  12. Ionic Liquid Membranes for Carbon Dioxide Separation

    SciTech Connect

    Myers, C.R.; Ilconich, J.B.; Luebke, D.R.; Pennline, H.W.

    2008-07-12

    Recent scientific studies are rapidly advancing novel technological improvements and engineering developments that demonstrate the ability to minimize, eliminate, or facilitate the removal of various contaminants and green house gas emissions in power generation. The Integrated Gasification Combined Cycle (IGCC) shows promise for carbon dioxide mitigation not only because of its higher efficiency as compared to conventional coal firing plants, but also due to a higher driving force in the form of high partial pressure. One of the novel technological concepts currently being developed and investigated is membranes for carbon dioxide (CO2) separation, due to simplicity and ease of scaling. A challenge in using membranes for CO2 capture in IGCC is the possibility of failure at elevated temperatures or pressures. Our earlier research studies examined the use of ionic liquids on various supports for CO2 separation over the temperature range, 37°C-300°C. The ionic liquid, 1-hexyl-3methylimidazolium Bis(trifluoromethylsulfonyl)imide, ([hmim][Tf2N]), was chosen for our initial studies with the following supports: polysulfone (PSF), poly(ether sulfone) (PES), and cross-linked nylon. The PSF and PES supports had similar performance at room temperature, but increasing temperature caused the supported membranes to fail. The ionic liquid with the PES support greatly affected the glass transition temperature, while with the PSF, the glass transition temperature was only slightly depressed. The cross-linked nylon support maintained performance without degradation over the temperature range 37-300°C with respect to its permeability and selectivity. However, while the cross-linked nylon support was able to withstand temperatures, the permeability continued to increase and the selectivity decreased with increasing temperature. Our studies indicated that further testing should examine the use of other ionic liquids, including those that form chemical complexes with CO2 based on

  13. Liquid Oxygen/Liquid Methane Integrated Propulsion System Test Bed

    NASA Technical Reports Server (NTRS)

    Flynn, Howard; Lusby, Brian; Villemarette, Mark

    2011-01-01

    In support of NASA?s Propulsion and Cryogenic Advanced Development (PCAD) project, a liquid oxygen (LO2)/liquid methane (LCH4) Integrated Propulsion System Test Bed (IPSTB) was designed and advanced to the Critical Design Review (CDR) stage at the Johnson Space Center. The IPSTB?s primary objectives are to study LO2/LCH4 propulsion system steady state and transient performance, operational characteristics and to validate fluid and thermal models of a LO2/LCH4 propulsion system for use in future flight design work. Two phase thermal and dynamic fluid flow models of the IPSTB were built to predict the system performance characteristics under a variety of operating modes and to aid in the overall system design work. While at ambient temperature and simulated altitude conditions at the White Sands Test Facility, the IPSTB and its approximately 600 channels of system instrumentation would be operated to perform a variety of integrated main engine and reaction control engine hot fire tests. The pressure, temperature, and flow rate data collected during this testing would then be used to validate the analytical models of the IPSTB?s thermal and dynamic fluid flow performance. An overview of the IPSTB design and analytical model development will be presented.

  14. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  15. Liquid rocket engine injectors

    NASA Technical Reports Server (NTRS)

    Gill, G. S.; Nurick, W. H.

    1976-01-01

    The injector in a liquid rocket engine atomizes and mixes the fuel with the oxidizer to produce efficient and stable combustion that will provide the required thrust without endangering hardware durability. Injectors usually take the form of a perforated disk at the head of the rocket engine combustion chamber, and have varied from a few inches to more than a yard in diameter. This monograph treats specifically bipropellant injectors, emphasis being placed on the liquid/liquid and liquid/gas injectors that have been developed for and used in flight-proven engines. The information provided has limited application to monopropellant injectors and gas/gas propellant systems. Critical problems that may arise during injector development and the approaches that lead to successful design are discussed.

  16. Diet - full liquid

    MedlinePlus

    ... O Milkshakes Pudding Popsicles You can NOT eat solid foods when you are on a full liquid ... bouillon, consommé, and strained cream soups, but NO solids) Sodas, such as ginger ale and Sprite Gelatin ( ...

  17. Safer Liquid Natural Gas

    NASA Technical Reports Server (NTRS)

    1976-01-01

    After the disaster of Staten Island in 1973 where 40 people were killed repairing a liquid natural gas storage tank, the New York Fire Commissioner requested NASA's help in drawing up a comprehensive plan to cover the design, construction, and operation of liquid natural gas facilities. Two programs are underway. The first transfers comprehensive risk management techniques and procedures which take the form of an instruction document that includes determining liquid-gas risks through engineering analysis and tests, controlling these risks by setting up redundant fail safe techniques, and establishing criteria calling for decisions that eliminate or accept certain risks. The second program prepares a liquid gas safety manual (the first of its kind).

  18. Liquid level controller

    DOEpatents

    Mangus, J.D.; Redding, A.H.

    1975-07-15

    A system for maintaining two distinct sodium levels within the shell of a heat exchanger having a plurality of J-shaped modular tube bundles each enclosed in a separate shell which extends from a common base portion. A lower liquid level is maintained in the base portion and an upper liquid level is maintained in the shell enwrapping the long stem of the J-shaped tube bundles by utilizing standpipes with a notch at the lower end which decreases in open area the distance from the end of the stand pipe increases and a supply of inert gas fed at a constant rate to produce liquid levels, which will remain generally constant as the flow of liquid through the vessel varies. (auth)

  19. Liquid metal boiling inception

    NASA Technical Reports Server (NTRS)

    Sabin, C. M.; Poppendiek, H. F.; Mouritzen, G.; Meckel, P. T.; Cloakey, J. E.

    1972-01-01

    An experimental study of the inception of boiling in potassium in forced convection is reported. The boiler consisted of a 0.19-inch inside diameter, niobium-1% zirconium boiler tube approximately six feet long. Heating was accomplished by direct electrical tube wall conduction. Experiments were performed with both all-liquid fill and two-phase fill startup sequences and with a range of flow rates, saturation temperatures, inert gas levels, and fill liquid temperatures. Superheat of the liquid above the equilibrium saturation temperature was observed in all the experiments. Incipient boiling liquid superheat ranged from a few degrees to several hundred. Comparisons of these data with other data and with several analytical treatments are presented.

  20. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  1. Lacerations - liquid bandage

    MedlinePlus

    ... causes only slight burning when applied. Liquid bandages, seal the cut closed after only 1 application. There ... you can shower or bathe without worry. The seal lasts for 5 to 10 days. It will ...

  2. 114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. WEST SIDE OF LIQUID OXYGEN CONTROL ROOM (205). LIQUID NITROGEN (LN2) SUBCOOLER ON LEFT; SKID 8, LIQUID OXYGEN CONTROLLER FOR SWITCHING BETWEEN RAPID-LOAD AND TOPPING ON RIGHT. LIQUID OXYGEN LINE FROM SKID 9A AT RIGHT EDGE OF PHOTO. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. 13 CFR 307.20 - Partial liquidation; liquidation upon termination.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... an RLF Grant, EDA may assign or transfer assets of the RLF to an RLF Third Party for liquidation. (c... Revolving Loan Funds and Use of Grant Funds § 307.20 Partial liquidation; liquidation upon termination. (a) Partial liquidation or disallowance of a portion of an RLF Grant. If the RLF Recipient engages in...

  4. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas.

  5. Advanced proteomic liquid chromatography

    PubMed Central

    Xie, Fang; Smith, Richard D.; Shen, Yufeng

    2012-01-01

    Liquid chromatography coupled with mass spectrometry is the predominant platform used to analyze proteomics samples consisting of large numbers of proteins and their proteolytic products (e.g., truncated polypeptides) and spanning a wide range of relative concentrations. This review provides an overview of advanced capillary liquid chromatography techniques and methodologies that greatly improve separation resolving power and proteomics analysis coverage, sensitivity, and throughput. PMID:22840822

  6. Applications of ionic liquids.

    PubMed

    Patel, Divia Dinesh; Lee, Jong-Min

    2012-06-01

    Ionic liquids have recently gained popularity in the scientific community owing to their special properties and characteristics. One of the reasons why ionic liquids have been termed "green solvents" is due to their negligible vapour pressure. Their use in electrochemical, biological and metal extraction applications is discussed. Wide research has been carried out for their use in batteries, solar panels, fuel cells, drug deliveries and biomass pretreatments. This work aims to consolidate the various findings from previous works in these areas. PMID:22711528

  7. Liquid Level Sensing System

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Wiley, John T. (Inventor); Duffell, Amanda G. (Inventor)

    2014-01-01

    A liquid level sensing system includes waveguides disposed in a liquid and distributed along a path with a gap between adjacent waveguides. A source introduces electromagnetic energy into the waveguides at a first end of the path. A portion of the electromagnetic energy exits the waveguides at a second end of the path. A detector measures the portion of the electromagnetic energy exiting the second end of the path.

  8. Thermal boundary conductance of hydrophilic and hydrophobic ionic liquids

    NASA Astrophysics Data System (ADS)

    Oyake, Takafumi; Sakata, Masanori; Yada, Susumu; Shiomi, Junichiro

    2015-03-01

    A solid/liquid interface plays a critical role for understanding mechanisms of biological and physical science. Moreover, carrier density of the surface is dramatically enhanced by electric double layer with ionic liquid, salt in the liquid state. Here, we have measured the thermal boundary conductance (TBC) across an interface of gold thin film and ionic liquid by using time-domain thermoreflectance technique. Following the prior researches, we have identified the TBC of two interfaces. One is gold and hydrophilic ionic liquid, N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium tetrafluoroborate (DEME-BF4), which is a hydrophilic ionic liquid, and the other is N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide (DEME-TFSI), which is a hydrophobic ionic liquid. We found that the TBC between gold and DEME-TFIS (19 MWm-2K-1) is surprisingly lower than the interface between gold and DEME-BF4 (45 MWm-2K-1). With these data, the importance of the wetting angle and ion concentration for the thermal transport at the solid/ionic liquid interface is discussed. Part of this work is financially supported by Japan Society for the Promotion of Science (JSPS) and Japan Science and Technology Agency. The author is financially supported by JSPS Fellowship.

  9. Consolidated incineration facility technical support

    SciTech Connect

    Burns, D.; Looper, M.G.

    1993-12-31

    In 1996, the Savannah River Site plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. Key components of this technical support program include recently completed waste burn tests at both EPA`s Incineration Research Facility and at Energy and Environmental Research Corporation`s Solid Waste Incineration Test Facility. The main objectives for these tests were determining the fate of heavy metals, measuring organics destruction and removal efficiencies, and quantifying incinerator offgas particulate loading and size distribution as a function of waste feed characteristics and incineration conditions. In addition to these waste burning tests, the SRTC has recently completed installations of the Offgas Components Test Facility (OCTF), a 1/10 scale CIF offgas system pilot plant. This pilot facility will be used to demonstrate system operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. Technical support programs of this type are needed to resolve technical issues related with treatment and disposal of combustible hazardous, mixed, and low-level radioactive waste. Implementation of this program will minimize facility start-up problems and help insure compliance with all facility performance requirements.

  10. Liquid-liquid critical point: an analytical approach

    NASA Astrophysics Data System (ADS)

    Daanoun, A.

    2006-09-01

    Theoretical simulations and experimental studies have showed that many systems (like liquid metals) can exhibit two phase transitions: gas-liquid and liquid-liquid. Consequently the fluid phase of these systems presents two critical points, namely the usual gas-liquid (G-L) critical point and the liquid-liquid critical point that results from a phase transition between two liquids of different densities: a low density liquid (LDL) and a high density liquid (HDL). The van der Waals theory for simple fluids [Phys. Rev. E 50, 2913 (1994)] is based on taking a system with purely repulsive forces as a reference, is able to describe two stable first-order phase transitions between fluids of different densities. The particles in our system interact via a total pair potential, which splits into a repulsive VR and a density-dependent attractive VA part.

  11. Electrically actuated liquid iris.

    PubMed

    Xu, Miao; Ren, Hongwen; Lin, Yi-Hsin

    2015-03-01

    We report an adaptive iris using dielectric liquids and a radial-interdigitated electrode. A black liquid is confined by a circular gasket with a donut shape. The surrounding of the black liquid is filled with an immiscible liquid. In the relaxing state, the black liquid obtains the largest clear aperture. By applying a voltage, the surface of the black liquid is stretched by the generated dielectric force, resulting in a reduction of its aperture. For the demonstrated iris, the diameter of the aperture can be changed from ∼4.7  mm to ∼1.2  mm when the voltage is applied from 0 to 70  V(rms). The aperture ratio is ∼94%. Owing to the radial-interdigitated electrode, the aperture size of the iris can be effectively switched with a reasonably fast response time. The optical switch is polarization-insensitive. The potential applications of our iris are light shutters, optical attenuators, biomimicry, and wearable devices. PMID:25723444

  12. Liquid infused surfaces in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Fu, Matthew; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang; Wang, Karen; Lee, Kevin; Hultmark, Marcus

    2014-11-01

    A turbulent channel flow facility is used to measure the drag reduction capabilities and dynamic behavior of liquid-infused micro-patterned surfaces. Liquid infused surfaces have been proposed as a robust alternative to traditional air-cushion-based superhydrophobic surfaces. The mobile liquid lubricant creates a surface slip with the outer turbulent shear flow as well as an energetic sink to dampen turbulent fluctuations. Micro-manufactured surfaces can be mounted flush in the channel and exposed to turbulent flows. Two configurations are possible, both capable of producing laminar and turbulent flows. The first configuration allows detailed investigation of the infused liquid layer and the other allows well resolved pressure gradient measurements. Both of the configurations have high aspect ratios 15-45:1. Drag reduction for a variety of liquid-infused surface architectures is quantified by measuring pressure drop in the channel. Flow in the oil film is simultaneously visualized using fluorescent dye. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  13. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko, David J.

    2004-07-13

    The present invention provides phyllosilicate-polymer compositions which are useful as liquid crystalline composites. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while at the same time be transparent. Because of the ordering of the particles liquid crystalline composite, liquid crystalline composites are particularly useful as barriers to gas transport.

  14. Data Liquidity in Health Information Systems

    PubMed Central

    Courtney, Paul K.

    2011-01-01

    In 2001 the IOM report "Crossing the Quality Chasm" and the NCVHS report "Information for Health" were released and they provided the context for the development of information systems used to support health-supporting processes. Both had as their goals, implicit or explicit, to ensure the right data is provided to the right person at the right time, which is one definition of "Data Liquidity". This concept has had some traction in recent years as a shorthand way to express a system property for Health IT, but there is not a well-defined characterization of what properties of a system or of its components give it better or worse data liquidity. This paper looks at some recent work that help to identify those properties and perhaps can help to ground the concept with metrics that are assessable. PMID:21799328

  15. Cyrogenic Life Support Technology Development Project

    NASA Technical Reports Server (NTRS)

    Bush, David R.

    2015-01-01

    KSC has used cryogenic life support (liquid air based) technology successfully for many years to support spaceflight operations. This technology has many benefits unique to cryogenics when compared to traditional compressed gas systems: passive cooling, lighter, longer duration, and lower operating pressure. However, there are also several limiting factors that have prevented the technology from being commercialized. The National Institute of Occupational Safety and Health, Office of Mine Safety and Health Research (NIOSH-OMSHR) has partnered with NASA to develop a complete liquid air based life support solution for emergency mine escape and rescue. The project will develop and demonstrate various prototype devices and incorporate new technological innovations that have to date prevented commercialization.

  16. Evaluation of a hanging core support concept for LMR application

    SciTech Connect

    Burelbach, J.P.; Cha, B.K.; Huebotter, P.R.; Kann, W.J.; Pan, Y.C.; Saiveau, J.G.; Seidensticker, R.W.; Wu, T.S.

    1985-01-01

    The paper describes an innovative design concept for a liquid metal reactor (LMR) core support structure (CSS). A hanging core support structure is described and analyzed. The design offers inherent safety features, constructability advantages, and potential cost reductions. Some safety considerations are examined which include the in-service inspection (ISI), the backup support system and the structural behavior in a hypothetical case of a broken beam in the core support structure.

  17. Geomorphologic evidence for liquid water

    USGS Publications Warehouse

    Masson, P.; Carr, M.H.; Costard, F.; Greeley, R.; Hauber, E.; Jaumann, R.

    2001-01-01

    Besides Earth, Mars is the only planet with a record of resurfacing processes and environmental circumstances that indicate the past operation of a hydrologic cycle. However the present-day conditions on Mars are far apart of supporting liquid water on the surface. Although the large-scale morphology of the Martian channels and valleys show remarkable similarities with fluid-eroded features on Earth, there are major differences in their size, small-scale morphology, inner channel structure and source regions indicating that the erosion on Mars has its own characteristic genesis and evolution. The different landforms related to fluvial, glacial and periglacial activities, their relations with volcanism, and the chronology of water-related processes, are presented.

  18. Liquid Phase Miscibility Gap Materials

    NASA Technical Reports Server (NTRS)

    Gelles, S. H.; Markworth, A. J.

    1985-01-01

    The manner in which the microstructural features of liquid-phase miscibility gap alloys develop was determined. This will allow control of the microstructures and the resultant properties of these alloys. The long-duration low gravity afforded by the shuttle will allow experiments supporting this research to be conducted with minimal interference from buoyancy effects and gravitationally driven convection currents. Ground base studies were conducted on Al-In, Cu-Pb, and Te-Tl alloys to determine the effect of cooling rate, composition, and interfacial energies on the phase separation and solidification processes that influence the development of microstructure in these alloys. Isothermal and directional cooling experiments and simulations are conducted. The ground based activities are used as a technological base from which flight experiments formulated and to which these flight experiments are compared.

  19. Exploration Life Support Technology Development Challenges

    NASA Technical Reports Server (NTRS)

    Chambliss Joe; Rulis, Susan

    2007-01-01

    The Exploration Life Support project is developing technologies to address the needs for life support during NASA s exploration missions. The focus of development is Air Revitalization, Water Recovery, and Waste Management Systems (ARS, WRS, and WMS). The approach to meeting exploration needs for life support intrinsically involves processing mixtures of gases, liquids and solids; thus the effects of micro or hypo gravity must be considered in developing and verifying the technologies. This paper provides an overview of the ELS project, how ELS technologies are planned to be used in exploration vehicles and the challenges being addressed.

  20. Analysis of carbonated thin liquids in pediatric neurogenic dysphagia

    PubMed Central

    Lundine, Jennifer P.; Bates, David G.; Yin, Han

    2015-01-01

    Background Aspiration of liquids is a serious complication of neurological impairments such as traumatic brain injury or stroke. Carbonated liquids have been examined as a possible alternative to thickened liquids to help reduce aspiration in cases of dysphagia in adults, but no published literature to the best of our knowledge has evaluated this technique in children. If carbonated liquids result in safer swallowing in children, they could provide a preferred alternative to thickened liquids. Objective This pilot study examined whether carbonated thin liquids (CARB) improved swallowing compared to noncarbonated thin liquids (NOCARB) for children with neurogenic dysphagia. Materials and methods Twenty-four children admitted to a level I trauma center for acute neurological injury/disease were evaluated via videofluoroscopic swallow studies. Four descriptive outcome measures were contrasted. Results CARB significantly decreased pooling (P=0.0006), laryngeal penetration/aspiration (P=0.0044) and Penetration-Aspiration Scale scores (P=0.0127) when compared to NOCARB. On average, CARB improved scores on the Penetration-Aspiration Scale by 3.7 points for participants who aspirated NOCARB. There was no significant difference in pharyngeal residue noted between CARB and NOCARB (P=0.0625). Conclusion These findings support the hypothesis that carbonated thin liquids may provide an alternative to thickened liquids for children with neurogenic dysphagia. Implications for future research and clinical practice are discussed. PMID:25758792

  1. Active colloids at liquid-liquid interfaces: dynamic self-assembly and functionality

    NASA Astrophysics Data System (ADS)

    Snezhko, Alexey; Aranson, Igor

    2012-02-01

    Self-assembled materials must actively consume energy and remain out of equilibrium in order to support structural complexity and functional diversity. Colloids of interacting particles suspended at liquid-liquid interfaces and maintained out of equilibrium by external alternating electromagnetic fields develop nontrivial collective dynamics and self-assembly. We use ferromagnetic colloidal micro-particles (so the magnetic moment is fixed in each particle and interactions between colloids is highly anisotropic and directional) suspended over an interface of two immiscible liquids and energized by vertical alternating magnetic fields to demonstrate novel dynamic and active self-assembled structures (``asters'') which are not accessible through thermodynamic assembly. Structures are attributed to the interplay between surface waves, generated at the liquid/liquid interface by the collective response of magnetic microparticles to the alternating magnetic field, and hydrodynamic fields induced in the boundary layers of both liquids forming the interface. Two types of magnetic order are reported. We demonstrate that asters develop self-propulsion in the presence of a small in-plane dc magnetic field. We show that asters can capture, transport, and position target microparticles.

  2. On the identification of liquid surface properties using liquid bridges.

    PubMed

    Kostoglou, M; Karapantsios, T D

    2015-08-01

    The term liquid bridge refers to the specific silhouette of a liquid volume when it is placed between two solid surfaces. Liquid bridges have been studied extensively both theoretically and experimentally during the last century due to their significance in many technological applications. It is worth noticing that even today new technological applications based on liquid bridges continue to appear. A liquid bridge has a well-defined surface configuration dictated by a rigid theoretical foundation so the potential of its utilization as a tool to study surface properties of liquids is apparent. However, it is very scarce in literature that the use of liquid bridges is suggested as an alternative to the well-established drop techniques (pendant/sessile drop). The present work (i) presents the theoretical background for setting up a liquid-bridge based surface property estimation problem, (ii) describes the required experimental equipment and procedures and (iii) performs a thorough literature review on the subject. A case with particular interest is that of liquid bridges made of electrically conducting liquids forming between two conducting solids; such a liquid bridge presents an integral electrical conductance value which is sensitive to the specific silhouette of the bridge. This enables the use of this integral conductance as shape descriptor instead of the conventional image processing techniques. Several attempts in literature for the estimation of liquid surface tension, liquid-solid contact angle and surfactant induced surface elasticity for conducting or non/conducting liquids are presented and the prospects of the technique are discussed.

  3. Microgravity liquid propellant management

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1990-01-01

    The requirement to settle or to position liquid fluid over the outlet end of a spacecraft propellant tank prior to main engine restart, poses a microgravity fluid behavior problem. Resettlement or reorientation of liquid propellant can be accomplished by providing optimal acceleration to the spacecraft such that the propellant is reoriented over the tank outlet without any vapor entrainment, any excessive geysering, or any other undersirable fluid motion for the space fluid management under microgravity environment. The most efficient technique is studied for propellant resettling through the minimization of propellant usage and weight penalties. Both full scale and subscale liquid propellant tank of Space Transfer Vehicle were used to simulate flow profiles for liquid hydrogen reorientation over the tank outlet. In subscale simulation, both constant and impulsive resettling acceleration were used to simulate the liquid flow reorientation. Comparisons between the constant reverse gravity acceleration and impulsive reverse gravity acceleration to be used for activation of propellant resettlement shows that impulsive reverse gravity thrust is superior to constant reverse gravity thrust.

  4. Distinct metallization and atomization transitions in dense liquid hydrogen.

    PubMed

    Mazzola, Guglielmo; Sorella, Sandro

    2015-03-13

    We perform molecular dynamics simulations driven by accurate quantum Monte Carlo forces on dense liquid hydrogen. There is a recent report of a complete atomization transition between a mixed molecular-atomic liquid and a completely dissociated fluid in an almost unaccessible pressure range [Nat. Commun. 5, 3487 (2014)]. Here, instead, we identify a different transition between the fully molecular liquid and the mixed-atomic fluid at ∼400  GPa, i.e., in a much more interesting pressure range. We provide numerical evidence supporting the metallic behavior of this intermediate phase. Therefore, we predict that the metallization at finite temperature occurs in this partially dissociated molecular fluid, well before the complete atomization of the liquid. At high temperature this first-order transition becomes a crossover, in very good agreement with the experimental observation. Several systematic tests supporting the quality of our large scale calculations are also reported.

  5. Catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The addition of an inert metal component, such as gold, silver or copper, to a Fischer-Tropsch catalyst comprising cobalt enables said catalyst to convert synthesis gas to liquid motor fuels at about 240.degree.-370.degree. C. with advantageously reduced selectivity of said cobalt for methane in said conversion. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  6. Enhanced catalyst for converting synthesis gas to liquid motor fuels

    DOEpatents

    Coughlin, Peter K.

    1986-01-01

    The conversion of synthesis gas to liquid molar fuels by means of a cobalt Fischer-Tropsch catalyst composition is enhanced by the addition of molybdenum, tungsten or a combination thereof as an additional component of said composition. The presence of the additive component increases the olefinic content of the hydrocarbon products produced. The catalyst composition can advantageously include a support component, such as a molecular sieve, co-catalyst/support component or a combination of such support components.

  7. Compatibility of structural materials with liquid bismuth, lead, and mercury

    SciTech Connect

    Weeks, J.R.

    1996-06-01

    During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies, the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.

  8. The liquid-liquid phase transition in silicon revealed by snapshots of valence electrons.

    PubMed

    Beye, Martin; Sorgenfrei, Florian; Schlotter, William F; Wurth, Wilfried; Föhlisch, Alexander

    2010-09-28

    The basis for the anomalies of water is still mysterious. Quite generally tetrahedrally coordinated systems, also silicon, show similar thermodynamic behavior but lack--like water--a thorough explanation. Proposed models--controversially discussed--explain the anomalies as a remainder of a first-order phase transition between high and low density liquid phases, buried deeply in the "no man's land"--a part of the supercooled liquid region where rapid crystallization prohibits any experimental access. Other explanations doubt the existence of the phase transition and its first-order nature. Here, we provide experimental evidence for the first-order-phase transition in silicon. With ultrashort optical pulses of femtosecond duration we instantaneously heat the electronic system of silicon while the atomic structure as defined by the much heavier nuclear system remains initially unchanged. Only on a picosecond time scale the energy is transferred into the atomic lattice providing the energy to drive the phase transitions. With femtosecond X-ray pulses from FLASH, the free-electron laser at Hamburg, we follow the evolution of the valence electronic structure during this process. As the relevant phases are easily distinguishable in their electronic structure, we track how silicon melts into the low-density-liquid phase while a second phase transition into the high-density-liquid phase only occurs after the latent heat for the first-order phase transition has been transferred to the atomic structure. Proving the existence of the liquid-liquid phase transition in silicon, the hypothesized liquid-liquid scenario for water is strongly supported.

  9. Filtration performance of microporous ceramic supports.

    PubMed

    Belouatek, Aissa; Ouagued, Abdellah; Belhakem, Mustapha; Addou, Ahmed

    2008-04-24

    The use of inorganic membranes in pollution treatment is actually limited by the cost of such membranes. Advantages of inorganic membranes are their chemical, thermal and pH properties. The purpose of this work was the development of microporous ceramic materials based on clay for liquid waste processing. The supports or ceramic filters having various compositions were prepared and thermally treated at 1100 degrees C. The results show that, at the temperature studied, porosity varied according to the support composition from 12% for the double-layered (ceramic) support to 47% for the activated carbon- filled support with a mean pore diameter between 0.8 and 1.3 microm, respectively. Volumes of 5 l of distilled water were filtered tangentially for 3 h under an applied pressure of 3.5 and 5.5 bar. The retention of tubular supports prepared was tested with molecules of varying size (Evans blue, NaCl and Sacharose). The study of the liquid filtration and flow through these supports showed that the retention rate depends on support composition and pore diameter, and solute molecular weight. The S1 support (mixture of barbotine and 1% (w/w) activated carbon) gave a flux for distilled water of 68 L/m2 h while the double-layered support resulted in a flux of 8 L/m2 h for the same solution at the pressure of 3.5 bar. At a pressure of 5.5 bar an increase in the distilled water flux through the various supports was observed. It was significant for the S1 support (230 L/m h).

  10. Magnetically actuated liquid crystals.

    PubMed

    Wang, Mingsheng; He, Le; Zorba, Serkan; Yin, Yadong

    2014-07-01

    Ferrimagnetic inorganic nanorods have been used as building blocks to construct liquid crystals with optical properties that can be instantly and reversibly controlled by manipulating the nanorod orientation using considerably weak external magnetic fields (1 mT). Under an alternating magnetic field, they exhibit an optical switching frequency above 100 Hz, which is comparable to the performance of commercial liquid crystals based on electrical switching. By combining magnetic alignment and lithography processes, it is also possible to create patterns of different polarizations in a thin composite film and control over the transmittance of light in particular areas. Developing such magnetically responsive liquid crystals opens the door toward various applications, which may benefit from the instantaneous and contactless nature of magnetic manipulation.

  11. Liquid lubrication in space

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    The requirement for long-term, reliable operation of aerospace mechanisms has, with a few exceptions, pushed the state of the art in tribology. Space mission life requirements in the early 1960s were generally 6 months to a year. The proposed U.S. space station schedule to be launched in the 1990s must be continuously usable for 10 to 20 years. Liquid lubrication systems are generally used for mission life requirements longer than a year. Although most spacecraft or satellites have reached their required lifetimes without a lubrication-related failure, the application of liquid lubricants in the space environment presents unique challenges. The state of the art of liquid lubrication in space as well as the problems and their solutions are reviewed.

  12. Evaluation of mercury in the liquid waste processing facilities

    SciTech Connect

    Jain, Vijay; Shah, Hasmukh; Occhipinti, John E.; Wilmarth, William R.; Edwards, Richard E.

    2015-08-13

    This report provides a summary of Phase I activities conducted to support an Integrated Evaluation of Mercury in Liquid Waste System (LWS) Processing Facilities. Phase I activities included a review and assessment of the liquid waste inventory and chemical processing behavior of mercury using a system by system review methodology approach. Gaps in understanding mercury behavior as well as action items from the structured reviews are being tracked. 64% of the gaps and actions have been resolved.

  13. Modeling of Diffusion in Liquid Ge and Its Alloys

    NASA Technical Reports Server (NTRS)

    Stroud, David G.

    1998-01-01

    This report summarizes progress made on NASA Grant NAG3-1437, Modeling of diffusion in Liquid Ge and Its Alloys, which was in effect from January 15, 1993 through July 10, 1997. It briefly describes the purpose of the grant, and the work accomplished in simulations and other studies of thermophysical properties of liquid semiconductors and related materials. A list of publications completed with the support of the grant is also given.

  14. Containerless Liquid-Phase Processing of Ceramic Materials

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard (Principal Investigator); Nordine, Paul C.

    1996-01-01

    The present project builds on the results of research supported under a previous NASA grant to investigate containerless liquid-phase processing of molten ceramic materials. The research used an aero-acoustic levitator in combination with cw CO2 laser beam heating to achieve containerless melting, superheating, undercooling, and solidification of poorly-conducting solids and liquids. Experiments were performed on aluminum oxide, binary aluminum oxide-silicon dioxide materials, and oxide superconductors.

  15. Do Formal Supports Replace Informal Supports?

    ERIC Educational Resources Information Center

    Barer, Barbara M.; And Others

    Health policy researchers have long been interested in the extent to which the provision of formal supports replaces or undermines the informal support system. This study examined the linkages between the formal and informal support system as they are mediated by a health care setting which readily provides patients with access to social services.…

  16. Liquid Scintillator Purification

    SciTech Connect

    Kishimoto, Y.

    2005-09-08

    The KamLAND collaboration has studied background requirements and purification methods needed to observe the 7Be neutrino from the sun. First we will discuss the present background situation in KamLAND where it is found that the main background components are 210Pb and 85Kr. It is then described how to purify the liquid scintillator. The present status and results on how to remove 210Pb from the liquid scintillator are discussed. Specifically, the detailed analysis of the effects of distillation and adsorption techniques are presented.

  17. Liquid air cycle engines

    NASA Technical Reports Server (NTRS)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  18. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.; SLD Collaboration

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z{sup 0} decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z{sup 0} events) is discussed.

  19. SLD liquid argon calorimeter

    SciTech Connect

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z[sup 0] decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z[sup 0] events) is discussed.

  20. Apparatus and method for electrochemical modification of liquids

    SciTech Connect

    James, Patrick I

    2015-04-21

    An apparatus for electrochemical modification of liquid streams employing an electrolytic cell which includes an anode compartment defined by an anode structure where oxidation is effected, containing a liquid electrolyte anolyte, and a cathode compartment defined by a cathode structure where reduction is effected containing a liquid electrolyte catholyte. In addition, the electrolytic cell includes at least one additional compartment arranged at least partially between the anode compartment and the cathode compartment and separated from the anode compartment and the cathode compartment by a separator structure arranged to supports ionic conduction of current between the anode structure and the cathode structure.

  1. Monogroove heat pipe design: Insulated liquid channel with bridging wick

    NASA Technical Reports Server (NTRS)

    Alario, J. P.; Brown, R. F.; Kosson, R. L. (Inventor)

    1985-01-01

    A screen mesh artery supported concentrically within the evaporator section of a heat pipe liquid channel retains liquid in the channel. Continued and uniform liquid feed to the heat pipe evaporation section (20) during periods of excessive heat transfer is assured. The overall design provides high evaporation and condensation film coefficients for the working fluid by means of the circumferential grooves in the walls of the vapor channel, while not interfering with the overall heat transport capability of the axial groove. The design has particular utility in zero-g environments.

  2. Photorefractivity in crosslinked polymer-stabilized nematic liquid crystals.

    SciTech Connect

    Wiederrecht, G. P.; Wasielewski, M. R.; Chemistry; Northwestern Univ.

    1999-03-01

    The observation of photorefractive gratings in new crosslinked polymer-stabilized liquid crystals (PSLCs) is discussed and compared to previous PSLCs. The PSLCs easily incorporate reduced or oxidized molecules that are present in a nematic liquid crystal at a concentration of 2 mol%. The PSLCs that are crosslinked provide improved photo-refractive grating resolution, due to their improved functionality as an immobile electron trap. These materials are capable of functioning well into the Bragg diffraction regime. Photoconductivity experiments that support the photorefractive mechanism and a different charge transport mechanism than neat liquid crystals are also performed.

  3. Liquid Crystals under Photo-patterned Spatially Varying Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Miao; Guo, Yu-Bing; Wei, Qi-Huo

    2015-03-01

    Liquid crystals under geometric confinements are of not only fundamental interest but also practical importance to applications such as chemical sensing and smart windows. Orientations of liquid crystal molecules in most geometric confinements are uniform at the boundaries and not highly controllable. In this paper, we will present a novel photoalignment technique to pattern spatially varying complex orientation fields, and discuss experimental studies on nematic liquid crystals under confinements of two parallel plates with various well designed molecular orientation fields. Work supported by NSF CMMI-1436565.

  4. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-01

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  5. Aerobreakup of Newtonian and Viscoelastic Liquids

    NASA Astrophysics Data System (ADS)

    Theofanous, T. G.

    2011-01-01

    In this review, we consider and unify all aspects of the dynamics of Newtonian and viscoelastic liquid drops in high-speed gas flows, including shock waves. The path to understanding is opened by novel, laser-induced fluorescence visualizations at spatial resolutions of up to 200 pixels for millimeter and exposure times as low as 5 ns. The central role of the competition between Rayleigh-Taylor and Kelvin-Helmholtz instabilities is assessed in the frame of rich aerodynamics, from low subsonic to supersonic, and the multitude of characteristic length scales and timescales at play with varying liquid properties. Acceleration and liquid redistribution (drop deformation) early in the evolution set the stage for this competition, and we insist on an interpretation of the drag coefficient that is physically meaningful. Two principal breakup regimes (patterns of bodily loss of coherence) are identified depending on whether the gas finds its way through the liquid mass, causing gross disintegration, or goes around to induce, through shear, a surface-layer peeling-and-ejection action. Corresponding criticalities are quantified in terms of key physics, consistent with experiments. This covers in a unified fashion all liquids, independent of viscosity and elasticity, and the potential role of direct numerical simulations in supporting further advances is forecast. The resulting particle-size distributions (in a final equilibrium cloud) depend crucially on the pattern of breakup, although in this respect the role of elasticity obtains a special significance in terms of the underlying entangled-polymer-chain dynamics. From a more general perspective, we explain the canonical significance of this fundamental problem and summarize the wide range of its practical relevance, including the recently renewed interest in predicting shock-induced fluidization (or high-speed, atmospheric dissemination) of large masses of liquid agents (so-called weapons of mass destruction).

  6. Turbine meters for liquid measurement

    SciTech Connect

    Wass, D.J.; Allen, C.R.

    1995-12-01

    Liquid turbine meters operate in response to fundamental engineering principles, Operation with a single moving part produces excellent longevity and reliability. Liquid turbine meters display wide rangeability, high accuracy, excellent repeatability, low pressure drop and moderate cost. Liquid turbine meters may be applied to many different fluids with different physical properties and corrosive tendencies. The marriage of liquid turbine meters to electronic instruments allows instantaneous flow calculations and produces the flexibility to display data, store data, transmit data in the most convenient form. Liquid turbine meters should be the first flow measurement instrument considered for liquid measurement applications.

  7. Autothermal Processing of Renewable Liquids

    NASA Astrophysics Data System (ADS)

    Kruger, Jacob Scott

    molecule are used to propose a reaction mechanism over the catalyst surface. Chapter 4 investigates the reactions that may be occurring in the gas phase and over the alpha-Al2O3 foam monolith support. Significant gas-phase chemistry is likely present in the autothermal reactor, although different temperature gradients between the autothermal reactions and the externally heated tube makes quantification of the amount of homogeneous chemistry in the autothermal system impossible. The alpha-Al2O 3 support may serve as a heat transfer medium and radical quencher (due to its foam structure with small-diameter pores), but not likely acid catalysis, as selectivity to dehydration products was similar both with and without the foam support. Because butanol is another promising liquid intermediate in biomass processing, a series of experiments with butanol in an CPO reactor was also carried out. Chapter 5 compares the four butanol isomers in a CPO reactor over Pt, PtCe, Rh, and RhCe catalysts. The reactivity of tert-butanol was as high or higher than the other alcohols, indicating that the lack of a carbonyl decomposition path does not necessarily in uence the reactivity of the molecule. Rather, the reactivity appeared to be more a function of the initial pyrolysis temperature of the alcohol. Thus, much of the initial chemistry of the higher alcohols in a CPO reactor may be homogeneous. The main function of the catalyst may be to decompose the intermediate carbonyls and alkenes to syngas. To that end, the PtCe had significantly lower reforming activity than the other catalysts, evidenced by the lower selectivity to CO and H2 and generally higher temperatures. Selectivity to syngas and light olefins was high and tunable depending on feed ratios, indicating the potential of CPO to provide petrochemical building blocks from butanol. Chapter 6 combines CPO with a water-gas shift (WGS) stage and investigates the addition of steam to isobutanol for the production of a high-purity H2

  8. 138. LIQUID NITROGEN INSTRUMENT PANEL ON EAST WALL OF LIQUID ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    138. LIQUID NITROGEN INSTRUMENT PANEL ON EAST WALL OF LIQUID NITROGEN CONTROL ROOM (115), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Mixed Stationary Liquid Phases for Gas-Liquid Chromatography.

    ERIC Educational Resources Information Center

    Koury, Albert M.; Parcher, Jon F.

    1979-01-01

    Describes a laboratory technique for use in an undergraduate instrumental analysis course that, using the interpretation of window diagrams, prepares a mixed liquid phase column for gas-liquid chromatography. A detailed procedure is provided. (BT)

  10. High CO2 solubility, permeability and selectivity in ionic liquids with the tetracyanoborate anion

    SciTech Connect

    Mahurin, SM; Hillesheim, PC; Yeary, JS; Jiang, DE; Dai, S

    2012-01-01

    Five different ionic liquids containing the tetracyanoborate anion were synthesized and evaluated for CO2 separation performance. Measured CO2 solubility values were exceptionally high compared to analogous ionic liquids with different anions and ranged from 0.128 mol L-1 atm(-1) to 0.148 mol L-1 atm(-1). In addition, CO2 permeability and CO2/N-2 selectivity values were measured using a supported ionic liquid membrane architecture and the separations performance of the ionic liquid membranes exceeded the Robeson upper bound. These results establish the distinct potential of ionic liquids with the tetracyanoborate, [B(CN)(4)], anion for the separation of CO2.

  11. Liquid White Enamel.

    ERIC Educational Resources Information Center

    Widmar, Marge

    1985-01-01

    A secondary teacher describes how she has her students use liquid white enamel. With the enameling process, students can create lasting, exciting artwork. They can exercise an understanding of design and color while learning the value of careful, sustained craft skills. (RM)

  12. ELECTRONS IN NONPOLAR LIQUIDS.

    SciTech Connect

    HOLROYD,R.A.

    2002-10-22

    Excess electrons can be introduced into liquids by absorption of high energy radiation, by photoionization, or by photoinjection from metal surfaces. The electron's chemical and physical properties can then be measured, but this requires that the electrons remain free. That is, the liquid must be sufficiently free of electron attaching impurities for these studies. The drift mobility as well as other transport properties of the electron are discussed here as well as electron reactions, free-ion yields and energy levels, Ionization processes typically produce electrons with excess kinetic energy. In liquids during thermalization, where this excess energy is lost to bath molecules, the electrons travel some distance from their geminate positive ions. In general the electrons at this point are still within the coulombic field of their geminate ions and a large fraction of the electrons recombine. However, some electrons escape recombination and the yield that escapes to become free electrons and ions is termed G{sub fi}. Reported values of G{sub fi} for molecular liquids range from 0.05 to 1.1 per 100 eV of energy absorbed. The reasons for this 20-fold range of yields are discussed here.

  13. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  14. Handbook of liquid metals

    NASA Technical Reports Server (NTRS)

    Ukanwa, A. O.

    1976-01-01

    Metals are described by physical appearance followed by atomic weight, atomic number, and valence. Data includes laboratory handling and safety procedures, heat transfer correlations, diffusion coefficients in liquid gallium/indium solution, melting and boiling points, thermal conductivity, heat capacity, and electrical resistivity.

  15. Coalescence of Liquid Drops

    NASA Technical Reports Server (NTRS)

    Yao, Wei-Jun

    2003-01-01

    When two liquid drops come into contact, a neck forms between them and grows rapidly. We are interested in the very early stage of the coalescence process, which can be characterized by the time dependence of the radius of the neck. The functional dependence of the size of the neck on time depends on the properties of the liquid. Experimentally, we are investigating a liquid in Stokes flow regime where the viscosity provides the principal retarding force to the surface tension. Recently, it has been predicted that the neck radius should change as t ln|t| in this regime. Theoretically, we have studied the situation when the velocity at each point on the surface is proportional to the local curvature and directed normal to the surface. This is the case that should be applicable to superfluid helium at low temperature when the mean free path of the thermal excitations are comparable to the size of liquid drops. For this system, the radius of the neck is found to be proportional to t(sup 1/3). We are able to find a simple expression for the shape of the interface in the vicinity of the neck.

  16. Properties of Liquid Plutonium

    SciTech Connect

    Freibert, Franz J.; Mitchell, Jeremy N.; Schwartz, Daniel S.; Saleh, Tarik A.; Migliori, Albert

    2012-08-02

    Unalloyed polycrystalline Pu displays extreme thermal expansion behavior, i.e., {alpha} {yields} {beta} {yields} {gamma} {yields} {delta} increases by 25% in volume and {delta} {yields} {var_epsilon} {yields} liquid decreases by 4.5% in volume. Thus, making it difficult to measure density into the liquid state. Dilatometer outfitted with CaF molten metal cell offers a proven capability to measure thermal expansion in molten metals, but has yet to be proven for Pu. Historic data from the liquid nuclear fuels program will prove extremely useful as a guide to future measurements. 3.3at% Ga changes Pu molten metal properties: 50% increase in viscosity and {approx}3% decrease in density. Fe may decrease the density by a small amount assuming an averaging of densities for Pu-Ga and Pu-Fe liquids. More recent Boivineau (2009) work needs some interpretation, but technique is being employed in (U,Pu)O{sub 2} nuclear fuels program (Pu Futures, 2012).

  17. Liquid rocket valve assemblies

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The design and operating characteristics of valve assemblies used in liquid propellant rocket engines are discussed. The subjects considered are as follows: (1) valve selection parameters, (2) major design aspects, (3) design integration of valve subassemblies, and (4) assembly of components and functional tests. Information is provided on engine, stage, and spacecraft checkout procedures.

  18. Liquid rocket valve components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A monograph on valves for use with liquid rocket propellant engines is presented. The configurations of the various types of valves are described and illustrated. Design criteria and recommended practices for the various valves are explained. Tables of data are included to show the chief features of valve components in use on operational vehicles.

  19. Liquid laser cavities

    NASA Technical Reports Server (NTRS)

    Bjorklund, S.; Filipescu, N.; Kellermeyer, G. L.; Mc Avoy, N.

    1969-01-01

    Liquid laser cavities have plenum chambers at the ends of the capillary cell which are terminated in transparent optical flats. By use of these cavities, several new europium chelates and a terbium chelate can provide laser action in solution at room temperature.

  20. Liquid Rocket Engine Testing

    NASA Technical Reports Server (NTRS)

    Rahman, Shamim

    2005-01-01

    Comprehensive Liquid Rocket Engine testing is essential to risk reduction for Space Flight. Test capability represents significant national investments in expertise and infrastructure. Historical experience underpins current test capabilities. Test facilities continually seek proactive alignment with national space development goals and objectives including government and commercial sectors.

  1. Clean room wiping liquids

    SciTech Connect

    Harding, W.B.

    1991-12-01

    A water-based liquid containing isopropyl alcohol, ammonium hydroxide, and surfactants was developed to replace 1,1,2-trichlorotrifluoroethane for the dampening of clean room wiping cloths used to wipe clean benches, clean room equipment, and latex finger cots and gloves.

  2. Liquid propellant densification

    NASA Technical Reports Server (NTRS)

    Lak, Tibor I. (Inventor); Petrilla, Steve P. (Inventor); Lozano, Martin E. (Inventor)

    1997-01-01

    Super cooling the cryogenic liquid propellant in a vehicle propellant tank densities the propellant allowing the vehicle propellant tank to carry more fuel in the same volume tank while lowering the vapor pressure and thus the tank operating pressure. Lowering the tank operating pressure reduces the stress and therefore allows the walls of the tank to be thinner. Both the smaller tank volume and thinner tank wall results in an overall smaller and lighter vehicle with increased payload capability. The cryogenic propellant can be supercooled well below the normal boiling point temperature level by transporting the liquid propellant from the vehicle tanks to a ground based cooling unit which utilizes a combination of heat exchanger and compressor. The compressor lowers the coolant fluid bath pressure resulting in a low temperature boiling liquid which is subsequently used to cool the recirculating liquid. The cooled propellant is then returned to the vehicle propellant tank. In addition to reducing the vehicle size and weight the invention also allows location of the vent valve on the ground, elimination of on-board recirculation pumps or bleed systems, smaller and lighter engine pumps and valves, lighter and more stable ullage gas, and significant reduction in tank fill operation. All of these mentioned attributes provide lower vehicle weight and cost.

  3. Dynamic Behavior of Liquids in Annuli Entrained with Gas

    NASA Astrophysics Data System (ADS)

    Gaponenko, Yuri; Mialdun, Alexander; Shevtsova, Valentina

    Heat/mass transfer on the moving gas-liquid interface is an important subject directly related to many industrial applications from crystal growth to cooling of electronic devices. In the case of non-uniform temperature in liquid the overall scenario depends on thermo-capillary convection in liquid which is affected by moving gas along the interface. Space experiment JEREMI (Japanese European Research Experiment on Marangoni Instabilities) is devoted to the study of the threshold of hydrothermal instabilities in two-phase systems. The present study is one of the first steps on the way of the experiment preparation. We report the results of numerical and experimental study of two-phase flows in annulus. The internal column consists of solid supports at the bottom and top, while the central part is a liquid zone filled with viscous liquid and kept in its position by surface tension. Gas enters into the annular duct and entrains initially quiescent liquid. The flow field in liquid is investigated for increasing gas velocity from zero up to 2m/s (correspondingly, Reynolds number in gas varies as 0¡Re¡600). The flow field is analyzed for the different viscosity ratios between liquid and gas. An excellent agreement between computed results and experimental data demonstrates that the developed experimental technique and numerical code are capable to capture the main characteristics of the phenomenon studied.

  4. Models for a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Buldyrev, S. V.; Franzese, G.; Giovambattista, N.; Malescio, G.; Sadr-Lahijany, M. R.; Scala, A.; Skibinsky, A.; Stanley, H. E.

    2002-02-01

    We use molecular dynamics simulations to study two- and three-dimensional models with the isotropic double-step potential which in addition to the hard core has a repulsive soft core of larger radius. Our results indicate that the presence of two characteristic repulsive distances (hard core and soft core) is sufficient to explain liquid anomalies and a liquid-liquid phase transition, but these two phenomena may occur independently. Thus liquid-liquid transitions may exist in systems like liquid metals, regardless of the presence of the density anomaly. For 2D, we propose a model with a specific set of hard core and soft core parameters, that qualitatively reproduces the phase diagram and anomalies of liquid water. We identify two solid phases: a square crystal (high density phase), and a triangular crystal (low density phase) and discuss the relation between the anomalies of liquid and the polymorphism of the solid. Similarly to real water, our 2D system may have the second critical point in the metastable liquid phase beyond the freezing line. In 3D, we find several sets of parameters for which two fluid-fluid phase transition lines exist: the first line between gas and liquid and the second line between high-density liquid (HDL) and low-density liquid (LDL). In all cases, the LDL phase shows no density anomaly in 3D. We relate the absence of the density anomaly with the positive slope of the LDL-HDL phase transition line.

  5. Liquid metal thermoacoustic engine

    SciTech Connect

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  6. 3-Methylpiperidinium ionic liquids.

    PubMed

    Belhocine, Tayeb; Forsyth, Stewart A; Gunaratne, H Q Nimal; Nieuwenhuyzen, Mark; Nockemann, Peter; Puga, Alberto V; Seddon, Kenneth R; Srinivasan, Geetha; Whiston, Keith

    2015-04-28

    A wide range of room temperature ionic liquids based on the 3-methylpiperdinium cation core were produced from 3-methylpiperidine, which is a derivative of DYTEK® A amine. First, reaction with 1-bromoalkanes or 1-bromoalkoxyalkanes generated the corresponding tertiary amines (Rmβpip, R = alkyl or alkoxyalkyl); further quaternisation reactions with the appropriate methylating agents yielded the quaternary [Rmmβpip]X salts (X(-) = I(-), [CF3CO2](-) or [OTf](-); Tf = -SO2CF3), and [Rmmβpip][NTf2] were prepared by anion metathesis from the corresponding iodides. All [NTf2](-) salts are liquids at room temperature. [Rmmβpip]X (X(-) = I(-), [CF3CO2](-) or [OTf](-)) are low-melting solids when R = alkyl, but room temperature liquids upon introduction of ether functionalities on R. Neither of the 3-methylpiperdinium ionic liquids showed any signs of crystallisation, even well below 0 °C. Some related non-C-substituted piperidinium and pyrrolidinium analogues were prepared and studied for comparison. Crystal structures of 1-hexyl-1,3-dimethylpiperidinium tetraphenylborate, 1-butyl-3-methylpiperidinium bromide, 1-(2-methoxyethyl)-1-methylpiperidinium chloride and 1-(2-methoxyethyl)-1-methylpyrrolidinium bromide are reported. Extensive structural and physical data are collected and compared to literature data, with special emphasis on the systematic study of the cation ring size and/or asymmetry effects on density, viscosity and ionic conductivity, allowing general trends to be outlined. Cyclic voltammetry shows that 3-methylpiperidinium ionic liquids, similarly to azepanium, piperidinium or pyrrolidinium counterparts, are extremely electrochemically stable; the portfolio of useful alternatives for safe and high-performing electrolytes is thus greatly extended. PMID:25669485

  7. Rockets using Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Busemann, Adolf

    1947-01-01

    It is my task to discuss rocket propulsion using liquid oxygen and my treatment must be highly condensed for the ideas and experiments pertaining to this classic type of rocket are so numerous that one could occupy a whole morning with a detailed presentation. First, with regard to oxygen itself as compared with competing oxygen carriers, it is known that the liquid state of oxygen, in spite of the low boiling point, is more advantageous than the gaseous form of oxygen in pressure tanks, therefore only liquid oxygen need be compared with the oxygen carriers. The advantages of liquid oxygen are absolute purity and unlimited availability at relatively small cost in energy. The disadvantages are those arising from the impossibility of absolute isolation from heat; consequently, allowance must always be made for a certain degree of vaporization and only vented vessels can be used for storage and transportation. This necessity alone eliminates many fields of application, for example, at the front lines. In addition, liquid oxygen has a lower specific weight than other oxygen carriers, therefore many accessories become relatively larger and heavier in the case of an oxygen rocket, for example, the supply tanks and the pumps. The advantages thus become effective only in those cases where definitely scheduled operation and a large ground organization are possible and when the flight requires a great concentration of energy relative to weight. With the aim of brevity, a diagram of an oxygen rocket will be presented and the problem of various component parts that receive particularly thorough investigation in this classic case but which are also often applicable to other rocket types will be referred to.

  8. Polymorphism in glassy silicon: Inherited from liquid-liquid phase transition in supercooled liquid

    NASA Astrophysics Data System (ADS)

    Zhang, Shiliang; Wang, Li-Min; Zhang, Xinyu; Qi, Li; Zhang, Suhong; Ma, Mingzhen; Liu, Riping

    2015-02-01

    Combining molecular dynamics (MD) simulation and Voronoi polyhedral analyses, we discussed the microstructure evolution in liquid and glassy silicon during cooling by focusing on the fraction of various clusters. Liquid-liquid phase transition (LLPT) is detected in supercooled liquid silicon However, freezing the high-density liquid (HDL) to the glassy state is not achieved as the quenching rate goes up to 1014 K/s. The polyamorphism in glassy silicon is found to be mainly associated with low-density liquid (LDL).

  9. Liquid Acquisition Device Design Sensitivity Study

    NASA Technical Reports Server (NTRS)

    VanDyke, M. K.; Hastings, L. J.

    2012-01-01

    In-space propulsion often necessitates the use of a capillary liquid acquisition device (LAD) to assure that gas-free liquid propellant is available to support engine restarts in microgravity. If a capillary screen-channel device is chosen, then the designer must determine the appropriate combination screen mesh and channel geometry. A screen mesh selection which results in the smallest LAD width when compared to any other screen candidate (for a constant length) is desirable; however, no best screen exists for all LAD design requirements. Flow rate, percent fill, and acceleration are the most influential drivers for determining screen widths. Increased flow rates and reduced percent fills increase the through-the-screen flow pressure losses, which drive the LAD to increased widths regardless of screen choice. Similarly, increased acceleration levels and corresponding liquid head pressures drive the screen mesh selection toward a higher bubble point (liquid retention capability). After ruling out some screens on the basis of acceleration requirements alone, candidates can be identified by examining screens with small flow-loss-to-bubble point ratios for a given condition (i.e., comparing screens at certain flow rates and fill levels). Within the same flow rate and fill level, the screen constants inertia resistance coefficient, void fraction, screen pore or opening diameter, and bubble point can become the driving forces in identifying the smaller flow-loss-to-bubble point ratios.

  10. Improved liquid-film electron stripper

    DOEpatents

    Gavin, B.F.

    1984-11-01

    An improved liquid-film electron stripper particularly for high intensity heavy ion beams which produces constant regenerated, stable, free-standing liquid films having an adjustable thickness between 0.3 to 0.05 microns. The improved electron stripper is basically composed of at least one high speed, rotating disc with a very sharp, precision-like, ground edge on one side of the disc's periphery and with highly polished, flat, radial surface adjacent the sharp edge. A fine stream of liquid, such as oil, impinges at a 90/sup 0/ angle adjacent the disc's sharp outer edge. Film terminators, located at a selected distance from the disc perimeter are positioned approximately perpendicular to the film. The terminators support, shape, and stretch the film and are arranged to assist in the prevention of liquid droplet formation by directing the collected film to a reservoir below without breaking or interfering with the film. One embodiment utilizes two rotating discs and associated terminators, with the discs rotating so as to form films in opposite directions, and with the second disc being located down beam-line relative to the first disc.

  11. Black Liquid Solar Collector Demonstrator.

    ERIC Educational Resources Information Center

    Weichman, F. L.; Austen, D. J.

    1979-01-01

    Describes the details of constructing, and use of, a solar collector. Uses a black liquid to absorb the energy, the thermosyphon effect to drive the liquid through the collector, and a floodlamp as a surrogate sun. (GA)

  12. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  13. Ionic liquids in chemical engineering.

    PubMed

    Werner, Sebastian; Haumann, Marco; Wasserscheid, Peter

    2010-01-01

    The development of engineering applications with ionic liquids stretches back to the mid-1990s when the first examples of continuous catalytic processes using ionic liquids and the first studies of ionic liquid-based extractions were published. Ever since, the use of ionic liquids has seen tremendous progress in many fields of chemistry and engineering, and the first commercial applications have been reported. The main driver for ionic liquid engineering applications is to make practical use of their unique property profiles, which are the result of a complex interplay of coulombic, hydrogen bonding and van der Waals interactions. Remarkably, many ionic liquid properties can be tuned in a wide range by structural modifications at their cation and anion. This review highlights specific examples of ionic liquid applications in catalysis and in separation technologies. Additionally, the application of ionic liquids as working fluids in process machines is introduced.

  14. Imaging Liquids Using Microfluidic Cells

    SciTech Connect

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li

    2013-05-10

    Chemistry occurring in the liquid and liquid surface is important in many applications. Chemical imaging of liquids using vacuum based analytical techniques is challenging due to the difficulty in working with liquids with high volatility. Recent development in microfluidics enabled and increased our capabilities to study liquid in situ using surface sensitive techniques such as electron microscopy and spectroscopy. Due to its small size, low cost, and flexibility in design, liquid cells based on microfluidics have been increasingly used in studying and imaging complex phenomena involving liquids. This paper presents a review of microfluidic cells that were developed to adapt to electron microscopes and various spectrometers for in situ chemical analysis and imaging of liquids. The following topics will be covered including cell designs, fabrication techniques, unique technical features for vacuum compatible cells, and imaging with electron microscopy and spectroscopy. Challenges are summarized and recommendations for future development priority are proposed.

  15. Theme: Supporting Professional Diversity.

    ERIC Educational Resources Information Center

    Moore, Eddie A.; And Others

    1994-01-01

    Includes "Supporting Diversity" (Moore); "Reflections on the Need for Diversity" (Bowen); "Understanding Impediments to Diversity in Agricultural Education" (Whent); "Mentoring Diverse Populations" (Jones); "Supporting Diversity: An Unfinished Agenda" (Moore); "Professorial Roles in Supporting Diversity in Teaching, Research, and University…

  16. Surface Chemistry and Properties of Oxides as Catalyst Supports

    SciTech Connect

    DeBusk, Melanie Moses; Narula, Chaitanya Kumar; Contescu, Cristian I

    2015-01-01

    Heterogeneous catalysis relies on metal-oxides as supports for the catalysts. Catalyst supports are an indispensable component of most heterogeneous catalysts, but the role of the support is often minimized in light of the one played by the catalytically active species it supports. The active species of supported catalysts are located on the surface of the support where their contact with liquid or gas phase reactants will be greatest. Considering that support plays a major role in distribution and stability of active species, the absorption and retention of reactive species, and in some cases in catalytic reaction, the properties and chemistry that can occur at the surface of an oxide support are important for understanding their impact on the activity of a supported catalyst. This chapter examines this rich surface chemistry and properties of oxides used as catalyst supports, and explores the influence of their interaction with the active species.

  17. Surfaces and chirality in liquid crystals

    NASA Astrophysics Data System (ADS)

    Kang, Daeseung

    1999-10-01

    The effects of surfaces and chirality in liquid crystals were studied in this thesis. Four different experiments were presented to investigate the different aspects of their role in liquid crystal physics. A liquid crystal cell treated for homeotropic alignment with different surfactants at the two surfaces was subjected to an electric field E in the plane of the cell. The longitudinal polarization at the surface couples with the external field, and in consequence exerts a torque on molecules. The differential optical retardation deltaalpha due to a slight deformation was found to be linear in field over a frequency range 10 < o < 105 Hz, where d(deltaalpha)/dE is proportional to o -1. As a different aspect of the surface, the phenomenon of a chiral liquid crystal in highly restricted geometry was also investigated, where the random surface dominates the bulk. The optical rotatory power of the chiral liquid crystal in the porous medium was drastically altered from that of the bulk liquid crystal. The observed behavior may be attributed to a combination of surface interactions and finite size effects, which are discussed in terms of an infrared cutoff in the orientational pair correlation function. Chirality manifests itself not only as an optical activity in nematics, but more strikingly in forms of ferroelectric and antiferroelectric phases in smectics. The anticlinic interlayer coupling coefficient U between smectic layers was evaluated for a pitch-compensated antiferroelectric liquid crystal by optical observation of the optic mode response to an in-plane electric field. The result is in good agreement with Us estimated from the threshold field for the onset of solitary waves, and provides a strong support for the switching model based on the free energy. Finally, a new trimer liquid crystal based on a terminal-lateral-lateral-terminal connection was investigated. Magnetically induced Freedericksz measurements were performed to extract the elastic constants of

  18. Liquid crystalline composites containing phyllosilicates

    DOEpatents

    Chaiko; David J.

    2007-05-08

    The present invention provides barrier films having reduced gas permeability for use in packaging and coating applications. The barrier films comprise an anisotropic liquid crystalline composite layer formed from phyllosilicate-polymer compositions. Phyllosilicate-polymer liquid crystalline compositions of the present invention can contain a high percentage of phyllosilicate while remaining transparent. Because of the ordering of the particles in the liquid crystalline composite, barrier films comprising liquid crystalline composites are particularly useful as barriers to gas transport.

  19. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  20. Quality user support: Supporting quality users

    SciTech Connect

    Woolley, T.C.

    1994-12-31

    During the past decade, fundamental changes have occurred in technical computing in the oil industry. Technical computing systems have moved from local, fragmented quantity, to global, integrated, quality. The compute power available to the average geoscientist at his desktop has grown exponentially. Technical computing applications have increased in integration and complexity. At the same time, there has been a significant change in the work force due to the pressures of restructuring, and the increased focus on international opportunities. The profile of the user of technical computing resources has changed. Users are generally more mature, knowledgeable, and team oriented than their predecessors. In the 1990s, computer literacy is a requirement. This paper describes the steps taken by Oryx Energy Company to address the problems and opportunities created by the explosive growth in computing power and needs, coupled with the contraction of the business. A successful user support strategy will be described. Characteristics of the program include: (1) Client driven support; (2) Empowerment of highly skilled professionals to fill the support role; (3) Routine and ongoing modification to the support plan; (4) Utilization of the support assignment to create highly trained advocates on the line; (5) Integration of the support role to the reservoir management team. Results of the plan include a highly trained work force, stakeholder teams that include support personnel, and global support from a centralized support organization.

  1. High temperature liquid level sensor

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A length of metal sheathed metal oxide cable is perforated to permit liquid access to the insulation about a pair of conductors spaced close to one another. Changes in resistance across the conductors will be a function of liquid level, since the wetted insulation will have greater electrical conductivity than that of the dry insulation above the liquid elevation.

  2. Liquid lubrication for space applications

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Khonsari, Michael M.

    1992-01-01

    Reviewed here is the state of the art of liquid lubrication for space applications. The areas discussed are types of liquid lubrication mechanisms, space environmental effects on lubrication, classification of lubricants, liquid lubricant additives, grease lubrication, mechanism materials, bearing anomalies and failures, lubricant supply techniques, and application types and lubricant needs for those applications.

  3. Liquid/Gas Flow Mixers

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1994-01-01

    Improved devices mix gases and liquids into bubbly or foamy flows. Generates flowing, homogeneous foams or homogeneous dispersions of small, noncoalescing bubbles entrained in flowing liquids. Mixers useful in liquid-metal magnetohydrodynamic electric-power generator, froth flotation in mining industry, wastewater treatment, aerobic digestion, and stripping hydrocarbon contaminants from ground water.

  4. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  5. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Jurns, John M.; McQuillen, John B.

    2008-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  6. Liquid crystal orientation control in photonic liquid crystal fibers

    NASA Astrophysics Data System (ADS)

    Chychlowski, M. S.; Nowinowski-Kruszelnicki, E.; Woliński, T. R.

    2011-05-01

    Similarly to liquid crystal displays technology in photonic liquid crystal fibers (PLCFs) a molecular orientation control is a crucial issue that influences proper operation of PLCF-based devices. The paper presents two distinct configurations: planar and radial escaped orientation of the LC molecules inside capillaries as well as methods of their application to photonic liquid crystal fibers. Possibilities of LC orientation control influence both: attenuation and transmitting spectra of the PLCF The orienting method is based on creation of an additional orienting layer on the inner surface of the capillary or air hole of the photonic liquid crystal fiber. Aligning materials used in the experiment are commercially available polyimides SE1211 and SE130 which induce liquid crystal homeotropic and planar anchoring conditions. The orienting layer increase an order parameter of the liquid crystal improving propagation properties and stability of photonic liquid crystal fiber-based devices.

  7. Commercialization of regenerative life support systems

    NASA Astrophysics Data System (ADS)

    Flynn, Michael; Bubenheim, David

    1998-01-01

    Over the past 30 years NASA has funded research into the development of self sustained habitats for use as future Lunar and Martian outposts. A key element of this work has been the development of small scale liquid and solid waste processors. A secondary goal of this research has been to transfer this technology base to the private sector. This paper describes several programs which are involved in this Advanced Life Support technology transfer activity. The two programs highlighted in this paper are the CELSS Antarctic Analog Program and the Advanced Life Support for Extreme Environments program.

  8. Liquid Crystalline Phases of Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Amini, Kiana; Abukhdeir, Nasser; Matsen, Mark

    The phase behavior of liquid-crystal polymeric brushes in solvent are investigated using self-consistent field theory. The polymers are modeled as freely-jointed chain consisting of N rigid segments. The isotropic interactions between the polymer and the solvent are treated using the standard Flory-Huggins theory, while the anisotropic liquid-crystalline (LC) interactions between rigid segments are taken into account using the Mayer-Saupe theory. For weak LC interactions, the brush exhibits the conventional parabolic-like profile, while for strong LC interactions, the polymers crystallize into a dense brush with a step-like profile. At intermediate interaction strengths, we find the microphase-segregated phase observed previously for lattice-model calculations. In this phase, the brush exhibits a crystalline layer next to the grafting surface with an external layer similar to the conventional brush. This work was supported by NSERC of Canada.

  9. Blast wave mitigation by liquid foam

    NASA Astrophysics Data System (ADS)

    Monloubou, Martin; Dollet, Benjamin; Saint-Jalmes, Arnaud; Cantat, Isabelle; Soft Matter Team

    2014-11-01

    Due to their high apparent viscosity, liquid foams are good systems to absorb energy. This property is for instance used in the military domain to mitigate blast waves or explosions [Britan, 2009; Del Prete, 2013]. However, the underlying dissipation mechanisms are still not well understood. We address this issue by resolving in space and time a shock wave impacting a foam sample. We use a shock tube to send a shock wave on a foam with controlled liquid fraction, bubble size and physico-chemistry. The impacting shock creates an expanding cavity in the foam and propagates through the whole sample. The dynamics is recorded with a high speed camera and pressure signals are simultaneously measured. We show the influence of the bubble size and of the shock amplitude on the velocity and on the attenuation of the pressure signal, and on the foam destruction rate. This work is supported by the DGA.

  10. A liquid bridge connecting moving porous surfaces

    NASA Astrophysics Data System (ADS)

    Gharib, Morteza; Gat, Amir; Navaz, Homayun

    2011-11-01

    We study the coupled problem of a liquid bridge connecting two porous surfaces where the gap between the surfaces is an externally controlled function of time. The relative motion between the surfaces affects the geometry and the pressure distribution of the liquid bridge, thus influencing the diffusion speed and penetration topology within the porous material. Utilizing the lubrication approximation and Darcy's phenomenological law we obtain a relation between the diffusion into the porous surface and the relative motion between the surfaces. A scheme to control the diffusion topology is presented and illustrated for the case of conical penetration topology with an arbitrary cone opening angle. Analytic expressions describing the penetration topology for the case of constant speed of the surfaces and the relative motion between the surfaces required to create a conical penetration topology are obtained and compared to experimental and numerical data. This project was supported by the Defense Threat Reduction Agency (DTRA), Award Number: 330233-A.

  11. Drop Impact on to Moving Liquid Pools

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  12. The dynamics of free liquid drops

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Trinh, E. H.; Croonquist, A. P.; Elleman, D. D.

    1988-01-01

    The behavior of rotating and oscillating free liquid drops was studied by many investigators theoretically for many years. More recent numerical treatments have yielded predictions which are yet to be verified experimentally. The purpose is to report the results of laboratory work as well as that of the experiments carried out in space during the flight of Spacelab 3, and to compare it with the existing theoretical studies. Ground-based experiments were attempted as a first approximation to the ideal boundary conditions used by the theoretical treatments by neutralizing the overwhelming effects of the Earth's gravitational field with an outside supporting liquid and with the use of levitation technology. The viscous and inertial loading of such a suspending fluid was found to profoundly effect the results, but the information thus gathered has emphasized the uniqueness of the experimental data obtained in the low-gravity environment of space.

  13. Blowing a liquid curtain

    NASA Astrophysics Data System (ADS)

    Lhuissier, H.; Brunet, P.; Dorbolo, S.

    2015-11-01

    We study the response of a steady free-falling liquid curtain perturbed by focused air jets blowing perpendicularly against it. Asymmetric and symmetric perturbations are applied by using either a single pulsed jet or two identical steady jets facing each other. The response strongly depends on the curtain flow rate, and the location and strength of the perturbation. For pulsed asymmetric perturbations of increasing amplitude, sinuous wave, drop ejection, bubble ejection, and hole opening are successively observed. For steady symmetric perturbations, a steady hole forms downstream in the wake. For this latter case, we present a model for the curtain thickness and the location of the hole inthe wake which compares favorably to the experiments providing the perturbation is small enough (jet stagnation pressure smaller than curtain stagnation pressure) and the liquid viscosity is negligible.

  14. Liquid ``Wires" for Microfluidics

    NASA Astrophysics Data System (ADS)

    Kellis, Nathan; Mazzeo, Aaron; Mazzeo, Brian

    2009-10-01

    We demonstrate liquid ``wires'' in a simple solution measurement device. This device highlights the possibility of fabricating liquid circuits. These ``wires'' were formed by filling micro-milled PMMA channels with 5M NaCl solution. Wires were connected to these salt solution channels; the impedance of a test channel filled with solution was measured by an HP 4294A Impedance Analyzer. Deionized water, 2-propanol, and 5M NaCl were measured. Numerical simulations were performed on the channel cross-section to determine the predicted impedance of the device. The simulated results were compared to the experimental data. Graphs of simulations and experiments are presented for the frequency range 1 KHz to 110 MHz. The data show electrode polarization at the electrode-electrolyte interface, as well as parasitic capacitance inherent in the experimental arrangement.

  15. Jets of incipient liquids

    NASA Astrophysics Data System (ADS)

    Reshetnikov, A. V.; Mazheiko, N. A.; Skripov, V. P.

    2000-05-01

    Jets of incipient water escaping into the atmosphere through a short channel are photographed. In some experiments. complete disintegration of the jet is observed. The relationship of this phenomenon with intense volume incipience is considered. The role of the Coanda effect upon complete opening of the jet is revealed. Measurement results of the recoil force R of the jets of incipient liquids are presented. Cases of negative thrust caused by the Coanda effect are noted. Generalization of experimental data is proposed.

  16. Liquids with permanent porosity.

    PubMed

    Giri, Nicola; Del Pópolo, Mario G; Melaugh, Gavin; Greenaway, Rebecca L; Rätzke, Klaus; Koschine, Tönjes; Pison, Laure; Gomes, Margarida F Costa; Cooper, Andrew I; James, Stuart L

    2015-11-12

    Porous solids such as zeolites and metal-organic frameworks are useful in molecular separation and in catalysis, but their solid nature can impose limitations. For example, liquid solvents, rather than porous solids, are the most mature technology for post-combustion capture of carbon dioxide because liquid circulation systems are more easily retrofitted to existing plants. Solid porous adsorbents offer major benefits, such as lower energy penalties in adsorption-desorption cycles, but they are difficult to implement in conventional flow processes. Materials that combine the properties of fluidity and permanent porosity could therefore offer technological advantages, but permanent porosity is not associated with conventional liquids. Here we report free-flowing liquids whose bulk properties are determined by their permanent porosity. To achieve this, we designed cage molecules that provide a well-defined pore space and that are highly soluble in solvents whose molecules are too large to enter the pores. The concentration of unoccupied cages can thus be around 500 times greater than in other molecular solutions that contain cavities, resulting in a marked change in bulk properties, such as an eightfold increase in the solubility of methane gas. Our results provide the basis for development of a new class of functional porous materials for chemical processes, and we present a one-step, multigram scale-up route for highly soluble 'scrambled' porous cages prepared from a mixture of commercially available reagents. The unifying design principle for these materials is the avoidance of functional groups that can penetrate into the molecular cage cavities. PMID:26560299

  17. Liquid fuel cells.

    PubMed

    Soloveichik, Grigorii L

    2014-01-01

    The advantages of liquid fuel cells (LFCs) over conventional hydrogen-oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented.

  18. RHIC The Perfect Liquid

    ScienceCinema

    BNL

    2016-07-12

    Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.

  19. Liquid fuel cells

    PubMed Central

    2014-01-01

    Summary The advantages of liquid fuel cells (LFCs) over conventional hydrogen–oxygen fuel cells include a higher theoretical energy density and efficiency, a more convenient handling of the streams, and enhanced safety. This review focuses on the use of different types of organic fuels as an anode material for LFCs. An overview of the current state of the art and recent trends in the development of LFC and the challenges of their practical implementation are presented. PMID:25247123

  20. RHIC The Perfect Liquid

    SciTech Connect

    BNL

    2008-08-12

    Evidence to date suggests that gold-gold collisions the Relativistic Heavy Ion Collider at Brookhaven are indeed creating a new state of hot, dense matter, but one quite different and even more remarkable than had been predicted. Instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a "perfect" liquid.