Sample records for bubble collapse induced

  1. Numerical studies of cavitation erosion on an elastic-plastic material caused by shock-induced bubble collapse

    NASA Astrophysics Data System (ADS)

    Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.

    2017-09-01

    We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.

  2. Shock-induced collapse of a bubble inside a deformable vessel

    PubMed Central

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  3. Numerical simulations of non-spherical bubble collapse.

    PubMed

    Johnsen, Eric; Colonius, Tim

    2009-06-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.

  4. Numerical simulations of non-spherical bubble collapse

    PubMed Central

    JOHNSEN, ERIC; COLONIUS, TIM

    2009-01-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233

  5. Shock waves from non-spherically collapsing cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed

    2017-11-01

    Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ < 0.01 , the jet impact hammer pressure is found to be the most energetic shock. Through statistical analysis of the experimental data and theoretical derivations, and by comparing bubbles deformed by different sources (variable gravity achieved on parabolic flights, and neighboring free and rigid surfaces), we find that the shock peak pressure may be approximated as the jet impact-induced water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .

  6. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haniff, S.; Taylor, P. A.

    In this paper, we conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressuremore » pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Finally, simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.« less

  7. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    DOE PAGES

    Haniff, S.; Taylor, P. A.

    2017-10-17

    In this paper, we conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressuremore » pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Finally, simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.« less

  8. In silico investigation of blast-induced intracranial fluid cavitation as it potentially leads to traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Haniff, S.; Taylor, P. A.

    2017-11-01

    We conducted computational macroscale simulations predicting blast-induced intracranial fluid cavitation possibly leading to brain injury. To further understanding of this problem, we developed microscale models investigating the effects of blast-induced cavitation bubble collapse within white matter axonal fiber bundles of the brain. We model fiber tracks of myelinated axons whose diameters are statistically representative of white matter. Nodes of Ranvier are modeled as unmyelinated sections of axon. Extracellular matrix envelops the axon fiber bundle, and gray matter is placed adjacent to the bundle. Cavitation bubbles are initially placed assuming an intracranial wave has already produced them. Pressure pulses, of varied strengths, are applied to the upper boundary of the gray matter and propagate through the model, inducing bubble collapse. Simulations, conducted using the shock wave physics code CTH, predict an increase in pressure and von Mises stress in axons downstream of the bubbles after collapse. This appears to be the result of hydrodynamic jetting produced during bubble collapse. Interestingly, results predict axon cores suffer significantly lower shear stresses from proximal bubble collapse than does their myelin sheathing. Simulations also predict damage to myelin sheathing, which, if true, degrades axonal electrical transmissibility and general health of the white matter structures in the brain.

  9. Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field

    NASA Astrophysics Data System (ADS)

    Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.

    2004-03-01

    The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.

  10. Shock-induced collapse of a gas bubble in shockwave lithotripsy.

    PubMed

    Johnsen, Eric; Colonius, Tim

    2008-10-01

    The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy.

  11. Shock-induced collapse of a gas bubble in shockwave lithotripsy

    PubMed Central

    Johnsen, Eric; Colonius, Tim

    2008-01-01

    The shock-induced collapse of a pre-existing nucleus near a solid surface in the focal region of a lithotripter is investigated. The entire flow field of the collapse of a single gas bubble subjected to a lithotripter pulse is simulated using a high-order accurate shock- and interface-capturing scheme, and the wall pressure is considered as an indication of potential damage. Results from the computations show the same qualitative behavior as that observed in experiments: a re-entrant jet forms in the direction of propagation of the pulse and penetrates the bubble during collapse, ultimately hitting the distal side and generating a water-hammer shock. As a result of the propagation of this wave, wall pressures on the order of 1 GPa may be achieved for bubbles collapsing close to the wall. The wall pressure decreases with initial stand-off distance and pulse width and increases with pulse amplitude. For the stand-off distances considered in the present work, the wall pressure due to bubble collapse is larger than that due to the incoming shockwave; the region over which this holds may extend to ten initial radii. The present results indicate that shock-induced collapse is a mechanism with high potential for damage in shockwave lithotripsy. PMID:19062841

  12. Experimental observation of the luminescence flash at the collapse phase of a bubble produced by pulsed discharge in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yifan; Zhang, Liancheng; Zhu, Xinlei

    2015-11-02

    This letter presents an experimental observation of luminescence flash at the collapse phase of an oscillating bubble produced by a pulsed discharge in water. According to the high speed records, the flash lasts around tens of microseconds, which is much longer than the lifetime of laser and ultrasound induced luminescence flashes in nanoseconds and picoseconds, respectively. The pulse width of temperature waveform and minimum radius calculated at the collapse phase also show that the thermodynamic and dynamic signatures of the bubbles in this work are much larger than those of ultrasound and laser induced bubbles both in time and spacemore » scales. However, the peak temperature at the point of collapse is close to the results of ultrasound and laser induced bubbles. This result provides another possibility for accurate emission spectrum measurement other than amplification of the emitted light, such as increasing laser energy or sound energy or substituting water with sulphuric acid.« less

  13. Effect of Shock-Induced Cavitation Bubble Collapse on the damage in the Simulated Perineuronal Net of the Brain.

    PubMed

    Wu, Yuan-Ting; Adnan, Ashfaq

    2017-07-13

    The purpose of this study is to conduct modeling and simulation to understand the effect of shock-induced mechanical loading, in the form of cavitation bubble collapse, on damage to the brain's perineuronal nets (PNNs). It is known that high-energy implosion due to cavitation collapse is responsible for corrosion or surface damage in many mechanical devices. In this case, cavitation refers to the bubble created by pressure drop. The presence of a similar damage mechanism in biophysical systems has long being suspected but not well-explored. In this paper, we use reactive molecular dynamics (MD) to simulate the scenario of a shock wave induced cavitation collapse within the perineuronal net (PNN), which is the near-neuron domain of a brain's extracellular matrix (ECM). Our model is focused on the damage in hyaluronan (HA), which is the main structural component of PNN. We have investigated the roles of cavitation bubble location, shockwave intensity and the size of a cavitation bubble on the structural evolution of PNN. Simulation results show that the localized supersonic water hammer created by an asymmetrical bubble collapse may break the hyaluronan. As such, the current study advances current knowledge and understanding of the connection between PNN damage and neurodegenerative disorders.

  14. Vortex dynamics of collapsing bubbles: Impact on the boundary layer measured by chronoamperometry.

    PubMed

    Reuter, Fabian; Cairós, Carlos; Mettin, Robert

    2016-11-01

    Cavitation bubbles collapsing in the vicinity to a solid substrate induce intense micro-convection at the solid. Here we study the transient near-wall flows generated by single collapsing bubbles by chronoamperometric measurements synchronously coupled with high-speed imaging. The individual bubbles are created at confined positions by a focused laser pulse. They reach a maximum expansion radius of approximately 425μm. Several stand-off distances to the flat solid boundary are investigated and all distances are chosen sufficiently large that no gas phase of the expanding and collapsing bubble touches the solid directly. With a microelectrode embedded into the substrate, the time-resolved perturbations in the liquid shear layer are probed by means of a chronoamperometric technique. The measurements of electric current are synchronized with high-speed imaging of the bubble dynamics. The perturbations of the near-wall layer are found to result mainly from ring vortices created by the jetting bubble. Other bubble induced flows, such as the jet and flows following the radial bubble oscillations are perceptible with this technique, but show a minor influence at the stand-off distances investigated. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Simulation of shock-induced bubble collapse with application to vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran

    Shockwave lithotripsy is a noninvasive medical procedure wherein shockwaves are repeatedly focused at the location of kidney stones in order to pulverize them. Stone comminution is thought to be the product of two mechanisms: the propagation of stress waves within the stone and cavitation erosion. However, the latter mechanism has also been implicated in vascular injury. In the present work, shock-induced bubble collapse is studied in order to understand the role that it might play in inducing vascular injury. A high-order accurate, shock- and interface-capturing numerical scheme is developed to simulate the three-dimensional collapse of the bubble in both the free-field and inside a vessel phantom. The primary contributions of the numerical study are the characterization of the shock-bubble and shock-bubble-vessel interactions across a large parameter space that includes clinical shockwave lithotripsy pressure amplitudes, problem geometry and tissue viscoelasticity, and the subsequent correlation of these interactions to vascular injury. Specifically, measurements of the vessel wall pressures and displacements, as well as the finite strains in the fluid surrounding the bubble, are utilized with available experiments in tissue to evaluate damage potential. Estimates are made of the smallest injurious bubbles in the microvasculature during both the collapse and jetting phases of the bubble's life cycle. The present results suggest that bubbles larger than one micrometer in diameter could rupture blood vessels under clinical SWL conditions.

  16. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.

    PubMed

    Lukač, Nejc; Jezeršek, Matija

    2018-05-01

    When attempting to clean surfaces of dental root canals with laser-induced cavitation bubbles, the resulting cavitation oscillations are significantly prolonged due to friction on the cavity walls and other factors. Consequently, the collapses are less intense and the shock waves that are usually emitted following a bubble's collapse are diminished or not present at all. A new technique of synchronized laser-pulse delivery intended to enhance the emission of shock waves from collapsed bubbles in fluid-filled endodontic canals is reported. A laser beam deflection probe, a high-speed camera, and shadow photography were used to characterize the induced photoacoustic phenomena during synchronized delivery of Er:YAG laser pulses in a confined volume of water. A shock wave enhancing technique was employed which consists of delivering a second laser pulse at a delay with regard to the first cavitation bubble-forming laser pulse. Influence of the delay between the first and second laser pulses on the generation of pressure and shock waves during the first bubble's collapse was measured for different laser pulse energies and cavity volumes. Results show that the optimal delay between the two laser pulses is strongly correlated with the cavitation bubble's oscillation period. Under optimal synchronization conditions, the growth of the second cavitation bubble was observed to accelerate the collapse of the first cavitation bubble, leading to a violent collapse, during which shock waves are emitted. Additionally, shock waves created by the accelerated collapse of the primary cavitation bubble and as well of the accompanying smaller secondary bubbles near the cavity walls were observed. The reported phenomena may have applications in improved laser cleaning of surfaces during laser-assisted dental root canal treatments.

  17. Numerical study of ambient pressure for laser-induced bubble near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Li, BeiBei; Zhang, HongChao; Han, Bing; Lu, Jian

    2012-07-01

    The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.

  18. Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water.

    PubMed

    Chen, Xiao; Xu, Rong-Qing; Chen, Jian-Ping; Shen, Zhong-Hua; Jian, Lu; Ni, Xiao-Wu

    2004-06-01

    A highly sensitive fiber-optic sensor based on optical beam deflection is applied for investigating the propagation of a laser-induced plasma shock wave, the oscillation of a cavitation bubble diameter, and the development of a bubble-collapse-induced shock wave when a Nd:YAG laser pulse is focused upon an aluminum surface in water. By the sequence of experimental waveforms detected at different distances, the attenuation properties of the plasma shock wave and of the bubble-collapse-induced shock wave are obtained. Besides, based on characteristic signals, both the maximum and the minimum bubble radii at each oscillation cycle are determined, as are the corresponding oscillating periods.

  19. Luminescence from cavitation bubbles deformed in uniform pressure gradients

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2017-09-01

    Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perceived gravity level aboard parabolic flights, we probed the limit from aspherical to highly spherical bubble collapses. Luminescence was detected for bubbles of maximum radii within the previously uncovered range, R0=1.5 -6 mm, for laser-induced bubbles. The relative luminescence energy was found to rapidly decrease as a function of the bubble asymmetry quantified by the anisotropy parameter ζ , which is the dimensionless equivalent of the Kelvin impulse. As established previously, ζ also dictates the characteristic parameters of bubble-driven microjets. The threshold of ζ beyond which no luminescence is observed in our experiment closely coincides with the threshold where the microjets visibly pierce the bubble and drive a vapor jet during the rebound. The individual fitted blackbody temperatures range between Tlum=7000 and Tlum=11 500 K but do not show any clear trend as a function of ζ . Time-resolved measurements using a high-speed photodetector disclose multiple luminescence events at each bubble collapse. The averaged full width at half-maximum of the pulse is found to scale with R0 and to range between 10 and 20 ns.

  20. Modeling bubble dynamics and radical kinetics in ultrasound induced microalgal cell disruption.

    PubMed

    Wang, Meng; Yuan, Wenqiao

    2016-01-01

    Microalgal cell disruption induced by acoustic cavitation was simulated through solving the bubble dynamics in an acoustical field and their radial kinetics (chemical kinetics of radical species) occurring in the bubble during its oscillation, as well as calculating the bubble wall pressure at the collapse point. Modeling results indicated that increasing ultrasonic intensity led to a substantial increase in the number of bubbles formed during acoustic cavitation, however, the pressure generated when the bubbles collapsed decreased. Therefore, cumulative collapse pressure (CCP) of bubbles was used to quantify acoustic disruption of a freshwater alga, Scenedesmus dimorphus, and a marine alga, Nannochloropsis oculata and compare with experimental results. The strong correlations between CCP and the intracellular lipid fluorescence density, chlorophyll-a fluorescence density, and cell particle/debris concentration were found, which suggests that the developed models could accurately predict acoustic cell disruption, and can be utilized in the scale up and optimization of the process. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls

    NASA Astrophysics Data System (ADS)

    Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.

    2018-06-01

    Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.

  2. The effect of gravity-induced pressure gradient on bubble luminescence

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Tinguely, Marc; Farhat, Mohamed

    2014-11-01

    The violent collapse of a bubble can heat up its gaseous contents to temperatures exceeding those on the sun's surface, resulting in a short luminescence flash. Occurring at the very moment of the collapse, luminescence must be highly sensitive to the bubble geometry at the preceding final stage. This represents an important feature as any pressure anisotropy in the surrounding liquid will result in a deformation of an initially spherical bubble, inducing a micro-jet that pierces the bubble and makes it experience a toroidal collapse. We therefore present these as complementary phenomena by investigating the link between jets and luminescence of laser-generated single bubbles. Through ultra-high-speed imaging, the micro-jet formation and evolution of a single bubble are observed with unprecedented detail, whilst the bubble light emission is analyzed by means of a spectrometer. The bubble energy and the micro-jet size are controlled by adjusting the laser-pulse and by varying the gravity level aboard ESA parabolic flights, respectively. We here provide systematic evidence on how bubble-jets suppress luminescence in a considerable manner, even in normal gravity where the jet is barely observable. We conclude that gravity must be accounted for in accurate models of luminescence.

  3. Cavitation in ultrasound and shockwave therapy

    NASA Astrophysics Data System (ADS)

    Colonius, Tim

    2014-11-01

    Acoustic waves, especially high-intensity ultrasound and shock waves, are used for medical imaging and intra- and extra-corporeal manipulation of cells, tissue, and urinary calculi. Waves are currently used to treat kidney stone disease, plantar fasciitis, and bone nonunion, and they are being investigated as a technique to ablate cancer tumors and mediate drug delivery. In many applications, acoustic waves induce the expansion and collapse of preexisting or newly cavitating bubbles whose presence can either mediate the generation of localized stresses or lead to collateral damage, depending on how effectively they can be controlled. We describe efforts aimed at simulating the collapse of bubbles, both individually and in clusters, with the aim to characterize the induced mechanical stresses and strains. To simulate collapse of one or a few bubbles, compressible Euler and Navier-Stokes simulations of multi-component materials are performed with WENO-based shock and interface capturing schemes. Repetitive insonification generates numerous bubbles that are difficult to resolve numerically. Such clouds are also important in traditional engineering applications such as caveating hydrofoils. Models that incorporate the dynamics of an unresolved dispersed phase consisting of the bubble cloud are also developed. The results of several model problems including bubble collapse near rigid surfaces, bubble collapse near compliant surfaces and in small capillaries are analyzed. The results are processed to determine the potential for micron-sized preexisting gas bubbles to damage capillaries. The translation of the fundamental fluid dynamics into improvements in the design and clinical application of shockwave lithotripters will be discussed. NIH Grant PO1-DK043881.

  4. Dynamic Nucleation of Ice Induced by a Single Stable Cavitation Bubble

    NASA Technical Reports Server (NTRS)

    Ohsaka, Kenichi; Trinh, Eugene H.

    1997-01-01

    Dynamic nucleation of ice induced by caviation bubble in undercooled water is observed using an acoustic levitation technique. The observation indicates that a high pressure pulse associated with a collapsing bubble is indeed responsible for the nucleation of a high pressure phase of ice.

  5. Dynamics of primary and secondary microbubbles created by laser-induced breakdown of an optically trapped nanoparticle

    PubMed Central

    Arita, Y.; Antkowiak, M.; Venugopalan, V.; Gunn-Moore, F. J.; Dholakia, K.

    2012-01-01

    Laser-induced breakdown of an optically trapped nanoparticle is a unique system for studying cavitation dynamics. It offers additional degrees of freedom, namely the nanoparticle material, its size, and the relative position between the laser focus and the center of the optically trapped nanoparticle. We quantify the spatial and temporal dynamics of the cavitation and secondary bubbles created in this system and use hydrodynamic modeling to quantify the observed dynamic shear stress of the expanding bubble. In the final stage of bubble collapse, we visualize the formation of multiple submicrometer secondary bubbles around the toroidal bubble on the substrate. We show that the pattern of the secondary bubbles typically has its circular symmetry broken along an axis whose unique angle rotates over time. This is a result of vorticity along the jet towards the boundary upon bubble collapse near solid boundaries. PMID:22400669

  6. The Collapse of Vapor Bubbles in a Spatially Non-Uniform Flow

    NASA Technical Reports Server (NTRS)

    Hao, Y.; Prosperetti, A.

    2000-01-01

    Pressure gradients act differently on liquid particles and suspended bubbles and are, therefore, capable of inducing a relative motion between the phases even when no relative velocity initially exists. As a consequence of the enhanced heat transfer in the presence of convection, this fact may have a major impact on the evolution of a vapor bubble. The effect is particularly strong in the case of a collapsing bubble for which, due to the conservation of the system's impulse, the induced relative velocity tends to be magnified when the bubble volume shrinks. A practical application could be, for instance, the enhancement of the condensation rate of bubbles downstream of a heated region, thereby reducing the quality of a flowing liquid-vapor mixture. A simple model of the process, in which the bubble is assumed to be spherical and the flow potential, is developed in the paper.

  7. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the cleaned area, and it is concluded that three-phase contact line motion is not a major cause of particle removal. Finally, we find a relation of cleaning area vs. stand-off γ that deviates from literature data on surface erosion. This indicates that different effects are responsible for particle removal and for substrate damage. It is suggested that a trade-off of cleaning potential and damage risk for sensible surfaces might be achieved by optimising γ. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Shock-induced nanobubble collapse and its applications

    NASA Astrophysics Data System (ADS)

    Vedadi, Mohammad Hossein

    The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.

  9. Evolution of bubble clouds induced by pulsed cavitational ultrasound therapy - histotripsy.

    PubMed

    Xu, Zhen; Raghavan, M; Hall, T L; Mycek, M-A; Fowlkes, J B

    2008-05-01

    Mechanical tissue fractionation can be achieved using successive, high-intensity ultrasound pulses in a process termed histotripsy. Histotripsy has many potential clinical applications where noninvasive tissue removal is desired. The primary mechanism for histotripsy is believed to be cavitation. Using fast-gated imaging, this paper studies the evolution of a cavitating bubble cloud induced by a histotripsy pulse (10 and 14 cycles) at peak negative pressures exceeding 21MPa. Bubble clouds are generated inside a gelatin phantom and at a tissue-water interface, representing two situations encountered clinically. In both environments, the imaging results show that the bubble clouds share the same evolutionary trend. The bubble cloud and individual bubbles in the cloud were generated by the first cycle of the pulse, grew with each cycle during the pulse, and continued to grow and collapsed several hundred microseconds after the pulse. For example, the bubbles started under 10 microm, grew to 50 microm during the pulse, and continued to grow 100 microm after the pulse. The results also suggest that the bubble clouds generated in the two environments differ in growth and collapse duration, void fraction, shape, and size. This study furthers our understanding of the dynamics of bubble clouds induced by histotripsy.

  10. Simulation of the ultrasound-induced growth and collapse of a near-wall bubble

    NASA Astrophysics Data System (ADS)

    Boyd, Bradley; Becker, Sid

    2017-11-01

    In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.

  11. Interaction of lithotripter shockwaves with single inertial cavitation bubbles

    PubMed Central

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei

    2008-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296

  12. Interaction of lithotripter shockwaves with single inertial cavitation bubbles.

    PubMed

    Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei

    2007-01-01

    The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.

  13. Direct visualization of microalgae rupture by ultrasound-driven bubbles

    NASA Astrophysics Data System (ADS)

    Pommella, Angelo; Harun, Irina; Pouliopoulos, Antonis; Choi, James J.; Hellgardt, Klaus; Garbin, Valeria

    2015-11-01

    Cell rupture induced by ultrasound is central to applications in biotechnology. For instance, cell disruption is required in the production of biofuels from microalgae (unicellular species of algae). Ultrasound-induced cavitation, bubble collapse and jetting are exploited to induce sufficiently large viscous stresses to cause rupture of the cell membranes. It has recently been shown that seeding the flow with bubbles that act as cavitation nuclei significantly reduces the energy cost for cell processing. However, a fundamental understanding of the conditions for rupture of microalgae in the complex flow fields generated by ultrasound-driven bubbles is currently lacking. We perform high-speed video microscopy to visualize the miscroscale details of the interaction of Chlamydomonas reinhardtii , microalgae of about 10 μm in size, with ultrasound-driven microbubbles of 2-200 μm in diameter. We investigate the efficiency of cell rupture depending on ultrasound frequency and pressure amplitude (from 10 kPa up to 1 MPa), and the resulting bubble dynamics regimes. In particular we compare the efficiency of membrane rupture in the acoustic microstreaming flow induced by linear oscillations, with the case of violent bubble collapse and jetting. V.G. acknowledges partial support from the European Commission (FP7-PEOPLE-2013-CIG), Grant No. 618333.

  14. Surface tension effects on the behavior of a cavity growing, collapsing, and rebounding near a rigid wall.

    PubMed

    Zhang, Zhen-yu; Zhang, Hui-sheng

    2004-11-01

    Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.

  15. Cavitation studies in microgravity

    NASA Astrophysics Data System (ADS)

    Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele

    The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion. The aim of our future microgravity experiment is to assess the direct effects of gravity on cavitation bubble collapse through a comparison of single cavitation bubbles collapsing in mi-crogravity, normal gravity, and hypergravity. In particular, we shall investigate the shape of the bubble in its final collapse stage and the amount of energy dissipated in the dominant collapse channels, such as liquid jet, shock wave, and rebound bubble. The highly spherical bubbles will be produced via a point-like plasma generated by a high power laser beam. One major hypothesis that we will test is an increase in shock wave energy with decreasing gravity as a consequence of the higher final sphericity and suppression of liquid jets. To support this, we introduce an analytical model for the gravity-perturbed asymmetric collapse of spherical bubbles, and demonstrate that all initially spherical bubbles develop a gravity-related vertical jet along their collapse.

  16. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027

  17. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.

  18. Investigation of the properties of laser-induced cavitation bubble collapse and sound waves

    NASA Astrophysics Data System (ADS)

    Li, Shengyong; Ai, Xiaochuan; Wu, Ronghua; Cao, Jing

    2017-02-01

    The theoretical model of single bubble movement in an ideal solution, to carry on the numerical simulation of the process of cavitation in the liquid, the liquid in different laser energy, laser induced cavitation rules and acoustic characteristics were studied by high-speed camera, high frequency measurements of the hydrophone. The results show that with the increase of laser energy, the period of bubble pulsation and the maximum bubble radius increase gradually, and the amplitude of the laser acoustic signal becomes larger.

  19. Intraluminal bubble dynamics induced by lithotripsy shock wave

    NASA Astrophysics Data System (ADS)

    Song, Jie; Bai, Jiaming; Zhou, Yufeng

    2016-12-01

    Extracorporeal shock wave lithotripsy (ESWL) has been the first option in the treatment of calculi in the upper urinary tract since its introduction. ESWL-induced renal injury is also found after treatment and is assumed to associate with intraluminal bubble dynamics. To further understand the interaction of bubble expansion and collapse with the vessel wall, the finite element method (FEM) was used to simulate intraluminal bubble dynamics and calculate the distribution of stress in the vessel wall and surrounding soft tissue during cavitation. The effects of peak pressure, vessel size, and stiffness of soft tissue were investigated. Significant dilation on the vessel wall occurs after contacting with rapid and large bubble expansion, and then vessel deformation propagates in the axial direction. During bubble collapse, large shear stress is found to be applied to the vessel wall at a clinical lithotripter setting (i.e. 40 MPa peak pressure), which may be the mechanism of ESWL-induced vessel rupture. The decrease of vessel size and viscosity of soft tissue would enhance vessel deformation and, consequently, increase the generated shear stress and normal stresses. Meanwhile, a significantly asymmetric bubble boundary is also found due to faster axial bubble expansion and shrinkage than in radial direction, and deformation of the vessel wall may result in the formation of microjets in the axial direction. Therefore, this numerical work would illustrate the mechanism of ESWL-induced tissue injury in order to develop appropriate counteractive strategies for reduced adverse effects.

  20. Quantitative measurements of acoustic emissions from cavitation at the surface of a stone in response to a lithotripter shock wave.

    PubMed

    Chitnis, Parag V; Cleveland, Robin O

    2006-04-01

    Measurements are presented of acoustic emissions from cavitation collapses on the surface of a synthetic kidney stone in response to shock waves (SWs) from an electrohydraulic lithotripter. A fiber optic probe hydrophone was used for pressure measurements, and passive cavitation detection was used to identify acoustic emissions from bubble collapse. At a lithotripter charging voltage of 20 kV, the focused SW incident on the stone surface resulted in a peak pressure of 43 +/- 6 MPa compared to 23 +/- 4 MPa in the free field. The focused SW incident upon the stone appeared to be enhanced due to the acoustic emissions from the forced cavitation collapse of the preexisting bubbles. The peak pressure of the acoustic emission from a bubble collapse was 34 +/- 15 MPa, that is, the same magnitude as the SWs incident on the stone. These data indicate that stresses induced by focused SWs and cavitation collapses are similar in magnitude thus likely play a similar role in stone fragmentation.

  1. Enhancing the aggressive intensity of hydrodynamic cavitation through a Venturi tube by increasing the pressure in the region where the bubbles collapse

    NASA Astrophysics Data System (ADS)

    Soyama, H.; Hoshino, J.

    2016-04-01

    In this paper, we used a Venturi tube for generating hydrodynamic cavitation, and in order to obtain the optimum conditions for this to be used in chemical processes, the relationship between the aggressive intensity of the cavitation and the downstream pressure where the cavitation bubbles collapse was investigated. The acoustic power and the luminescence induced by the bubbles collapsing were investigated under various cavitating conditions, and the relationships between these and the cavitation number, which depends on the upstream pressure, the downstream pressure at the throat of the tube and the vapor pressure of the test water, was found. It was shown that the optimum downstream pressure, i.e., the pressure in the region where the bubbles collapse, increased the aggressive intensity by a factor of about 100 compared to atmospheric pressure without the need to increase the input power. Although the optimum downstream pressure varied with the upstream pressure, the cavitation number giving the optimum conditions was constant for all upstream pressures.

  2. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.

    PubMed

    Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

    2000-10-01

    The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena.

  3. Inertial collapse of bubble pairs near a solid surface

    NASA Astrophysics Data System (ADS)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2017-11-01

    Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.

  4. High-energy synchrotron study of in-pile-irradiated U–Mo fuels

    DOE PAGES

    Miao, Yinbin; Mo, Kun; Ye, Bei; ...

    2015-12-30

    We report synchrotron scattering analysis results on U-7wt%Mo fuel samples irradiated in the Advanced Test Reactor to three different burnup levels. Mature fission gas bubble superlattice was observed to form at intermediate burnup. The superlattice constant was determined to be 11.7 nm and 12.1 nm by wide-angle and small-angle scattering respectively. Grain sub-division takes place throughout the irradiation and causes the collapse of the superlattice at high burnup. The bubble superlattice expands the lattice constant and acts as strong sinks of radiation induced defects. The evolution of dislocation loops was therefore suppressed until the bubble superlattice collapses.

  5. Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse

    NASA Astrophysics Data System (ADS)

    Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2008-06-01

    In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial fragmentation does not yield bubble proliferation, as the daughter bubbles coalesce to reform a single bubble. Instead, bubble proliferation is the product of the subsequent inertial collapses.

  6. Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue.

    PubMed

    Canchi, Saranya; Kelly, Karen; Hong, Yu; King, Michael A; Subhash, Ghatu; Sarntinoranont, Malisa

    2017-10-01

    Multiscale damage due to cavitation is considered as a potential mechanism of traumatic brain injury (TBI) associated with explosion. In this study, we employed a TBI relevant hippocampal ex vivo slice model to induce bubble cavitation. Placement of single reproducible seed bubbles allowed control of size, number, and tissue location to visualize and measure deformation parameters. Maximum strain value was measured at 45 µs after bubble collapse, presented with a distinct contour and coincided temporally and spatially with the liquid jet. Composite injury maps combined this maximum strain value with maximum measured bubble size and location along with histological injury patterns. This facilitated the correlation of bubble location and subsequent jet direction to the corresponding regions of high strain which overlapped with regions of observed injury. A dynamic threshold strain range for tearing of cerebral cortex was estimated to be between 0.5 and 0.6. For a seed bubble placed underneath the hippocampus, cavitation induced damage was observed in hippocampus (local), proximal cerebral cortex (marginal) and the midbrain/forebrain (remote) upon histological evaluation. Within this test model, zone of cavitation injury was greater than the maximum radius of the bubble. Separation of apposed structures, tissue tearing, and disruption of cellular layers defined early injury patterns that were not detected in the blast-exposed half of the brain slice. Ultrastructural pathology of the neurons exposed to cavitation was characterized by disintegration of plasma membrane along with loss of cellular content. The developed test system provided a controlled experimental platform to study cavitation induced high strain deformations on brain tissue slice. The goal of the future studies will be to lower underpressure magnitude and cavitation bubble size for more sensitive evaluation of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Shock-induced bubble collapse in a vessel: Implications for vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran; Colonius, Tim

    2014-11-01

    In shockwave lithotripsy, shocks are repeatedly focused on kidney stones so to break them. The process leads to cavitation in tissue, which leads to hemorrhage. We hypothesize that shock-induced collapse (SIC) of preexisting bubbles is a potential mechanism for vascular injury. We study it numerically with an idealized problem consisting of the three-dimensional SIC of an air bubble immersed in a cylindrical water column embedded in gelatin. The gelatin is a tissue simulant and can be treated as a fluid due to fast time scales and small spatial scales of collapse. We thus model the problem as a compressible multicomponent flow and simulate it with a shock- and interface-capturing numerical method. The method is high-order, conservative and non-oscillatory. Fifth-order WENO is used for spatial reconstruction and an HLLC Riemann solver upwinds the fluxes. A third-order TVD-RK scheme evolves the solution. We evaluate the potential for injury in SIC for a range of pressures, bubble and vessel sizes, and tissue properties. We assess the potential for injury by comparing the finite strains in tissue, obtained by particle tracking, to ultimate strains from experiments. We conclude that SIC may contribute to vascular rupture and discuss the smallest bubble sizes needed for injury. This research was supported by NIH Grant No. 2PO1DK043881 and utilized XSEDE, which is supported by NSF Grant No. OCI-1053575.

  8. Effect of pulse duration on photomechanical response of soft tissue during Ho:YAG laser ablation

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Motamedi, Massoud; Pfefer, T. Joshua; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Abela, George S.; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed holmium laser ablation of tissue is caused by rapid bubble expansion and collapse or by laser-induced pressure waves. In this study the effect of pulse duration on the photomechanical response of soft tissue during holmium:YAG laser ablation has been investigated. The dynamics of laser-induced bubble formation was documented in water and in transparent polyacrylamide tissue phantoms with a water concentration of 84%. Holmium:YAG laser radiation ((lambda) equals 2.12 micrometers ) was delivered in water or tissue phantoms via an optical fiber (200 or 400 micrometers ). The laser was operated in either the Q- switched mode ((tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 - 1100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation was documented using a fast flash photography setup while simultaneously a PVDP needle hydrophone (40 ns risetime), recorded pressures. The effect of the pulse duration on the photomechanical response of soft biological tissue was evaluated by delivering 5 pulses of 800 mJ to the intimal side of porcine aorta in vitro, followed by histologic evaluation. It was observed that, as the pulse duration was increased the bubble shape changed from almost spherical for Q-switched pulses to a more elongated, cylindrical shape for the longer pulse durations. The bubble expansion velocity was larger for shorter pulse durations. A thermo- elastic expansion wave was measured only during Q-switched pulse delivery. All pulses that induced bubble formation generated pressure waves upon collapse of the bubble in water as well as in the gel. The amplitude of the pressure wave depended strongly on the size and geometry of the laser-induced bubble. The important findings of this study were (1) the magnitude of collapse pressure wave decreased as laser pulse duration increased, and (2) mechanical tissue damage is reduced significantly by using longer pulse durations (> 460 microsecond(s) , for the pulse energy used).

  9. Toward the development of erosion-free ultrasonic cavitation cleaning with gas-supersaturated water

    NASA Astrophysics Data System (ADS)

    Yamashita, Tatsuya; Ando, Keita

    2015-11-01

    In ultrasonic cleaning, contaminant particles attached at target surfaces are removed by liquid flow or acoustic waves that are induced by acoustic cavitation bubbles. However, the inertial collapse of such bubbles often involve strong shock emission or water hammer by re-entrant jets, thereby giving rise to material erosion. Here, we aim at developing an erosion-free ultrasonic cleaning technique with the aid of gas-supersaturated water. The key idea is that (gaseous) cavitation is triggered easily even with low-intensity sonication in water where gases are dissolved beyond Henry's saturation limit, allowing us to buffer violent bubble collapse. In this presentation, we report on observations of the removal of micron/submicron-sized particles attached at glass surfaces by the action of gaseous cavitation bubbles under low-intensity sonication.

  10. The cavitation induced Becquerel effect and the hot spot theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    2003-06-01

    Over 150 years ago, Becquerel discovered the ultraviolet illumination of one of a pair of identical electrodes in liquid water produced an electric current, the phenomenon called the Becquerel effect. Recently, a similar effect was observed if the water surrounding one electrode is made to cavitate by focused acoustic radiation, which by similarity is referred to as the cavitation induced Becquerel effect. The current in the cavitation induced Becquerel effect was found to be semi-logarithmic with the standard electrode potential that is consistent with the oxidation of the electrode surface by the photo-decomposition theory of photoelectrochemistry. But oxidation of the electrode surface usually requires high temperatures, say as in cavitation. Absent high bubble temperatures, cavitation may produce vacuum ultraviolet (VUV) light that excites water molecules in the electrode film to higher H(2)O(*) energy states, the excited states oxidizing the electrode surface by chemical reaction. Solutions of the Rayleigh-Plesset equation during bubble collapse that include the condensation of water vapor show any increase in temperature or pressure of the water vapor by compression heating is compensated by the condensation of vapor to the bubble wall, the bubbles collapsing almost isothermally. Hence, the cavitation induced Becquerel effect is likely caused by cavitation induced VUV light at ambient temperature.

  11. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  12. Dynamics of bubble collapse under vessel confinement in 2D hydrodynamic experiments

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2013-11-01

    One trauma mechanism in biomedical treatment techniques based on the application of cumulative pressure pulses generated either externally (as in shock-wave lithotripsy) or internally (by laser-induced plasma) is the collapse of voids. However, prediction of void-collapse driven tissue damage is a challenging problem, involving complex and dynamic thermomechanical processes in a heterogeneous material. We carry out a series of model experiments to investigate the hydrodynamic processes of voids collapsing under dynamic loading in configurations designed to model cavitation with vessel confinement. The baseline case of void collapse near a single interface is also examined. Thin sheets of tissue-surrogate polymer materials with varying acoustic impedance are used to create one or two parallel material interfaces near the void. Shadowgraph photography and two-color, single-frame particle image velocimetry quantify bubble collapse dynamics including jetting, interface dynamics and penetration, and the response of the surrounding material. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading.''

  13. The collapse of a cavitation bubble in a corner

    NASA Astrophysics Data System (ADS)

    Peters, Ivo; Tagawa, Yoshiyuki

    2017-11-01

    The collapse of cavitation bubbles is influenced by the surrounding geometry. A classic example is the collapse of a bubble near a solid wall, where a fast jet is created towards the wall. The addition of a second wall creates a non-axisymmetric flow field, which influences the displacement and jet formation during the collapse of a bubble. In this experimental study we generate mm-sized vapor bubbles using a focused pulsed laser, giving us full control over the position of the bubble. The corner geometry is formed by two glass slides. High-speed imaging reveals the directional motion of the bubble during the collapse. We find that the bubble displacement cannot be fully described by a simple superposition of the bubble dynamics of the two walls individually. Comparison of our experimental results to a model based on potential flow shows a good agreement for the direction of displacement.

  14. {open_quotes}Bubble fusion{close_quotes}: Preliminary estimates of spherical micro-implosions in cavitating liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1995-02-01

    Liquids irradiated with intense ultrasonic waves can generate small cavities or bubbles. Upon nonlinear expansion to a state of disequilibrium, wherein the externally imposed hydrostatic pressure far exceeds that of entrapped non-condensable gas, these bubbles undergo a rapid and violent collapse. This collapse, if symmetric, can generate high pressures and temperatures through a number of possible mechanisms. The simplest and oldest explanation suggests a focusing of the kinetic energy of all the surrounding liquid onto the collapsing bubble and the subsequent heating of entrapped gases under either adiabatic or isothermal conditions. Although induced by externally imposed millisecond pressure oscillations, thesemore » collapses can occur on sub-microsecond timescales and are accompanied by picosecond light emissions; this combination of sound and light is called sonoluminescence. Recent explanations of observed high temperatures and picosecond radiation pulses accompanying such collapses are based on the interaction of multiple shock waves that are launched off the inward cavity wall. Other potential explanations invoke dipole emissions induced by intermolecular collisions or the release of Casimir energy when a dielectric hole is filled. Conjectures have been made that the processes responsible for sonoluminescence may be extended to generated conditions where thermonuclear fusion might occur. Such an achievement would extend scientific interest in sonoluminescence out of a purely chemical context to include the study of matter subjected to more extreme conditions. The main goal of this {open_quotes}scoping{close_quotes} study is to understand better conditions where deuterium-tritium fusion might be observed in conjunction with micro-implosions in cavitating liquids; prognoses of fusion application at this point are unintended.« less

  15. Controlled vesicle deformation and lysis by single oscillating bubbles

    NASA Astrophysics Data System (ADS)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2003-05-01

    The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic images. The observation of bubble-enhanced sonoporation-acoustically induced rupture of membranes-has also opened up intriguing possibilities for the therapeutic application of sonoporation as an alternative to cell-wall permeation techniques such as electroporation and particle guns. However, these pioneering experiments have not been able to pinpoint the mechanism by which the violently collapsing bubble opens pores or larger holes in membranes. Here we present an experiment in which gentle (linear) bubble oscillations are sufficient to achieve rupture of lipid membranes. In this regime, the bubble dynamics and the ensuing sonoporation can be accurately controlled. The use of microbubbles as focusing agents makes acoustics on the micrometre scale (microacoustics) a viable tool, with possible applications in cell manipulation and cell-wall permeation as well as in microfluidic devices.

  16. Laser induced bubbles inside liquids: Transient optical properties and effects on a beam propagation

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Jovicevic, S.; Carpanese, M.

    2012-07-01

    Light transmission through a laser formed bubble (LFB) following ablation of a metallic target inside water was studied. During the early expansion and late collapsing phases, the refraction index nb of the hot high-pressure vapor bubble is higher than 1.23 and close to that of the surrounding liquid. The cavity growth lowers nb down to 1.00 and causes strong defocusing of the incident laser beam with consequent enlargement of the ablation crater diameter, here overcoming factor two. Inhomogeneous water vapor clustering inside the cool expanded bubble further perturbs the light transmission and induces irregular ablation by the successive laser pulse.

  17. Perfluorocarbon compounds: transmitting liquids for infrared laser tissue ablation

    NASA Astrophysics Data System (ADS)

    Frenz, Martin; Pratisto, Hans S.; Toth, Cynthia A.; Jansen, E. Duco; Altermatt, Hans J.; Welch, Ashley J.; Weber, Heinz P.

    1996-05-01

    One concern during IR-laser ablation of tissue under water is the mechanical injury that may be induced in tissue due to rapid bubble expansion and collapse or due to strong laser-induced pressure waves. The objective of this study was to evaluate the feasibility of using a liquid which is transparent to the IR-region of the spectrum in order to minimize these undesired mechanical side-effects. As transmitting medium perfluorocarbon liquid was used. Free- running Er:YAG and Ho:YAG laser pulses were delivered into the liquid via a 400 micrometers fiber. Bubble formation during the ablation process was recorded with fast flash photography while pressure transients were measured with a needle hydrophone. The effect of the surrounding material (air, water, perfluorooctane) on the tissue response of chicken breast was evaluated in vitro using histology. It was observed that a large bubble (up to 6 mm in diameter) was formed under perfluorooctane driven by the ablation products. This bubble, however, does not generate a pressure wave when collapsing. Although perfluorooctane only shows a weak absorption for infrared radiation, laser-induced thermal lensing in the liquid strongly decreases the radiant exposure and therefore the ablation efficiency.

  18. Cavitation Bubble Cluster Activity in the Breakage of Kidney Stones by Lithotripter Shock Waves

    PubMed Central

    Pishchalnikov, Yuriy A.; Sapozhnikov, Oleg A.; Bailey, Michael R.; Williams, James C.; Cleveland, Robin O.; Colonius, Tim; Crum, Lawrence A.; Evan, Andrew P.; McAteer, James A.

    2008-01-01

    High-speed photography was used to analyze cavitation bubble activity at the surface of artificial and natural kidney stones during exposure to lithotripter shock waves in vitro. Numerous individual bubbles formed at the surface of stones, but these bubbles did not remain independent and combined with one another to form bubble clusters. Bubble clusters formed at the proximal end, the distal end, and at the sides of stones. Each cluster collapsed to a narrow point of impact. Collapse of the proximal cluster caused erosion at the leading face of the stone and the collapse of clusters at the sides of stones appeared to contribute to the growth of cracks. Collapse of the distal cluster caused minimal damage. We conclude that cavitation-mediated damage to stones was due not to the action of solitary bubbles, but to the growth and collapse of bubble clusters. PMID:14565872

  19. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.

    PubMed

    Brujan, E A; Ikeda, T; Matsumoto, Y

    2005-10-21

    The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, gamma, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at gamma = 1.55 and 1:3.5 at gamma = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at gamma = 1, to 0.162 MPa, at gamma = 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s(-1), at gamma = 1, to 36 m s(-1), at gamma = 1.55. For gamma < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound.

  20. Recent developments in SWL physics research.

    PubMed

    Zhong, P; Xi, X; Zhu, S; Cocks, F H; Preminger, G M

    1999-11-01

    Two projects in our laboratory highlight some recent developments in shockwave lithotripsy (SWL) physics research. In the first project, we developed a prototype of a piezoelectric annular array (PEAA) shockwave generator that can be retrofitted on a Dornier HM-3 lithotripter for active control of cavitation during SWL. The PEAA generator, operating at 15 kV, produces a peak positive pressure of approximately 8 MPa with a -6-dB beam diameter of 5 mm. The shockwave generated by the PEAA was used to control and force the collapse of cavitation bubbles induced by a laboratory electrohydraulic shockwave lithotripter with a truncated HM-3 reflector. With optimal time delay between the lithotripter pulse and the PEAA-generated shockwave, the collapse of cavitation bubbles near the stone surface could be intensified, and the resultant stone fragmentation in vitro could be significantly improved. In the second project, high-speed shadowgraph imaging was used to visualize the dynamics of lithotripter-induced bubble oscillation in a vascular phantom. Compared with the free bubble oscillation in water, the expansion of cavitation bubble(s) produced in silicone tubes and a 200-microm cellulose hollow fiber by either a Nortech EHL or a Dornier XL-1 lithotripter was found to be significantly constrained. Rupture of the cellulose hollow fiber was observed consistently after about 20 shocks from the XL-1 lithotripter at an output voltage of 20 kV. These results confirm experimentally that SWL-induced cavitation in vivo can be significantly constrained by the surrounding tissue, and large intraluminal bubble expansions could cause rupture of capillaries and small blood vessels.

  1. Drug delivery with microsecond laser pulses into gelatin

    NASA Astrophysics Data System (ADS)

    Shangguan, Hanqun; Casperson, Lee W.; Shearin, Alan; Gregory, Kenton W.; Prahl, Scott A.

    1996-07-01

    Photoacoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 mu m when the gelatin structure was not fractured. localized drug delivery, cavitation bubble, laser thrombolysis.

  2. Aspherical bubble dynamics and oscillation times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godwin, R.P.; Chapyak, E.J.; Noack, J.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightlymore » from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.« less

  3. The Influence of Shock-Induced Air Bubble Collapse Resulting from Underwater Explosive Events

    DTIC Science & Technology

    2012-06-01

    Pressure-Time History Results When comparing the pressure-time history in Figure 26, it is important to note the general shape of the curve . The...Indian Head, MD, Final Rep. IHTR 2589, May 28, 2004. [10] V. K. Kedrinskii, “ Rarefaction Waves and Bubbly Cavitation in Real Liquid,” presented at the

  4. Effect of Young's modulus on bubble formation and pressure waves during pulsed holmium ablation of tissue phantoms

    NASA Astrophysics Data System (ADS)

    Jansen, E. Duco; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Motamedi, Massoud; Welch, Ashley J.

    1995-05-01

    Mechanical injury during pulsed laser ablation of tissue is caused by rapid bubble expansions and collapse or by laser-induced pressure waves. In this study the effect of material elasticity on the ablation process has been investigated. Polyacrylamide tissue phantoms with various water concentrations (75-95%) were made. The Young's moduli of the gels were determined by measuring the stress-strain relationship. An optical fiber (200 or 400 micrometers ) was translated into the clear gel and one pulse of holmium:YAG laser radiation was given. The laser was operated in either the Q-switched mode (tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation inside the gels was recorded using a fast flash photography setup while simultaneously recording pressures with a PVDP needle hydrophone (40 ns risetime) positioned in the gel, approximately 2 mm away from the fibertip. A thermo-elastic expansion wave was measured only during Q-switched pulse delivery. The amplitude of this wave (approximately equals 40 bar at 1 mm from the fiber) did not vary significantly in any of the phantoms investigated. Rapid bubble formation and collapse was observed inside the clear gels. Upon bubble collapse, a pressure transient was emitted; the amplitude of this transient depended strongly on bubble size and geometry. It was found that (1) the bubble was almost spherical for the Q-switched pulse and became more elongated for the free-running pulse, and (2) the maximum bubble size and thus the collapse amplitude decreased with an increase in Young's modulus (from 68 +/- 11 bar at 1 mm in 95% water gel to 25 +/- 10 bar at 1 mm in 75% water gel).

  5. Modelling cavitation erosion using fluid–material interaction simulations

    PubMed Central

    Chahine, Georges L.; Hsiao, Chao-Tsung

    2015-01-01

    Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140

  6. Target geometry and rigidity determines laser-induced cavitation bubble transport and nanoparticle productivity - a high-speed videography study.

    PubMed

    Kohsakowski, Sebastian; Gökce, Bilal; Tanabe, Rie; Wagener, Philipp; Plech, Anton; Ito, Yoshiro; Barcikowski, Stephan

    2016-06-28

    Laser-induced cavitation has mostly been studied in bulk liquid or at a two-dimensional wall, although target shapes for the particle synthesis may strongly affect bubble dynamics and interfere with particle productivity. We investigated the dynamics of the cavitation bubble induced by pulsed-laser ablation in liquid for different target geometries with high-speed laser microsecond videography and focus on the collapse behaviour. This method enables us observations in a high time resolution (intervals of 1 μs) and single-pulse experiments. Further, we analyzed the nanoparticle productivity, the sizes of the synthesized nanoparticles and the evolution of the bubble volume for each different target shape and geometry. For the ablation of metal (Ag, Cu, Ni) wire tips a springboard-like behaviour after the first collapse is observed which can be correlated with vertical projectile motion. Its turbulent friction in the liquid causes a very efficient transport and movement of the bubble and ablated material into the bulk liquid and prevents particle redeposition. This effect is influenced by the degree of freedom of the wire as well as the material properties and dimensions, especially the Young's modulus. The most efficient and largest bubble movement away from the wire was observed for a thin (500 μm) silver wire with velocities up to 19.8 m s(-1) and for materials with a small Young's modulus and flexural rigidity. We suggest that these observations may contribute to upscaling strategies and increase of particle yield towards large synthesis of colloids based on targets that may continuously be fed.

  7. Shock wave interaction with laser-generated single bubbles.

    PubMed

    Sankin, G N; Simmons, W N; Zhu, S L; Zhong, P

    2005-07-15

    The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.

  8. Acoustic transients in pulsed holmium laser ablation: effects of pulse duration

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Delacretaz, Guy P.; Jansen, E. Duco; Welch, Ashley J.; Frenz, Martin

    1995-01-01

    The goal of this work was to study the influence of pulse duration on acoustic transient generation in holmium laser ablation. For this, the generation and collapse of cavitation bubbles induced by Q-switched and free-running laser pulses delivered under water were investigated. Polyacrylamide gel of 84% water content served as a model for soft tissue. This gel is a more realistic tissue phantom than water because it mimics not only the optical properties but also the mechanical properties of tissue. The dynamics of bubble formation inside the clear gel were observed by 1 ns time resolved flash videography. A polyvinylidenefluoride (PVDF) needle probe transducer measured absolute values of pressure amplitudes. Pressure wave generation by cavitation bubble collapse was observed in all phantoms used. Maximum pressures of more than 180 bars at 1 mm from the collapse center were observed in water and high water-contents gels with a pulse energy of 200 mJ and a 400 micrometers fiber. A strong dependency of the bubble collapse pressure on the pulse duration for constant pulse energy was observed in gel as well as in water. For pulse durations longer than 400 microsecond(s) a 90% reduction of pressure amplitudes relative to 100 microsecond(s) pulses was found. This suggests that optimization of pulse duration offers a degree of freedom allowing us to minimize the risk of acoustical damage in medical applications like arthroscopy and angioplasty.

  9. Blood vessel rupture by cavitation

    PubMed Central

    Chen, Hong; Brayman, Andrew A.; Bailey, Michael R.

    2011-01-01

    Cavitation is thought to be one mechanism for vessel rupture during shock wave lithotripsy treatment. However, just how cavitation induces vessel rupture remains unknown. In this work, a high-speed photomicrography system was set up to directly observe the dynamics of bubbles inside blood vessels in ex vivo rat mesenteries. Vascular rupture correlating to observed bubble dynamics were examined by imaging bubble extravasation and dye leakage. The high-speed images show that bubble expansion can cause vessel distention, and bubble collapse can lead to vessel invagination. Liquid jets were also observed to form. Our results suggest that all three mechanisms, vessel distention, invagination and liquid jets, can contribute to vessel rupture. PMID:20680255

  10. Multifocal laser surgery: cutting enhancement by hydrodynamic interactions between cavitation bubbles.

    PubMed

    Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D

    2010-10-01

    Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.

  11. In situ observation of ultrasonic cavitation-induced fragmentation of the primary crystals formed in Al alloys.

    PubMed

    Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas

    2017-11-01

    The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  12. Investigation of the interaction dynamics of a pair of laser-induced bubbles generated at the same time through double-exposure strobe method and numerical simulations

    NASA Astrophysics Data System (ADS)

    Han, Bing; Liu, Liu; Ni, Xiao-Wu

    2017-08-01

    In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.

  13. Observations of the Dynamics and Acoustics of Travelling Bubble Cavitation

    DTIC Science & Technology

    1990-06-25

    and Hollander (1948) and Parkin (1952)), and a cavitation bubble collapsing near a solid boundary may produce a microjet of fluid, which has been...bubbles collapsing near a solid surface (Lauterborn and Bolle (1975) and Kimoto (1987), for example), and this microjet is suspected to be the main cause of...cavitation erosion damage. Although many photographs were taken, a reentrant microjet was not observed in any of the photographs of bubble collapse

  14. Drug delivery with microsecond laser pulses into gelatin.

    PubMed

    Shangguan, H; Casperson, L W; Shearin, A; Gregory, K W; Prahl, S A

    1996-07-01

    Photo acoustic drug delivery is a technique for localized drug delivery by laser-induced hydrodynamic pressure following cavitation bubble expansion and collapse. Photoacoustic drug delivery was investigated on gelatin-based thrombus models with planar and cylindrical geometries by use of one microsecond laser pulses. Solutions of a hydrophobic dye in mineral oil permitted monitoring of delivered colored oil into clear gelatin-based thrombus models. Cavitation bubble development and photoacoustic drug delivery were visualized with flash photography. This study demonstrated that cavitation is the governing mechanism for photoacoustic drug delivery, and the deepest penetration of colored oil in gels followed the bubble collapse. Spatial distribution measurements revealed that colored oil could be driven a few millimeters into the gels in both axial and radial directions, and the penetration was less than 500 µm when the gelatin structure was not fractured.

  15. The microjetting behavior from single laser-induced bubbles generated above a solid boundary with a through hole

    NASA Astrophysics Data System (ADS)

    Abboud, Jack E.; Oweis, Ghanem F.

    2013-01-01

    An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.

  16. The microjetting behavior from single laser-induced bubbles generated above a solid boundary with a through hole

    NASA Astrophysics Data System (ADS)

    Abboud, Jack E.; Oweis, Ghanem F.

    2012-12-01

    An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.

  17. Compression-induced stacking fault tetrahedra around He bubbles in Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Jian-Li, E-mail: shao-jianli@iapcm.ac.cn; Wang, Pei; He, An-Min

    Classic molecular dynamics methods are used to simulate the uniform compression process of the fcc Al containing He bubbles. The formation of stacking fault tetrahedra (SFTs) during the collapse of He bubbles is found, and their dependence on the initial He bubble size (0.6–6 nm in diameter) is presented. Our simulations indicate only elastic deformation in the samples for the He bubble size not more than 2 nm. Instead, increasing the He bubble size, we detect several small SFTs forming on the surface of the He bubble (3 nm), as well as the two intercrossed SFTs around the He bubbles (4–6 nm). All thesemore » SFTs are observed to be stable under further compression, though there may appear some SF networks outside the SFTs (5–6 nm). Furthermore, the dynamic analysis on the SFTs shows that the yield pressure keeps a near-linear increase with the initial He bubble pressure, and the potential energy of Al atoms inside the SFTs is lower than outside because of their gliding inwards. In addition, the pressure increments of 2–6 nm He bubbles with strain are less than that of Al, which just provides the opportunity for the He bubble collapse and the SFTs formation. Note that the current work only focuses on the case that the number ratio between He atoms and Al vacancies is 1:1.« less

  18. Physics of beer tapping.

    PubMed

    Rodríguez-Rodríguez, Javier; Casado-Chacón, Almudena; Fuster, Daniel

    2014-11-21

    The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for a long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bubbles by breaking them up, the subtle mechanism by which this happens remains unknown. Here, we show that the overall foaming-over process can be divided into three stages where different physical phenomena take place in different time scales: namely, the bubble-collapse (or cavitation) stage, the diffusion-driven stage, and the buoyancy-driven stage. In the bubble-collapse stage, the impact generates a train of expansion-compression waves in the liquid that leads to the fragmentation of preexisting gas cavities. Upon bubble fragmentation, the sudden increase of the interface-area-to-volume ratio enhances mass transfer significantly, which makes the bubble volume grow by a large factor until CO2 is locally depleted. At that point buoyancy takes over, making the bubble clouds rise and eventually form buoyant vortex rings whose volume grows fast due to the feedback between the buoyancy-induced rising speed and the advection-enhanced CO2 transport from the bulk liquid to the bubble. The physics behind this explosive process sheds insight into the dynamics of geological phenomena such as limnic eruptions.

  19. Physics of Beer Tapping

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Javier; Casado-Chacón, Almudena; Fuster, Daniel

    2014-11-01

    The popular bar prank known in colloquial English as beer tapping consists in hitting the top of a beer bottle with a solid object, usually another bottle, to trigger the foaming over of the former within a few seconds. Despite the trick being known for a long time, to the best of our knowledge, the phenomenon still lacks scientific explanation. Although it seems natural to think that shock-induced cavitation enhances the diffusion of CO2 from the supersaturated bulk liquid into the bubbles by breaking them up, the subtle mechanism by which this happens remains unknown. Here, we show that the overall foaming-over process can be divided into three stages where different physical phenomena take place in different time scales: namely, the bubble-collapse (or cavitation) stage, the diffusion-driven stage, and the buoyancy-driven stage. In the bubble-collapse stage, the impact generates a train of expansion-compression waves in the liquid that leads to the fragmentation of preexisting gas cavities. Upon bubble fragmentation, the sudden increase of the interface-area-to-volume ratio enhances mass transfer significantly, which makes the bubble volume grow by a large factor until CO2 is locally depleted. At that point buoyancy takes over, making the bubble clouds rise and eventually form buoyant vortex rings whose volume grows fast due to the feedback between the buoyancy-induced rising speed and the advection-enhanced CO2 transport from the bulk liquid to the bubble. The physics behind this explosive process sheds insight into the dynamics of geological phenomena such as limnic eruptions.

  20. Lithotripter shock wave interaction with a bubble near various biomaterials.

    PubMed

    Ohl, S W; Klaseboer, E; Szeri, A J; Khoo, B C

    2016-10-07

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone-water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (∼1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  1. Lithotripter shock wave interaction with a bubble near various biomaterials

    NASA Astrophysics Data System (ADS)

    Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.

    2016-10-01

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  2. Investigation of laser induced breakdown in liquid nitromethane using nanosecond shadowgraphy

    NASA Astrophysics Data System (ADS)

    Guo, Wencan; Zheng, Xianxu; Yu, Guoyang; Zhao, Jun; Zeng, Yangyang; Liu, Cangli

    2016-09-01

    A nanosecond time-resolved shadowgraphy is performed to observe a laser-induced breakdown in nitromethane. The digital delays are introduced between a pump beam and an illumination light to achieve a measuring range from 40 ns to 100 ms, which enable us to study the shock wave propagation, bubble dynamics, and other process of the laser-induced breakdown. Compared with distilled water, there are two obvious differences observed in nitromethane: (1) the production of a non-evaporative gas at the final stage, and (2) an absence of the secondary shock wave after the first collapse of the bubble. We also calculated the bubble energy in nitromethane and distilled water under a different incident energy. The results indicate that the bubble energy in nitromethane is more than twice as large as that in water. It is suggested that chemical reactions contribute to the releasing of energy.

  3. Interaction of Impulsive Pressures of Cavitation Bubbles with Cell Membranes during Sonoporation

    NASA Astrophysics Data System (ADS)

    Kodama, Tetsuya; Koshiyama, Ken-ichiro; Tomita, Yukio; Suzuki, Maiko; Yano, Takeru; Fujikawa, Shigeo

    2006-05-01

    Ultrasound contrast agents (UCAs), are capable of enhancing non-invasive cytoplasmic molecular delivery in the presence of ultrasound. Collapse of UCAs may generate nano-scale cavitation bubbles, resulting in the transient permeabilization of the cell membrane. In the present study, we investigated the interaction of a cavitation bubble-induced shock wave with a cell membrane using acoustic theory and molecular dynamics (MD) simulation. From the theory, we obtained the shock wave propagation distance from the center of a cavitation bubble that would induce membrane damage. The MD simulation determined the relationship between the uptake of water molecules into the lipid bilayer and the shock wave. The interaction of the shock wave induced a structural change of the bilayer and subsequently increased the fluidity of each molecule. These changes in the bilayer due to shock waves may be an important factor in the use of UCAs to produce the transient membrane permeability during sonoporation.

  4. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment.

    PubMed

    Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2016-10-01

    Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the sharp lesions formed in histotripsy therapy localized to the regions directly exposed to the bubbles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves

    NASA Astrophysics Data System (ADS)

    Veysset, D.; Gutiérrez-Hernández, U.; Dresselhaus-Cooper, L.; De Colle, F.; Kooi, S.; Nelson, K. A.; Quinto-Su, P. A.; Pezeril, T.

    2018-05-01

    In this study a single laser pulse spatially shaped into a ring is focused into a thin water layer, creating an annular cavitation bubble and cylindrical shock waves: an outer shock that diverges away from the excitation laser ring and an inner shock that focuses towards the center. A few nanoseconds after the converging shock reaches the focus and diverges away from the center, a single bubble nucleates at the center. The inner diverging shock then reaches the surface of the annular laser-induced bubble and reflects at the boundary, initiating nucleation of a tertiary bubble cloud. In the present experiments, we have performed time-resolved imaging of shock propagation and bubble wall motion. Our experimental observations of single-bubble cavitation and collapse and appearance of ring-shaped bubble clouds are consistent with our numerical simulations that solve a one-dimensional Euler equation in cylindrical coordinates. The numerical results agree qualitatively with the experimental observations of the appearance and growth of large bubble clouds at the smallest laser excitation rings. Our technique of shock-driven bubble cavitation opens interesting perspectives for the investigation of shock-induced single-bubble or multibubble cavitation phenomena in thin liquids.

  6. Simulations of Shock-induced Bubble Collapse near Hard and Soft Objects

    NASA Astrophysics Data System (ADS)

    Rodriguez, Mauro; Johnsen, Eric

    2016-11-01

    Understanding the dynamics of cavitation bubbles and shock waves in and near hard and soft objects is important particularly in various naval and medical applications. Two examples are therapeutic ultrasound procedures, which utilize this phenomenon for breaking kidney stones (lithotripsy) and ablation of pathogenic tissue (histotripsy), and erosion to elastomeric coatings on propellers. Although not fully understood, the damage mechanism combines the effect of the incoming pulses and cavitation produced by the high tension of the pulses. To understand the damage mechanism, it is of key interest to quantifying the influence of the shock waves on the material and the response of the material to the shock waves. A novel Eulerian numerical approach for simulating shock and acoustic wave propagation in viscoelastic media is leveraged to understand this influence. High-fidelity simulations of the bubble collapse dynamics for various experimental configurations (i.e. the viscous or viscoelastic material surrounding the bubble and neighboring object's rigidity are varied) will be conducted. In particular, we will discuss the shock emission from collapse and its propagation in the neighboring object, including stresses thereby produced. This research was supported in part by ONR Grant N00014-12-1-0751 under Dr. Ki-Han Kim and by NSF Grant Number CBET 1253157.

  7. Ultrasound-induced oscillations of gas bubbles in contact with gelatin gel surfaces

    NASA Astrophysics Data System (ADS)

    Fukui, Sosuke; Ando, Keita

    2017-11-01

    Ultrasound-induced dynamics of gas bubbles in the vicinity of deformable boundaries are studied experimentally, as a simplified model of sonoporation in medicine. In our experiment, 28-kHz underwater ultrasound was irradiated to a gas bubble nuclei (of radius from 60 μm to 200 μm) sitting at gel surfaces (of gelatin concentration from 6 wt% to 16 wt%) and the bubble dynamics were recorded by a high-speed camera. The repeated deformation of the gel surface was found to be in phase with volumetric oscillation of the bubble. A liquid jet, which can appear toward the collapse phase in the bubble oscillation in volume, produced localized surface deformation, which is an important observation in the context of sonoporation. We characterize the maximum displacement of the gel surface with varying the bubble nuclei radius (in comparison to the resonant radius fixed approximately at 117 μm). We also examine the phase difference between the ultrasound and the bubble dynamics under the influence of the deformable boundary. The Research Grant of Keio Leading-edge Laboratory of Science & Technology.

  8. Jets from pulsed-ultrasound-induced cavitation bubbles near a rigid boundary

    NASA Astrophysics Data System (ADS)

    Brujan, Emil-Alexandru

    2017-06-01

    The dynamics of cavitation bubbles, generated from short (microsecond) pulses of ultrasound and situated near a rigid boundary, are investigated numerically. The temporal development of the bubble shape, bubble migration, formation of the liquid jet during bubble collapse, and the kinetic energy of the jet are investigated as a function of the distance between bubble and boundary. During collapse, the bubble migrates towards the boundary and the liquid jet reaches a maximum velocity between 80 m s-1 and 120 m s-1, depending on the distance between bubble and boundary. The conversion of bubble energy to kinetic energy of the jet ranges from 16% to 23%. When the bubble is situated in close proximity to the boundary, the liquid jet impacts the boundary with its maximum velocity, resulting in an impact pressure of the order of tens of MPa. The rapid expansion of the bubble, the impact of the liquid jet onto the nearby boundary material, and the high pressure developed inside the bubble at its minimum volume can all contribute to the boundary material damage. The high pressure developed during the impact of the liquid jet onto the biological material and the shearing forces acting on the material surface as a consequence of the radial flow of the jet outward from the impact site are the main damage mechanisms of rigid biological materials. The results are discussed with respect to cavitation damage of rigid biological materials, such as disintegration of renal stones and calcified tissue and collateral effects in pulsed ultrasound surgery.

  9. Interaction, coalescence, and collapse of localized patterns in a quasi-one-dimensional system of interacting particles

    NASA Astrophysics Data System (ADS)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2017-01-01

    We study the path toward equilibrium of pairs of solitary wave envelopes (bubbles) that modulate a regular zigzag pattern in an annular channel. We evidence that bubble pairs are metastable states, which spontaneously evolve toward a stable single bubble. We exhibit the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive, whereas it is repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: It is attractive for NF systems and repulsive for F systems and decreases exponentially with the bubbles distance. Moreover, for NF systems, the bubbles come closer and eventually merge as a single bubble, in a coalescence process. We also evidence a collapse process, in which one bubble shrinks in favor of the other one, overcoming an energetic barrier in phase space. This process is relevant for both NF systems and F systems. In NF systems, the coalescence prevails at low temperature, whereas thermally activated jumps make the collapse prevail at high temperature. In F systems, the path toward equilibrium involves a collapse process regardless of the temperature.

  10. Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.

    PubMed

    Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert

    2017-12-01

    The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.

  11. Hydrothermal conversion of graphite to carbon nanotubes (CNTs) induced by bubble collapse

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Liu, Fang

    2016-11-01

    Cu-Fe-CNTs and Ni-Fe-CNTs coatings were deposited on gray cast iron by a hydrothermal approach. It was demonstrated that, the flaky graphite of gray cast iron was exfoliated to graphene nanosheets under hydrothermal reactions, and graphene nanosheets were scrolled to CNTs. After high temperature treatments, the volume losses of Cu-Fe-CNTs and Ni-Fe-CNTs coatings were 52.6 % and 40.0 % of gray cast iron substrate at 60 min wear tests, respectively, obviously increasing the wear properties of gray cast iron. During hydrothermal reactions, water jets and shock waves were produced by bubble collapse. Induced by the water jets and shock waves, exfoliation of flaky graphite was performed, producing exfoliated graphene nanosheets. Attacked by the radially distributed water jets and shock waves, graphene nanosheets were curved, shaped to semicircle morphology and eventually scrolled to tubular CNTs.

  12. Sloshing of a bubbly magma reservoir as a mechanism of triggered eruptions

    NASA Astrophysics Data System (ADS)

    Namiki, Atsuko; Rivalta, Eleonora; Woith, Heiko; Walter, Thomas R.

    2016-06-01

    Large earthquakes sometimes activate volcanoes both in the near field as well as in the far field. One possible explanation is that shaking may increase the mobility of the volcanic gases stored in magma reservoirs and conduits. Here experimentally and theoretically we investigate how sloshing, the oscillatory motion of fluids contained in a shaking tank, may affect the presence and stability of bubbles and foams, with important implications for magma conduits and reservoirs. We adopt this concept from engineering: severe earthquakes are known to induce sloshing and damage petroleum tanks. Sloshing occurs in a partially filled tank or a fully filled tank with density-stratified fluids. These conditions are met at open summit conduits or at sealed magma reservoirs where a bubbly magma layer overlays a newly injected denser magma layer. We conducted sloshing experiments by shaking a rectangular tank partially filled with liquids, bubbly fluids (foams) and fully filled with density-stratified fluids; i.e., a foam layer overlying a liquid layer. In experiments with foams, we find that foam collapse occurs for oscillations near the resonance frequency of the fluid layer. Low viscosity and large bubble size favor foam collapse during sloshing. In the layered case, the collapsed foam mixes with the underlying liquid layer. Based on scaling considerations, we constrain the conditions for the occurrence of foam collapse in natural magma reservoirs. We find that seismic waves with lower frequencies < 1 Hz, usually excited by large earthquakes, can resonate with magma reservoirs whose width is > 0.5 m. Strong ground motion > 0.1 m s- 1 can excite sloshing with sufficient amplitude to collapse a magma foam in an open conduit or a foam overlying basaltic magma in a closed magma reservoir. The gas released from the collapsed foam may infiltrate the rock or diffuse through pores, enhancing heat transfer, or may generate a gas slug to cause a magmatic eruption. The overturn in the magma reservoir provides new nucleation sites which may help to prepare a following/delayed eruption. Mt. Fuji erupted 49 days after the large Hoei earthquake (1707) both dacitic and basaltic magmas. The eruption might have been triggered by magma mixing through sloshing.

  13. Bubble formation during pulsed laser ablation: mechanism and implications

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius

    1993-07-01

    Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.

  14. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    NASA Astrophysics Data System (ADS)

    Warnez, M. T.; Johnsen, E.

    2015-06-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.

  15. Numerical analysis of bubble-cluster formation in an ultrasonic field

    NASA Astrophysics Data System (ADS)

    Kim, Donghyun; Son, Gihun

    2016-11-01

    Bubble-cluster formation in an ultrasonic field is investigated numerically solving the conservation equations of mass, momentum and energy. The liquid-gas interface is calculated using the volume-of-fluid method with variable gas density to consider the bubble compressibility. The effect of liquid-gas phase change is also included as the interface source terms of the mass and energy equations. The numerical approach is tested through the simulation of the expansion and contraction motion of a compressed bubble adjacent to a wall. When the bubble is placed in an ultrasonic field, it oscillates radially and then collapses violently. Numerical simulation is also performed for bubble-cluster formation induced by an ultrasonic generator, where the generated bubbles are merged into a macrostructure along the acoustic flow field. The effects of ultrasonic power and frequency, liquid properties and pool temperature on the bubble-cluster formation are investigated. This work was supported by the Korea Institute of Energy Research.

  16. Characterizing the collapse of a cavitation bubble cloud in a focused ultrasound field

    NASA Astrophysics Data System (ADS)

    Maeda, Kazuki; Colonius, Tim

    2017-11-01

    We study the coherent collapse of clouds of cavitation bubbles generated by the passage of a pulse of ultrasound. In order to characterize such collapse, we conduct a parametric study on the dynamics of a spherical bubble cloud with a radius of r = O(1) mm interacting with traveling ultrasound waves with an amplitude of pa = O(102 -106) Pa and a wavelength of λ = O(1 - 10) mm in water. Bubbles with a radius of O(10) um are treated as spherical, radially oscillating cavities dispersed in continuous liquid phase. The volume of Lagrangian point bubbles is mapped with a regularization kernel as void fraction onto Cartesian grids that defines the Eulerian liquid phase. The flow field is solved using a WENO-based compressible flow solver. We identified that coherent collapse occurs when λ >> r , regardless of the value of pa, while it only occurs for sufficiently high pa when λ r . For the long wavelength case, the results agree with the theory on linearized dynamics of d'Agostino and Brennen (1989). We extend the theory to short wave length case. Finally, we analyze the far-field acoustics scattered by individual bubbles and correlate them with the cloud collapse, for applications to acoustic imaging of bubble cloud dynamics. Funding supported by NIH P01-DK043881.

  17. Mercury Cavitation Phenomenon in Pulsed Spallation Neutron Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakawa, Masatoshi; Naoe, Takashi; Kawai, Masayoshi

    2008-06-24

    Innovative researches will be performed at Materials and Life Science Experimental Facility in J-PARC, in which a mercury target system will be installed as MW-class pulse spallation neutron sources. Proton beams will be injected into mercury target to induce the spallation reaction. At the moment the intense proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. Localized impacts by micro-jets and/or shock waves which are caused by cavitation bubble collapse imposemore » pitting damage on the vessel wall. The pitting damage which degrades the structural integrity of target vessels is a crucial issue for high power mercury targets. Micro-gas-bubbles injection into mercury may be useful to mitigate the pressure wave and the pitting damage. The visualization of cavitation-bubble and gas-bubble collapse behaviors was carried out by using a high-speed video camera. The differences between them are recognized.« less

  18. Localized Tissue Surrogate Deformation due to Controlled Single Bubble Cavitation

    DTIC Science & Technology

    2014-08-27

    calculate liquid jet formation with collapse of an empty spherical bubble due to the high surrounding fluid pressure 18. Experimental evidence of...maximum collapse pressures over a wide range between 8 MPa 13 to 2.5 GPa 11 have also been calculated . 5 A fundamental problem in the study of...and a digital image correlation (DIC) technique was used to calculate strain fields during bubble growth and collapse. The subsequent response of the

  19. Lifetime of Bubble Rafts: Cooperativity and Avalanches

    NASA Astrophysics Data System (ADS)

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-01

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.

  20. Lifetime of bubble rafts: cooperativity and avalanches.

    PubMed

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-15

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.

  1. Bubbling in delay-coupled lasers.

    PubMed

    Flunkert, V; D'Huys, O; Danckaert, J; Fischer, I; Schöll, E

    2009-06-01

    We theoretically study chaos synchronization of two lasers which are delay coupled via an active or a passive relay. While the lasers are synchronized, their dynamics is identical to a single laser with delayed feedback for a passive relay and identical to two delay-coupled lasers for an active relay. Depending on the coupling parameters the system exhibits bubbling, i.e., noise-induced desynchronization, or on-off intermittency. We associate the desynchronization dynamics in the coherence collapse and low-frequency fluctuation regimes with the transverse instability of some of the compound cavity's antimodes. Finally, we demonstrate how, by using an active relay, bubbling can be suppressed.

  2. Experimental and numerical study of the effects of a wall on the coalescence and collapse of bubble pairs

    NASA Astrophysics Data System (ADS)

    Han, Rui; Zhang, A.-Man; Li, Shuai; Zong, Zhi

    2018-04-01

    Two-bubble interaction is the most fundamental problem in multi-bubbles dynamics, which is crucial in many practical applications involving air-gun arrays and underwater explosions. In this paper, we experimentally and numerically investigate coalescence, collapse, and rebound of non-buoyant bubble pairs below a rigid wall. Two oscillating vapor bubbles with similar size are generated simultaneously near a rigid wall in axisymmetric configuration using the underwater electric discharge method, and the physical process is captured by a high-speed camera. Numerical simulations are conducted based on potential flow theory coupled with the boundary integral method. Our numerical results show excellent agreement with the experimental data until the splashing of the jet impact sets in. With different ranges of γbw (the dimensionless distance between the rigid wall and the nearest bubble center), the interaction between the coalesced bubble and the rigid wall is divided into three types, i.e., "weak," "intermediate," and "strong." As γbw decreases, the contact point of the two axial jets migrates toward the wall. In "strong interaction" cases, only an upward jet towards the upper rigid wall forms and a secondary jet with a larger width appears at the base of the first jet. The collapsing coalesced bubble in a toroidal form splits into many smaller bubbles due to the instabilities and presents as bubble clouds during the rebounding phase, which may lead to a weakened pressure wave because the focusing energy associated with the collapsing bubble is disintegrated.

  3. Transient thermal driven bubble's surface and its potential ultrasound-induced damage

    NASA Astrophysics Data System (ADS)

    Movahed, Pooya; Freund, Jonathan B.

    2017-11-01

    Ultrasound-induced bubble activity in soft tissues is well-known to be a potential injury mechanism in therapeutic ultrasound treatments. We consider damage by transient thermal effects, including a hypothetical mechanism based on transient thermal phenomena, including viscous dissipation. A spherically symmetric compressible Navier-Stokes discretization is developed to solve the full governing equations, both inside and outside of the bubble, without the usual simplifications in the Rayleigh-Plesset bubble dynamics approach. Equations are solved in the Lagrangian framework, which provides a sharp and accurate representation of the interface as well as the viscous dissipation and thermal transport effects, which preclude reduction to the usual Rayleigh-Plesset ordinary differential equation. This method is used to study transient thermal effects at different frequencies and pressure amplitudes relevant to therapeutic ultrasound treatments. High temperatures achieved in the surrounding medium during the violent bubble collapse phase due to the viscous dissipation in the surrounding medium and thermal conduction from the bubble are expected to cause damage. This work was supported by NIH NIDDK Grant P01-DK043881.

  4. Simulation of bubble expansion and collapse in the vicinity of a free surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koukouvinis, P., E-mail: foivos.koukouvinis.1@city.ac.uk; Gavaises, M.; Supponen, O.

    The present paper focuses on the numerical simulation of the interaction of laser-generated bubbles with a free surface, including comparison of the results with instances from high-speed videos of the experiment. The Volume Of Fluid method was employed for tracking liquid and gas phases while compressibility effects were introduced with appropriate equations of state for each phase. Initial conditions of the bubble pressure were estimated through the traditional Rayleigh Plesset equation. The simulated bubble expands in a non-spherically symmetric way due to the interference of the free surface, obtaining an oval shape at the maximum size. During collapse, a jetmore » with mushroom cap is formed at the axis of symmetry with the same direction as the gravity vector, which splits the initial bubble to an agglomeration of toroidal structures. Overall, the simulation results are in agreement with the experimental images, both quantitatively and qualitatively, while pressure waves are predicted both during the expansion and the collapse of the bubble. Minor discrepancies in the jet velocity and collapse rate are found and are attributed to the thermodynamic closure of the gas inside the bubble.« less

  5. Interaction between shock wave and single inertial bubbles near an elastic boundary.

    PubMed

    Sankin, G N; Zhong, P

    2006-10-01

    The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.

  6. Numerical modeling of bubble dynamics in viscoelastic media with relaxation

    PubMed Central

    Warnez, M. T.; Johnsen, E.

    2015-01-01

    Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967

  7. A numerical method for the dynamics of non-spherical cavitation bubbles

    NASA Technical Reports Server (NTRS)

    Lucca, G.; Prosperetti, A.

    1982-01-01

    A boundary integral numerical method for the dynamics of nonspherical cavitation bubbles in inviscid incompressible liquids is described. Only surface values of the velocity potential and its first derivatives are involved. The problem of solving the Laplace equation in the entire domain occupied by the liquid is thus avoided. The collapse of a bubble in the vicinity of a solid wall and the collapse of three bubbles with collinear centers are considered.

  8. Experimental and calculative estimation of femtosecond laser induced-impulsive force in culture medium solution with motion analysis of polymer micro-beads

    NASA Astrophysics Data System (ADS)

    Yamakawa, Takeshi; Maruyama, Akihiro; Uedan, Hirohisa; Iino, Takanori; Hosokawa, Yoichiroh

    2015-03-01

    A new methodology to estimate the dynamics of femtosecond laser-induced impulsive force generated into water under microscope was developed. In this method, the position shift of the bead in water before and after the femtosecond laser irradiation was investigated experimentally and compared with motion equation assuming stress wave propagation with expansion and collapse the cavitation bubble. In the process of the comparison, parameters of force and time of the stress wave were determined. From these results, dynamics of propagations of shock and stress waves, cavitation bubble generation, and these actions to micro-objects were speculated.

  9. Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble

    NASA Astrophysics Data System (ADS)

    Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra

    2018-04-01

    The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.

  10. Cavitation inception by the backscattering of pressure waves from a bubble interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp

    2015-10-28

    The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less

  11. Bubbles in extended inflation and multi-production of universes

    NASA Astrophysics Data System (ADS)

    Sakai, Nobuyuki; Maeda, Kei-ichi

    Developing the thin-wall method of Israel, we present a formalism to investigate bubble dynamics in generalized Einstein theories. We derive the equations of motion for a bubble, finding that the space-time inside a bubble is always inhomogeneous. Applying this formalism to extended inflation, we find the following two results: (1) Any true vacuum bubble expands, contrary to the results of Goldwirth-Zaglauer, who claim that bubbles created initially later collapse. We show that their initial conditions for collapsing bubbles are physically inconsistent. (2) Concerning the global space-time structure of the Universe in extended inflation, we show that worm-holes are produced as in old inflation, resulting in the multi-production of universes.

  12. Acoustic transient generation in pulsed holmium laser ablation under water

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.; Frenz, Martin; Pratisto, Hans; Ith, Michael; Romano, Valerio; Weber, Heinz P.

    1994-08-01

    In this study the role of acoustical transients during pulsed holmium laser ablation is addressed. For this the collapse of cavitation bubbles generated by 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered via a fiber in water is investigated. Multiple consecutive collapses of a single bubble generating acoustic transients are documented. Pulse durations are varied from 130 - 230 microsecond(s) and pulse energies from 20 - 800 mJ. Fiber diameters of 400 and 600 micrometers are used. The bubble collapse behavior is observed by time resolved fast flash photography with 1 microsecond(s) strobe lamp or 5 ns 1064 nm Nd:YAG laser illumination. A PVDF needle probe transducer is used to observe acoustic transients and measure their pressure amplitudes. Under certain conditions, at the end of the collapse phase the bubbles emit spherical acoustic transients of up to several hundred bars amplitude. After the first collapse up to two rebounds leading to further acoustic transient emissions are observed. Bubbles generated near a solid surface under water are attracted towards the surface during their development. The final phase of the collapse generating the acoustic transients takes place directly on the surface, exposing it to maximum pressure amplitudes. Our results indicate a possible mechanism of unwanted tissue damage during holmium laser application in a liquid environment as in arthroscopy or angioplasty that may set limits to the choice of laser pulse duration and energies.

  13. Bubble-induced microstreaming: guiding and destroying lipid vesicles

    NASA Astrophysics Data System (ADS)

    Marmottant, Philippe; Hilgenfeldt, Sascha

    2002-11-01

    Micron-sized bubbles respond with strong oscillations when submitted to ultrasound. This has led to their use as echographic contrast enhancers. The large energy and force densities generated by the collapsing bubbles also make them non-invasive mechanical tools: Recently, it has been reported that the interaction of cavitating bubbles with nearby cells can render the latter permeable to large molecules (sonoporation), suggesting prospects for drug delivery and gene transfection. We have developed a laboratory setup that allows for a controlled study of the interaction of single microbubbles with single lipid bilayer vesicles. Substituting vesicles for cell membranes is advantageous because the mechanical properties of vesicles are well-known. Microscopic observations reveal that vesicles near a bubble follow the vivid streaming motion set up by the bubble. The vesicles "bounce" off the bubble, being periodically accelerated towards and away from it, and undergo well-defined shape deformations along their trajectory in accordance with fluid-dynamical theory. Break-up of vesicles could also be observed.

  14. Controlled permeation of cell membrane by single bubble acoustic cavitation

    PubMed Central

    Zhou, Y.; Yang, K.; Cui, J.; Ye, J. Y.; Deng, C. X.

    2011-01-01

    Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustic, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency (7.44 MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5 MHz) ultrasound pulse (duration 13.3 or 40 µs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d = 0.75. The maximum mean radius of the pores was estimated from the measured TMC to be 0.106 ± 0.032 µm (n = 70) for acoustic pressure of 1.5 MPa (duration 13.3 µs), and increased to 0.171 ± 0.030 µm (n = 125) for acoustic pressure of 1.7 MPa and to 0.182 ± 0.052 µm (n=112) for a pulse duration of 40 µs (1.5 MPa). These results from controlled cell membrane permeation by cavitation of single bubbles revealed insights and key factors affecting sonoporation at the single cell level. PMID:21945682

  15. Stable sonoluminescence within a water hammer tube.

    PubMed

    Chakravarty, Avik; Georghiou, Theo; Phillipson, Tacye E; Walton, Alan J

    2004-06-01

    The sonoluminescence (SL) from the collapse of a single gas bubble within a liquid can be produced repetitively using an acoustic resonator. An alternative technique using a water hammer tube, producing SL from bubbles of greater size, is described here. A sealed vertical tube partly filled with a liquid and a gas at low pressure is subjected to vertical vibrations. The oscillation of the pressure within the liquid column, due to inertial forces, excites cavitation bubbles to grow and collapse. Rotation is used to confine the bubbles to the axis of the tube. Bright SL emissions were observed in a number of liquids. Repetitive emission was produced from bubbles in condensed phosphoric acid. Bubbles of 0.4 mm ambient radius (containing 2x 10(14) xenon atoms) were excited by vibration at 35 Hz. Approximately 10(12) photons were emitted per collapse in the range 400-700 nm (over four orders of magnitude greater than the brightest SL reported previously), corresponding to a 1% efficiency of the conversion of mechanical energy into light.

  16. Phase Transitions of Nanoemulsions Using Ultrasound: Experimental Observations

    PubMed Central

    Singh, Ram; Husseini, Ghaleb A.; Pitt, William G.

    2012-01-01

    The ultrasound-induced transformation of perfluorocarbon liquids to gases is of interest in the area of drug and gene delivery. In this study, three independent parameters (temperature, size, and perfluorocarbon species) were selected to investigate the effects of 476-kHz and 20-kHz ultrasound on nanoemulsion phase transition. Two levels of each factor (low and high) were considered at each frequency. The acoustic intensities at gas bubble formation and at the onset of inertial cavitation were recorded and subsequently correlated with the acoustic parameters. Experimental data showed that low frequencies are more effective in forming and collapsing a bubble. Additionally, as the size of the emulsion droplet increased, the intensity required for bubble formation decreased. As expected, perfluorohexane emulsions require greater intensity to form cavitating bubbles than perfluoropentane emulsions. PMID:22444691

  17. Numerical investigation of shock induced bubble collapse in water

    NASA Astrophysics Data System (ADS)

    Apazidis, N.

    2016-04-01

    A semi-conservative, stable, interphase-capturing numerical scheme for shock propagation in heterogeneous systems is applied to the problem of shock propagation in liquid-gas systems. The scheme is based on the volume-fraction formulation of the equations of motion for liquid and gas phases with separate equations of state. The semi-conservative formulation of the governing equations ensures the absence of spurious pressure oscillations at the material interphases between liquid and gas. Interaction of a planar shock in water with a single spherical bubble as well as twin adjacent bubbles is investigated. Several stages of the interaction process are considered, including focusing of the transmitted shock within the deformed bubble, creation of a water-hammer shock as well as generation of high-speed liquid jet in the later stages of the process.

  18. Photothermal nanoblade for patterned cell membrane cutting

    PubMed Central

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu

    2010-01-01

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656

  19. Investigation of a Method to Reduce Cavitation in Diesel Engine Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Honaker, Robert W.

    1998-01-01

    Sonoluminescence is the effect of producing light from sound and occurs when a gas bubble is trapped in a fluid filled cavity and is forced to collapse under a barrage of sound waves. Frenzel and Schultes discovered this phenomenon in 1934 while exposing acoustic waves to photographic plates. This effect was not well understood until 1988 when Crum and Gaitan discovered the necessary conditions for producing single bubble sonoluminescence in the laboratory. The luminescence is a result of the bubble violently collapsing from sound waves and this shares a close association with vibratory cavitation. Cavitation erosion is known to cause damage to rotational machinery when the collapse is near to surfaces due to the high pressures associated with bubble collapse. With these high pressures and temperatures there is a considerable amount of damage to the outside layer of a bearing, thereby, reducing its useful life. An experiment was constructed to generate sonoluminescence in the laboratory in order to obtain a greater understanding of this phenomenon and its association with bubble cavitation. Most of the research was done to investigate how to obtain single bubble sonoluminescence under different conditions and to determine how to detect it. Success in this has inspired several theories on how to use the methods for generating sonoluminescence to control cavitation in fluids under industrial conditions.

  20. Dynamics of sonoluminescing bubbles within a liquid hammer device.

    PubMed

    Urteaga, Raúl; García-Martínez, Pablo Luis; Bonetto, Fabián J

    2009-01-01

    We studied the dynamics of a single sonoluminescing bubble (SBSL) in a liquid hammer device. In particular, we investigated the phosphoric acid-xenon system, in which pulses up to four orders of magnitude brighter than SBSL in water systems (about 10;{12} photons per pulse) have been previously reported [Chakravarty, Phys. Rev. E 69, 066317 (2004)]. We used stroboscopic photography and a Mie scattering technique in order to measure the radius evolution of the bubbles. Under adequate conditions we may position a bubble at the bottom of the tube (cavity) and a second bubble trapped at the middle of the tube (upper bubble). During its collapse, the cavity produces the compression of the liquid column. This compression drives impulsively the dynamics of the upper bubble. Our measurements reveal that the observed light emissions produced by the upper bubble are generated at its second collapse. We employed a simple numerical model to investigate the conditions that occur during the upper bubble collapse. We found good agreement between numerical and experimental values for the light intensity (fluence) and light pulse widths. Results from the model show that the light emission is increased mainly due to an increase in noble gas ambient radius and not because the maximum temperature increases. Even for the brightest pulses obtained ( 2x10;{13} photons, about 20W of peak power) the maximum temperatures computed for the upper bubble are always lower than 20000K .

  1. Screening reactor steam/water piping systems for water hammer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greatermore » than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made.« less

  2. Electrochemical wall shear rate microscopy of collapsing bubbles

    NASA Astrophysics Data System (ADS)

    Reuter, Fabian; Mettin, Robert

    2018-06-01

    An electrochemical high-speed wall shear raster microscope is presented. It involves chronoamperometric measurements on a microelectrode that is flush-mounted in a submerged test specimen. Wall shear rates are derived from the measured microelectrode signal by numerically solving a convection-diffusion equation with an optimization approach. This way, the unsteady wall shear rates from the collapse of a laser pulse seeded cavitation bubble close to a substrate are measured. By planar scanning, they are resolved in high spatial resolution. The wall shear rates are related to the bubble dynamics via synchronized high-speed imaging of the bubble shape.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less

  4. Microfracture development and foam collapse during lava dome growth

    NASA Astrophysics Data System (ADS)

    Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.

    2012-12-01

    The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha samples differ from the natural collapsed dome material. The interior of Ngongotaha Dome shows complex deformed flow banding, indicating that shearing during emplacement was a major component during collapse of the permeable foam. Understanding the development of the porous permeable network during lava dome growth is key to predicting the behaviour of an erupting volcano, and the assessing the likelihood of pressure build-up leading to a catastrophic explosive eruption.

  5. Collapse of an antibubble

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Ji, Chen; Yuan, BaoGang; Ruan, XiaoDong; Fu, Xin

    2013-06-01

    In contrast to a soap bubble, an antibubble is a liquid globule surrounded by a thin film of air. The collapse behavior of an antibubble is studied using a high-speed video camera. It is found that the retraction velocity of the thin air film of antibubbles depends on the thickness of the air film, e, the surface tension coefficient σ, etc., and varies linearly with (σ/ρe)1/2, according to theoretical analysis and experimental observations. During the collapse of the antibubble, many tiny bubbles can be formed at the rim of the air film due to the Rayleigh instability. In most cases, a larger bubble will emerge finally, which holds most of the volume of the air film.

  6. Sonoporation at Small and Large Length Scales: Effect of Cavitation Bubble Collapse on Membranes.

    PubMed

    Fu, Haohao; Comer, Jeffrey; Cai, Wensheng; Chipot, Christophe

    2015-02-05

    Ultrasound has emerged as a promising means to effect controlled delivery of therapeutic agents through cell membranes. One possible mechanism that explains the enhanced permeability of lipid bilayers is the fast contraction of cavitation bubbles produced on the membrane surface, thereby generating large impulses, which, in turn, enhance the permeability of the bilayer to small molecules. In the present contribution, we investigate the collapse of bubbles of different diameters, using atomistic and coarse-grained molecular dynamics simulations to calculate the force exerted on the membrane. The total impulse can be computed rigorously in numerical simulations, revealing a superlinear dependence of the impulse on the radius of the bubble. The collapse affects the structure of a nearby immobilized membrane, and leads to partial membrane invagination and increased water permeation. The results of the present study are envisioned to help optimize the use of ultrasound, notably for the delivery of drugs.

  7. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy.

    PubMed

    Freund, J B; Shukla, R K; Evan, A P

    2009-11-01

    Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid "tissue." A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves.

  8. Shock-induced bubble jetting into a viscous fluid with application to tissue injury in shock-wave lithotripsy

    PubMed Central

    Freund, J. B.; Shukla, R. K.; Evan, A. P.

    2009-01-01

    Shock waves in liquids are known to cause spherical gas bubbles to rapidly collapse and form strong re-entrant jets in the direction of the propagating shock. The interaction of these jets with an adjacent viscous liquid is investigated using finite-volume simulation methods. This configuration serves as a model for tissue injury during shock-wave lithotripsy, a medical procedure to remove kidney stones. In this case, the viscous fluid provides a crude model for the tissue. It is found that for viscosities comparable to what might be expected in tissue, the jet that forms upon collapse of a small bubble fails to penetrate deeply into the viscous fluid “tissue.” A simple model reproduces the penetration distance versus viscosity observed in the simulations and leads to a phenomenological model for the spreading of injury with multiple shocks. For a reasonable selection of a single efficiency parameter, this model is able to reproduce in vivo observations of an apparent 1000-shock threshold before wide-spread tissue injury occurs in targeted kidneys and the approximate extent of this injury after a typical clinical dose of 2000 shock waves. PMID:19894850

  9. Transient bubbles, bublets and breakup

    NASA Astrophysics Data System (ADS)

    Keen, Giles; Blake, John

    1999-11-01

    The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.

  10. Displacement of particles in microfluidics by laser-generated tandem bubbles

    NASA Astrophysics Data System (ADS)

    Lautz, Jaclyn; Sankin, Georgy; Yuan, Fang; Zhong, Pei

    2010-11-01

    The dynamic interaction between laser-generated tandem bubble and individual polystyrene particles of 2 and 10 μm in diameter is studied in a microfluidic channel (25 μm height) by high-speed imaging and particle image velocimetry. The asymmetric collapse of the tandem bubble produces a pair of microjets and associated long-lasting vortices that can propel a single particle to a maximum velocity of 1.4 m/s in 30 μs after the bubble collapse with a resultant directional displacement up to 60 μm in 150 μs. This method may be useful for high-throughput cell sorting in microfluidic devices.

  11. Variation of the temperature coefficient of collapse field in bismuth-based bubble garnets

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Pierce, R. D.; Brandle, C. D.

    1985-01-01

    An approximation to the collapse-field formula is used to show its dependence on magnetization and wall energy and the effect of additions of Gd, Sm, and Eu on 1-micron Bi:YIG bubble materials. The collapse field, magnetization, and wall energy are fitted to quadratic functions of temperature from -50 to 150 C. It is shown that the addition of the various classes of rare earths reduces the temperature derivative of the collapse field in Bi:YIG. Gd influences the collapse field through the magnetization, Sm affects it through the domain wall energy, and Eu does both. The singular magnetic properties of Eu result in the most nearly constant temperature dependence of the collapse field and the best match to a barium-ferrite bias magnite.

  12. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior.

    PubMed

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-21

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young's modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  13. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior

    NASA Astrophysics Data System (ADS)

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Warnez, Matthew T.; Singh, Rahul; Mancia, Lauren; Putnam, Andrew J.; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-03-01

    Histotripsy is an ultrasound ablation method that controls cavitation to fractionate soft tissue. In order to effectively fractionate tissue, histotripsy requires cavitation bubbles to rapidly expand from nanometer-sized initial nuclei into bubbles often larger than 50 µm. Using a negative pressure high enough to initiate a bubble cloud and expand bubbles to a sufficient size, histotripsy has been shown capable of completely fractionating soft tissue into acelluar debris resulting in effective tissue removal. Previous work has shown that the histotripsy process is affected by tissue mechanical properties with stiffer tissues showing increased resistance to histotripsy fractionation, which we hypothesize to be caused by impeded bubble expansion in stiffer tissues. In this study, the hypothesis that increases in tissue stiffness cause a reduction in bubble expansion was investigated both theoretically and experimentally. High speed optical imaging was used to capture a series of time delayed images of bubbles produced inside mechanically tunable agarose tissue phantoms using histotripsy pulses produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. The results demonstrated a significant decrease in maximum bubble radius (Rmax) and collapse time (tc) with both increasing Young’s modulus and increasing frequency. Furthermore, results showed that Rmax was not increased by raising the pressure above the intrinsic threshold. Finally, this work demonstrated the potential of using a dual-frequency strategy to modulate the expansion of histotripsy bubbles. Overall, the results of this study improve our understanding of how tissue stiffness and ultrasound parameters affect histotripsy-induced bubble behavior and provide a rational basis to tailor acoustic parameters for treatment of the specific tissues of interest.

  14. One-dimensional bubble model of pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Lu, XinPei

    2007-09-01

    In this paper, a one-dimensional bubble model of pulsed discharge in water is presented. With a total input energy of 0.63J, the simulation results show that when the bubble collapses at the center of the bubble, the plasma pressure oscillates strongly. It oscillates between 800 and 1150atm with an oscillation frequency of about 6.9MHz, while at r =R/2 (R: bubble radius), the gas velocity oscillates intensely at the same frequency. It oscillates between -235 and 229m/s when the bubble radius reaches its minimum. But it does not oscillate at r =R because of the inertia of the surrounding water. The bubble collapses and reexpands with almost the same speed as that of the zero-dimensional (0D) model. This further confirms why the shock wave pressure from the 0D mode has a good agreement with the experimental results since the shock wave pressure is only determined by the bubble wall velocity v(R ).

  15. Asymmetric bursting of Taylor bubble in inclined tubes

    NASA Astrophysics Data System (ADS)

    Rana, Basanta Kumar; Das, Arup Kumar; Das, Prasanta Kumar

    2016-08-01

    In the present study, experiments have been reported to explain the phenomenon of approach and collapse of an asymmetric Taylor bubble at free surface inside an inclined tube. Four different tube inclinations with horizontal (30°, 45°, 60° and 75°) and two different fluids (water and silicon oil) are considered for the experiment. Using high speed imaging, we have investigated the approach, puncture, and subsequent liquid drainage for re-establishment of the free surface. The present study covers all the aspects in the collapse of an asymmetric Taylor bubble through the generation of two films, i.e., a cap film which lies on top of the bubble and an asymmetric annular film along the tube wall. Retraction of the cap film is studied in detail and its velocity has been predicted successfully for different inclinations and fluids. Film drainage formulation considering azimuthal variation is proposed which also describes the experimental observations well. In addition, extrapolation of drainage velocity pattern beyond the experimental observation limit provides insight into the total collapse time of bubbles at different inclinations and fluids.

  16. Theoretical model of ice nucleation induced by acoustic cavitation. Part 1: Pressure and temperature profiles around a single bubble.

    PubMed

    Cogné, C; Labouret, S; Peczalski, R; Louisnard, O; Baillon, F; Espitalier, F

    2016-03-01

    This paper deals with the inertial cavitation of a single gas bubble in a liquid submitted to an ultrasonic wave. The aim was to calculate accurately the pressure and temperature at the bubble wall and in the liquid adjacent to the wall just before and just after the collapse. Two different approaches were proposed for modeling the heat transfer between the ambient liquid and the gas: the simplified approach (A) with liquid acting as perfect heat sink, the rigorous approach (B) with liquid acting as a normal heat conducting medium. The time profiles of the bubble radius, gas temperature, interface temperature and pressure corresponding to the above models were compared and important differences were observed excepted for the bubble size. The exact pressure and temperature distributions in the liquid corresponding to the second model (B) were also presented. These profiles are necessary for the prediction of any physical phenomena occurring around the cavitation bubble, with possible applications to sono-crystallization. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Microgravity Boiling Enhancement Using Vibration-Based Fluidic Technologies

    NASA Astrophysics Data System (ADS)

    Smith, Marc K.; Glezer, Ari; Heffington, Samuel N.

    2002-11-01

    Thermal management is an important subsystem in many devices and technologies used in a microgravity environment. The increased power requirements of new Space technologies and missions mean that the capacity and efficiency of thermal management systems must be improved. The current work addresses this need through the investigation and development of a direct liquid immersion heat transfer cell for microgravity applications. The device is based on boiling heat transfer enhanced by two fluidic technologies developed at Georgia Tech. The first of these fluidic technologies, called vibration-induced bubble ejection, is shown in Fig. 1. Here, an air bubble in water is held against a vibrating diaphragm by buoyancy. The vibrations at 440 Hz induce violent oscillations of the air/water interface that can result in small bubbles being ejected from the larger air bubble (Fig. 1a) and, simultaneously, the collapse of the air/water interface against the solid surface (Fig. 1b). Both effects would be useful during a heat transfer process. Bubble ejection would force vapor bubbles back into the cooler liquid so that they can condense. Interfacial collapse would tend to keep the hot surface wet thereby increasing liquid evaporation and heat transfer to the bulk liquid. Figure 2 shows the effect of vibrating the solid surface at 7.6 kHz. Here, small-scale capillary waves appear on the surface of the bubble near the attachment point on the solid surface (the grainy region). The vibration produces a net force on the bubble that pushes it away from the solid surface. As a result, the bubble detaches from the solid and is propelled into the bulk liquid. This force works against buoyancy and so it would be even more effective in a microgravity environment. The benefit of the force in a boiling process would be to push vapor bubbles off the solid surface, thus helping to keep the solid surface wet and increasing the heat transfer. The second fluidic technology to be employed in this work is a synthetic jet, shown schematically in Fig. 3. The jet is produced using a small, sealed cavity with a sharp-edged orifice on one side and a vibrating diaphragm on the opposite side. The jet is formed when fluid is alternately sucked into and then expelled from the cavity by the motion of the diaphragm. This alternating motion means that there is no net mass addition to the system. Thus, there is no need for input piping or complex fluidic packaging.

  18. Freezing Bubbles

    NASA Astrophysics Data System (ADS)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  19. Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalentmore » pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.« less

  20. Nonlinear oscillations and collapse of elongated bubbles subject to weak viscous effects: Effect of internal overpressure

    NASA Astrophysics Data System (ADS)

    Tsiglifis, Kostas; Pelekasis, Nikos A.

    2007-07-01

    The details of nonlinear oscillations and collapse of elongated bubbles, subject to large internal overpressure, are studied by a boundary integral method. Weak viscous effects on the liquid side are accounted for by integrating the equations of motion across the boundary layer that is formed adjacent to the interface. For relatively large bubbles with initial radius R0 on the order of millimeters, PSt=PSt'/(2σ/R0)˜300 and Oh =μ/(σR0ρ)1/2˜200, and an almost spherical initial shape, S˜1, Rayleigh-Taylor instability prevails and the bubble breaks up as a result of growth of higher modes and the development of regions of very small radius of curvature; σ, ρ, μ, and PSt' denote the surface tension, density, viscosity, and dimensional static pressure in the host liquid while S is the ratio between the length of the minor semiaxis of the bubble, taken as an axisymmetric ellipsoid, and its equivalent radius R0. For finite initial elongations, 0.5⩽S <1, the bubble collapses either via two jets that counterpropagate along the axis of symmetry and eventually coalesce at the equatorial plane, or in the form of a sink flow approaching the center of the bubble along the equatorial plane. This pattern persists for the above range of initial elongations examined and large internal overpressure amplitudes, ɛB⩾1, irrespective of Oh. It is largely due to the phase in the growth of the second Legendre mode during the after-bounce of the oscillating bubble, during which it acquires large enough positive accelerations for collapse to take place. For smaller bubbles with initial radius on the order of micrometers, PSt˜4 and Oh ˜20, and small initial elongations, 0.75

  1. Temporal evolution of liquid-assisted hard bio-tissue ablation with infrared pulsed lasers under a liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Faner; Li, Qiang; Hua, Mingxin; Zhan, Zhenlin; Xie, Shusen; Zhang, Xianzeng

    2016-10-01

    Liquid-assisted hard biotissue ablation with the pulsed lasers takes advantages in precision and compatibility than mechanical tools in traditional surgery. The objective of this study was to monitor the dynamic process of the cavitation bubble evolution induced by Ho:YAG laser under water and identify the opening time of channel formation between the fiber tip to the target tissue surface. A free-running Ho:YAG laser was used in the experiment. The wavelength was 2.1 μm with a pulse duration of 350 us and pulse energy varied from 500 mJ to 2000 mJ. The high-speed camera (PCO. dimax, Germany, PCO) applied to monitor the whole ablation process was setting at a frame rate of 52000 frames/s. The results showed that the cavitation bubble induced by laser energy experienced an oscillation process including occurrence, expansion, contraction and subsequent collapse. A channel connected the fiber tip and target tissue surface was formed during the dynamic process which allowed the following pulse energy transmitted through the channel with a relative low absorption and directly interacted with the target tissue. The beginning time of channel formation, as well as the duration of channel opening, as functions of incident laser energy were also presented. A micro-explosion was observed near the tissue surface during the bubble collapse, which may contribute to produce a clean cut, reduce the thermal injury and improve the morphology of ablation crater.

  2. On the Physics of Fizziness: How Bubble Bursting Controls Droplets Ejection

    NASA Astrophysics Data System (ADS)

    Seon, Thomas; Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe

    2014-11-01

    Either in a champagne glass or at the oceanic scales, the tiny bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the bubble bursting jet, prelude for these aerosols, we propose a simple scaling for the jet velocity, we unravel experimentally the intricate roles of bubble shape, capillary waves and liquid properties, and we demonstrate that droplets ejection can be tuned by changing the liquid properties. In particular, as capillary waves are shown to always evolve into a self-similar collapsing cavity, faster and smaller droplets can be produced by sheltering this collapse from remnant ripples using damping action of viscosity. These results pave the road to the characterization and control of the bursting bubble aerosols. Applications to champagne aroma diffusion will be discussed.

  3. Reducing bubbles in glass coatings improves electrical breakdown strength

    NASA Technical Reports Server (NTRS)

    Banks, B.

    1968-01-01

    Helium reduces bubbles in glass coatings of accelerator grids for ion thrustors. Fusing the coating in a helium atmosphere creates helium bubbles in the glass. In an argon atmosphere, entrapped helium diffuses out of the glass and the bubbles collapse. The resultant coating has a substantially enhanced electrical breakdown strength.

  4. Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool

    NASA Astrophysics Data System (ADS)

    Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro

    2016-11-01

    Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).

  5. Ultrasound in Enzyme Activation and Inactivation

    NASA Astrophysics Data System (ADS)

    Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai

    As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

  6. Beer tapping: dynamics of bubbles after impact

    NASA Astrophysics Data System (ADS)

    Mantič-Lugo, V.; Cayron, A.; Brun, P.-T.; Gallaire, F.

    2015-12-01

    Beer tapping is a well known prank where a bottle of beer is impacted from the top by a solid object, usually another bottle, leading to a sudden foam overflow. A description of the shock-driven bubble dynamics leading to foaming is presented based on an experimental and numerical study evoking the following physical picture. First, the solid impact produces a sudden downwards acceleration of the bottle creating a strong depression in the liquid bulk. The existing bubbles undergo a strong expansion and a sudden contraction ending in their collapse and fragmentation into a large amount of small bubbles. Second, the bubble clouds present a large surface area to volume ratio, enhancing the CO2 diffusion from the supersaturated liquid, hence growing rapidly and depleting the CO2. The clouds of bubbles migrate upwards in the form of plumes pulling the surrounding liquid with them and eventually resulting in the foam overflow. The sudden pressure drop that triggers the bubble dynamics with a collapse and oscillations is modelled by the Rayleigh-Plesset equation. The bubble dynamics from impact to collapse occurs over a time (tb ≃ 800 μs) much larger than the acoustic time scale of the liquid bulk (tac = 2H/c ≃ 80 μs), for the experimental container of height H = 6 cm and a speed of sound around c ≃ 1500 m/s. This scale separation, together with the comparison of numerical and experimental results, suggests that the pressure drop is controlled by two parameters: the acceleration of the container and the distance from the bubble to the free surface.

  7. Coupled dynamics of translation and collapse of acoustically driven microbubbles.

    PubMed

    Reddy, Anil J; Szeri, Andrew J

    2002-10-01

    Pressure gradients drive the motion of microbubbles relative to liquids in which they are suspended. Examples include the hydrostatic pressure due to a gravitational field, and the pressure gradients in a sound field, useful for acoustic levitation. In this paper, the equations describing the coupled dynamics of radial oscillation and translation of a microbubble are given. The formulation is based on a recently derived expression for the hydrodynamic force on a bubble of changing size in an incompressible liquid [J. Magnaudet and D. Legendre, Phys. Fluids 10, 550-556 (1998)]. The complex interaction between radial and translation dynamics is best understood by examination of the added momentum associated with the liquid motion caused by the moving bubble. Translation is maximized when the bubble collapses violently. The new theory for coupled collapse and translation dynamics is compared to past experiments and to previous theories for decoupled translation dynamics. Special attention is paid to bubbles of relevance in biomedical applications.

  8. Laser diagnostics for characterization of sprays formed by a collapsing non-equilibrium bubble

    NASA Astrophysics Data System (ADS)

    Kannan, Y. S.; Balusamy, S.; Karri, B.

    2015-12-01

    In this paper, we investigate the use of laser diagnostic tools for in-plane imaging of bubble induced spray using a laser sheet and Mie scattering technique. A perspex plate of thickness 10 mm with a hole of diameter 1 mm in the center is placed in the middle of a glass tank filled with water such that the top surface of the plate coincides with the water surface. A bubble is created just below the hole using a low-voltage spark circuit such that it expands against the hole. This leads to the formation of two jets which impact leading to a spray and break-up into droplets. The spray evolution is observed using a laser sheet directed in a plane through the center of the hole. The illuminated plane is imaged using a high-speed camera based on the Mie scattering from glass beads suspended in the liquid. Results show that Mie scattering technique has potential in studying bubble-induced sprays with applications such as in fuel sprays, drug-delivery etc, and also for validation of numerical codes. We present results from our ongoing experiments in this paper.

  9. Bubble Proliferation or Dissolution of Cavitation Nuclei in the Beam Path of a Shock-Wave Lithotripter

    NASA Astrophysics Data System (ADS)

    Frank, Spencer; Lautz, Jaclyn; Sankin, Georgy N.; Szeri, Andrew J.; Zhong, Pei

    2015-03-01

    It is hypothesized that the decreased treatment efficiency in contemporary shock-wave lithotripters is related to tensile wave attenuation due to cavitation in the prefocal beam path. Utilizing high-speed imaging of the beam path and focal pressure waveform measurements, tensile attenuation is associated with bubble proliferation. By systematically testing different combinations of pulse-repetition frequency and gas concentration, we modulate the bubble-dissolution time to identify which conditions lead to bubble proliferation and show that reducing bubble proliferation in the beam path significantly improves acoustic transmission and stone comminution efficiency in vitro. In addition to experiments, a bubble-proliferation model is developed that takes gas diffusion across the bubble wall and bubble fragmentation into account. By aligning the model with experimental observations, the number of daughter bubbles produced after a single lithotripter bubble collapse is estimated to be in the range of 253 ˜510 . This finding is on the same order of magnitude with previous measurements of an isolated bubble collapse in a lithotripter field by Pishchalnikov, McAteer, and Williams [BJU Int. 102, 1681 (2008), 10.1111/j.1464-410X.2008.07896.x], and this estimate improves the general understanding of lithotripsy bubble dynamics in the beam path.

  10. Path suppression of strongly collapsing bubbles at finite and low Reynolds numbers.

    PubMed

    Rechiman, Ludmila M; Dellavale, Damián; Bonetto, Fabián J

    2013-06-01

    We study, numerically and experimentally, three different methods to suppress the trajectories of strongly collapsing and sonoluminescent bubbles in a highly viscous sulfuric acid solution. A new numerical scheme based on the window method is proposed to account for the history force acting on a spherical bubble with variable radius. We could quantify the history force, which is not negligible in comparison with the primary Bjerknes force in this type of problem, and results are in agreement with the classical primary Bjerknes force trapping threshold analysis. Moreover, the present numerical implementation reproduces the spatial behavior associated with the positional and path instability of sonoluminescent argon bubbles in strongly gassed and highly degassed sulfuric acid solutions. Finally, the model allows us to demonstrate that spatially stationary bubbles driven by biharmonic excitation could be obtained with a different mode from the one used in previous reported experiments.

  11. Interactions of inertial cavitation bubbles with stratum corneum lipid bilayers during low-frequency sonophoresis.

    PubMed

    Tezel, Ahmet; Mitragotri, Samir

    2003-12-01

    Interactions of acoustic cavitation bubbles with biological tissues play an important role in biomedical applications of ultrasound. Acoustic cavitation plays a particularly important role in enhancing transdermal transport of macromolecules, thereby offering a noninvasive mode of drug delivery (sonophoresis). Ultrasound-enhanced transdermal transport is mediated by inertial cavitation, where collapses of cavitation bubbles microscopically disrupt the lipid bilayers of the stratum corneum. In this study, we describe a theoretical analysis of the interactions of cavitation bubbles with the stratum corneum lipid bilayers. Three modes of bubble-stratum corneum interactions including shock wave emission, microjet penetration into the stratum corneum, and impact of microjet on the stratum corneum are considered. By relating the mechanical effects of these events on the stratum corneum structure, the relationship between the number of cavitation events and collapse pressures with experimentally measured increase in skin permeability was established. Theoretical predictions were compared to experimentally measured parameters of cavitation events.

  12. Detecting cavitation in mercury exposed to a high-energy pulsed proton beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G

    2010-01-01

    The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will bemore » reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.« less

  13. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging

    PubMed Central

    Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan

    2008-01-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  14. The Experimental Study of Dynamics of Scaled Gas-Filled Bubble Collapse in Liquid

    NASA Astrophysics Data System (ADS)

    Pavlenko, Alexander

    2011-06-01

    The article provides results of analyzing special features of the single-bubble sonoluminescence, developing the special apparatus to investigate this phenomenon on a larger-scale basis. Certain very important effects of high energy density physics, i.e. liquid compressibility, shock-wave formation under the collapse of the gas cavity in liquid, shock-wave focusing in the gas-filled cavity, occurrence of hot dense plasma in the focusing area, and high-temperature radiation yield are observed in this phenomenon. Specificity of the process is conditioned by the ``ideal'' preparation and sphericity of the gas-and-liquid contact boundary what makes the collapse process efficient due to the reduced influence of hydrodynamic instabilities. Results of experimental investigations; results of developing the facilities, description of methods used to register parameters of facilities and the system under consideration; analytical estimates how gas-filled bubbles evolve in liquid with the regard for scale effects; results of preliminary 1-D gas dynamic calculations of the gas bubble evolution are presented. The work supported by ISTC Project #2116.

  15. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.

    PubMed

    Wang, Sijia; Wu, Ning

    2014-04-01

    Bubble propulsion and self-diffusiophoresis are two common mechanisms that can drive autonomous motion of microparticles in hydrogen peroxide. Although microtubular particles, when coated with platinum in their interior concave surfaces, can propel due to the formation and release of bubbles from one end, the convex Janus particles usually do not generate any visible bubble. They move primarily due to the self-diffusiophoresis. Coincidentally, the platinum films on those particles were typically coated by physical evaporation. In this paper, we use a simple chemical deposition method to make platinum-polystyrene Janus dimers. Surprisingly, those particles are propelled by periodic growth and collapse of bubbles on the platinum-coated lobes. We find that both high catalytic activity and rough surface are necessary to change the propulsion mode from self-diffusiophoresis to bubble propulsion. Our Janus dimers, with combined geometric and interfacial anisotropy, also exhibit distinctive motions at the respective stages of bubble growth and collapse, which differ by 5-6 orders of magnitude in time. Our study not only provides insight into the link between self-diffusiophoresis and bubble propulsion but also reveals the intriguing impacts of the combined geometric and interfacial anisotropy on self-propulsion of particles.

  16. Generation of cavitation luminescence by laser-induced exothermic chemical reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung Park, Han; Diebold, Gerald J.

    2013-08-14

    Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxidemore » concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.« less

  17. The recreation of a unique shrimp's mechanically induced cavitation bubble

    NASA Astrophysics Data System (ADS)

    Miller, Ryan; Dougherty, Christopher; Eliasson, Veronica; Khanolkar, Gauri

    2014-11-01

    The Alpheus heterochaelis, appropriately nicknamed the ``pistol shrimp,'' possesses an oversized claw that creates a cavitation bubble upon rapid closure. The implosion of this bubble results in a shock wave that can stun or even kill the shrimp's prey (Versluis et al., 2000). Additionally, the implosion is so violent that sonoluminescence may occur. This light implies extreme temperatures, which have been recorded to reach as high as 10,000 K (Roach, 2001). By developing an analogous mechanism to the oversized claw, the goal of this experiment is to verify that cavitation can be produced similar to that of the pistol shrimp in nature as well as to analyze the resulting shock wave and sonoluminescence. High-speed schlieren imaging was used to observe the shock dynamics. Furthermore, results on cavitation collapse and light emission will be presented. USC Provost Undergraduate Research Fellowship/Rose Hills Undergraduate Research Fellowship.

  18. Analysis of cavitation bubble dynamics in a liquid

    NASA Technical Reports Server (NTRS)

    Fontenot, L. L.; Lee, Y. C.

    1971-01-01

    General differential equations governing the dynamics of the cavitation bubbles in a liquid were derived. With the assumption of spherical symmetry the governing equations were simplified. Closed form solutions were obtained for simple cases, and numerical solutions were calculated for complicated ones. The growth and the collapse of the bubble were analyzed, oscillations of the bubbles were studied, and the stability of the cavitation bubbles were investigated. The results show that the cavitation bubbles are unstable, and the oscillation is not sinusoidal.

  19. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    NASA Astrophysics Data System (ADS)

    Kondo, Tomoki; Ando, Keita

    2016-03-01

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s is inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh-Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.

  20. One-way-coupling simulation of cavitation accompanied by high-speed droplet impact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Tomoki; Ando, Keita, E-mail: kando@mech.keio.ac.jp

    Erosion due to high-speed droplet impact is a crucial issue in industrial applications. The erosion is caused by the water-hammer loading on material surfaces and possibly by the reloading from collapsing cavitation bubbles that appear within the droplet. Here, we simulate the dynamics of cavitation bubbles accompanied by high-speed droplet impact against a deformable wall in order to see whether the bubble collapse is violent enough to give rise to cavitation erosion on the wall. The evolution of pressure waves in a single water (or gelatin) droplet to collide with a deformable wall at speed up to 110 m/s ismore » inferred from simulations of multicomponent Euler flow where phase changes are not permitted. Then, we examine the dynamics of cavitation bubbles nucleated from micron/submicron-sized gas bubble nuclei that are supposed to exist inside the droplet. For simplicity, we perform Rayleigh–Plesset-type calculations in a one-way-coupling manner, namely, the bubble dynamics are determined according to the pressure variation obtained from the Euler flow simulation. In the simulation, the preexisting bubble nuclei whose size is either micron or submicron show large growth to submillimeters because tension inside the droplet is obtained through interaction of the pressure waves and the droplet interface; this supports the possibility of having cavitation due to the droplet impact. It is also found, in particular, for the case of cavitation arising from very small nuclei such as nanobubbles, that radiated pressure from the cavitation bubble collapse can overwhelm the water-hammer pressure directly created by the impact. Hence, cavitation may need to be accounted for when it comes to discussing erosion in the droplet impact problem.« less

  1. Imaging and analysis of individual cavitation microbubbles around dental ultrasonic scalers.

    PubMed

    Vyas, N; Dehghani, H; Sammons, R L; Wang, Q X; Leppinen, D M; Walmsley, A D

    2017-11-01

    Cavitation is a potentially effective and less damaging method of removing biofilm from biomaterial surfaces. The aim of this study is to characterise individual microbubbles around ultrasonic scaler tips using high speed imaging and image processing. This information will provide improved understanding on the disruption of dental biofilm and give insights into how the instruments can be optimised for ultrasonic cleaning. Individual cavitation microbubbles around ultrasonic scalers were analysed using high speed recordings up to a million frames per second with image processing of the bubble movement. The radius and rate of bubble growth together with the collapse was calculated by tracking multiple points on bubbles over time. The tracking method to determine bubble speed demonstrated good inter-rater reliability (intra class correlation coefficient: 0.993) and can therefore be a useful method to apply in future studies. The bubble speed increased over its oscillation cycle and a maximum of 27ms -1 was recorded during the collapse phase. The maximum bubble radii ranged from 40 to 80μm. Bubble growth was observed when the ultrasonic scaler tip receded from an area and similarly bubble collapse was observed when the tip moved towards an area, corresponding to locations of low pressure around the scaler tip. Previous work shows that this cavitation is involved in biofilm removal. Future experimental work can be based on these findings by using the protocols developed to experimentally analyse cavitation around various clinical instruments and comparing with theoretical calculations. This will help to determine the main cleaning mechanisms of cavitation and how clinical instruments such as ultrasonic scalers can be optimised. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Dielectric polarization in the Planck theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    1998-11-01

    Sonoluminescence observed in the cavitation of liquid H2O may be explained by the Planck theory of SL, which treats the bubbles as collapsing miniature masers having optical waves standing in resonance with the dimensions of the bubble cavity. Microwaves are shown to be created from the Planck energy of the standing waves, provided the bubble wall can be treated as a perfect blackbody surface. Liquid H2O is strongly absorbent in the ultraviolet and there the bubble approaches a Planck blackbody enclosure. The microwaves are created at frequencies proportional to the bubble collapse velocity only to be promptly absorbed by the rotation quantum states of the H2O and other bubble wall molecules. The microwaves are absorbed discretely at rotation line frequencies, or continuously by dipole rotation at frequencies from 1 to 30 GHz. In the liquid state, molecular rotation of the H2O molecule is hindered and the microwave energy is rapidly turned into bending energy by intermolecular collisions. Subsequently, the bubble wall molecules may thereby ionize and produce visible photons. The microwaves create intense electrical fields in the bubble wall by dielectric polarization. If the gases adjacent to the bubble wall undergo electrical breakdown, free electrons are created, thereby providing sonoluminescence with a magnetic field effect.

  3. Nanobubbles, cavitation, shock waves and traumatic brain injury.

    PubMed

    Adhikari, Upendra; Goliaei, Ardeshir; Berkowitz, Max L

    2016-12-07

    Collapse of bubbles, microscopic or nanoscopic, due to their interaction with the impinging pressure wave produces a jet of particles moving in the direction of the wave. If there is a surface nearby, the high-speed jet particles hit it, and as a result damage to the surface is produced. This cavitation effect is well known and intensely studied in case of microscopic sized bubbles. It can be quite damaging to materials, including biological tissues, but it can also be beneficial when controlled, like in case of sonoporation of biological membranes for the purpose of drug delivery. Here we consider recent simulation work performed to study collapse of nanobubbles exposed to shock waves, in order to understand the detailed mechanism of the cavitation induced damage to soft materials, such as biological membranes. We also discuss the connection of the cavitation effect with the traumatic brain injury caused by blasts. Specifically, we consider possible damage to model membranes containing lipid bilayers, bilayers with embedded ion channel proteins like the ones found in neural cells and also protein assemblies found in the tight junction of the blood brain barrier.

  4. Direct Observation of Domain-Wall Surface Tension by Deflating or Inflating a Magnetic Bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Xueying; Vernier, Nicolas; Zhao, Weisheng; Yu, Haiming; Vila, Laurent; Zhang, Yue; Ravelosona, Dafiné

    2018-02-01

    The surface energy of a magnetic domain wall (DW) strongly affects its static and dynamic behaviors. However, this effect is seldom directly observed, and some of the related phenomena are not well understood. Moreover, a reliable method to quantify the DW surface energy is still absent. Here, we report a series of experiments in which the DW surface energy becomes a dominant parameter. We observe that a semicircular magnetic domain bubble can spontaneously collapse under the Laplace pressure induced by DW surface energy. We further demonstrate that the surface energy can lead to a geometrically induced pinning when the DW propagates in a Hall cross or from a nanowire into a nucleation pad. Based on these observations, we develop two methods to quantify the DW surface energy, which can be very helpful in the estimation of intrinsic parameters such as Dzyaloshinskii-Moriya interactions or exchange stiffness in magnetic ultrathin films.

  5. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.

  6. Inside a Collapsing Bubble: Sonoluminescence and the Conditions During Cavitation

    NASA Astrophysics Data System (ADS)

    Suslick, Kenneth S.; Flannigan, David J.

    2008-05-01

    Acoustic cavitation, the growth and rapid collapse of bubbles in a liquid irradiated with ultrasound, is a unique source of energy for driving chemical reactions with sound, a process known as sonochemistry. Another consequence of acoustic cavitation is the emission of light [sonoluminescence (SL)]. Spectroscopic analyses of SL from single bubbles as well as a cloud of bubbles have revealed line and band emission, as well as an underlying continuum arising from a plasma. Application of spectrometric methods of pyrometry as well as tools of plasma diagnostics to relative line intensities, profiles, and peak positions have allowed the determination of intracavity temperatures and pressures. These studies have shown that extraordinary conditions (temperatures up to 20,000 K; pressures of several thousand bar; and heating and cooling rates of >1012 K s1) are generated within an otherwise cold liquid.

  7. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihatsch, Michael S., E-mail: michael.mihatsch@aer.mw.tum.de; Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion ofmore » a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.« less

  8. Optical nucleation of bubble clouds in a high pressure spherical resonator.

    PubMed

    Anderson, Phillip; Sampathkumar, A; Murray, Todd W; Gaitan, D Felipe; Glynn Holt, R

    2011-11-01

    An experimental setup for nucleating clouds of bubbles in a high-pressure spherical resonator is described. Using nanosecond laser pulses and multiple phase gratings, bubble clouds are optically nucleated in an acoustic field. Dynamics of the clouds are captured using a high-speed CCD camera. The images reveal cloud nucleation, growth, and collapse and the resulting emission of radially expanding shockwaves. These shockwaves are reflected at the interior surface of the resonator and then reconverge to the center of the resonator. As the shocks reconverge upon the center of the resonator, they renucleate and grow the bubble cloud. This process is repeated over many acoustic cycles and with each successive shock reconvergence, the bubble cloud becomes more organized and centralized so that subsequent collapses give rise to stronger, better defined shockwaves. After many acoustic cycles individual bubbles cannot be distinguished and the cloud is then referred to as a cluster. Sustainability of the process is ultimately limited by the detuning of the acoustic field inside the resonator. The nucleation parameter space is studied in terms of laser firing phase, laser energy, and acoustic power used.

  9. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    PubMed Central

    Yagisawa, Yui; Then, Hui Zee; Okumura, Ko

    2016-01-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials. PMID:27138747

  10. A New Unsteady Model for Dense Cloud Cavitation in Cryogenic Fluids

    NASA Technical Reports Server (NTRS)

    Hosangadi, A.; Ahuja, V.

    2005-01-01

    A new unsteady, cavitation model is presented wherein the phase change process (bubble growth/collapse) is coupled to the acoustic field in a cryogenic fluid. It predicts the number density and radius of bubbles in vapor clouds by tracking both the aggregate surface area and volume fraction of the cloud. Hence, formulations for the dynamics of individual bubbles (e.g. Rayleigh-Plesset equation) may be integrated within the macroscopic context of a dense vapor cloud i.e. a cloud that occupies a significant fraction of available volume and contains numerous bubbles. This formulation has been implemented within the CRUNCH CFD, which has a compressible real fluid formulation, a multi-element, unstructured grid framework, and has been validated extensively for liquid rocket turbopump inducers. Detailed unsteady simulations of a cavitating ogive in liquid nitrogen are presented where time-averaged mean cavity pressure and temperature depressions due to cavitation are compared with experimental data. The model also provides the spatial and temporal history of the bubble size distribution in the vapor clouds that are shed, an important physical parameter that is difficult to measure experimentally and is a significant advancement in the modeling of dense cloud cavitation.

  11. Simulations of Non-spherical Bubble Collapse Dynamics in Viscous and Viscoelastic Media Near a Compliant Object

    NASA Astrophysics Data System (ADS)

    Rodriguez, Mauro; Johnsen, Eric

    2015-11-01

    Understanding the dynamics of cavitation bubbles and the shock waves emitted by their collapse in and near viscoelastic media is important for various naval and medical applications, particularly in the context of cavitation damage. Two examples are histotripsy, which utilizes this phenomenon for the ablation of pathogenic tissue, and erosion to elastomeric coatings on propellers. Although not fully understood, the damage mechanism combines the effect of the incoming pulses and cavitation produced by the high tension. Additionally, the influence of the shock on the material and the response of the material to the shock are not well known. A novel numerical approach for simulating shock and acoustic wave propagation in Zener-like viscoelastic media is proposed. This Eulerian method is based on a high-order accurate weighted essentially non-oscillatory scheme for shock capturing and introduces evolution equations for the components of the shear stress tensor. Validation studies between high-fidelity two-dimensional simulations of the bubble collapse dynamics for various experimental configurations (i.e. the viscous or viscoelastic material surrounding the bubble and the nearby compliant object are varied) will be presented. This work is supported by ONR grant N00014-12-1-0751.

  12. From bubble bursting to droplet evaporation in the context of champagne aerosols

    NASA Astrophysics Data System (ADS)

    Seon, Thomas; Ghabache, Elisabeth; Antkowiak, Arnaud; Liger-Belair, Gerard

    2015-11-01

    As champagne or sparkling wine is poured into a glass, a myriad of ascending bubbles collapse and therefore radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Because these aerosols have been found to hold the organoleptic ``essence'' of champagne they are believed to play a crucial role in the flavor release in comparison with that from a flat wine for example. Based on the model experiment of a single bubble bursting in idealized champagnes, the velocity, radius and maximum height of the first jet drop following bubble collapse have been characterized, with varying bubble size and liquid properties in the context of champagne aerosols. Using the experimental results and simple theoretical models for drop and surface evaporation, we show that bubble bursting aerosols drastically enhance the transfer of liquid in the atmosphere with respect to a flat liquid surface. Contrary to popular opinion, we exhibit that small bubbles are negative in terms of aroma release, and we underline bubble radii enabling to optimize the droplet height and evaporation in the whole range of champagne properties. These results pave the road to the fine tuning of champagne aroma diffusion, a major issue of the sparkling wine industry.

  13. Temporal effect of inertial cavitation with and without microbubbles on surface deformation of agarose S gel in the presence of 1-MHz focused ultrasound.

    PubMed

    Tomita, Y; Matsuura, T; Kodama, T

    2015-01-01

    Sonoporation has the potential to deliver extraneous molecules into a target tissue non-invasively. There have been numerous investigations of cell membrane permeabilization induced by microbubbles, but very few studies have been carried out to investigate sonoporation by inertial cavitation, especially from a temporal perspective. In the present paper, we show the temporal variations in nano/micro-pit formations following the collapse of inertial cavitation bubbles, with and without Sonazoid® microbubbles. Using agarose S gel as a target material, erosion experiments were conducted in the presence of 1-MHz focused ultrasound applied for various exposure times, Tex (0.002-60 s). Conventional microscopy was used to measure temporal variations in micrometer-scale pit numbers, and atomic force microscopy utilized to detect surface roughness on a nanometer scale. The results demonstrated that nanometer-scale erosion was predominantly caused by Sonazoid® microbubbles and C4F10 gas bubbles for 0.002 s

  14. Real-Time Visualization of Joint Cavitation

    PubMed Central

    Rowe, Lindsay

    2015-01-01

    Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374

  15. Exploding and Imaging of Electron Bubbles in Liquid Helium

    NASA Astrophysics Data System (ADS)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2017-06-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  16. Acoustical stability of a sonoluminescing bubble

    NASA Astrophysics Data System (ADS)

    Holzfuss, Joachim; Rüggeberg, Matthias; Holt, R. Glynn

    2002-10-01

    In the parameter region for sonoluminescence of a single levitated bubble in a water-filled resonator it is observed that the bubble may have an enormous spatial stability leaving it ``pinned'' in the fluid and allowing it to emit light pulses of picosecond accuracy. We report here observations of a complex harmonic structure in the acoustic field surrounding a sonoluminescing bubble. We show that this complex sound field determines the position of the bubble and may either increase or decrease its spatial stability. The acoustic environment of the bubble is the result of the excitation of high-order normal modes of the resonator by the outgoing shock wave generated by the bubble collapse.

  17. Will Higher Education Be the Next Bubble to Burst?

    ERIC Educational Resources Information Center

    Cronin, Joseph Marr; Horton, Howard E.

    2009-01-01

    The public has become all too aware of the term "bubble" to describe an asset that is irrationally and artificially overvalued and cannot be sustained. The dot-com bubble burst by 2000. More recently the overextended housing market collapsed, helping to trigger a credit meltdown. The stock market has declined more than 30 percent in the past year,…

  18. Mechanisms of thrombolysis acceleration by cavitation

    NASA Astrophysics Data System (ADS)

    Weiss, Hope; Selvaraj, Prashanth; Ahadi, Golnaz; Voie, Arne; Hoelscher, Thilo; Okita, Kohei; Matsumoto, Yoichiro; Szeri, Andrew

    2012-11-01

    Recent studies, in vitro and in vivo, have shown that High Intensity Focused Ultrasound (HIFU) accelerates thrombolysis, the dissolution of blood clots, for ischemic stroke. Although the mechanisms are not fully understood, cavitation is thought to play an important role in sonothrombolysis. The damage to a blood clot's fibrin fiber network from cavitation in a HIFU field is studied using two independent approaches for an embedded bubble. One method is extended to the more important scenario of a bubble outside a blood clot that collapses asymmetrically creating a jet towards the clot. There is significantly more damage potential from a bubble undergoing cavitation collapse outside the clot compared to a rapidly expanding bubble embedded within the clot structure. Also, the effects of the physical properties of skull bone when a HIFU wave propagates through it are examined by use of computer simulation. The dynamics of a test bubble placed at the focus is used in understanding of the pressure field. All other things being equal, the analysis suggests that skull thickness can alter the wave at the focus, which in turn can change the nature of cavitation bubble dynamics and the amount of energy available for clot damage. Now at MSOE.

  19. Proposed method to estimate the liquid-vapor accommodation coefficient based on experimental sonoluminescence data.

    PubMed

    Puente, Gabriela F; Bonetto, Fabián J

    2005-05-01

    We used the temporal evolution of the bubble radius in single-bubble sonoluminescence to estimate the water liquid-vapor accommodation coefficient. The rapid changes in the bubble radius that occur during the bubble collapse and rebounds are a function of the actual value of the accommodation coefficient. We selected bubble radius measurements obtained from two different experimental techniques in conjunction with a robust parameter estimation strategy and we obtained that for water at room temperature the mass accommodation coefficient is in the confidence interval [0.217,0.329].

  20. Bubble inductors: Pneumatic tuning of a stretchable inductor

    NASA Astrophysics Data System (ADS)

    Lazarus, Nathan; Bedair, Sarah S.

    2018-05-01

    From adaptive matching networks in power systems to channel selectable RF filters and circuitry, tunable inductors are fundamental components for circuits requiring reconfigurability. Here we demonstrate a new continuously tunable inductor based on physically stretching the inductor traces themselves. Liquid-metal-based stretchable conductors are wrapped around a pneumatic bubble actuator, allowing the inductor to be collapsed or expanded by application of pressure. In vacuum the bubble collapses, bringing the loop area to nearly zero, while positive pressure brings a dramatic increase in area and loop inductance. Using this approach, the inductor demonstrated in this work was able to achieve a tuning ratio of 2.6 with 1-2 second response time. With conductors available that can stretch by hundreds of percent, this technique is promising for very large tuning ratios in continuously tunable inductors.

  1. A Study of Cavitation-Ignition Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Jacqmin, David A.

    2005-01-01

    We present the results of an experimental and computational study of the physics and chemistry of cavitation-ignition bubble combustion (CIBC), a process that occurs when combustible gaseous mixtures are ignited by the high temperatures found inside a rapidly collapsing bubble. The CIBC process was modeled using a time-dependent compressible fluid-dynamics code that includes finite-rate chemistry. The model predicts that gas-phase reactions within the bubble produce CO and other gaseous by-products of combustion. In addition, heat and mechanical energy release through a bubble volume-expansion phase are also predicted by the model. We experimentally demonstrate the CIBC process using an ultrasonically excited cavitation flow reactor with various hydrocarbon-air mixtures in liquid water. Low concentrations (< 160 ppm) of carbon monoxide (CO) emissions from the ultrasonic reactor were measured, and found to be proportional to the acoustic excitation power. The results of the model were consistent with the measured experimental results. Based on the experimental findings, the computational model, and previous reports of the "micro-diesel effect" in industrial hydraulic systems, we conclude that CIBC is indeed possible and exists in ultrasonically- and hydrodynamically-induced cavitation. Finally, estimates of the utility of CIBC process as a means of powering an idealized heat engine are also presented.

  2. Positional stability as the light emission limit in sonoluminescence with sulfuric acid.

    PubMed

    Urteaga, Raúl; Dellavale, Damián H; Puente, Gabriela F; Bonetto, Fabián J

    2007-11-01

    We studied a single bubble sonoluminescence system consisting of an argon bubble in a sulfuric acid aq. solution. We experimentally determined the relevant variables of the system. We also measured the bubble position, extent of the bubble orbits, and light intensity as a function of acoustic pressure for different argon concentrations. We find that the Bjerknes force is responsible for the bubble mean position and this imposes a limitation in the maximum acoustic pressure that can be applied to the bubble. The Rayleigh-Taylor instability does not play a role in this system and, at a given gas concentration, the SL intensity depends more on the bubble time of collapse than any other investigated parameter.

  3. Cavitation induced Becquerel effect.

    PubMed

    Prevenslik, T V

    2003-06-01

    The observation of an electrical current upon the ultraviolet (UV) illumination of one of a pair of identical electrodes in liquid water, called the Becquerel effect, was made over 150 years ago. More recently, an electrical current was found if the water surrounding one electrode was made to cavitate by focused acoustic radiation, the phenomenon called the cavitation induced Becquerel effect. Since cavitation is known to produce UV light, the electrode may simply absorb the UV light and produce the current by the photo-emission theory of photoelectrochemistry. But the current was found to be semi-logarithmic with the standard electrode potential which is characteristic of the oxidation of the electrode surface in the photo-decomposition theory, and not the photo-emission theory. High bubble collapse temperatures may oxidize the electrode, but this is unlikely because melting was not observed on the electrode surfaces. At ambient temperature, oxidation may proceed by chemical reaction provided a source of vacuum ultraviolet (VUV) radiation is available to produce the excited OH* states of water to react with the electrode. The source of VUV radiation is shown to be the spontaneous emission of coherent infrared (IR) radiation from water molecules in particles that form in bubbles because of surface tension, the spontaneous IR emission induced by cavity quantum electrodynamics. The excited OH* states are produced as the IR radiation accumulates to VUV levels in the bubble wall molecules.

  4. Explosion-Induced Implosions of Cylindrical Shell Structures

    NASA Astrophysics Data System (ADS)

    Ikeda, C. M.; Duncan, J. H.

    2010-11-01

    An experimental study of the explosion-induced implosion of cylindrical shell structures in a high-pressure water environment was performed. The shell structures are filled with air at atmospheric pressure and are placed in a large water-filled pressure vessel. The vessel is then pressurized to various levels P∞=αPc, where Pc is the natural implosion pressure of the model and α is a factor that ranges from 0.1 to 0.9. An explosive is then set off at various standoff distances, d, from the model center line, where d varies from R to 10R and R is the maximum radius of the explosion bubble. High-speed photography (27,000 fps) was used to observe the explosion and resulting shell structure implosion. High-frequency underwater blast sensors recorded dynamic pressure waves at 6 positions. The cylindrical models were made from aluminum (diameter D = 39.1 mm, wall thickness t = 0.89 mm, length L = 240 mm) and brass (D = 16.7 mm, t = 0.36 mm, L=152 mm) tubes. The pressure records are interpreted in light of the high-speed movies. It is found that the implosion is induced by two mechanisms: the shockwave generated by the explosion and the jet formed during the explosion-bubble collapse. Whether an implosion is caused by the shockwave or the jet depends on the maximum bubble diameter and the standoff distance.

  5. Jetting of a ultrasound contrast microbubble near a rigid wall

    NASA Astrophysics Data System (ADS)

    Sarkar, Kausik; Mobadersany, Nima

    2017-11-01

    Micron sized gas-bubbles coated with a stabilizing shell of lipids or proteins, are used as contrast enhancing agents for ultrasound imaging. However, they are increasingly being explored for novel applications in drug delivery through a process called sonoporation, the reversible permeabilization of the cell membrane. Under sufficiently strong acoustic excitations, bubbles form a jet and collapse near a wall. The jetting of free bubbles has been extensively studied by boundary element method (BEM). Here, for the first time, we implemented a rigorous interfacial rheological model of the shell into BEM and investigated the jet formation. The code has been carefully validated against past results. Increasing shell elasticity decreases the maximum bubble volume and the collapse time, while the jet velocity increases. The shear stress on the wall is computed and analyzed. A phase diagram as functions of excitation pressure and wall separation describes jet formation. Effects of shell elasticity and frequency on the phase diagram are investigated. Partially supported by National Science Foundation.

  6. Extreme Morphologic and Venting Changes in Methane Seeps at Southern Hydrate Ridge, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Bigham, K.; Kelley, D. S.; Solomon, E. A.; Delaney, J. R.

    2017-12-01

    Two highly active methane hydrate seeps have been visited over a 7-year period as part of the construction and operation of NSF's Ocean Observatory Initiative's Regional Cable Array at Southern Hydrate Ridge. The site is located 90 km west of Newport, Oregon, at a water depth of 800 m. The seeps, Einstein's Grotto (OOI instrument deployment site) and Smokey Tavern (alternate site to the north), have been visited yearly from 2010 to 2017 with ROVs. Additionally, a digital still camera deployed from 2014 to 2017 at Einstein's Grotto, has been documenting the profound morphologic and biological changes at this site. A cabled pressure sensor, Acoustic Doppler Current Profiler, hydrophone, seismometer array, and uncabled fluid samplers have also been operational at the site for the duration of the camera's deployment. During this time, Einstein's Grotto has evolved from a gentle mound with little venting, to a vigorously bubbling pit bounded by a near vertical wall. Early on bubble emissions blew significant amounts of sediment into the water column and thick Beggiatoa mats coverd the mound. Most recently the face of the pit has collapsed, although bubble plumes are still emitted from the site. The Smokey Tavern site has undergone more extreme changes. Similar to Einstein's Grotto it was first characterized by gentle hummocks with dispersed bacterial mats. In subsequent years, it developed an extremely rugged, elongated collapsed area with vertical walls and jets of methane bubbles rising from small pits near the base of the collapse zone. Meter-across nearly sediment-free blocks of methane hydrate were exposed on the surface and in the walls of the collapse zone. In 2016, this area was unrecognizable with a much more subdued topography, and weak venting of bubbles. Exposed methane hydrate was not visible. From these observations new evolutionary models for methane seeps are being developed for Southern Hydrate Ridge.

  7. Radical production inside an acoustically driven microbubble.

    PubMed

    Stricker, Laura; Lohse, Detlef

    2014-01-01

    The chemical production of radicals inside acoustically driven bubbles is determined by the local temperature inside the bubbles and by their composition at collapse. By means of a previously validated ordinary differential equations (ODE) model [L. Stricker, A. Prosperetti, D. Lohse, Validation of an approximate model for the thermal behavior in acoustically driven bubbles, J. Acoust. Soc. Am. 130 (5) (2011) 3243-3251], based on boundary layer assumption for mass and heat transport, we study the influence of different parameters on the radical production. We perform different simulations by changing the driving frequency and pressure, the temperature of the surrounding liquid and the composition of the gas inside the bubbles. In agreement with the experimental conditions of new generation sonochemical reactors, where the bubbles undergo transient cavitation oscillations [D. F. Rivas, L. Stricker, A. Zijlstra, H. Gardeniers, D. Lohse, A. Prosperetti, Ultrasound artificially nucleated bubbles and their sonochemical radical production, Ultrason. Sonochem. 20 (1) (2013) 510-524], we mainly concentrate on the initial chemical transient and we suggest optimal working ranges for technological applications. The importance of the chemical composition at collapse is reflected in the model, including the role of entrapped water vapor. We in particular study the exothermal reactions taking place in H2 and O2 mixtures. At the exact stoichiometric mixture 2:1 the highest internal bubble temperatures are achieved. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms

    NASA Technical Reports Server (NTRS)

    Thomas, Charles R.; Holt, R. Glynn; Roy, Ronald A.

    2002-01-01

    Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM, and temperatures of at least 10,000K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence (SBSL), yet there remain at least four unexplained phenomena associated with SBSL in 1g: the light emission mechanism itself, the existence of anisotropies in the emitted light, the disappearance of the bubble at some critical acoustic pressure, and the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these. We are developing KC-135 experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the predictions of existing theories.

  9. Time-dependent bubble motion through a liquid filled compliant channel

    NASA Astrophysics Data System (ADS)

    Halpern, David; Gaver, Donald; Jensen, Oliver

    2000-11-01

    Pulmonary airway closure occurs when the liquid lining layer occludes the airway and obstructs airflow. Meniscus formation is the result of a surface-tension driven instability within the liquid layer. Airway 'compliant collapse' may result, which leads to tube buckling with airway walls held in apposition. Airway closure is common in premature neonates who do not produce sufficient surfactant and those suffering from emphysema. To model the reopening of a collapsed airway flooded with fluid, we consider the time-dependent motion of an air-bubble driven by a positive bubble pressure Pb through a liquid filled compliant channel. The governing Stokes equations are solved using the boundary element method near the bubble tip, and lubrication theory sufficiently far ahead of the buble where the channel walls have a gentle taper. Results show that for Pb > P_crit, the bubble moves forward and converges to a steady velocity as the airway walls 'peel' open. For Pb < P_crit, no steady solutions are found because fluid continuously accummulates ahead of the bubble tip. This result validates the stability analysis of the previously steady wall peeling solution branch. The impact of the flow field on transport of surfactant and the applied shear and normal stresses on the wall as they relate to pulmonary reopening are also discussed.

  10. Pressure threshold for shock wave induced renal hemorrhage.

    PubMed

    Mayer, R; Schenk, E; Child, S; Norton, S; Cox, C; Hartman, C; Cox, C; Carstensen, E

    1990-12-01

    Studies were performed with an interest in determining a pressure threshold for extracorporeal shock wave induced renal damage. Histological evidence of intraparenchymal hemorrhage was used as an indicator of tissue trauma. Depilated C3H mice were anesthetized and placed on a special frame to enhance visualization and treatment of the kidneys in situ. A Wolf electrohydraulic generator and 9 French probe designed for endoscopic use were utilized to expose the kidneys to 10 double spherically divergent shock waves. Measurements of the shock waves revealed two positive pressure peaks of similar magnitude for each spark discharge. The kidneys were exposed to different peak pressures by choice of distance from the spark source and were removed immediately after treatment for histologic processing. A dose response was noted with severe corticomedullary damage apparent following 15 to 20 MPa shocks. Hemorrhage was more apparent in the medulla where evidence of damage could be seen following pressures as low as three to five MPa. When a latex membrane was interposed to prevent possible collapse of the initial bubble from the spark source against the skin surface, histological evaluation revealed substantial reduction of severe tissue damage associated with the highest pressures tested, 20 MPa. However, the threshold level for evidence of hemorrhage remained about three to five MPa. Hydrophonic measurements indicated that the membrane allowed transmission of the acoustic shock waves and suggested that collapse of the bubble generated by electrohydraulic probes may have local effects due to a cavitation-like mechanism.

  11. Sonoluminescence: A Galaxy of Nanostars Created in a Beaker

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.; Weiland, Kenneth E.

    2005-01-01

    As part of basic and applied research on advanced instrumentation technologies, the NASA Glenn Research Center is examining applications for sonoluminescence: ultrasonically produced glowing bubbles that are hotter than the Sun. In the last decade, those outside of the ultrasonic community have become interested in understanding sonoluminescence and in using some of its more interesting properties. First discovered in the 1930s as a byproduct of early work on sonar, the phenomenon is defined as the generation of light energy from sound waves. This glow, which was originally thought to be a form of static electricity, was found to be generated in flashes of much less than a billionth of a second that result when microscopic bubbles of air collapse. The temperature generated in the collapsing bubbles is at least 4 times that of the surface of the Sun.

  12. Capability evaluation of ultrasonic cavitation peening at different standoff distances.

    PubMed

    Bai, Fushi; Saalbach, Kai-Alexander; Long, Yangyang; Twiefel, Jens; Wallaschek, Jörg

    2018-03-01

    Ultrasonic cavitation peening is a novel surface treatment technology which utilizes the effect of cavitation bubble collapses to improve the properties of metal surfaces. In order to obtain high impact during ultrasonic cavitation peening, a small standoff distance between a sound radiator and a rigid reflector (the surface of treated specimen) is necessary. However, the effects of different standoff distances on the capability of ultrasonic cavitation peening are not yet clear. In this paper, a simplified model was developed to evaluate the cavitation capability at different standoff distances. Meanwhile, to validate the theoretical model, the plastic deformation or erosion on the peening surface before and after treatment were compared. It was found that at a very small standoff distance the impact pressure generated by cavitation bubbles did not cause much deformation or erosion, as the dynamics of cavitation bubbles was limited. At a large standoff distance, due to much attenuation of sound propagation in the bubbly liquid, little impact pressure was generated by the collapse of cavitation bubbles and reached the treated surface. A fixed vibration amplitude, however, corresponded to a standoff distance which caused the largest deformation or erosion on the treated surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Experimental study of transient paths to the extinction in sonoluminescence.

    PubMed

    Urteaga, Raúl; Dellavale, Damián; Puente, Gabriela F; Bonetto, Fabián J

    2008-09-01

    An experimental study of the extinction threshold of single bubble sonoluminescence in an air-water system is presented. Different runs from 5% to 100% of air concentrations were performed at room pressure and temperature. The intensity of sonoluminescence (SL) and time of collapse (t(c)) with respect to the driving were measured while the acoustic pressure was linearly increased from the onset of SL until the bubble extinction. The experimental data were compared with theoretical predictions for shape and position instability thresholds. It was found that the extinction of the bubble is determined by different mechanisms depending on the air concentration. For concentrations greater than approximately 30%-40% with respect to the saturation, the parametric instability limits the maximum value of R(0) that can be reached. On the other hand, for lower concentrations, the extinction appears as a limitation in the time of collapse. Two different mechanisms emerge in this range, i.e., the Bjerknes force and the Rayleigh-Taylor instability. The bubble acoustic emission produces backreaction on the bubble itself. This effect occurs in both mechanisms and is essential for the correct prediction of the extinction threshold in the case of low air dissolved concentration.

  14. Asymmetric bubble collapse

    NASA Astrophysics Data System (ADS)

    Lai, Lipeng; Turitsyn, Konstantin S.; Zhang, Wendy W.

    2008-11-01

    Recent studies reveal that an inertial implosion, analogous to the collapse of a large cavity in water, governs how a submerged air bubble disconnects from a nozzle. For the bubble, slight asymmetries in the initial neck shape give rise to vibrations that grow pronounced over time. These results motivate our study of the final stage of asymmetric cavity collapse. We are particularly interested in the generic situation where the initial condition is sufficiently well-focused that a cavity can implode inwards energetically. Yet, because the initial condition is not perfectly symmetric, the implosion fails to condense all the energy. We consider cavity shapes in the slender-body limit, for which the collapse dynamics is quasi two-dimensional. In this limit, each cross-section of the cavity evolves as if it were a distorted void immersed in an inviscid and irrotational fluid. Simulations of a circular void distorted by an elongation-compression vibrational mode reveal that a variety of outcomes are possible in the 2D problem. Opposing sides of the void surface can curve inwards and contact smoothly in a finite amount of time. Depending on the phase of the vibration excited, the contact can be either north-south or east-west. Phase values that lie in the transition zone from one orientation to the other give rise to final shapes with large lengthscale separation. We show also that the final outcome varies non-monotonically with the initial amplitude of the vibrational mode.

  15. On the collapse pressure of armored bubbles and drops.

    PubMed

    Pitois, O; Buisson, M; Chateau, X

    2015-05-01

    Drops and bubbles wrapped in dense monolayers of hydrophobic particles are known to sustain a significant decrease of their internal pressure. Through dedicated experiments we investigate the collapse behavior of such armored water drops as a function of the particle-to-drop size ratio in the range 0.02-0.2. We show that this parameter controls the behavior of the armor during the deflation: at small size ratios the drop shrinkage proceeds through the soft crumpling of the monolayer, at intermediate ratios the drop becomes faceted, and for the largest studied ratios the armor behaves like a granular arch. The results show that each of the three morphological regimes is characterized by an increasing magnitude of the collapse pressure. This increase is qualitatively modeled thanks to a mechanism involving out-of-plane deformations and particle disentanglement in the armor.

  16. Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble's dynamics

    NASA Astrophysics Data System (ADS)

    Mahdi, M.; Ebrahimi, R.; Shams, M.

    2011-06-01

    A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack.

  17. Collapse dynamics of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    King, Daniel Alan

    Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering the size distributions of these UCAs, it is shown that the shell material has a large influence on the occurrence of postexcitation rebound at all tested frequencies while moderate alteration of the size distribution may only play a significant role within certain frequency ranges. Finally, the conditions which generate the experimental postexcitation signal are examined theoretically using several forms of single bubble models. Evidence is provided for the usefulness of modeling this large amplitude UCA behavior with a size-varying surface tension as described in the Marmottant model; better agreement for lipid-shelled Definity UCAs is obtained by considering the dynamic response with a rupturing shell rather than either a non-rupturing or nonexistent shell. Moreover, the modeling indicates that maximum radial expansion from the initial UCA size is a suitable metric to predict postexcitation collapse, and that both shell rupture and inertial cavitation are necessary conditions to generate this behavior. Postexcitation analysis is found to be a beneficial characterization metric for studying the destruction behaviors of single UCAs when measured with the double PCD setup. This work provides quantitative documentation of UCA collapse, exploration into UCA material properties which affect this collapse, and comparison of existing single bubble models with experimentally measured postexcitation signals.

  18. The acoustic environment of a sonoluminescing bubble

    NASA Astrophysics Data System (ADS)

    Holzfuss, Joachim; Rüggeberg, Matthias; Holt, R. Glynn

    2000-07-01

    A bubble is levitated in water in a cylindrical resonator which is driven by ultrasound. It has been shown that in a certain region of parameter space the bubble is emitting light pulses (sonoluminescence). One of the properties observed is the enormous spatial stability leaving the bubble "pinned" in space allowing it to emit light with a timing of picosecond accuracy. We argue that the observed stability is due to interactions of the bubble with the resonator. A shock wave emitted at collapse time together with a self generated complex sound field, which is experimentally mapped with high resolution, is responsible for the observed effects.

  19. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  20. Zero-lag synchronization and bubbling in delay-coupled lasers.

    PubMed

    Tiana-Alsina, J; Hicke, K; Porte, X; Soriano, M C; Torrent, M C; Garcia-Ojalvo, J; Fischer, I

    2012-02-01

    We show experimentally that two semiconductor lasers mutually coupled via a passive relay fiber loop exhibit chaos synchronization at zero lag, and study how this synchronized regime is lost as the lasers' pump currents are increased. We characterize the synchronization properties of the system with high temporal resolution in two different chaotic regimes, namely, low-frequency fluctuations and coherence collapse, identifying significant differences between them. In particular, a marked decrease in synchronization quality develops as the lasers enter the coherence collapse regime. Our high-resolution measurements allow us to establish that synchronization loss is associated with bubbling events, the frequency of which increases with increasing pump current.

  1. Multiphase fluid-solid coupled analysis of shock-bubble-stone interaction in shockwave lithotripsy.

    PubMed

    Wang, Kevin G

    2017-10-01

    A novel multiphase fluid-solid-coupled computational framework is applied to investigate the interaction of a kidney stone immersed in liquid with a lithotripsy shock wave (LSW) and a gas bubble near the stone. The main objective is to elucidate the effects of a bubble in the shock path to the elastic and fracture behaviors of the stone. The computational framework couples a finite volume 2-phase computational fluid dynamics solver with a finite element computational solid dynamics solver. The surface of the stone is represented as a dynamic embedded boundary in the computational fluid dynamics solver. The evolution of the bubble surface is captured by solving the level set equation. The interface conditions at the surfaces of the stone and the bubble are enforced through the construction and solution of local fluid-solid and 2-fluid Riemann problems. This computational framework is first verified for 3 example problems including a 1D multimaterial Riemann problem, a 3D shock-stone interaction problem, and a 3D shock-bubble interaction problem. Next, a series of shock-bubble-stone-coupled simulations are presented. This study suggests that the dynamic response of a bubble to LSW varies dramatically depending on its initial size. Bubbles with an initial radius smaller than a threshold collapse within 1 μs after the passage of LSW, whereas larger bubbles do not. For a typical LSW generated by an electrohydraulic lithotripter (p max  = 35.0MPa, p min  =- 10.1MPa), this threshold is approximately 0.12mm. Moreover, this study suggests that a noncollapsing bubble imposes a negative effect on stone fracture as it shields part of the LSW from the stone. On the other hand, a collapsing bubble may promote fracture on the proximal surface of the stone, yet hinder fracture from stone interior. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Simulating shock-bubble interactions at water-gelatin interfaces

    NASA Astrophysics Data System (ADS)

    Adami, Stefan; Kaiser, Jakob; Bermejo-Moreno, Ivan; Adams, Nikolaus

    2016-11-01

    Biomedical problems are often driven by fluid dynamics, as in vivo organisms are usually composed of or filled with fluids that (strongly) affected their physics. Additionally, fluid dynamical effects can be used to enhance certain phenomena or destroy organisms. As examples, we highlight the benign potential of shockwave-driven kidney-stone lithotripsy or sonoporation (acoustic cavitation of microbubbles) to improve drug delivery into cells. During the CTR SummerProgram 2016 we have performed axisymmetric three-phase simulations of a shock hitting a gas bubble in water near a gelatin interface mimicking the fundamental process during sonoporation. We used our multi-resolution finite volume method with sharp interface representation (level-set), WENO-5 shock capturing and interface scale-separation and compared the results with a diffuse-interface method. Qualitatively our simulation results agree well with the reference. Due to the interface treatment the pressure profiles are sharper in our simulations and bubble collapse dynamics are predicted at shorter time-scales. Validation with free-field collapse (Rayleigh collapse) shows very good agreement. The project leading to this application has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 667483).

  3. Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water

    NASA Astrophysics Data System (ADS)

    Charee, Wisan; Tangwarodomnukun, Viboon

    2018-03-01

    Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.

  4. Unraveling different chemical fingerprints between a champagne wine and its aerosols.

    PubMed

    Liger-Belair, Gérard; Cilindre, Clara; Gougeon, Régis D; Lucio, Marianna; Gebefügi, Istvan; Jeandet, Philippe; Schmitt-Kopplin, Philippe

    2009-09-29

    As champagne or sparkling wine is poured into a glass, the myriad of ascending bubbles collapse and radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Ultrahigh-resolution MS was used as a nontargeted approach to discriminate hundreds of surface active compounds that are preferentially partitioning in champagne aerosols; thus, unraveling different chemical fingerprints between the champagne bulk and its aerosols. Based on accurate exact mass analysis and database search, tens of these compounds overconcentrating in champagne aerosols were unambiguously discriminated and assigned to compounds showing organoleptic interest or being aromas precursors. By drawing a parallel between the fizz of the ocean and the fizz in Champagne wines, our results closely link bursting bubbles and flavor release; thus, supporting the idea that rising and collapsing bubbles act as a continuous paternoster lift for aromas in every glass of champagne.

  5. Unraveling different chemical fingerprints between a champagne wine and its aerosols

    PubMed Central

    Liger-Belair, Gérard; Cilindre, Clara; Gougeon, Régis D.; Lucio, Marianna; Gebefügi, Istvan; Jeandet, Philippe; Schmitt-Kopplin, Philippe

    2009-01-01

    As champagne or sparkling wine is poured into a glass, the myriad of ascending bubbles collapse and radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Ultrahigh-resolution MS was used as a nontargeted approach to discriminate hundreds of surface active compounds that are preferentially partitioning in champagne aerosols; thus, unraveling different chemical fingerprints between the champagne bulk and its aerosols. Based on accurate exact mass analysis and database search, tens of these compounds overconcentrating in champagne aerosols were unambiguously discriminated and assigned to compounds showing organoleptic interest or being aromas precursors. By drawing a parallel between the fizz of the ocean and the fizz in Champagne wines, our results closely link bursting bubbles and flavor release; thus, supporting the idea that rising and collapsing bubbles act as a continuous paternoster lift for aromas in every glass of champagne. PMID:19805335

  6. Cavitation and bubble dynamics: the Kelvin impulse and its applications

    PubMed Central

    Blake, John R.; Leppinen, David M.; Wang, Qianxi

    2015-01-01

    Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being ‘One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…’. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a ‘paradigm bubble model’ for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet. PMID:26442141

  7. Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms

    NASA Technical Reports Server (NTRS)

    Holt, R. Glynn; Roy, Ronald A.

    1999-01-01

    Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM. and temperatures of at least 10,000 K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence. Yet there remain four fundamental mysteries associated with this phenomenon: 1) the light emission mechanism itself; 2) the mechanism for anomalous mass flux stability; 3) the disappearance of the bubble at some critical acoustic pressure; and 4) the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these unexplained phenomena. We are developing microgravity experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the unambiguous predictions of existing theories. By exploiting the microgravity environment we will gain new knowledge impossible to obtain in earth-based labs which will enable explanations for the above mysteries. We will also be in a position to make new discoveries about bubbles which emit light.

  8. Simulations of laser thrombolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapyak, E.J.; Godwin, R.P.

    1999-03-01

    The authors have shown that bubble expansion and collapse near the interface between two materials with modest property differences produces jet-like interpenetration of the two materials. The bubble dynamics at a water-viscous fluid interface is compared with that at the interface of water with a weak elastic-plastic material. The authors find that, despite rather similar behavior during bubble growth and the initial portion of bubble collapse, the terminal jetting behavior is quite different, even in direction. The elastic-plastic properties chosen realistically represent real and surrogate thrombus. Simulations using the elastic-plastic model quantitatively agree with laboratory thrombolysis mass removal experiments. Inmore » the earlier simulations of laboratory experiments, walls have been remote so as to not effect the dynamics. Here the authors present two-dimensional simulations of thrombolysis with water over elastic-plastic surrogate thrombus in a geometry representative of the clinical situation. The calculations include thin cylindrical elastic walls with properties and dimensions appropriate for arteries. The presence of these artery walls does not substantially change the interface jetting predicted in unconfined simulations.« less

  9. Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication.

    PubMed

    Pagani, Guido; Green, Micah J; Poulin, Philippe; Pasquali, Matteo

    2012-07-17

    Dispersion of carbon nanotubes (CNTs) into liquids typically requires ultrasonication to exfoliate individuals CNTs from bundles. Experiments show that CNT length drops with sonication time (or energy) as a power law t(-m). Yet the breakage mechanism is not well understood, and the experimentally reported power law exponent m ranges from approximately 0.2 to 0.5. Here we simulate the motion of CNTs around cavitating bubbles by coupling brownian dynamics with the Rayleigh-Plesset equation. We observe that, during bubble growth, CNTs align tangentially to the bubble surface. Surprisingly, we find two dynamical regimes during the collapse: shorter CNTs align radially, longer ones buckle. We compute the phase diagram for CNT collapse dynamics as a function of CNT length, stiffness, and initial distance from the bubble nuclei and determine the transition from aligning to buckling. We conclude that, depending on their length, CNTs can break due to either buckling or stretching. These two mechanisms yield different power laws for the length decay (0.25 and 0.5, respectively), reconciling the apparent discrepancy in the experimental data.

  10. Bubbles in an acoustic field: an overview.

    PubMed

    Ashokkumar, Muthupandian; Lee, Judy; Kentish, Sandra; Grieser, Franz

    2007-04-01

    Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.

  11. Numerical Investigation of Laser Propulsion for Transport in Water Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han Bing; Li Beibei; Zhang Hongchao

    Problems that cumber the development of the laser propulsion in atmosphere and vacuum are discussed. Based on the theory of interaction between high-intensity laser and materials, as air and water, it is proved that transport in water environment can be impulsed by laser. The process of laser propulsion in water is investigated theoretically and numerically. It shows that not only the laser induced plasma shock wave, but also the laser induced bubble oscillation shock waves and the pressure induced by the collapsing bubble can be used. Many experimental results show that the theory and the numerical results are valid. Themore » numerical result of the contribution of every propulsion source is given in percentage. And the maximum momentum coupling coefficient Cm is given. Laser propulsion in water environment can be applied in many fields. For example, it can provide highly controllable forces of the order of micro-Newton ({mu}N) in microsystems, such as the MEMS (Micro-electromechanical Systems). It can be used as minimally invasive surgery tools of high temporal and spatial resolution. It can be used as the propulsion source in marine survey and exploitation.« less

  12. Introducing ultrasonic falling film evaporator for moderate temperature evaporation enhancement.

    PubMed

    Dehbani, Maryam; Rahimi, Masoud

    2018-04-01

    In the present study, Ultrasonic Falling Film (USFF), as a novel technique has been proposed to increase the evaporation rate of moderate temperature liquid film. It is a proper method for some applications which cannot be performed at high temperature, such as foodstuff industry, due to their sensitivity to high temperatures. Evaporation rate of sodium chloride solution from an USFF on an inclined flat plate compared to that for Falling Film without ultrasonic irradiation (FF) at various temperatures was investigated. The results revealed that produced cavitation bubbles have different effects on evaporation rate at different temperatures. At lower temperatures, size fluctuation and collapse of bubbles and in consequence induced physical effects of cavitation bubbles resulted in more turbulency and evaporation rate enhancement. At higher temperatures, the behavior was different. Numerous created bubbles joined together and cover the plate surface, so not only decreased the ultrasound vibrations but also reduced the evaporation rate in comparison with FF. The highest evaporation rate enhancement of 353% was obtained at 40 °C at the lowest Reynolds number of 250. In addition, the results reveal that at temperature of 40 °C, USFF has the highest efficiency compared to FF. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. 100-watt sonoluminescence generated by 2.5-atmosphere-pressure pulses

    NASA Astrophysics Data System (ADS)

    Kappus, Brian; Khalid, Shahzad; Putterman, Seth

    2011-05-01

    A Xenon gas bubble introduced into a vertically suspended steel cylinder is driven to sonoluminescence by impacting the apparatus against a solid steel base. This produces a 150-ns flash of broadband light that exceeds 100-W peak intensity and has a spectral temperature of 10 200 K. This bubble system, which yields light with a single shot, emits very powerful sonoluminescence. A jet is visible following bubble collapse, which demonstrates that spherical symmetry is not necessary to produce sonoluminescence.

  14. 100-Watt sonoluminescence generated by 2.5-atmosphere-pressure pulses.

    PubMed

    Kappus, Brian; Khalid, Shahzad; Putterman, Seth

    2011-05-01

    A Xenon gas bubble introduced into a vertically suspended steel cylinder is driven to sonoluminescence by impacting the apparatus against a solid steel base. This produces a 150-ns flash of broadband light that exceeds 100-W peak intensity and has a spectral temperature of 10,200 K. This bubble system, which yields light with a single shot, emits very powerful sonoluminescence. A jet is visible following bubble collapse, which demonstrates that spherical symmetry is not necessary to produce sonoluminescence. © 2011 American Physical Society

  15. The elasticity of soap bubbles containing wormlike micelles.

    PubMed

    Sabadini, Edvaldo; Ungarato, Rafael F S; Miranda, Paulo B

    2014-01-28

    Slow-motion imaging of the rupture of soap bubbles generally shows the edges of liquid films retracting at a constant speed (known as the Taylor-Culick velocity). Here we investigate soap bubbles formed from simple solutions of a cationic surfactant (cetyltrimethylammonium bromide - CTAB) and sodium salicylate. The interaction of salicylate ions with CTAB leads to the formation of wormlike micelles (WLM), which yield a viscoelastic behavior to the liquid film of the bubble. We demonstrate that these elastic bubbles collapse at a velocity up to 30 times higher than the Taylor-Culick limit, which has never been surpassed. This is because during the bubble inflation, the entangled WLM chains stretch, storing elastic energy. This extra energy is then released during the rupture of the bubble, yielding an additional driving force for film retraction (besides surface tension). This new mechanism for the bursting of elastic bubbles may have important implications to the breakup of viscoelastic sprays in industrial applications.

  16. Rational Speculative Bubble Size in Gold, Hang Seng, S&P 500 and Nikkei 225 Index During Year 2008 to 2016

    NASA Astrophysics Data System (ADS)

    Borhan, Nurharyanti; Halim, Nurfadhlina Abdul; Amir, W. Ahmad Wan Muhammad

    2017-09-01

    A rational speculative bubble is a surge in asset prices that exceed its intrinsic value. Rational speculative bubbles are among the ascription which may lead to the collapse of an economic system. Rational speculative bubble cannot be created but it comes into existence when assets started to be traded. Financial rational speculative bubble and burst have negative effect on the economy and markets. Financial rational speculative bubbles are difficult to detect. This study aims to shows the size of rational speculative bubble in four markets, which are gold, Hang Seng, S&P500 and Nikkei 225 during year 2008 to 2016. In this study, generalized Johansen-Ledoit-Sornette model are used to find the size of the rational speculative bubble. Bubble detection is important for both sides of macro-economic decision makers and to the trader. Especially for a trading system that requires detailed knowledge about the time and the stage of the bubble burst.

  17. Ultrasonic bubbles in medicine: influence of the shell.

    PubMed

    Postema, Michiel; Schmitz, Georg

    2007-04-01

    Ultrasound contrast agents consist of microscopically small bubbles encapsulated by an elastic shell. These microbubbles oscillate upon ultrasound insonification, and demonstrate highly nonlinear behavior, ameliorating their detectability. (Potential) medical applications involving the ultrasonic disruption of contrast agent microbubble shells include release-burst imaging, localized drug delivery, and noninvasive blood pressure measurement. To develop and enhance these techniques, predicting the cracking behavior of ultrasound-insonified encapsulated microbubbles has been of importance. In this paper, we explore microbubble behavior in an ultrasound field, with special attention to the influence of the bubble shell. A bubble in a sound field can be considered a forced damped harmonic oscillator. For encapsulated microbubbles, the presence of a shell has to be taken into account. In models, an extra damping parameter and a shell stiffness parameter have been included, assuming that Hooke's Law holds for the bubble shell. At high acoustic amplitudes, disruptive phenomena have been observed, such as microbubble fragmentation and ultrasonic cracking. We analyzed the occurrence of ultrasound contrast agent fragmentation, by simulating the oscillating behavior of encapsulated microbubbles with various sizes in a harmonic acoustic field. Fragmentation occurs exclusively during the collapse phase and occurs if the kinetic energy of the collapsing microbubble is greater than the instantaneous bubble surface energy, provided that surface instabilities have grown big enough to allow for break-up. From our simulations it follows that the Blake critical radius is not a good approximation for a fragmentation threshold. We demonstrated how the phase angle differences between a damped radially oscillating bubble and an incident sound field depend on shell parameters.

  18. Experimental investigations of the parameter space of sonoluminescence

    NASA Astrophysics Data System (ADS)

    Weninger, Keith Roger

    Sonoluminescence is the process in which a gas bubble levitated within an ensonicated liquid converts sound energy into brief flashes of light. Hydrophone and pulsed light scattering measurements of the runaway collapse of the bubble which leads to the emission of light show bubble wall speeds greater than 1.5 km/sec and accelerations larger than 1011 g. The parameter space for sonoluminescence is expanded to include host fluids other than water. Measurements are reported of the sensitivity of sonoluminescence to small quantities of organic impurities. Sonoluminescence has been obtained from a hemispherical bubble on a solid surface and the light emitted is shown to be similar to the usual sonoluminescence from a bubble in the bulk of a liquid although the surface bubbles are about 10 times larger.

  19. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting shock waves in both phases, which converge toward and reflect from the center of the bubble, causing dissociation, ionization, and other related plasma physics phenomena during the final stage of bubble collapse. For a vapor bubble in a deuterated organic liquid (e.g., acetone), during the final stage of collapse there is a nanoscale region (diameter ˜100nm) near the center of the bubble in which, for a fraction of a picosecond, the temperatures and densities are extremely high (˜108K and ˜10g/cm3, respectively) such that thermonuclear fusion may take place. To quantify this, the kinetics of the local deuterium/deuterium (D/D) nuclear fusion reactions was used in the HYDRO code to determine the intensity of the fusion reactions. Numerical HYDRO code simulations of the bubble implosion process have been carried out for the experimental conditions used by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] at Oak Ridge National Laboratory. The results show good agreement with the experimental data on bubble fusion that was measured in chilled deuterated acetone.

  20. Correlation between simulations and cavitation-induced erosion damage in Spallation Neutron Source target modules after operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riemer, Bernie; McClintock, David A; Kaminskas, Saulius

    2014-01-01

    An explicit finite element (FE) technique developed for estimating dynamic strain in the Spallation Neutron Source (SNS) mercury target module vessel is now providing insight into cavitation damage patterns observed in used targets. The technique uses an empirically developed material model for the mercury that describes liquid-like volumetric stiffness combined with a tensile pressure cut-off limit that approximates cavitation. The longest period each point in the mercury is at the tensile cut-off threshold is denoted its saturation time. Now, the pattern of saturation time can be obtained from these simulations and is being positively correlated with observed damage patterns andmore » is interpreted as a qualitative measure of damage potential. Saturation time has been advocated by collaborators at J-Parc as a factor in predicting bubble nuclei growth and collapse intensity. The larger the ratio of maximum bubble size to nucleus, the greater the bubble collapse intensity to be expected; longer saturation times result in greater ratios. With the recent development of a user subroutine for the FE solver saturation time is now provided over the entire mercury domain. Its pattern agrees with spots of damage seen above and below the beam axis on the SNS inner vessel beam window and elsewhere. The other simulation result being compared to observed damage patterns is mercury velocity at the wall. Related R&D has provided evidence for the damage mitigation that higher wall velocity provides. In comparison to observations in SNS targets, inverse correlation of high velocity to damage is seen. In effect, it is the combination of the patterns of saturation time and low velocity that seems to match actual damage patterns.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yuandeng; Liu, Yu; Xu, Zhi

    We present high-resolution observations of a quiescent solar prominence that consists of a vertical and a horizontal foot encircled by an overlying spine and has ubiquitous counter-streaming mass flows. While the horizontal foot and the spine were connected to the solar surface, the vertical foot was suspended above the solar surface and was supported by a semicircular bubble structure. The bubble first collapsed, then reformed at a similar height, and finally started to oscillate for a long time. We find that the collapse and oscillation of the bubble boundary were tightly associated with a flare-like feature located at the bottommore » of the bubble. Based on the observational results, we propose that the prominence should be composed of an overlying horizontal spine encircling a low-lying horizontal and vertical foot, in which the horizontal foot consists of shorter field lines running partially along the spine and has ends connected to the solar surface, while the vertical foot consists of piling-up dips due to the sagging of the spine fields and is supported by a bipolar magnetic system formed by parasitic polarities (i.e., the bubble). The upflows in the vertical foot were possibly caused by the magnetic reconnection at the separator between the bubble and the overlying dips, which intruded into the persistent downflow field and formed the picture of counter-streaming mass flows. In addition, the counter-streaming flows in the horizontal foot were possibly caused by the imbalanced pressure at the both ends.« less

  2. Intraoperative visible bubbling of air may be the first sign of venous air embolism during posterior surgery for scoliosis.

    PubMed

    Wills, John; Schwend, Richard M; Paterson, Andrew; Albin, Maurice S

    2005-10-15

    Case report of two children sustaining venous air embolism (VAE) during posterior surgery for scoliosis. To report 2 cases where visible bubbling at the operative site was the first clinical indication of VAE-induced cardiovascular collapse and to raise the level of consciousness that VAE in the prone position can occur, often with serious consequences. Twenty-two cases of VAE during surgery for scoliosis in the prone position have been reported. Ten were fatal and ten were in children. Visible bubbling at the operative site was noted in two published cases. Retrospective study of 2 cases of VAE at one institution. Clinical, anesthetic, and radiographic features are presented. Details of previously published cases are reviewed and discussed. Both patients were girls with adolescent scoliosis who underwent prone positioned posterior spinal fusion with instrumentation. Visible bubbling of air at the thoracic aspect of the surgical site was noted near the completion of instrumentation and was the first indication of VAE. In both cases, this was clinically recognized and promptly treated. One patient survived normally and the other died. Visible air bubbling at the operative site may herald the onset of massive VAE during multilevel posterior spinal fusion and instrumentation. A prospective multicenter study using precordial Doppler, central venous catheter, and end-tidal CO2 is recommended to determine the true incidence of VAE in spinal deformity surgery and to evaluate monitoring and treatment methods.

  3. Numerical Simulation of Slag Eye Formation and Slag Entrapment in a Bottom-Blown Argon-Stirred Ladle

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Tang, Haiyan; Yang, Shufeng; Wang, Minghui; Li, Jingshe; Liu, Qing; Liu, Jianhui

    2018-06-01

    A transient mathematical model is developed for simulating the bubble-steel-slag-top gas four-phase flow in a bottom-blown argon-stirred ladle with a 70-ton capacity. The Lagrangian discrete phase model (DPM) is used for describing the moving behavior of bubbles in the steel and slag. To observe the formation process of slag eye, the volume of fluid (VOF) model is used to track the interfaces between three incompressible phases: metal/slag, metal/gas, and slag/gas. The complex multiphase turbulent flow induced by bubble-liquid interactions is solved by a large eddy simulation (LES) model. Slag eye area and slag droplet dispersion are investigated under different gas flow rates. The results show that the movement of bubbles, formation and collapse of slag eye, volatility of steel/slag interface and behavior of slag entrapment can be properly predicted in the current model. When the gas flow rate is 300 L/min, the circulation driven by the bubble plume will stir the entire ladle adequately and form a slag eye of the right size. At the same time, it will not cause strong erosion to the ladle wall, and the fluctuation of the interface is of adequate intensity, which will be helpful for improving the desulfurization efficiency; the slag entrapment behavior can also be decreased. Interestingly, with the motion of liquid steel circulation, the collision and coalescence of dispersed slag droplets occur during the floating process in the vicinity of the wall.

  4. Physical analysis of the process of cavitation in xylem sap.

    PubMed

    Shen, Fanyi; Gao, Rongfu; Liu, Wenji; Zhang, Wenjie

    2002-06-01

    Recent studies have confirmed that cavitation in xylem is caused by air bubbles. We analyzed expansion of a preexistent bubble adhering to a crack in a conduit wall and a bubble formed by the passage of air through a pore of a pit membrane, a process known as air seeding. We consider that there are two equilibrium states for a very small air bubble in the xylem: one is temporarily stable with a bubble radius r1 at point s1 on the curve P(r) relating pressure within the bubble (P) with bubble radius (r); the other is unstable with a bubble radius r2 at point s2 on Pr (where r1 < r2). In each equilibrium state, the bubble collapse pressure (2sigma/r, where sigma is surface tension of water) is balanced by the pressure difference across its surface. In the case of a bubble from a crack in a conduit wall, which is initially at point s1, expansion will occur steadily as water potential decreases. The bubble will burst only if the xylem pressure drops below a threshold value. A formula giving the threshold pressure for bubble bursting is proposed. In the case of an air seed entering a xylem conduit through a pore in a pit membrane, its initial radius may be r2 (i.e., the radius of the pore by which the air seed entered the vessel) at point s2 on Pr. Because the bubble is in an unstable equilibrium when entering the conduit, it can either expand or contract to point s1. As water vaporizes into the air bubble at s2, P rises until it exceeds the gas pressure that keeps the bubble in equilibrium, at which point the bubble will burst and induce a cavitation event in accordance with the air-seeding hypothesis. However, other possible perturbations could make the air-seeded bubble contract to s1, in which case the bubble will burst at a threshold pressure proposed for a bubble expanding from a crack in a conduit wall. For this reason some cavitation events may take place at a xylem threshold pressure (Pl'*) other than that determined by the formula, Plp'* = -2sigma/rp, proposed by Sperry and Tyree (1988), which is applicable only to air-seeded bubbles at s2. The more general formula we propose for calculating the threshold pressure for bubble breaking is consistent with the results of published experiments.

  5. Rippling Instability of a Collapsing Bubble

    NASA Technical Reports Server (NTRS)

    daSilveira, Rava; Chaieb, Sahraoui; Mahadevan, L.

    1999-01-01

    The rippling instability of a liquid sheet was first observed by Debregeas, de Gennes, an Brochard-Wyart [Science 279, 1704 (1998)] on a hemispherical bubble resting on a free surface. Unlike a soap bubble, it collapses under its own weight while bursting, and folds into a wavy structure which breaks the original axisymmetry. In fact, this effect occurs for both purely elastic and purely viscous (liquid) sheets, and an analogy can be made between the two mechanisms. We present a theory for the onset of the instability in both cases, in which the growth of the corrugation out of an inextensible initial condition is governed by the competition between gravitational and bending (shearing) forces. The instability occurs for a range of densities, stiffnesses (viscosities), and sizes, a result which arises less from dynamics than from geometry, suggesting a wide validity. We further obtain a quantitative expression for the number of ripples. Finally, we present the results of experiments, which are consistent with our predictions.

  6. The sonophysics and sonochemistry of liquid waste quantification and remeidation. 1997 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matula, T.J.

    1997-01-01

    'The first year has been extremely successful. The author was able to begin his studies immediately, without having to wait for equipment, etc. This report gives details on three projects that were initiated during the first year. The first project to be described involves an experiment to determine the basic mechanism for cavitation-chemistry, or sonochemistry, in particular the light-emission process: What is the fundamental mechanism for light emission from cavitating bubbles? There are many theories, but most fall into one of two camps. The first is that during the bubble collapse, the interior heats up quazi-adiabatically, and light emission ismore » a result of an incandescence. The second camp claims that the light-emission process is electrical. During the bubble collapse, there is an electrical discharge that results in light emission. Chemical degradation optimization depends greatly on which mechanism is dominant. The authors proposed to look for an electrical signal that would be generated if discharges were involved.'« less

  7. The role of cavitation in liposome formation.

    PubMed

    Richardson, Eric S; Pitt, William G; Woodbury, Dixon J

    2007-12-15

    Liposome size is a vital parameter of many quantitative biophysical studies. Sonication, or exposure to ultrasound, is used widely to manufacture artificial liposomes, yet little is known about the mechanism by which liposomes are affected by ultrasound. Cavitation, or the oscillation of small gas bubbles in a pressure-varying field, has been shown to be responsible for many biophysical effects of ultrasound on cells. In this study, we correlate the presence and type of cavitation with a decrease in liposome size. Aqueous lipid suspensions surrounding a hydrophone were exposed to various intensities of ultrasound and hydrostatic pressures before measuring their size distribution with dynamic light scattering. As expected, increasing ultrasound intensity at atmospheric pressure decreased the average liposome diameter. The presence of collapse cavitation was manifested in the acoustic spectrum at high ultrasonic intensities. Increasing hydrostatic pressure was shown to inhibit the presence of collapse cavitation. Collapse cavitation, however, did not correlate with decreases in liposome size, as changes in size still occurred when collapse cavitation was inhibited either by lowering ultrasound intensity or by increasing static pressure. We propose a mechanism whereby stable cavitation, another type of cavitation present in sound fields, causes fluid shearing of liposomes and reduction of liposome size. A mathematical model was developed based on the Rayleigh-Plesset equation of bubble dynamics and principles of acoustic microstreaming to estimate the shear field magnitude around an oscillating bubble. This model predicts the ultrasound intensities and pressures needed to create shear fields sufficient to cause liposome size change, and correlates well with our experimental data.

  8. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  9. Between soap bubbles and vesicles: The dynamics of freely floating smectic bubbles

    NASA Astrophysics Data System (ADS)

    Stannarius, Ralf; May, Kathrin; Harth, Kirsten; Trittel, Torsten

    2013-03-01

    The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. We introduce freely floating bubbles of smectic liquid crystals and report their unique dynamic properties. Smectic bubbles can be used as simple models for dynamic studies of fluid membranes. In equilibrium, they form minimal surfaces like soap films. However, shape transformations of closed smectic membranes that change the surface area involve the formation and motion of molecular layer dislocations. These processes are slow compared to the capillary wave dynamics, therefore the effective surface tension is zero like in vesicles. Freely floating smectic bubbles are prepared from collapsing catenoid films and their dynamics is studied with optical high-speed imaging. Experiments are performed under normal gravity and in microgravity during parabolic flights. Supported by DLR within grant OASIS-Co.

  10. Unprecedented pressure increase in deep magma reservoir triggered by lava-dome collapse

    NASA Astrophysics Data System (ADS)

    Voight, B.; Linde, A. T.; Sacks, I. S.; Mattioli, G. S.; Sparks, R. S. J.; Elsworth, D.; Hidayat, D.; Malin, P. E.; Shalev, E.; Widiwijayanti, C.; Young, S. R.; Bass, V.; Clarke, A.; Dunkley, P.; Johnston, W.; McWhorter, N.; Neuberg, J.; Williams, P.

    2006-02-01

    The collapse of the Soufrière Hills Volcano lava dome on Montserrat in July 2003 is the largest such event worldwide in the historical record. Here we report on borehole dilatometer data recording a remarkable and unprecedented rapid (~600s) pressurisation of a magma chamber, triggered by this surface collapse. The chamber expansion is indicated by an expansive offset at the near dilatometer sites coupled with contraction at the far site. By analyzing the strain data and using added constraints from experimental petrology and long-term edifice deformation from GPS geodesy, we prefer a source centered at approximately 6 km depth below the crater for an oblate spheroid with overpressure increase of order 1 MPa and average radius ~1 km. Pressurisation is attributed to growth of 1-3% of gas bubbles in supersaturated magma, triggered by the dynamics of surface unloading. Recent simulations demonstrate that pressure recovery from bubble growth can exceed initial pressure drop by nearly an order of magnitude.

  11. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    USGS Publications Warehouse

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  12. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    USGS Publications Warehouse

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  13. La physique des bulles de champagne Une première approche des processus physico-chimiques liés à l'effervescence des vins de Champagne

    NASA Astrophysics Data System (ADS)

    Liger-Belair, G.

    2002-07-01

    People have long been fascinated by bubbles and foams dynamics, and since the pioneering work of Leonardo da Vinci in the early 16th century, this subject has generated a huge bibliography. However, only very recently, much interest was devoted to bubbles in Champagne wines. Small bubbles rising through the liquid, as well as a bubble ring (the so-called collar) at the periphery of a flute poured with champagne are the hallmark of this traditionally festive wine, and even there is no scientific evidence yet to connect the quality of a champagne with its effervescence, people nevertheless often make a connection between them. Therefore, since the last few years, a better understanding of the numerous parameters involved in the bubbling process has become an important stake in the champagne research area. Otherwise, in addition to these strictly enological reasons, we also feel that the area of bubble dynamics could benefit from the simple but close observation of a glass poured with champagne. In this study, our first results concerning the close observation of the three main steps of a champagne bubble's life are presented, that is, the bubble nucleation on tiny particles stuck on the glass wall (Chap. 2), the bubble ascent through the liquid (Chap. 3), and the bursting of bubbles at the free surface, which constitutes the most intriguing and visually appealing step (Chap. 4). Our results were obtained in real consuming conditions, that is, in a classical crystal flute poured with a standard commercial champagne wine. Champagne bubble nucleation proved to be a fantastic everyday example to illustrate the non-classical heterogeneous bubble nucleation process in a weakly supersaturated liquid. Contrary to a generally accepted idea, nucleation sites are not located on irregularities of the glass itself. Most of nucleation sites are located on tiny hollow and roughly cylindrical exogenous fibres coming from the surrounding air or remaining from the wiping process. Because of their geometry and hydrophobic properties, such particles are able to entrap gas pockets during the filling of a flute and to start up the bubble production process. Such particles are responsible for the clockwork and repetitive production of bubbles that rise in-line into the form of elegant bubble trains. This cycle of bubble production at a given nucleation site is characterised by its bubbling frequency. The time needed to reach the moment of bubble detachment depends on the kinetics of the CO2 molecules transfer from the champagne to the gas pocket, but also on the geometrical properties of the given nucleation site. Now, since a collection of particle shapes and sizes exists on the glass wall, the bubbling frequency may also vary from one site to another. Three minutes after pouring, we measured bubbling frequencies ranging from less than 1 Hz up to almost 30 Hz, which means that the most active nucleation sites emit up to 30 bubbles per second. After their detachment from nucleation sites, champagne bubbles rise in-line through the liquid into the form of elegant bubble trains. Since they collect dissolved carbon dioxide molecules, champagne bubbles expand during ascent and therefore constitute an original tool to investigate the dynamics of rising and expanding bubbles. Hydrodynamically speaking, champagne bubbles were found to reach a quasi-stationary stage intermediate between that of a rigid and that a fluid sphere (but nevertheless closer to that of a fluid sphere). This result drastically differs from the result classically observed with bubbles of fixed radii rising in surfactant solutions. Since surfactants progressively adsorb at the bubble surface during the rise, the drag coefficient of a rising bubble of fixed radius progressively increases, and finally reaches the rigid sphere limit when the bubble interface gets completely contaminated. In the case of champagne, since a bubble expands during its rise through the supersaturated liquid, the bubble interface continuously increases and therefore continuously offers newly created surface to the adsorbed surface-active materials (around 5 mg/l, mostly composed of proteins and glycoproteins). Champagne bubbles experience an interesting competition between two opposing effects. Our results suggest that the bubble growth during ascent approximately balance the adsorption rate of surface-active compounds on the rising bubble. We also compared the behaviour of champagne bubbles with that of beer bubbles. It was found that beer bubbles showed a behaviour, very close to that of rigid spheres. This is not a surprising result, since beer contains much higher amounts of surface-active molecules (of order of several hundreds mg/l) likely to be adsorbed at a bubble interface. Furthermore, since the gas content is lower in beer, growth rates of beer bubbles are lower than those of champagne. As a result, the dilution effect due to the rate of dilatation of the bubble area may be too weak to avoid the rigidification of the beer bubble interface. In a third set of experiments, we used instantaneous high-speed photography techniques to freeze the dynamics of bubbles collapsing at the free surface of a glass poured with champagne. The process following bubble collapse and leading to the projection of a high-speed liquid jet above the free surface was captured. A structural analogy between the liquid jet following a bubble collapse and the liquid jet following a drop impact was presented. By drawing a parallel between the fizz in champagne wines and the “fizz of the ocean", we also suggested that droplets issued from champagne bursting bubbles contain much higher amounts of surface-active and potentially aromatic materials than the liquid bulk. The bursting of champagne bubbles is thus expected to play a major role in flavour release. Otherwise, since the first photographic investigation were published about fifty years ago, numerous experiments have been conducted with single bubbles collapsing at a free surface. But, to the best of our knowledge, and surprising as it may seem, no results concerning the collateral effects on adjoining bubbles of bubbles collapsing in a bubble monolayer have been reported up to now. Actually, effervescence in a glass of champagne ideally lends to a preliminary work with bubbles collapsing in a bubble monolayer. For a few seconds after pouring, the free surface is completely covered with a monolayer composed of quite monodisperse millimetric bubbles collapsing close to each others. We took high-speed photographs of the situation which immediately follows the rupture of a bubble cap in a bubble monolayer. Adjoining bubbles were found to be literally sucked and strongly stretched toward the lowest part of the cavity left by the bursting bubble, leading to unexpected and short-lived flower-shaped structures. Stresses in distorted bubbles (petals of the flower-shaped structure) were evaluated and found to be, at least, one order of magnitude higher than stresses numerically calculated in the boundary layer around an isolated single millimetric collapsing bubble. This is a brand-new and slightly counter-intuitive result. While absorbing the energy released during collapse, as an air-bag would do, adjoining bubble caps store this energy into their thin liquid film, leading finally to stresses much higher than those observed in the boundary layer around single millimetric collapsing bubbles. Further investigation should be conducted now, and especially numerically, in order to better understand the relative influence of each pertinent parameters (bubble size, liquid density and viscosity, effect of surfactant...) on bubble deformation. L'objectif général de cet ouvrage consacré à l'étude des processus physico- chimiques de l'effervescence des vins de Champagne était de décortiquer les différentes étapes de la vie d'une bulle de champagne en conditions réelles de consommation, dans une flûte. Nous résumons ci-après les principaux résultats obtenus pour chacune des étapes de la vie de la bulle, depuis sa naissance sur les parois d'une flûte, jusqu'à son éclatement en surface. Naissance de la bulle À l'aide d'une caméra munie d'un objectif de microscope, nous avons pu mettre en évidence les particules qui jouent le rôle de sites de nucléation des bulles sur les parois d'une flûte à champagne. Dans la très grande majorité des cas, ce sont des fibres creuses et allongées, de quelques dizaines à quelques centaines de microns, qui assurent la production répétitive de bulles par nucléation hétérogène non classique (de type IV). Cette production répétitive de bulles au niveau des sites de nucléation est caractérisée par une gamme de fréquences de bullage assez large. Au sein d'une même flûte, immédiatement après le versement, nous avons mesuré des fréquences qui varient de moins de 1 Hz à presque 30 Hz. C'est donc jusqu'à 30 bulles qui sont émises chaque seconde par les sites de nucléation les plus actifs. Vitesse ascensionnelle d'une bulle Pour mesurer la vitesse d'une bulle tout au long de son trajet vers la surface libre du champagne, nous avons tiré profit de la production répétitive de bulles au niveau des sites de nucléation. Par la mise en place d'un dispositif expérimental simple qui associe une lumière stroboscopique et un appareil photographique muni de bagues macros, nous avons pu accéder à l'observation fine des trains de bulles ainsi qu'à la détermination de la vitesse ascensionnelle des bulles. Les mesures expérimentales du rayon et de la vitesse d'une bulle nous ont permis de déterminer le coefficient de traînée d'une bulle montante qui constitue une mesure indirecte de son état de surface en terme de mobilité interfaciale. Ces mesures nous ont montré que l'interface d'une bulle de champagne conserve une grande mobilité pendant sa phase ascensionnelle. C'est la faible dilution du champagne en macromolécules tensioactives et le grossissement continu des bulles pendant l'ascension qui assurent aux bulles une faible contamination de leur interface en molécules tensioactives. Pour comparaison, nous avons réalisé le même type de mesures sur des bulles de bière. Le contenu en macromolécules tensioactives étant beaucoup plus important dans une bière, l'effet de dilution du matériel tensioactif à la surface des bulles lié à l'accroissement de la surface des bulles ne compense plus l'adsorption massive des tensioactifs à la surface des bulles. Contrairement aux bulles du champagne, les bulles de bière adoptent vite un comportement de type sphère rigide. Éclatement d'une bulle en surface Nous avons obtenu des images de la situation qui suit immédiatement la rupture du mince film liquide qui constitue la partie émergée d'une bulle en surface. Nous avons ainsi pu mettre en évidence l'existence des jets de liquide engendrés par les éclatements de bulle. En faisant un parallèle légitime entre le pétillement des bulles à la surface du champagne et le "pétillement de l'océan", nous avons émis l'idée que les gouttelettes de jet étaient beaucoup plus concentrées en matériel tensioactif (et potentiellement aromatique) que le cœur de phase du liquide. Il semble donc que les éclatements de bulles jouent un rôle essentiel dans l'effet exhausteur d'arôme au cours de la dégustation d'un champagne. Pendant les quelques secondes qui suivent le versement du champagne dans la flûte, nous avons également réalisé des clichés d'éclatement de bulles en monocouche. Les premiers résultats de ces observations font apparaître des déformations spectaculaires dans le film liquide des bulles premières voisines. Ces premières images suggèrent des contraintes, dans le mince film des bulles déformées, très supérieures à celles qui existent dans le sillage d'une bulle isolée qui éclate.

  14. Transfection effect of microbubbles on cells in superposed ultrasound waves and behavior of cavitation bubble.

    PubMed

    Kodama, Tetsuya; Tomita, Yukio; Koshiyama, Ken-Ichiro; Blomley, Martin J K

    2006-06-01

    The combination of ultrasound and ultrasound contrast agents (UCAs) is able to induce transient membrane permeability leading to direct delivery of exogenous molecules into cells. Cavitation bubbles are believed to be involved in the membrane permeability; however, the detailed mechanism is still unknown. In the present study, the effects of ultrasound and the UCAs, Optison on transfection in vitro for different medium heights and the related dynamic behaviors of cavitation bubbles were investigated. Cultured CHO-E cells mixed with reporter genes (luciferase or beta-gal plasmid DNA) and UCAs were exposed to 1 MHz ultrasound in 24-well plates. Ultrasound was applied from the bottom of the well and reflected at the free surface of the medium, resulting in the superposition of ultrasound waves within the well. Cells cultured on the bottom of 24-well plates were located near the first node (displacement node) of the incident ultrasound downstream. Transfection activity was a function determined with the height of the medium (wave traveling distance), as well as the concentration of UCAs and the exposure time was also determined with the concentration of UCAs and the exposure duration. Survival fraction was determined by MTT assay, also changes with these values in the reverse pattern compared with luciferase activity. With shallow medium height, high transfection efficacy and high survival fraction were obtained at a low concentration of UCAs. In addition, capillary waves and subsequent atomized particles became significant as the medium height decreased. These phenomena suggested cavitation bubbles were being generated in the medium. To determine the effect of UCAs on bubble generation, we repeated the experiments using crushed heat-treated Optison solution instead of the standard microbubble preparation. The transfection ratio and survival fraction showed no additional benefit when ultrasound was used. These results suggested that cavitation bubbles created by the collapse of UCAs were a key factor for transfection, and their intensities were enhanced by the interaction of the superpose ultrasound with the decreasing the height of the medium. Hypothesizing that free cavitation bubbles were generated from cavitation nuclei created by fragmented UCA shells, we carried out numerical analysis of a free spherical bubble motion in the field of ultrasound. Analyzing the interaction of the shock wave generated by a cavitation bubble and a cell membrane, we estimated the shock wave propagation distance that would induce cell membrane damage from the center of the cavitation bubble.

  15. A Physical Mechanism to Explain the Delivery of Chemical Penetration Enhancers into Skin during Transdermal Sonophoresis - Insight into the Observed Synergism

    PubMed Central

    Polat, Baris E.; Deen, William M.; Langer, Robert; Blankschtein, Daniel

    2011-01-01

    The synergism between low-frequency sonophoresis (LFS) and chemical penetration enhancers (CPEs), especially surfactants, in transdermal enhancement has been investigated extensively since this phenomenon was first observed over a decade ago. In spite of the identifying that the origin of this synergism is the increased penetration and subsequent dispersion of CPEs in the skin in response to LFS treatment, to date, no mechanism has been directly proposed to explain how LFS induces the observed increased transport of CPEs. In this study, we propose a plausible physical mechanism by which the transport of all CPEs is expected to have significantly increased flux into the localized-transport regions (LTRs) of LFS-treated skin. Specifically, the collapse of acoustic cavitation microjets within LTRs induces a convective flux. In addition, because amphiphilic molecules preferentially adsorb onto the gas/water interface of cavitation bubbles, amphiphiles have an additional adsorptive flux. In this sense, the cavitation bubbles effectively act as carriers for amphiphilic molecules, delivering surfactants directly into the skin when they collapse at the skin surface as cavitation microjets. The flux equations derived for CPE delivery into the LTRs and non-LTRs during LFS treatment, compared to that for untreated skin, explain why the transport of all CPEs, and to an even greater extent amphiphilic CPEs, is increased during LFS treatment. The flux model is tested with a non-amphiphilic CPE (propylene glycol) and both nonionic and ionic amphiphilic CPEs (octyl glucoside and sodium lauryl sulfate, respectively), by measuring the flux of each CPE into untreated skin and the LTRs and non-LTRs of LFS-treated skin. The resulting data shows very good agreement with the proposed flux model. PMID:22100440

  16. Reduction of Bubble Cavitation by Modifying the Diffraction Wave from a Lithotripter Aperture

    PubMed Central

    2012-01-01

    Abstract Purpose A new method was devised to suppress the bubble cavitation in the lithotripter focal zone to reduce the propensity of shockwave-induced renal injury. Materials and Methods An edge extender was designed and fabricated to fit on the outside of the ellipsoidal reflector of an electrohydraulic lithotripter to disturb the generation of diffraction wave at the aperture, but with little effect on the acoustic field inside the reflector. Results Although the peak negative pressures at the lithotripter focus using the edge extender at 20 kV were similar to that of the original configuration (-11.1±0.9 vs −10.6±0.7 MPa), the duration of the tensile wave was shortened significantly (3.2±0.54 vs 5.83±0.56 μs, P<0.01). There is no difference, however, in both the amplitude and duration of the compressive shockwaves between these two configurations as well as the −6 dB beam width in the focal plane. The significant suppression effect of bubble cavitation was confirmed by the measured bubble collapse time using passive cavitation detection. At the lithotripter focus, while only about 30 shocks were needed to rupture a blood vessel phantom using the original HM-3 reflector at 20 kV, no damage could be produced after 300 shocks using the edge extender. Meanwhile, the original HM-3 lithotripter at 20 kV can achieve a stone comminution efficiency of 50.4±2.0% on plaster-of-Paris stone phantom after 200 shocks, which is comparable to that of using the edge extender (46.8±4.1%, P=0.005). Conclusions Modifying the diffraction wave at the lithotripter aperture can suppress the shockwave-induced bubble cavitation with significant reduced damage potential on the vessel phantom but satisfactory stone comminution ability. PMID:22332839

  17. Modeling of sonochemistry in water in the presence of dissolved carbon dioxide.

    PubMed

    Authier, Olivier; Ouhabaz, Hind; Bedogni, Stefano

    2018-07-01

    CO 2 capture and utilization (CCU) is a process that captures CO 2 emissions from sources such as fossil fuel power plants and reuses them so that they will not enter the atmosphere. Among the various ways of recycling CO 2 , reduction reactions are extensively studied at lab-scale. However, CO 2 reduction by standard methods is difficult. Sonochemistry may be used in CO 2 gas mixtures bubbled through water subjected to ultrasound waves. Indeed, the sonochemical reduction of CO 2 in water has been already investigated by some authors, showing that fuel species (CO and H 2 ) are obtained in the final products. The aim of this work is to model, for a single bubble, the close coupling of the mechanisms of bubble dynamics with the kinetics of gas phase reactions in the bubble that can lead to CO 2 reduction. An estimation of time-scales is used to define the controlling steps and consequently to solve a reduced model. The calculation of the concentration of free radicals and gases formed in the bubble is undertaken over many cycles to look at the effects of ultrasound frequency, pressure amplitude, initial bubble radius and bubble composition in CO 2 . The strong effect of bubble composition on the CO 2 reduction rate is confirmed in accordance with experimental data from the literature. When the initial fraction of CO 2 in the bubble is low, bubble growth and collapse are slightly modified with respect to simulation without CO 2 , and chemical reactions leading to CO 2 reduction are promoted. However, the peak collapse temperature depends on the thermal properties of the CO 2 and greatly decreases as the CO 2 increases in the bubble. The model shows that initial bubble radius, ultrasound frequency and pressure amplitude play a critical role in CO 2 reduction. Hence, in the case of a bubble with an initial radius of around 5 μm, CO 2 reduction appears to be more favorable at a frequency around 300 kHz than at a low frequency of around 20 kHz. Finally, the industrial application of ultrasound to CO 2 reduction in water would be largely dependent on sonochemical efficiency. Under the conditions tested, this process does not seem to be sufficiently efficient. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. The Investigation of the Effects of Gravity on Single Bubble Sonoluminescence

    NASA Technical Reports Server (NTRS)

    Dzikowicz, Ben; Thiessen, David B.; Marston, Philip

    2000-01-01

    In single bubble following it's rapid collapse each cycle of oscillation of an ultrasonic field. Since widely varying length and time scales affect the bubble dynamics and optical emission processes, it is difficult to anticipate the importance of the effects of gravity present for observations on earth. Our bubble is driven in an acoustically resonating cavity at it's first harmonic mode. The acoustical radiation pressure (Bjerknes force) will then keep it suspended in the center near the pressure antinode. When driven in a region where the diffusive processes balance the bubble it acts in a nonlinear but regular way, emitting a short (approx. 200ps) burst of light each acoustic cycle. Balancing the Bjerknes force with buoyancy, as in, we can see that the bubble should be displaced from the velocity node approximately 20m at normal gravity. Therefore, water flows past the bubble at the time of collapse. Gravitation also changes the ambient pressure at the bubble's location, as Delta.P = rho.g.h this gives a change of approximately -0.5% in our experiment when going from 1.8g to 0g. Studies of ambient pressure changes were also done in order to assess these effects. Inside a pressure sealed chamber a spherical glass cell is filled with distilled water which has been degassed to 120mmHg. A bubble is then trapped in the center and driven by a piezoelectric transducer at 32.2kHz attached to the side of the cell. An optical system is then set up to take strobbed video images along and light emission data simultaneously. Temperature, pressure, drive voltage, and listener voltage are also monitored. PMT output in Volts The radii of the bubbles for both experiment s are fit using the Rayleigh-Plesset equation and the acoustic drive amplitude and the ambient bubble radius are found. There is little change in the acoustic drive amplitude as we expect, since we are not varying the drive voltage. However. the ambient bubble radius goes up considerably. These changes (increased light output, increased maximum bubble radius, and increased ambient bubble radius) are also observed when the ambient pressure is varied in the laboratory by an amount similar to that due to gravitation. The changes in the ambient bubble radius and light output with a change in ambient pressure are predicted by the "dissociation hypothesis" and have been observed by other groups in the laboratory. It seems clear that buoyancy's effect on light output and bubble radius, are at best on the same order as the effects of ambient pressure.

  19. Primordial black hole formation by vacuum bubbles

    NASA Astrophysics Data System (ADS)

    Deng, Heling; Vilenkin, Alexander

    2017-12-01

    Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.

  20. Cavitation luminescence in a water hammer: Upscaling sonoluminescence

    NASA Astrophysics Data System (ADS)

    Su, C.-K.; Camara, C.; Kappus, B.; Putterman, S. J.

    2003-06-01

    Oscillatory acceleration and deceleration of a column of water leads to a pipe hammer as well as cavitation. With a small amount of xenon gas dissolved in the water, we can detect a stream of predominantly ultraviolet subnanosecond flashes of light which are attributed to collapsing bubbles. The observed emission can exceed 108 photons for a single collapse and has a peak power over 0.4 W.

  1. Pulsed laser ablation and incubation of nickel, iron and tungsten in liquids and air

    NASA Astrophysics Data System (ADS)

    Lasemi, N.; Pacher, U.; Zhigilei, L. V.; Bomatí-Miguel, O.; Lahoz, R.; Kautek, W.

    2018-03-01

    Incubation effects in the nanosecond laser ablation of metals exhibit a strong dependence on the thermal and mechanical properties of both the target material and the background gas or liquid. The incubation in air is controlled mainly by thermal properties such as the heat of vaporization. In liquid, the correlation of the incubation and the ultimate tensile stress of the metals suggests that incubation may be related to the mechanical impact on the solid material by the cavitation bubble collapse, causing accumulation of voids and cracks in the subsurface region of the ablation craters. At high ultimate tensile stress, however, the low sensitivity to the environment suggests that the mechanical impact is likely to play a negligible role in the incubation. Finally, the correlation between the incubation and the carbon content of alcoholic liquids may be explained by an absorptivity increase of the cavity surfaces due to carbonaceous deposits generated by laser-induced pyrolysis, or by the mechanical impact of long-living bubbles at higher dynamic viscosity of liquids.

  2. The calculation of weakly non-spherical cavitation bubble impact on a solid

    NASA Astrophysics Data System (ADS)

    Aganin, A. A.; Guseva, T. S.; Kosolapova, L. A.; Khismatullina, N. A.

    2016-11-01

    The effect of small spheroidal non-sphericity of a cavitation bubble touching a solid at the beginning of its collapse on its impact on the solid of a copper-nickel alloy is investigated. The impact on the solid is realized by means of a high-speed liquid jet arising at collapse on the bubble surface. The shape of the jet, its velocity and pressure are calculated by the boundary element method. The spatial and temporal characteristics of the pressure pulses on the solid surface are determined by the CIP-CUP method on dynamically adaptive grids without explicitly separating the gas-liquid interface. The solid surface layer dynamics is evaluated by the Godunov method. The results are analyzed in dimensionless variables obtained with using the water hammer pressure, the time moment and the jet-solid contact area radius at which the jet begins to spread on the solid surface. It is shown that in those dimensionless variables, the dependence of the spatial and temporal characteristics of the solid surface pressure pulses on the initial bubble shape non-sphericity is relatively small. The nonsphericity also slightly influences the main qualitative features of the dynamic processes inside the solid, whereas its effect on their quantitative characteristics can be significant.

  3. Controls on methane released through ebullition in peatlands affected by permafrost degradation

    USGS Publications Warehouse

    Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David; Harden, Jennifer W.; Czimczik, C.I.; Xu, Xiaomei; Chanton, J.P.; Waddington, James Michael

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.

  4. On fiber optic probe hydrophone measurements in a cavitating liquid.

    PubMed

    Zijlstra, Aaldert; Ohl, Claus Dieter

    2008-01-01

    The measurement of high-pressure signals is often hampered by cavitation activity. The usage of a fiber optic probe hydrophone possesses advantages over other hydrophones, yet when measuring in a cavitating liquid large variations in the signal amplitude are found; in particular when the pressure signal recovers back to positive values. With shadowgraphy the wave propagation and cavity dynamics are imaged and the important contributions of secondary shock waves emitted from collapsing cavitation bubbles are revealed. Interestingly, just adding a small amount of acidic acid reduces the cavitation activity to a large extent. With this treatment an altered primary pressure profile which does not force the cavitation bubbles close to fiber tip into collapse has been found. Thereby, the shot-to-shot variations are greatly reduced.

  5. Experimental and Theoretical Investigations of Cavitation in Water

    NASA Technical Reports Server (NTRS)

    Ackeret, J.

    1945-01-01

    The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.

  6. Study on Prediction of Underwater Radiated Noise from Propeller Tip Vortex Cavitation

    NASA Astrophysics Data System (ADS)

    Yamada, Takuyoshi; Sato, Kei; Kawakita, Chiharu; Oshima, Akira

    2015-12-01

    The method to predict underwater radiated noise from tip vortex cavitation was studied. The growth of a single cavitation bubble in tip vortex was estimated by substituting the tip vortex to Rankine combined vortex. The ideal spectrum function for the sound pressure generated by a single cavitation bubble was used, also the empirical factor for the number of collapsed bubbles per unit time was introduced. The estimated noise data were compared with measured ship's ones and it was found out that this method can estimate noise data within 3dB difference.

  7. Long-lived oscillons from asymmetric bubbles: Existence and stability

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.; Gleiser, Marcelo; Almeida, Carlos A.

    2002-10-01

    The possibility that extremely long-lived, time-dependent, and localized field configurations (``oscillons'') arise during the collapse of asymmetrical bubbles in (2+1)-dimensional φ4 models is investigated. It is found that oscillons can develop from a large spectrum of elliptically deformed bubbles. Moreover, we provide numerical evidence that such oscillons are (a) circularly symmetric and (b) linearly stable against small arbitrary radial and angular perturbations. The latter is based on a dynamical approach designed to investigate the stability of nonintegrable time-dependent configurations that is capable of probing slowly growing instabilities not seen through the usual ``spectral'' method.

  8. Magma deformation and emplacement in rhyolitic dykes

    NASA Astrophysics Data System (ADS)

    McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter

    2016-04-01

    Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle-ductile microtextures and bubble populations point towards multi-step and multi-rate magma decompression, and we propose that gas overpressure in bubbles created tensile micro-cracks, whose coalescence culminated in macroscopic fragmentation. Finally, we infer that bubble collapse was associated with both localised brittle magma failure at shallow levels and macroscopic magma fragmentation deeper within the magmatic system. Processes recorded by the Húsafell dyke exposures appear akin to those occurring in the shallow conduits of Chaitén and Cordón Caulle during recent rhyolitic eruptions[2,3]. The field evidence presented here therefore bridges the gap between eruption observations and the deeper geological record, and so provides new insight into conduit evolution during explosive-hybrid-effusive eruptive phases[2,3] and the influence of country rock. The parallels between intrusive dyke textures and those found in extruded silicic lavas suggest that processes recorded in the dykes, including bubble collapse, volatile resorption, thermally-induced vesiculation and the formation of brittle-ductile shear zones, also occur within extrusive flows, contributing to their extreme textural heterogeneity[4]. [1] Saemundsson K & Noll H (1974) Jökull 24, 40-59. [2] Schipper CI et al. (2013) JVGR, 262, 25-37. [3] Castro JC et al. (2014) EPSL, 405, 52-61. [4] Shields JK et al. (2016) JVGR, 310, 137-158.

  9. Shock-induced poration, cholesterol flip-flop and small interfering RNA transfection in a phospholipid membrane: Multimillion atom, microsecond molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Choubey, Amit

    Biological cell membranes provide mechanical stability to cells and understanding their structure, dynamics and mechanics are important biophysics problems. Experiments coupled with computational methods such as molecular dynamics (MD) have provided insight into the physics of membranes. We use long-time and large-scale MD simulations to study the structure, dynamics and mechanical behavior of membranes. We investigate shock-induced collapse of nanobubbles in water using MD simulations based on a reactive force field. We observe a focused jet at the onset of bubble shrinkage and a secondary shock wave upon bubble collapse. The jet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. Shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. We also investigate molecular mechanisms of poration in lipid bilayers due to shock-induced collapse of nanobubbles. Our multimillion-atom MD simulations reveal that the jet impact generates shear flow of water on bilayer leaflets and pressure gradients across them. This transiently enhances the bilayer permeability by creating nanopores through which water molecules translocate rapidly across the bilayer. Effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. The second research project focuses on cholesterol (CHOL) dynamics in phospholipid bilayers. Several experimental and computational studies have been performed on lipid bilayers consisting of dipalmitoylphosphatidylcholine (DPPC) and CHOL molecules. CHOL interleaflet transport (flip-flop) plays an important role in interleaflet coupling and determining CHOL flip-flop rate has been elusive. Various studies report that the rate ranges between milliseconds to seconds. We calculate CHOL flip-flop rates by performing a 15 mus all-atom MD simulation of a DPPC-CHOL bilayer. We find that the CHOL flip-flop rates are on the sub microsecond timescale. These results are verified by performing various independent parallel replica (PR) simulations. Our PR simulations provide significant boost in sampling of the flip-flop events. We observe that the CHOL flip-flop can induce membrane order, regulate membrane-bending energy, and facilitate membrane relaxation. The rapid flip-flop rates reported here have important implications for the role of CHOL in mechanical properties of cell membranes, formation of domains, and maintaining CHOL concentration asymmetry in plasma membrane. Our PR approach can reach submillisecond time scales and bridge the gap between MD simulations and Nuclear Magnetic Resonance (NMR) experiments on CHOL flip-flop dynamics in membranes. The last project deals with transfection barriers encountered by a bare small interfering RNA (siRNA) in a phospholipid bilayer. SiRNA molecules play a pivotal role in therapeutic applications. A key limitation to the widespread implementation of siRNA-based therapeutics is the difficulty of delivering siRNA-based drugs to cells. We have examined structural and mechanical barriers to siRNA passage across a phospholipid bilayer using all-atom MD simulations. We find that the electrostatic interaction between the anionic siRNA and head groups of phospholipid molecules induces a phase transformation from the liquid crystalline to ripple phase. Steered MD simulations reveal that the siRNA transfection through the ripple phase requires a force of ˜ 1.5 nN.

  10. Targeted microbubbles: a novel application for the treatment of kidney stones.

    PubMed

    Ramaswamy, Krishna; Marx, Vanessa; Laser, Daniel; Kenny, Thomas; Chi, Thomas; Bailey, Michael; Sorensen, Mathew D; Grubbs, Robert H; Stoller, Marshall L

    2015-07-01

    Kidney stone disease is endemic. Extracorporeal shockwave lithotripsy was the first major technological breakthrough where focused shockwaves were used to fragment stones in the kidney or ureter. The shockwaves induced the formation of cavitation bubbles, whose collapse released energy at the stone, and the energy fragmented the kidney stones into pieces small enough to be passed spontaneously. Can the concept of microbubbles be used without the bulky machine? The logical progression was to manufacture these powerful microbubbles ex vivo and inject these bubbles directly into the collecting system. An external source can be used to induce cavitation once the microbubbles are at their target; the key is targeting these microbubbles to specifically bind to kidney stones. Two important observations have been established: (i) bisphosphonates attach to hydroxyapatite crystals with high affinity; and (ii) there is substantial hydroxyapatite in most kidney stones. The microbubbles can be equipped with bisphosphonate tags to specifically target kidney stones. These bubbles will preferentially bind to the stone and not surrounding tissue, reducing collateral damage. Ultrasound or another suitable form of energy is then applied causing the microbubbles to induce cavitation and fragment the stones. This can be used as an adjunct to ureteroscopy or percutaneous lithotripsy to aid in fragmentation. Randall's plaques, which also contain hydroxyapatite crystals, can also be targeted to pre-emptively destroy these stone precursors. Additionally, targeted microbubbles can aid in kidney stone diagnostics by virtue of being used as an adjunct to traditional imaging methods, especially useful in high-risk patient populations. This novel application of targeted microbubble technology not only represents the next frontier in minimally invasive stone surgery, but a platform technology for other areas of medicine. © 2014 The Authors BJU International © 2014 BJU International Published by John Wiley & Sons Ltd.

  11. Influence of static pressure on dynamic characteristics of laser-induced cavitation and hard-tissue ablation under liquid environment

    NASA Astrophysics Data System (ADS)

    Chen, Chuanguo; Li, Xuwei; Zhang, Xianzeng; Zhan, Zhenlin; Xie, Shusen

    2014-11-01

    Several studies have demonstrated that laser-induced hard tissue ablation effects can be enhanced by applying an additional water-layer on tissue surface. However, the related mechanism has not yet been presented clearly. In this paper, the influence of static pressure on dynamic characteristics of cavitation induced by pulse laser in liquid and its effect on bovine shank bone ablation were investigated. The laser source is fiber-guided free-running Ho:YAG laser with wavelength of 2080 nm, pulse duration of 350 μs and energy of 1600 mJ. The tissue samples were immerged in pure water at different depths of 11, 16, 21, 26 and 31 mm. The working distance between the fiber tip and tissue surface was fixed at 1 mm for all studies. The dynamic interaction between laser, water and tissue were recorded by high-speed camera, and the morphological changes of bone tissue were assessed by stereomicroscope and OCT. The results showed that many times expansion and collapse of bubble were observed, more than four pulsation periods were accurately achieved with the most energy deposited in the first period and the bubble became more and more irregular in shape. The longitudinal length (7.49--6.74 mm) and transverse width (6.69--6.08 mm) of bubble were slowly decreased while volume (0.0586--0.0124 mm3) of ablation craters were drastically reduced, with static pressure increasing. The results also presented that the water-layer on hard-tissue surface can not only reduce thermal injury but also improve lubricity of craters, although the water-layer reduced ablation efficiency.

  12. An abrupt outgassing revealed by a slow decompression experiment of cristal-bearing syrup foam

    NASA Astrophysics Data System (ADS)

    Kanno, Y.; Namiki, A.

    2013-12-01

    Distribution of volcanic gasses in a conduit determines eruption style. Outgassing changes the distribution of volcanic gasses in a conduit.We here simulated the outgassing from ascending magma by slow decompression experiments. As molten magma ascends in a conduit, surrounding pressure becomes low and bubbles in magma expand. In our previous work, we found that the bubble expansion causes film rupturing and makes paths for outgassing. The crystals in magma may affect this newly found outgassing style. Accordingly, we slowly decompressed syrup foam including solid particles as a magma analogue. Experiments are conducted in an acrylic tank. We observed the expansion of three-phase magma analog from the front of the tank using a digital video camera. From the images and pressure measurements, we calculated time evolution of the syrup volume and permeability. We consider that there is no bubble segregation by the ascent of individual bubbles from the Stoke's velocity. We conducted our experiments with a viscosity range of 10-20 Pa s which is the same orders of magnitude of that of basaltic magma, 10-103 Pa s. At the beginning of the decompression, the volume change of the syrup foam is well explained by isothermal expansion. When the gas fractions reached to the 85-90%, we observed that deformations of bubble films caused film rupturing so that bubbles coalesce vertically to clear a path. As time elapsed, the measured gas volume in the foam becomes smaller than that estimated by the isothermal expansion, indicating the occurrence of outgassing. In the experiments with high volume fraction of solid particles (>30 vol.% for bubble-free liquid), we observed another new style of outgassing. Several large voids (> 10 mm in radius) appear at a middle height of the foam and connect each other to make a horizontally elongated cavity. The roof of the cavity collapses, and then massive outgassing occurs. At the beginning of the decompression until the foam collapses, outgassing occurs intermittently. We calculated the apparent permeability of the foam before the collapse occurs assuming the Darcy's law. Calculated permeability observed for the experiments with large volume fraction of solid particles has temporal variation and they varies from 10-7 -10-9. This value is quite larger than those measured for natural pumices and scoriae. From our experiments, we infer that there is a skin depth of the outgassing. At the beginning, the upper most part of the foam has a high apparent permeability to cause outgassing energetically. However, the gas within this region decreases eventually to be impermeable. Beneath the impermeable layer, the gas transported from a depth accumulates to make a cavity. The cavity is gravitationally unstable and collapses at the end. It has been widely recognized that the Vulcanian eruption occurs by a sudden expansion of the accumulated gas beneath an impermeable plug. Our experimental results may explain the mechanism generating an impermeable plug.

  13. Sonoluminescence and acoustic cavitation

    NASA Astrophysics Data System (ADS)

    Choi, Pak-Kon

    2017-07-01

    Sonoluminescence (SL) is light emission under high-temperature and high-pressure conditions of a cavitating bubble under intense ultrasound in liquid. In this review, the fundamentals of the interactions between the sound field and the bubble, and between bubbles are explained. Experimental results on high-speed shadowgraphy of bubble dynamics and multibubble SL are shown, demonstrating that the SL intensity is closely related to the bubble dynamics. SL studies of alkali-metal atom (Na and K) emission are summarized. The spectral measurements in solutions with different noble-gas dissolutions and in surfactant solutions, and the results of spatiotemporal separation of SL distribution strongly suggested that the site of alkali-metal atom emission is the gas phase inside bubbles. The spectral studies indicated that alkali-metal atom lines are composed of two kinds of lines: a component that is broadened and shifted from the original D lines arises from van der Waals molecules formed between alkali-metal atoms and noble-gas atoms under extreme conditions at bubble collapse. The other spectral component exhibiting no broadening and no shift was suggested to originate from higher temperature bubbles than those producing the broadened component.

  14. Amplification of seismic waves beneath active volcanoes

    NASA Astrophysics Data System (ADS)

    Navon, O.; Lensky, N. G.; Collier, L.; Neuberg, J.; Lyakhovsky, V.

    2003-04-01

    Long-period (LP) seismic events are typical of many volcanoes and are attributed to energy leaking from waves traveling through the volcanic conduit or along the conduit - country-rock interface. The LP events are triggered locally, at the volcanic edifice, but the source of energy for the formation of tens of events per day is not clear. Energy may be supplied by volatile-release from a supersaturated melt. If bubbles are present in equilibrium with the melt in the conduit, and the melt is suddenly decompressed, transfer of volatiles from the supersaturated melt into the bubbles transforms stored potential energy into expansion work. For example, small dome collapses may decompress the conduit by a few bars and lead to solubility decrease, exsolution of volatiles and, consequently, to work done by the expansion of the bubbles under pressure. This energy is released over a timescale that is similar to that of LP events and may amplify the original weak seismic signals associated with the collapse. Using the formulation of Lensky et al. (2002), following the decompression, when the transfer of volatiles into bubbles is fast enough, expansion accelerates and the bulk viscosity of the bubbly magma is negative. New calculations show that under such conditions a sinusoidal P-wave is amplified. We note that seismic waves created by tectonic earthquakes that are not associated with net decompression, do not lead to net release of volatiles or to net expansion. In this case, the bulk viscosity is positive and waves traveling through the magma should attenuate. The proposed model explains how weak seismic signals may be amplified as they travel through a conduit that contains supersaturated bubbly magma. It provides the general framework for amplifying volcanic seismicity such as the signals associated with long-period events.

  15. Outgassing From Open And Closed Magma Foams

    NASA Astrophysics Data System (ADS)

    von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan

    2017-06-01

    During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.

  16. Investigations on the destruction of ultrasound contrast agents: Fragmentation thresholds, inertial cavitation, and bioeffects

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Shiang

    Ultrasound contrast agents (UCA) have shown great potential in both diagnostic and therapeutic applications recently. To fully explore the possible applications and the safety concerns of using UCA, a complete understanding of the UCA responses to various acoustic fields is necessary. Therefore, we performed a series of experiments and simulations to investigate the various acoustic properties of UCA with different gases and shells. We also investigated the mechanisms of some UCA-enhanced bioeffects including thrombolysis, hemolysis and high-intensity focused ultrasound (HIFU) tumor ablation. Two pressure thresholds were found: the fragmentation threshold and continuous inertial cavitation (IC) threshold. At the fragmentation threshold, bubbles were destroyed and the released gas dissolved in the surrounding solution at a rate which depended on the bubble's initial size and type of gas. The continuous IC threshold occurred at a higher pressure, where fragments of destroyed UCA (derivative bubbles) underwent violent inertial collapse; the period of activity depending on acoustic parameters such as frequency, pressure, pulse length, and pulse repetition frequency (PRF). Different UCA had different threshold pressures and demonstrated different magnitudes of IC activity after destruction. The amount of derivative bubbles generated by IC was determined by several acoustic parameters including pressure, pulse length and PRE For the same acoustic energy delivered, longer pulses generated more bubbles. More IC could be induced if the derivative bubbles could survive through the 'off' period of the pulsed ultrasound waves, and served as nuclei for the subsequent IC. In therapeutic applications, evidences of IC activity were recorded during the hemolysis, thrombolysis, and the lesion-formation processes with UCA. Hemolysis and thrombolysis were highly correlated to the presence of ultrasound and UCA, and correlated well with the amount of the IC activity. Finally, the 'tadpole-shaped' lesion formed during high-intensity, focused ultrasound treatment was the result of bubble formation by boiling.

  17. Transient gas jets into liquids

    NASA Astrophysics Data System (ADS)

    Lin, Jane Ming-Chin

    An experimental investigation of the development of high velocity, impulsively initiated gas jets into liquid was conducted in an effort to understand some of the physical processes that occur for a jet of very light fluid into a dense ambient atmosphere. Four gases, refrigerants 12 and 22, nitrogen, and helium were injected into water at nozzle exit Mach numbers from 1.0 to 2.2.The study showed that a gas jet into water develops in at least three stages: startup, transition, and global steady state. The startup is characterized by bubble growth; the growth rate is well predicted by classical bubble-growth theory. Jet transition is marked by axially directed flow, which penetrates through the startup bubble and which forms a cylindrical protrusion along the axis of symmetry. A combination of strong recirculating flow and liquid entrainment causes the startup bubble to deflate and to lift off and move downstream. In the steady state, instantaneous photographs show small-scale fluctuations of the jet boundary, but time-averaged photographs show the expected conical spreading of the steady jet; the measured spreading angles range from 18-25 degrees.However, the most significant finding of this study is that under some conditions, the gas jet into liquid never reaches the global steady state. Instead, the jet boundary exhibits chugging: large nonlinear oscillations which lead to irregular collapses of the gas column followed by explosive outward bursts of gas. The unsteadiness observed is much more violent than the familiar fluctuations typical of constant-density jets. The length scale of the motion is generally on the order of several jet diameters; the time scale is on the order of the period for bubble collapse.It was found that the amplitude and frequency of chugging are strongly dependent on the ratio of the liquid density to the gas density, the jet Mach number, and the operating pressure ratio. The conditions under which unsteadiness occurs were determined experimentally. In particular, a quantitative measure of jet susceptibility to unsteadiness has been established. Steady jets can be achieved in two ways: by being discharged from deLaval nozzles (increasing the exit Mach number) or by being overpressured.The unsteady behavior is modeled as the collapse of a bubble in liquid; comparisons of collapse times show good agreement. A mechanism for the unsteadiness is discussed. It is proposed that the chugging is the response of the jet boundary to a pressure difference between the jet and surrounding liquid, which arises as the result of the rapid expansion of a light fluid into a dense ambient atmosphere. The flow is shown to be similar to the discharge of a gas from a nozzle into a channel of larger cross section. An upper limit to the pressure difference is determined based on estimates of the minimum base pressure for such channel flows; a lower limit is established for the collapse time. All experimental values are within the bounds. The derived values indicate that the pressure differences between the jet and liquid may be more than 90 percent of the ambient pressure.

  18. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.

    PubMed

    Yasui, Kyuichi; Towata, Atsuya; Tuziuti, Toru; Kozuka, Teruyuki; Kato, Kazumi

    2011-11-01

    The effect of static pressure on acoustic emissions including shock-wave emissions from cavitation bubbles in viscous liquids under ultrasound has been studied by numerical simulations in order to investigate the effect of static pressure on dispersion of nano-particles in liquids by ultrasound. The results of the numerical simulations for bubbles of 5 μm in equilibrium radius at 20 kHz have indicated that the optimal static pressure which maximizes the energy of acoustic waves radiated by a bubble per acoustic cycle increases as the acoustic pressure amplitude increases or the viscosity of the solution decreases. It qualitatively agrees with the experimental results by Sauter et al. [Ultrason. Sonochem. 15, 517 (2008)]. In liquids with relatively high viscosity (∼200 mPa s), a bubble collapses more violently than in pure water when the acoustic pressure amplitude is relatively large (∼20 bar). In a mixture of bubbles of different equilibrium radius (3 and 5 μm), the acoustic energy radiated by a 5 μm bubble is much larger than that by a 3 μm bubble due to the interaction with bubbles of different equilibrium radius. The acoustic energy radiated by a 5 μm bubble is substantially increased by the interaction with 3 μm bubbles.

  19. Molecular Dynamics Investigation of Each Bubble Behavior in Coarsening of Cavitation Bubbles in a Finite Space

    NASA Astrophysics Data System (ADS)

    Tsuda, Shin-Ichi; Nakano, Yuta; Watanabe, Satoshi

    2017-11-01

    Recently, several studies using Molecular Dynamics (MD) simulation have been conducted for investigation of Ostwald ripening of cavitation bubbles in a finite space. The previous studies focused a characteristic length of bubbles as one of the spatially-averaged quantities, but each bubble behavior was not been investigated in detail. The objective of this study is clarification of the characteristics of each bubble behavior in Ostwald ripening, and we conducted MD simulation of a Lennard-Jones fluid in a semi-confined space. As a result, the time dependency of the characteristic length of bubbles as a spatially-averaged quantity suggested that the driving force of the Ostwald ripening is Evaporation/Condensation (EC) across liquid-vapor surface, which is the same result as the previous works. The radius change of the relatively larger bubbles also showed the same tendency to a classical EC model. However, the sufficiently smaller bubbles than the critical size, e.g., the bubbles just before collapsing, showed a different characteristic from the classical EC model. Those smaller bubbles has a tendency to be limited by mechanical non-equilibrium in which viscosity of liquid is dominant rather than by EC across liquid-vapor surface. This work was supported by JSPS KAKENHI Grant Number JP16K06085.

  20. Defining the unknowns of sonoluminescence

    NASA Astrophysics Data System (ADS)

    Barber, Bradley P.; Hiller, Robert A.; Löfstedt, Ritva; Putterman, Seth J.; Weninger, Keith R.

    1997-03-01

    As the intensity of a standing sound wave is increased the pulsations of a bubble of gas trapped at a velocity node attain sufficient amplitude so as to emit picosecond flashes of light with a broadband spectrum that increases into the ultraviolet. The acoustic resonator can be tuned so that the flashes of light occur with a clocklike regularity: one flash for each cycle of sound with a jitter in the time between flashes that is also measured in picoseconds. This phenomenon (sonoluminescence or “SL”) is remarkable because it is the only means of generating picosecond flashes of light that does not use a laser and the input acoustic energy density must be concentrated by twelve orders of magnitude in order to produce light. Light scattering measurements indicate that the bubble wall is collapsing at more than 4 times the ambient speed of sound in the gas just prior to the light emitting moment when the gas has been compressed to a density determined by its van der Waals hard core. Experiments indicate that the collapse is remarkably spherical, water is the best fluid for SL, some noble gas is essential for stable SL, and that the light intensity increases as the ambient temperature is lowered. In the extremely stable experimental configuration consisting of an air bubble in water, measurements indicate that the bubble chooses an ambient radius that is not explained by mass diffusion. Experiments have not yet been able to map out the complete spectrum because above 6 eV it is obscured by the cutoff imposed by water, and furthermore experiments have only determined an upper bound on the flash widths. In addition to the above puzzles, the theory for the light emitting mechanism is still open. The scenario of a supersonic bubble collapse launching an imploding shock wave which ionizes the bubble contents so as to cause it to emit Bremsstrahlung radiation is the best candidate theory but it has not been shown how to extract from it the richness of this phenomenon. Most exciting is the issue of whether SL is a classical effect or whether Planck's constant should be invoked to explain how energy which enters a medium at the macroscopic scale holds together and focuses so as to be emitted at the microscopic scale.

  1. Bubbles with shock waves and ultrasound: a review.

    PubMed

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-10-06

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.

  2. Bubbles with shock waves and ultrasound: a review

    PubMed Central

    Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong

    2015-01-01

    The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed ‘acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics–bubble interactions, with a focus on shock wave–bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the ‘resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave–bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143

  3. Size of the top jet drop produced by bubble bursting

    NASA Astrophysics Data System (ADS)

    Berny, Alexis; Deike, Luc; Popinet, Stéphane; Seon, Thomas

    2017-11-01

    When a bubble is located on a liquid-air interface, it eventually bursts. First, the bubble cap shatters and produces film drops. Then, the cavity collapses, a tiny liquid jet rises and, depending on bubble radius and liquid parameters, it can eventually break-up and release the so-called jet drops. We perform numerical simulations, using the free software basilisk, to determine and discuss the regime of existence and the size of the first liquid jet droplets. We first validate the numerical scheme by comparing our results with recent experimental data. We then extend our numerical study to a wider range of control parameters in order to enrich our knowledge of the jet drops production. Finally, we show and interpret our results using a scaling law approach and basic physical arguments. This allows us to untangle the intricate roles of viscosity, gravity, and surface tension in the end pinching of the bubble bursting jet.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, A.; Scammon, R.J.; Godwin, R.P.

    Biological tissue is more susceptible to damage from tensile stress than to compressive stress. Tensile stress may arise through the thermoelastic response of laser-irradiated media. Optical breakdown, however, has to date been exclusively associated with compressive stress. The authors show that this is appropriate for water, but not for tissues for which the elastic-plastic material response needs to be considered. The acoustic transients following optical breakdown in water and cornea were measured with a fast hydrophone and the cavitation bubble dynamics, which is closely linked to the stress wave generation, was documented by flash photography. Breakdown in water produced amore » monopolar acoustic signal and a bubble oscillation in which the expansion and collapse phases were symmetric. Breakdown in cornea produced a bipolar acoustic signal coupled with a pronounced shortening of the bubble expansion phase and a considerable prolongation of its collapse phase. The tensile stress wave is related to the abrupt end of the bubble expansion. Numerical simulations using the MESA-2D code were performed assuming elastic-plastic material behavior in a wide range of values for the shear modulus and yield strength. The calculations revealed that consideration of the elastic-plastic material response is essential to reproduce the experimentally observed bipolar stress waves. The tensile stress evolves during the outward propagation of the acoustic transient and reaches an amplitude of 30--40% of the compressive pulse.« less

  5. μ-PIV/Shadowgraphy measurements to elucidate dynamic physicochemical interactions in a multiphase model of pulmonary airway reopening

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Eiichiro

    2010-10-01

    We employ micro-particle image velocimetry (μ-PIV) and shadowgraphy to measure the ensemble-averaged fluid-phase velocity field and interfacial geometry during pulsatile bubble propagation that includes a reverse-flow phase under influence of exogenous lung surfactant (Infasurf). Disease states such as respiratory distress syndrome (RDS) are characterized by insufficient pulmonary surfactant concentrations that enhance airway occlusion and collapse. Subsequent airway reopening, driven by mechanical ventilation, may generate damaging stresses that cause ventilator-induced lung injury (VILI). It is hypothesized that reverse flow may enhance surfactant uptake and protect the lung from VILI. The microscale observations conducted in this study will provide us with a significant understanding of dynamic physicochemical interactions that can be manipulated to reduce the magnitude of this damaging mechanical stimulus during airway reopening. Bubble propagation through a liquid-occluded fused glass capillary tube is controlled by linear-motor-driven syringe pumps that provide mean and sinusoidal velocity components. A translating microscope stage mechanically subtracts the mean velocity of the bubble tip in order to hold the progressing bubble tip in the microscope field of view. To optimize the signal-to-noise ratio near the bubble tip, μ-PIV and shadow images are recorded in separate trials then combined during post-processing with help of a custom-designed micro scale marker. Non-specific binding of Infasurf proteins to the channel wall is controlled by oxidation and chemical treatment of the glass surface. The colloidal stability and dynamic/static surface properties of the Infasurf-PIV particle solution are carefully adjusted based on Langmuir trough measurements. The Finite Time Lyapunov Exponent (FTLE) is computed to provide a Lagrangian perspective for comparison with our boundary element predictions.

  6. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    PubMed

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  7. Holmium:YAG laser lithotripsy: A dominant photothermal ablative mechanism with chemical decomposition of urinary calculi.

    PubMed

    Chan, K F; Vassar, G J; Pfefer, T J; Teichman, J M; Glickman, R D; Weintraub, S T; Welch, A J

    1999-01-01

    Evidence is presented that the fragmentation process of long-pulse Holmium:YAG (Ho:YAG) lithotripsy is governed by photothermal decomposition of the calculi rather than photomechanical or photoacoustical mechanisms as is widely thought. The clinical Ho:YAG laser lithotriptor (2.12 microm, 250 micros) operates in the free-running mode, producing pulse durations much longer than the time required for a sound wave to propagate beyond the optical penetration depth of this wavelength in water. Hence, it is unlikely that shock waves are produced during bubble formation. In addition, the vapor bubble induced by this laser is not spherical. Thus the magnitude of the pressure wave produced at cavitation collapse does not contribute significantly to lithotripsy. A fast-flash photography setup was used to capture the dynamics of urinary calculus fragmentation at various delay times following the onset of the Ho:YAG laser pulse. These images were concurrently correlated with pressure measurements obtained with a piezoelectric polyvinylidene-fluoride needle-hydrophone. Stone mass-loss measurements for ablation of urinary calculi (1) in air (dehydrated and hydrated) and in water, and (2) at pre-cooled and at room temperatures were compared. Chemical and composition analyses were performed on the ablation products of several types of Ho:YAG laser irradiated urinary calculi, including calcium oxalate monohydrate (COM), calcium hydrogen phosphate dihydrate (CHPD), magnesium ammonium phosphate hexahydrate (MAPH), cystine, and uric acid calculi. When the optical fiber was placed perpendicularly in contact with the surface of the target, fast-flash photography provided visual evidence that ablation occurred approximately 50 micros after the initiation of the Ho:YAG laser pulse (250-350 micros duration; 375-400 mJ per pulse), long before the collapse of the cavitation bubble. The measured peak acoustical pressure upon cavitation collapse was negligible (< 2 bars), indicating that photomechanical forces were not responsible for the observed fragmentation process. When the fiber was placed in parallel to the calculus surface, the pressure peaks occurring at the collapse of the cavitation were on the order of 20 bars, but no fragmentation occurred. Regardless of fiber orientation, no shock waves were recorded at the beginning of bubble formation. Ablation of COM calculi (a total of 150 J; 0.5 J per pulse at an 8-Hz repetition rate) revealed different Ho:YAG efficiencies for dehydrated calculus, hydrated calculus, and submerged calculus. COM and cystine calculi, pre-cooled at -80 degrees C and then placed in water, yielded lower mass-loss during ablation (20 J, 1.0 J per pulse) compared to the mass-loss of calculi at room temperature. Chemical analyses of the ablated calculi revealed products resulting from thermal decomposition. Calcium carbonate was found in samples composed of COM calculi; calcium pyrophosphate was found in CHPD samples; free sulfur and cysteine were discovered in samples composed of cystine samples; and cyanide was found in samples of uric acid calculi. These experimental results provide convincing evidence that long-pulse Ho:YAG laser lithotripsy causes chemical decomposition of urinary calculi as a consequence of a dominant photothermal mechanism. Copyright 1999 Wiley-Liss, Inc.

  8. Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Rubin, K. H.; Keller, N. S.

    2009-12-01

    An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular, including the hairs and limu, unlike similar fragments from Loihi Seamount, Axial Seamount, and mid-ocean ridges that have <10% vesicles. The lava bubbles were observed to reach about 1 m in diameter, sometimes appearing to separate from the lava surface, suggesting that they are fed by gasses rising directly from the conduit. Slow-motion video analysis shows that the lava skin stretches to form thin regions that then separate, exposing still incandescent gas within. Bubbles collapse as the lava skin disrupts (usually at the top of the bubble), producing a shower of convex spatter-like lava fragments. Sheet-like lava flows are associated with collapse of the spatter cone and change to pillow lobe extrusion about 5 m from the vent orifice. One pillow lobe sample collected molten contains ~60% vesicles. We suggest that the erupting melt contains large coalesced slugs of magmatic gas and abundant small expanding vesicles that have yet to be incorporated into the large gas slugs. The contrast with Prometheus suggests highly localized conditions of magma devolatilization at W. Mata.

  9. Using the cavitation collapse time to indicate the extent of histotripsy-induced tissue fractionation

    NASA Astrophysics Data System (ADS)

    Macoskey, J. J.; Choi, S. W.; Hall, T. L.; Vlaisavljevich, E.; Lundt, J. E.; Lee, F. T., Jr.; Johnsen, E.; Cain, C. A.; Xu, Z.

    2018-03-01

    Histotripsy is an ultrasonic tissue ablation method based on acoustic cavitation. It has been shown that cavitation dynamics change depending on the mechanical properties of the host medium. During histotripsy treatment, the target-tissue is gradually fractionated and eventually liquefied to acellular homogenate. In this study, the change in the collapse time (t col) of the cavitation bubble cloud over the course of histotripsy treatment is investigated as an indicator for progression of the tissue fractionation process throughout treatment. A 500 kHz histotripsy transducer is used to generate single-location lesions within tissue-mimicking agar phantoms of varying stiffness levels as well as ex vivo bovine liver samples. Cavitation collapse signals are acquired with broadband hydrophones, and cavitation is imaged optically using a high-speed camera in transparent tissue-mimicking phantoms. The high-speed-camera-acquired measurements of t col validate the acoustic hydrophone measurements. Increases in t col are observed both with decreasing phantom stiffness and throughout histotripsy treatment with increasing number of pulses applied. The increasing trend of t col throughout the histotripsy treatment correlates well with the progression of lesion formation generated in tissue-mimicking phantoms (R 2  =  0.87). Finally, the increasing trend of t col over the histotripsy treatment is validated in ex vivo bovine liver.

  10. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  11. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    NASA Astrophysics Data System (ADS)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  12. Characteristic microwave background distortions from collapsing domain wall bubbles

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1990-01-01

    The magnitude and angular pattern of distortions of the microwave background are analyzed by collapsing spherical domain walls. A characteristic pattern of redshift distortions of red or blue spikes surrounded by blue discs was found. The width and height of a spike is related to the diameter and magnitude of the disc. A measurement of the relations between these quantities thus can serve as an unambiguous indicator for a collapsing spherical domain wall. From the redshift distortion in the blue discs an upper bound was found on the surface energy density of the walls sigma is less than or approximately 8 MeV cubed.

  13. Bubble breakup phenomena in a venturi tube

    NASA Astrophysics Data System (ADS)

    Fujiwara, Akiko

    2005-11-01

    Microbubble has distinguished characteristics of large surface area to unit volume and small buoyancy, and it has advantages in many engineering fields. Recently microbubble generators with low energy and high performance are required to wide applications. In the present study, we propose one new effective technique to generate tiny bubbles with less than 200 μm diameter utilizing venturi tube under high void fraction condition. The objective of the present study is to elucidate the mechanism of bubble breakup phenomena in the venturi tube and to clarify the effects of parameters which are necessary to realize an optimum system experimentally. Experiment was conducted with void fraction of 4% and variation of liquid velocity from 9 to 26 m/s at the throat. Under low velocity condition, bubbles which were observed with a high speed camera parted gradually in a wide region. On the contrary under high velocity condition, bubbles expanded after passing through the throat and shrank rapidly. Since the speed of sound in gas-liquid system is extremely lower than that of single-phase flow, the bubble breakup phenomenon in the venturi tube is explained as the supersonic flow in a Laval nozzle. By rapid pressure recovery in diverging area, expanding bubbles collapse violently. The tiny bubbles are generated due to the surface instability of shrinking bubbles.

  14. Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun

    2018-01-01

    This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.

  15. Quantum Optical Heating in Sonoluminescence Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurcz, Andreas; Capolupo, Antonio; Beige, Almut

    2009-03-30

    Sonoluminescence occurs when tiny bubbles rilled with noble gas atoms are driven by a sound wave. Each cycle of the driving field is accompanied by a collapse phase in which the bubble radius decreases rapidly until a short but very strong light flash is emitted. The spectrum of the light corresponds to very high temperatures and hints at the presence of a hot plasma core. While everyone accepts that the effect is real, the main energy focussing mechanism is highly controversial. Here we suggest that the heating of the bubble might be due to a weak but highly inhomogeneous electricmore » field as it occurs during rapid bubble deformations [A. Kurcz et al.(submitted)]. It is shown that such a field couples the quantised motion of the atoms to their electronic states, thereby resulting in very high heating rates.« less

  16. The dynamic behavior and compliance of a stream of cavitating bubbles.

    NASA Technical Reports Server (NTRS)

    Brennen, C.

    1973-01-01

    Study of the dynamic response of streams of cavitating bubbles to imposed pressure fluctuations to determine the role played by turbopump cavitation in the POGO instability of liquid rockets. Both quasi-static and more general linearized dynamic analyses are made of the perturbations to a cavitating flow through a region of reduced pressure in which the bubbles first grow and then collapse. The results, when coupled with typical bubble number density distribution functions, yield compliances which compare favorably with the existing measurements. Since the fluids involved are frequently cryogenic, a careful examination was made of the thermal effects both on the mean flow and on the perturbations. As a result, the discrepancy between theory and experiment for particular engines could be qualitatively ascribed to reductions in the compliance caused either by these thermal effects or by relatively high reduced frequencies.

  17. Numeric simulation of relativistic stellar core collapse and the formation of Reissner-Nordstroem black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghezzi, Cristian R.; Letelier, Patricio S.

    2007-01-15

    The time evolution of a set of 22M{sub {center_dot}} unstable charged stars that collapse is computed integrating the Einstein-Maxwell equations. The model simulates the collapse of a spherical star that had exhausted its nuclear fuel and has or acquires a net electric charge in its core while collapsing. When the charge-to-mass ratio is Q/{radical}(G)M{>=}1, the star does not collapse but spreads. On the other hand, a different physical behavior is observed with a charge-to-mass ratio of 1>Q/{radical}(G)M>0.1. In this case, the collapsing matter forms a bubble enclosing a lower density core. We discuss an immediate astrophysical consequence of these resultsmore » that is a more efficient neutrino trapping during the stellar collapse and an alternative mechanism for powerful supernova explosions. The outer space-time of the star is the Reissner-Nordstroem solution that matches smoothly with our interior numerical solution; thus the collapsing models form Reissner-Nordstroem black holes.« less

  18. Statistical analysis of hydrodynamic cavitation events

    NASA Astrophysics Data System (ADS)

    Gimenez, G.; Sommer, R.

    1980-10-01

    The frequency (number of events per unit time) of pressure pulses produced by hydrodynamic cavitation bubble collapses is investigated using statistical methods. The results indicate that this frequency is distributed according to a normal law, its parameters not being time-evolving.

  19. Agitation, Mixing, and Transfers Induced by Bubbles

    NASA Astrophysics Data System (ADS)

    Risso, Frédéric

    2018-01-01

    Bubbly flows involve bubbles randomly distributed within a liquid. At large Reynolds number, they experience an agitation that can combine shear-induced turbulence (SIT), large-scale buoyancy-driven flows, and bubble-induced agitation (BIA). The properties of BIA strongly differ from those of SIT. They have been determined from studies of homogeneous swarms of rising bubbles. Regarding the bubbles, agitation is mainly caused by the wake-induced path instability. Regarding the liquid, two contributions must be distinguished. The first one corresponds to the anisotropic flow disturbances generated near the bubbles, principally in the vertical direction. The second one is the almost isotropic turbulence induced by the flow instability through a population of bubbles, which turns out to be the main cause of horizontal fluctuations. Both contributions generate a k-3 spectral subrange and exponential probability density functions. The subsequent issue will be to understand how BIA interacts with SIT.

  20. Sonoluminescence Explained by the Standpoint of Coherent Quantum Vacuum Dynamics and its Prospects for Energy Production

    NASA Astrophysics Data System (ADS)

    Maxmilian Caligiuri, Luigi; Musha, Takaaki

    Sonoluminescence, or its more frequently studied version known as Single Bubble Sonoluminescence, consisting in the emission of light by a collapsing bubble in water under ultrasounds, represents one of the most challenging and interesting phenomenon in theoretical physics. In fact, despite its relatively easy reproducibility in a simple laboratory, its understanding within the commonly accepted picture of condensed matter remained so far unsatisfactory. On the other hand, the possibility to control the physical process involved in sonoluminescence, representing a sort of nuclear fusion on small scale, could open unthinkable prospects of free energy production from water. Different explanations has been proposed during the past years considering, in various way, the photoemission to be related to electromagnetic Zero Point Field energy dynamics, by considering the bubble surface as a Casimir force boundary. More recently a model invoking Cherenkov radiation emission from superluminal photons generated in quantum vacuum has been successfully proposed. In this paper it will be shown that the same results can be more generally explained and quantitative obtained within a QED coherent dynamics of quantum vacuum, according to which the electromagnetic energy of the emitted photons would be related to the latent heat involved in the phase transition from water's vapor to liquid phase during the bubble collapse. The proposed approach could also suggest an explanation of a possible mechanism of generation of faster than light (FTL) photons required to start Cherenkov radiation as well as possible applications to energy production from quantum vacuum.

  1. Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.

    PubMed

    Duryea, Alexander P; Cain, Charles A; Tamaddoni, Hedieh A; Roberts, William W; Hall, Timothy L

    2014-10-01

    Microscopic residual bubble nuclei can persist on the order of 1 s following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, because they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low-amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high-speed photography. In each case, a 2-MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500-kHz transducer, which we term the bubble removal pulse. Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 to 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy.

  2. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

  3. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.

    PubMed

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound.

  4. Dynamics of tandem bubble interaction in a microfluidic channel.

    PubMed

    Yuan, Fang; Sankin, Georgy; Zhong, Pei

    2011-11-01

    The dynamics of tandem bubble interaction in a microfluidic channel (800  ×  21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay.

  5. Dynamics of degassing at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Vergniolle, Sylvie; Jaupart, Claude

    1990-03-01

    At Kilauea volcano, Hawaii, the recent long-lived eruptions of Mauna Ulu and Pu'u O'o have occurred in two major stages, defining a characteristic eruptive pattern. The first stage consists of cyclic changes of activity between episodes of "fire fountaining" and periods of quiescence or effusion of vesicular lava. The second stage consists only of continuous effusion of lava. We suggest that these features reflect the dynamics of magma degassing in a chamber which empties into a narrow conduit. In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The foam thickness is proportional to (μlQ/ɛ2 ρl g)1/4, where μ l and ρl are the viscosity and density of magma, ɛ is the gas volume fraction in the foam, g is the acceleration of gravity, and Q is the gas flux. The bubbles in the foam deform under the action of buoyancy, and the maximum permissible foam thickness is hc = 2σ/ɛρlgR, where σ is the coefficient of surface tension and R is the original bubble radius. If this critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, surface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. The essential result is that the continuous process of degassing can lead to discontinuous eruptive behavior. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna UIu and the 1983-1986 Pu'u O'o eruptions yield constraints on three key variables. The area of the chamber roof must be a few tens of square kilometers, with a minimum value of about 8 km2. Magma reservoirs of similar dimensions are imaged by seismic attenuation tomography below the east rift zone. Close to the roof, the gas volume fraction is a few percent, and the gas bubbles have diameters lying between 0.1 and 0.6 mm. These estimates are close to the predictions of models for bubble nucleation and growth in basaltic melts, as well as to the observations on deep submarine basalts. The transition between cyclic and continuous activity occurs when the mass flux of gas becomes lower than a critical value of the order of 103 kg/s. In this model, changes of eruptive regime reflect changes in the amount and size of bubbles which reach the chamber roof.

  6. An Efficient Modelling Approach for Prediction of Porosity Severity in Composite Structures

    NASA Technical Reports Server (NTRS)

    Bedayat, Houman; Forghani, Alireza; Hickmott, Curtis; Roy, Martin; Palmieri, Frank; Grimsley, Brian; Coxon, Brian; Fernlund, Goran

    2017-01-01

    Porosity, as a manufacturing process-induced defect, highly affects the mechanical properties of cured composites. Multiple phenomena affect the formation of porosity during the cure process. Porosity sources include entrapped air, volatiles and off-gassing as well as bag and tool leaks. Porosity sinks are the mechanisms that contribute to reducing porosity, including gas transport, void shrinkage and collapse as well as resin flow into void space. Despite the significant progress in porosity research, the fundamentals of porosity in composites are not yet fully understood. The highly coupled multi-physics and multi-scale nature of porosity make it a complicated problem to predict. Experimental evidence shows that resin pressure history throughout the cure cycle plays an important role in the porosity of the cured part. Maintaining high resin pressure results in void shrinkage and collapse keeps volatiles in solution thus preventing off-gassing and bubble formation. This study summarizes the latest development of an efficient FE modeling framework to simulate the gas and resin transport mechanisms that are among the major phenomena contributing to porosity.

  7. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska 2. Precursor to the Subplinian phase

    USGS Publications Warehouse

    Vergniolle, S.; Caplan-Auerbach, J.

    2004-01-01

    The 1999 eruption of Shishaldin volcano (Alaska, USA) displayed both Strombolian and Subplinian basaltic activity. The Subplinian phase was preceded by a signal of low amplitude and constant frequency (??? 2 Hz) lasting 13 h. This "humming signal" is interpreted as the coalescence of the very shallow part of a foam building up in the conduit, which produces large gas bubbles before bursting. The acoustic waveform of the hum event is modelled by a Helmholtz resonator: gas is trapped into a rigid cavity and can only escape through a tiny upper hole producing sound waves. At Shishaldin, the radius of the hole (??? 5 m) is close to that of the conduit (??? 6 m), the cavity has a length of ??? 60 m, and gas presents only a small overpressure between (??? 1.2 ?? 10-3 and 4.5 ?? 10-3 MPa). Such an overpressure is obtained by the partial coalescence of a foam formed by bubbles with a diameter from ??? 2.3 mm at the beginning of the episode towards ??? 0.64 mm very close to the end of the phase. The intermittency between hum events is explained by the ripening of the foam induced by the H2O diffusion through the liquid films. The two extreme values, from 600 to 10 s, correspond to a bubble diameter from 2.2 to 0.3 mm at the beginning and end of the pre-Subplinian phase, respectively. The extremely good agreement between two independent estimates of bubble diameters in the shallow foam reinforces the validity of such an interpretation. The total gas volume lost at the surface during the humming events is at most 5.9 ?? 106 m3. At the very end of the pre-Subplinian phase, there is a single large bubble with an overpressure of ???0.42 MPa. The large overpressure suggests that it comes from significant depth, unlike other bubbles in the pre-Subplinian phase. This deep bubble may be responsible for the entire foam collapse, resulting in the Subplinian phase. ?? 2004 Elsevier B.V. All rights reserved.

  8. Single bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Dan, Manas

    In recent years considerable attention has been directed to the phenomenon of single bubble sonoluminescence, SBSL in which a single, stable, acoustically levitated bubble is made to oscillate with sufficiently large amplitude so as to emit picosecond light pulses in each cycle of the acoustic drive pressure. Remarkably, the phenomenon represents about twelve orders of magnitude of energy focusing. SBSL has been carefully and thoroughly studied in part of parameter space by previous authors. In the present work, the experimental observation of the influence of another important parameter namely the ambient pressure will be presented. It is the first complete and controlled study of the modifications of the bubble dynamics and SL emission due to the variation of the ambient pressure. It has been observed that the equilibrium radius as well as the maximum radius increase as the ambient pressure is decreased at constant driving pressure. Furthermore the expansion ratio (Rmax/ Rmin) increases as the ambient pressure is decreased, resulting in a change in the SL radiation. The intensity of SL emission increases about seven times for only a fifteen percent decrease of ambient pressure at constant driving pressure. However, it is not possible to push SL radiation beyond a certain limit by continuously decreasing the ambient pressure. On the other hand increasing the ambient pressure decreases the equilibrium radius, as well as the expansion ratio leading to a decrease of SL intensity. Amongst the SBSL emissions the light emission has been investigated rather elaborately. The other single bubble emission is the acoustic emission, AE. Here a detailed study of AE will be presented. The AE has been measured by a calibrated needle hydrophone in different regimes of bubble motion. The hydrophone response shows a large amplitude AE pulse which corresponds to the principal collapse, along with smaller amplitude pulses which can be associated with the after bounces of the bubble just after the initial collapse. The pressure amplitudes of the main AE spike are much weaker below the sonoluminescing regime. The amplitude of the principal AE spike in the sonoluminescing regime is about 1.2 atm at 7.2 mm from the bubble. The rise time as well as the FWHM of the principal spikes and after bounces in three different regimes of bubble motion has been reported. A light scattering experiment has been carried out to study the bubble dynamics. An extremely strong correlation between the results of light scattering and those of AE has been found.

  9. Predicting financial market crashes using ghost singularities.

    PubMed

    Smug, Damian; Ashwin, Peter; Sornette, Didier

    2018-01-01

    We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of 'ghosts of finite-time singularities' is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts.

  10. Power Laws and Market Crashes ---Empirical Laws on Bursting Bubbles---

    NASA Astrophysics Data System (ADS)

    Kaizoji, T.

    In this paper, we quantitatively investigate the statistical properties of a statistical ensemble of stock prices. We selected 1200 stocks traded on the Tokyo Stock Exchange, and formed a statistical ensemble of daily stock prices for each trading day in the 3-year period from January 4, 1999 to December 28, 2001, corresponding to the period of the forming of the internet bubble in Japn, and its bursting in the Japanese stock market. We found that the tail of the complementary cumulative distribution function of the ensemble of stock prices in the high value of the price is well described by a power-law distribution, P (S > x) ˜ x^{-α}, with an exponent that moves in the range of 1.09 < α < 1.27. Furthermore, we found that as the power-law exponents α approached unity, the bubbles collapsed. This suggests that Zipf's law for stock prices is a sign that bubbles are going to burst.

  11. Predicting financial market crashes using ghost singularities

    PubMed Central

    2018-01-01

    We analyse the behaviour of a non-linear model of coupled stock and bond prices exhibiting periodically collapsing bubbles. By using the formalism of dynamical system theory, we explain what drives the bubbles and how foreshocks or aftershocks are generated. A dynamical phase space representation of that system coupled with standard multiplicative noise rationalises the log-periodic power law singularity pattern documented in many historical financial bubbles. The notion of ‘ghosts of finite-time singularities’ is introduced and used to estimate the end of an evolving bubble, using finite-time singularities of an approximate normal form near the bifurcation point. We test the forecasting skill of this method on different stochastic price realisations and compare with Monte Carlo simulations of the full system. Remarkably, the approximate normal form is significantly more precise and less biased. Moreover, the method of ghosts of singularities is less sensitive to the noise realisation, thus providing more robust forecasts. PMID:29596485

  12. Log-periodic crashes revisited

    NASA Astrophysics Data System (ADS)

    Matsushita, Raul; da Silva, Sergio; Figueiredo, Annibal; Gleria, Iram

    2006-05-01

    We revisit the finding that crashes can be deterministic and governed by log-periodic formulas [D. Sornette, A. Johansen, Significance of log-periodic precursors to financial crashes, Quant. Finance 1 (2001) 452-471; D. Sornette, W.X. Zhou, The US 2000-2002 market descent: how much longer and deeper?, Quant. Finance 2 (2002) 468-481]. One- and two-harmonic equations are usually employed to fit daily data during bubble episodes. But a three-harmonics has been shown to fit anti-bubbles [A. Johansen, D. Sornette, Financial “anti-bubbles”: log-periodicity in gold and Nikkei collapses, Int. J. Mod. Phys. C 10 (1999) 563-575]. Here we show that the three-harmonic formula can work for bubble episodes as well as anti-bubbles. This is illustrated with daily data from the Brazilian real-US dollar exchange rate. And we also show that the three-harmonics can fit an intraday data set from that foreign exchange rate.

  13. Extreme conditions in a dissolving air nanobubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  14. Hydrodynamic cavitation for sonochemical effects.

    PubMed

    Moholkar, V S; Kumar, P S; Pandit, A B

    1999-03-01

    A comparative study of hydrodynamic and acoustic cavitation has been made on the basis of numerical solutions of the Rayleigh-Plesset equation. The bubble/cavity behaviour has been studied under both acoustic and hydrodynamic cavitation conditions. The effect of varying pressure fields on the collapse of the cavity (sinusoidal for acoustic and linear for hydrodynamic) and also on the latter's dynamic behaviour has been studied. The variations of parameters such as initial cavity size, intensity of the acoustic field and irradiation frequency in the case of acoustic cavitation, and initial cavity size, final recovery pressure and time for pressure recovery in the case of hydrodynamic cavitation, have been found to have significant effects on cavity/bubble dynamics. The simulations reveal that the bubble/cavity collapsing behaviour in the case of hydrodynamic cavitation is accompanied by a large number of pressure pulses of relatively smaller magnitude, compared with just one or two pulses under acoustic cavitation. It has been shown that hydrodynamic cavitation offers greater control over operating parameters and the resultant cavitation intensity. Finally, a brief summary of the experimental results on the oxidation of aqueous KI solution with a hydrodynamic cavitation set-up is given which supports the conclusion of this numerical study. The methodology presented allows one to manipulate and optimise of specific process, either physical or chemical.

  15. A Diffuse Interface Model with Immiscibility Preservation

    PubMed Central

    Tiwari, Arpit; Freund, Jonathan B.; Pantano, Carlos

    2013-01-01

    A new, simple, and computationally efficient interface capturing scheme based on a diffuse interface approach is presented for simulation of compressible multiphase flows. Multi-fluid interfaces are represented using field variables (interface functions) with associated transport equations that are augmented, with respect to an established formulation, to enforce a selected interface thickness. The resulting interface region can be set just thick enough to be resolved by the underlying mesh and numerical method, yet thin enough to provide an efficient model for dynamics of well-resolved scales. A key advance in the present method is that the interface regularization is asymptotically compatible with the thermodynamic mixture laws of the mixture model upon which it is constructed. It incorporates first-order pressure and velocity non-equilibrium effects while preserving interface conditions for equilibrium flows, even within the thin diffused mixture region. We first quantify the improved convergence of this formulation in some widely used one-dimensional configurations, then show that it enables fundamentally better simulations of bubble dynamics. Demonstrations include both a spherical bubble collapse, which is shown to maintain excellent symmetry despite the Cartesian mesh, and a jetting bubble collapse adjacent a wall. Comparisons show that without the new formulation the jet is suppressed by numerical diffusion leading to qualitatively incorrect results. PMID:24058207

  16. Towards numerical prediction of cavitation erosion.

    PubMed

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-10-06

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s(-1)). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction.

  17. Towards numerical prediction of cavitation erosion

    PubMed Central

    Fivel, Marc; Franc, Jean-Pierre; Chandra Roy, Samir

    2015-01-01

    This paper is intended to provide a potential basis for a numerical prediction of cavitation erosion damage. The proposed method can be divided into two steps. The first step consists in determining the loading conditions due to cavitation bubble collapses. It is shown that individual pits observed on highly polished metallic samples exposed to cavitation for a relatively small time can be considered as the signature of bubble collapse. By combining pitting tests with an inverse finite-element modelling (FEM) of the material response to a representative impact load, loading conditions can be derived for each individual bubble collapse in terms of stress amplitude (in gigapascals) and radial extent (in micrometres). This step requires characterizing as accurately as possible the properties of the material exposed to cavitation. This characterization should include the effect of strain rate, which is known to be high in cavitation erosion (typically of the order of several thousands s−1). Nanoindentation techniques as well as compressive tests at high strain rate using, for example, a split Hopkinson pressure bar test system may be used. The second step consists in developing an FEM approach to simulate the material response to the repetitive impact loads determined in step 1. This includes a detailed analysis of the hardening process (isotropic versus kinematic) in order to properly account for fatigue as well as the development of a suitable model of material damage and failure to account for mass loss. Although the whole method is not yet fully operational, promising results are presented that show that such a numerical method might be, in the long term, an alternative to correlative techniques used so far for cavitation erosion prediction. PMID:26442139

  18. Analytical approximations for the collapse of an empty spherical bubble.

    PubMed

    Obreschkow, D; Bruderer, M; Farhat, M

    2012-06-01

    The Rayleigh equation 3/2R+RR+pρ(-1)=0 with initial conditions R(0)=R(0), R(0)=0 models the collapse of an empty spherical bubble of radius R(T) in an ideal, infinite liquid with far-field pressure p and density ρ. The solution for r≡R/R(0) as a function of time t≡T/T(c), where R(T(c))≡0, is independent of R(0), p, and ρ. While no closed-form expression for r(t) is known, we find that r(0)(t)=(1-t(2))(2/5) approximates r(t) with an error below 1%. A systematic development in orders of t(2) further yields the 0.001% approximation r(*)(t)=r(0)(t)[1-a(1)Li(2.21)(t(2))], where a(1)≈-0.01832099 is a constant and Li is the polylogarithm. The usefulness of these approximations is demonstrated by comparison to high-precision cavitation data obtained in microgravity.

  19. Experimental investigation of conical bubble structure and acoustic flow structure in ultrasonic field.

    PubMed

    Ma, Xiaojian; Huang, Biao; Wang, Guoyu; Zhang, Mindi

    2017-01-01

    The objective of this paper is to investigate the transient conical bubble structure (CBS) and acoustic flow structure in ultrasonic field. In the experiment, the high-speed video and particle image velocimetry (PIV) techniques are used to measure the acoustic cavitation patterns, as well as the flow velocity and vorticity fields. Results are presented for a high power ultrasound with a frequency of 18kHz, and the range of the input power is from 50W to 250W. The results of the experiment show the input power significantly affects the structures of CBS, with the increase of input power, the cavity region of CBS and the velocity of bubbles increase evidently. For the transient motion of bubbles on radiating surface, two different types could be classified, namely the formation, aggregation and coalescence of cavitation bubbles, and the aggregation, shrink, expansion and collapse of bubble cluster. Furthermore, the thickness of turbulent boundary layer near the sonotrode region is found to be much thicker, and the turbulent intensities are much higher for relatively higher input power. The vorticity distribution is prominently affected by the spatial position and input power. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation

    NASA Astrophysics Data System (ADS)

    Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon

    2017-04-01

    The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation.

  1. Dynamics of tandem bubble interaction in a microfluidic channel

    PubMed Central

    Yuan, Fang; Sankin, Georgy; Zhong, Pei

    2011-01-01

    The dynamics of tandem bubble interaction in a microfluidic channel (800 × 21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay. PMID:22088007

  2. Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles.

    PubMed

    Tuziuti, Toru

    2016-03-01

    This paper describes the sizes of cleaned areas under different sonication conditions with the addition of flowing micrometer-sized air bubbles. The differences in the cleaned area of a glass plate pasted with silicon grease as a dirty material under different sonication conditions were investigated after tiny bubbles were blown on the dirty plate placed in an underwater sound field. The ultrasound was applied perpendicular to the bubble flow direction. The shape of the cleaned areas was nearly elliptical, so the lengths of the minor and major axes were measured. The length of the minor axis under sweep conditions (amplitude modulation), for which the average power was lower than that for continuous wave (CW) irradiation, was comparable to that for CW irradiation and was slightly larger than under bubble flow only. Not only the relatively high power for CW irradiation, but also the larger angular change of the bubble flow direction under sweep conditions contributed to the enlargement of the cleaned area in the direction of the minor axis. The combination of bubble flow and sonication under sweep or CW conditions produced a larger cleaned area compared with bubble flow only, although the increase was not higher than 20%. A rapid change from an air to water interface caused by the bubble flow and water jets caused by the collapse of bubbles due to violent pulsation is the main cleaning mechanism under a combination of ultrasound and bubble flow. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave.

    PubMed

    Hołyst, Robert; Litniewski, Marek; Garstecki, Piotr

    2012-05-01

    Molecular-dynamics simulations of the Lennard-Jones fluid (up to 10(7) atoms) are used to analyze the collapse of a nanoscopic bubble. The collapse is triggered by a traveling sound wave that forms a shock wave at the interface. The peak temperature T(max) in the focal point of the collapse is approximately ΣR(0)(a), where Σ is the surface density of energy injected at the boundary of the container of radius R(0) and α ≈ 0.4-0.45. For Σ = 1.6 J/m(2) and R(0) = 51 nm, the shock wave velocity, which is proportional to √Σ, reaches 3400 m/s (4 times the speed of sound in the liquid); the pressure at the interface, which is proportional to Σ, reaches 10 GPa; and T(max) reaches 40,000 K. The Rayleigh-Plesset equation together with the time of the collapse can be used to estimate the pressure at the front of the shock wave.

  4. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution

    DOE PAGES

    Han, Binghong; Stoerzinger, Kelsey A.; Tileli, Vasiliki; ...

    2016-10-03

    Understanding the interaction between water and oxides is critical for many technological applications, including energy storage, surface wetting/self-cleaning, photocatalysis and sensors. In this paper, we report observations of strong structural oscillations of Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3$-$δ (BSCF) in the presence of both H 2O vapour and electron irradiation using environmental transmission electron microscopy. These oscillations are related to the formation and collapse of gaseous bubbles. Electron energy-loss spectroscopy provides direct evidence of O 2 formation in these bubbles due to the incorporation of H 2O into BSCF. SrCoO 3$-$δ was found to exhibit small oscillations, while none weremore » observed for La 0.5Sr 0.5CoO 3$-$δ and LaCoO 3. The structural oscillations of BSCF can be attributed to the fact that its oxygen 2p-band centre is close to the Fermi level, which leads to a low energy penalty for oxygen vacancy formation, high ion mobility, and high water uptake. This work provides surprising insights into the interaction between water and oxides under electron-beam irradiation.« less

  5. Fractal boundary basins in spherically symmetric ϕ4 theory

    NASA Astrophysics Data System (ADS)

    Honda, Ethan

    2010-07-01

    Results are presented from numerical simulations of the flat-space nonlinear Klein-Gordon equation with an asymmetric double-well potential in spherical symmetry. Exit criteria are defined for the simulations that are used to help understand the boundaries of the basins of attraction for Gaussian “bubble” initial data. The first exit criterion, based on the immediate collapse or expansion of bubble radius, is used to observe the departure of the scalar field from a static intermediate attractor solution. The boundary separating these two behaviors in parameter space is smooth and demonstrates a time-scaling law with an exponent that depends on the asymmetry of the potential. The second exit criterion differentiates between the creation of an expanding true-vacuum bubble and dispersion of the field leaving the false vacuum; the boundary separating these basins of attraction is shown to demonstrate fractal behavior. The basins are defined by the number of bounces that the field undergoes before inducing a phase transition. A third, hybrid exit criterion is used to determine the location of the boundary to arbitrary precision and to characterize the threshold behavior. The possible effects this behavior might have on cosmological phase transitions are briefly discussed.

  6. Stab to second intercostal space: a bubbling extrapleural wound.

    PubMed

    Jabbar, A; Reynolds, J V; Plunkett, P K

    2005-12-01

    A 37 year old man was found collapsed at the roadside and taken to the emergency department. Communication was difficult, as the patient could not speak English. There was a wound in the left second intercostal space on the midclavicular line, which was bleeding and was bubbling air. A drain was inserted, bleeding controlled, and his wounds sutured. Chest x ray later confirmed satisfactory placement of the drain. The following day, swelling and discharge indicated oesophageal damage, which was later confirmed by gastrografin swallow. With conservative management in hospital for 2 weeks, he made a full recovery and was discharged.

  7. Numerical study of the small scale structures in Boussinesq convection

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    Two-dimensional Boussinesq convection is studied numerically using two different methods: a filtered pseudospectral method and a high order accurate Essentially Nonoscillatory (ENO) scheme. The issue whether finite time singularity occurs for initially smooth flows is investigated. The numerical results suggest that the collapse of the bubble cap is unlikely to occur in resolved calculations. The strain rate corresponding to the intensification of the density gradient across the front saturates at the bubble cap. We also found that the cascade of energy to small scales is dominated by the formulation of thin and sharp fronts across which density jumps.

  8. Bubble dynamics in a compressible liquid in contact with a rigid boundary

    PubMed Central

    Wang, Qianxi; Liu, Wenke; Zhang, A. M.; Sui, Yi

    2015-01-01

    A bubble initiated near a rigid boundary may be almost in contact with the boundary because of its expansion and migration to the boundary, where a thin layer of water forms between the bubble and the boundary thereafter. This phenomenon is modelled using the weakly compressible theory coupled with the boundary integral method. The wall effects are modelled using the imaging method. The numerical instabilities caused by the near contact of the bubble surface with the boundary are handled by removing a thin layer of water between them and joining the bubble surface with its image to the boundary. Our computations correlate well with experiments for both the first and second cycles of oscillation. The time history of the energy of a bubble system follows a step function, reducing rapidly and significantly because of emission of shock waves at inception of a bubble and at the end of collapse but remaining approximately constant for the rest of the time. The bubble starts being in near contact with the boundary during the first cycle of oscillation when the dimensionless stand-off distance γ = s/Rm < 1, where s is the distance of the initial bubble centre from the boundary and Rm is the maximum bubble radius. This leads to (i) the direct impact of a high-speed liquid jet on the boundary once it penetrates through the bubble, (ii) the direct contact of the bubble at high temperature and high pressure with the boundary, and (iii) the direct impingement of shock waves on the boundary once emitted. These phenomena have clear potential to damage the boundary, which are believed to be part of the mechanisms of cavitation damage. PMID:26442148

  9. Cell Fragmentation and Permeabilization by a 1 ns Pulse Driven Triple-Point Electrode

    PubMed Central

    Li, Joy; Cho, Michael

    2018-01-01

    Ultrashort electric pulses (ns-ps) are useful in gaining understanding as to how pulsed electric fields act upon biological cells, but the electric field intensity to induce biological responses is typically higher than longer pulses and therefore a high voltage ultrashort pulse generator is required. To deliver 1 ns pulses with sufficient electric field but at a relatively low voltage, we used a glass-encapsulated tungsten wire triple-point electrode (TPE) at the interface among glass, tungsten wire, and water when it is immersed in water. A high electric field (2 MV/cm) can be created when pulses are applied. However, such a high electric field was found to cause bubble emission and temperature rise in the water near the electrode. They can be attributed to Joule heating near the electrode. Adherent cells on a cover slip treated by the combination of these stimuli showed two major effects: (1) cells in a crater (<100 μm from electrode) were fragmented and the debris was blown away. The principal mechanism for the damage is presumed to be shear forces due to bubble collapse; and (2) cells in the periphery of the crater were permeabilized, which was due to the combination of bubble movement and microstreaming as well as pulsed electric fields. These results show that ultrashort electric fields assisted by microbubbles can cause significant cell response and therefore a triple-point electrode is a useful ablation tool for applications that require submillimeter precision. PMID:29744357

  10. Combustion dynamics of low vapour pressure nanofuel droplets

    NASA Astrophysics Data System (ADS)

    Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi

    2017-07-01

    Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is manifested in two frequency ranges: (i) buoyant flame flickering and (ii) auxiliary frequencies arising from high intensity secondary ejections due to bubble ruptures. Addition of alumina NPs enhances the heat absorption rate and ensures the rapid transfer of fuel parcels (detached daughter droplets) from droplet surface to flame front through secondary ejections. Therefore, average HR shows an increasing trend with particle loading rate (PLR). The perikinetic agglomeration model is used to explain the formation of gelatinous sheath during the last phase of droplet burning. Gelatinous mass formed results in bubble entrapment. SEM images of combustion precipitates show entrapped bubble cavities along with surface and sub-surface blowholes. Morphology of combustion precipitate shows a strong variation with PLRs. We have established the coupling mechanisms among heat release, shape oscillations, and secondary atomizations that underline the combustion behaviour of such low vapour pressure nanofuels.

  11. Bubble Dynamics in Polymer Solutions Undergoing Shear.

    DTIC Science & Technology

    1985-04-01

    cavitation bubble in water has been established as the fundamental theoretical approach to understanding this phenomenon. LA_ Laser -induced...cavitation inception. 1-2 Polymer effects on cavity appearance. 2-1 Spherical laser -induced bubble dynamics. 2-2 Vapor cavity jet formation. 2-3 Bubble...distilled water. 2-6B Nonspherical bubble dynamics in dilute polymer. 3-1 Closed-loop hydraulic cavitation tunnel. 3-2 Laser system optical components. 3-3

  12. Parametric Study of Flow Patterns behind the Standing Accretion Shock Wave for Core-Collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi

    2014-05-01

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  13. Universal scaling laws of top jet drop size and speed in bubble bursting

    NASA Astrophysics Data System (ADS)

    Ganan-Calvo, Alfonso

    2017-11-01

    The collapse of a bubble of radius Ro at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R follows a universal flow pattern that can be universally scaled using the difference between the parent bubble radius and a critical radius R* =Oh*-2μ2 /(ρσ) below which no droplet is ejected for a given Newtonian liquid. Here, Oh* = 0.037 is the critical Ohnesorge number, where Oh = μ /(ρσRo) 1 / 2 ; ρ, σ and μ are the liquid density, surface tension and viscosity. Based on a flow singularity occurring for Ro =R* , a scaling analysis of the complex flow structure at the onset of jet ejection for Ro >R* leads to the diameter of the first emitted droplet and the initial ejection velocity: D =kd(Ro -R*) 5 / 4R* - 1 / 4 and V =kv σμ-1(Ro -R*) 3 / 4R* - 3 / 4 , respectively. A remarkable collapse of data taken from available literature since 1954 to 2017 furnishes the universal constants kd = 0.1 and kv = 1.6 , for negligible gravity effects.The role of gravity is subdominant and can be reflected by the exponential dependence of the scaling laws obtained on the Bond number. This work was supported by the Ministerio de Economy Competitividad, Plan Estatal 2013-2016 Retos, project DPI2016-78887-C3-1-R.

  14. Effect of pulse duration and pulse repetition frequency of cavitation histotripsy on erosion at the surface of soft material.

    PubMed

    Zhou, Yufeng; Wang, Xiaotong

    2018-03-01

    Cavitation histotripsy with the short pulse duration (PD) but high pulse repetition frequency (PRF) disintegrates the tissue at a fluid interface. However, longer PD and lower PRF are used in the other focused ultrasound applications, where the acoustic radiation force, streaming, and cavitation are different, and their effects on erosion are unknown. In this study, the erosion at the surface of phantom/ex vivo tissue and the characteristics of induced bubble cloud captured by high-speed photography, passive cavitation detection, and light transmission during histotripsy exposure at varied PDs and PRFs but the same duty cycle were compared. The peak negative pressure of 6.6 MPa at the PD of 20 ms and PRF of 1 Hz began to erode the phantom, which becomes more significant with the increase of peak negative pressure, PD, and interval time between bursts. The increase of the PRF from 1 Hz to 1000 Hz, while the decrease of the PD from 20 ms to 20 μs (duty cycle of 2%) at the same energy was delivered to the gel phantom immersed in the degassed water led to the decrease of erosion volume but a slight increase of the erosion area and smoother surface. Low PRF and long PD produce the significant tissue deformation, acoustic wave refocusing, confinement of bubbles in a conical region, and more bubble dissolution after the collapse for the high acoustic scattering and light transmission signals. In comparison, high PRF and low PD produce a wide distribution of bubbles with only little wave refocusing at the beginning of cavitation histotripsy and high inertial cavitation. Acoustic emission dose has a good correlation with the erosion volume. The erosion on the porcine kidney at the varied PRFs and PDs with the same energy output showed similar trends as those in the phantom but at a slow rate. In summary, the PRF and PD are important parameters for the cavitation histotripsy-induced erosion at the interface of fluid and soft material, and they should be optimized for the best outcome. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Jet and Vortex Projectile Flows in Shock/bubble-on-wall Configuration

    NASA Astrophysics Data System (ADS)

    Peng, Gaozhu; Zabusky, Norman

    2001-11-01

    We observe intense coaxial upstream and radial flow structures from a shock in air interacting with a SF6 half-bubble placed against an ideally reflecting wall. Our axisymmetric numerical simulations were done with PPM and models a spherical bubble struck symmetrically by two identical approaching shocks . A "dual" vorticity deposition arises at early time and a coaxial upstream moving primary jet and radial vortex ring flow appears. A coherent vortex ring or vortex projectile (VP), with entrained shocklets originates from the vortex layer produced at the Mach stem (which arises from the primary reflected shock). This VP moves ahead of the jet. The original transmitted wave and other trapped waves in the expanding axial jet causes a collapsing and expanding cavity and other instabilities on the complex bubble interface. We present and analyze our results with different diagnostics: vorticity, density, divergence of velocity, and numerical shadowgraph patterns; global quantification of circulation, enstrophy and r-integrated vorticity; etc. We also discuss data projection and filtering for quantifying and validating complex flows.

  16. Dynamic Nucleation of Supercooled Melts and Measurement of the Surface Tension and Viscosity

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Ohsaka, K.

    1999-01-01

    We investigate the phenomenon of acoustic pressure-induced nucleation by using a novel approach involving the large amplitude resonant radial oscillations and collapse of a single bubble intentionally injected into a supercooled liquid. Using a combination of previously developed and proven techniques, the bubble is suspended in a fluid host by an ultrasonic field which supplies both the levitation capability as well as the forcing of the radial oscillations. We observe the effects of an increase in pressure (due to bubble collapse) in a region no larger than 100 microns within the supercooled melt to rigorously probe the hypothesis of pressure-induced nucleation of the solid phase. The use of single bubbles operating in narrow temporal and spatial scales will allow the direct and unambiguous correlation between the origin and location of the generation of the disturbance and the location and timing of the nucleation event. In a companion research effort, we are developing novel techniques for the non-contact measurements of the surface tension and viscosity of highly viscous supercooled liquids. Currently used non-invasive methods of surface tension measurement for the case of undercooled liquids generally rely of the quantitative determination of the resonance frequencies of drop shape oscillations, of the dynamics of surface capillary waves, or of the velocity of streaming flows. These methods become quickly ineffective when the liquid viscosity rises to a significant value. An alternate and accurate method which would be applicable to liquids of significant viscosity is therefore needed. We plan to develop such a capability by measuring the equilibrium shape of levitated undercooled melt droplets as they undergo solid-body rotation. The experimental measurement of the characteristic point of transition (bifurcation point) between axisymmetric and two-lobed shapes will be used to calculate the surface tension of the liquid. Such an approach has already been validated through the experimental verification of numerical modeling results. The experimental approach involves levitation, melting, and solidification of undercooled droplets using a hybrid ultrasonic-electrostatic technique in both a gaseous as well as a vacuum environment. A shape relaxation method will be investigated in order to derive a reliable method to measure the viscosity of undercooled melts. The analysis of the monotonic relaxation to equilibrium shape of a drastically deformed and super-critically damped free drop has been used to derive interfacial tension of immiscible liquid combinations where one of the component has high viscosity. A standard approach uses the initial elongation of a droplet through shear flows, but an equivalent method could involve the initial deformation of a drop levitated in a gas by ultrasonic radiation pressure, electric stresses, or even solid body rotation. The dynamic behavior of the free drop relaxing back to equilibrium shape will be modeled, and its characteristic time dependence should provide a quantitative means to evaluate the liquid viscosity.

  17. Laser-induced microjet: wavelength and pulse duration effects on bubble and jet generation for drug injection

    NASA Astrophysics Data System (ADS)

    Jang, Hun-jae; Park, Mi-ae; Sirotkin, Fedir V.; Yoh, Jack J.

    2013-12-01

    The expansion of the laser-induced bubble is the main mechanism in the developed microjet injector. In this study, Nd:YAG and Er:YAG lasers are used as triggers of the bubble formation. The impact of the laser parameters on the bubble dynamics is studied and the performance of the injector is evaluated. We found that the main cause of the differences in the bubble behavior comes from the pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the behavior of the bubble close to that of the cavitation bubble, while in Er:YAG case, the high absorption in the water and long pulse duration change the initial behavior of the bubble making it close to a vapor bubble. The contraction and subsequent rebound are typical for cavitation bubbles in both cases. The results show that the laser-induced microjet injector generates velocity which is sufficient for the drug delivery for both laser beams of different pulse duration. We estimate the typical velocity within 30-80 m/s range and the breakup length to be larger than 1 mm suitable for trans-dermal drug injection.

  18. From a market of dreamers to economical shocks

    NASA Astrophysics Data System (ADS)

    Owhadi, Houman

    2004-11-01

    Over the past years an intense work has been undertaken to understand the origin of the crashes and bubbles of financial markets. The explanations of these crashes have been grounded on the hypothesis of behavioral and social correlations between the agents in interacting particle models or on a feedback of the stock prices on trading behaviors in mean-field models (here bubbles and crashes are seen as collective hysteria). In this paper, we will introduce a market model as a particle system with no other interaction between the agents than the fact that to be able to sell, somebody must be willing to buy and no feedback of the price on their trading behavior. We will show that this model crashes in finite estimable time. Although the age of the market does not appear in the price dynamic the population of traders taken as a whole system is maturing towards collapse. The wealth distribution among the agents follows the second law of thermodynamics and with probability one an agent (or a minority of agents) will accumulate a large portion of the total wealth, at some point this disproportion in the wealth distribution becomes unbearable for the market leading to its collapse. We believe that the origin of the collapse in our model could be of some relevance in understanding long-term economic cycles such as the Kondratiev cycle.

  19. Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering

    NASA Astrophysics Data System (ADS)

    Kappus, B.; Bataller, A.; Putterman, S. J.

    2013-12-01

    Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.

  20. Energy balance for a sonoluminescence bubble yields a measure of ionization potential lowering.

    PubMed

    Kappus, B; Bataller, A; Putterman, S J

    2013-12-06

    Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6  eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.

  1. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    NASA Astrophysics Data System (ADS)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  2. Statistical mechanics of two-dimensional shuffled foams: Geometry-topology correlation in small or large disorder limits

    NASA Astrophysics Data System (ADS)

    Durand, Marc; Kraynik, Andrew M.; van Swol, Frank; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Ataei Talebi, Shirin; Graner, François

    2014-06-01

    Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010), 10.1209/0295-5075/90/60002] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011), 10.1103/PhysRevLett.107.168304]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.

  3. Enhanced kidney stone fragmentation by short delay tandem conventional and modified lithotriptor shock waves: a numerical analysis.

    PubMed

    Tham, Leung-Mun; Lee, Heow Pueh; Lu, Chun

    2007-07-01

    We evaluated the effectiveness of modified lithotriptor shock waves using computer models. Finite element models were used to simulate the propagation of lithotriptor shock waves in human renal calculi in vivo. Kidney stones were assumed to be spherical, homogeneous, isotropic and linearly elastic, and immersed in a continuum fluid. Single and tandem shock wave pulses modified to intensify the collapse of cavitation bubbles near the stone surface to increase fragmentation efficiency and suppress the expansion of intraluminal bubbles for decreased vascular injury were analyzed. The effectiveness of the modified shock waves was assessed by comparing the states of loading in the renal calculi induced by these shock waves to those produced by conventional shock waves. Our numerical simulations revealed that modified shock waves produced marginally lower stresses in spherical renal calculi than those produced by conventional shock waves. Tandem pulses of conventional or modified shock waves produced peak stresses in the front and back halves of the renal calculi. However, the single shock wave pulses generated significant peak stresses in only the back halves of the renal calculi. Our numerical simulations suggest that for direct stress wave induced fragmentation modified shock waves should be as effective as conventional shock waves for fragmenting kidney stones. Also, with a small interval of 20 microseconds between the pulses tandem pulse lithotripsy using modified or conventional shock waves could be considerably more effective than single pulse lithotripsy for fragmenting kidney stones.

  4. The "New Economy": Real or High-Tech Bubble? Myths and Realities.

    ERIC Educational Resources Information Center

    Brown, Bettina Lankard

    The "New Economy" implies a society in which information/communication technology is changing the nature of the workplace and contributing to more efficient and productive practices geared toward improving the quality of products and services. Recent events such as the collapse of dot.coms and corporate scandals have led some to doubt…

  5. Teaching in the Downturn

    ERIC Educational Resources Information Center

    Holladay, Jennifer

    2009-01-01

    Few of today's teachers can remember an economic situation quite like the one everyone now faces. To find analogies for the collapse of the housing bubble and the subsequent credit crisis, one has to search not his or her memories but the textbooks. "The Great Gatsby" and "The Grapes of Wrath" suddenly make more sense now. Generations of students…

  6. Teaching in the Downturn

    ERIC Educational Resources Information Center

    Holladay, Jennifer; Lockette, Tim

    2009-01-01

    Few of today's teachers can remember an economic situation quite like the one individuals now face. To find analogies for the collapse of the housing bubble and the subsequent credit crisis, they have to search not their memories but their textbooks. "The Great Gatsby" and "The Grapes of Wrath" suddenly make more sense now. What will happen next?…

  7. Scanning Electron Microscope Studies on Aggregation Characteristics of Alumina Nanofluids

    DTIC Science & Technology

    2013-08-01

    acoustic cavitation refers to the formation, growth and implosive collapse of bubbles in a liquid due to ultrasound that passes through the liquid...1 2.0 THEORY: ACOUSTIC CAVITATION AND AGGLOMERATION...be achieved to maximize the overall thermal conductivity of the nanofluid. 2.0 THEORY: ACOUSTIC CAVITATION AND AGGLOMERATION The phenomenon of

  8. Controlled removal of ceramic surfaces with combination of ions implantation and ultrasonic energy

    DOEpatents

    Boatner, Lynn A.; Rankin, Janet; Thevenard, Paul; Romana, Laurence J.

    1995-01-01

    A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body. Additional patterning of the selected surface location on the ceramic body is provided by implanting a high fluence of high-energy, relatively-light ions at selected surface sites for relaxing the bi-axial strain in the near-surface regions defined by these sites and thereby preventing the removal of such ion-implanted sites by the energy pulses from the collapsing ultrasonic cavitation bubbles.

  9. In vitro study of the mechanical effects of shock-wave lithotripsy.

    PubMed

    Howard, D; Sturtevant, B

    1997-01-01

    Impulsive stress in repeated shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) causes injury to kidney tissue. In a study of the mechanical input of ESWL, the effects of focused shock waves on thin planar polymeric membranes immersed in a variety of tissue-mimicking fluids have been examined. A direct mechanism of failure by shock compression and an indirect mechanism by bubble collapse have been observed. Thin membranes are easily damaged by bubble collapse. After propagating through cavitation-free acoustically heterogeneous media (liquids mixed with hollow glass spheres, and tissue) shock waves cause membranes to fail in fatigue by a shearing mechanism. As is characteristic of dynamic fatigue, the failure stress increases with strain rate, determined by the amplitude and rise time of the attenuated shock wave. Shocks with large amplitude and short rise time (i.e., in uniform media) cause no damage. Thus the inhomogeneity of tissue is likely to contribute to injury in ESWL. A definition of dose is proposed which yields a criterion for damage based on measurable shock wave properties.

  10. Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh-Plesset equation

    NASA Astrophysics Data System (ADS)

    de Barros, Ana L. F.; Nogueira, Álvaro L. M. A.; Paschoal, Ricardo C.; Portes, Dirceu, Jr.; Rodrigues, Hilario

    2018-03-01

    Sonoluminescence is the phenomenon in which acoustic energy is (partially) transformed into light as a bubble of gas collapses inside a liquid medium. One particular model used to explain the motion of the bubble’s wall forced by acoustic pressure is expressed by the Rayleigh-Plesset equation, which can be obtained from the Navier-Stokes equation. In this article, we describe an alternative approach to derive the Rayleigh-Plesset equation based on Lagrangian mechanics. This work is addressed mainly to undergraduate students and teachers. It requires knowledge of calculus and of many concepts from various fields of physics at the intermediate level.

  11. Cavitations synthesis of carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Voropaev, S.

    2011-04-01

    Originally an idea of diamonds production by hydrodynamical cavitation was presented by academician E M Galimov. He supposed the possibility of nature diamonds formation at fast magma flowing in kimberlitic pipes during bubbles collapse. This hypothesis assumes a number of processes, which were not under consideration until now. It concerns cavitation under high pressure, growth and stability of the gas- and vapors bubbles, their evolution, and corresponding physical- and chemical processes inside. Experimental setup to reproduce the high pressure and temperature reaction centers by means of the cavitation following the above idea was created. A few crystalline nanocarbon forms were successfully recovered after treatment of benzene (C6H6).

  12. Bubble fusion: Preliminary estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1995-02-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure {much_lt} external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ``sling shot`` that is ``loaded`` tomore » an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10{sup {minus}5}--10{sup {minus}6} are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted.« less

  13. Bubble dynamics in viscoelastic soft tissue in high-intensity focal ultrasound thermal therapy.

    PubMed

    Zilonova, E; Solovchuk, M; Sheu, T W H

    2018-01-01

    The present study is aimed to investigate bubble dynamics in a soft tissue, to which HIFU's continuous harmonic pulse is applied by introducing a viscoelastic cavitation model. After a comparison of some existing cavitation models, we decided to employ Gilmore-Akulichev model. This chosen cavitation model should be coupled with the Zener viscoelastic model in order to be able to simulate soft tissue features such as elasticity and relaxation time. The proposed Gilmore-Akulichev-Zener model was investigated for exploring cavitation dynamics. The parametric study led us to the conclusion that the elasticity and viscosity both damp bubble oscillations, whereas the relaxation effect depends mainly on the period of the ultrasound wave. The similar influence of elasticity, viscosity and relaxation time on the temperature inside the bubble can be observed. Cavitation heat source terms (corresponding to viscous damping and pressure wave radiated by bubble collapse) were obtained based on the proposed model to examine the cavitation significance during the treatment process. Their maximum values both overdominate the acoustic ultrasound term in HIFU applications. Elasticity was revealed to damp a certain amount of deposited heat for both cavitation terms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Role of entrapped vapor bubbles during microdroplet evaporation

    NASA Astrophysics Data System (ADS)

    Putnam, Shawn A.; Byrd, Larry W.; Briones, Alejandro M.; Hanchak, Michael S.; Ervin, Jamie S.; Jones, John G.

    2012-08-01

    On superheated surfaces, the air bubble trapped during impingement grows into a larger vapor bubble and oscillates at the frequency predicted for thermally induced capillary waves. In some cases, the entrapped vapor bubble penetrates the droplet interface, leaving a micron-sized coffee-ring pattern of pure fluid. Vapor bubble entrapment, however, does not influence the evaporation rate. This is also true on laser heated surfaces, where a laser can thermally excite capillary waves and induce bubble oscillations over a broad range of frequencies, suggesting that exciting perturbations in a pinned droplets interface is not an effective avenue for enhancing evaporative heat transfer.

  15. Nonspherical laser-induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Lim, Kang Yuan; Quinto-Su, Pedro A.; Klaseboer, Evert; Khoo, Boo Cheong; Venugopalan, Vasan; Ohl, Claus-Dieter

    2010-01-01

    The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40μm . In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles. The bubble dynamics is recorded with a high-speed camera at framing rates of up to 300000 frames per second. The observed bubble evolution is compared to predictions from an axisymmetric boundary element simulation which provides good qualitative agreement. Interesting dynamic features that are observed in both the experiment and simulation include the inversion of the major and minor axis for elliptical bubbles, the rotation of the shape for square bubbles, and the formation of a unidirectional jet for V-shaped bubbles. Further we demonstrate that specific bubble shapes can either be formed directly through the intensity distribution of a single laser focus, or indirectly using secondary bubbles that either confine the central bubble or coalesce with the main bubble. The former approach provides the ability to generate in principle any complex bubble geometry.

  16. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of the expanding height of the silicone oil column with time after the decompression, due to the exsolution of the volatile argon and subsequent bubble growth. Contrastingly, autoclave-wall resolved shear strain of bubbles promotes rapid coalescence until a critical point when permeable outgassing is more efficient than continuing exsolution and bubble growth. At this point the column destabilizes and partially collapses. Collapse progresses until the top of the column is again impermeable and outgassing-driven column expansion resumes. This process repeats in cycles of growth, deformation, destabilization and densification until the melt is at equilibrium saturation with argon and the column collapses completely. We propose that direct observation of the timescales of growth and collapse of a decompressing, shearing column has important implications for decompression-driven rapid conduit ascent of low-viscosity, low-crystallinity magmas. Therefore, even at high exsolution rates, permeable outgassing can transiently retard magma ascent.

  17. Mechanism of the protective effects of long chain n-alkyl glucopyranosides against ultrasound-induced cytolysis of HL-60 cells.

    PubMed

    Cheng, Jason Y; Riesz, Peter

    2007-07-01

    Recently it has been shown that long chain (C5-C8) n-alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This protective effect has possible applications in HIFU (high intensity focused ultrasound) for tumor treatment, and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl (5mM), heptyl (3mM), octyl (2mM) n-alkyl chains protected 100% of HL-60 cells in vitro from 1.057 MHz ultrasound-induced cytolysis under a range of conditions that resulted in 35-100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-d-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles. The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkyl glucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles, the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. In this work, we find that the sonochemically produced hydrogen peroxide yields from oxygen-saturated solutions of long chain (hexyl, octyl) n-alkyl glucopyranosides at 614 kHz and 1.057 MHz ultrasound increase with increasing n-alkyl glucopyranoside concentration but are independent of concentration for methyl-beta-D-glucopyranoside. These results are consistent with the previously proposed mechanism of sonoprotection [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular membranes by peroxyl and/or alkoxyl radicals [V. Misik, P. Riesz, Ann. N.Y. Acad. Sci., 899 (2000) 335].

  18. Surfactants reduce platelet-bubble and platelet-platelet binding induced by in vitro air embolism.

    PubMed

    Eckmann, David M; Armstead, Stephen C; Mardini, Feras

    2005-12-01

    The effect of gas bubbles on platelet behavior is poorly characterized. The authors assessed platelet-bubble and platelet-platelet binding in platelet-rich plasma in the presence and absence of bubbles and three surface-active compounds. Platelet-rich plasma was prepared from blood drawn from 16 volunteers. Experimental groups were surfactant alone, sparging (microbubble embolization) alone, sparging with surfactant, and neither sparging nor surfactant. The surfactants were Pluronic F-127 (Molecular Probes, Eugene, OR), Perftoran (OJSC SPC Perftoran, Moscow, Russia), and Dow Corning Antifoam 1510US (Dow Corning, Midland, MI). Videomicroscopy images of specimens drawn through rectangular glass microcapillaries on an inverted microscope and Coulter counter measurements were used to assess platelet-bubble and platelet-platelet binding, respectively, in calcium-free and recalcified samples. Histamine-induced and adenosine diphosphate-induced platelet-platelet binding were measured in unsparged samples. Differences between groups were considered significant for P < 0.05 using analysis of variance and the Bonferroni correction. Sixty to 100 platelets adhered to bubbles in sparged, surfactant-free samples. With sparging and surfactant, few platelets adhered to bubbles. Numbers of platelet singlets and multimers not adherent to bubbles were different (P < 0.05) compared both with unsparged samples and sparged samples without surfactant. No significant platelet-platelet binding occurred in uncalcified, sparged samples, although 20-30 platelets adhered to bubbles. Without sparging, histamine and adenosine diphosphate provoked platelet-platelet binding with and without surfactants present. Sparging causes platelets to bind to air bubbles and each other. Surfactants added before sparging attenuate platelet-bubble and platelet-platelet binding. Surfactants may have a clinical role in attenuating gas embolism-induced platelet-bubble and platelet-platelet binding.

  19. Frequency-dependent ultrasound-induced transformation in E. coli.

    PubMed

    Deeks, Jeremy; Windmill, James; Agbeze-Onuma, Maduka; Kalin, Robert M; Argondizza, Peter; Knapp, Charles W

    2014-12-01

    Ultrasound-enhanced gene transfer (UEGT) is continuing to gain interest across many disciplines; however, very few studies investigate UEGT efficiency across a range of frequencies. Using a variable frequency generator, UEGT was tested in E. coli at six ultrasonic frequencies. Results indicate frequency can significantly influence UEGT efficiency positively and negatively. A frequency of 61 kHz improved UEGT efficiency by ~70 % higher, but 99 kHz impeded UEGT to an extent worse than no ultrasound exposure. The other four frequencies (26, 133, 174, and 190 kHz) enhanced transformation compared to no ultrasound, but efficiencies did not vary. The influence of frequency on UEGT efficiency was observed across a range of operating frequencies. It is plausible that frequency-dependent dynamics of mechanical and chemical energies released during cavitational-bubble collapse (CBC) are responsible for observed UEGT efficiencies.

  20. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    NASA Astrophysics Data System (ADS)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  1. Ultrasound, liposomes, and drug delivery: principles for using ultrasound to control the release of drugs from liposomes.

    PubMed

    Schroeder, Avi; Kost, Joseph; Barenholz, Yechezkel

    2009-11-01

    Ultrasound is used in many medical applications, such as imaging, blood flow analysis, dentistry, liposuction, tumor and fibroid ablation, and kidney stone disruption. In the past, low frequency ultrasound (LFUS) was the main method to downsize multilamellar (micron range) vesicles into small (nano scale) unilamellar vesicles. Recently, the ability of ultrasound to induce localized and controlled drug release from liposomes, utilizing thermal and/or mechanical effects, has been shown. This review, deals with the interaction of ultrasound with liposomes, focusing mainly on the mechanical mechanism of drug release from liposomes using LFUS. The effects of liposome lipid composition and physicochemical properties, on one hand, and of LFUS parameters, on the other, on liposomal drug release, are addressed. Acoustic cavitation, in which gas bubbles oscillate and collapse in the medium, thereby introducing intense mechanical strains, increases release substantially. We suggest that the mechanism of release may involve formation and collapse of small gas nuclei in the hydrophobic region of the lipid bilayer during exposure to LFUS, thereby inducing the formation of transient pores through which drugs are released. Introducing PEG-lipopolymers to the liposome bilayer enhances responsivity to LFUS, most likely due to absorption of ultrasonic energy by the highly hydrated PEG headgroups. The presence of amphiphiles, such as phospholipids with unsaturated acyl chains, which destabilize the lipid bilayer, also increases liposome susceptibility to LFUS. Application of these principles to design highly LFUS-responsive liposomes is discussed.

  2. Hexagonal bubble formation and nucleation in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Wang, Lifen; Liu, Lei; Mohsin, Ali; Wen, Jianguo; Gu, Gong; Miller, Dean

    The bubble is formed frequently at a solid-liquid interface when the surface of the solid or liquid has a tendency of accumulating molecular species due to unbalanced surface hydrophobicity attraction. Morphology and shape of the bubble are thought to be associated with the Laplace pressure that spherical-cap-shaped object are commonly observed. Dynamic surface nanobubble formation and nucleation in the controlled system have been not fully investigated due to the direct visualization challenge in liquid systems. Here, utilizing in situ TEM, dynamic formation and collapse of spherical-shaped nanobubbles were observed at the water-graphene interface, while hexagonal nanobubbles grew and merged with each other at water-crystalline sodium chloride interface. Our finding demonstrates that different hydrophobic-hydrophilic interaction systems give rise to the varied morphology of surface nanobubble, leading to the fundamental understanding of the interface-interaction-governed law on the formation of surface nanobubble.

  3. Estimation of sonodynamic treatment region with sonochemiluminescence in gel phantom

    NASA Astrophysics Data System (ADS)

    Mashiko, Daisaku; Nishitaka, Shinya; Iwasaki, Ryosuke; Lafond, Maxime; Yoshizawa, Shin; Umemura, Shin-ichiro

    2018-07-01

    Sonodynamic treatment is a non-invasive cancer treatment using ultrasound through the generation of reactive oxygen species (ROS) by acoustic cavitation. High-intensity focused ultrasound (HIFU) can generate cavitation bubbles using highly negative pressure in its focal region. When cavitation bubbles are forced to collapse, they generate ROS, which can attack cancer cells, typically assisted by a sonodynamically active antitumor agent. For sonodynamic treatment, both localization and efficiency of generating ROS are important. To improve them, the region of ROS generation was quantitatively estimated in this study using a polyacrylamide gel containing luminol as the target exposed to “Trigger HIFU”, consisting of a highly intense short “trigger pulse” to generate a cavitation cloud followed by a moderate-intensity long “sustaining burst” to keep the cavitation bubbles oscillating. It was found to be important for efficient ROS generation that the focal region of the trigger pulse should be immediately exposed to the sustaining burst.

  4. Comparison between maximum radial expansion of ultrasound contrast agents and experimental postexcitation signal results.

    PubMed

    King, Daniel A; O'Brien, William D

    2011-01-01

    Experimental postexcitation signal data of collapsing Definity microbubbles are compared with the Marmottant theoretical model for large amplitude oscillations of ultrasound contrast agents (UCAs). After taking into account the insonifying pulse characteristics and size distribution of the population of UCAs, a good comparison between simulated results and previously measured experimental data is obtained by determining a threshold maximum radial expansion (Rmax) to indicate the onset of postexcitation. This threshold Rmax is found to range from 3.4 to 8.0 times the initial bubble radius, R0, depending on insonification frequency. These values are well above the typical free bubble inertial cavitation threshold commonly chosen at 2R0. The close agreement between the experiment and models suggests that lipid-shelled UCAs behave as unshelled bubbles during most of a large amplitude cavitation cycle, as proposed in the Marmottant equation.

  5. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    PubMed

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwakami, Wakana; Nagakura, Hiroki; Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshingmore » motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.« less

  7. From Seas to Surgeries, from Babbling Brooks to Baby Scans:

    NASA Astrophysics Data System (ADS)

    Leighton, T. G.

    Gas bubbles are the most potent naturally-occurring entities that influence the acoustic environment in liquids. Upon entrainment under breaking waves, waterfalls, or rainfall over water, each bubble undergoes small amplitude decaying pulsations with a natural frequency that varies approximately inversely with the bubble radius, giving rise to the "plink" of a dripping tap or the roar of a cataract. When they occur in their millions per cubic metre in the top few metres of the ocean, bubbles can dominate the underwater sound field. Similarly, when driven by an incident sound field, bubbles exhibit a strong pulsation resonance. Acoustic scatter by bubbles can confound sonar in the shallow waters which typify many modern maritime military operations. If they are driven by sound fields of sufficient amplitude, the bubble pulsations can become highly nonlinear. These nonlinearities might be exploited to enhance sonar, or to monitor the bubble population. Such oceanic monitoring is important, for example, because of the significant contribution made by bubbles to the greenhouse gas budget. In industry, bubble monitoring is required for sparging, electrochemical processes, the production of paints, pharamaceuticals and foodstuffs. At yet higher amplitudes of pulsation, gas compression within the collapsing bubble can generate temperatures of several thousand Kelvin whilst, in the liquid, shock waves and shear can produce erosion and bioeffects. Not only can these effects be exploited in industrial cleaning and manufacturing, and research into novel chemical processes, but we need to understand (and if possible control) their occurrence when biomedical ultrasound is passed through the body. This is because the potential of such bubble-related physical and chemical processes to damage tissue will be desireable in some circumstances (e.g. ultrasonic kidney stone therapy), and undesireable in others (e.g. foetal scanning). This paper describes this range of behaviour. Further information on these topics, including sound and video files, can be found at .

  8. Who's Who in Internet Politics: A Taxonomy of Information Technology Policy

    ERIC Educational Resources Information Center

    Atkinson, Robert D.

    2010-01-01

    A decade ago, before the tech boom collapsed and the digital economy bubble burst, it seemed to some that issues surrounding information technology (IT) might be central to the politics of the early 21st century. But after September 11, 2001, with so much else on everyone's minds, "digital politics" seemed a boring sideshow. Technocrats,…

  9. Acoustic cavitation in 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide based ionic liquid.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Haddad, Boumediene

    2018-03-01

    In this work, a comparison between the temperatures/pressures within acoustic cavitation bubble in an imidazolium-based room-temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(triflluoromethyl-sulfonyl)imide ([BMIM][NTf 2 ]), and in water has been made for a wide range of cavitation parameters including frequency (140-1000kHz), acoustic intensity (0.5-1Wcm -2 ), liquid temperature (20-50°C) and external static pressure (0.7-1.5atm). The used cavitation model takes into account the liquid compressibility as well as the surface tension and the viscosity of the medium. It was found that the bubble temperatures and pressures were always much higher in the ionic liquid compared to those predicted in water. The valuable effect of [BMIM][NTf 2 ] on the bubble temperature was more pronounced at higher acoustic intensity and liquid temperature and lower frequency and external static pressure. However, confrontation between the predicted and the experimental estimated temperatures in ionic liquids showed an opposite trend as the temperatures measured in some pure ionic liquids are of the same order as those observed in water. The injection of liquid droplets into cavitation bubbles, the pyrolysis of ionic liquids at the bubble-solution interface as well as the lower number of collapsing bubbles in the ionic liquid may be the responsible for the lower measured bubble temperatures in ionic liquids, as compared with water. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cavitation in medicine

    PubMed Central

    Brennen, Christopher Earls

    2015-01-01

    We generally think of bubbles as benign and harmless and yet they can manifest the most remarkable range of physical effects. Some of those effects are the stuff of our everyday experience as in the tinkling of a brook or the sounds of breaking waves at the beach. But even these mundane effects are examples of the ability of bubbles to gather, focus and radiate energy (acoustic energy in the above examples). In other contexts that focusing of energy can lead to serious technological problems as when cavitation bubbles eat great holes through ships' propeller blades or cause a threat to the integrity of the spillways at the Hoover Dam. In liquid-propelled rocket engines, bubbles pose a danger to the stability of the propulsion system, and in artificial heart valves they can cause serious damage to the red blood cells. In perhaps the most extraordinary example of energy focusing, collapsing cavitation bubbles can emit not only sound, but also light with black body radiation temperatures equal to that of the sun (Brennen 1995 Cavitation and bubble dynamics). But, harnessed carefully, this almost unique ability to focus energy can also be put to remarkably constructive use. Cavitation bubbles are now used in a remarkable range of surgical and medical procedures, for example to emulsify tissue (most commonly in cataract surgery or in lithotripsy procedures for the reduction of kidney and gall stones) or to manipulate the DNA in individual cells. By creating cavitation bubbles non-invasively thereby depositing and focusing energy non-intrusively, one can generate minute incisions or target cancer cells. This paper will begin by briefly reviewing the history of cavitation phenomena and will end with a vision of the new horizons for the amazing cavitation bubble. PMID:26442145

  11. Cavitation in medicine.

    PubMed

    Brennen, Christopher Earls

    2015-10-06

    We generally think of bubbles as benign and harmless and yet they can manifest the most remarkable range of physical effects. Some of those effects are the stuff of our everyday experience as in the tinkling of a brook or the sounds of breaking waves at the beach. But even these mundane effects are examples of the ability of bubbles to gather, focus and radiate energy (acoustic energy in the above examples). In other contexts that focusing of energy can lead to serious technological problems as when cavitation bubbles eat great holes through ships' propeller blades or cause a threat to the integrity of the spillways at the Hoover Dam. In liquid-propelled rocket engines, bubbles pose a danger to the stability of the propulsion system, and in artificial heart valves they can cause serious damage to the red blood cells. In perhaps the most extraordinary example of energy focusing, collapsing cavitation bubbles can emit not only sound, but also light with black body radiation temperatures equal to that of the sun (Brennen 1995 Cavitation and bubble dynamics). But, harnessed carefully, this almost unique ability to focus energy can also be put to remarkably constructive use. Cavitation bubbles are now used in a remarkable range of surgical and medical procedures, for example to emulsify tissue (most commonly in cataract surgery or in lithotripsy procedures for the reduction of kidney and gall stones) or to manipulate the DNA in individual cells. By creating cavitation bubbles non-invasively thereby depositing and focusing energy non-intrusively, one can generate minute incisions or target cancer cells. This paper will begin by briefly reviewing the history of cavitation phenomena and will end with a vision of the new horizons for the amazing cavitation bubble.

  12. Experimental investigation on dynamic characteristics and strengthening mechanism of laser-induced cavitation bubbles.

    PubMed

    Ren, X D; He, H; Tong, Y Q; Ren, Y P; Yuan, S Q; Liu, R; Zuo, C Y; Wu, K; Sui, S; Wang, D S

    2016-09-01

    The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5-2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Modeling quiescent phase transport of air bubbles induced by breaking waves

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.

  14. Comparison of cavitation bubbles evolution in viscous media

    NASA Astrophysics Data System (ADS)

    Jasikova, Darina; Schovanec, Petr; Kotek, Michal; Kopecky, Vaclav

    2018-06-01

    There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB) method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.

  15. Cancer Immunotherapy Utilized Bubble Liposomes and Ultrasound as Antigen Delivery System

    NASA Astrophysics Data System (ADS)

    Oda, Yusuke; Otake, Shota; Suzuki, Ryo; Otake, Shota; Nishiie, Norihito; Hirata, Keiichi; Taira, Yuichiro; Utoguchi, Naoki; Maruyama, Kazuo

    2010-03-01

    In dendritic cells (DCs)-based cancer immunotherapy, it is important to present the epitope peptide derived from tumor associated antigens (TAAs) on MHC class I in order to induce tumor specific cytotoxic T lymphocytes (CTLs). However, MHC class I molecules generally present the epitope peptides derived from endogenous antigens for DCs but not exogenous ones such as TAAs. Recently, we developed the novel liposomal bubbles (Bubble liposomes) encapsulating perfluoropropane nanobubbles. In this study, we attempted to establish the novel antigen delivery system to induce MHC class I presentation using the combination of ultrasound and Bubble liposomes. Using ovalbumin (OVA) as model antigen, the combination of Bubble liposomes and ultrasound exposure for the DC could induce MHC class I presentation. In addition, the viability of DCs was more than 80%. These results suggest that Bubble liposomes might be a novel ultrasound enhanced antigen delivery tool in DC-based cancer immunotherapy.

  16. Studies on the Tempo of Bubble Formation in Recently Cavitated Vessels: A Model to Predict the Pressure of Air Bubbles1

    PubMed Central

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.

    2015-01-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  17. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. © 2015 American Society of Plant Biologists. All Rights Reserved.

  18. Surface activity of lipid extract surfactant in relation to film area compression and collapse.

    PubMed

    Schürch, S; Schürch, D; Curstedt, T; Robertson, B

    1994-08-01

    The physical properties of modified porcine surfactant (Curosurf), isolated from minced lungs by extraction with chloroform-methanol and further purified by liquid-gel chromatography, were investigated with the captive bubble technique. Bubble size, and thus the surface tension of an insoluble film at the bubble surface, is altered by changing the pressure within the closed bubble chamber. The film surface tension and area are determined from the shape (height and diameter) of the bubble. Adsorption of fresh Curosurf is characterized by stepwise decreases in surface tension, which can easily be observed by sudden quick movements of the bubble apex. These "adsorption clicks" imply a cooperative movement of large collective units of molecules, approximately 10(14) (corresponding to approximately 120 ng of phospholipid) or approximately 10(18) molecules/m2, into the interface during adsorption. Films formed in this manner are already highly enriched in dipalmitoyl phosphatidylcholine, as seen by the extremely low compressibility, close to that of dipalmitoyl phosphatidylcholine. Near-zero minimum tensions are obtained, even at phospholipid concentrations as low as 50 micrograms/ml. During dynamic cycling (20-50 cycles/min), low minimum surface tensions, good film stability, low compressibility, and maximum surface tensions between 30 and 40 mN/m are possible only if the films are not overcompressed near zero surface tension; i.e., the overall film area compression should not substantially exceed 30%.

  19. Light generated bubble for microparticle propulsion.

    PubMed

    Frenkel, Ido; Niv, Avi

    2017-06-06

    Light activated motion of micron-sized particles with effective forces in the range of micro-Newtons is hereby proposed and demonstrated. Our investigation shows that this exceptional amount of force results from accumulation of light-generated heat by a micron-sized particle that translates into motion due to a phase transition in the nearby water. High-speed imagery indicates the role of bubble expansion and later collapse in this event. Comparing observations with known models reveals a dynamic behavior controlled by polytropic trapped vapor and the inertia of the surrounding liquid. The potential of the proposed approach is demonstrated by realization of disordered optical media with binary light-activated switching from opacity to high transparency.

  20. Intense cavitation at extreme static pressure.

    PubMed

    Pishchalnikov, Yuri A; Gutierrez, Joel; Dunbar, Wylene W; Philpott, Richard W

    2016-02-01

    Cavitation is usually performed at hydrostatic pressures at or near 0.1 MPa. Higher static pressure produces more intense cavitation, but requires an apparatus that can build high amplitude acoustic waves with rarefactions exceeding the cavitation threshold. The absence of such an apparatus has prevented the achievement of intense acoustic cavitation, hindering research and the development of new applications. Here we describe a new high-pressure spherical resonator system, as well as experimental and modeling results in water and liquid metal (gallium), for cavitation at hydrostatic pressures between 10 and 150 MPa. Our computational data, using HYADES plasma hydrodynamics code, show the formation of dense plasma that, under these conditions, reaches peak pressures of about three to four orders of magnitude greater than the hydrostatic pressure in the bulk liquid and temperatures in the range of 100,000 K. Passive cavitation detection (PCD) data validate both a linear increase in shock wave amplitude and the production of highly intense concentrations of mechanical energy in the collapsing bubbles. High-speed camera observations show the formation of bubble clusters from single bubbles. The increased shock wave amplitude produced by bubble clusters, measured using PCD and fiber optic probe hydrophone, was consistent with current understanding that bubble clusters enable amplification of energy produced. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. What are the limits of energy focusing in sonoluminescence?

    NASA Astrophysics Data System (ADS)

    Putterman, Seth; Camara, C.; Kappus, B.; Su, C. K.; Kirilov, E.

    2003-04-01

    Sonoluminescence [SL] is amazing for the extraordinary degree by which ultrasonic energy can be focused by a cavitating bubble. Local energy dissipation exceeds Kirkhoff's law by 1E15 and the acoustic energy density concentrates by 12 orders of magnitude to create picosecond flashes of broadband ultraviolet light. At the minimum bubble radius, the acceleration exceeds 1E11 g and a megabar level shock wave is emitted into the surrounding fluid. For single bubbles driven at 30 KHz, SL is nature's smallest blackbody. This implies that the bubble's interior is such a dense plasma that the photon-matter mean free path is shorter than the wavelength of light, and suggests that SL originates in an unusual state of matter. Excitation of a vertical column of fluid [~10 Hz] so as to create a water hammer leads to the upscaling of SL and generation of flashes of light with 3E8 photons and peak powers approaching 1 W. At 1 MHz, the spectrum resembles bremsstrahlung from a transparent plasma with a temperature ~1 MK. At 10 MHz the collapsed size of the SL bubble approaches 10 nm, which raises the possibility that the SL parameter space may extend to the domain of quantum mechanics. [Research supported by DARPA and DOE.

  2. Optical diagnostics of laser-produced aluminium plasmas under water

    NASA Astrophysics Data System (ADS)

    Walsh, N.; Costello, J. T.; Kelly, T. J.

    2017-06-01

    We report on the findings of double-pulse studies performed on an aluminium target submerged in water using Nd:YAG laser pulses. Shadowgraphy measurements were performed to examine the dynamic behaviour of the cavitation bubble that eventually forms some considerable time post-plasma ignition. These measurements were used to inform subsequent investigations designed to probe the bubble environment. The results of time-resolved imaging from within the cavitation bubble following irradiation by a second laser pulse reveal the full dynamic evolution of a plasma formed in such an environment. Rapid displacement of the plasma plume in a direction normal to the target surface followed by a diffusive outwards expansion is observed and a qualitative model is proposed to explain the observed behaviour. Line profiles of several ionic and atomic species were observed within the irradiated cavitation bubble. Electron densities were determined using the Stark broadening of the Al II line at 466.3 nm and electron temperatures inferred using the ratio of the Al II (466.3 nm) and Al I (396.15 nm) lines. Evidence of self-reversal of neutral emission lines was observed at times corresponding to growth and collapse phases of the cavitation bubble suggesting high population density for ground state atoms during these times.

  3. Analytical and experimental study of the acoustics and the flow field characteristics of cavitating self-resonating water jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chahine, G.L.; Genoux, P.F.; Johnson, V.E. Jr.

    1984-09-01

    Waterjet nozzles (STRATOJETS) have been developed which achieve passive structuring of cavitating submerged jets into discrete ring vortices, and which possess cavitation incipient numbers six times higher than obtained with conventional cavitating jet nozzles. In this study we developed analytical and numerical techniques and conducted experimental work to gain an understanding of the basic phenomena involved. The achievements are: (1) a thorough analysis of the acoustic dynamics of the feed pipe to the nozzle; (2) a theory for bubble ring growth and collapse; (3) a numerical model for jet simulation; (4) an experimental observation and analysis of candidate second-generation low-sigmamore » STRATOJETS. From this study we can conclude that intensification of bubble ring collapse and design of highly resonant feed tubes can lead to improved drilling rates. The models here described are excellent tools to analyze the various parameters needed for STRATOJET optimizations. Further analysis is needed to introduce such important factors as viscosity, nozzle-jet interaction, and ring-target interaction, and to develop the jet simulation model to describe the important fine details of the flow field at the nozzle exit.« less

  4. Airway reopening: Steadily propagating bubbles in buckled elastic tubes

    NASA Astrophysics Data System (ADS)

    Heil, Matthias; Hazel, Andrew L.

    2001-11-01

    Many pulmonary diseases result in the collapse and occlusion of parts of the lung by viscous fluid. The subsequent airway reopening is generally assumed to occur via the propagation of an air finger into the collapsed, fluid-filled part of the airway. The problem has some similarity to the scenario of the `first breath' when air has to enter the fluid-filled lungs of a newborn baby for the first time. We have developed the first three-dimensional computational model of airway reopening, based on a finite-element solution of the free-surface Stokes equations, fully coupled to the equations of large-displacement shell theory. Following a brief discussion of the numerical method, we will present results that illustrate the 3D flow field by which the steadily propagating air finger reopens the non-axisymmetrically collapsed airway. Finally, we will contrast the system's behaviour to predictions from earlier two-dimensional models.

  5. Far-Field Noise Induced by Bubble near Free Surface

    NASA Astrophysics Data System (ADS)

    Ye, Xi; Li, Jiang-tao; Liu, Jian-hua; Chen, Hai-long

    2018-03-01

    The motion of a bubble near the free surface is solved by the boundary element method based on the linear wave equation, and the influence of fluid compressibility on bubble dynamics is analyzed. Based on the solution of the bubble motion, the far-field radiation noise induced by the bubble is calculated using Kirchhoff moving boundary integral equation, and the influence of free surface on far-field noise is researched. As the results, the oscillation amplitude of the bubble is weakened in compressible fluid compared with that in incompressible fluid, and the free surface amplifies the effect of fluid compressibility. When the distance between the bubble and an observer is much larger than that between the bubble and free surface, the sharp wave trough of the sound pressure at the observer occurs. With the increment of the distance between the bubble and free surface, the time of the wave trough appearing is delayed and the value of the wave trough increase. When the distance between the observer and the bubble is reduced, the sharp wave trough at the observer disappears.

  6. [Fatal complications by air embolism in legal interruption of pregnancy].

    PubMed

    Du Chesne, A

    1974-12-13

    Fatal air embolism as a complication of legal abortion in a 29-year-old woman is reported. After anesthesia had been induced and dilatation accomplished (Hegar 14), the suction tube was introduced into the uterus. The surgeon felt unusually heavy pressure when the pump was started, and heavy bleeding was observed. Aspiration was discontinued, and the abortion was completed by curettage. Irregular breathing and cardiovascular collapse occurred 4 minutes after the start of the operation, and resuscitation attempts were unsuccessful. Autopsy revealed pulmonary edema, pulmonary emphysema, and air bubbles in many areas of the vascular system, which confirmed the clinical diagnosis of air embolism. The hose of the suction cannula was found to have been attached to the exhaust outlet of the suction pump. It is suggested that the exhaust should be clearly differentiated from the intake valve in order to avoid similar accidents in the future.

  7. Foam Flow Through a 2D Porous Medium: Evolution of the Bubble Size Distribution

    NASA Astrophysics Data System (ADS)

    Meheust, Y.; Géraud, B.; Cantat, I.; Dollet, B.

    2017-12-01

    Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for remediation of the vadose zone. Bulk foams are shear-thinning fluids; but for foams with bubbles of order at least the typical pore size of the porous medium, the rheology cannot be described at the continuum scale, as viscous dissipation occurs mostly at the contact between soap films and solid walls. We have investigated the flow of an initially monodisperse foam through a transparent 2D porous medium[1]. The resulting complex flow phenomenology has been characterized quantitatively from optical measurements of the bubble dynamics. In addition to preferential flow path and local flow intermittency, we observe an irreversible evolution of the probability density function (PDF) for bubbles size as bubbles travel along the porous medium. This evolution is due to bubble fragmentation by lamella division, which is by far the dominant mechanism of film creation/destruction. We measure and characterize this evolution of the PDF as a function of the experimental parameters, and model it numerically based on a fragmentation equation, with excellent agreement. The model uses two ingredients obtained from the experimental data, namely the statistics of the bubble fragmentation rate and of the fragment size distributions[2]. It predicts a nearly-universal scaling of all PDFs as a function of the bubble area normalized by the initial mean bubble area. All the PDFs measured in various experiments, with different mean flow velocities, initial bubble sizes and foam qualities, collapse on a master distribution which is only dependent on the geometry of the medium.References:[1] B. Géraud, S. A. Jones, I. Cantat, B. Dollet & Y. Méheust (2016), WRR 52(2), 773-790. [2] B. Géraud, Y. Méheust, I. Cantat & B. Dollet (2017), Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process, PRL 118, 098003.

  8. Close entrainment of massive molecular gas flows by radio bubbles in the central galaxy of Abell 1795

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Combes, F.; Edge, A. C.; Hogan, M. T.; McDonald, M.; Salomé, P.; Tremblay, G.; Vantyghem, A. N.

    2017-12-01

    We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5-7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central active galactic nucleus have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxy's systemic velocity at the nucleus to -370 km s^{-1}, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, shows that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic XCO factor, the total molecular gas mass is 3.2 ± 0.2 × 109 M⊙. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of 2. Stimulated feedback, where the radio bubbles lift low-entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.

  9. Nonlinear interaction between underwater explosion bubble and structure based on fully coupled model

    NASA Astrophysics Data System (ADS)

    Zhang, A. M.; Wu, W. B.; Liu, Y. L.; Wang, Q. X.

    2017-08-01

    The interaction between an underwater explosion bubble and an elastic-plastic structure is a complex transient process, accompanying violent bubble collapsing, jet impact, penetration through the bubble, and large structural deformation. In the present study, the bubble dynamics are modeled using the boundary element method and the nonlinear transient structural response is modeled using the explicit finite element method. A new fully coupled 3D model is established through coupling the equations for the state variables of the fluid and structure and solving them as a set of coupled linear algebra equations. Based on the acceleration potential theory, the mutual dependence between the hydrodynamic load and the structural motion is decoupled. The pressure distribution in the flow field is calculated with the Bernoulli equation, where the partial derivative of the velocity potential in time is calculated using the boundary integral method to avoid numerical instabilities. To validate the present fully coupled model, the experiments of small-scale underwater explosion near a stiffened plate are carried out. High-speed imaging is used to capture the bubble behaviors and strain gauges are used to measure the strain response. The numerical results correspond well with the experimental data, in terms of bubble shapes and structural strain response. By both the loosely coupled model and the fully coupled model, the interaction between a bubble and a hollow spherical shell is studied. The bubble patterns vary with different parameters. When the fully coupled model and the loosely coupled model are advanced with the same time step, the error caused by the loosely coupled model becomes larger with the coupling effect becoming stronger. The fully coupled model is more stable than the loosely coupled model. Besides, the influences of the internal fluid on the dynamic response of the spherical shell are studied. At last, the case that the bubble interacts with an air-backed stiffened plate is simulated. The associated interesting physical phenomenon is obtained and expounded.

  10. Design and fabrication of miniaturized PEM fuel cell combined microreactor with self-regulated hydrogen mechanism

    NASA Astrophysics Data System (ADS)

    Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.

    2015-12-01

    In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.

  11. Simultaneous observation of nascent plasma and bubble induced by laser ablation in water with various pulse durations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, Ayaka, E-mail: atamura@hiroshima-u.ac.jp; Matsumoto, Ayumu; Nishi, Naoya

    2015-05-07

    We investigate the effects of pulse duration on the dynamics of the nascent plasma and bubble induced by laser ablation in water. To examine the relationship between the nascent plasma and the bubble without disturbed by shot-to-shot fluctuation, we observe the images of the plasma and the bubble simultaneously by using two intensified charge coupled device detectors. We successfully observe the images of the plasma and bubble during the pulsed-irradiation, when the bubble size is as small as 20 μm. The light-emitting region of the plasma during the laser irradiation seems to exceed the bubble boundary in the case of themore » short-pulse (30-ns pulse) irradiation, while the size of the plasma is significantly smaller than that of the bubble in the case of the long-pulse (100-ns pulse) irradiation. The results suggest that the extent of the plasma quenching in the initial stage significantly depends on the pulse duration. Also, we investigate how the plasma-bubble relationship in the very early stage affects the shape of the atomic spectral lines observed at the later delay time of 600 ns. The present work gives important information to obtain high quality spectra in the application of underwater laser-induced breakdown spectroscopy, as well as to clarify the mechanism of liquid-phase laser ablation.« less

  12. Black holes and the multiverse

    NASA Astrophysics Data System (ADS)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun

    2016-02-01

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.

  13. Black holes and the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu

    Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleatingmore » during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.« less

  14. Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization

    NASA Astrophysics Data System (ADS)

    Feng, Yi; Qin, Dui; Zhang, Jun; Zhang, Lei; Bouakaz, Ayache; Wan, Mingxi

    2018-06-01

    Gas embolotherapy (GE) consists in the occlusion of tumor blood vessels using gas emboli induced by acoustic droplet vaporization (ADV), to create tumor starvation and localized drug delivery. Therefore, the occlusion and rupture of capillary bifurcation due to ADV was investigated in an ex vivo rat mesentery model using a confocal acousto-optical high-speed microscope system. Following ADV bubble formation, coalescence, and translational movement, the growing bubbles lodged in and then occluded two different capillary bifurcations. Capillary rupture was induced at the bubble lodging area, immediately followed by gas extravasation and bubble dislodging. Before and after bubble lodgment/occlusion, a local microvessel invagination was observed due to the interactions between ADV bubbles and the microvessel itself, indicating a contribution to the capillary rupture. Understanding the transient dynamics of ADV bubble, the bubble-microvessel interaction and the consequent mechanical bio-effects in GE is of the paramount importance for developing and applying this approach in clinical practice.

  15. Real-time observation of the initiation of RNA polymerase II transcription.

    PubMed

    Fazal, Furqan M; Meng, Cong A; Murakami, Kenji; Kornberg, Roger D; Block, Steven M

    2015-09-10

    Biochemical and structural studies have shown that the initiation of RNA polymerase II transcription proceeds in the following stages: assembly of the polymerase with general transcription factors and promoter DNA in a 'closed' preinitiation complex (PIC); unwinding of about 15 base pairs of the promoter DNA to form an 'open' complex; scanning downstream to a transcription start site; synthesis of a short transcript, thought to be about 10 nucleotides long; and promoter escape. Here we have assembled a 32-protein, 1.5-megadalton PIC derived from Saccharomyces cerevisiae, and observe subsequent initiation processes in real time with optical tweezers. Contrary to expectation, scanning driven by the transcription factor IIH involved the rapid opening of an extended transcription bubble, averaging 85 base pairs, accompanied by the synthesis of a transcript up to the entire length of the extended bubble, followed by promoter escape. PICs that failed to achieve promoter escape nevertheless formed open complexes and extended bubbles, which collapsed back to closed or open complexes, resulting in repeated futile scanning.

  16. Asymmetric bubble collapse and jetting in generalized Newtonian fluids

    NASA Astrophysics Data System (ADS)

    Shukla, Ratnesh K.; Freund, Jonathan B.

    2017-11-01

    The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.

  17. One-dimensional model of inertial pumping

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  18. One-dimensional model of inertial pumping.

    PubMed

    Kornilovitch, Pavel E; Govyadinov, Alexander N; Markel, David P; Torniainen, Erik D

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  19. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field.

    PubMed

    Arora, M; Junge, L; Ohl, C D

    2005-06-01

    The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30 MPa and 15 MPa, respectively, and -10 MPa negative amplitude. The time interval between the launch of the shock waves was varied from 0 and 0.1 s, covering the regimens of pulse-modification (regimen A, delay 0 to 4 micros), shock wave-cavitation cluster interaction (B, 4 micros to 64 micros) and shock wave-gas bubble interaction (C, 256 micros to 0.1 s). The time-integrated cavitation activity was most strongly influenced in regimen A and, in regimen B, the spatial distribution of bubbles was altered, whereas enhancement of cavitation activity was observed in regimen C. Quantitative measurements of the spatial- and time-integrated void fractions were obtained with a photographic and light-scattering technique. The preconditions for a reproducible experiment are explained, with the existence of two distinct types of cavitation nuclei, small particles suspended in the liquid and residuals of bubbles from prior cavitation clusters.

  20. TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jian Gan; Brandon Miller; Dennis Keiser

    2014-04-01

    As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less

  1. Investigation of bubbles in arterial heat pipes

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.

    1972-01-01

    The behavior of gas occlusions in arterial heat pipes has been studied experimentally and theoretically. Specifically, the gas-liquid system properties, solubility and diffusivity, have been measured from -50 to 100 C for helium and argon in ammonia, Freon-21 (CHC12F), and methanol. Properties values obtained were then used to experimentally test models for gas venting from a heat pipe artery under isothermal conditions (i.e., no-heat flow), although the models, as developed, are also applicable to heat pipes operated at power, with some minor modifications. Preliminary calculations indicated arterial bubbles in a stagnant pipe require from minutes to days to collapse and vent. It has been found experimentally that a gas bubble entrapped within an artery structure has a very long lifetime in many credible situations. This lifetime has an approximately inverse exponential dependence on temperature, and is generally considerably longer for helium than for argon. The models postulated for venting under static conditions were in general quantitative agreement with experimental data. Factors of primary importance in governing bubble stability are artery diameter, artery wall thickness, noncondensible gas partial pressure, and the property group (the Ostwald solubility coefficient multiplied by the gas/liquid diffusivity).

  2. Failure Mechanisms of Hollow Fiber Supported Ionic Liquid Membranes

    PubMed Central

    Zeh, Matthew; Wickramanayake, Shan; Hopkinson, David

    2016-01-01

    Hollow fiber supported ionic liquid membranes (SILMs) were tested using the bubble point method to investigate potential failure modes, including the maximum transmembrane pressure before loss of the ionic liquid from the support. Porous hollow fiber supports were fabricated with different pore morphologies using Matrimid® and Torlon® as the polymeric material and 1-hexyl-3-methylimidalzolium bis(trifluoromethylsulfonyl)imide ([C6mim][Tf2N]) as the ionic liquid (IL) component. Hollow fiber SILMs were tested for their maximum pressure before failure, with pressure applied either from the bore side or shell side. It was found that the membranes exhibited one or more of three different modes of failure when pressurized: liquid loss (occurring at the bubble point), rupture, and collapse. PMID:27023620

  3. Melt layer behavior of metal targets irradiatead by powerful plasma streams

    NASA Astrophysics Data System (ADS)

    Bandura, A. N.; Byrka, O. V.; Chebotarev, V. V.; Garkusha, I. E.; Makhlaj, V. A.; Solyakov, D. G.; Tereshin, V. I.; Wuerz, H.

    2002-12-01

    In this paper melt layer erosion of metal targets under pulsed high-heat loads is studied. Experiments with steel, copper, aluminum and titanium samples were carried out in two plasma accelerator devices with different time durations of the heat load. The surfaces of the resolidified melt layers show a considerable roughness with microcraters and ridge like relief on the surface. For each material the mass loss was determined. Melt layer erosion by melt motion was clearly identified. However it is masked by boiling, bubble expansion and bubble collapse and by formation of a Kelvin-Helmholtz instability. The experimental results can be used for validation of numerical codes which model melt layer erosion of metallic armour materials in off-normal events, in tokamaks.

  4. Triggered massive star formation associated with the bubble Hii region Sh2-39 (N5)

    NASA Astrophysics Data System (ADS)

    Duronea, N. U.; Cappa, C. E.; Bronfman, L.; Borissova, J.; Gromadzki, M.; Kuhn, M. A.

    2017-09-01

    Aims: We perform a multiwavelength analysis of the bubble Hii region Sh2-39 (N5) and its environs with the aim of studying the physical properties of Galactic IR bubbles and exploring their impact in triggering massive star formation. Methods: To analyze the molecular gas, we used CO(3-2) and HCO+(4-3) line data obtained with the on-the-fly technique from the ASTE telescope. To study the distribution and physical characteristics of the dust, we made use of archival data from ATLASGAL, Herschel, and MSX, while the ionized gas was studied making use of an NVSS image. We used public WISE, Spitzer, and MSX point source catalogs to search for infrared candidate young stellar objects (YSOs) in the region. To investigate the stellar cluster [BDS2003]6 we used IR spectroscopic data obtained with the ARCoIRIS spectrograph, mounted on Blanco 4 m Telescope at CTIO, and new available IR Ks band observations from the VVVeXtended ESO Public Survey (VVVX). Results: The new ASTE observations allowed the molecular gas component in the velocity range from 30 km s-1 to 46 km s-1, associated with Sh2-39, to be studied in detail. The morphology of the molecular gas suggests that the ionized gas is expanding against its parental cloud. We identified four molecular clumps, which were likely formed by the expansion of the ionization front, and determined some of their physical and dynamical properties. Clumps with HCO+ and 870 μm counterparts show evidence of gravitational collapse. We identified several candidate YSOs across the molecular component. Their spatial distribution and the fragmentation time derived for the collected layers of the molecular gas suggest that massive star formation might have been triggered by the expansion of the nebula via the collect and collapse mechanism. The spectroscopical distance obtained for the stellar cluster [BDS2003]6, placed over one of the collapsing clumps in the border of the Hii region, reveals that this cluster is physically associated with the nebula and gives more support to the triggered massive star formation scenario. A radio continuum data analysis indicates that the nebula is older and expands at lower velocity than typical IR Galactic bubbles. The ASTE data cubes and ARCoIRIS spectrum are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/606/A8

  5. Controls on the methane released through ebullition affected by permafrost degradation

    Treesearch

    S.J. Klapstein; M.R. Turetsky; A.D. McGuire; J.W. Harden; C.I. Czimczik; X. Xu; J.P. Chanton; J.M. Waddington

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine...

  6. A new method to monitor water vapor cycles in active volcanoes

    NASA Astrophysics Data System (ADS)

    Girona, T.; Costa Rodriguez, F.; Taisne, B.

    2014-12-01

    Simultaneous monitoring of different gas species of volcanic plumes is crucial to understand the mechanisms involved in persistent degassing, and to anticipate volcanic unrest episodes and magma ascent towards the surface. Progress in gas remote-sensing techniques during the last decades has led to the development of ultraviolet absorption spectrometers and UV cameras, which enable to monitor SO2 emission cycles in real time, at very high-frequency (~ 1Hz), and from several kilometers away from the volcanic plume. However, monitoring of the more abundant gases, i.e., H2O and CO2, is limited to volcanoes where infrared spectrometers and infrared lamps can be installed at both sides of the crater rims. In this study, we present a new and simple methodology to register H2O emission cycles from long distances (several kilometers), which is based on the light scattered by the micrometric water droplets of condensed plumes. The method only requires a commercial digital camera and a laptop for image processing, since, as we demonstrate, there is a linear correlation between the digital brightness of the plume and its volcanogenic water content. We have validated the method experimentally by generating controlled condensed plumes with an ultrasonic humidifier, and applied it to the plume of Erebus volcano using a 30 minutes-long movie [1]. The wavelet transforms of the plume brightness and SO2 time series (measured with DOAS [1]) show two common periodic components in the bands ~100­-250 s and ~500-­650 s. However, there is a third periodic component in the band ~300-­450 s in the SO2 time series that is absent in the brightness time series. We propose that the common periodic components are induced by magmatic foams collapsing intermittently beneath shallow geometrical barriers composed by bubbles with high content of both H2O and SO2, whereas the third periodic component could be induced by foams collapsing beneath a deeper geometrical barrier composed by bubbles with high content of SO2 but low content of H2O. This is consistent with the fact that most of the water exsolves at very low pressures. Our new methodology should lead to new insights into magma degassing process and anticipation of volcanic eruptions, in particular when combined with other monitoring methods. [1] Boichu et al. (2010), J. Volcanol. Geotherm. Res. 195:325.

  7. Dendrites fragmentation induced by oscillating cavitation bubbles in ultrasound field.

    PubMed

    Wang, S; Kang, J; Zhang, X; Guo, Z

    2018-02-01

    The fragmentation of the dendrites of succinonitrile (SCN)-2-wt.% acetone organic transparent alloy caused by ultrasound-induced cavitation bubbles was studied by using ultra-high-speed digital camera with a rate of 40,000fps. Real-time imaging reveals that the vibrating cavitation bubbles can fragment not only secondary arms but also the primary ones under high ultrasound power. The secondary arms always broke at their roots as a result of stress concentration induced by oscillated cavitation bubble and then ripped off from their primary arms. Generally the fragment process takes tens of milliseconds from bending to breaking, while the break always occurs immediately in less than 25μs. Copyright © 2017. Published by Elsevier B.V.

  8. Influence of reactions heats on variation of radius, temperature, pressure and chemical species amounts within a single acoustic cavitation bubble.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-03-01

    The scientific interest toward the study of acoustic bubble is mainly explained by its practical benefit in providing a reactional media favorable to the rapid evolution of chemical mechanism. The evolution of this mechanism is related to the simultaneous and dependent variation of the volume, temperature and pressure within the bubble, retrieved by the resolution of a differential equations system, including among others the thermal balance. This last one is subject to different assumptions, some authors deem simply that the temperature varies adiabatically during the collapsing phase, without considering the reactions heat of the studied mechanism. This paper aims to evaluate the pertinence of neglecting reactions heats in the thermal balance, by analyzing their effect on the variation of radius, temperature, pressure and chemical species amounts. The results show that the introduction of reactions heats conducts to a decrease of the temperature, an increase of the pressure and a reduction of the bubble volume. As a consequence, this leads to a drop of the quantities of free radicals produced by the chemical mechanism evolving within the bubble. This paper also proved that the impact of the consideration of reactions heats is dependent of the frequency and the acoustic amplitude of the ultrasonic wave. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simulation of the effects of cavitation and anatomy in the shock path of model lithotripters

    PubMed Central

    Krimmel, Jeff; Colonius, Tim; Tanguay, Michel

    2011-01-01

    We report on recent efforts to develop predictive models for the pressure and other flow variables in the focal region of shock wave lithotripters. Baseline simulations of three representative lithotripters (electrohydraulic, electromagnetic, and piezoelectric) compare favorably with in vitro experiments (in a water bath). We proceed to model and investigate how shock focusing is altered by the presence of material interfaces associated with different types of tissue encountered along the shock path, and by the presence of cavitation bubbles that are excited by tensile pressures associated with the focused shock wave. We use human anatomical data, but simplify the description by assuming that the tissue behaves as a fluid, and by assuming cylindrical symmetry along the shock path. Scattering by material interfaces is significant, and regions of high pressure amplitudes (both compressive and tensile) are generated almost 4 cm postfocus. Bubble dynamics generate secondary shocks whose strength depends on the density of bubbles and the pulse repetition frequency (PRF). At sufficiently large densities, the bubbles also attenuate the shock. Together with experimental evidence, the simulations suggest that high PRF may be counter-productive for stone comminution. Finally, we discuss how the lithotripter simulations can be used as input to more detailed physical models that attempt to characterize the mechanisms by which collapsing cavitation models erode stones, and by which shock waves and bubbles may damage tissue. PMID:21063697

  10. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  11. Helium-induced hardening effect in polycrystalline tungsten

    NASA Astrophysics Data System (ADS)

    Kong, Fanhang; Qu, Miao; Yan, Sha; Zhang, Ailin; Peng, Shixiang; Xue, Jianming; Wang, Yugang

    2017-09-01

    In this paper, helium induced hardening effect of tungsten was investigated. 50 keV He2+ ions at fluences vary from 5 × 1015 cm-2 to 5 × 1017 cm-2 were implanted into polycrystalline tungsten at RT to create helium bubble-rich layers near the surface. The microstructure and mechanical properties of the irradiated specimens were studied by TEM and nano-indentor. Helium bubble rich layers are formed in near surface region, and the layers become thicker with the rise of fluences. Helium bubbles in the area of helium concentration peak are found to grow up, while the bubble density is almost unchanged. Obvious hardening effect is induced by helium implantation in tungsten. Micro hardness increases rapidly with the fluence firstly, and more slowly when the fluence is above 5 × 1016 cm-2. The hardening effect of tungsten can be attributed to helium bubbles, which is found to be in agreement with the Bacon-Orowan stress formula. The growing diameter is the major factor rather than helium bubbles density (voids distance) in the process of helium implantation at fluences below 5 × 1017 cm-2.

  12. The influence of medium elasticity on the prediction of histotripsy-induced bubble expansion and erythrocyte viability

    NASA Astrophysics Data System (ADS)

    Bader, Kenneth B.

    2018-05-01

    Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.

  13. Growth and dissolution of an encapsulated contrast microbubble: effects of encapsulation permeability

    PubMed Central

    Sarkar, Kausik; Katiyar, Amit; Jain, Pankaj

    2009-01-01

    Gas diffusion from an encapsulated microbubble is modeled using an explicit linear relation for gas permeation through the encapsulation. Both the cases of single gas (air) and multiple gases (perfluorocarbon inside the bubble and air dissolved in surrounding liquid) are considered. An analytical expression for the dissolution time for an encapsulated air bubble is obtained; it showed that for small permeability the dissolution time increases linearly with decreasing permeability. A perfluorocarbon-filled contrast microbubble such as Definity was predicted to experience a transient growth due to air infusion before it dissolves in conformity with previous experimental findings. The growth phase occurs only for bubbles with a critical value of initial partial mole fraction of perfluorocarbon relative to air. With empirically obtained property values, the dissolution time of a 2.5 micron diameter (same as that of Definity) lipid coated octafluoropropane bubble with surface tension 25 mN/m predicts a lifetime of 42 minutes in an air saturated medium. The properties such as shell permeability, surface tension, relative mole fraction of octafluoropropane are varied to investigate their effects on the time scales of bubble growth and dissolution including their asymptotic scalings where appropriate. The dissolution dynamics scales with permeability, in that when the time is nondimensioanlized with permeability, curves for different permeabilities collapse on a single curve. Investigation of bubbles filled with other gases (non-octafluoropropane perfluorocarbon and sulfur hexafluoride) indicates longer dissolution time due to lower solubility and lower diffusivity for larger gas molecules. For such micron size encapsulated bubbles, lifetime of hours is possible only at extremely low surface tension (<1mN/m) or at extreme oversaturation. PMID:19616160

  14. Motion of a Free-Settling Spherical Particle Driven by a Laser-Induced Bubble

    NASA Astrophysics Data System (ADS)

    Wu, Shengji; Zuo, Zhigang; Stone, Howard A.; Liu, Shuhong

    2017-08-01

    We document experimentally four different interactions of a laser-induced bubble and a free-settling particle, with different combinations of the geometric and physical parameters of the system. Our force balance model shows that four nondimensional factors involving the particle radius a , the maximum bubble radius Rmax , the initial separation distance l0 between the particle center and the bubble center, the fluid viscosity μf , and the particle and fluid densities ρp and ρf , respectively, in detail l0 /Rmax , a /Rmax , ρp /ρf , and μ*=μfTc /ρfRmax2 , where Tc=0.915 Rmax√{ρf /(p∞-pv ) } , influence the particle-bubble dynamics, and reasonably predict the maximum particle velocity and the limiting condition when the particle starts to "bounce off" the bubble during bubble growth. In particular, we also discover the high-speed ejection of the particle, and a cavity behind the particle, in cases when initially the particle is in very close proximity to the bubble. These observations offer new insights into the causal mechanism for the enhanced cavitation erosion in silt-laden water.

  15. Is the Conduct of War a Business?

    DTIC Science & Technology

    2010-01-01

    speculators succumb to the hysteria as asset prices increase.22 Periodic bouts of irrational exuberance (a term coined in 1996 by Alan Greenspan) are...heart of sound business management. Eco- nomic theory is based on the assumption that all actors are rational. Nevertheless, irration - ality plays a...collective irrational outcomes or so-called bubbles, as was the case in the U.S. housing collapse. In business activity, the relation- ship between a

  16. Feasibility of Standardized Rain Testing for Fuzes. Serial Number 1.0

    DTIC Science & Technology

    1981-06-01

    produced by ;he drops in a small volume with a laser beam. /, -- Il 8’ 15𔃻 -. - II11,, I - - Il i Io " illli A pr c i / con3 1de at o Is sh ll d o u d r...of collapse of the spherical bubbles in an asymmetric mode such that hlqh velocity microjets impinqe on the surface. It appears cavitation microjet

  17. Expanding shell and star formation in the infrared dust bubble N6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli

    2014-12-10

    We have carried out a multiwavelength study of the infrared dust bubble N6 to extensively investigate the molecular environs and star-forming activities therein. Mapping observations in {sup 12}CO J = 1-0 and {sup 13}CO J = 1-0 performed with the Purple Mountain Observatory 13.7 m telescope have revealed four velocity components. Comparison between distributions of each component and the infrared emission suggests that three components are correlated with N6. There are 10 molecular clumps detected. Among them, five have reliable detections in both {sup 12}CO and {sup 13}CO and have similar LTE and non-LTE masses ranging from 200 to highermore » than 5000 M {sub ☉}. With larger gas masses than virial masses, these five clumps are gravitationally unstable and have the potential to collapse to form new stars. The other five clumps are only reliably detected in {sup 12}CO and have relatively small masses. Five clumps are located on the border of the ring structure, and four of them are elongated along the shell. This is well in agreement with the collect-and-collapse scenario. The detected velocity gradient reveals that the ring structure is still under expansion owing to stellar winds from the exciting star(s). Furthermore, 99 young stellar objects (YSOs) have been identified based on their infrared colors. A group of YSOs reside inside the ring, indicating active star formation in N6. Although no confirmative features of triggered star formation are detected, the bubble and the enclosed H II region have profoundly reconstructed the natal cloud and altered the dynamics therein.« less

  18. Debris-free rear-side picosecond laser ablation of thin germanium wafers in water with ethanol

    NASA Astrophysics Data System (ADS)

    Zhang, Dongshi; Gökce, Bilal; Sommer, Steffen; Streubel, René; Barcikowski, Stephan

    2016-03-01

    In this paper, we perform liquid-assisted picosecond laser cutting of 150 μm thin germanium wafers from the rear side. By investigating the cutting efficiency (the ability to allow an one-line cut-through) and quality (characterized by groove morphologies on both sides), the pros and cons of this technique under different conditions are clarified. Specifically, with laser fluence fixed, repetition rate and scanning speed are varied to show quality and efficiency control by means of laser parameter modulation. It is found that low repetition rate ablation in liquid gives rise to a better cut quality on the front side than high repetition rate ablation since it avoids dispersed nanoparticles redeposition resulting from a bubble collapse, unlike the case of 100 kHz which leads to large nanorings near the grooves resulting from a strong interaction of bubbles and the case of 50 kHz which leads to random cutting due to the interaction of the former pulse induced cavitation bubble and the subsequent laser pulse. Furthermore, ethanol is mixed with pure distilled water to assess the liquid's impact on the cutting efficiency and cutting quality. The results show that increasing the ethanol fraction decreases the ablation efficiency but simultaneously, greatly improves the cutting quality. The improvement of cut quality as ethanol ratio increases may be attributed to less laser beam interference by a lower density of bubbles which adhere near the cut kerf during ablation. A higher density of bubbles generated from ethanol vaporization during laser ablation in liquid will cause stronger bubble shielding effect toward the laser beam propagation and therefore result in less laser energy available for the cut, which is the main reason for the decrease of cut efficiency in water-ethanol mixtures. Our findings give an insight into under which condition the rear-side laser cutting of thin solar cells should be performed: high repetition, pure distilled water and high laser power are favorable for high-speed rough cutting but the cut kerf suffers from strong side effects of ripples, nanoredeposition occurrence, while low laser power at low repetition rate (10 kHz), mixed solution (1 wt% ethanol in water) and moderate scanning speed (100 μm/s) are preferable for ultrafine high-quality debris-free cutting. The feasibility of high-quality cut is a good indication of using rear laser ablation in liquid to cut thinner wafers. More importantly, this technique spares any post cleaning steps to reduce the risk to the contamination or crack of the thin wafers.

  19. Variations of bubble cavitation and temperature elevation during lesion formation by high-intensity focused ultrasound.

    PubMed

    Zhou, Yufeng; Gao, Xiaobin Wilson

    2013-08-01

    High-intensity focused ultrasound (HIFU) is emerging as an effective therapeutic modality in both thermal ablations for solid tumor/cancer and soft-tissue fragmentation. Mechanical and thermal effects, which play an important role in the HIFU treatment simultaneously, are dependent on the operating parameters and may vary with the progress of therapy. Mechanical erosion in the shape of a "squid," a "dumbbell" lesion with both mechanical and thermal lesions, or a "tadpole" lesion with mechanical erosion at the center and thermal necrosis on the boundary in the transparent gel phantom could be produced correspondingly with the pulse duration of 5-30 ms, which is much longer than histotripsy burst but shorter than the time for tissue boiling, and pulse repetition frequency (PRF) of 0.2-5 Hz. Meanwhile, variations of bubble cavitation (both inertial and stable cavitation) and temperature elevation in the focal region (i.e., z = -2.5, 0, and 2.5 mm) were measured by passive cavitation detection (PCD) and thermocouples during the therapeutic procedure, respectively. Stable cavitation increased with the pulse duration, PRF, and the number of pulses delivered. However, inertial cavitation was found to increase initially and then decrease with long pulse duration and high PRF. Temperature in the pre-focal region is always higher than those at the focal and post-focal position in all tests. Great variations of PCD signals and temperature elevation are due to the generation and persistence of large bubble, which is resistant to collapse and occurs with the increase of pulse duration and PRF. Similar lesion pattern and variations were also observed in ex vivo porcine kidneys. Hyperechoes in the B-mode ultrasound image were comparable to the shape and size of lesions in the dissected tissue. Thermal lesion volume increased with the increase of pulse duration and PRF, but mechanical erosion reached its maximum volume with the pulse duration of 20 ms and PRF of 1 Hz. Altogether, bubble cavitation and thermal field vary with the progress of HIFU treatment with different sonication parameters, which provide insights into the interaction of ultrasound burst with the induced bubbles for both soft tissue fractionation and enhancement in thermal accumulation. Appropriate synergy and monitoring of mechanical and thermal effects would broaden the HIFU application and enhance its efficiency as well as safety.

  20. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model.

    PubMed

    Matsumoto, Himeka; Yoshimine, Yoshito; Akamine, Akifumi

    2011-06-01

    Laser-activated irrigation (LAI) has recently been introduced as an innovative method for root canal irrigation. However, there is limited information about the cleaning mechanism of an Er:YAG laser. In this study, we visualized the action of laser-induced bubbles and fluid flow in vitro to better understand the physical mechanisms underlying LAI. An Er:YAG laser was equipped with a novel cone-shaped tip with a lateral emission rate of approximately 80%. Laser light was emitted at a pulse energy of 30, 50, or 70 mJ (output energy: 11, 18, or 26 mJ) and a repetition rate of 1 or 20 pulses per second, without air or water spray. Fluid flow dynamics in a root canal model were observed by using glass-bead tracers under a high-speed camera. Moreover, laser-induced bubble patterns were visualized in both free water and the root canal model. Tracers revealed high-speed motion of the fluid. A full cycle of expansion and implosion of vapor and secondary cavitation bubbles were clearly observed. In free water, the vapor bubble expanded for 220 microseconds, and its shape resembled that of an apple. In the root canal model, the vapor bubble expanded in a vertical direction along the canal wall, and bubble expansion continued for ≥700 microseconds. Furthermore, cavitation bubbles were created much more frequently in the canal model than in free water. These results suggest that the cleaning mechanism of an Er:YAG laser within the root canal might depend on rapid fluid motion caused by expansion and implosion of laser-induced bubbles. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Pre-Big Bang Bubbles from the Gravitational Instability of Generic String Vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1998-06-01

    We formulate the basic postulate of pre-big bang cosmology as one of 'asymptotic past triviality', by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual big-bang t = 0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically-symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the big bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-gib bang scenario.

  2. The bubble-dependent mechanism of FUS-induced blood-brain barrier opening in mice and in monkeys in vivo

    NASA Astrophysics Data System (ADS)

    Tung, Yao-Sheng; Marquet, Fabrice; Vlachos, Fotios; Feshitan, Jameel A.; Borden, Mark A.; Konofagou, Elisa E.

    2012-10-01

    The blood-brain barrier (BBB) prevents most neurological drugs from traversing from the cerebral microvasculature into the brain parenchyma. Previous studies have shown that the presence of bubbles in an acoustic field temporarily opens the BBB. The BBB opening pressure threshold was previously identified to lie between 0.30 and 0.46 MPa in the case of the smaller bubbles and between 0.15 and 0.30 MPa in the larger bubble case. However, the physical effects responsible for BBB opening remain unknown. In addition, the noninvasive in vivo cavitation detection with mono-dispersed microbubbles has not been studied as of yet. The purpose of this study is to unveil the physical mechanism of the FUS-induced BBB opening with monodispersed microbubbles. Lipid-shelled microbubbles with three different diameters (1-2, 4-5 and 6-8 μm) were manufactured in-house and size-isolated using differential centrifugation. Sixty-seven (n=67) mice were each injected intravenously with bubbles of either 1-2, 4-5 or 6-8 μm in diameter and the concentration of 107 numbers/mL. The right hippocampus of each mouse was then sonicated using focused ultrasound (1.5 MHz frequency; 100 cycles (67 μs) pulse length; 10 Hz pulse repetition frequency; 1 minute sonication duration) while the left hippocampus served as the control. A 10-MHz transducer was used as a passive cavitation detector (PCD) to determine the threshold of inertial cavitation (IC). Each mouse was sonicated at a specific acoustic peak-rarefactional pressure at 0.15, 0.30, 0.45 or 0.60 MPa in order to identify the threshold of BBB opening and IC. T1-weighted MRI was used to verify the BBB opening and spectrograms were generated in order to detect the IC onset and duration. Our results suggest that the BBB opens as a result of nonlinear (harmonic) bubble oscillation when the bubble diameter is similar to the capillary diameter and with inertial cavitation when it is not. The bubble may thus have to be in contact with the capillary wall to induce BBB opening without inertial cavitation. The BBB opening volume was found to increase with both pressure and bubble size. Good correlation between the ICD and the BBB opening volume at distinct bubble diameters was established. No damage was induced at the BBB opening threshold in all bubble cases. The BBB opening was thus shown capable of being induced safely with nonlinear bubble oscillation at the pressure threshold and its volume was highly dependent on both the pressure and bubble diameter. The preliminary results of cavitation detection during BBB opening in monkeys are also provided.

  3. Laser-generated Micro-bubbles for Molecular Delivery to Adherent Cells

    NASA Astrophysics Data System (ADS)

    Genc, Suzanne Lee

    We examine the use of optical breakdown in aqueous media as a means to deliver molecules into live adherent cell cultures. This process, called optoinjection (OI), is affected both by the media composition and the cellular exposure to hydrodynamic stresses associated with the cavitation bubble formed by the optical breakdown process. Here we explore the possibility of performing OI using laser microbeams focused at low numerical aperture to provide conditions where OI can be performed at high-throughput. We first investigate the effect of media composition on plasma and cavitation bubble formation. We make the discovery that irradiation of minimal essential media, supports the formation of low-density plasmas (LDP) resulting in the generation of small (2--20 mum radius) cavitation bubbles. This provides gentle specific hydrodynamic perturbations to single or small groups of cells. The addition of supplemental fetal bovine serum to the medium prevents the formation LDPs and the resulting avalanche ionization generates larger (> 100 mum radius) bubbles and more violent hydrodynamic effects. Second, using high-speed photography we provide the first visualization of LDP-generated cavitation bubbles at precise offset locations relative to a boundary on which a cell monolayer can be cultured. These images depict the cellular exposure to different hydrodynamic conditions depending on the normalized offset distance (gamma = s/Rmax) and show how it affects the cellular exposure to shear stresses upon bubble expansion and different distributions of bubble energy upon collapse. Lastly, we examine the effects of pulse energy, parameters, and single vs. multiple laser exposures on the ability to deliver 3-5 kDa dextrans into adherent cells using both small (< 20 mum) and large (100mu m) radius bubbles. For single exposures, we identify several conditions under which OI can be optimized: (a) conditions where cell viability is maximized (˜90%) but optoinjection of viable cells is relatively low (˜30%) and (b) conditions where cell viability is compromised (˜80%) but where the optoinjection of viable cells is higher (˜50%). For multiple exposures in a grid pattern, we generally found reduced optoinjection efficacy but do identify conditions where we achieve injection of viable cells approaching 50%. We correlate these results to the cavitation bubble dynamics.

  4. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    PubMed

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  5. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.

    PubMed

    Mullins, Garrett R; Bruns, David E

    2017-10-01

    Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (p<0.01), LD (p<0.01), and potassium (p<0.02) in plasma. Removing air space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (p<0.02 vs conventionally filled collection tube). Clotted blood developed less foaming during PTS transport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (p<0.03) in serum than in plasma after PTS sample transport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium

    NASA Astrophysics Data System (ADS)

    Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.

    2017-12-01

    A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.

  7. Incorporating Water Boiling in the Numerical Modelling of Thermal Remediation by Electrical Resistance Heating

    NASA Astrophysics Data System (ADS)

    Molnar, I. L.; Krol, M.; Mumford, K. G.

    2017-12-01

    Developing numerical models for subsurface thermal remediation techniques - such as Electrical Resistive Heating (ERH) - that include multiphase processes such as in-situ water boiling, gas production and recovery has remained a significant challenge. These subsurface gas generation and recovery processes are driven by physical phenomena such as discrete and unstable gas (bubble) flow as well as water-gas phase mass transfer rates during bubble flow. Traditional approaches to multiphase flow modeling soil remain unable to accurately describe these phenomena. However, it has been demonstrated that Macroscopic Invasion Percolation (MIP) can successfully simulate discrete and unstable gas transport1. This has lead to the development of a coupled Electro Thermal-MIP Model2 (ET-MIP) capable of simulating multiple key processes in the thermal remediation and gas recovery process including: electrical heating of soil and groundwater, water flow, geological heterogeneity, heating-induced buoyant flow, water boiling, gas bubble generation and mobilization, contaminant mass transport and removal, and additional mechanisms such as bubble collapse in cooler regions. This study presents the first rigorous validation of a coupled ET-MIP model against two-dimensional water boiling and water/NAPL co-boiling experiments3. Once validated, the model was used to explore the impact of water and co-boiling events and subsequent gas generation and mobilization on ERH's ability to 1) generate, expand and mobilize gas at boiling and NAPL co-boiling temperatures, 2) efficiently strip contaminants from soil during both boiling and co-boiling. In addition, a quantification of the energy losses arising from steam generation during subsurface water boiling was examined with respect to its impact on the efficacy of thermal remediation. While this study specifically targets ERH, the study's focus on examining the fundamental mechanisms driving thermal remediation (e.g., water boiling) renders these results applicable to a wide range of thermal and gas-based remediation techniques. 1. Mumford, K. G., et al. (2010), Adv. Water Resour. 2010, 33 (4), 504-513. 2. Krol, M. M., et al. (2011), Adv. Water Resour. 2011, 34 (4), 537-549. 3. Hegele, P. R. and Mumford, K. G. Journal of Contaminant Hydrology 2014, 165, 24-36.

  8. A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality.

    PubMed

    Zhang, Ling; Zhou, Laicheng; Xu, Na; Ouyang, Zhenjie

    2017-07-03

    It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO 2 ) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO 2 -triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO 2 bubble-induced vortex during the co-assembly process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nanomaterials under extreme environments: A study of structural and dynamic properties using reactive molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Shekhar, Adarsh

    Nanotechnology is becoming increasingly important with the continuing advances in experimental techniques. As researchers around the world are trying to expand the current understanding of the behavior of materials at the atomistic scale, the limited resolution of equipment, both in terms of time and space, act as roadblocks to a comprehensive study. Numerical methods, in general and molecular dynamics, in particular act as able compliment to the experiments in our quest for understanding material behavior. In this research work, large scale molecular dynamics simulations to gain insight into the mechano-chemical behavior under extreme conditions of a variety of systems with many real world applications. The body of this work is divided into three parts, each covering a particular system: 1) Aggregates of aluminum nanoparticles are good solid fuel due to high flame propagation rates. Multi-million atom molecular dynamics simulations reveal the mechanism underlying higher reaction rate in a chain of aluminum nanoparticles as compared to an isolated nanoparticle. This is due to the penetration of hot atoms from reacting nanoparticles to an adjacent, unreacted nanoparticle, which brings in external heat and initiates exothermic oxidation reactions. 2) Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near amorphous silica. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The pit contains a large number of silanol groups and its volume is found to be directly proportional to the volume of the nanobubble. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated. 3) The structure and dynamics of water confined in nanoporous silica are different from that of bulk water, and insight into the properties of confined water is important for our understanding of many geological and biological processes. Nanoporous silica has a wide range of technological applications because it is easy to tune the size of pores and their morphologies and to functionalize pore surfaces with a variety of molecular moieties. Nanoporous silica is used in catalysis, chromatography, anticorrosion coatings, desalination membranes, and as drug delivery vehicles. We use reactive molecular dynamics to study the structure and dynamics of nanoconfined water between 100 and 300 K

  10. Analysis of intergranular fission-gas bubble-size distributions in irradiated uranium-molybdenum alloy fuel

    NASA Astrophysics Data System (ADS)

    Rest, J.; Hofman, G. L.; Kim, Yeon Soo

    2009-04-01

    An analytical model for the nucleation and growth of intra and intergranular fission-gas bubbles is used to characterize fission-gas bubble development in low-enriched U-Mo alloy fuel irradiated in the advanced test reactor in Idaho as part of the Reduced Enrichment for Research and Test Reactor (RERTR) program. Fuel burnup was limited to less than ˜7.8 at.% U in order to capture the fuel-swelling stage prior to irradiation-induced recrystallization. The model couples the calculation of the time evolution of the average intergranular bubble radius and number density to the calculation of the intergranular bubble-size distribution based on differential growth rate and sputtering coalescence processes. Recent results on TEM analysis of intragranular bubbles in U-Mo were used to set the irradiation-induced diffusivity and re-solution rate in the bubble-swelling model. Using these values, good agreement was obtained for intergranular bubble distribution compared against measured post-irradiation examination (PIE) data using grain-boundary diffusion enhancement factors of 15-125, depending on the Mo concentration. This range of enhancement factors is consistent with values obtained in the literature.

  11. The relationship between critical flux and fibre movement induced by bubbling in a submerged hollow fibre system.

    PubMed

    Wicaksana, F; Fan, A G; Chen, V

    2005-01-01

    Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.

  12. The Effect of Surface Induced Flows on Bubble and Particle Aggregation

    NASA Technical Reports Server (NTRS)

    Guelcher, Scott A.; Solomentsev, Yuri E.; Anderson, John L.; Boehmer, Marcel; Sides, Paul J.

    1999-01-01

    Almost 20 years have elapsed since a phenomenon called "radial specific coalescence" was identified. During studies of electrolytic oxygen evolution from the back side of a vertically oriented, transparent tin oxide electrode in alkaline electrolyte, one of the authors (Sides) observed that large "collector" bubbles appeared to attract smaller bubbles. The bubbles moved parallel to the surface of the electrode, while the electric field was normal to the electrode surface. The phenomenon was reported but not explained. More recently self ordering of latex particles was observed during electrophoretic deposition at low DC voltages likewise on a transparent tin oxide electrode. As in the bubble work, the field was normal to the electrode while the particles moved parallel to it. Fluid convection caused by surface induced flows (SIF) can explain these two apparently different experimental observations: the aggregation of particles on an electrode during electrophoretic deposition, and a radial bubble coalescence pattern on an electrode during electrolytic gas evolution. An externally imposed driving force (the gradient of electrical potential or temperature), interacting with the surface of particles or bubbles very near a planar conducting surface, drives the convection of fluid that causes particles and bubbles to approach each other on the electrode.

  13. Sound field measurement in a double layer cavitation cluster by rugged miniature needle hydrophones.

    PubMed

    Koch, Christian

    2016-03-01

    During multi-bubble cavitation the bubbles tend to organize themselves into clusters and thus the understanding of properties and dynamics of clustering is essential for controlling technical applications of cavitation. Sound field measurements are a potential technique to provide valuable experimental information about the status of cavitation clouds. Using purpose-made, rugged, wide band, and small-sized needle hydrophones, sound field measurements in bubble clusters were performed and time-dependent sound pressure waveforms were acquired and analyzed in the frequency domain up to 20 MHz. The cavitation clusters were synchronously observed by an electron multiplying charge-coupled device (EMCCD) camera and the relation between the sound field measurements and cluster behaviour was investigated. Depending on the driving power, three ranges could be identified and characteristic properties were assigned. At low power settings no transient and no or very low stable cavitation activity can be observed. The medium range is characterized by strong pressure peaks and various bubble cluster forms. At high power a stable double layer was observed which grew with further increasing power and became quite dynamic. The sound field was irregular and the fundamental at driving frequency decreased. Between the bubble clouds completely different sound field properties were found in comparison to those in the cloud where the cavitation activity is high. In between the sound field pressure amplitude was quite small and no collapses were detected. Copyright © 2015. Published by Elsevier B.V.

  14. Towards the concept of hydrodynamic cavitation control

    NASA Astrophysics Data System (ADS)

    Chatterjee, Dhiman; Arakeri, Vijay H.

    1997-02-01

    A careful study of the existing literature available in the field of cavitation reveals the potential of ultrasonics as a tool for controlling and, if possible, eliminating certain types of hydrodynamic cavitation through the manipulation of nuclei size present in a flow. A glass venturi is taken to be an ideal device to study the cavitation phenomenon at its throat and its potential control. A piezoelectric transducer, driven at the crystal resonant frequency, is used to generate an acoustic pressure field and is termed an ‘ultrasonic nuclei manipulator (UNM)’. Electrolysis bubbles serve as artificial nuclei to produce travelling bubble cavitation at the venturi throat in the absence of a UNM but this cavitation is completely eliminated when a UNM is operative. This is made possible because the nuclei, which pass through the acoustic field first, cavitate, collapse violently and perhaps fragment and go into dissolution before reaching the venturi throat. Thus, the potential nuclei for travelling bubble cavitation at the venturi throat seem to be systematically destroyed through acoustic cavitation near the UNM. From the solution to the bubble dynamics equation, it has been shown that the potential energy of a bubble at its maximum radius due to an acoustic field is negligible compared to that for the hydrodynamic field. Hence, even though the control of hydrodynamic macro cavitation achieved in this way is at the expense of acoustic micro cavitation, it can still be considered to be a significant gain. These are some of the first results in this direction.

  15. Perfectly monodisperse micro-bubble production by novel mechanical means. Scaling laws.

    NASA Astrophysics Data System (ADS)

    Ganan-Calvo, Alfonso M.; Gordillo, Jose M.; Ouarti, Nawel; Prevost, Thomas; Sampedro, Jose L.

    2000-11-01

    A continuous stream of controllable, perfectly homogeneous size micro-bubbles (of the order of some microns and larger) can be produced by a novel, extremely simple mechanical means that we call "Flow Focusing" (e.g. see Ganan-Calvo 1998, Phys. Rev. Lett. vol. 80, 285). Using this technique, a capillary gas micro-jet is formed ("focused") by a co-flowing stream of liquid forced through a sub-millimetric orifice. This gas micro-jet undergoes a rapid capillary breakup (e.g. Chandrasekhar 1961 "Hydrodynamic and Hydromagnetic Stability", p. 541) with a strong frequency "self-locking" effect. In this work we present a theoretical model which predicts the micro-bubble size as a function of the physical and geometrical parameters of the system. A complete experimental study is also provided, and the raw data are collapsed into a universal scaling law given by our theoretical model. This novel micro-fluidics phenomenon may have a wide variety of applications ranging from bio-medicine, pharmaceutical specialities, food industry, and even for the mesoscale micro-templating of micro-engineered materials (i.e. photonic crystals, smart materials, etc.).

  16. Size Control of Sessile Microbubbles for Reproducibly Driven Acoustic Streaming

    NASA Astrophysics Data System (ADS)

    Volk, Andreas; Kähler, Christian J.

    2018-05-01

    Acoustically actuated bubbles are receiving growing interest in microfluidic applications, as they induce a streaming field that can be used for particle sorting and fluid mixing. An essential but often unspoken challenge in such applications is to maintain a constant bubble size to achieve reproducible conditions. We present an automatized system for the size control of a cylindrical bubble that is formed at a blind side pit of a polydimethylsiloxane microchannel. Using a pressure control system, we adapt the protrusion depth of the bubble into the microchannel to a precision of approximately 0.5 μ m on a timescale of seconds. By comparing the streaming field generated by bubbles of width 80 μ m with a protrusion depth between -12 and 60 μ m , we find that the mean velocity of the induced streaming fields varies by more than a factor of 4. We also find a qualitative change of the topology of the streaming field. Both observations confirm the importance of the bubble size control system in order to achieve reproducible and reliable bubble-driven streaming experiments.

  17. Bubble baths: just splashing around?

    NASA Astrophysics Data System (ADS)

    Robinson, Wesley; Speirs, Nathan; Sharker, Saberul Islam; Hurd, Randy; Williams, Bj; Truscott, Tadd

    2016-11-01

    Soap Bubbles on the water surface would seem to be an intuitive means for splash suppression, but their presence appears to be a double edged sword. We present on the water entry of hydrophilic spheres where the liquid surface is augmented by the presence of a bubble layer, similar to a bubble bath. While the presence of a bubble layer can diminish splashing upon impact at low Weber numbers, it also induces cavity formation at speeds below the critical velocity. The formation of a cavity generally results in larger Worthington jets and thus, larger amounts of ejected liquid. Bubble layers induce cavity formation by wetting the sphere prior to liquid impact, causing them to form cavities similar to those created by hydrophobic spheres. Droplets present on a pre-wetted sphere disrupt the flow of the advancing liquid during entry, pushing it away from the impacting body to form an entrained air cavity. This phenomena was noted by Worthington with pre-wetted stone marbles, and suggests that the application of a bubble layer is generally ineffective as a means of splash suppression.

  18. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow

    PubMed Central

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system. PMID:23378921

  19. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    NASA Astrophysics Data System (ADS)

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-07-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process.

  20. Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy (ESWL)

    NASA Astrophysics Data System (ADS)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.

    1990-07-01

    On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.

  1. Cavitation onset caused by acceleration

    PubMed Central

    Pan, Zhao; Kiyama, Akihito; Tagawa, Yoshiyuki; Daily, David J.; Thomson, Scott L.; Hurd, Randy

    2017-01-01

    Striking the top of a liquid-filled bottle can shatter the bottom. An intuitive interpretation of this event might label an impulsive force as the culprit in this fracturing phenomenon. However, high-speed photography reveals the formation and collapse of tiny bubbles near the bottom before fracture. This observation indicates that the damaging phenomenon of cavitation is at fault. Cavitation is well known for causing damage in various applications including pipes and ship propellers, making accurate prediction of cavitation onset vital in several industries. However, the conventional cavitation number as a function of velocity incorrectly predicts the cavitation onset caused by acceleration. This unexplained discrepancy leads to the derivation of an alternative dimensionless term from the equation of motion, predicting cavitation as a function of acceleration and fluid depth rather than velocity. Two independent research groups in different countries have tested this theory; separate series of experiments confirm that an alternative cavitation number, presented in this paper, defines the universal criteria for the onset of acceleration-induced cavitation. PMID:28739956

  2. Potential effect of ultrasound on carbohydrates.

    PubMed

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man

    2015-06-17

    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cavitation onset caused by acceleration.

    PubMed

    Pan, Zhao; Kiyama, Akihito; Tagawa, Yoshiyuki; Daily, David J; Thomson, Scott L; Hurd, Randy; Truscott, Tadd T

    2017-07-24

    Striking the top of a liquid-filled bottle can shatter the bottom. An intuitive interpretation of this event might label an impulsive force as the culprit in this fracturing phenomenon. However, high-speed photography reveals the formation and collapse of tiny bubbles near the bottom before fracture. This observation indicates that the damaging phenomenon of cavitation is at fault. Cavitation is well known for causing damage in various applications including pipes and ship propellers, making accurate prediction of cavitation onset vital in several industries. However, the conventional cavitation number as a function of velocity incorrectly predicts the cavitation onset caused by acceleration. This unexplained discrepancy leads to the derivation of an alternative dimensionless term from the equation of motion, predicting cavitation as a function of acceleration and fluid depth rather than velocity. Two independent research groups in different countries have tested this theory; separate series of experiments confirm that an alternative cavitation number, presented in this paper, defines the universal criteria for the onset of acceleration-induced cavitation.

  4. Cavitation onset caused by acceleration

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Kiyama, Akihito; Tagawa, Yoshiyuki; Daily, David J.; Thomson, Scott L.; Hurd, Randy; Truscott, Tadd T.

    2017-08-01

    Striking the top of a liquid-filled bottle can shatter the bottom. An intuitive interpretation of this event might label an impulsive force as the culprit in this fracturing phenomenon. However, high-speed photography reveals the formation and collapse of tiny bubbles near the bottom before fracture. This observation indicates that the damaging phenomenon of cavitation is at fault. Cavitation is well known for causing damage in various applications including pipes and ship propellers, making accurate prediction of cavitation onset vital in several industries. However, the conventional cavitation number as a function of velocity incorrectly predicts the cavitation onset caused by acceleration. This unexplained discrepancy leads to the derivation of an alternative dimensionless term from the equation of motion, predicting cavitation as a function of acceleration and fluid depth rather than velocity. Two independent research groups in different countries have tested this theory; separate series of experiments confirm that an alternative cavitation number, presented in this paper, defines the universal criteria for the onset of acceleration-induced cavitation.

  5. Probing the Mechanical Strength of an Armored Bubble and Its Implication to Particle-Stabilized Foams

    NASA Astrophysics Data System (ADS)

    Taccoen, Nicolas; Lequeux, François; Gunes, Deniz Z.; Baroud, Charles N.

    2016-01-01

    Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of Δ Pcollapse∝R-1 , but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic understanding to predict the aging of particle-stabilized foams, by applying classical Ostwald ripening models. We find that the smallest armored bubbles should fail, as the dissolution stress on these bubbles increases more rapidly than the armor strength. Both the experimental and theoretical results can readily be generalized to more complex particle interactions and shell structures.

  6. Nonlinear bubble nucleation and growth following filament and white-light continuum generation induced by a single-shot femtosecond laser pulse into dielectrics based on consideration of the time scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizushima, Yuki; Saito, Takayuki, E-mail: saito.takayuki@shizuoka.ac.jp

    Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10{sup −13} s) and growth (10{sup −7} s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differencesmore » in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.« less

  7. Evaluation of Interfacial Forces and Bubble-Induced Turbulence Using Direct Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Feng, Jinyong

    High fidelity prediction of multiphase flows is important in a wide range of engineering applications. While some multiphase flow scenarios can be successfully modeled, many questions remain unanswered regarding the interaction between the bubbles and the turbulence, and present significant challenges in the development of closure laws for the multiphase computational fluid dynamics (M-CFD) models. To address these challenges, we propose to evaluate the interfacial forces and bubble-induced turbulence in both laminar and turbulent flow field with direct numerical simulation (DNS) approach. Advanced finite-element based flow solver (PHASTA) with level-set interface tracking method is utilized for these studies. The proportional-integral-derivative (PID) controller is adopted to ensure the statistically steady state bubble position and perform the detailed study of the turbulent field around the bubble. Selected numerical capabilities and post-processing codes are developed to achieve the research goals. The interface tracking approach is verified and validated by comparing the interfacial forces with the experiment-based data and correlations. The sign change of transverse lift force is observed as the bubble becomes more deformable. A new correlation is proposed to predict the behavior of the drag coefficient over the wide range of conditions. The wall effect on the interfacial forces are also investigated. In homogeneous turbulent flow, the effect of bubble deformability, turbulent intensity and relative velocity on the bubble-induced turbulence are analyzed. The presented method and novel results will complement the experimental database, provide insight to the bubbleinduced turbulence mechanism and help the development of M-CFD closure models.

  8. Biophysical considerations for optimizing energy delivery during Erbium:YAG laser vitreoretinal surgery

    NASA Astrophysics Data System (ADS)

    Berger, Jeffrey W.; Bochow, Thomas W.; Kim, Rosa Y.; D'Amico, Donald J.

    1996-05-01

    Er:YAG laser-mediated tissue disruption and removal results from both direct ablation and the acousto-mechanical sequelae of explosive vaporization of the tissue water. We investigated the scaling laws for photoablative and photodisruptive interactions, and interpret these results towards optimizing energy delivery for vitreoretinal surgical maneuvers. Experimental studies were performed with a free-running Er:YAG laser (100 - 300 microseconds FWHM, 0.5 - 20 mJ, 1 - 30 Hz). Energy was delivered by fiberoptic to a custom-made handpiece with a 75 - 600 micrometer quartz tip, and applied to excised, en bloc samples of bovine vitreous or model systems of saline solution. Sample temperature was measured with 33 gauge copper- constantan thermocouples. Expansion and collapse of the bubble following explosive vaporization of tissue water was optically detected. The bubble size was calculated from the period of the bubble oscillation and known material properties. A model for bubble expansion is presented based on energy principles and adiabatic gas expansion. Pressure transients associated with bubble dynamics are estimated following available experimental and analytical data. The temperature rise in vitreous and model systems depends on the pulse energy and repetition rate, but is independent of the probe-tip diameter at constant laser power; at moderate repetition rates, the temperature rise depends only on the total energy (mJ) delivered. The maximum bubble diameter increases as the cube root of the pulse energy with a reverberation period of 110 microseconds and a maximum bubble diameter of 1.2 mm following one mJ delivery to saline through a 100 micrometer tip. Our modeling studies generate predictions similar to experimental data and predicts that the maximum bubble diameter increases as the cube root of the pulse energy. We demonstrate that tissue ablation depends on radiant exposure (J/cm2), while temperature rise, bubble size, and pressure depends on total pulse energy. Further, we show that mechanical injury should be minimized by delivering low pulse energy, through small diameter probe tips, at high repetition rates. These results allow for optimization strategies relevant to achieving vitreoretinal surgical goals while minimizing the potential for unintentional injury.

  9. Robust acoustic wave manipulation of bubbly liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu; Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076; Akhatov, I. S.

    Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.

  10. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Astrophysics Data System (ADS)

    Brewe, D. E.; Jacobson, B. O.

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  11. Capillary channel flow experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  12. Effect of vibration amplitude on vapor cavitation in journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Jacobson, B. O.

    1986-01-01

    Computational movies were used to analyze the formation and collapse of vapor cavitation bubbles in a submerged journal bearing. The effect of vibration amplitude on vapor cavitation was studied for a journal undergoing circular whirl. The boundary conditions were implemented using Elrod's algorithm, which conserves mass flow through the cavitation bubble as well as through the oil-film region of the bearing. The vibration amplitudes for the different cases studied resulted in maximum eccentricity ratios ranging from 0.4 to 0.9. The minimum eccentricity ratio reached in each case was 0.1. For the least vibration amplitude studied in which the eccentricity ratio varied between 0.1 and 0.4, no vapor cavitation occurred. The largest vibration amplitude (i.e., eccentricity ratios of 0.1 to 0.9) resulted in vapor cavitation present 76 percent of one complete orbit.

  13. Approaching behavior of a pair of spherical bubbles in quiescent liquids

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Kusuno, Hiroaki

    2015-11-01

    Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.

  14. A boundary element model of the transport of a semi-infinite bubble through a microvessel bifurcation

    NASA Astrophysics Data System (ADS)

    Calderon, Andres J.; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph L.

    2010-06-01

    Motivated by a developmental gas embolotherapy technique for selective occlusion of blood flow to tumors, we examined the transport of a pressure-driven semi-infinite bubble through a liquid-filled bifurcating channel. Homogeneity of bubble splitting as the bubble passes through a vessel bifurcation affects the degree to which the vascular network near the tumor can be uniformly occluded. The homogeneity of bubble splitting was found to increase with bubble driving pressure and to decrease with increased bifurcation angle. Viscous losses at the bifurcation were observed to affect the bubble speed significantly. The potential for oscillating bubble interfaces to induce flow recirculation and impart high stresses on the vessel endothelium was also observed.

  15. Studies of cavitation and ice nucleation in 'doubly-metastable' water: time-lapse photography and neutron diffraction.

    PubMed

    Barrow, Matthew S; Williams, P Rhodri; Chan, Hoi-Houng; Dore, John C; Bellissent-Funel, Marie-Claire

    2012-10-14

    High-speed photographic studies and neutron diffraction measurements have been made of water under tension in a Berthelot tube. Liquid water was cooled below the normal ice-nucleation temperature and was in a doubly-metastable state prior to a collapse of the liquid state. This transition was accompanied by an exothermic heat release corresponding with the rapid production of a solid phase nucleated by cavitation. Photographic techniques have been used to observe the phase transition over short time scales in which a solidification front is observed to propagate through the sample. Significantly, other images at a shorter time interval reveal the prior formation of cavitation bubbles at the beginning of the process. The ice-nucleation process is explained in terms of a mechanism involving hydrodynamically-induced changes in tension in supercooled water in the near vicinity of an expanding cavitation bubble. Previous explanations have attributed the nucleation of the solid phase to the production of high positive pressures. Corresponding results are presented which show the initial neutron diffraction pattern after ice-nucleation. The observed pattern does not exhibit the usual crystalline pattern of hexagonal ice [I(h)] that is formed under ambient conditions, but indicates the presence of other ice forms. The composite features can be attributed to a mixture of amorphous ice, ice-I(h)/I(c) and the high-pressure form, ice-III, and the diffraction pattern continues to evolve over a time period of about an hour.

  16. Bubble migration inside a liquid drop in a space laboratory

    NASA Technical Reports Server (NTRS)

    Annamalai, P.; Shankar, N.; Cole, R.; Subramanian, R. S.

    1982-01-01

    The design of experiments in materials processing for trials on board the Shuttle are described. Thermocapillary flows will be examined as an aid to mixing in the formation of glasses. Acoustically levitated molten glass spheres will be spot heated to induce surface flow away from the hot spot to induce mixing. The surface flows are also expected to cause internal convective motion which will drive entrained gas bubbles toward the hot spot, a process also enhanced by the presence of thermal gradients. The method is called fining, and will be augmented by rotation of the sphere to cause bubble migration toward the axes of rotation to form one large bubble which is more easily removed. Centering techniques to fix the maximum centering accuracy will also be tried. Ground-based studies of bubble migration in a rotating liquid and in a temperature gradient in a liquid drop are reviewed.

  17. Exploring bubble oscillation and mass transfer enhancement in acoustic-assisted liquid-liquid extraction with a microfluidic device

    PubMed Central

    Xie, Yuliang; Chindam, Chandraprakash; Nama, Nitesh; Yang, Shikuan; Lu, Mengqian; Zhao, Yanhui; Mai, John D.; Costanzo, Francesco; Huang, Tony Jun

    2015-01-01

    We investigated bubble oscillation and its induced enhancement of mass transfer in a liquid-liquid extraction process with an acoustically-driven, bubble-based microfluidic device. The oscillation of individually trapped bubbles, of known sizes, in microchannels was studied at both a fixed frequency, and over a range of frequencies. Resonant frequencies were analytically identified and were found to be in agreement with the experimental observations. The acoustic streaming induced by the bubble oscillation was identified as the cause of this enhanced extraction. Experiments extracting Rhodanmine B from an aqueous phase (DI water) to an organic phase (1-octanol) were performed to determine the relationship between extraction efficiency and applied acoustic power. The enhanced efficiency in mass transport via these acoustic-energy-assisted processes was confirmed by comparisons against a pure diffusion-based process. PMID:26223474

  18. Air bubbles induce a critical continuous stress to prevent marine biofouling accumulation

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Menesses, Mark; Dickenson, Natasha; Bird, James

    2017-11-01

    Significant shear stresses are needed to remove established hard fouling organisms from a ship hull. Given that there is a link between the amount of time that fouling accumulates and the stress required to remove it, it is not surprising that more frequent grooming requires less shear stress. One approach to mitigate marine biofouling is to continuously introduce a curtain of air bubbles under a submerged surface; it is believed that this aeration exploits the small stresses induced by rising bubbles to continuously prevent accumulation. Although curtains of rising bubbles have successfully prevented biofouling accumulation, it is unclear if a single stream of bubbles could maintain a clean surface. In this talk, we show that single bubble stream aeration can prevent biofouling accumulation in regions for which the average wall stress exceeds approximately 0.01 Pa. This value is arrived at by comparing observations of biofouling growth and prevention from field studies with laboratory measurements that probe the associated flow fields. We also relate the spatial and temporal characteristics of the flow to the size and frequency of the rising bubbles, which informs the basic operating conditions required for aeration to continuously prevent biofouling accumulation.

  19. Laser induced sonofusion: A new road toward thermonuclear reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadighi-Bonabi, Rasoul, E-mail: Sadighi@sharif.ir; Gheshlaghi, Maryam; Laser and optics research school, Nuclear Science and Technology Research Institute

    2016-03-15

    The Possibility of the laser assisted sonofusion is studied via single bubble sonoluminescence (SBSL) in Deuterated acetone (C{sub 3}D{sub 6}O) using quasi-adiabatic and hydro-chemical simulations at the ambient temperatures of 0 and −28.5 °C. The interior temperature of the produced bubbles in Deuterated acetone is 1.6 × 10{sup 6} K in hydro-chemical model and it is reached up to 1.9 × 10{sup 6} K in the laser induced SBSL bubbles. Under these circumstances, temperature up to 10{sup 7} K can be produced in the center of the bubble in which the thermonuclear D-D fusion reactions are promising under the controlled conditions.

  20. Understanding the Links among the Magnetic Fields, Filament, Bipolar Bubble, and Star Formation in RCW 57A Using NIR Polarimetry

    NASA Astrophysics Data System (ADS)

    Eswaraiah, Chakali; Lai, Shih-Ping; Chen, Wen-Ping; Pandey, A. K.; Tamura, M.; Maheswar, G.; Sharma, S.; Wang, Jia-Wei; Nishiyama, S.; Nakajima, Y.; Kwon, Jungmi; Purcell, R.; Magalhães, A. M.

    2017-12-01

    The influence of magnetic fields (B-fields) on the formation and evolution of bipolar bubbles, due to the expanding ionization fronts (I-fronts) driven by the H II regions that are formed and embedded in filamentary molecular clouds, has not been well-studied yet. In addition to the anisotropic expansion of I-fronts into a filament, B-fields are expected to introduce an additional anisotropic pressure, which might favor the expansion and propagation of I-fronts forming a bipolar bubble. We present results based on near-infrared polarimetric observations toward the central ˜8‧ × 8‧ area of the star-forming region RCW 57A, which hosts an H II region, a filament, and a bipolar bubble. Polarization measurements of 178 reddened background stars, out of the 919 detected sources in the JHK s bands, reveal B-fields that thread perpendicularly to the filament long axis. The B-fields exhibit an hourglass morphology that closely follows the structure of the bipolar bubble. The mean B-field strength, estimated using the Chandrasekhar-Fermi method (CF method), is 91 ± 8 μG. B-field pressure dominates over turbulent and thermal pressures. Thermal pressure might act in the same orientation as the B-fields to accelerate the expansion of those I-fronts. The observed morphological correspondence among the B-fields, filament, and bipolar bubble demonstrate that the B-fields are important to the cloud contraction that formed the filament, to the gravitational collapse and star formation in it, and in feedback processes. The last one includes the formation and evolution of mid-infrared bubbles by means of B-field supported propagation and expansion of I-fronts. These may shed light on preexisting conditions favoring the formation of the massive stellar cluster in RCW 57A.

  1. Atomistic modeling of shock-induced void collapse in copper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davila, L P; Erhart, P; Bringa, E M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  2. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure.

    PubMed

    Qiao, Yangzi; Zong, Yujin; Yin, Hui; Chang, Nan; Li, Zhaopeng; Wan, Mingxi

    2014-09-01

    Phase-shift nano-emulsions (PSNEs) with a small initial diameter in nanoscale have the potential to leak out of the blood vessels and to accumulate at the target point of tissue. At desired location, PSNEs can undergo acoustic droplet vaporization (ADV) process, change into gas bubbles and enhance focused ultrasound efficiency. The threshold of droplet vaporization and influence of acoustic parameters have always been research hotspots in order to spatially control the potential of bioeffects and optimize experimental conditions. However, when the pressure is much higher than PSNEs' vaporization threshold, there were little reports on their cavitation and thermal effects. In this study, PSNEs induced cavitation and ablation effects during pulsed high-intensity focused ultrasound (HIFU) exposure were investigated, including the spatial and temporal information and the influence of acoustic parameters. Two kinds of tissue-mimicking phantoms with uniform PSNEs were prepared because of their optical transparency. The Sonoluminescence (SL) method was employed to visualize the cavitation activities. And the ablation process was observed as the heat deposition could produce white lesion. Precisely controlled HIFU cavitation and ablation can be realized at a relatively low input power. But when the input power was high, PSNEs can accelerate cavitation and ablation in pre-focal region. The cavitation happened layer by layer advancing the transducer. While the lesion appeared to be separated into two parts, one in pre-focal region stemmed from one point and grew quickly, the other in focal region grew much more slowly. The influence of duty cycle has also been examined. Longer pulse off time would cause heat transfer to the surrounding media, and generate smaller lesion. On the other hand, this would give outer layer bubbles enough time to dissolve, and inner bubbles can undergo violent collapse and emit bright light. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Vapor bubble generation around gold nano-particles and its application to damaging of cells

    PubMed Central

    Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.

    2011-01-01

    We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875

  4. Low-frequency dynamics of pressure-induced turbulent separation bubbles

    NASA Astrophysics Data System (ADS)

    Weiss, Julien; Mohammed-Taifour, Abdelouahab; Lefloch, Arnaud

    2017-11-01

    We experimentally investigate a pressure-induced turbulent separation bubble (TSB), which is generated on a flat test surface through a combination of adverse and favorable pressure gradients imposed on a nominally two-dimensional, incompressible, turbulent boundary layer. We probe the flow using piezo-resistive pressure transducers, MEMS shear-stress sensors, and high-speed, 2D-2C, PIV measurements. Through the use of Fourier analysis of the wall-pressure fluctuations and Proper Orthogonal Decomposition of the velocity fields, we show that this type of flow is characterized by a self-induced, low-frequency contraction and expansion - called breathing - of the TSB. The dominant Strouhal number of this motion, based on the TSB length and the incoming velocity in the potential flow, is of the order of 0.01. We compare this motion to the low-frequency dynamics observed in laminar separation bubbles (LSBs), geometry-induced TSBs, and shock-induced separated flows.

  5. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system.

    PubMed

    Puente, Gabriela F; Urteaga, Raúl; Bonetto, Fabián J

    2005-10-01

    We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2, and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and P(a). The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (P(a),R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of P(a) and R0. The model obtains from first principles the result that in sonoluminescence the bubble is practically 100% argon for air dissolved in water. Therefore, the dissociation reactions in air bubbles must be taken into account for quantitative computations of maximum temperatures. The agreement found between the numerical and experimental data is very good in the whole parameter space explored. We do not fit any parameter in the model. We believe that we capture all the relevant physics with the model.

  6. Dynamic adsorption properties of n-alkyl glucopyranosides determine their ability to inhibit cytolysis mediated by acoustic cavitation.

    PubMed

    Sostaric, Joe Z; Miyoshi, Norio; Cheng, Jason Y; Riesz, Peter

    2008-10-09

    Suspensions of human leukemia (HL-60) cells readily undergo cytolysis when exposed to ultrasound above the acoustic cavitation threshold. However, n-alkyl glucopyranosides (hexyl, heptyl, and octyl) completely inhibit ultrasound-induced (1057 kHz) cytolysis (Sostaric, et al. Free Radical Biol. Med. 2005, 39, 1539-1548). The efficacy of protection from ultrasound-induced cytolysis was determined by the n-alkyl chain length of the glucopyranosides, indicating that protection efficacy depended on adsorption of n-alkyl glucopyranosides to the gas/solution interface of cavitation bubbles and/or the lipid membrane of cells. The current study tests the hypothesis that "sonoprotection" (i.e., protection of cells from ultrasound-induced cytolysis) in vitro depends on the adsorption of glucopyranosides at the gas/solution interface of cavitation bubbles. To test this hypothesis, the effect of ultrasound frequency (from 42 kHz to 1 MHz) on the ability of a homologous series of n-alkyl glucopyranosides to protect cells from ultrasound-induced cytolysis was investigated. It is expected that ultrasound frequency will affect sonoprotection ability since the nature of the cavitation bubble field will change. This will affect the relative importance of the possible mechanisms for ultrasound-induced cytolysis. Additionally, ultrasound frequency will affect the lifetime and rate of change of the surface area of cavitation bubbles, hence the dynamically controlled adsorption of glucopyranosides to their surface. The data support the hypothesis that sonoprotection efficiency depends on the ability of glucopyranosides to adsorb at the gas/solution interface of cavitation bubbles.

  7. Amplification of seismic waves beneath active volcanoes

    NASA Astrophysics Data System (ADS)

    Navon, O.; Lensky, N. G.; Collier, L.; Neuberg, J.; Lyakhovsky, V.

    2003-04-01

    Long-period (LP) seismic events are typical for many volcanoes and are attributed to energy leaking from waves traveling along the conduit - country-rock interface. While the wave propagation is well understood, their actual trigger mechanism and their energy source are not. Here we test the hypothesis that energy may be supplied by volatile-release from a supersaturated melt. If bubbles are initially in equilibrium with the melt in the conduit, and the melt is suddenly decompressed, the transfer of volatiles from the supersaturated melt into the bubbles transforms stored potential energy into expansion work. For example, small dome collapse, opening of a crack or a displacement along the brittle part of the conduit may decompress the magma by a few bars and create the needed supersaturation. This energy is released over the timescale of accelerated expansion, which is longer than a typical LP event. Following decompression, when the transfer of volatiles into bubbles is fast enough, expansion accelerates and the bulk viscosity of the bubbly magma is negative (Lensky et al., 2002). New calculations show that under such conditions a sinusoidal P-wave is amplified. We note that seismic waves created by tectonic earthquakes that are not associated with net decompression, do not lead to net release of volatiles or to net expansion. In this case, the bulk viscosity is positive and waves traveling through the magma should attenuate. The proposed model explains how weak seismic signals may be amplified as they travel through a conduit that contains supersaturated bubbly magma. It provides the general framework for amplifying volcanic seismicity such as long-period events.

  8. Trend Switching Processes in Financial Markets

    NASA Astrophysics Data System (ADS)

    Preis, Tobias; Stanley, H. Eugene

    For an intriguing variety of switching processes in nature, the underlying complex system abruptly changes at a specific point from one state to another in a highly discontinuous fashion. Financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("bubble collapse"), on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for very short time scales. Our analysis is based on a German DAX Future data base containing 13,991,275 transactions recorded with a time resolution of 10- 2 s. For a parallel analysis, we use a data base of all S&P500 stocks providing 2,592,531 daily closing prices. We ask whether these ubiquitous switching processes have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have features similar to those present in phase transitions. We find that the well-known catastrophic bubbles that occur on large time scales - such as the most recent financial crisis - are no outliers but in fact single dramatic representatives caused by the formation of upward and downward trends on time scales varying over nine orders of magnitude from the very large down to the very small.

  9. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes

    DOE PAGES

    Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram; ...

    2017-02-03

    Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less

  10. Comparing solvophobic and multivalent induced collapse in polyelectrolyte brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Nicholas E.; Brettmann, Blair K.; Vishwanath, Venkatram

    Here, coarse-grained molecular dynamics enhanced by free-energy sampling methods is used to examine the roles of solvophobicity and multivalent salts on polyelectrolyte brush collapse. Specifically, we demonstrate that while ostensibly similar, solvophobic collapsed brushes and multivalent-ion collapsed brushes exhibit distinct mechanistic and structural features. Notably, multivalent-induced heterogeneous brush collapse is observed under good solvent polymer backbone conditions, demonstrating that the mechanism of multivalent collapse is not contingent upon a solvophobic backbone. Umbrella sampling of the potential of mean-force (PMF) between two individual brush strands confirms this analysis, revealing starkly different PMFs under solvophobic and multivalent conditions, suggesting the role ofmore » multivalent “bridging” as the discriminating feature in trivalent collapse. Structurally, multivalent ions show a propensity for nucleating order within collapsed brushes, whereas poor-solvent collapsed brushes are more disordered; this difference is traced to the existence of a metastable PMF minimum for poor solvent conditions, and a global PMF minimum for trivalent systems, under experimentally relevant conditions.« less

  11. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  12. Investigation of Nucleate Boiling Mechanisms Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Dhir, V. K.; Qiu, D. M.; Ramanujapu, N.; Hasan, M. M.

    1999-01-01

    The present work is aimed at the experimental studies and numerical modeling of the bubble growth mechanisms of a single bubble attached to a heating surface and of a bubble sliding along an inclined heated plate. Single artificial cavity of 10 microns in diameter was made on the polished Silicon wafer which was electrically heated at the back side in order to control the surface nucleation superheat. Experiments with a sliding bubble were conducted at different inclination angles of the downward facing heated surface for the purpose of studying the effect of magnitude of components of gravity acting parallel to and normal to the heat transfer surface. Information on the bubble shape and size, the bubble induced liquid velocities as well as the surface temperature were obtained using the high speed imaging and hydrogen bubble techniques. Analytical/numerical models were developed to describe the heat transfer through the micro-macro layer underneath and around a bubble formed at a nucleation site. In the micro layer model the capillary and disjoining pressures were included. Evolution of the bubble-liquid interface along with induced liquid motion was modeled. As a follow-up to the studies at normal gravity, experiments are being conducted in the KC-135 aircraft to understand the bubble growth/detachment under low gravity conditions. Experiments have been defined to be performed under long duration of microgravity conditions in the space shuttle. The experiment in the space shuttle will provide bubble growth and detachment data at microgravity and will lead to validation of the nucleate boiling heat transfer model developed from the preceding studies conducted at normal and low gravity (KC-135) conditions.

  13. The Bear’s Den: Russian Anti Access/Area Denial in the Maritime Domain

    DTIC Science & Technology

    2016-05-01

    and its Northern Fleet accounts for two-thirds of the Russian Navy.58 Russia eventually plans to build 50 new bases in the area, and its Northern...Collapse of USSR,” BBC News , 25 Apr 2005, http://news.bbc.co.uk/2/hi/4480745.stm. 44 Senate, Russian Strategy and Military Operations: Statement before the...Top NATO General: Russians starting to build air defense bubble over Syria,” The Washington Post, 29 Sep 2015, https://www.washingtonpost.com/ news

  14. Role of physical properties of liquids in cavitation erosion

    NASA Technical Reports Server (NTRS)

    Thiruvengadam, A.

    1974-01-01

    The dependence of erosion rates on the ambient temperature of water is discussed. The assumption that the gas inside the bubble is compressed adiabatically during collapse gives better agreement with experiments than the assumption that the gas is isothermally compressed. Acoustic impedance is an important liquid parameter that governs the erosion intensity in vibratory devices. The investigation reveals that the major physical properties of liquids governing the intensity of erosion include density, sound speed, surface tension, vapor pressure, gas content, and nuclei distribution.

  15. Allostery through protein-induced DNA bubbles

    DOE PAGES

    Traverso, Joseph J.; Manoranjan, Valipuram S.; Bishop, A. R.; ...

    2015-03-12

    Allostery through DNA is increasingly recognized as an important modulator of DNA functions. Here, we show that the coalescence of protein-induced DNA bubbles can mediate allosteric interactions that drive protein aggregation. We propose that such allostery may regulate DNA's flexibility and the assembly of the transcription machinery. Mitochondrial transcription factor A (TFAM), a dual-function protein involved in mitochondrial DNA (mtDNA) packaging and transcription initiation, is an ideal candidate to test such a hypothesis owing to its ability to locally unwind the double helix. Numerical simulations demonstrate that the coalescence of TFAM-induced bubbles can explain experimentally observed TFAM oligomerization. The resultingmore » melted DNA segment, approximately 10 base pairs long, around the joints of the oligomers act as flexible hinges, which explains the efficiency of TFAM in compacting DNA. Since mitochondrial polymerase (mitoRNAP) is involved in melting the transcription bubble, TFAM may use the same allosteric interaction to both recruit mitoRNAP and initiate transcription.« less

  16. Visualization of ultrasound induced cavitation bubbles using the synchrotron x-ray Analyzer Based Imaging technique.

    PubMed

    Izadifar, Zahra; Belev, George; Izadifar, Mohammad; Izadifar, Zohreh; Chapman, Dean

    2014-12-07

    Observing cavitation bubbles deep within tissue is very difficult. The development of a method for probing cavitation, irrespective of its location in tissues, would improve the efficiency and application of ultrasound in the clinic. A synchrotron x-ray imaging technique, which is capable of detecting cavitation bubbles induced in water by a sonochemistry system, is reported here; this could possibly be extended to the study of therapeutic ultrasound in tissues. The two different x-ray imaging techniques of Analyzer Based Imaging (ABI) and phase contrast imaging (PCI) were examined in order to detect ultrasound induced cavitation bubbles. Cavitation was not observed by PCI, however it was detectable with ABI. Acoustic cavitation was imaged at six different acoustic power levels and six different locations through the acoustic beam in water at a fixed power level. The results indicate the potential utility of this technique for cavitation studies in tissues, but it is time consuming. This may be improved by optimizing the imaging method.

  17. Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning.

    PubMed

    Jiao, Yunlong; Li, Chuanzong; Wu, Sizhu; Hu, Yanlei; Li, Jiawen; Yang, Liang; Wu, Dong; Chu, Jiaru

    2018-05-16

    We present here a kind of novel multiscale TiO 2 square micropillar arrays on titanium sheets through vertically crossed scanning of femtosecond laser. This multiscale micro-/nanostructure is ascribed to the combination of laser ablation/shock compression/debris self-deposition, which shows superaerophobicity in water with a very small sliding angle. The laser-induced sample displays switchable bubble wettability in water via heating in a dark environment and ultraviolet (UV) irradiation in alcohol. After heating in a dark environment (0.5 h), the ablated titanium surface shows superaerophilicity in water with a bubble contact angle (BCA) of ∼4°, which has a great ability of capturing bubbles in water. After UV irradiation in alcohol (1 h), the sample recovered its superaerophobicity in water and the BCA turns into 156°. The mechanism of reversible switching is believed as the chemical conversion between Ti-OH and Ti-O. It is worth noting that our proposed switching strategy is time-saving and the switch wetting cycle costs only 1.5 h. Then we repeat five switching cycles on the reversibility and the method shows excellent reproducibility and stability. Moreover, laser-induced samples with different scanning spacing (50-120 μm) are fabricated and all of them show switchable underwater bubble wettability via the above tunable methods. Finally, we fabricate hybrid-patterned microstructures to show different patterned bubbles in water on the heated samples. We believe the original works will provide some new insights to researchers in bubble manipulation and gas collection fields.

  18. Bubble nucleation and inflationary perturbations

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Jazayeri, Sadra; Karami, Asieh; Rostami, Tahereh

    2017-12-01

    In this work we study the imprints of bubble nucleation on primordial inflationary perturbations. We assume that the bubble is formed via the tunneling of a spectator field from the false vacuum of its potential to its true vacuum. We consider the configuration in which the observable CMB sphere is initially outside of the bubble. As the bubble expands, more and more regions of the exterior false vacuum, including our CMB sphere, fall into the interior of the bubble. The modes which leave the horizon during inflation at the time when the bubble wall collides with the observable CMB sphere are affected the most. The bubble wall induces non-trivial anisotropic and scale dependent corrections in the two point function of the curvature perturbation. The corrections in the curvature perturbation and the diagonal and off-diagonal elements of CMB power spectrum are estimated.

  19. CarD uses a minor groove wedge mechanism to stabilize the RNA polymerase open promoter complex.

    PubMed

    Bae, Brian; Chen, James; Davis, Elizabeth; Leon, Katherine; Darst, Seth A; Campbell, Elizabeth A

    2015-09-08

    A key point to regulate gene expression is at transcription initiation, and activators play a major role. CarD, an essential activator in Mycobacterium tuberculosis, is found in many bacteria, including Thermus species, but absent in Escherichia coli. To delineate the molecular mechanism of CarD, we determined crystal structures of Thermus transcription initiation complexes containing CarD. The structures show CarD interacts with the unique DNA topology presented by the upstream double-stranded/single-stranded DNA junction of the transcription bubble. We confirm that our structures correspond to functional activation complexes, and extend our understanding of the role of a conserved CarD Trp residue that serves as a minor groove wedge, preventing collapse of the transcription bubble to stabilize the transcription initiation complex. Unlike E. coli RNAP, many bacterial RNAPs form unstable promoter complexes, explaining the need for CarD.

  20. Vapor Cavitation in Dynamically Loaded Journal Bearings

    NASA Technical Reports Server (NTRS)

    Jacobson, B. O.; Hamrock, B. J.

    1983-01-01

    High speed motion camera experiments were performed on dynamically loaded journal bearings. The length to diameter ratio of the bearing, the speed of the roller and the tube, the surface material of the roller, and the static and dynamic eccentricity of the bearing were varied. One hundred and thirty-four cases were filmed. The occurrence of vapor cavitation was clearly evident in the films and figures presented. Vapor cavitation was found to occur when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The physical situation in which vapor cavitation occurs is during the squeezing and sliding motion within a bearing. Besides being able to accurately capture the vapor cavitation on film, an analysis of the formation and collapse of the cavitation bubbles and characteristics of the bubble content are presented.

  1. Theoretical and experimental comparison of vapor cavitation in dynamically loaded journal bearings

    NASA Astrophysics Data System (ADS)

    Brewe, D. E.; Hamrock, B. J.; Jacobson, B. A.

    Vapor cavitation for a submerged journal bearing under dynamically loaded conditions was investigated. The observation of vapor cavitation in the laboratory was done by high-speed photography. It was found that vapor cavitation occurs when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The theoretical solution to the Reynolds equation is determined numerically using a moving boundary algorithm. This algorithm conserves mass throughout the computational domain including the region of cavitation and its boundaries. An alternating direction implicit (MDI) method is used to effect the time march. A rotor undergoing circular whirl was studied. Predicted cavitation behavior was analyzed by three-dimensional computer graphic movies. The formation, growth, and collapse of the bubble in response to the dynamic conditions is shown. For the same conditions of dynamic loading, the cavitation bubble was studied in the laboratory using high-speed photography.

  2. A theoretical study of hydrodynamic cavitation.

    PubMed

    Arrojo, S; Benito, Y

    2008-03-01

    The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.

  3. Theoretical and experimental comparison of vapor cavitation in dynamically loaded journal bearings

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Hamrock, B. J.; Jacobson, B. A.

    1985-01-01

    Vapor cavitation for a submerged journal bearing under dynamically loaded conditions was investigated. The observation of vapor cavitation in the laboratory was done by high-speed photography. It was found that vapor cavitation occurs when the tensile stress applied to the oil exceeded the tensile strength of the oil or the binding of the oil to the surface. The theoretical solution to the Reynolds equation is determined numerically using a moving boundary algorithm. This algorithm conserves mass throughout the computational domain including the region of cavitation and its boundaries. An alternating direction implicit (MDI) method is used to effect the time march. A rotor undergoing circular whirl was studied. Predicted cavitation behavior was analyzed by three-dimensional computer graphic movies. The formation, growth, and collapse of the bubble in response to the dynamic conditions is shown. For the same conditions of dynamic loading, the cavitation bubble was studied in the laboratory using high-speed photography.

  4. MS2 and ΦX174 inactivation by high frequency ultrasound

    NASA Astrophysics Data System (ADS)

    Manariotis, I. D.; Syngouna, V.; Chrysikopoulos, C. V.

    2012-04-01

    Biocolloid inactivation in water with the use of ultrasound can be quite effective, because the implosion of cavitation bubbles can generate high temperatures and pressures at the heart of collapsed bubbles. Biocolloid inactivation by cavitation takes place due to a combination of simultaneously acting processes involving mechanical effects (caused by turbulence generation, microstreaming, liquid circulation currents, and shear stresses), chemical effects of cavitation (generation of active free radicals), and heat effects (generation of local hot spots). Generally, the mechanical effects are more responsible for biocolloid disinfection, whereas the chemical and heat effects play only a supporting role. The present study focuses on inactivation of MS2 and ΦΧ174 at three different relatively high frequencies (i.e. 582, 862, and 1142 kHz). The experimental results indicate that, for all three frequencies and power input of 133 W, both phages were at least 90% inactivated after 60 min of sonication.

  5. Cavitation-based hydro-fracturing technique for geothermal reservoir stimulation

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Ren, Fei; Cox, Thomas S.

    2017-02-21

    A rotary shutter valve 500 is used for geothermal reservoir stimulation. The valve 500 includes a pressure chamber 520 for holding a working fluid (F) under pressure. A rotatable shutter 532 is turned with a powering device 544 to periodically align one or more windows 534 with one or more apertures 526 in a bulkhead 524. When aligned, the pressurized working fluid (F) flows through the bulkhead 524 and enters a pulse cavity 522, where it is discharged from the pulse cavity 522 as pressure waves 200. The pressure wave propagation 200 and eventual collapse of the bubbles 202 can be transmitted to a target rock surface 204 either in the form of a shock wave 206, or by micro jets 208, depending on the bubble-surface distance. Once cavitation at the rock face begins, fractures are initiated in the rock to create a network of micro-fissures for enhanced heat transfer.

  6. Comments on the possibility of cavitation in liquid metal targets for pulsed spallation neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter J.M.

    When short pulses of protons strike the volume of a liquid target, the rapid heating produces a pressurized region which relaxes as the pressure wave propagates outward. Skala and Bauer have modeled the effects of the pressure wave impinging on the container walls of a liquid mercury target under ESS conditions. They find that high pressures and high wall stresses result if the medium is uniform, nearly incompressible liquid. The pressure and the stresses are much reduced if the liquid contains bubbles of helium, due to their high compressibility. However, according to the calculation, the pressure still reaches an atmospheremore » or so at the surface, which reflects the compressive wave as a rarefaction wave of the same magnitude. Even such modest underpressures can lead to the growth of bubbles (cavitation) at or near the surface, which can collapse violently and erode the container surface. It is necessary to avoid this. Leighton provides a wide ranging discussion of pressure waves in bubbly media, which may provide insights into the nature and control of cavitation phenomena. The paper surveys some of the relevant information from that source.« less

  7. Unstable 3D phenomena: Dynamic interactions of a cavitation bubble and Richtmyer-Meshkov unstable divot

    NASA Astrophysics Data System (ADS)

    Buttler, William; Renner, Dru; Morris, Chris; Manzanares, Ruben; Heidemann, Joel; Kalas, Ryan; Llobet, Anna; Martinez, John; Payton, Jeremy; Saunders, Andy; Schmidt, Derek; Tainter, Amy; Vincent, Samuel; Vogan-McNeil, Wendy

    2017-06-01

    We radiographically explore a shock-induced Sn cavitation bubble as it interacts with a transverse cavitation wave caused by a Richtmyer-Meshkov unstable spike from a divot. The cavitation bubble forms as two shockwaves collide under the divot, as the shockwaves release to ambient pressure at the surface. The divot inverts and unstably grows, as expected and predicted, but the release waves that form the cavitation bubble reflect from and constrain the cavitation wave growth. As the cavitation wave grows it pierces the cavitation bubble, deflating it onto the unstable transverse cavitation wave.

  8. Drops and Bubble in Materials Science

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1982-01-01

    The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.

  9. Bubble formation in water with addition of a hydrophobic solute.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2015-07-01

    We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.

  10. Nonlinear activity of acoustically driven gas bubble near a rigid boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maksimov, Alexey

    2015-10-28

    The presence of a boundary can produce considerable changes in the oscillation amplitude of the bubble and its scattered echo. The present study fills a gap in the literature, in that it is concerned theoretically with the bubble activity at relatively small distances from the rigid boundary. It was shown that the bi-spherical coordinates provide separation of variables and are more suitable for analysis of the dynamics of these constrained bubbles. Explicit formulas have been derived which describe the dependence of the bubble emission near a rigid wall on its size and the separation distance between the bubble and themore » boundary. As applications, time reversal technique for gas leakage detection and radiation forces that are induced by an acoustic wave on a constrained bubble were analyzed.« less

  11. On the Induced Gravitational Collapse

    NASA Astrophysics Data System (ADS)

    Becerra, Laura M.; Bianco, Carlo; Fryer, Chris; Rueda, Jorge; Ruffini, Remo

    2018-01-01

    The induced gravitational collapse (IGC) paradigm has been applied to explain the long gamma ray burst (GRB) associated with type Ic supernova, and recently the Xray flashes (XRFs). The progenitor is a binary systems of a carbon-oxygen core (CO) and a neutron star (NS). The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1). For the binary driven hypernova (BdHNe), the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH) with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We're going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.

  12. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu

    USGS Publications Warehouse

    Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob

    2014-01-01

    Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures indicating heterogeneous bubble nucleation, progressively more complex growth history and shear-localization; and the highest degrees of microlite crystallization, most evolved melt compositions and lowest relative temperatures. These findings suggest that collapsing columns in Ruapehu have been produced when strain localization is prominent, early bubble nucleation occurs and variation in decompression rate across the conduit is greatest. This study shows that examination of pumice from steady phases that precede column collapse may be used to predict subsequent column behaviour.

  13. On the effect of irradiation-induced resolution in modelling fission gas release in UO2 LWR fuel

    NASA Astrophysics Data System (ADS)

    Lösönen, Pekka

    2017-12-01

    Irradiation resolution of gas atoms and vacancies from intra- and intergranular bubbles in sintered UO2 fuel was studied by comparing macroscopic models with a more mechanistic approach. The applied macroscopic models imply the resolution rate of gas atoms to be proportional to gas concentration in intragranular bubbles and at grain boundary (including intergranular bubbles). A relation was established between the macroscopic models and a single encounter of an energetic fission fragment with a bubble. The effect of bubble size on resolution was quantified. The number of resoluted gas atoms per encounter of a fission fragment per bubble was of the same order of magnitude for intra- and intergranular bubbles. However, the resulting macroscopic resolution rate of gas atoms was about two orders of magnitude larger from intragranular bubbles. The number of vacancies resoluted from a grain face bubble by a passing fission fragment was calculated. The obtained correlations for resolution of gas atoms from intragranular bubbles and grain boundaries and for resolution of vacancies from grain face bubbles were used to demonstrate the effect of irradiation resolution on fission gas release.

  14. Morphology of Two-Phase Layers with Large Bubbles

    NASA Astrophysics Data System (ADS)

    Vékony, Klára; Kiss, László I.

    2010-10-01

    The understanding of formation and movement of bubbles nucleated during aluminum reduction is essential for a good control of the electrolysis process. In our experiments, we filmed and studied the formation of a bubble layer under the anode in a real-size air-water electrolysis cell model. The maximum height of the bubbles was found to be up to 2 cm because of the presence of the so-called Fortin bubbles. Also, the mean height of the bubble layer was found to be much higher than published previously. The Fortin bubbles were investigated more closely, and their shape was found to be induced by a gravity wave formed at the gas-liquid interface. In addition, large bubbles were always observed to break up into smaller parts right before escaping from under the anode. This breakup and escape led to a large momentum transfer in the bath.

  15. Bursting Bubbles from Combustion of Thermoplastic Materials in Microgravity

    NASA Technical Reports Server (NTRS)

    Butler, K. B.

    1999-01-01

    Many thermoplastic materials in common use for a wide range of applications, including spacecraft, develop bubbles internally as they burn due to chemical reactions taking place within the bulk. These bubbles grow and migrate until they burst at the surface, forceably ejecting volatile gases and, occasionally, molten fuel. In experiments in normal gravity, Kashiwagi and Ohlemiller observed vapor jets extending a few centimeters from the surface of a radiatively heated polymethylmethacrylate (PMMA) sample, with some molten material ejected into the gas phase. These physical phenomena complicated the combustion process considerably. In addition to the non-steady release of volatiles, the depth of the surface layer affected by oxygen was increased, attributed to the roughening of the surface by bursting events. The ejection of burning droplets in random directions presents a potential fire hazard unique to microgravity. In microgravity combustion experiments on nylon Velcro fasteners and on polyethylene wire insulation, the presence of bursting fuel vapor bubbles was associated with the ejection of small particles of molten fuel as well as pulsations of the flame. For the nylon fasteners, particle velocities were higher than 30 cm/sec. The droplets burned robustly until all fuel was consumed, demonstrating the potential for the spread of fire in random directions over an extended distance. The sequence of events for a bursting bubble has been photographed by Newitt et al.. As the bubble reaches the fluid surface, the outer surface forms a dome while the internal bubble pressure maintains a depression at the inner interface. Liquid drains from the dome until it breaks into a cloud of droplets on the order of a few microns in size. The bubble gases are released rapidly, generating vortices in the quiescent surroundings and transporting the tiny droplets. The depression left by the escaping gases collapses into a central jet, which rises with a high velocity and may break up, releasing one or more relatively large drops (on the order of a millimeter in these experiments). A better understanding of bubble development and bursting processes, the effects of bursting behavior on burning rate of the bulk material, and the circumstances under which large droplets are expelled, as well as their trajectories, sizes, and burning rates, is sought through computer modeling compared with experiment.

  16. Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.

    PubMed

    Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G

    2008-05-12

    In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.

  17. Effects of Soluble Surfactant on Lateral Migration of a Bubble in a Shear Flow

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Tryggvason, Gretar

    2014-11-01

    Motivated by the recent experimental study of Takagi et al. (2008), direct numerical simulations are performed to examine effects of soluble surfactant on the lateral migration of a deformable bubble in a pressure-driven channel flow. The interfacial and bulk surfactant concentration evolution equations are solved fully coupled with the incompressible Navier-Stokes equations. A non-linear equation of state is used to relate interfacial surface tension to surfactant concentration at the interface. A multiscale method is developed to handle the mass exchange between the interface and bulk fluid at high Peclet numbers, using a boundary-layer approximation next to the bubble and a relatively coarse grid for the rest of the flow. It is found that the surfactant induced Marangoni stresses can dominate over the shear-induced lift force and thus alter the behavior of the bubble completely, i.e., the contaminated bubble drifts away from the channel wall and stabilizes at the center of the channel in contrast with the corresponding clean bubble that drifts toward the wall and stabilizes near the wall. The Scientific and Technical Research Council of Turkey (TUBITAK), Grant 112M181 and Turkish Academy of Sciences (TUBA).

  18. Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed.

    PubMed

    Gañán-Calvo, Alfonso M

    2017-11-17

    The collapse of a bubble of radius R_{o} at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R is universally scaled using the Ohnesorge number Oh=μ/(ρσR_{o})^{1/2} and a critical value Oh^{*} below which no droplet is ejected; ρ, σ, and μ are the liquid density, surface tension, and viscosity, respectively. First, a flow field analysis at ejection yields the scaling of R with the jet velocity V as R/l_{μ}∼(V/V_{μ})^{-5/3}, where l_{μ}=μ^{2}/(ρσ) and V_{μ}=σ/μ. This resolves the scaling problem of curvature reversal, a prelude to jet formation. In addition, the energy necessary for the ejection of a jet with a volume and averaged velocity proportional to R_{o}R^{2} and V, respectively, comes from the energy excess from the total available surface energy, proportional to σR_{o}^{2}, minus the one dissipated by viscosity, proportional to μ(σR_{o}^{3}/ρ)^{1/2}. Using the scaling variable φ=(Oh^{*}-Oh)Oh^{-2}, it yields V/V_{μ}=k_{v}φ^{-3/4} and R/l_{μ}=k_{d}φ^{5/4}, which collapse published data since 1954 and resolve the scaling of R and V with k_{v}=16, k_{d}=0.6, and Oh^{*}=0.043 when gravity effects are negligible.

  19. Medical research funding may have over-expanded and be due for collapse.

    PubMed

    Charlton, B G; Andras, P

    2005-01-01

    The continual and uninterrupted expansion of medical research funding is generally assumed to be a permanent feature of modern societies, but this expectation may turn out to be mistaken. Sciences tend to go through boom and bust phases. Twentieth century physics is an example where huge increases in funding followed an era of scientific breakthroughs. Speculative over-expansion led to diminishing returns on investment, then a collapse in funding. We predict that medicine will follow the same trajectory. After prolonged over-funding of the 'basic-to-applied' model of clinical innovation, and a progressive shift towards Big Science organization, medical research has become increasingly inefficient and ineffective. Although incremental improvements to existing treatment strategies continue, the rate of significant therapeutic breakthroughs has been declining for three decades. Medical science now requires rationalization and modernization. From this perspective, the current level of medical research funding looks like a bubble due to burst.

  20. Gas separation and bubble behavior at a woven screen

    NASA Astrophysics Data System (ADS)

    Conrath, Michael; Dreyer, Michael E.

    Gas-liquid two phase flows are widespread and in many applications the separation of both phases is necessary. Chemical reactors, water treatment devices or gas-free delivery of liquids like propellant are only some of them. We study the performance of a woven metal screen in respect to its phase separation behavior under static and dynamic conditions. Beside hydraulic screen resistance and static bubble point, our study also comprises the bubble detachment from the screen upon gas breakthrough. Since a woven screen is essentially an array of identical pores, analogies to bubble detachment from a needle can be established. While the bubble point poses an upper limit for pressurized gas at a wetted screen to preclude gas breakthrough, the necessary pressure for growing bubbles to detach from the screen pores a lower limit when breakthrough is already in progress. Based on that inside, the dynamic bubble point effects were constituted that relate to a trapped bubble at such a screen in liquid flow. A trapped is caused to break through the screen by the flow-induced pressure drop across it. Our model includes axially symmetric bubble shapes, degree of coverage of the screen and bubble pressurization due to hydraulic losses in the rest of the circuit. We have built an experiment that consists of a Dutch Twilled woven screen made of stainless steel in a vertical acrylic glass tube. The liquid is silicon oil SF0.65. The screen is suspended perpendicular to the liquid flow which is forced through it at variable flow rate. Controlled injection of air from a needle allows us to examine the ability of the screen to separate gas and liquid along the former mentioned effects. We present experimental data on static bubble point and detachment pressure for breakthrough at different gas supply rates that suggest a useful criterion for reliable static bubble point measurements. Results for the dynamic bubble point are presented that include i) screen pressure drop for different trapped bubble volumes, liquid flow rates and flow-induced compression, ii) typical breakthrough of a trapped bubble at rising liquid flow rate and iii) steady gas supply in steady liquid flow. It shows that our model can explain the experimental observations. One of the interesting findings for the dynamic bubble point is that hydraulic losses in the rest of the circuit will shift the breakthrough of gas to higher liquid flow rates.

  1. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    PubMed

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-07

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors.

  2. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs)

    PubMed Central

    Vanhille, Christian

    2017-01-01

    This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs). PMID:28106748

  3. Two-Dimensional Numerical Simulations of Ultrasound in Liquids with Gas Bubble Agglomerates: Examples of Bubbly-Liquid-Type Acoustic Metamaterials (BLAMMs).

    PubMed

    Vanhille, Christian

    2017-01-17

    This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs).

  4. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (<70 % by volume) is shown by using an appropriate time scale obtained from force balance. Continuous caving leads to the formation of a liquid membrane-type structure which undergoes radial extension due to inertia gained during the precursor phase. The membrane subsequently closes at the rim and the kinetic energy leads to ligament formation and growth. Subsequent ligament breakup is primarily Rayleigh-Plateau type. The breakup mode shifts to diffusional entrapment-induced boiling with an increase in concentration of the volatile component (benzene >70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  5. Prediction of Shock-Induced Cavitation in Water

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron

    2013-06-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.

  6. Disruption of an Aligned Dendritic Network by Bubbles During Re-Melting in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2012-01-01

    The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.

  7. High-Temperature Annealing Induced He Bubble Evolution in Low Energy He Ion Implanted 6H-SiC

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Zhu; Li, Bing-Sheng; Zhang, Li

    2017-05-01

    Bubble evolution in low energy and high dose He-implanted 6H-SiC upon thermal annealing is studied. The < 0001> -oriented 6H-SiC wafers are implanted with 15 keV helium ions at a dose of 1× 1017 cm-2 at room temperature. The samples with post-implantation are annealed at temperatures of 1073, 1173, 1273, and 1473 K for 30 min. He bubbles in the wafers are examined via cross-sectional transmission electron microscopy (XTEM) analysis. The results present that nanoscale bubbles are almost homogeneously distributed in the damaged layer of the as-implanted sample, and no significant change is observed in the He-implanted sample after 1073 K annealing. Upon 1193 K annealing, almost full recrystallization of He-implantation-induced amorphization in 6H-SiC is observed. In addition, the diameters of He bubbles increase obviously. With continually increasing temperatures to 1273 K and 1473 K, the diameters of He bubbles increase and the number density of lattice defects decreases. The growth of He bubbles after high temperature annealing abides by the Ostwald ripening mechanism. The mean diameter of He bubbles located at depths of 120-135 nm as a function of annealing temperature is fitted in terms of a thermal activated process which yields an activation energy of 1.914+0.236 eV. Supported by the National Natural Science Foundation of China under Grant No 11475229.

  8. Degassing of molten alloys with the assistance of ultrasonic vibration

    DOEpatents

    Han, Qingyou; Xu, Hanbing; Meek, Thomas T.

    2010-03-23

    An apparatus and method are disclosed in which ultrasonic vibration is used to assist the degassing of molten metals or metal alloys thereby reducing gas content in the molten metals or alloys. High-intensity ultrasonic vibration is applied to a radiator that creates cavitation bubbles, induces acoustic streaming in the melt, and breaks up purge gas (e.g., argon or nitrogen) which is intentionally introduced in a small amount into the melt in order to collect the cavitation bubbles and to make the cavitation bubbles survive in the melt. The molten metal or alloy in one version of the invention is an aluminum alloy. The ultrasonic vibrations create cavitation bubbles and break up the large purge gas bubbles into small bubbles and disperse the bubbles in the molten metal or alloy more uniformly, resulting in a fast and clean degassing.

  9. Fast particle ejection by a growing laser-induced bubble

    NASA Astrophysics Data System (ADS)

    Zuo, Zhigang; Wu, Shengji; Stone, Howard; Liu, Shuhong

    2017-11-01

    We document experimentally four different interactions of a laser-induced bubble and a free-settling particle, with different combinations of the geometric and physical parameters of the system. In particular, we also discover the high-speed ejection of the particle, and a cavity behind the particle, in cases when initially the particle is in very close proximity to the bubble. These observations offer new insights into the causal mechanism for the enhanced cavitation erosion in silt-laden water. The work was supported by the National Natural Science Foundation of China (No. 51476083) and the open research project of State Key Laboratory of Hydroscience and Engineering.

  10. Spattering activity at Halemáumáu in 2015 and the transition between Hawaiian and Strombolian eruptions

    NASA Astrophysics Data System (ADS)

    Mintz, B. G.; Houghton, B. F.; Orr, T. R.; Taddeucci, J.; Gaudin, D.; Kueppers, U.; Carey, R.; Scarlato, P.; Del Bello, E.

    2016-12-01

    Explosive activity in 2015 at the free surface of the Halemáumáu lava lake at Kīlauea showed features of both Hawaiian fountaining and Strombolian explosivity. Like low Hawaiian fountains, spattering events often persisted for tens of minutes or hours. However, like Strombolian explosions, the activity consisted of a series of bursting of discrete, meter-sized gas bubbles. Each bubble burst threw fluidal bombs, with meter to decimeter diameters, to elevations of meters to a few tens of meters above the collapsing bubble remnant. Initial velocities of the pyroclasts were lower than either Strombolian explosions or high Hawaiian fountains, typically only 7 to 14 meters/second on average.Although some events were triggered by short-lived rock falls that penetrated the crust of the lava lake, the resulting outgassing activity would become self-sustaining and persistent. Activity was at times, confined to a single point source, to several point sources, or along arcs extending tens of meters parallel to the lake margin.This activity represents another type of behavior exhibited by basaltic volcanoes and provides greater insight into the spectrum between Hawaiian fountaining and Strombolian explosivity. Consequently, this activity is highly instructive in terms of: (a) the diversity of degassing/outgassing possible at basaltic volcanoes and (b) the controls on mechanically coupled versus decoupled behavior of the exsolved bubbles. The 2015 Halemáumáu activity was often continuous over similar timescales to Hawaiian fountaining but was markedly less steady than high fountains. A significant portion of the gas phase was released as discrete bubble bursts, but with frequencies two or three orders of magnitude higher than at Stromboli, which permitted sustained but not steady events.

  11. Helium Bubble Injection Solution To The Cavitation Damage At The Spallation Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, M. W.; Ruggles, A. E.

    2009-03-10

    The Spallation Neutron Source (SNS) is one of the largest science projects in the United States, with total cost near 1.4 Billion Dollars. The limiting factor of the facility had always been assumed to be the lifetime of the target window due to radiation damage. After further investigation, the lifetime of the target was determined not to be limited by radiation damage but by cavitation damage. The cavitation damage derives from pressure waves caused by the beam energy deposition. Vapor bubbles form when low to negative pressures occur in the mercury near the stainless steel target window due to wavemore » interaction with the structure. Collapse of these bubbles can focus wave energy in small liquid jets that erode the window surface. Compressibility of the mercury can be enhanced to reduce the amplitude of the pressure wave caused by the beam energy deposition. To enhance compressibility, small (10 to 30 micron diameter) gas bubbles could be injected into the bulk of the mercury. Solubility and diffusivity parameters of inert gas in mercury are required for a complete mechanical simulation and engineering of these strategies. Using current theoretical models, one obtains a theoretical Henry coefficient of helium in mercury on the order of 3.9E15 Pa-molHg/molHe at 300 K. This low solubility was confirmed by a direct, offline experimental method. Mercury was charged with helium and any pressure change was recorded. Any pressure change was attributed to gas going into solution. Therefore, with the sensitivity of the experiment, a lower limit of 9E12 Pa-molHg/molHe was placed on the mercury-helium system. These values guarantee a stable bubble lifetime needed within the SNS mercury target to mitigate cavitation issues.« less

  12. Influence of shock wave pressure amplitude and pulse repetition frequency on the lifespan, size and number of transient cavities in the field of an electromagnetic lithotripter.

    PubMed

    Huber, P; Jöchle, K; Debus, J

    1998-10-01

    Monitoring the generation of cavitation is of great interest for diagnostic and therapeutic use of ultrasound in medicine, since cavitation is considered to play a major role in nonthermal ultrasound interactions with tissue. Important parameters are the number of cavitation events and the energy released during the bubble collapse. This energy is correlated to the maximum bubble radius which is related to the cavitation lifespan. The aim of this study was therefore to investigate the influence of the acoustic pressure amplitude and the pulse repetition frequency (PRF) in the field of a lithotripter (Lithostar, Siemens) on the number, size and lifespan of transient cavitation bubbles in water. We used scattered laser light recorded by a photodiode and stroboscopic photographs to monitor the cavitation activity. We found that PRF (range 0.5-5 Hz) had no influence on the cavitation bubble lifespan and size, whereas lifespan and size increased with the acoustic pressure amplitude. In contrast, the number of cavitation events strongly increased with PRF, whereas the pressure amplitude had no significant influence on the number of cavitation events. Thus, by varying the pressure amplitude and PRF, it might be possible to deliver a defined relative number of cavitations at a defined relative energy level in a defined volume. This seems to be relevant to further studies that address the biological effects of transient cavitation occurring in the fields of lithotripters.

  13. Long-Range Capture and Delivery of Water-Dispersed Nano-objects by Microbubbles Generated on 3D Plasmonic Surfaces.

    PubMed

    Tantussi, Francesco; Messina, Gabriele C; Capozza, Rosario; Dipalo, Michele; Lovato, Laura; De Angelis, Francesco

    2018-05-22

    The possibility of investigating small amounts of molecules, moieties, or nano-objects dispersed in solution constitutes a central step for various application areas in which high sensitivity is necessary. Here, we show that the rapid expansion of a water bubble can act as a fast-moving net for molecules or nano-objects, collecting the floating objects in the surrounding medium in a range up to 100 μm. Thanks to an engineered 3D patterning of the substrate, the collapse of the bubble could be guided toward a designed area of the surface with micrometric precision. Thus, a locally confined high density of particles is obtained, ready for evaluation by most optical/spectroscopic detection schemes. One of the main relevant strengths of the long-range capture and delivery method is the ability to increase, by a few orders of magnitude, the local density of particles with no changes in their physiological environment. The bubble is generated by an ultrafast IR laser pulse train focused on a resonant plasmonic antenna; due to the excitation process, the technique is trustworthy and applicable to biological samples. We have tested the reliabilities of the process by concentrating highly dispersed fluorescence molecules and fluorescent beads. Lastly, as an ultimate test, we have applied the bubble clustering method on nanosized exosome vesicles dispersed in water; due to the clustering effect, we were able to effectively perform Raman spectroscopy on specimens that were otherwise extremely difficult to measure.

  14. Darwin's triggering mechanism of volcano eruptions

    NASA Astrophysics Data System (ADS)

    Galiev, Shamil

    2010-05-01

    Charles Darwin wrote that ‘… the elevation of many hundred square miles of territory near Concepcion is part of the same phenomenon, with that splashing up, if I may so call it, of volcanic matter through the orifices in the Cordillera at the moment of the shock;…' and ‘…a power, I may remark, which acts in paroxysmal upheavals like that of Concepcion, and in great volcanic eruptions,…'. Darwin reports that ‘…several of the great chimneys in the Cordillera of central Chile commenced a fresh period of activity ….' In particular, Darwin reported on four-simultaneous large eruptions from the following volcanoes: Robinson Crusoe, Minchinmavida, Cerro Yanteles and Peteroa (we cite the Darwin's sentences following his The Voyage of the Beagle and researchspace. auckland. ac. nz/handle/2292/4474). Let us consider these eruptions taking into account the volcano shape and the conduit. Three of the volcanoes (Minchinmavida (2404 m), Cerro Yanteles (2050 m), and Peteroa (3603 m)) are stratovolcanos and are formed of symmetrical cones with steep sides. Robinson Crusoe (922 m) is a shield volcano and is formed of a cone with gently sloping sides. They are not very active. We may surmise, that their vents had a sealing plug (vent fill) in 1835. All these volcanoes are conical. These common features are important for Darwin's triggering model, which is discussed below. The vent fill material, usually, has high level of porosity and a very low tensile strength and can easily be fragmented by tension waves. The action of a severe earthquake on the volcano base may be compared with a nuclear blast explosion of the base. It is known, that after a underground nuclear explosion the vertical motion and the surface fractures in a tope of mountains were observed. The same is related to the propagation of waves in conical elements. After the explosive load of the base. the tip may break and fly off at high velocity. Analogous phenomenon may be generated as a result of a severe earthquake. The volcano base obtains the great earthquake-induced vertical acceleration, and the compression wave begins to propagate through the volcano body. Since we are considering conic volcano, the interaction of this wave with the free surface of the volcano may be easily analysed. It is found that the reflection of the upward-going wave from the volcano slope produces tensile stresses within the volcano and bubbles in conduit magma. The conduit magma is held at high pressure by the weight and the strength of the vent fill. This fill may be collapsed and fly off , when the upward wave is reflected from the volcano crater as a decompression wave. After this collapse the pressure on the magma surface drops to atmospheric, and the decompression front begins to move downward in the conduit. In particular, large gas bubbles can begin to form in the magma within the conduit. The resulting bubble growth provides the driving force at the beginning of the eruption. Thus, the earthquake-induced nonlinear wave phenomena can qualitatively explain the spectacular simultaneity of large eruptions after large earthquakes. The pressure difference between a region of low pressure (atmosphere) and the magma chamber can cause the large-scale eruption. The beginning and the process of the eruption depend on many circumstances: conduit system and its dimension, chamber size and pressure, magma viscosity and gas concentration in it may be the main variables . The resonant free oscillations in the conduit may continue for a long time, since they are fed by the magma chamber pressure (Galiev, Sh. U., 2003. The theory of nonlinear trans-resonant wave phenomena and an examination of Charles Darwin's earthquake reports. Geophys. J. Inter., 154, 300-354.). The behaviour of the system strongly depends on the magma viscosity. The gas can escape from the bubbles more easily in the case of low viscous magma. However, if the magma is very viscous, so the gas cannot escape so easily, then the bubbles grow very quickly near the vent only. Effects of this growth can resemble an explosion.

  15. Jet formation of SF6 bubble induced by incident and reflected shock waves

    NASA Astrophysics Data System (ADS)

    Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang

    2017-12-01

    The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.

  16. Cell Structure Evolution of Aluminum Foams Under Reduced Pressure Foaming

    NASA Astrophysics Data System (ADS)

    Cao, Zhuokun; Yu, Yang; Li, Min; Luo, Hongjie

    2016-09-01

    Ti-H particles are used to increase the gas content in aluminum melts for reduced pressure foaming. This paper reports on the RPF process of AlCa alloy by adding TiH2, but in smaller amounts compared to traditional process. TiH2 is completely decomposed by stirring the melt, following which reduced pressure is applied. TiH2 is not added as the blowing agent; instead, it is added for increasing the H2 concentration in the liquid AlCa melt. It is shown that pressure change induces further release of hydrogen from Ti phase. It is also found that foam collapse is caused by the fast bubble coalescing during pressure reducing procedure, and the instability of liquid film is related to the significant increase in critical thickness of film rupture. A combination of lower amounts of TiH2, coupled with reduced pressure, is another way of increasing hydrogen content in the liquid aluminum. A key benefit of this process is that it provides time to transfer the molten metal to a mold and then apply the reduced pressure to produce net shape foam parts.

  17. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution

    NASA Astrophysics Data System (ADS)

    Senavirathne, Gayan; Bertram, Jeffrey G.; Jaszczur, Malgorzata; Chaurasiya, Kathy R.; Pham, Phuong; Mak, Chi H.; Goodman, Myron F.; Rueda, David

    2015-12-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ~5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.

  18. Pre-Big-Bang bubbles from the gravitational instability of generic string vacua

    NASA Astrophysics Data System (ADS)

    Buonanno, A.; Damour, T.; Veneziano, G.

    1999-03-01

    We formulate the basic postulate of pre-Big-Bang cosmology as one of ``asymptotic past triviality", by which we mean that the initial state is a generic perturbative solution of the tree-level low-energy effective action. Such a past-trivial ``string vacuum'' is made of an arbitrary ensemble of incoming gravitational and dilatonic waves, and is generically prone to gravitational instability, leading to the possible formation of many black holes hiding singular space-like hypersurfaces. Each such singular space-like hypersurface of gravitational collapse becomes, in the string-frame metric, the usual Big-Bang t=0 hypersurface, i.e. the place of birth of a baby Friedmann universe after a period of dilaton-driven inflation. Specializing to the spherically symmetric case, we review and reinterpret previous work on the subject, and propose a simple, scale-invariant criterion for collapse/inflation in terms of asymptotic data at past null infinity. Those data should determine whether, when, and where collapse/inflation occurs, and, when it does, fix its characteristics, including anisotropies on the Big-Bang hypersurface whose imprint could have survived till now. Using Bayesian probability concepts, we finally attempt to answer some fine-tuning objections recently moved to the pre-Big-Bang scenario.

  19. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.

    PubMed

    Fuh, Eric; Haleblian, George E; Norris, Regina D; Albala, W David M; Simmons, Neal; Zhong, Pei; Preminger, Glenn M

    2007-04-01

    Scant information has been published describing the effect of laser fiber distance from the stone target on the mechanism of calculus fragmentation. Using high speed photography and acoustic emission measurements we characterized the impact of laser fiber proximity on stone comminution. We evaluated the effect of laser fiber distance from the stone target on resultant cavitation bubble formation and shock wave generation. Stone fragmentation was assessed using a FREDDY (frequency doubled double pulse Nd:YAG) (World of Medicine, Orlando, Florida) laser and a holmium laser. The FREDDY laser was operated using a 420 microm fiber at an output energy of 120 and 160 mJ in single and double pulse settings, and a pulse repetition rate of 1 Hz. The holmium laser was operated using a 200 microm fiber at an output energy of 1 to 3 J and a pulse repetition rate of 1 Hz. The surface of a 1 cm square BegoStone (Bego, Bremen, Germany) attached to an X-Y-Z translational stage was aligned perpendicular to the laser fiber, which was immersed in a Lucite tank filled with water at room temperature. An Imacon 200 high speed camera was used to capture transient cavitation bubbles at a framing rate of up to 1,000,000 frames per second. Acoustic emission signals associated with shock waves generated during the rapid expansion and collapse of the cavitation bubble were measured using a 1 MHz focused ultrasound transducer. At laser fiber distances of 3.0 mm or less cavitation bubbles and shock waves were observed with the FREDDY laser. In contrast to the holmium laser, the bubble size and shock wave intensity of the FREDDY laser was inversely related to the fiber-to-stone distance over the range tested (0.5 to 3.0 mm). While bubble size was noted to increase with a larger stone-to-fiber distance using the holmium laser, to consistently generate cavitation bubbles and shock waves using the FREDDY laser the laser fiber should be operated within 3.0 mm of the target stone. These findings have significant implications during clinical laser stone fragmentation.

  20. Gas embolotherapy: Bubble evolution in acoustic droplet vaporization and design of a benchtop microvascular model

    NASA Astrophysics Data System (ADS)

    Wong, Zheng Zheng

    This work was motivated by an ongoing development of a potential embolotherapy technique to occlude blood flow to tumors using gas bubbles selectively formed by in vivo acoustic droplet vaporization (ADV) of liquid perfluorocarbon droplets. Mechanisms behind the ADV, transport and lodging of emboli need to be understood before gas embolotherapy can translate to the clinic. Evolution of a bubble from acoustic droplet vaporization in a rigid tube, under physiological and room temperature conditions, was observed via ultra-high speed imaging. Effective radii and radial expansion ratios were obtained by processing the images using Image] software. At physiological temperature, a radial expansion ratio of 5.05 was attained, consistent with theoretical prediction. The initial radial growth rate was linear, after which the growth rate increased proportionally with square root of time. Nondimensionalization revealed that the subsequent growth rate also varied inversely with square root of initial radius. Eventually growth became asymptotic. No collapse was observed. A theoretical model derived from a modified Bernoulli equation, and a computational model by Ye & Bull (2004), were compared respectively with experimental results. Initial growth rates were predicted correctly by both models. Experimental results showed heavy damping of growth rate as the bubble grew towards the wall, whereas both models predicted an overshoot in growth followed by multiple oscillations. The theoretical model broke down near the wall; the computational model gave a reasonable bubble shape near the wall but would require correct initial pressure values to be accurate. At room temperature, the expansion ratio shot to 1.43 initially and oscillated down to 1.11, far below the theoretical prediction. Failure of the bubble to expand fully could be due to unconsumed or condensed liquid perfluorocarbon. A new fabrication method via non-lithographic means was devised to make a circular-lumen microchannel out of PDMS, with a diameter as small as 80 microns to mimic the size of a medium arteriole. The microchannel was endothelialized successfully, with a fairly homogeneous distribution along the length. Cell viability assays confirmed the viability of cells maintained in the microchannel. Bubble motion experiments performed with the benchtop microvascular model demonstrated its feasibility.

Top