Sample records for bubble column slurry

  1. Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor.

    PubMed

    Jeon, Jin Hee; Kim, Sang Done; Lim, Tak Hyoung; Lee, Dong Hyun

    2005-08-01

    The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.

  2. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    PubMed

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).

  3. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  4. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  5. Fischer-Tropsch Slurry Reactor modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Y.; Gamwo, I.K.; Harke, F.W.

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas,more » solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.« less

  6. Influence of liquid medium on the activity of a low-alpha Fischer-Tropsch catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.

    1995-12-31

    The purpose of this research was to measure activity, selectivity, and the maintenance of these properties in slurry autoclave experiments with a Fischer-Tropsch (FT) catalyst that was used in the {open_quotes}FT II{close_quotes} bubble-column test, conducted at the Alternative Fuels Development Unit (AFDU) at LaPorte, Texas during May 1994. The catalyst contained iron, copper, and potassium and was formulated to produce mainly hydrocarbons in the gasoline range with lesser production of diesel-range products and wax. The probability of chain growth was thus deliberately kept low. Principal goals of the autoclave work have been to find the true activity of this catalystmore » in a stirred tank reactor, unhindered by heat or mass transfer effects, and to obtain a steady conversion and selectivity over the approximately 15 days of each test. Slurry autoclave testing of the catalyst in heavier waxes also allows insight into operation of larger slurry bubble column reactors. The stability of reactor operation in these experiments, particularly at loadings exceeding 20 weight %, suggests the likely stability of operations on a larger scale.« less

  7. Heat transfer and hydrodynamic investigations of a baffled slurry bubble column

    NASA Astrophysics Data System (ADS)

    Saxena, S. C.; Chen, Z. D.

    1992-09-01

    Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral triangular pitch of 36.5 mm. A Monsanto synthetic heat transfer fluid, Therminol-66 having a viscosity of 39.8 cP at 303 K, is used as a liquid medium. Magnetite powders, average diameters 27.7 and 36.6 µm, in five concentrations up to 50 weight percent in the slurry, are used. As a gas phase, industrial grade nitrogen of purity 99.6 percent is employed. Gas holdup in different operating modes and regimes have been measured for the two- and three-phase systems over a superficial gas velocity range up to 0.20 m/s in the semi-batch mode. Heat transfer coefficients are measured at different tube locations in the bundle at different radial and vertical locations over a range of operating conditions. All these data are compared with the existing literature correlations and models. New correlations are proposed.

  8. Hydrodynamic models for slurry bubble column reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore,more » the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.« less

  9. Technology development for iron Fischer-Tropsch catalysts. Technical progress report No. 8, July 1, 1992--September 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frame, R.R.; Gala, H.B.

    1992-12-31

    The objectives of this contract are to develop a technology for the production of active and stable iron Fischer-Tropsch catalysts for use in slurry-phase synthesis reactors and to develop a scaleup procedure for large-scale synthesis of such catalysts for process development and long-term testing in slurry bubble-column reactors. With a feed containing hydrogen and carbon monoxide in the molar ratio of 0.5 to 1.0 to the slurry bubble-column reactor, the catalyst performance target is 88% CO + H{sub 2} conversion at a minimum space velocity of 2.4 NL/hr/gFe. The desired sum of methane and ethane selectivities is no more thanmore » 4%, and the conversion loss per week is not to exceed 1%. Contract Tasks are as follows: 1.0--Catalyst development, 1.1--Technology assessment, 1.2--Precipitated catalyst preparation method development, 1.3--Novel catalyst preparation methods investigation, 1.4--Catalyst pretreatment, 1.5--Catalyst characterization, 2.0--Catalyst testing, 3.0--Catalyst aging studies, and 4.0--Preliminary design and cost estimate of a catalyst synthesis facility. This paper reports progress made on Task 1.« less

  10. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    DOEpatents

    Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of ironmore » catalyst particles and the formation of ultra-fine particles.« less

  12. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOEpatents

    Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    In this reporting period, a fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of production since the reaction is highly exothermic. Consequently, heavy wax products must be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase FTS. The separation problem is further compounded by catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbonmore » particles. Existing pilot-scale equipment was modified to include a filtration test apparatus. After undergoing an extensive plant shakedown period, filtration tests with cross-flow filter modules using simulant FTS wax slurry were conducted. The focus of these early tests was to find adequate mixtures of polyethylene wax to simulate FTS wax. Catalyst particle size analysis techniques were also developed. Initial analyses of the slurry and filter permeate particles will be used by the research team to design improved filter media and cleaning strategies.« less

  14. Transport of Cryptosporidium parvum Oocysts in Soil Columns following Applications of Raw and Separated Liquid Slurries

    PubMed Central

    Petersen, Heidi H.; Enemark, Heidi L.; Olsen, Annette; Amin, M. G. Mostofa

    2012-01-01

    The potential for the transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a 4-week period, C. parvum oocysts were detected from all soil columns regardless of slurry type and application method, although recovery rates were low (<1%). Soil columns with injected liquid slurry leached 73 and 90% more oocysts compared to columns with injected and surface-applied raw slurries, respectively. Among leachate samples containing oocysts, 44/72 samples yielded viable oocysts as determined by a dye permeability assay (DAPI [4′,6′-diamidino-2-phenylindole]/propidium iodide) with the majority (41%) of viable oocysts found in leachate from soil columns with added liquid slurry. The number of viable oocysts was positively correlated (r = 0.63) with the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespective of the irrigation status. Further studies are needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether the application of separated liquid slurry to agricultural land may represent higher risks for groundwater contamination compared to application of raw slurry. PMID:22706058

  15. Preliminary investigation of air bubbling and dietary sulfur reduction to mitigate hydrogen sulfide and odor from swine waste.

    PubMed

    Clark, O Grant; Morin, Brent; Zhang, Yongcheng; Sauer, Willem C; Feddes, John J R

    2005-01-01

    When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales.

  16. Modified sedimentation-dispersion model for solids in a three-phase slurry column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.N.; Ruether, J.A.; Shah, Y.T.

    1986-03-01

    Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less

  17. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Reising, Arved E; Godinho, Justin M; Jorgenson, James W; Tallarek, Ulrich

    2017-06-30

    Column wall effects and the formation of larger voids in the bed during column packing are factors limiting the achievement of highly efficient columns. Systematic variation of packing conditions, combined with three-dimensional bed reconstruction and detailed morphological analysis of column beds, provide valuable insights into the packing process. Here, we study a set of sixteen 75μm i.d. fused-silica capillary columns packed with 1.9μm, C18-modified, bridged-ethyl hybrid silica particles slurried in acetone to concentrations ranging from 5 to 200mg/mL. Bed reconstructions for three of these columns (representing low, optimal, and high slurry concentrations), based on confocal laser scanning microscopy, reveal morphological features associated with the implemented slurry concentration, that lead to differences in column efficiency. At a low slurry concentration, the bed microstructure includes systematic radial heterogeneities such as particle size-segregation and local deviations from bulk packing density near the wall. These effects are suppressed (or at least reduced) with higher slurry concentrations. Concomitantly, larger voids (relative to the mean particle diameter) begin to form in the packing and increase in size and number with the slurry concentration. The most efficient columns are packed at slurry concentrations that balance these counteracting effects. Videos are taken at low and high slurry concentration to elucidate the bed formation process. At low slurry concentrations, particles arrive and settle individually, allowing for rearrangements. At high slurry concentrations, they arrive and pack as large patches (reflecting particle aggregation in the slurry). These processes are discussed with respect to column packing, chromatographic performance, and bed microstructure to help reinforce general trends previously described. Conclusions based on this comprehensive analysis guide us towards further improvement of the packing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Morphological transformation during activation and reaction of an iron Fischer-Tropsch catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, N.B.; Kohler, S.; Harrington, M.

    1995-12-31

    The purpose of this project is to support the development of slurry-phase bubble column processes being studied at the La Porte Alternative Fuel Development Unit. This paper describes the aspects of Sandia`s recent work regarding the advancement and understanding of the iron catalyst used in the slurry phase process. A number of techniques were used to understand the chemical and physical effects of pretreatment and reaction on the attrition and carbon deposition characteristics of iron catalysts. Unless otherwise stated, the data discussed was derived form experiments carried out on the catalyst chosen for the summer 1994 Fischer-Tropsch run at LaPorte,more » UCI 1185-78-370, (an L 3950 type) that is 88% Fe{sub 2}O{sub 3}, 11% CuO, and 0.052%K{sub 2}O.« less

  19. Development of attrition resistant iron-based Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-20

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results a steady loss of catalyst from the reactor. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (1) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University (2) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (3) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to effects of pretreating procedures, using H{sub 2}, CO and syngas (H{sub 2}/CO = 0.67) as reductants, on the performance (activity, selectivity and stability with time) of a precipitated iron catalyst (100Fe/5Cu/4.2K/10SiO{sub 2} on a mass basis ) during F-T synthesis were studied in a fixed-bed reactor.« less

  20. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns.

    PubMed

    Godinho, Justin M; Reising, Arved E; Tallarek, Ulrich; Jorgenson, James W

    2016-09-02

    Slurry packing capillary columns for ultrahigh pressure liquid chromatography is complicated by many interdependent experimental variables. Previous results have suggested that combination of high slurry concentration and sonication during packing would create homogeneous bed microstructures and yield highly efficient capillary columns. Herein, the effect of sonication while packing very high slurry concentrations is presented. A series of six, 1m×75μm internal diameter columns were packed with 200mg/mL slurries of 2.02μm bridged-ethyl hybrid silica particles. Three of the columns underwent sonication during packing and yielded highly efficient separations with reduced plate heights as low as 1.05. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Reliable prediction of heat transfer coefficient in three-phase bubble column reactor via adaptive neuro-fuzzy inference system and regularization network

    NASA Astrophysics Data System (ADS)

    Garmroodi Asil, A.; Nakhaei Pour, A.; Mirzaei, Sh.

    2018-04-01

    In the present article, generalization performances of regularization network (RN) and optimize adaptive neuro-fuzzy inference system (ANFIS) are compared with a conventional software for prediction of heat transfer coefficient (HTC) as a function of superficial gas velocity (5-25 cm/s) and solid fraction (0-40 wt%) at different axial and radial locations. The networks were trained by resorting several sets of experimental data collected from a specific system of air/hydrocarbon liquid phase/silica particle in a slurry bubble column reactor (SBCR). A special convection HTC measurement probe was manufactured and positioned in an axial distance of 40 and 130 cm above the sparger at center and near the wall of SBCR. The simulation results show that both in-house RN and optimized ANFIS due to powerful noise filtering capabilities provide superior performances compared to the conventional software of MATLAB ANFIS and ANN toolbox. For the case of 40 and 130 cm axial distance from center of sparger, at constant superficial gas velocity of 25 cm/s, adding 40 wt% silica particles to liquid phase leads to about 66% and 69% increasing in HTC respectively. The HTC in the column center for all the cases studied are about 9-14% larger than those near the wall region.

  2. Technology development for cobalt F-T catalysts. Quarterly technical progress report number 10, January 1--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, A.H.

    1995-06-28

    The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less

  3. Single stage high pressure centrifugal slurry pump

    DOEpatents

    Meyer, John W.; Bonin, John H.; Daniel, Arnold D.

    1984-03-27

    Apparatus is shown for feeding a slurry to a pressurized housing. An impeller that includes radial passages is mounted in the loose fitting housing. The impeller hub is connected to a drive means and a slurry supply means which extends through the housing. Pressured gas is fed into the housing for substantially enveloping the impeller in a bubble of gas.

  4. METHOD OF OPERATING A HEAVY WATER MODERATED REACTOR

    DOEpatents

    Vernon, H.C.

    1962-08-14

    A method of removing fission products from the heavy water used in a slurry type nuclear reactor is described. According to the process the slurry is steam distilled with carbon tetrachloride so that at least a part of the heavy water and carbon tetrachloride are vaporized; the heavy water and carbon tetrachloride are separated; the carbon tetrachloride is returned to the steam distillation column at different points in the column to aid in depositing the slurry particles at the bottom of the column; and the heavy water portion of the condensate is purified. (AEC)

  5. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    USGS Publications Warehouse

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  6. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  7. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  8. Pollution attenuation by soils receiving cattle slurry after passage of a slurry-like feed solution. Column experiments.

    PubMed

    Núñez-Delgado, Avelino; López-Períago, Eugenio; Diaz-Fierros-Viqueira, Francisco

    2002-09-01

    Designing soil filtration systems or vegetated filter strips as a means of attenuating water pollution should take into account soil purging capacity. Here we report data on laboratory column trials used to investigate the capacity of a Hortic Anthrosol to attenuate contamination due to downward leaching from cattle slurry applied at the surface. The columns comprised 900 g of soil to a depth of about 20-25 cm, and had been used previously in an experiment involving passage of at least 5 pore volumes of an ion-containing cattle slurry-like feed solution. For the present experiments, the columns were first washed through with distilled water (simulating resting and rain falling after passage of the feed solution), and then received a single slurry dose equivalent to about 300 m3 ha(-1). The columns were then leached with distilled water, with monitoring of chemical oxygen demand (COD) and ion contents in outflow. The results indicated that the pollution-neutralising capacity of the soil was still high but clearly lower than in the earlier experiments with the feed solution. Furthermore, the time-course of COD showed that organic acids were leached through the column even more rapidly than chloride (often viewed as an inert tracer) enhancing the risk of heavy metals leaching and subsequent water pollution. Resting and alternate use of different soil-plant buffer zones would increase the lifespan of purging systems that use soil like the here studied one.

  9. Ultrasound Analysis of Slurries

    DOEpatents

    Soong, Yee and Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N, gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  10. Ultrasound Analysis Of Slurries

    DOEpatents

    Soong, Yee; Blackwell, Arthur G.

    2005-11-01

    An autoclave reactor allows for the ultrasonic analysis of slurry concentration and particle size distribution at elevated temperatures and pressures while maintaining the temperature- and pressure-sensitive ultrasonic transducers under ambient conditions. The reactor vessel is a hollow stainless steel cylinder containing the slurry which includes a stirrer and a N.sub.2 gas source for directing gas bubbles through the slurry. Input and output transducers are connected to opposed lateral portions of the hollow cylinder for respectively directing sound waves through the slurry and receiving these sound waves after transmission through the slurry, where changes in sound wave velocity and amplitude can be used to measure slurry parameters. Ultrasonic adapters connect the transducers to the reactor vessel in a sealed manner and isolate the transducers from the hostile conditions within the vessel without ultrasonic signal distortion or losses.

  11. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Further results indicate that this newly discovered Bubble Shuttle transport mechanism might influence the distribution pattern of methanotrophic microorganisms in the water column and even at the air-sea interface. Methane seep areas are often characterized by an elevated abundance of methane-oxidizing microorganisms, which consume a considerable amount of methane before it escapes into the atmosphere. Based on our study we hypothesize that the Bubble Shuttle transport mechanism contributes to this pelagic methane sink by a sediment-water column transfer of methane oxidizing microorganisms. Furthermore, this Bubble Shuttle may influence the methanotrophic community in the water column after massive short-term submarine inputs of methane (e.g. release of methane from bore holes). Especially in deep-sea regions, where the abundance of methane oxidizing microorganisms in the water column is low in general, Bubble Shuttle may inject a relevant amount of methane oxidizing microorganisms into the water column during massive inputs, supporting indirectly the turnover of this greenhouse active trace gas in the submarine environment.

  12. Bubble Size Distribution in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  13. Colloidal aspects and packing behaviour of charged microparticulates in high efficiency ion chromatography.

    PubMed

    Wahab, M Farooq; Pohl, Christopher A; Lucy, Charles A

    2012-12-28

    The development of small particles in ion chromatography (IC) is a recent phenomenon. Very few studies are available on packing polymeric particles bearing ionizable functional groups. This study explores the colloidal and rheological properties that govern slurry packing to form high efficiency IC columns. The polymeric substrate used was non-porous 4.4 μm sulfonated ethylvinylbenzene–divinylbenzene (1.4 mequiv. SO(3)H/g resin) with 55% crosslink. We developed simple tests optical microscopy and sedimentation tests for predicting the quality of packed columns. The negatively charged particles (zeta potential: −52 mV in water) behave like colloids. The influence of counter-ion charge (Al(3+), Mg(2+), Na(+)) and ionic strength on column efficiency followed the Schulze–Hardy rule. Highly flocculating slurries give poorly packed columns with N ~ 900 whereas under non-agglomerating slurry conditions efficiencies up to N > 10,000 can be achieved. A non-agglomerating slurry also shows non-Newtonian behaviour, specifically shear thickening. Packing at lower flow rate (<1 mL/min) or higher temperature (>50 °C) reduces the shear thickening and produces higher efficiency columns. The packed sulfonated resin column is coated with 72 nm quaternary ammonium bearing latex (AS4A) and used in the separation of F(−), Cl(−), NO(2)(−), Br(−), and NO(3)(−) yielding a reduced plate height of 1.9 under optimum conditions.

  14. Effect of manure application rate and rainfall timing on the leaching of antibiotic-resistant bacteria and their associated genes

    USDA-ARS?s Scientific Manuscript database

    In this study we investigate the effect of application rate and timing of liquid swine slurry on leaching of antibiotic-resistant bacteria (ARB) and their antibiotic-resistance genes (ARG) through soil columns. Swine slurry was added to laboratory soil columns at rates of 5,000 or 30,000 gallons acr...

  15. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  16. Chaotic bubbling and nonstagnant foams.

    PubMed

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    James K. Neathery; Gary Jacobs; Amitava Sarkar

    In the previous reporting period, modifications were completed for integrating a continuous wax filtration system for a 4 liter slurry bubble column reactor. During the current reporting period, a shakedown of the system was completed. Several problems were encountered with the progressive cavity pump used to circulate the wax/catalyst slurry though the cross-flow filter element and reactor. During the activation of the catalyst with elevated temperature (> 270 C) the elastomer pump stator released sulfur thereby totally deactivating the iron-based catalyst. Difficulties in maintaining an acceptable leak rate from the pump seal and stator housing were also encountered. Consequently, themore » system leak rate exceeded the expected production rate of wax; therefore, no online filtration could be accomplished. Work continued regarding the characterization of ultra-fine catalyst structures. The effect of carbidation on the morphology of iron hydroxide oxide particles was the focus of the study during this reporting period. Oxidation of Fe (II) sulfate results in predominantly {gamma}-FeOOH particles which have a rod-shaped (nano-needles) crystalline structure. Carbidation of the prepared {gamma}-FeOOH with CO at atmospheric pressure produced iron carbides with spherical layered structure. HRTEM and EDS analysis revealed that carbidation of {gamma}-FeOOH particles changes the initial nano-needles morphology and generates ultrafine carbide particles with irregular spherical shape.« less

  18. A parallel bubble column system for the cultivation of phototrophic microorganisms.

    PubMed

    Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk

    2008-07-01

    An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).

  19. Characterizing fluid dynamics in a bubble column aimed for the determination of reactive mass transfer

    NASA Astrophysics Data System (ADS)

    Kováts, Péter; Thévenin, Dominique; Zähringer, Katharina

    2018-02-01

    Bubble column reactors are multiphase reactors that are used in many process engineering applications. In these reactors a gas phase comes into contact with a fluid phase to initiate or support reactions. The transport process from the gas to the liquid phase is often the limiting factor. Characterizing this process is therefore essential for the optimization of multiphase reactors. For a better understanding of the transfer mechanisms and subsequent chemical reactions, a laboratory-scale bubble column reactor was investigated. First, to characterize the flow field in the reactor, two different methods have been applied. The shadowgraphy technique is used for the characterisation of the bubbles (bubble diameter, velocity, shape or position) for various process conditions. This technique is based on particle recognition with backlight illumination, combined with particle tracking velocimetry (PTV). The bubble trajectories in the column can also be obtained in this manner. Secondly, the liquid phase flow has been analysed by particle image velocimetry (PIV). The combination of both methods, delivering relevant information concerning disperse (bubbles) and continuous (liquid) phases, leads to a complete fluid dynamical characterization of the reactor, which is the pre-condition for the analysis of mass transfer between both phases.

  20. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the basis for a follow up research scheduled for August 2016 with the R/V POSEIDON with the aim to better constrain their mechanisms and to quantify their overall importance.

  1. Reduced biodegradability of desorption-resistant fractions of polycyclic aromatic hydrocarbons in soil and aquifer solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, J.C.; Alexander, M.

    1996-11-01

    Less of the desorption-resistant fractions of phenanthrene and naphthalene than freshly added phenanthrene and naphthalene was mineralized in columns of aquifer solids, loam, or muck. Slurrying columns of hydrocarbon-amended aquifer solids, loam, or muck enhanced the rate and extent of mineralization of desorption-resistant phenanthrene and naphthalene, but degradation was still less than in slurries amended with fresh compound. A substantial portion of the desorption-resistant compound remained undergraded in the slurry. A surfactant and methanol increased the mineralization of resistant phenanthrene in slurries of loam. A mixed culture of microorganisms enriched on desorption-resistant phenanthrene degraded twice as much of this fractionmore » of compound as a pseudomonad. The authors suggest that predictions of the environment fate of toxic chemicals require information on the biodegradability of the fraction of a compound that is resistant to desorption.« less

  2. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and flexibility to fit around columns of various shapes and sizes. ECVT is also safer than other commonly used imaging modalities as it operates in the range of low frequencies (1 MHz) and does not radiate radioactive energy. In this effort, ECVT is being used to image flow parameters in a packed bed reactor for an ISS flight experiment.

  3. Method for maximizing shale oil recovery from an underground formation

    DOEpatents

    Sisemore, Clyde J.

    1980-01-01

    A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

  4. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  5. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  6. Improved virus inactivation using a hot bubble column evaporator (HBCE).

    PubMed

    Sanchis, Adrian Garrido; Shahid, Muhammad; Pashley, R M

    2018-05-01

    An improved hot bubble column evaporator (HBCE) was used to study virus inactivation rates using hot bubble-virus interactions in two different conditions: (1) using the bubble coalescence inhibition phenomenon of monovalent electrolytes and (2) with reducing the electrostatic repulsive forces between virus and bubble, by the addition of divalent electrolytes. It is shown that the continuous flow of (dry) air, even at 150-250 °C, only heats the aqueous solution in the bubble column to about 45°-55 °C and it was also established that viruses are not significantly affected by even long term exposure to this solution temperature, as confirmed separately from water bath experiments. Hence, the effects observed appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. It was also established that the use of high air inlet temperatures, for short periods of time, can reduce the thermal energy requirement to only about 25% (about 114 kJ/L) of that required for boiling (about 450 kJ/L). Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Attrition resistant catalysts for slurry-phase Fischer-Tropsch process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. Jothimurugesan

    1999-11-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T because they are relatively inexpensive and possess reasonable activity for F-T synthesis (FTS). Their most advantages trait is their high water-gas shift (WGS) activity compared to their competitor, namely cobalt. This enables Fe F-T catalysts to process lowmore » H{sub 2}/CO ratio synthesis gas without an external shift reaction step. However, a serious problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, make the separation of catalyst from the oil/wax product very difficult if not impossible, an d result in a steady loss of catalyst from the reactor. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance.« less

  8. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Papenberg, C.

    2011-07-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. However, up to the present, the extremely high data rate hampers water column backscatter investigations. More sophisticated visualization and processing techniques for water column backscatter analysis are still under development. We here present such water column backscattering data gathered with a 50 kHz prototype multibeam system. Water column backscattering data is presented in videoframes grabbed over 75 s and a "re-sorted" singlebeam presentation. Thus individual gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images and rise velocities can be determined. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. It applies a cross-correlation technique similar to that used in Particle Imaging Velocimetry (PIV) to the acoustic backscatter images. Tempo-spatial drift patterns of the bubbles are assessed and match very well measured and theoretical rise patterns. The application of this processing scheme to our field data gives impressive results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main driver for misinterpretations, i.e. fish-mediated echoes. Even though image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, this technique was never applied in the proposed sense for an acoustic bubble detector.

  9. Influence of cross-sectional ratio of down comer to riser on the efficiency of liquid circulation in loop air lift bubble column

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tatsumi; Kawasaki, Hiroyuki; Mori, Hidetoshi

    2017-11-01

    Loop type bubble columns have good performance of liquid circulation and mass transfer by airlift effect, where the liquid circulation time is an important measurable characteristic parameter. This parameter is affected by the column construction, the aspect ratio of the column, the cross-sectional area ratio of down comer to riser (R), and the superficial gas velocity in the riser (UGR). In this work, the mean gas holdup and the liquid circulation time (TC) have been measured in four types of loop airlift type bubble column: concentric tube internal loop airlift type, rectangular internal loop airlift type, external loop airlift type, external loop airlift with separator. Air and tap water were used as gas and liquid phase, respectively. The results have demonstrated that the mean gas holdup in riser increases in proportion to UGR, and that it in downcomer changes according to the geometric parameters of each bubble column. TC has been found to conform to an empirical equation which depends on UGR and the length of draft tube or division plate in the region of 0.33 < R < 1.

  10. Acoustic observations of gas bubble streams in the NW Black Sea as a method for estimation of gas flux from vent sites

    NASA Astrophysics Data System (ADS)

    Artemov, Yu. G.

    2003-04-01

    Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the water column due to a certain bubble stream, 2) how much amount of gas comes into the water column due to a certain seepage area of the see floor, 3) how much amount of gas diffuses into the water and how much gas phase enters the atmosphere. Echo-sounder is the habitual equipment for detecting gas plumes (flares) in the water column. To provide observations of gas seeps with bubbles tracking, single target and volume backscattering strength measurements, we use installed on board the R/V "Professor Vodyanitskiy" dual frequency (38 and 120 kHz) split-beam scientific echo-sounder SIMRAD EK-500. Dedicated software is developed to extract from the raw echo data and to handle the definite information for analyses of gas bubble streams features. This improved hydroacoustic techniques allows to determine gas bubbles size spectrum at different depths through the water column as well as rise velocity of bubbles of different sizes. For instance, bubble of 4.5 mm diameter has rising speed of 25.8 cm/sec at 105 m depth, while bubble of 1.7 mm diameter has rising speed of 16.3 cm/sec at 32 m depth. Using volume backscattering measurements in addition, it is possible to evaluate flux of the gas phase produced by methane bubble streams and to learn of its fate in the water column. Ranking of various gas plumes by flux rate value is available also. In this presentation results of acoustic observations at the shallow NW Black Sea seepage area are given.

  11. Slurry Erosion Behavior of F6NM Stainless Steel and High-Velocity Oxygen Fuel-Sprayed WC-10Co-4Cr Coating

    NASA Astrophysics Data System (ADS)

    Cui, S. Y.; Miao, Q.; Liang, W. P.; Huang, B. Z.; Ding, Z.; Chen, B. W.

    2017-02-01

    WC-10Co-4Cr coating was applied to the surface of F6NM stainless steel by high-velocity oxygen-fuel spraying. The slurry erosion behavior of the matrix and coating was examined at different rotational speeds using a self-made machine. This experiment effectively simulates real slurry erosion in an environment with high silt load. At low velocity (<6 m/s), the main failure mechanism was cavitation. Small bubbles acted as an air cushion, obstructing direct contact between sand and the matrix surface. However, at velocity above 9 m/s, abrasive wear was the dominant failure mechanism. The results indicate that WC-10Co-4Cr coating significantly improved the slurry resistance at higher velocity, because it created a thin and dense WC coating on the surface.

  12. Interactions between soil texture and placement of dairy slurry application: II. Leaching of phosphorus forms.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Managing phosphorus (P) losses in soil leachate folllowing land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos taurus L.) manure slurry. Surface application of slurry increased P leaching losses relative to baseline losses, but losses declined with increasing active flow volume. After elution of one pore volume, leaching averaged 0.54 kg P ha(-1) from the loam, 0.38 kg P ha(-1) from the sandy loam, and 0.22 kg P ha(-1) from the loamy sand following surface application. Injection decreased leaching of all P forms compared with surface application by an average of 0.26 kg P ha(-1) in loam and 0.23 kg P ha(-1) in sandy loam, but only by 0.03 kg P ha(-1) in loamy sand. Lower leaching losses were attributed to physical retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in manageing P losses following slurry application.

  13. An investigation of the effect of rapid slurry chilling on blown pack spoilage of vacuum-packaged beef primals.

    PubMed

    Reid, R; Fanning, S; Whyte, P; Kerry, J; Bolton, D

    2017-02-01

    The aim of this study was to investigate if rapid slurry chilling would retard or prevent blown pack spoilage (BPS) of vacuum-packaged beef primals. Beef primals were inoculated with Clostridium estertheticum subspp. estertheticum (DSMZ 8809), C. estertheticum subspp. laramenise (DSMZ 14864) and C. gasigenes (DSMZ 12272), and vacuum-packaged with and without heat shrinkage (90°C for 3 s). These packs were then subjected to immediate chilling in an ice slurry or using conventional blast chilling systems and stored at 2°C for up to 100 days. The onset and progress of BPS was monitored using the following scale; 0-no gas bubbles in drip; 1-gas bubbles in drip; 2-loss of vacuum; 3-'blown'; 4-presence of sufficient gas inside the packs to produce pack distension and 5-tightly stretched, 'overblown' packs/packs leaking. Rapid slurry chilling (as compared to conventional chilling) did not significantly affect (P > 0.05) the time to the onset or progress of BPS. It was therefore concluded that rapid chilling of vacuum-packaged beef primals, using an ice slurry system, may not be used as a control intervention to prevent or retard blown pack spoilage. This study adds to our growing understanding of blown pack spoilage of vacuum-packaged beef primals and suggests that rapid chilling of vacuum-packaged beef primals is not a control option for the beef industry. The results suggest that neither eliminating the heat shrinkage step nor rapid chilling of vacuum-packaged beef retard the time to blown pack spoilage. © 2016 The Society for Applied Microbiology.

  14. Models and observations of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.

  15. Porous matrix structures for alkaline electrolyte fuel cells

    NASA Technical Reports Server (NTRS)

    Vine, R. W.; Narsavage, S. T.

    1975-01-01

    A number of advancements have been realized by a continuing research program to develop higher chemically stable porous matrix structures with high bubble pressure (crossover resistance) for use as separators in potassium hydroxide electrolyte fuel cells. More uniform, higher-bubble-pressure asbestos matrices were produced by reconstituting Johns-Manville asbestos paper; Fybex potassium titanate which was found compatible with 42% KOH at 250 F for up to 3000 hr; good agreement was found between bubble pressures predicted by an analytical study and those measured with filtered structures; Teflon-bonded Fybex matrices with bubble pressures greater than 30 psi were obtained by filtering a water slurry of the mixture directly onto fuel cell electrodes; and PBI fibers have satisfactory compatibility with 42% KOH at 250 F.

  16. Effect of polymer additives on hydrodynamics and oxygen transfer in a bubble column bioreactor.

    PubMed

    Kawase, Y

    1993-01-01

    The influence of polymer additives (polyethylene oxide and polyacrylamide) on the hydrodynamics and oxygen transfer in a bubble column bioreactor was examined. The addition of small amounts of these polymers has been known to cause significant drag reduction in turbulent flow circumstances. The gas hold-up was slightly decreased and the liquid-phase mixing was somewhat enhanced due to the addition of the polymers. The addition of polymer additives brought about a reduction of the volumetric oxygen transfer coefficient by about 40%. In dilute polymer solutions, large bubbles formed by bubble coalescence moved with high rise velocities in the presence of many small bubbles and the bubble size distributions were less uniform compared with those in water. The complicated changes in bubble hydrodynamic characteristics were examined to give possible explanations for oxygen transfer reduction.

  17. Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Lee, Ho-Sang; Lee, Choul-Gyun

    2016-07-28

    A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.

  18. Study on bubble column humidification and dehumidification system for coal mine wastewater treatment.

    PubMed

    Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai

    2018-04-01

    Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.

  19. Fuel and power coproduction: The Liquid Phase Methanol (LPMEOH{trademark}) process demonstration at Kingsport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drown, D.P.; Brown, W.R.; Heydorn, E.C.

    1997-12-31

    The Liquid Phase Methanol (LPMEOH{trademark}) process uses a slurry bubble column reactor to convert syngas (primarily a mixture of carbon monoxide and hydrogen) to methanol. Because of its superior heat management, the process is able to be designed to directly handle the carbon monoxide (CO)-rich syngas characteristic of the gasification of coal, petroleum coke, residual oil, wastes, or of other hydrocarbon feedstocks. When added to an integrated gasification combined cycle (IGCC) power plant, the LPMEOH{trademark} process converts a portion of the CO-rich syngas produced by the gasifier to methanol, and the remainder of the unconverted gas is used to fuelmore » the gas turbine combined-cycle power plant. The LPMEOH{trademark} process has the flexibility to operate in a daily electricity demand load-following manner. Coproduction of power and methanol via IGCC and the LPMEOH{trademark} process provides opportunities for energy storage for electrical demand peak shaving, clean fuel for export, and/or chemical methanol sales.« less

  20. Impacts of zeolite, alum and polyaluminum chloride amendments mixed with agricultural wastes on soil column leachate, and CO2 and CH4 emissions.

    PubMed

    Murnane, J G; Fenton, O; Healy, M G

    2018-01-15

    This study aimed to quantify leaching losses of nitrogen (N), phosphorus (P) and carbon (C), as well as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions from stored slurry, and from packed soil columns surface applied with unamended and chemically amended dairy and pig slurries, and dairy soiled water (DSW). The amendments to the slurries, which were applied individually and together, were: polyaluminum chloride (PAC) and zeolite for pig and dairy slurry, and liquid aluminium sulfate (alum) and zeolite for DSW. Application of pig slurry resulted in the highest total nitrogen (TN) and nitrate-nitrogen (NO 3 -N) fluxes (22 and 12 kg ha -1 ), whereas corresponding fluxes from dairy slurries and DSW were not significantly (p < 0.05) higher than those from the control soil. There were no significant (p < 0.05) differences in leachate N losses between unamended and amended dairy slurries, unamended and amended pig slurries, and unamended and amended DSW. There were no leachate P losses measured over the experimental duration. Total cumulative organic (TOC) and inorganic C (TIC) losses in leachate were highest for unamended dairy slurry (82 and 142 kg ha -1 ), and these were significantly (p < 0.05) reduced when amended with PAC (38 and 104 kg ha -1 ). The highest average cumulative CO 2 emissions for all treatments were measured for pig slurries (680 kg CO 2 -C ha -1 ) followed by DSW (515 kg CO 2 -C ha -1 ) and dairy slurries (486 kg CO 2 -C ha -1 ). The results indicate that pig slurry, either in raw or chemically amended form, poses the greatest environmental threat of leaching losses and gaseous emissions of CO 2 and CH 4 and, in general, amendment of wastewater with PAC, alum or zeolite, does not mitigate the risk of these losses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Quantification of Methane Gas Flux and Bubble Fate on the Eastern Siberian Arctic Shelf Utilizing Calibrated Split-beam Echosounder Data.

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.

    2016-12-01

    On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with decreasing depth, seemingly independent of bubble radius.

  2. An Inexpensive Liquid Chromatography Apparatus for Undergraduate Teaching.

    ERIC Educational Resources Information Center

    McCamish, Malcolm; And Others

    1982-01-01

    Describes an inexpensive, low-pressure liquid chromatography pump, slurry filler, stainless steel columns, and injector system suitable for the undergraduate laboratory or routine analysis. Includes sectional diagram of the pump and construction diagram of the preparative columns. (Author/SK)

  3. Effects of Particle Size and Bubble Characteristics on Transport of Micro- and Nano-Bubbles in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Nihei, N.; Ueda, Y.; Moldrup, P.; Nishimura, T.

    2016-12-01

    The micro- and nano-bubbles (MNBs) have considerable potentials for the remediation of soil contaminated by organic compounds when used in conjunction with bioremediation technology. Understanding a transport mechanism of MNBs in soils is essential to optimize remediation techniques using MNBs. In this study, column transport experiments using glass beads with different size fractions (average particles size: 0.1 mm and 0.4 mm) were conducted, where MNBs created by oxygen gas were injected to the column with different flow rates. Effects of particle size and bubble characteristics on MNB transport in porous media were investigated based on the column experiments. The results showed that attachments of MNBs were enhanced under lower flow rate. Under higher flow rate condition, there were not significant differences of MNBs transport in porous media with different particle size. A convection-dispersion model including bubble attachment, detachment, and straining terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data. Further investigations will be conducted to understand bubble characteristics including bubble size and zeta potential on MNB transport in porous media. Relations between in model parameters in the transport model and physical and chemical properties in porous media and MNBs will be discussed.

  4. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, R.; Baten, J.M. van

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions.more » The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.« less

  5. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor

    PubMed Central

    2014-01-01

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34–359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner. PMID:24406056

  6. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    NASA Astrophysics Data System (ADS)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  7. Metabolic modeling of synthesis gas fermentation in bubble column reactors.

    PubMed

    Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A

    2015-01-01

    A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.

  8. Unit operations for gas-liquid mass transfer in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Allen, David T.

    1992-01-01

    Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.

  9. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  10. Heat transfer in three-phase fluidization and bubble-columns with high gas holdups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Kusakabe, K.; Fan, L.S.

    1993-08-01

    Bubble column and three-phase fluidized bed reactors have wide applications in biotechnological and petroleum processes (Deckwer, 1985; Fan, 1989). In such biotechnological processes as fermentation and waste water treatment, small bubbles of oxygen and/or nitrogen are introduced in the column to enhance oxygen transfer and to ensure the stability of immobilized cell particles. In addition, tiny bubbles are produced during the biological process due to the production of surface active compounds. The presence of these small bubbles causes an increase in the gas holdup of the system. High gas holdups are also characteristics of industrial processes such as coal liquefactionmore » and hydrotreating of residual oils. Good understanding of the transport properties of three-phase fluidized beds with high gas holdups is essential to the design, control and optimum operations of the commercial reactors employed in the above-mentioned processes. Heat-transfer studies in three-phase fluidized beds have been reviewed recently by Kim and Laurent (1991). Past studies focused primarily on the measurements of time-averaged heat transfer from the column wall to bed (Chiu and Ziegler 1983; Muroyama et al., 1986) or on immersed heating objects to bed (Baker et al., 1978; Kato et al., 1984) in aqueous systems. Recently, Kumar et al. (1992) provided a mechanistic understanding of the heat transfer in bubbly-liquid and liquid-solid systems. The purpose of this work is to investigate the heat transfer in a three-phase fluidized bed under high gas holdup conditions. The associated hydrodynamic behavior of the system is also studied.« less

  11. Optimal conditions for particle-bubble attachment in flotation: an experimental study

    NASA Astrophysics Data System (ADS)

    Sanchez Yanez, Aaron; Hernandez Sanchez, Jose Federico; Thoroddsen, Sigurdur T.

    2017-11-01

    Mineral flotation is a process used in the mining industry for separating solid particles of different sizes and densities. The separation is done by injecting bubbles into a slurry where the particles attach to them, forming floating aggregates. The attachment depends mainly on the bubbles and particles sizes as well as the hydrophobicity and roughness of the particles. We simplified the collective behavior in the industrial process to a single free particle-bubble collision, in contrast with previous studies where one of the two was kept fixed. We experimentally investigated the collision of spherical solid particles of a fixed diameter with bubbles of different sizes. By controlling the initial relative offset of the bubble and the particle, we conducted experiments observing their interaction. Recording with two synchronized high-speed cameras, perpendicular to each other, we can reconstruct the tridimensional trajectories of the bubble, the solid particle, and the aggregate. We describe the conditions for which the attachment happens in terms of dimensionless parameters such as the Ohnesorge number, the relative particle-bubble offset and the hydrophobicity of the particle surface. We furthermore investigate the role of the surface roughness in the attachment.

  12. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    ERIC Educational Resources Information Center

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  13. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    ERIC Educational Resources Information Center

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  14. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number of individual flares detected acoustically and extracted to estimate gas flux from the survey area. The gas flux estimate from the water column filtering and ROV observations yields a range of 2.2 - 6.6 mol CH4 / min.

  15. Attrition of precipitated iron Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Datye, A.K.; Reardon, J.; Hanprasopwattana, A.

    1996-12-31

    Precipitated Iron catalysts used in slurry phase bubble column reactors are known to undergo attrition during use. The attrition reduces the lifetime of the catalyst as well as causing problems in separating the product liquids from the catalyst. In this study, the authors have investigated the underlying mechanisms that lead to attrition in precipitated iron catalysts. They have discovered that attrition takes place on two length scales. On the macro scale, attrition is caused by the break-up of the weak agglomerates that constitute this catalyst into individual crystallites. Addition of binders such as kaolin does not help significantly in strengtheningmore » the catalyst particles. In addition, there is a second process leading to nanoscale attrition that is caused by the break-up of individual iron oxide crystallites into nano particles of iron carbide as the catalyst is activated for reaction. Design of attrition resistant F-T catalysts must consider these two modes of catalyst attrition. Preliminary work in the laboratory directed at improving the attrition resistance of precipitated iron catalysts will also be described in this paper.« less

  16. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    PubMed

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  17. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability

    NASA Astrophysics Data System (ADS)

    Greinert, Jens; Artemov, Yuriy; Egorov, Viktor; De Batist, Marc; McGinnis, Daniel

    2006-04-01

    A mud volcano area in the deep waters (> 2000 m) of the Black Sea was studied by hydroacoustic measurements during several cruises between January 2002 and June 2004. Gas bubbles in the water column give strong backscatter signals and thus can be detected even in great water depths by echosounders as the 38 kHz EK500 scientific split-beam system that was used during the surveys. Because of their shape in echograms and to differentiate against geochemical plumes and real upwelling bubble-water plumes, we call these hydroacoustic manifestations of bubbles in the water column 'flares'. Digital recording and processing of the data allows a 3D visualization and data comparison over the entire observation period, without artefacts caused by changing system settings. During our surveys, we discovered bubble release from three separate mud volcanoes, Dvurechenskiy (DMV), Vodianitskiy (VMV) and the Nameless Seep Site (NSS), in about 2080 m water depth simultaneously. Bubble release was observed between 9 June 2003 and 5 June 2004. The most frequently surveyed, DMV, was found to be inactive during very intensive studies in January 2002. The first activity was observed on 27 June 2002, which finally ceased between 5 and 15 June 2004 after a period of continuously decreasing activity. This observed 2-yr bubble-release period at a mud volcano may give an indication for the duration of active periods. The absence of short-term variations (within days or hours) may indicate that the bubble release from the observed mud volcanoes does not undergo rapid changes. The recorded echograms show that bubbles rise about 1300 m high through the water column, to a final water depth of about 770 m, which is ˜75 m below the phase boundary of pure methane hydrate in the Black Sea. With a release depth from 2068 m and a detected rise height of 1300 m, the flare at VMV is among the deepest and highest reported so far, and gives evidence of highly extended bubble life times (up to 108 min) in deep marine environments. To better understand how a methane bubble (gas analyses of the pore water and gas hydrate gave 99.4% methane) can rise so high without dissolving, we applied a recently developed bubble dissolution model that takes into account a decreased mass transfer due to an immediately formed gas-hydrate rim. Using the hydroacoustically determined bubble rising speeds (19-22 cm/s at the bottom; 12-14 cm/s at the flare top) and the relation between the rising speed of 'dirty'/gas hydrate rimmed bubbles and the bubble size, we could validate that a gas-hydrate-rimmed bubble with a diameter of 9 mm could survive the 1300-m-rise through the water column, before it is finally dissolved. A diameter of about 9 mm is reasonable for bubbles released at seep sites and the coincidence between the observed bubble rising speed and the model approach of a 9-mm bubble supports the assumption of gas-hydrate-rimmed bubbles.

  18. Bubble column and CFD simulation for chemical recycling of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Alzuhairi, Mohammed

    2018-05-01

    Computational Fluid Dynamics (CFD) is an important simulation tool, which uses powerful computer to get optimal design in industrial processes. New approach technique of bubble column for three phases has been used with respect to chemical recycling of Polyethylene Terephthalate (PET). The porous ceramic has been used in thin plate (5 mm) with a narrow pore size distribution. Excellent agreement between CFD has been predicted and experimental profiles of hold-up and velocity close to wall have been observed for a column diameter 0.08 m, column height 0.15 m (HD), and superficial gas velocity (VG) 0.05 m/s. The main purpose of the current study is to highlight depolymerization of PET chemically by using the close system of Ethylene Glycol, PET-Catalyzed, and Nitrogen glycolysis process in bubble column of three phases technique by using Nano catalyst, SiO2 with various weight percent (0.01, 0.02, 0.05, 0.1, 0.2, and 0.5) based on PET weight and preheated Nitrogen up to 100° C by extra heater in bubble column reactor. The depolymerization time could be reduced in order to improve heat and mass transfer in comparison with the traditional methods. Little amount not exceeding 0.01% of Nano SiO2 is enough for completing depolymerization. The final product of PET depolymerization has full characterization by FTIR, AFM, CHN tests and has been used as a vital additive for Bitumen, it has been investigated as a moisture-proof, water seepage-proof material, and as a tough resistant to environmental conditions.

  19. Acoustic mapping of shallow water gas releases using shipborne multibeam systems

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Köser, Kevin; Weiß, Tim; Greinert, Jens

    2015-04-01

    Water column imaging (WCI) shipborne multibeam systems are effective tools for investigating marine free gas (bubble) release. Like single- and splitbeam systems they are very sensitive towards gas bubbles in the water column, and have the advantage of the wide swath opening angle, 120° or more allowing a better mapping and possible 3D investigations of targets in the water column. On the downside, WCI data are degraded by specific noise from side-lobe effects and are usually not calibrated for target backscattering strength analysis. Most approaches so far concentrated on manual investigations of bubbles in the water column data. Such investigations allow the detection of bubble streams (flares) and make it possible to get an impression about the strength of detected flares/the gas release. Because of the subjective character of these investigations it is difficult to understand how well an area has been investigated by a flare mapping survey and subjective impressions about flare strength can easily be fooled by the many acoustic effects multibeam systems create. Here we present a semi-automated approach that uses the behavior of bubble streams in varying water currents to detect and map their exact source positions. The focus of the method is application of objective rules for flare detection, which makes it possible to extract information about the quality of the seepage mapping survey, perform automated noise reduction and create acoustic maps with quality discriminators indicating how well an area has been mapped.

  20. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.

    PubMed

    Srivastava, Smita; Srivastava, Ashok K

    2013-11-01

    Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l(-1)dry weight and azadirachtin yield of 3.2 mg g(-1) leading to a volumetric productivity of azadirachtin as 1.14 mg l(-1) day(-1). The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).

  1. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: effect of pH, mixing and aeration.

    PubMed

    Dai, X R; Blanes-Vidal, V

    2013-01-30

    This study aimed at evaluating the effect of swine slurry acidification and acidification-aeration treatments on ammonia (NH(3)), carbon dioxide (CO(2)) and hydrogen sulfide (H(2)S) emissions during slurry treatment and subsequent undisturbed storage. The study was conducted in an experimental setup consisting of nine dynamic flux chambers. Three pH levels (pH = 6.0, pH = 5.8 and pH = 5.5), combined with short-term aeration and venting (with an inert gas) treatments were studied. Acidification reduced average NH(3) emissions from swine slurry stored after acidification treatment compared to emissions during storage of non-acidified slurry. The reduction were 50%, 62% and 77% when pH was reduce to 6.0, 5.8 and 5.5, respectively. However, it had no significant effect on average CO(2) and H(2)S emissions during storage of slurry after acidification. Aeration of the slurry for 30 min had no effect on average NH(3), CO(2) and H(2)S emissions both during the process and from stored slurry after venting treatments. During aeration treatment, the NH(3), CO(2) and H(2)S release pattern observed was related to the liquid turbulence caused by the gas bubbles rather than to biological oxidation processes in this study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Interactions between soil texture and placement of dairy slurry application: I. Flow characteristics and leaching of nonreactive components.

    PubMed

    Glaesner, Nadia; Kjaergaard, Charlotte; Rubaek, Gitte H; Magid, Jakob

    2011-01-01

    Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.

  3. Sinter of uniform, predictable, blemish-free nickel plaque for large aerospace nickel cadmium cells

    NASA Technical Reports Server (NTRS)

    Seiger, H. N.

    1975-01-01

    A series of nickel slurry compositions were tested. Important slurry parameters were found to be the nature of the binder, a pore former and the method of mixing. A slow roll mixing which is non-turbulent successfully eliminated entrapped air so that bubbles and pockets were avoided in the sinter. A slurry applicator was developed which enabled an equal quantity of slurry to be applied to both sides of the grid. Sintering in a furnace having a graded atmosphere characteristic, ranging from oxidizing to strongly reducing, improved adhesion of porous sinter to grid and resulted in a uniform welding of nickel particles to each other throughout the plaque. Sintering was carried out in a horizontal furnace having three heating zones and 16 heating control circuits. Tests used for plaque evaluation include (1) appearance, (2) grid location and adhesion, (3) mechanical strength, (4) thickness, (5) weight per unit area, (6) void volume per unit area, (7) surface area and (8) electrical resistance. Plaque material was impregnated using Heliotek proprietary processes and 100 AH cells were fabricated.

  4. Pump for molten metal or other fluid

    DOEpatents

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  5. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  6. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyinka A. Adeyiga

    2001-09-01

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5}{sup +} selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University, (ii) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (iii) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to attrition study of the iron-based catalysts. Precipitated silica appeared to decrease attrition resistance of spray-dried iron FT catalysts. It was found that the catalyst with precipitated silica content at around 12wt% showed the lowest attrition resistance. The results of net change in volume moment and catalyst morphology showed supporting evidences to the attrition results. Catalysts with low attrition resistance generated more fines loss, had higher net change in volume moment and showed more breakage of particles. BET surface area and pore volume of this catalyst series fluctuated; therefore no conclusion can be drawn from the data obtained. However, catalyst with no precipitated silica showed the lowest in BET surface area and pore volume, as expected. Addition of precipitated silica to the catalysts had no effect to the phase changes of iron that could have significant influence to catalyst attrition. The presence of precipitated silica is needed for enhancing catalyst surface area; however, the amount of silica added should be compromising with attrition resistance of catalysts.« less

  7. Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator.

    PubMed

    Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M

    2015-06-25

    An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.

  8. Gas transport and vesicularity in low-viscosity liquids

    NASA Astrophysics Data System (ADS)

    Pioli, Laura; Bonadonna, Costanza; Abdulkareem, Lokman; Azzopardi, Barry; Phillips, Jeremy

    2010-05-01

    Vesicle textures of basaltic scoria preserve information on magma bubble content at fragmentation and are commonly used to constrain degassing, vesiculation and magma permeability. These studies are based on the assumption that microscale textures are representative of the conduit-scale structures and processes. However, the conditions for which this assumption is valid have not been investigated in detail. We have investigated conduit-scale structures by performing a series of experiments of separate two-phase flows in a 6.5-m high cylindrical bubble column using a combination of air with pure glucose syrup, water-syrup mixtures and pure water to reproduce open-system degassing and strombolian activity conditions in the upper volcanic conduit (i.e. at very low or zero liquid fluxes). We have varied gas fluxes, initial liquid height, gas inlet configuration and liquid viscosity and analyzed flow regimes and properties. Temperature and pressure were measured at several heights along the pipe and vesicularity was calculated using pressure data, liquid level measurements and an Electrical Capacitance tomography (ECT) system, which measures instantaneous vesicularity and phase distribution from capacitance measurements between pairs of electrodes placed uniformly around the pipe circumference. The aim of the experiments was to identify the effect of gas-flow rates on the flow regimes (i.e. bubbly, slug, churn and annular), the main degassing structures and the total gas content of the column. The effect of increasing and decreasing gas flow rates was also studied to check hysteresis effects. Results indicate that the vesicularity of the liquid column depends primarily on gas flux, whereas flow regimes exert a minor control. In fact, vesicularity increases with gas flux following a power-law trend whose exponent depends on the viscosity of the liquid. In addition, distributions of instantaneous gas fraction in the column cross section during syrup experiments have shown that gas is mainly transported by large, conduit-size bubbles rising in a microvesicular liquid. Coalescence processes occur throughout the whole column, and are strongly affected by bubble size, shearing and flow dynamics. Increasing gas fluxes increases frequency and length of the large bubbles but does not affect the concentration of small bubbles in the liquid matrix. Scaling of these experiments suggest that these conditions could be met in low viscosity, crystal-poor magmas and we therefore suggest that this dynamics could also characterize two-phase flow in open conduit mafic systems.

  9. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  10. Mixing on the Heard Island Plateau during HEOBI

    NASA Astrophysics Data System (ADS)

    Robertson, R.

    2016-12-01

    On the plateau near Heard and McDonald Islands, the water column was nearly always well mixed. Typically, temperature differences between the surface and the bottom, 100-200 m, were less than 0.2oC and often less that 0.1oC. Surface stratification developed through insolation and deep primarily through a combination of upwelling from canyons and over the edge of the plateau and tidal advection. This stratification was primarily removed by a combination of wind and tidal mixing. Persistent winds of 30 knots mixed the upper 20-50 m. Strong wind events, 40-60 knots, mixed the water column to 100-200 m depth, which over the plateau, was often the entire water column. Benthic tidal friction mixed the bottom 30-50 m. Although the water column was unstratified at the two plume sites intensively investigated, tidal velocities were baroclinic, probably due to topographic controls. Tidal advection changed the bottom temperatures by 0.5oC within 8 hours, more than doubling the prior stratification. Wind mixing quickly homogenized the water column, resulting in the surface often showing the deeper upwelling and advective events. Although acoustic plumes with bubbles were observed in the water column, there was no evidence of geothermal vents or geothermal influence on temperatures. Mixing by bubbles rising in the water column was indistinguishable from the wind and tidal mixing, although the strongest upward vertical velocities were observed at the sites of these acoustic/bubble plumes.

  11. Self assembly, mobilization, and flotation of crude oil contaminated sand particles as granular shells on gas bubbles in water.

    PubMed

    Tansel, Berrin; Boglaienko, Daria

    2017-01-01

    Contaminant fate and transport studies and models include transport mechanisms for colloidal particles and dissolved ions which can be easily moved with water currents. However, mobilization of much larger contaminated granular particles (i.e., sand) in sediments have not been considered as a possible mechanism due to the relatively larger size of sand particles and their high bulk density. We conducted experiments to demonstrate that oil contaminated granular particles (which exhibit hydrophobic characteristics) can attach on gas bubbles to form granular shells and transfer from the sediment phase to the water column. The interactions and conditions necessary for the oil contaminated granular particles to self assemble as tightly packed granular shells on the gas bubbles which transfer from sediment phase to the water column were evaluated both experimentally and theoretically for South Louisiana crude oil and quartz sand particles. Analyses showed that buoyancy forces can be adequate to move the granular shell forming around the air bubbles if the bubble radius is above 0.001mm for the sand particles with 0.28mm diameter. Relatively high magnitude of the Hamaker constant for the oil film between sand and air (5.81×10 -20 J for air-oil-sand) indicates that air bubbles have high affinity to attach on the oil film that is on the sand particles in comparison to attaching to the sand particles without the oil film in water (1.60×10 -20 J for air-water-sand). The mobilization mechanism of the contaminated granular particles with gas bubbles can occur in natural environments resulting in transfer of granular particles from sediments to the water column. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Magma Vesiculation and Infrasonic Activity in Open Conduit Volcanoes

    NASA Astrophysics Data System (ADS)

    Colo', L.; Baker, D. R.; Polacci, M.; Ripepe, M.

    2007-12-01

    At persistently active basaltic volcanoes such as Stromboli, Italy degassing of the magma column can occur in "passive" and "active" conditions. Passive degassing is generally understood as a continuous, non explosive release of gas mainly from the open summit vents and subordinately from the conduit's wall or from fumaroles. In passive degassing generally gas is in equilibrium with atmospheric pressure, while in active degassing the gas approaches the surface at overpressurized conditions. During active degassing (or puffing), the magma column is interested by the bursting of small gas bubbles at the magma free surface and, as a consequence, the active degassing process generates infrasonic signals. We postulated, in this study, that the rate and the amplitude of infrasonic activity is somehow linked to the rate and the volume of the overpressured gas bubbles, which are generated in the magma column. Our hypothesis is that infrasound is controlled by the quantities of gas exsolved in the magma column and then, that a relationship between infrasound and the vesiculation process should exist. In order to achieve this goal, infrasonic records and bubble size distributions of scoria samples from normal explosive activity at Stromboli processed via X ray tomography have been compared. We observed that the cumulative distribution for both data sets follow similar power laws, indicating that both processes are controlled by a scale invariant phenomenon. However the power law is not stable but changes in different scoria clasts, reflecting when gas bubble nucleation is predominant over bubbles coalescence and viceversa. The power law also changes for the infrasonic activity from time to time, suggesting that infrasound may be controlled also by a different gas exsolution within the magma column. Changes in power law distributions are the same for infrasound and scoria indicating that they are linked to the same process acting in the magmatic system. We suggest that monitoring infrasound on an active volcano could represent an alternative way to monitor the vesiculation process of an open conduit system.

  13. Pyroclast/snow interactions and thermally driven slurry formation. Part 2: Experiments and theoretical extension to polydisperse tephra

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Erosion of snow by pyroclastic flows and surges presumably involves mechanical scour, but there may be thermally driven phenomena involved as well. To investigate this possibility, layers of hot (up to 400??C), uniformly sized, fine- to medium-grained sand were emplaced vertically onto finely shaved ice ('snow'); thus there was no relative shear motion between sand and snow and no purely mechanical scour. In some cases large vapor bubbles, commonly more than 10 mm across, rose through the sand layer, burst at the surface, and caused complete convective overturn of the sand, which then scoured and mixed with snow and transformed into a slurry. In other cases no bubbling occurred and the sand passively melted its way downward into the snow as a wetting front moved upward into the sand. A continuum of behaviors between these two cases was observed. Vigorous bubbling and convection were generally favored by high temperature, small grain size, and small layer thickness. A physically based theory of heat- and mass transfer at the pyroclast/snow interface, developed in Part 1 of this paper, does a good job of explaining the observations as a manifestation of unstable vapor-driven fluidization. The theory, when extrapolated to the behavior of actual, poorly sorted pyroclastic flow sediments, leads to the prediction that the observed 'thermal-scour' phenomenon should also occur for many real pyroclastic flows passing over snow. 'Thermal scour' is therefore likely to be involved in the generation of lahars.

  14. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothimurugesan, K.; Goodwin, J.G.; Spivey, J.J.

    1997-03-26

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRS) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modem coal gasifiers. This is because in addition to reasonable F-T activity, the FT catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less

  15. Attrition Resistant Iron-Based Fischer-Tropsch Catalysts.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jothimurugesan, K.; Goodwin, J.S.; Spivey, J.J.

    1997-09-22

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO and H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a seriousmore » problem with the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity.« less

  16. Aeration costs in stirred-tank and bubble column bioreactors

    DOE PAGES

    Humbird, D.; Davis, R.; McMillan, J. D.

    2017-08-10

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  17. Aeration costs in stirred-tank and bubble column bioreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, D.; Davis, R.; McMillan, J. D.

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  18. Enhancing gas-liquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gbewonyo, K.; Wang, D.I.C.

    The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfermore » coefficients (k /SUB L/ a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.« less

  19. Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.

    2017-12-01

    Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.

  20. CO2 Absorption from Biogas by Glycerol: Conducted in Semi-Batch Bubble Column

    NASA Astrophysics Data System (ADS)

    puji lestari, Pratiwi; Mindaryani, Aswati; Wirawan, S. K.

    2018-03-01

    Biogas is a renewable energy source that has been developed recently. The main contents of Biogas itself are Methane and carbon dioxide (CO2) where Methane is the main component of biogas with CO2 as the highest impurities. The quality of biogas depends on the CO2 content, the lower CO2 levels, the higher biogas quality. Absorption is one of the methods to reduce CO2 level. The selections of absorbent and appropriate operating parameters are important factors in the CO2 absorption from biogas. This study aimed to find out the design parameters for CO2 absorption using glycerol that represented by the overall mass transfer coefficient (KLa) and Henry’s constant (H). This study was conducted in semi-batch bubble column. Mixed gas was contacted with glycerol in a bubble column. The concentration of CO2 in the feed gas inlet and outlet columns were analysed by Gas Chromatograph. The variables observed in this study were superficial gas velocity and temperatures. The results showed that higher superficial gas velocity and lower temperature increased the rate of absorption process and the amount of CO2 absorbed.

  1. CFD Simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    PubMed

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-22

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r  = 5.0, it is 29.4 times of original floc sludge.

  2. Champagne experiences various rhythmical bubbling regimes in a flute.

    PubMed

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  3. Acoustic Probe for Solid-Gas-Liquid Suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavlarides, L.L.; Sangani, Ashok

    The primary objective of the research project during the first funding period was to develop an acoustic probe to measure volume percent solids in solid-liquid slurries in the presence of small amounts of gas bubbles. This problem was addressed because of the great need for a non-invasive, accurate and reliable method for solids monitoring in liquid slurries in the presence of radiolytically generated gases throughout the DOE complex. These measurements are necessary during mobilization of salts and sediments in tanks, transport of these slurries in transfer lines to processing facilities across a site, and, in some instances, during high levelmore » waste processing. Although acoustic probes have been commonly used for monitoring flows in single-phase fluids (McLeod, 1967), their application to monitor two-phase mixtures has not yet fully realized its potential. A number of investigators in recent years have therefore been involved in developing probes for measuring the volume fractions in liquid solid suspensions (Atkinson and Kytomaa, 1993; Greenwood et al., 1993; Martin et al., 1995) and in liquid-liquid suspensions (Bonnet and Tavlarides, 1987; Tavlarides and Bonnet, 1988, Yi and Tavlarides, 1990; Tsouris and Tavlarides, 1993, Tsouris et al., 1995). In particular, Atkinson and Kytomaa (1993) showed that the acoustic technique can be used to determine both the velocity and the volume fraction of solids while Martin et al. (1995) and Spelt et al. (1999) showed that the acoustic probe can also be used to obtain information on the size distribution of the particles. In a recent testing of in-line slurry monitors with radioactive slurries suspended with Pulsair Mixers (Hylton & Bayne, 1999), an acoustic probe did not compare well with other instruments most probably due to presence of entrained gases and improper acoustic frequency range of interrogation. The work of the investigators cited has established the potential of the acoustic probe for characterizing/monitoring two-phase flows in relatively ideal, well-characterized suspensions. Two major factors which we judge has prevented its wide-spread use in the processing industry, particularly for dilute suspensions, is careful selection of the frequency range for interrogation and quantification and removal of the noise introduced by bubbles from the acoustic signal obtained from the suspension. Our research during the first funding period to develop an acoustic probe for solid-gas liquid suspensions has resulted in a theory, supported by our experiments, to describe small amplitude dilute suspensions (Norato, 1999, Spelt et al., 1999, Spelt et al., 2001). The theory agrees well with experimental data of sound attenuation up to 45 {approx}01% suspensions of 0.11 and 77 micron radius polystyrene particles in water and 0.4 to 40 vol %, suspensions of 32 micron soda-lime glass particles in water. Also, analyses of our attenuation experiments for solid-gas liquid experiments suggest the theory can be applied to correct for signal interference due to the presence of bubbles over a selected frequency range to permit determination of the solid-liquid volume fraction. Further, we show experimentally that a reliable linear dependency of weight percent solids with attenuation is obtained for low weight fractions at high frequencies of interrogation where bubble interference is minimal. There was a collaborative effort during the first funding period with the Pacific Northwest National Laboratories in that Dr. Margaret Greenwood was a co-investigator on the project. Dr. Greenwood provided a high level of experimental knowledge and techniques on ultrasound propagation, measurement and data processing. During the second funding period the slurry test loop at Oak Ridge National Laboratories under the direction of Mr. Tom Hylton will be employed to demonstrate the measurement capabilities of the prototype acoustic monitor.« less

  4. Removal of endosulfan and methoxychlor from water on carbon slurry.

    PubMed

    Gupta, Vinod K; Ali, Imran

    2008-02-01

    A carbon slurry, produced in generators of fuel-oil-based industrial generators was converted into an effective and efficient adsorbent for the removal of endosulfan and methoxychlor from aqueous solution. The adsorbent was chemically treated, activated, characterized, and used for the adsorption of endosulfan and methoxychlor pesticides. The maximum adsorption was found at 90 min, 6.5 pH, 0.025 g/L dose, and 25 degrees C temperature. Langmuir and Freundlich adsorption models were applied to analyze adsorption data, and the former was found applicable to this adsorption system in terms of relatively high regression values. The thermodynamic aspect of the process was also investigated by evaluating certain important parameters (enthalpy, free energy, and entropy of system). Kinetics of adsorption was found to follow the pseudo second order rate equation. The diffusion of pesticides into carbon slurry pores was suggested to be the rate controlling step by applying Bangham's equation. Adsorption on a column was also investigated in a continuous flow system. Adsorption efficiencies of endosulfan and methoxychlor were 34.11 and 36.06 mg/g in batch processes and 32.62 and 33.52 mg/g in column operations, respectively.

  5. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    DOEpatents

    Klunder, Edgar B [Bethel Park, PA

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  6. Conversion of Nuclear Waste into Nuclear Waste Glass: Experimental Investigation and Mathematical Modeling

    DOE PAGES

    Hrma, Pavel

    2014-12-18

    The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less

  7. The effects of a decompression on seismic parameter profiles in a gas-charged magma

    NASA Astrophysics Data System (ADS)

    Sturton, Susan; Neuberg, Jürgen

    2003-11-01

    Seismic velocities in a gas-charged magma vary with depth and time. Relationships between pressure, density, exsolved gas content, and seismic velocity are derived and used in conjunction with expressions describing diffusive bubble growth to find a series of velocity profiles which depend on time. An equilibrium solution is obtained by considering a column of magma in which the gas distribution corresponds to the magmastatic pressure profile with depth. Decompression events of various sizes are simulated, and the resulting disequilibrium between the gas pressure and magmastatic pressure leads to bubble growth and therefore to a change of seismic velocity and density with time. Bubble growth stops when the system reaches a new equilibrium. The corresponding volume increase is accommodated by accelerating the magma column upwards and an extrusion of lava. A timescale for the system to return to equilibrium can be obtained. The effect of changes in magma viscosity and bubble number density is examined.

  8. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively controlled with even smaller superficial air velocity than the optimal value provided by a single air stone. Finally, the testing results with both inorganic and organic feeds showed that the solid particle composition and particle size distribution all contribute to the cake formation in a membrane filtration system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Hydrodynamics, mass transfer, and yeast culture performance of a column bioreactor with ejector.

    PubMed

    Prokop, A; Janík, P; Sobotka, M; Krumphanzl, V

    1983-04-01

    A bubble column fitted with an ejector has been tested for its physical and biological performance. The axial diffusion coefficient of the liquid phase in the presence of electrolytes and ethanol was measured by a stimulus-response technique with subsequent evaluation by means of a diffusion model. In contrast to ordinary bubble columns, the coefficient of axial mixing is inversely dependent on the superficial air velocity. The liquid velocity acts in an opposite direction to the backmixing flow in the column. The measurement of volumetric oxygen transfer coefficient in the presence of electrolytes and ethanol was performed using a dynamic gassing-in method adapted for a column. The data were correlated with the superficial air and liquid velocities, total power input, and power for aeration and mixing; the economy coefficient of oxygen transfer was used for finding an optimum ratio of power for aeration and pumping. Growth experiments with Candida utilis on ethanol confirmed some of the above results. Biomass productivity of 2.5 g L(-1) h(-1) testifies about a good transfer capability of the column. Columns fitted with pneumatic and/or hydraulic energy input may be promising for aerobic fermentations considering their mass transfer and mixing characteristics.

  10. Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k(L)a.

    PubMed

    Doig, Steven D; Ortiz-Ochoa, Kenny; Ward, John M; Baganz, Frank

    2005-01-01

    This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization.

  11. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    NASA Astrophysics Data System (ADS)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  12. A Better Method for Filling Pasteur Pipet Chromatography Columns

    ERIC Educational Resources Information Center

    Ruekberg, Ben

    2006-01-01

    An alternative method for the preparation of Pasteur pipet chromatography columns is presented that allows the column to be filled with solvent without bubbles and allows greater control of fluid flow while the materials to be separated are added. Students are required to wear gloves and goggles and caution should be used while handling glass…

  13. Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor: The effect of air flow rate and solid percentage

    NASA Astrophysics Data System (ADS)

    Haryono, Didied; Harjanto, Sri; Wijaya, Rifky; Oediyani, Soesaptri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2018-04-01

    Investigation of column flotation process on sulphide ore using 2-electrode capacitance sensor is presented in this paper. The effect of air flow rate and solid percentage on column flotation process has been experimentally investigated. The purpose of this paper is to understand the capacitance signal characteristic affected by the air flow rate and the solid percentage which can be used to determine the metallurgical performance. Experiments were performed using a laboratory column flotation cell which has a diameter of 5 cm and the total height of 140 cm. The sintered ceramic sparger and wash water were installed at the bottom and above of the column. Two-electrode concave type capacitance sensor was also installed at a distance of 50 cm from the sparger. The sensor was attached to the outer wall of the column, connected to data acquisition system, manufactured by CTECH Labs Edwar Technology and personal computer for further data processing. Feed consisting ZnS and SiO2 with the ratio of 3:2 was mixed with some reagents to make 1 litre of slurry. The slurry was fed into the aerated column at 100 cm above the sparger with a constant rate and the capacitance signals were captured during the process. In this paper, 7.5 and 10% of solid and 2-4 L/min of air flow rate with 0.5 L/min intervals were used as independent variables. The results show that the capacitance signal characteristics between the 7.5 and 10% of solid are different at any given air flow rate in which the 10% solid produced signals higher than those of 7.5%. Metallurgical performance and capacitance signal exhibit a good correlation.

  14. Abundances of Deuterium, Oxygen and Nitrogen in the Local Interstellar Medium: Overview of First Results from the Far Ultraviolet Spectroscopic Explorer Mission

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Sembach, K. R.; Vidal-Madjar, A.; York, D. G.; Friedman, S. D.; Hebrard, G.; Kruk, J. W.; Lehner, N.; Lemoine, M.; Sonneborn, G.; hide

    2002-01-01

    Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D I, O I, and N I along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 pc to 179 pc. Five of the sight lines are within the Local Bubble and two penetrate the surrounding H I wall. Reliable values of N(H I) were determined for five of the sight lines from HST data, IUE data, and published EUVE measurements. The weighted mean of DI/H I for these five sight lines is (1.52 +/- 0.08) x l0(exp -5)(1 sigma uncertainty in the mean). It is likely that the D I/H I ratio in the Local Bubble has a single value. The D I/O I ratio for the five sight lines within the Local Bubble is (3.76 +/- 0.20) x 10(esp -2). It is likely that O I column densities can serve as a proxy for H I in the Local Bubble. The weighted mean for O I/ H I for the seven FUSE sight lines is (3.03 +/- 0.21) x 10(esp -4), comparable to the weighted mean (3.43 +/- 0.15) x 10(exp -4) reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N I/ H I for five sight lines is half that reported by Meyer et al. for seven sight lines with larger distances and higher column densities. This result combined with the variability of O I/ N I (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O I, N I cannot be used as a proxy for H I or as a metallicity indicator in the LISM.

  15. Apparatus for washing particulate material. [Removal of silicone oil from microspheres by trichloroethylene

    DOEpatents

    Rivera, A.L.; Fowler, V.L.; Justice, G.V.

    1983-12-29

    Transport of nuclear fuel microspheres through a wash liquid is facilitated by feeding a slurry containing the microspheres into the wash liquid via a column having a vibrating tubular screen located under its lower end.

  16. Method for packing chromatographic beds

    DOEpatents

    Freeman, David H.; Angeles, Rosalie M.; Keller, Suzanne

    1991-01-01

    Column chromatography beds are packed through the application of static force. A slurry of the chromatography bed material and a non-viscous liquid is filled into the column plugged at one end, and allowed to settle. The column is transferred to a centrifuge, and centrifuged for a brief period of time to achieve a predetermined packing level, at a range generally of 100-5,000 gravities. Thereafter, the plug is removed, other fixtures may be secured, and the liquid is allowed to flow out through the bed. This results in an evenly packed bed, with no channeling or preferential flow characteristics.

  17. Semi-industrial experimental study on bauxite separation using a cell-column integration process

    NASA Astrophysics Data System (ADS)

    Zhang, Ning-ning; Zhou, Chang-chun; Cong, Long-fei; Cao, Wen-long; Zhou, You

    2016-01-01

    The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of "fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns". Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.

  18. Contactless Inductive Bubble Detection in a Liquid Metal Flow

    PubMed Central

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  19. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    PubMed

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  20. Field testing model predictions of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Shi, F.; Kirby, J. T.; Ma, G.; Holman, R. A.; Chickadel, C. C.

    2012-12-01

    Field-scale modeling of surfzone bubbles and foam coverage is challenging in terms of the computational intensity of multi-phase bubble models based on Navier-Stokes/VOF formulation. In this study, we developed the NHWAVE-bubble package, which includes a 3D non-hydrostatic wave model NHWAVE (Ma et al., 2012), a multi-phase bubble model and a foam model. NHWAVE uses a surface and bottom following sigma coordinate system, making it more applicable to 3D modeling of nearshore waves and circulation in a large-scale field domain. It has been extended to include a multiphase description of polydisperse bubble populations following the approach applied in a 3D VOF model by Ma et al. (2012). A model of a foam layer on the water surface is specified in the model package using a shallow water formulation based on a balance of drag forces due to wind and water column motion. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The model is applied in a field scale domain at FRF, Duck, NC where optical data in either visible band (ARGUS) or infrared band were collected during 2010 Surf Zone Optics experiments. The decay of image brightness or intensity following the passage of wave crests is presumably tied to both decay of bubble populations and foam coverage after passage of a broken wave crest. Infrared imagery is likely to provide more detailed information which could separate active breaking from passive foam decay on the surface. Model results will be compared with the measurements with an attention to distinguishing between active generation and passive decay of the foam signature on the water surface.

  1. Implementation of an acoustic-based methane flux estimation methodology in the Eastern Siberian Arctic Sea

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Weber, T. C.; Mayer, L. A.

    2017-12-01

    Quantifying methane flux originating from marine seep systems in climatically sensitive regions is of critically importance for current and future climate studies. Yet, the methane contribution from these systems has been difficult to estimate given the broad spatial scale of the ocean and the heterogeneity of seep activity. One such region is the Eastern Siberian Arctic Sea (ESAS), where bubble release into the shallow water column (<40 meters average depth) facilitates transport of methane to the atmosphere without oxidation. Quantifying the current seep methane flux from the ESAS is necessary to understand not only the total ocean methane budget, but also to provide baseline estimates against which future climate-induced changes can be measured. At the 2016 AGU fall meeting, we presented a new acoustic-based flux methodology using a calibrated broadband split-beam echosounder. The broad (14-24 kHz) bandwidth provides a vertical resolution of 10 cm, making possible the identification of single bubbles. After calibration using 64 mm copper sphere of known backscatter, the acoustic backscatter of individual bubbles is measured and compared to analytical models to estimate bubble radius. Additionally, bubbles are precisely located and traced upwards through the water column to estimate rise velocity. The combination of radius and rise velocity allows for gas flux estimation. Here, we follow up with the completed implementation of this methodology applied to the Herald Canyon region of the western ESAS. From the 68 recognized seeps, bubble radii and rise velocity were computed for more than 550 individual bubbles. The range of bubble radii, 1-6 mm, is comparable to those published by other investigators, while the radius dependent rise velocities are consistent with published models. Methane flux for the Herald Canyon region was estimated by extrapolation from individual seep flux values.

  2. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble's pressure more in line with that of the adjacent material. Suggestions for future work are made.

  3. Coal desulfurization by aqueous chlorination

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  4. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  5. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.

  6. Predicting the fate of methane emanating from the seafloor using a marine two-phase gas model in one dimension (M2PG1) - Example from a known Arctic methane seep site offshore Svalbard

    NASA Astrophysics Data System (ADS)

    Jansson, Pär; Ferré, Benedicte

    2017-04-01

    Transport of methane in seawater occurs by diffusion and advection in the dissolved phase, and/or as free gas in form of bubbles. The fate of methane in bubbles emitted from the seafloor depends on both bubble size and ambient conditions. Larger bubbles can transport methane higher into the water column, potentially reaching the atmosphere and contributing to greenhouse gas concentrations and impacts. Single bubble or plume models have been used to predict the fate of bubble mediated methane gas emissions. Here, we present a new process based two-phase (free and dissolved) gas model in one dimension, which has the capability to dynamically couple water column properties such as temperature, salinity and dissolved gases with the free gas species contained in bubbles. The marine two-phase gas model in one dimension (M2PG1) uses a spectrum of bubbles and an Eulerian formulation, discretized on a finite-volume grid. It employs the most up-to-date equations for solubility and compressibility of the included gases, nitrogen, oxygen, carbon dioxide and methane. M2PG1 is an extension of PROBE (Omstedt, 2011), which facilitates atmospheric coupling and turbulence closures to realistically predict vertical mixing of all properties, including dissolved methane. This work presents the model's first application in an Arctic Ocean environment at the landward limit of the methane-hydrate stability zone west of Svalbard, where we observe substantial methane bubble release over longer time periods. The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT. Omstedt, A. (2011). Guide to process based modeling of lakes and coastal seas: Springer.

  7. Shallow-water gaseohydrothermal plume studies after massive eruption at Panarea, Aeolian Islands, Italy

    NASA Astrophysics Data System (ADS)

    Tudino, T.; Bortoluzzi, G.; Aliani, S.

    2014-03-01

    Marine water dynamics in the near field of a massive gas eruption near Panarea (Aeolian Islands volcanic arc, SE Tyrrhenian Sea) is described. ADCP current-meters were deployed during the paroxysmal phase in 2002 and 2003 a few meters from the degassing vent, recording day-long time series. Datasets were sorted to remove errors and select good quality ensembles over the entire water column. Standard deviation of error velocity was considered a proxy for inhomogeneous velocity fields over beams. Time series intervals had been selected when the basic ADCP assumptions were fulfilled and random errors minimized. Backscatter data were also processed to identify bubbles in the water column with the aim of locating bubble-free ensembles. Reliable time series are selected combining these data. Two possible scenarios have been described: firstly, a highly dynamic situation with visible surface diverging rings of waves, entrainment on the lower part of the gas column, detrainment in the upper part and a stagnation line (SL) at mid depth where currents were close to zero and most of the gas bubbles spread laterally; secondly, a less dynamic situation with water entraining into the gas plume at all depths and no surface rings of diverging waves. Reasons for these different dynamics may be ascribed to changes in gas fluxes (one order of magnitude higher in 2002). Description of SL is important to quantify its position in the water column and timing for entrainment-detrainment, and it can be measured by ADCP and calculated from models.

  8. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals.

    PubMed

    Pedraza-de la Cuesta, Susana; Keijzers, Lore; van der Wielen, Luuk A M; Cuellar, Maria C

    2018-04-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off-line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble-induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim.

  9. One-dimensional model of inertial pumping

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  10. One-dimensional model of inertial pumping.

    PubMed

    Kornilovitch, Pavel E; Govyadinov, Alexander N; Markel, David P; Torniainen, Erik D

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  11. Investigating the emission, dissolution, and oxidation of CH4 within and around a seep bubble plume in the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Leonte, M.; Kessler, J. D.; Socolofsky, S. A.

    2016-02-01

    One of the largest carbon reservoirs on the planet is stored as methane (CH4) in and below the seafloor. However, a large discrepancy exists between estimated fluxes of CH4 into the water column and CH4 fluxes from the sea surface to the atmosphere, suggesting that a significant fraction of CH4 released from seafloor seeps is dissolved and potentially removed through microbial oxidation. Here we present data investigating the fate of CH4 released from the Sleeping Dragon seep site in the Gulf of Mexico. The bubble plume was followed from the seafloor until it fully dissolved using a remotely operated vehicle (ROV). Water samples were collected by the ROV at different depths as well as lateral transects through the bubble plume. These samples were analyzed for dissolved concentrations of methane, ethane, propane, and butane as well as the 13C isotopic ratio of methane. Furthermore, seep bubbles from the seafloor were also collected and analyzed for the same properties. Based on these chemical data, the rate of CH4 emission from the seafloor, oxidation in the water column, and dissolution are investigated.

  12. Immunoaffinity column cleanup with liquid chromatography using postcolumn bromination for the determination of aflatoxins in black and white sesame seed: single-laboratory validation.

    PubMed

    Liu, Guihua; Zhu, Zhou; Cheng, Jinquan; Senyuva, Hamide Z

    2012-01-01

    A single-laboratory validation was conducted to establish the effectiveness of an immunoaffinity column cleanup procedure followed by LC with fluorescence detection for the determination of aflatoxins B1, B2, G1, and G2 in sesame seeds. The sample is homogenized with 50% water (w/w) to form a slurry, then the test portion is extracted with methanol-water (60 + 40, v/v) using a high-speed blender. The sample extract is filtered, diluted with 15% Tween 20 in phosphate-buffered saline solution, and applied to an immunoaffinity column. Aflatoxins are removed with neat methanol, then directly determined by RP-LC with fluorescence detection using postcolumn bromination (Kobra cell). Test portions of blank white sesame seed slurry were spiked with a mixture of aflatoxins to give total levels of 4 and 10 microg/kg. Recoveries for individual and total aflatoxins ranged from 92.7 to 110.3% for spiked samples. Based on results for spiked sesame paste (triplicates at two levels), the RSD for repeatability (RSD(r)) averaged 1.1% for total aflatoxins and 1.4% for aflatoxin B1. The method was demonstrated to be applicable to naturally contaminated samples of black and white sesame seeds obtained from local markets in China.

  13. Experimental study of gravitation effects in the flow of a particle-laden thin film on an inclined plane

    NASA Astrophysics Data System (ADS)

    Ward, Thomas; Wey, Chi; Glidden, Robert; Hosoi, A. E.; Bertozzi, A. L.

    2009-08-01

    The flow of viscous, particle-laden wetting thin films on an inclined plane is studied experimentally as the particle concentration is increased to the maximum packing limit. The slurry is a non-neutrally buoyant mixture of silicone oil and either solid glass beads or glass bubbles. At low concentrations (ϕ <0.45), the elapsed time versus average front position scales with the exponent predicted by Huppert [Nature (London) 300, 427 (1982)]. At higher concentrations, the average front position still scales with the exponent predicted by Huppert on some time interval, but there are observable deviations due to internal motion of the particles. At the larger concentration values and at later times, the departure from Huppert is seen to strongly depend on total slurry volume VT, inclination angle α, density difference, and particle size range.

  14. A microfluidic sub-critical water extraction instrument

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  15. Theoretical modelling and optimization of bubble column dehumidifier for a solar driven humidification-dehumidification system

    NASA Astrophysics Data System (ADS)

    Ranjitha, P. Raj; Ratheesh, R.; Jayakumar, J. S.; Balakrishnan, Shankar

    2018-02-01

    Availability and utilization of energy and water are the top most global challenges being faced by the new millennium. At the present state water scarcity has become a global as well as a regional challenge. 40 % of world population faces water shortage. Challenge of water scarcity can be tackled only with increase in water supply beyond what is obtained from hydrological cycle. This can be achieved either by desalinating the sea water or by reusing the waste water. High energy requirement need to be overcome for either of the two processes. Of many desalination technologies, humidification dehumidification (HDH) technology powered by solar energy is widely accepted for small scale production. Detailed optimization studies on system have the potential to effectively utilize the solar energy for brackish water desalination. Dehumidification technology, specifically, require further study because the dehumidifier effectiveness control the energetic performance of the entire HDH system. The reason attributes to the high resistance involved to diffuse dilute vapor through air in a dehumidifier. The present work intends to optimize the design of a bubble column dehumidifier for a solar energy driven desalination process. Optimization is carried out using Matlab simulation. Design process will identify the unique needs of a bubble column dehumidifier in HDH system.

  16. Gas holdup and flow regime transition in spider-sparger bubble column: effect of liquid phase properties

    NASA Astrophysics Data System (ADS)

    Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.

    2017-01-01

    This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004-0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.

  17. CFD simulation of fatty acid methyl ester production in bubble column reactor

    NASA Astrophysics Data System (ADS)

    Salleh, N. S. Mohd; Nasir, N. F.

    2017-09-01

    Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.

  18. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2009-03-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble’s pressure more in line with that of the adjacent material. Suggestions for future work are made.

  19. Using a Novel Optical Sensor to Characterize Methane Ebullition Processes

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.; Senft-Grupp, S.

    2015-12-01

    We have built a novel bubble size sensor that is rugged, economical to build, and capable of accurately measuring methane bubble sizes in aquatic environments over long deployment periods. Accurate knowledge of methane bubble size is important to calculating atmospheric methane emissions from in-land waters. By routing bubbles past pairs of optical detectors, the sensor accurately measures bubbles sizes for bubbles between 0.01 mL and 1 mL, with slightly reduced accuracy for bubbles from 1 mL to 1.5 mL. The sensor can handle flow rates up to approximately 3 bubbles per second. Optional sensor attachments include a gas collection chamber for methane sampling and volume verification, and a detachable extension funnel to customize the quantity of intercepted bubbles. Additional features include a data-cable running from the deployed sensor to a custom surface buoy, allowing us to download data without disturbing on-going bubble measurements. We have successfully deployed numerous sensors in Upper Mystic Lake at depths down to 18 m, 1 m above the sediment. The resulting data gives us bubble size distributions and the precise timing of bubbling events over a period of several months. In addition to allowing us to characterize typical bubble size distributions, this data allows us to draw important conclusions about temporal variations in bubble sizes, as well as bubble dissolution rates within the water column.

  20. Bubbles in Titan’s Seas: Nucleation, Growth, and RADAR Signature

    NASA Astrophysics Data System (ADS)

    Cordier, Daniel; Liger-Belair, Gérard

    2018-05-01

    In the polar regions of Titan, the main satellite of Saturn, hydrocarbon seas have been discovered by the Cassini–Huygens mission. RADAR observations have revealed surprising and transient bright areas over the Ligeia Mare surface. As suggested by recent research, bubbles could explain these strange features. However, the nucleation and growth of such bubbles, together with their RADAR reflectivity, have never been investigated. All of these aspects are critical to an actual observation. We have thus applied the classical nucleation theory to our context, and we developed a specific radiative transfer model that is appropriate for bubble streams in cryogenic liquids. According to our results, the sea bed appears to be the most plausible place for the generation of bubbles, leading to a signal comparable to observations. This conclusion is supported by thermodynamic arguments and by RADAR properties of a bubbly column. The latter are also valid in the case of bubble plumes, due to gas leaking from the sea floor.

  1. The hot chocolate effect

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  2. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... description for Candida lipolytica variety lipolytica listed in “The Yeasts—A Toxonomic Study,” 2d Ed. (1970... equivalent). Activate as follows: Slurry 900 grams of silica gel reagent with 2 liters of purified water in a 3-liter beaker. Cool the mixture and pour into a 80 × 900 chromatographic column with coarse fritted...

  3. 21 CFR 173.165 - Candida lipolytica.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... description for Candida lipolytica variety lipolytica listed in “The Yeasts—A Toxonomic Study,” 2d Ed. (1970... equivalent). Activate as follows: Slurry 900 grams of silica gel reagent with 2 liters of purified water in a 3-liter beaker. Cool the mixture and pour into a 80 × 900 chromatographic column with coarse fritted...

  4. Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium

    NASA Astrophysics Data System (ADS)

    Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.

    2017-12-01

    A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.

  5. Probing the Southern Fermi Bubble in Ultraviolet Absorption Using Distant AGNs

    NASA Astrophysics Data System (ADS)

    Karim, Md Tanveer; Fox, Andrew J.; Jenkins, Edward B.; Bordoloi, Rongmon; Wakker, Bart P.; Savage, Blair D.; Lockman, Felix J.; Crawford, Steven M.; Jorgenson, Regina A.; Bland-Hawthorn, Joss

    2018-06-01

    The Fermi Bubbles are two giant gamma-ray emitting lobes extending 55° above and below the Galactic center. While the Northern Bubble has been extensively studied in ultraviolet (UV) absorption, little is known about the gas kinematics of the southern Bubble. We use UV absorption-line spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to probe the southern Fermi Bubble using a sample of 17 background AGNs projected behind or near the Bubble. We measure the incidence of high-velocity clouds (HVC), finding that 4 out of 6 sightlines passing through the Bubble show HVC absorption, versus 6 out of 11 passing outside. We find strong evidence that the maximum absolute LSR velocity of the HVC components decreases as a function of galactic latitude within the Bubble, for both blueshifted and redshifted components, as expected for a decelerating outflow. We explore whether the column density ratios Si IV/Si III, Si IV/Si II, and Si III/Si II correlate with the absolute galactic latitude within the Bubble. These results demonstrate the use of UV absorption-line spectroscopy to characterize the kinematics and ionization conditions of embedded clouds in the Galactic center outflow.

  6. Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanes, Ruben

    The overall goals of this research are: (1) to determine the physical fate of single and multiple methane bubbles emitted to the water column by dissociating gas hydrates at seep sites deep within the hydrate stability zone or at the updip limit of gas hydrate stability, and (2) to quantitatively link theoretical and laboratory findings on methane transport to the analysis of real-world field-scale methane plume data placed within the context of the degrading methane hydrate province on the US Atlantic margin. The project is arranged to advance on three interrelated fronts (numerical modeling, laboratory experiments, and analysis of field-basedmore » plume data) simultaneously. The fundamental objectives of each component are the following: Numerical modeling: Constraining the conditions under which rising bubbles become armored with hydrate, the impact of hydrate armoring on the eventual fate of a bubble’s methane, and the role of multiple bubble interactions in survival of methane plumes to very shallow depths in the water column. Laboratory experiments: Exploring the parameter space (e.g., bubble size, gas saturation in the liquid phase, “proximity” to the stability boundary) for formation of a hydrate shell around a free bubble in water, the rise rate of such bubbles, and the bubble’s acoustic characteristics using field-scale frequencies. Field component: Extending the results of numerical modeling and laboratory experiments to the field-scale using brand new, existing, public-domain, state-of-the-art real world data on US Atlantic margin methane seeps, without acquiring new field data in the course of this particular project. This component quantitatively analyzes data on Atlantic margin methane plumes and place those new plumes and their corresponding seeps within the context of gas hydrate degradation processes on this margin.« less

  7. Phosphorus leaching from loamy sand and clay loam topsoils after application of pig slurry.

    PubMed

    Liu, Jian; Aronsson, Helena; Bergström, Lars; Sharpley, Andrew

    2012-12-01

    Appropriate management of animal waste is essential for guaranteeing good water quality. A laboratory leaching study with intact soil columns was performed to investigate the risk of phosphorus (P) leaching from a clay loam and a loamy sand. The columns (0.2 m deep) were irrigated before and after application of pig slurry on the surface or after incorporation, or application of mineral P, each at a rate of 30 kg P ha(-1). The two soils had different initial P contents (i.e. the ammonium lactate-extractable P was 65 and 142 mg kg(-1) for the clay loam and loamy sand, respectively), but had similar P sorption characteristics (P sorption index 3.0) and degree of P saturation (17-21%). Concentrations of dissolved reactive P (DRP) and total P (TP) before P application were significantly higher in leachate from the loamy sand (TP 0.21 mg L(-1)) than from the clay loam (TP 0.13 mg L(-1)), but only increased significantly after P application to the clay loam. The highest concentrations were found when slurry was surface-applied (DRP 1.77 mg L(-1)), while incorporation decreased the DRP concentration by 64% in the clay loam. Thus moderate slurry application to a sandy soil with low P saturation did not pose a major risk of P leaching. However, application of P increased the risk of P leaching from the clay loam, irrespective of application method and despite low P saturation. The results show the importance of considering soil texture and structure in addition to soil chemical characteristics in risk assessments of P leaching. Structured soils such as the clay loam used in this study are high risk soils and application of P to bare soil during wet periods, e.g. in autumn or spring, should be followed by incorporation or avoided completely.

  8. Bubble coalescence in a Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Garg, Vishrut; Basaran, Osman

    2017-11-01

    Bubble coalescence plays a central role in the hydrodynamics of gas-liquid systems such as bubble column reactors, spargers, and foams. Two bubbles approaching each other at velocity V coalesce when the thin film between them ruptures, which is often the rate-limiting step. Experimental studies of this system are difficult, and recent works provide conflicting results on the effect of V on coalescence times. We simulate the head-on approach of two bubbles of equal radii R in an incompressible Newtonian fluid (density ρ, viscosity μ, and surface tension σ) by solving numerically the free boundary problem comprised of the Navier Stokes and continuity equations. Simulations are made challenging by the existence of highly disparate lengthscales, i.e. film thickness and drop radii, which are resolved by using the method of elliptic mesh generation. For a given liquid, the bubbles are shown to coalesce for all velocities below a critical value. The effects of Ohnesorge number Oh = μ /√{ ρσR } on coalescence time and critical velocity are also investigated.

  9. DO-increasing effects of a microscopic bubble generating system in a fish farm.

    PubMed

    Endo, Akira; Srithongouthai, Sarawut; Nashiki, Hisatsune; Teshiba, Ichiro; Iwasaki, Takaaki; Hama, Daigo; Tsutsumi, Hiroaki

    2008-01-01

    We have developed a "microscopic bubble generating system for the fish farm" and evaluated its ability to improve the quality of seawater and costs of it in marine cages of red sea bream (Pagrus major) in Kusuura Bay, Japan. Our results revealed that DO concentration of bubbling net pens increased and became significantly higher than the level outside the net pen (between 0.52 and 0.87 mg/L), and the whole water column was nearly saturated. Temperatures of the bubbling net pens decreased slightly between 0.08 and 0.12 degrees C in all the layers. Furthermore, micro-bubbles seemed to reach the deeper water due to the downward flow and diffusion. This study demonstrated that the microscopic bubble generating system developed in our research project could increase efficiently the dissolved oxygen concentration throughout all water layers of the fish farm. A capital and operation costs of the system is recoverable within a year.

  10. Stable sonoluminescence within a water hammer tube.

    PubMed

    Chakravarty, Avik; Georghiou, Theo; Phillipson, Tacye E; Walton, Alan J

    2004-06-01

    The sonoluminescence (SL) from the collapse of a single gas bubble within a liquid can be produced repetitively using an acoustic resonator. An alternative technique using a water hammer tube, producing SL from bubbles of greater size, is described here. A sealed vertical tube partly filled with a liquid and a gas at low pressure is subjected to vertical vibrations. The oscillation of the pressure within the liquid column, due to inertial forces, excites cavitation bubbles to grow and collapse. Rotation is used to confine the bubbles to the axis of the tube. Bright SL emissions were observed in a number of liquids. Repetitive emission was produced from bubbles in condensed phosphoric acid. Bubbles of 0.4 mm ambient radius (containing 2x 10(14) xenon atoms) were excited by vibration at 35 Hz. Approximately 10(12) photons were emitted per collapse in the range 400-700 nm (over four orders of magnitude greater than the brightest SL reported previously), corresponding to a 1% efficiency of the conversion of mechanical energy into light.

  11. Effects of pH on nano-bubble stability and transport in saturated porous media

    NASA Astrophysics Data System (ADS)

    Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku

    2018-01-01

    An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition.

  12. Effects of pH on nano-bubble stability and transport in saturated porous media.

    PubMed

    Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku

    2018-01-01

    An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The hot chocolate effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Frank S.

    1982-05-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles floatmore » to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.« less

  14. Hot chocolate effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float tomore » the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.« less

  15. Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor

    NASA Astrophysics Data System (ADS)

    Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.

    2018-01-01

    Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.

  16. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyinka A. Adeyiga

    2003-12-01

    Fischer-Tropsch (FT) synthesis to convert syngas (CO + H{sub 2}) derived from natural gas or coal to liquid fuels and wax is a well-established technology. For low H{sub 2} to CO ratio syngas produced from CO{sub 2} reforming of natural gas or from gasification of coal, the use of Fe catalysts is attractive because of their high water gas shift activity in addition to their high FT activity. Fe catalysts are also attractive due to their low cost and low methane selectivity. Because of the highly exothermic nature of the FT reaction, there has been a recent move away frommore » fixed-bed reactors toward the development of slurry bubble column reactors (SBCRs) that employ 30 to 90 {micro}m catalyst particles suspended in a waxy liquid for efficient heat removal. However, the use of Fe FT catalysts in an SBCR has been problematic due to severe catalyst attrition resulting in fines that plug the filter employed to separate the catalyst from the waxy product. Fe catalysts can undergo attrition in SBCRs not only due to vigorous movement and collisions but also due to phase changes that occur during activation and reaction. The objectives of this research were to develop a better understanding of the parameters affecting attrition of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. The results show that use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO{sub 2} wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and 100 Fe/5 Cu/4.2 K/1.1 (B) SiO{sub 2} have excellent selectivity characteristics (low methane and high C{sub 5}{sup +} yields), but their productivity and stability (deactivation rate) need to be improved. Mechanical integrity (attrition strength) of these two catalysts was markedly dependent upon their morphological features. The attrition strength of the catalyst made out of largely spherical particles (1.1 (B) SiO{sub 2}) was considerably higher than that of the catalyst consisting of irregularly shaped particles (11 (P) SiO{sub 2}).« less

  17. Gas Bubble Dynamics under Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  18. Dissolution of methane bubbles with hydrate armoring in deep ocean conditions

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Margarita; Socolofsky, Scott

    2017-11-01

    The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas hydrates. It is uncertain precisely how hydrate armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or hydrate phase solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas phase solubility and dirty bubble correlation equations. Further investigation of hydrate bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas Hydrates Program of the US DOE National Energy Technology Laboratory.

  19. DARPA Advanced Cannon Propellant (ACP) Library User’s Guide. Appendix F. Patents Dealing with Fluid Propellant Technology

    DTIC Science & Technology

    1981-06-15

    tallisation temperature were added 0.4 parts of hydrox- mannitol, and 15.0 parts coarse aluminium powder were ypropylated guar gum which was allowed to...3.0 parts of8 15 coarse aluminium powder , 0.5 parts of hydroxy- propylated guar gum , 0.2 parts of zinc chromate and A slurry was prepared by the mixing...4 molecules of ethylene oxide), 10 parts of foaming agent and entrapped air bubbles into the comn- coarse aluminium powder , 0.7 parts of guar gum

  20. CS Emission Near MIR-bubbles

    NASA Astrophysics Data System (ADS)

    Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T.

    2016-02-01

    We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1-0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1-0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.

  1. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  2. Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank; Birsan, Gabriel

    2017-04-01

    The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.

  3. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    PubMed

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.

  4. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor.

    PubMed

    Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen

    2018-08-01

    Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6  cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1  h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Dynamics of sonoluminescing bubbles within a liquid hammer device.

    PubMed

    Urteaga, Raúl; García-Martínez, Pablo Luis; Bonetto, Fabián J

    2009-01-01

    We studied the dynamics of a single sonoluminescing bubble (SBSL) in a liquid hammer device. In particular, we investigated the phosphoric acid-xenon system, in which pulses up to four orders of magnitude brighter than SBSL in water systems (about 10;{12} photons per pulse) have been previously reported [Chakravarty, Phys. Rev. E 69, 066317 (2004)]. We used stroboscopic photography and a Mie scattering technique in order to measure the radius evolution of the bubbles. Under adequate conditions we may position a bubble at the bottom of the tube (cavity) and a second bubble trapped at the middle of the tube (upper bubble). During its collapse, the cavity produces the compression of the liquid column. This compression drives impulsively the dynamics of the upper bubble. Our measurements reveal that the observed light emissions produced by the upper bubble are generated at its second collapse. We employed a simple numerical model to investigate the conditions that occur during the upper bubble collapse. We found good agreement between numerical and experimental values for the light intensity (fluence) and light pulse widths. Results from the model show that the light emission is increased mainly due to an increase in noble gas ambient radius and not because the maximum temperature increases. Even for the brightest pulses obtained ( 2x10;{13} photons, about 20W of peak power) the maximum temperatures computed for the upper bubble are always lower than 20000K .

  6. Water pollution potential of spent oil shale residues. [From USBM, UOC, and TOSCO processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1971-12-01

    Physical properties, including porosity, permeability, particle size distribution, and density of spent shale from three different retorting operations, (TOSCO, USBM, and UOC) have been determined. Slurry experiments were conducted on each of the spent shales and the slurry analyzed for leachable dissolved solids. Percolation experiments were conducted on the TOSCO spent shale and the quantities of dissolved solids leachable determined. The concentrations of the various ionic species in the initial leachate from the column were high. The major constituents, SO/sub 4//sup 2 -/ and Na/sup +/, were present in concentrations of 90,000 and 35,000 mg/l in the initial leachate; howevermore » the succeeding concentrations dropped markedly during the course of the experiment. A computer program was utilized to predict equilibrium concentrations in the leachate from the column. The extent of leaching and erosion of spent shale and the composition and concentration of natural drainage from spent shale have been determined using oil shale residue and simulated rainfall. Concentrations in the runoff from the spent shale have been correlated with runoff rate, precipitation intensity, flow depth, application time, slope, and water temperature. 18 tables, 32 figures.« less

  7. Bubble Plumes at NW Rota-1 Submarine Volcano, Mariana Arc: Visualization and Analysis of Multibeam Water Column Data

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.

    2012-12-01

    During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data collected with this new mid-water technology. The data show that during some passes over the vent all 5 eruptive vents were contributing to the plume above the volcano, whereas on other passes only 1 vent was visible. However, it was common that multiple vents were active at any one time. The highest observed rise of a bubble plume in the water column came from the easternmost vent, with the main plume rising 415 meters from the vent to within 175 m of the surface. In some cases, wisps from the main plume rose to heights less than 100 m from the surface. This analysis shows that water column imaging multibeam sonar data can be used as a proxy to determine the level of eruptive activity above submarine volcanoes that have robust CO2 output. We plan to compare this data set to other data sets including hydrophone recordings, ADCP data and ROV visual observations.

  8. DEVELOPMENT OF A FABRICATION PROCESS FOR SOL-GEL/METAL HYDRIDE COMPOSITE GRANULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, E; Eric Frickey, E; Leung Heung, L

    An external gelation process was developed to produce spherical granules that contain metal hydride particles in a sol-gel matrix. Dimensionally stable granules containing metal hydrides are needed for applications such as hydrogen separation and hydrogen purification that require columns containing metal hydrides. Gases must readily flow through the metal hydride beds in the columns. Metal hydrides reversibly absorb and desorb hydrogen and hydrogen isotopes. This is accompanied by significant volume changes that cause the metal hydride to break apart or decrepitate. Repeated cycling results in very fine metal hydride particles that are difficult to handle and contain. Fine particles tendmore » to settle and pack making it more difficult to flow gases through a metal hydride bed. Furthermore, the metal hydrides can exert a significant force on the containment vessel as they expand. These problems associated with metal hydrides can be eliminated with the granulation process described in this report. Small agglomerates of metal hydride particles and abietic acid (a pore former) were produced and dispersed in a colloidal silica/water suspension to form the feed slurry. Fumed silica was added to increase the viscosity of the feed slurry which helped to keep the agglomerates in suspension. Drops of the feed slurry were injected into a 27-foot tall column of hot ({approx}70 C), medium viscosity ({approx}3000 centistokes) silicone oil. Water was slowly evaporated from the drops as they settled. The drops gelled and eventually solidified to form spherical granules. This process is referred to as external gelation. Testing was completed to optimize the design of the column, the feed system, the feed slurry composition, and the operating parameters of the column. The critical process parameters can be controlled resulting in a reproducible fabrication technique. The residual silicone oil on the surface of the granules was removed by washing in mineral spirits. The granules were dried in air at 40 C. The granules were heated to 230 C for 30 minutes in argon to remove the remaining water and organic materials. The resulting product was spherical composite granules (100 to 2000 micron diameter) with a porous silica matrix containing small agglomerates of metal hydride particles. Open porosity in the silica matrix allows hydrogen to permeate rapidly through the matrix but the pores are small enough to contain the metal hydride particles. Additional porosity around the metal hydride particles, induced using abietic acid as a pore former, allows the particles to freely expand and contract without fracturing the brittle sol-gel matrix. It was demonstrated that the granules readily absorb and desorb hydrogen while remaining integral and dimensionally stable. Microcracking was observed after the granules were cycled in hydrogen five times. The strength of the granules was improved by coating them with a thin layer of a micro-porous polymer sol-gel that would allow hydrogen to freely pass through the coating but would filter out metal hydride poisons such as water and carbon monoxide. It was demonstrated that if a thin sol-gel coating was applied after the granules were cycled, the coating not only improved the strength of the granules but the coated granules retained their strength after additional hydrogen cycling tests. This additional strength is needed to extend the lifetime of the granules and to survive the compressive load in a large column of granules. Additional hydrogen adsorption tests are planned to evaluate the performance of coated granules after one hundred cycles. Tests will also be performed to determine the effects of metal hydride poisons on the granules. The results of these tests will be documented in a separate report. The process that was developed to form these granules could be scaled to a production process. The process to form granules from a mixture of metal hydride particles and pore former such as abietic acid can be scaled up using commercial granulators. The current laboratory-scale external gelation column produces approximately one gram of granules per hour. To increase the production output from a single column, multiple feed injection systems in a larger diameter column could be used.« less

  9. Bubble video experiments in the marine waters off Panarea Island (Italy): real-world data for modelling CO2 bubble dissolution and evolution

    NASA Astrophysics Data System (ADS)

    Beaubien, Stan; De Vittor, Cinzia; McGinnis, Dan; Bigi, Sabina; Comici, Cinzia; Ingrosso, Gianmarco; Lombardi, Salvatore; Ruggiero, Livio

    2014-05-01

    Carbon capture and storage is expected to provide an important, short-term contribution to mitigate global climate change due to anthropogenic emissions of CO2. Offshore reservoirs are particularly favourable, however concerns exist regarding the potential for CO2 leakage into the water column (with possible ecosystem impacts) and the atmosphere. Although laboratory experiments and modelling can examine these issues, the study of natural systems can provide a more complete and realistic understanding. For this reason the natural CO2 emission site off the coast of Panarea Island (Italy) was chosen for study within the EC-funded ECO2 project. The present paper discusses the results of field experiments conducted at this site to better understand the fate of CO2 gas bubbles as they rise through the water column, and to use this real-world data as input to test the predictive capabilities of a bubble model. Experiments were conducted using a 1m wide x 1m deep x 3m tall, hollow-tube structure equipped with a vertical guide on the front face and a dark, graduated cloth for contrast and depth reference on the back. A Plexiglas box was filled with the naturally emitted gas and fixed on the seafloor inside the structure. Tubes exit the top of the box to make bubbles of different diameters, while valves on each tube control bubble release rate. Bubble rise velocity was measured by tracking each bubble with a HD video camera mounted in the guide and calculating values over 20 cm intervals. Bubble diameter was measured by filming the bubbles as they collide with a graduated Plexiglas sheet deployed horizontally at the measurement height. Bubble gas was collected at different heights using a funnel and analysed in the laboratory for CO2, O2+Ar, N2, and CH4. Water parameters were measured by performing a CTD cast beside the structure and collecting water samples at four depths using a Niskin bottle; samples were analysed in the laboratory for all carbonate system species, DO, and dissolved gases. An in-house developed GasPro sensor was also mounted on the structure to monitor pCO2 over the entire 2.5 hour duration of the experiment. The obtained data were used as input into the Discrete Bubble Model (DBM) (e.g., McGinnis et al., 2011, doi:10.1029/2010JC006557). The DBM uses mass balance to predict the gas flux across the bubble surface, whereby gas flux direction depends on internal bubble gas concentration and ambient concentration, and considering the Henry's coefficient and partial pressure of the gas. The model uses bubble-size dependent relationships for the mass transfer rate and the bubble rise velocity. Important model input parameters include: bubble size; depth; ambient dissolved gas concentrations, temperature and salinity; and initial bubble gas concentrations. Measured and modelled results are compared, showing good general agreement. Based on the concentrations measured at the lowest level, the modelled and measured bubble concentrations match very closely. Bubble size values do not match as well if this initial concentration is used, however they improve as a value closer to 100% CO2 is applied. This preliminary study has shown promising results and highlight areas where experimental design and data quality should be improved in the next phase of the study.

  10. Final Report - "Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wasan, Darsh T.

    2007-10-09

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries.more » The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study the effectiveness of three slurry rheology modifiers. An effective modifier was identified which resulted in lowering the yield stress of the waste simulant. Therefore, the results of this research have led to the basic understanding of the foaming/antifoaming mechanism in waste slurries as well as identification of a rheology modifier, which enhances the processing throughput, and accelerates the DOE mission. The objectives of this research effort were to develop a fundamental understanding of the physico-chemical mechanisms that produced foaming and air entrainment in the DOE High Level (HLW) and Low Activity (LAW) radioactive waste separation and immobilization processes, and to develop and test advanced antifoam/defoaming/rheology modifier agents. Antifoams/rheology modifiers developed from this research ere tested using non-radioactive simulants of the radioactive wastes obtained from Hanford and the Savannah River Site (SRS).« less

  11. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of the expanding height of the silicone oil column with time after the decompression, due to the exsolution of the volatile argon and subsequent bubble growth. Contrastingly, autoclave-wall resolved shear strain of bubbles promotes rapid coalescence until a critical point when permeable outgassing is more efficient than continuing exsolution and bubble growth. At this point the column destabilizes and partially collapses. Collapse progresses until the top of the column is again impermeable and outgassing-driven column expansion resumes. This process repeats in cycles of growth, deformation, destabilization and densification until the melt is at equilibrium saturation with argon and the column collapses completely. We propose that direct observation of the timescales of growth and collapse of a decompressing, shearing column has important implications for decompression-driven rapid conduit ascent of low-viscosity, low-crystallinity magmas. Therefore, even at high exsolution rates, permeable outgassing can transiently retard magma ascent.

  12. Bioremediation of diesel fuel contaminated soil: effect of non ionic surfactants and selected bacteria addition.

    PubMed

    Collina, Elena; Lasagni, Marina; Pitea, Demetrio; Franzetti, Andrea; Di Gennaro, Patrizia; Bestetti, Giuseppina

    2007-09-01

    Aim of this work was to evaluate influence of two commercial surfactants and inoculum of selected bacteria on biodegradation of diesel fuel in different systems. Among alkyl polyethossilates (Brij family) and sorbitan derivates (Tween family) a first selection of surfactants was performed by estimation of Koc and Dafnia magna EC50 with molecular descriptor and QSAR model. Further experiments were conducted to evaluate soil sorption, biodegradability and toxicity. In the second part of the research, the effect of Brij 56, Tween 80 and selected bacteria addition on biodegradation of diesel fuel was studied in liquid cultures and in slurry and solid phase systems. The latter experiments were performed with diesel contaminated soil in bench scale slurry phase bioreactor and solid phase columns. Tween 80 addition increased the biodegradation rate of hydrocarbons both in liquid and in slurry phase systems. Regarding the effect of inoculum, no enhancement of biodegradation rate was observed neither in surfactant added nor in experiments without addition. On the contrary, in solid phase experiments, inoculum addition resulted in enhanced biodegradation compared to surfactant addition.

  13. Nitrogen recovery from pig slurry in a two-chambered bioelectrochemical system.

    PubMed

    Sotres, A; Cerrillo, M; Viñas, M; Bonmatí, A

    2015-10-01

    Abiotic batch experiments showed that ammonia migration from anode to cathode was favored by an increase in voltage, from 39.9% to 44.6%, using synthetic media. A slight increase in ammonia migration was observed when using pig slurry, reaching a maximum of 49.9%. In a continuously MFC fed with pig slurry with a stripping/absorption unit coupled to the cathode chamber, the highest nitrogen flux (7.2 g N d(-1) m(-2)) was achieved using buffer as catholyte. Nitrogen flux increased to 10.3 g N d(-1) m(-2) when shifting to MEC mode. A clear improvement in nitrogen flux (25.5 g N d(-1) m(-2)) was observed when using NaCl as catholyte. Besides, ammonia stripping was favored, reaching a nitrogen recovery of 94.3% in the absorption column, due to the high pH reached in the cathode. The microbial community analysis revealed an enrichment of certain taxonomic Eubacterial and Archaeal groups when the system shifted from MFC to MEC mode. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, S.; Walter Anthony, K. M.; Archer, D.

    Microbial methane (CH 4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH 4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH 4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH 4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We findmore » that summertime ebullition dominates annual CH 4 emissions to the atmosphere. Eighty percent of CH 4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH 4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH 4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH 4 dissolution from trapped bubbles, and greater CH 4 emissions from northern lakes.« less

  15. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE PAGES

    Greene, S.; Walter Anthony, K. M.; Archer, D.; ...

    2014-12-08

    Microbial methane (CH 4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH 4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH 4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH 4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We findmore » that summertime ebullition dominates annual CH 4 emissions to the atmosphere. Eighty percent of CH 4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH 4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH 4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH 4 dissolution from trapped bubbles, and greater CH 4 emissions from northern lakes.« less

  16. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents.

    PubMed

    Bahr, Melanie; Díaz, Ignacio; Dominguez, Antonio; González Sánchez, Armando; Muñoz, Raul

    2014-01-01

    The potential of a pilot high rate algal pond (HRAP) interconnected via liquid recirculation with an external absorption column for the simultaneous removal of H2S and CO2 from biogas using an alkaliphilic microalgal-bacterial consortium was evaluated. A bubble column was preferred as external absorption unit to a packed bed column based on its ease of operation, despite showing a comparable CO2 mass transfer capacity. When the combined HRAP-bubble column system was operated under continuous mode with mineral salt medium at a biogas residence time of 30 min in the absorption column, the system removed 100% of the H2S (up to 5000 ppmv) and 90% of the CO2 supplied, with O2 concentrations in the upgraded biogas below 0.2%. The use of diluted centrates as a free nutrient source resulted in a gradual decrease in CO2 removal to steady values of 40%, while H2S removal remained at 100%. The anaerobic digestion of the algal-bacterial biomass produced during biogas upgrading resulted in a CH4 yield of 0.21-0.27 L/gVS, which could satisfy up to 60% of the overall energy demand for biogas upgrading. This proof of concept study confirmed that algal-bacterial photobioreactors can support an integral upgrading without biogas contamination, with a net negative CO2 footprint, energy production, and a reduction of the eutrophication potential of the residual anaerobic effluents.

  17. Plasma vitrification of waste materials

    DOEpatents

    McLaughlin, David F.; Dighe, Shyam V.; Gass, William R.

    1997-01-01

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles.

  18. Plasma vitrification of waste materials

    DOEpatents

    McLaughlin, D.F.; Dighe, S.V.; Gass, W.R.

    1997-06-10

    This invention provides a process wherein hazardous or radioactive wastes in the form of liquids, slurries, or finely divided solids are mixed with finely divided glassformers (silica, alumina, soda, etc.) and injected directly into the plume of a non-transferred arc plasma torch. The extremely high temperatures and heat transfer rates makes it possible to convert the waste-glassformer mixture into a fully vitrified molten glass product in a matter of milliseconds. The molten product may then be collected in a crucible for casting into final wasteform geometry, quenching in water, or further holding time to improve homogeneity and eliminate bubbles. 4 figs.

  19. Coal desulfurization process

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  20. Loss of propiconazole and its four stereoisomers from the water phase of two soil-water slurries as measured by capillary electrophoresis.

    PubMed

    Garrison, Arthur W; Avants, Jimmy K; Miller, Rebecca D

    2011-08-01

    Propiconazole is a chiral fungicide used in agriculture for control of many fungal diseases on a variety of crops. This use provides opportunities for pollution of soil and, subsequently, groundwater. The rate of loss of propiconazole from the water phase of two different soil-water slurries spiked with the fungicide at 50 mg/L was followed under aerobic conditions over five months; the t(1/2) was 45 and 51 days for the two soil slurries. To accurately assess environmental and human risk, it is necessary to analyze the separate stereoisomers of chiral pollutants, because it is known that for most such pollutants, both biotransformation and toxicity are likely to be stereoselective. Micellar electrokinetic chromatography (MEKC), the mode of capillary electrophoresis used for analysis of neutral chemicals, was used for analysis of the four propiconazole stereoisomers with time in the water phase of the slurries. MEKC resulted in baseline separation of all stereoisomers, while GC-MS using a chiral column gave only partial separation. The four stereoisomers of propiconazole were lost from the aqueous phase of the slurries at experimentally equivalent rates, i.e., there was very little, if any, stereoselectivity. No loss of propiconazole was observed from the autoclaved controls of either soil, indicating that the loss from active samples was most likely caused by aerobic biotansformation, with a possible contribution by sorption to the non-autoclaved active soils. MEKC is a powerful tool for separation of stereoisomers and can be used to study the fate and transformation kinetics of chiral pesticides in water and soil.

  1. In Situ Raman Spectroscopic Observations of Gas-Saturated Rising Oil droplets: Simulation with Decane as an Oil-Equivalent Substitute

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2016-02-01

    Oil droplets rising from the sea floor, whether from seeps or well leakage, contain very large quantities of dissolved gas that profoundly affects their density and critical oil-water interfacial characteristics. The primary dissolved gas is methane which may be up to 30% of the molar volume. This can create a hydrate skin as the methane gas is shed from the oil as it rises through the water column, thus decreasing in pressure and increasing in temperature, and steadily changing the rising droplet buoyancy. We have explored this phenomenon by executing controlled ROV based experiments with a "bubble cup" technique in which a small volume of gas saturated decane (saturated with pure methane, a mix of methane and nitrogen , or a mix of methane and CO2) is interrogated by laser Raman spectroscopy. The use of decane as an oil "substitute" is required since natural oil samples are highly fluorescent due to the presence of polycyclic aromatic hydrocarbons. We have devised Matlab techniques for extracting the spectroscopic dissolved methane signal from the thicket of decane peaks that surround it. We have directly observed the rate at which gases are lost from the "oil" per unit area at depths in the water column that are both within and outside the hydrate forming phase boundary. We have compared the behavior of both a non-hydrate forming dissolved gas (nitrogen) with CO2 where the hydrate phase boundary is at significantly shallower depth. The results indicate complex interfacial behavior and physical chemistry. We did not observe direct gas bubble formation on the decane outer surface but did observe gas bubble formation within the oil droplets as they rose through the water column. Because there are significant energy barriers for homogeneous bubble formation within the decane phase, we took this as evidence of significant gas super-saturation within the oil droplet. The gas loss rates increased significantly in all cases when the hydrate phase boundary was crossed.

  2. CFD Study of Full-Scale Aerobic Bioreactors: Evaluation of Dynamic O2 Distribution, Gas-Liquid Mass Transfer and Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan

    If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less

  3. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Philip, Brendan T.; Denny, Alden R.; Solomon, Evan A.; Kelley, Deborah S.

    2016-03-01

    An estimated 500-2500 gigatons of methane carbon is sequestered in gas hydrate at continental margins and some of these deposits are associated with overlying methane seeps. To constrain the impact that seeps have on methane concentrations in overlying ocean waters and to characterize the bubble plumes that transport methane vertically into the ocean, water samples and time-series acoustic images were collected above Southern Hydrate Ridge (SHR), a well-studied hydrate-bearing seep site ˜90 km west of Newport, Oregon. These data were coregistered with robotic vehicle observations to determine the origin of the seeps, the plume rise heights above the seafloor, and the temporal variability in bubble emissions. Results show that the locations of seep activity and bubble release remained unchanged over the 3 year time-series investigation, however, the magnitude of gas release was highly variable on hourly time scales. Bubble plumes were detected to depths of 320-620 m below sea level (mbsl), in several cases exceeding the upper limit of hydrate stability by ˜190 m. For the first time, sustained gas release was imaged at the Pinnacle site and in-between the Pinnacle and the Summit area of venting, indicating that the subseafloor transport of fluid and gas is not restricted to the Summit at SHR, requiring a revision of fluid-flow models. Dissolved methane concentrations above background levels from 100 to 300 mbsl are consistent with long-term seep gas transport into the upper water column, which may lead to the build-up of seep-derived carbon in regional subsurface waters and to increases in associated biological activity.

  4. Direct Methanol Fuel Cell (DMFC) Battery Replacement Program

    DTIC Science & Technology

    2013-01-29

    selection of the Reynold’s number enables use of water for simulation of gas or liquid flow. Introduction of dye to the flow stream, with video...calibrated using a soap -film flow meter (Bubble-o-meter, Dublin, OH). Eleven Array system temperature regions were set as follows prior to start of...expected. The ar- ray flow proceeds down the columns: column effects would be more likely than row effects from a design of experiments perspective

  5. Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE).

    PubMed

    Garrido, A; Pashley, R M; Ninham, B W

    2017-03-01

    In the treatment of household wastewater viruses are hard to eliminate. A new technique is described which tackles this major problem. The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses by a hot (150°C) air bubble column evaporator (HBCE) system Its surface charging properties obtained by dynamic light scattering, have been studied in a range of aqueous salt solutions and secondary treated synthetic sewage water. A combination of MS2 virus surface charge properties with thermal inactivation rates, and an improved double layer plaque assay technique, allows an assessment of the efficiency of the HBCE process for virus removal in water. The system is a new energy efficient treatment for water reuse applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Immobilization of Trametes versicolor cultures for improving laccase production in bubble column reactor intensified by sonication.

    PubMed

    Wang, Feng; Guo, Chen; Liu, Chun-Zhao

    2013-01-01

    The mycelia of Trametes versicolor immobilized in alginate beads provided higher laccase production than that in pelleted form. An efficient ultrasonic treatment enhanced laccase production from the immobilized T. versicolor cultures. The optimized treatment process consisted of exposing 36-h-old bead cultures to 7-min ultrasonic treatments twice with a 12-h interval using a fixed ultrasonic power and frequency (120 W, 40 kHz). Using the intensification strategy with sonication, laccase production increased by more than 2.1-fold greater than the untreated control in both flasks and bubble column reactors. The enhancement of laccase production by ultrasonic treatment is related to the improved mass transfer of nutrients and product between the liquid medium and the gel matrix. These results provide a basis for the large-scale and highly-efficient production of laccase using sonobioreactors.

  7. Intense gas bubble emissions in the Kerch seep area - A newly discovered high-flux seep site in the Black Sea

    NASA Astrophysics Data System (ADS)

    Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann, G.

    2012-04-01

    More than 500 bubble-induced hydroacoustic anomalies (flares) were found in the water column above the seafloor in the study area comprising about 430 km2 at the Don-Kuban paleo-fan (Eastern Black Sea) by using ship mounted single beam and multibeam echosounders. Almost all flares originated from the seafloor above the gas hydrate stability zone (GHSZ), which in that region is located below ~700 m water depth. This observation confirms the sealing mechanism of gas hydrate, which impedes migration of free gas through the GHSZ and subsequent bubble emission from the seafloor. However, an intense seep site, called the "Kerch seep area" was discovered as an exception at 890 m water depth well within the GHSZ. In situ temperature measurements in shallow sediments indicate locally elevated temperatures probably caused by enhanced upward fluid flow. The base of the GHSZ in this region is generally situated at about 150 m below the seafloor. However, the local thermal anomalies result in a thinning of the gas hydrate occurrence zone to only a few meters below the seafloor and allow free gas to reach the seafloor. At sites where gas migrated into near-surface deposits, shallow gas hydrate deposits evolved and up-doming of overlying sediments led to the formation of mounds rising several meters from the surrounding seafloor. Further gas bubbles ascending from greater depth are accumulated below the gas hydrate layer at the base of the mound structures and migrate horizontally to their rims. At the mound edges gas bubbles either might form fresh gas hydrates and increase the extent of the mound structures by pushing up overlying sediments or escape at several sites into the water column. Two mounds were mapped in ultra-high resolution during dives with the autonomous underwater vehicle 'AUV MARUM SEAL 5000'. Several individual flares were detected in the Kerch seep area using hydroacoustic systems. Repeated surveys in that area conducted during three cruises within four years suggested that gas discharge varied spatially and temporally while the total number of flares remained rather constant. During seafloor inspections with MARUḾs remotely operated vehicle 'ROV QUEST 4000 m' gas bubble emission sites were investigated in detail. Gas bubbles collected during the ROV dives mainly consisted of methane predominantly of microbial origin. By analyzing the high-definition video material the gas flux from several bubble emission sites was calculated. In combination with the hydroacoustic results (flare distributions) it is estimated that about 2.2 - 87 × 106 mol CH4/yr are emitted from the seafloor at the Kerch seep area. Despite this high mass of methane injected into the hydrosphere, the peak of the highest flares at ~350 m water depth as revealed by echosounder recording suggest that the ascending methane completely dissolves in the water column and does not pass the sea-atmosphere boundary.

  8. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  9. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  10. The footprint of CO2 leakage in the water-column: Insights from numerical modeling based on a North Sea gas release experiment

    NASA Astrophysics Data System (ADS)

    Vielstädte, L.; Linke, P.; Schmidt, M.; Sommer, S.; Wallmann, K.; McGinnis, D. F.; Haeckel, M.

    2013-12-01

    Assessing the environmental impact of potential CO2 leakage from offshore carbon dioxide storage sites necessitates the investigation of the corresponding pH change in the water-column. Numerical models have been developed to simulate the buoyant rise and dissolution of CO2 bubbles in the water-column and the subsequent near-field dispersion of dissolved CO2 in seawater under ocean current and tidal forcing. In order to test and improve numerical models a gas release experiment has been conducted at 80 m water-depth within the Sleipner area (North Sea). CO2 and Kr (used as inert tracer gas) were released on top of a benthic lander at varying gas flows (<140 kg/day) and bubble sizes (de: 1-6 mm). pCO2 and pH were measured by in situ sensors to monitor the spread of the solute in different vertical heights and distances downstream of the artificial leak. The experiment and numerical analysis show that the impact of such leakage rates is limited to the near-field bottom waters, due to the rapid dissolution of CO2 bubbles in seawater (CO2 is being stripped within the first two to five meters of bubble rise). In particular, small bubbles, which will dissolve close to the seafloor, may cause a dangerous low-pH environment for the marine benthos. However, on the larger scale, the advective transport by e.g. tidal currents, dominates the CO2 dispersal in the North Sea and dilutes the CO2 peak quickly. The model results show that at the small scales (<100 m) of the CO2 plume the lateral eddy diffusion (~0.01 m2/s) has only a negligible effect. Overall, we can postulate that CO2 leakage at a rate of ~ 100 kg per day as in our experiment will only have a localized impact on the marine environment, thereby reducing pH substantially (by 0.4 units) within a diameter of less than 50 m around the release spot (depending on the duration of leakage and the current velocities). Strong currents and tidal cycles significantly reduce the spreading of low-pH water masses into the far-field by efficiently diluting the amount of CO2 in ambient seawater.

  11. Dynamics of gas-driven eruptions: Experimental simulations using CO2-H2O-polymer system

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue; Sturtevant, B.; Stolper, E. M.

    1997-02-01

    We report exploratory experiments simulating gas-driven eruptions using the CO2-H2O system at room temperature as an analog of natural eruptive systems. The experimental apparatus consists of a test cell and a large tank. Initially, up to 1.0 wt% of CO2 is dissolved in liquid water under a pressure of up to 735 kPa in the test cell. The experiment is initiated by suddenly reducing the pressure of the test cell to a typical tank pressure of 10 kPa. The following are the main results: (1) The style of the process depends on the decompression ratio. There is a threshold decompression ratio above which rapid eruption occurs. (2) During rapid eruption, there is always fragmentation at the liquid-vapor interface. Fragmentation may also occur in the flow interior. (3) Initially, the top of the erupting column ascends at a constant acceleration (instead of constant velocity). (4) Average bubble radius grows as t2/3. (5) When viscosity is 20 times that of pure water or greater, a static foam may be stable after expansion to 97% vesicularity. The experiments provide several insights into natural gas-driven eruptions, including (1) the interplay between bubble growth and ascent of the erupting column must be considered for realistic modeling of bubble growth during gas-driven eruptions, (2) buoyant rise of the bubbly magma is not necessary during an explosive volcanic eruption, and (3) CO2-driven limnic eruptions can be explosive. The violence increases with the initial CO2 content dissolved in water.

  12. Experimental constraints on the outgassing dynamics of basaltic magmas

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.

    2012-03-01

    The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.

  13. Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts.

    PubMed

    Wang, Binbin; Socolofsky, Scott A; Lai, Chris C K; Adams, E Eric; Boufadel, Michel C

    2018-06-01

    Subsea oil well blowouts and pipeline leaks release oil and gas to the environment through vigorous jets. Predicting the breakup of the released fluids in oil droplets and gas bubbles is critical to predict the fate of petroleum compounds in the marine water column. To predict the gas bubble size in oil well blowouts and pipeline leaks, we observed and quantified the flow behavior and breakup process of gas for a wide range of orifice diameters and flow rates. Flow behavior at the orifice transitions from pulsing flow to continuous discharge as the jet crosses the sonic point. Breakup dynamics transition from laminar to turbulent at a critical value of the Weber number. Very strong pure gas jets and most gas/liquid co-flowing jets exhibit atomization breakup. Bubble sizes in the atomization regime scale with the jet-to-plume transition length scale and follow -3/5 power-law scaling for a mixture Weber number. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA

    USGS Publications Warehouse

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2012-01-01

    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  15. Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Mumford, K. G.; Soucy, N. C.

    2017-12-01

    Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to increase transport rates linked to vapor intrusion, and will serve as a basis for further development of conceptual and numerical models to investigate the conditions under which this mechanism may play an important role.

  16. Novel Approaches to the Production of Higher Alcohols From Synthesis Gas. Quarterly report, January 1 - March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, George W

    1998-12-11

    A modified analytical system was assembled and calibrated, in preparation for a second run with cesium (Cs)-promoted "zinc chromite" catalyst. A new column for the on-line gas chromatography (GC) was purchased for the analysis of various light olefin and paraffin isomers. A run was carried out in the continuous stirred autoclave using the Cs-promoted catalyst. Decahydronaphfialene was used as the slurry liquid. Reaction conditions were 375°C, 2000 psig total pressure, 0.5 H₂/CO ratio, and 5000 sL/Kg (cat.)-hr. Analysis of the data from this run is in progress. A manuscript on the thermal stability of potential slurry liquids was submitted tomore » 'Industrial and Engineering Chemistry Research,' and a paper was presented at the 1997 Spring National Meeting of the American Institute of Chemical Engineers, Houston, Texas.« less

  17. Bubble gate for in-plane flow control.

    PubMed

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  18. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    NASA Astrophysics Data System (ADS)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may potentially alter bubble sizes, thus bubble storage in peats.

  19. [Recent advances and applications of capillary electrochromatography and pressurized capillary electrochromatography].

    PubMed

    Wu, Yi; Zhang, Xiaohui; Wei, Juan; Xue, Yunyun; Bahatibieke, Marjan; Wang, Yan; Yan, Chao

    2009-09-01

    Capillary electrochromatography (CEC), in which electroosmotic flow (EOF) created from the electrical double layer is made to act as a pump to drive the mobile phase in a capillary column packed with micro-particulates or coated with stationary phase. Both neutral and charged species can be resolved by CEC. It has been demonstrated that the efficiency of a separation obtained by electroosmotic propulsion is superior to that obtained by pressure-driven flow (as is the case in HPLC). CEC combines the best features of CE and versatile selectivity and large sample capacity of HPLC, promising high efficiency, high resolution, high selectivity and high peak capacity. However, in practice, when CEC is used without pressure, often used on a commercial CE instrument, there are problems and difficulties associated with bubbles formation and column dry-out. These difficulties can be overcome by a pressurized CEC (pCEC) system, in which a supplementary pressure is applied to the column in addition to the EOF. In such a system, a pressure can be applied to the capillary column to suppress bubbles formation. Quantitative sample introduction in pCEC can be easily achieved through a rotary-type injector. Most importantly, it is amenable for a solvent gradient mode, similar to that in HPLC, by programming the composition of mobile phase. The article brings a comprehensive survey of recent development of CEC and pCEC, including the development of instrumentation, capillary columns and stationary phase as well as CEC and pCEC applications in life science, biotechnology, pharmaceutical analysis, food safety and environmental security. Prospects for CEC and pCEC development and application are also discussed.

  20. Sonar gas seepage characterization using high resolution systems at short ranges

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Lohrberg, A.; Mücke, I.

    2017-12-01

    Sonar is extremely sensitive in regard to submarine remote sensing of free gas bubbles. Known reasons for this are (1) high impedance contrast between water and gas, holding true also at larger depths with higher hydrostatic pressures and thus greater mole density in a gas bubble; (2) resonating behavior at a specific depth-frequency-size/shape relation with highly non-linear behavior; (3) an overlooked property being valuable for gas seepage detection and characterization is the movement of bubbles controlled by their overall trajectory governed by buoyancy, upwelling effects, tides, eddies, and currents. Moving objects are an unusual seismo-acoustic target in solid earth geophysics, and most processors hardly consider such short term movement. However, analyzing movement pattern over time and space highly improves human and algorithmic bubble detection and helps mitigation of false alarms often caused by fish's swim bladders. We optimized our sonar surveys for gas bubble trajectory analyses using calibrated split-beam and broadband/short pulse multibeam to gather very high quality sonar images. Thus we present sonar data patterns of gas seepage sites recorded at shorter ranges showing individual bubbles or groups of bubbles. Subsequent analyses of bubble trajectories and sonar strength can be used to quantify minor gas fluxes with high accuracy. Moreover, we analyzed strong gas bubble seepage sites with significant upwelling. Acoustic inversion of such major seep fluxes is extremely challenging if not even impossible given uncertainties in bubble size spectra, upwelling velocities, and beam geometry position of targets. Our 3D analyses of the water column multibeam data unraveled that some major bubble flows prescribe spiral vortex trajectories. The phenomenon was first found at an abandoned well site in the North Sea, but our recent investigations confirm such complex bubble trajectories exist at natural seeps, i.e. at the CO2 seep site Panarea (Italy). We hypothesize that accurate 3D analyses of plume shape and trajectory analyses might help to estimate threshold for fluxes.

  1. The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc K.; Glezer, Ari

    2012-11-01

    Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.

  2. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography

    PubMed Central

    Dutta, Amit K.; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A.; Zhang, Ada W.; Tustian, Andrew D.; Zydney, Andrew L.; Shinkazh, Oleg

    2015-01-01

    Recent studies using simple model systems have demonstrated that Continuous Countercurrent Tangential Chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an “after binder” to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (~0.67 g/L) and one with high titer (~6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to that obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. PMID:25747172

  3. Purification of monoclonal antibodies from clarified cell culture fluid using Protein A capture continuous countercurrent tangential chromatography.

    PubMed

    Dutta, Amit K; Tran, Travis; Napadensky, Boris; Teella, Achyuta; Brookhart, Gary; Ropp, Philip A; Zhang, Ada W; Tustian, Andrew D; Zydney, Andrew L; Shinkazh, Oleg

    2015-11-10

    Recent studies using simple model systems have demonstrated that continuous countercurrent tangential chromatography (CCTC) has the potential to overcome many of the limitations of conventional Protein A chromatography using packed columns. The objective of this work was to optimize and implement a CCTC system for monoclonal antibody purification from clarified Chinese Hamster Ovary (CHO) cell culture fluid using a commercial Protein A resin. Several improvements were introduced to the previous CCTC system including the use of retentate pumps to maintain stable resin concentrations in the flowing slurry, the elimination of a slurry holding tank to improve productivity, and the introduction of an "after binder" to the binding step to increase antibody recovery. A kinetic binding model was developed to estimate the required residence times in the multi-stage binding step to optimize yield and productivity. Data were obtained by purifying two commercial antibodies from two different manufactures, one with low titer (∼ 0.67 g/L) and one with high titer (∼ 6.9 g/L), demonstrating the versatility of the CCTC system. Host cell protein removal, antibody yields and purities were similar to those obtained with conventional column chromatography; however, the CCTC system showed much higher productivity. These results clearly demonstrate the capabilities of continuous countercurrent tangential chromatography for the commercial purification of monoclonal antibody products. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence.

    PubMed

    Blomberg, Ann E A; Weber, Thomas C; Austeng, Andreas

    2018-06-25

    Natural seepage of methane into the oceans is considerable, and plays a role in the global carbon cycle. Estimating the amount of this greenhouse gas entering the water column is important in order to understand their environmental impact. In addition, leakage from man-made structures such as gas pipelines may have environmental and economical consequences and should be promptly detected. Split beam echo sounders (SBES) detect hydroacoustic plumes due to the significant contrast in acoustic impedance between water and free gas. SBES are also powerful tools for plume characterization, with the ability to provide absolute acoustic measurements, estimate bubble trajectories, and capture the frequency dependent response of bubbles. However, under challenging conditions such as deep water and considerable background noise, it can be difficult to detect the presence of gas seepage from the acoustic imagery alone. The spatial coherence of the wavefield measured across the split beam sectors, quantified by the coherence factor (CF), is a computationally simple, easily available quantity which complements the acoustic imagery and may ease the ability to automatically or visually detect bubbles in the water column. We demonstrate the benefits of CF processing using SBES data from the Hudson Canyon, acquired using the Simrad EK80 SBES. We observe that hydroacoustic plumes appear more clearly defined and are easier to detect in the CF imagery than in the acoustic backscatter images.

  5. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography.

    PubMed

    Kumar, Avvaru Praveen; Park, Jung Hag

    2010-06-25

    This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities.

    PubMed

    Shelver, Weilin L; Hakk, Heldur; Larsen, Gerald L; DeSutter, Thomas M; Casey, Francis X M

    2010-02-19

    An analytical method was developed using ultra-high-pressure liquid chromatography-triple quadrupole-tandem mass spectrometry (UHPLC-TQ-MS/MS) to simultaneously analyze 14 sulfonamides (SA) in 6 min. Despite the rapidity of the assay the system was properly re-equilibrated in this time. No carryover was observed even after high analyte concentrations. The instrumental detection limit based on signal-to-noise ratio (S/N)>3, was below 1 pg/microL (5 pg on column) for all SAs except sulfachloropyridazine. Surface water, ground water, soil, and slurry manure contained in storage ponds in and around swine [Sus scrofa domesticus] rearing facilities were analyzed. Sample cleanup for ground water and surface water included using solid phase extraction (SPE) using Oasis hydrophilic-lipophilic balance (HLB) cartridges. The soil and slurry manure required tandem strong anion exchange (SAX) and HLB solid phase extraction cartridges for sample cleanup. With few exceptions, the recoveries ranged from 60 to 100% for all matrices. The minimum detectable levels were below 2.0 ng/L for water, 30 ng/L for slurry manure, and 45 ng/kg for soil except for sulfachloropyridazine. The coefficient of variation (CV) was within 20% for most of the compounds analyzed. Using this method, sulfamethazine concentrations of 2250-5060 ng/L, sulfamethoxazole concentrations of 108-1.47 x 10(6)ng/L, and sulfathiazole concentrations of 785-1700 ng/L were found in the slurry manure. Sulfadimethoxine (2.0-32 ng/L), sulfamethazine (2.0-5.1 ng/L), and sulfamethoxazole (20.5-43.0 ng/L) were found in surface water and ground water. In top soil (0-15 cm), sulfamethazine ranged 34.5-663 ng/kg dry weight in those locations that received slurry manure as a nutrient; no SAs were found in the soil depths between 46 and 61 cm. The speed makes the method practical for medium to high throughput applications. The sensitivity and positive analyte identification make the method suitable for the demanding requirements for real world applications. Published by Elsevier B.V.

  7. Modeling quiescent phase transport of air bubbles induced by breaking waves

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.

  8. Absorption of mercuric cation by tannins in agricultural residues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waiss, A.C. Jr.; Wiley, M.E.; Kuhnle, J.A.

    1973-01-01

    Two common environmental pollutants are agricultural residues (skins, pits, husks, tannin bark, grape pomace) and waste streams of water containing only traces of heavy metals (such as mercury at 10 or more ppb) from mining or manufacturing operations. Agricultural residues contain tannins, polyphenolic substances, pectin, and other polymers-all with chemically reactive groups that can chelate, reduce, oxidize, demonstrate ion exchange properties, and aid in removing traces of heavy metals from dilute waste water streams at low cost. Finely ground and water-washed agricultural residues were slurried in water and packed into columns for absorption tests with heavy metals. Solutions of knownmore » concentrations of heavy metals were passed through the packed columns which were then eluted with water or with alkaline or acidic solutions. The fractions and the column absorbents were then analyzed by standard atomic absorption methods. The nature of the physical and chemical forces that are effective in metal absorption from agricultural residues is not clear.« less

  9. A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind

    NASA Astrophysics Data System (ADS)

    Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson

    2015-01-01

    Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.

  10. Assessment of performing an MST strike in Tank 21H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poirier, Michael R.

    2014-09-29

    Previous Savannah River National Laboratory (SRNL) tank mixing studies performed for the Small Column Ion Exchange (SCIX) project have shown that 3 Submersible Mixer Pumps (SMPs) installed in Tank 41 are sufficient to support actinide removal by MST sorption as well as subsequent resuspension and removal of settled solids. Savannah River Remediation (SRR) is pursuing MST addition into Tank 21 as part of the Large Tank Strike (LTS) project. The preliminary scope for LTS involves the use of three standard slurry pumps (installed in N, SE, and SW risers) in a Type IV tank. Due to the differences in tankmore » size, internal interferences, and pump design, a separate mixing evaluation is required to determine if the proposed configuration will allow for MST suspension and strontium and actinide sorption. The author performed the analysis by reviewing drawings for Tank 21 [W231023] and determining the required cleaning radius or zone of influence for the pumps. This requirement was compared with previous pilot-scale MST suspension data collected for SCIX that determined the cleaning radius, or zone of influence, as a function of pump operating parameters. The author also reviewed a previous Tank 50 mixing analysis that examined the ability of standard slurry pumps to suspend sludge particles. Based on a review of the pilot-scale SCIX mixing tests and Tank 50 pump operating experience, three standard slurry pumps should be able to suspend sludge and MST to effectively sorb strontium and actinides onto the MST. Using the SCIX data requires an assumption about the impact of cooling coils on slurry pump mixing. The basis for this assumption is described in this report. Using the Tank 50 operating experience shows three standard slurry pumps should be able to suspend solids if the shear strength of the settled solids is less than 160 Pa. Because Tank 21 does not contain cooling coils, the shear strength could be larger.« less

  11. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.

    PubMed

    Rasoulnia, P; Mousavi, S M

    2016-09-01

    Spent-medium bioleaching of V and Ni from a power plant residual ash (PPR ash) was conducted using organic acids produced by Aspergillus niger. The production of organic acids in a bubble column bioreactor was optimized through selecting three most influencing factors. Under optimum condition of aeration rate of 762.5(ml/min), sucrose concentration of 101.9(g/l) and inoculum size of 40(ml/l), respectively 17,185, 4539, 1042 and 502(ppm) of oxalic, gluconic, citric and malic acids were produced. Leaching experiments were carried out using biogenic produced organic acids under leaching environment temperature of 60°C and rotary shaking speed of 135rpm, with various pulp densities of 1, 2, 3, 5, 7 and 9(%w/v). The results showed that biogenic produced organic acids leached V much more efficiently than Ni so that even at high pulp density of 9(%w/v), 83% of V was recovered while Ni recovery yield was 30%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    PubMed

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of themore » velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.« less

  14. Influence of mass transfer on the ozonation of wastewater from the glass fiber industry.

    PubMed

    Byun, S; Cho, S H; Yoon, J; Geissen, S U; Vogelpohl, A; Kim, S M

    2004-01-01

    The mass transfer rate (kLa) is one of the most important parameters in the ozonation of wastewater, because it frequently constitutes the rate-determining step. This study investigated the influence of kLa on the ozonation of glass fiber wastewater using a high-performance jet loop reactor (HJLR), which is well known for its high mass transfer property, and compared the results of this investigation with those obtained using the bubble column reactor. It was found that the higher kLa achieved by increasing the energy input did not lead to higher ozonation efficiency, since the reaction involving the OH radical was greatly hindered at the low pH produced as a result of ozonation. By maintaining the pH at a value greater than 8.0, the higher kLa in the HJLR reactor contributed to increasing not only the TOC removal of wastewater, but also the ozone consumption efficiency, as expressed by the specific ozone consumption. The specific ozone consumption in the HJLR reactor (7.1 g ozone/ g TOC) was 20% better than that in the bubble column reactor.

  15. Dissolution enhancement and mathematical modeling of removal of residual trichloroethene in sands by ozonation during flushing with micro-nano-bubble solution

    NASA Astrophysics Data System (ADS)

    Sung, Menghau; Teng, Chun-Hao; Yang, Tsung-Hsien

    2017-07-01

    Soil flushing using micro-nano-sized bubbles (MNB) in water as the flushing solution was tested in laboratory sand columns for the cleanup of residual trichloroethene (TCE) non-aqueous-phase-liquid (NAPL). Experiments considering flushing with MNB as well as ozone MNB (OZMNB) in water to treat soils contaminated with residual TCE liquid were conducted to examine effects of ozone on dissolution enhancement. The degrees of residual TCE saturation in soils, ranging from 0.44% to 7.6%, were tested. During flushings, aqueous TCE concentrations at the column exit were monitored and TCE masses remained in the columns after flushing were determined. Experimental results between runs with MNB and OZMNB in water revealed that dissolution enhancement was dependent on residual saturation conditions, and the maximum enhancement was around 9%. Governing equations consisting of three coupled partial differential equations (PDEs) were developed to model the system, and high-order finite difference (HOFD) method was employed to solve these PDEs. From mathematical modeling of reactive mass transfer under low residual saturation conditions (0.44% and 1.9%), experimental data were simulated and important controlling mechanisms were identified. It was concluded that a specific parameter pertinent to NAPL-water interfacial area in the Sherwood number had to be modified to satisfactorily describe the dissolution of TCE in the presence of MNB in water.

  16. Kinetic investigation of narrow-bore columns packed with prototype sub-2 μm superficially porous particles with various shell thickness.

    PubMed

    Gritti, Fabrice; Omamogho, Jesse; Guiochon, Georges

    2011-10-07

    The recent successful breakthrough of sub-3 μm shell particles in HPLC has triggered considerable research efforts toward the design of new brands of core-shell particles. We investigated the mass transfer mechanism of a few analytes in narrow-bore columns packed with prototype 1.7 μm shell particles, made of 1.0, 1.2, and 1.4 μm solid nonporous cores surrounded by porous shells 350, 250, and 150 nm thick, respectively. Three probe solutes, uracil, naphthalene, and insulin, were chosen to assess the kinetic performance of these columns. Inverse size exclusion chromatography, peak parking experiments, and the numerical integration of the experimental peak profiles were carried out in order to measure the external, internal, and total column porosities, the true bulk diffusion coefficients of these analytes, the height equivalent to a theoretical plate, the longitudinal diffusion term, and the trans-particle mass transfer resistance term. The residual eddy diffusion term was measured by difference. The results show the existence of important trans-column velocity biases (7%) possibly due to the presence of particle multiplets in the slurry mixture used during the packing process. Our results illustrates some of the difficulties encountered by scientists preparing and packing shell particles into narrow-bore columns. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. In-column bonded phase polymerization for improved packing uniformity

    PubMed Central

    Huckabee, Alexis G.; Yerneni, Charu; Jacobson, Rachel E.; Alzate, Edwin J.; Chen, Tse-Hong; Wirth, Mary J.

    2017-01-01

    It is difficult to pack chromatographic particles having polymeric-bonded phases because solvents used for making a stable slurry cause the polymer layer to swell. Growth of the polymer inside the column (in situ) after packing was investigated and compared with conventional, ex situ polymer growth. The method of activators generated by electron transfer, along with atom-transfer radical polymerization, enabled polymerization under ambient conditions. Nonporous, 0.62 µm silica particles with silane initiators were used. Polyacrylamide films with a hydrated thickness of 23 nm in 75:25 water/isopropanol grew in 55 min for both in situ and ex situ preparations, and the same carbon coverage was observed. Higher chromatographic resolution and better column-to-column reproducibility were observed for in situ polymer growth, as evaluated by hydrophilic interaction liquid chromatography for the model glycoprotein, ribonuclease B. In situ polymer growth was also found to give lower eddy diffusion, as shown by a narrower peak width for injected acetonitrile in 50:50 acetonitrile/water. When columns were packed more loosely, bed collapse occurred quickly for ex situ, but not for in situ, polymer growth. The higher resolution and stability for in situ polymer growth is explained by packing with hard, rather than soft, contacts between particles. PMID:28387037

  18. The Fate of Volatiles in Subaqueous Explosive Eruptions: An Analysis of Steam Condensation in the Water Column

    NASA Astrophysics Data System (ADS)

    Cahalan, R. C.; Dufek, J.

    2015-12-01

    A model has been developed to determine the theoretical limits of steam survival in a water column during a subaqueous explosive eruption. Understanding the role of steam dynamics in particle transport and the evolution of the thermal budget is critical to addressing the first order questions of subaqueous eruption mechanics. Ash transport in subaqueous eruptions is initially coupled to the fate of volatile transport. The survival of steam bubbles to the water surface could enable non-wetted ash transport from the vent to a subaerial ash cloud. Current eruption models assume a very simple plume mixing geometry, that cold water mixes with the plume immediately after erupting, and that the total volume of steam condenses in the initial phase of mixing. This limits the survival of steam to within tens of meters above the vent. Though these assumptions may be valid, they are unproven, and the calculations based on them do not take into account any kinetic constraints on condensation. The following model has been developed to evaluate the limits of juvenile steam survival in a subaqueous explosive eruption. This model utilizes the analytical model for condensation of steam injected into a sub-cooled pool produced in Park et al. (2007). Necessary parameterizations require an iterative internal calculation of the steam saturation temperature and vapor density for each modeled time step. The contribution of volumetric expansion due to depressurization of a rising bubble is calculated and used in conjunction with condensation rate to calculate the temporal evolution of bubble volume and radius. Using steam bubble volume with the BBO equation for Lagrangian transport in a fluid, the bubble rise velocity is calculated and used to evaluate the rise distance. The steam rise model proves a useful tool to compare the effects of steam condensation, volumetric expansion, volume flux, and water depth on the dynamics of juvenile steam. The modeled results show that a sufficiently high volatile flux could lead to the survival of steam bubbles from >1km depths to the ocean surface, though low to intermediate fluxes lead to fairly rapid condensation. Building on this result we also present the results of simulations of multiphase steam jets and consider the likelihood of collapse inside a vapor envelope.

  19. What are the limits of energy focusing in sonoluminescence?

    NASA Astrophysics Data System (ADS)

    Putterman, Seth; Camara, C.; Kappus, B.; Su, C. K.; Kirilov, E.

    2003-04-01

    Sonoluminescence [SL] is amazing for the extraordinary degree by which ultrasonic energy can be focused by a cavitating bubble. Local energy dissipation exceeds Kirkhoff's law by 1E15 and the acoustic energy density concentrates by 12 orders of magnitude to create picosecond flashes of broadband ultraviolet light. At the minimum bubble radius, the acceleration exceeds 1E11 g and a megabar level shock wave is emitted into the surrounding fluid. For single bubbles driven at 30 KHz, SL is nature's smallest blackbody. This implies that the bubble's interior is such a dense plasma that the photon-matter mean free path is shorter than the wavelength of light, and suggests that SL originates in an unusual state of matter. Excitation of a vertical column of fluid [~10 Hz] so as to create a water hammer leads to the upscaling of SL and generation of flashes of light with 3E8 photons and peak powers approaching 1 W. At 1 MHz, the spectrum resembles bremsstrahlung from a transparent plasma with a temperature ~1 MK. At 10 MHz the collapsed size of the SL bubble approaches 10 nm, which raises the possibility that the SL parameter space may extend to the domain of quantum mechanics. [Research supported by DARPA and DOE.

  20. The effect of air bubbles on rabbit blood brain barrier.

    PubMed

    Hjelde, A; Bolstad, G; Brubakk, A O

    2002-01-01

    Several investigators have claimed that the blood brain barrier (BBB) may be broken by circulating bubbles, resulting in brain tissue edema. The aim of this study was to examine the effect of air bubbles on the permeability of BBB. Three groups of 6 rabbits were infused an isoosmotic solution of NaCl w/macrodex and 1% Tween. The solution was saturated with air bubbles and infused at rates of 50-100 ml hr(-1), a total of 1.6, 3.3, or 6.6 ml in each group, respectively. Two groups, each consisting of 6 rabbits, served as controls; one was infused by a degassed isoosmotic NaCl solution and one was sham-operated. All animals were left for 30 min before they were sacrificed. Specific gravity of brain tissue samples was determined using a brombenzene/kerosene gradient column, where a decrease in specific gravity indicates local brain edema. Specific gravity was significantly lower for left (P = 0.037) and right (P = 0.012) hemisphere white matter and left (P = 0.0015) and right (P = 0.002) hemisphere gray matter for the bubble-infused animals compared to the sham-operated ones. Infusion of degassed NaCl solution alone affected white left (P= 0.011) and right (P= 0.013), but not gray matter of both hemispheres. We speculate that insufficient degassing of the fluid may cause the effect of NaCl solution on the BBB of the white matter, indicating that the vessels of the white matter are more sensitive to gas bubbles than gray matter. Increasing the number of infused bubbles had no further impact on the development of cerebral edema, indicating that a threshold value was reached already at the lowest concentration of bubbles.

  1. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    NASA Astrophysics Data System (ADS)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2011-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  2. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    NASA Astrophysics Data System (ADS)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2013-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  3. Separation of emulsified crude oil in saline water by flotation with micro- and nanobubbles generated by a multiphase pump.

    PubMed

    Oliveira, H A; Azevedo, A C; Etchepare, R; Rubio, J

    2017-11-01

    The flocculation-column flotation with hydraulic loading (HL, >10 m h -1 ) was studied for the treatment of oil-in-water emulsions containing 70-400 mg L -1 (turbidity = 70-226 NTU) of oil and salinity (30 and 100 g L -1 ). A polyacrylamide (Dismulgan, 20 mg L -1 ) flocculated the oil droplets, using two floc generator reactors, with rapid and slow mixing stages (head loss = 0.9 to 3.5 bar). Flotation was conducted in two cells (1.5 and 2.5 m) with microbubbles (MBs, 5-80 μm) and nanobubbles (NBs, 50-300 nm diameter, concentration of 10 8 NBs mL -1 ). Bubbles were formed using a centrifugal multiphase pump, with optimized parameters and a needle valve. The results showed higher efficiency with the taller column reducing the residual oil content to 4 mg L -1 and turbidity to 7 NTU. At high HL (27.5 m h -1 ), the residual oil concentrations were below the standard emission (29 mg L -1 ), reaching 18 mg L -1 . The best results were obtained with high concentration of NBs (apart from the bigger bubbles). Mechanisms involved appear to be attachment and entrapment of the NBs onto and inside the flocs. Thus, the aggregates were readily captured, by bigger bubbles (mostly MBs) aiding shear withstanding. Advantages are the small footprint of the cells, low residence time and high processing rate.

  4. Studies in Three Phase Gas-Liquid Fluidised Systems

    NASA Astrophysics Data System (ADS)

    Awofisayo, Joyce Ololade

    1992-01-01

    Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.

  5. ADVANCED SULFUR CONTROL CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less

  6. Advanced treatment of swine wastewater using an agent synthesized from amorphous silica and hydrated lime.

    PubMed

    Tanaka, Yasuo; Hasegawa, Teruaki; Sugimoto, Kiyomi; Miura, Keiichi; Aketo, Tsuyoshi; Minowa, Nobutaka; Toda, Masaya; Kinoshita, Katsumi; Yamashita, Takahiro; Ogino, Akifumi

    2014-01-01

    Advanced treatment using an agent synthesized from amorphous silica and hydrated lime (M-CSH-lime) was developed and applied to swine wastewater treatment. Biologically treated wastewater and M-CSH-lime (approximately 6 w/v% slurry) were fed continuously into a column-shaped reactor from its bottom. Accumulated M-CSH-lime gradually formed a bed layer. The influent permeated this layer and contacted the M-CSH-lime, and the treatment reaction progressed. Treated liquid overflowing from the top of the reactor was neutralized with CO₂gas bubbling. The colour removal rate approximately exceeded 50% with M-CSH-lime addition rates of > 0.15 w/v%. The removal rate of PO(3⁻)(4) exceeded 80% with the addition of>0.03 w/v% of M-CSH-lime. The removal rates of coliform bacteria and Escherichia coli exceeded 99.9% with > 0.1 w/v%. Accumulated M-CSH-lime in the reactor was periodically withdrawn from the upper part of the bed layer. The content of citric-acid-soluble P₂O₅ in the recovered matter was>15% when the weight ratio of influent PO(3⁻)(4) -P to added M-CSH-lime was > 0.15. This content was comparable with commercial phosphorus fertilizer. The inhibitory effect of recovered M-CSH-lime on germination and growth of leafy vegetable komatsuna (Brassica rapa var. perviridis) was evaluated by an experiment using the Neubauer's pot. The recovered M-CSH-lime had no negative effect on germination and growth. These results suggest that advanced water treatment with M-CSH-lime was effective for simultaneous removal of colour, [Formula: see text] and coliform bacteria at an addition rate of 0.03-0.15 w/v%, and that the recovered M-CSH-lime would be suitable as phosphorus fertilizer.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The original concept envisioned for the use of Fischer-Tropsch processing (FTP) of United States associated natural gas in this study was to provide a way of utilizing gas which could not be brought to market because a pipeline was not available or for which there was no local use. Conversion of gas by FTP could provide a means of utilizing offshore associated gas which would not require installation of a pipeline or re-injection. The premium quality F-T hydrocarbons produced by conversion of the gas can be transported in the same way as the crude oil or in combination (blended) withmore » it, eliminating the need for a separate gas transport system. FTP will produce a synthetic crude oil, thus increasing the effective size of the resource. The two conventional approaches currently used in US territory for handling of natural gas associated with crude petroleum production are re-injection and pipelining. Conversion of natural gas to a liquid product which can be transported to shore by tanker can be accomplished by FTP to produce hydrocarbons, or by conversion to chemical products such as methanol or ammonia, or by cryogenic liquefaction (LNG). This study considers FTP and briefly compares it to methanol and LNG. The Energy International Corporation cobalt catalyst, ratio adjusted, slurry bubble column F-T process was used as the basis for the study and the comparisons. An offshore F-T plant can best be accommodated by an FPSO (Floating Production, Storage, Offloading vessel) based on a converted surplus tanker, such as have been frequently used around the world recently. Other structure types used in deep water (platforms) are more expensive and cannot handle the required load.« less

  8. Samuel P. Massie Chair of Excellence In Environmental Disciplines: Hampton University 1994-2010 Year Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyiga, Adeyinka A.

    2014-12-17

    The establishment of the DOE-EM Dr. Samuel P. Massie Chair of Excellence provides an excellent opportunity for Hampton University to be involved in key environmental issues in the 21 st Century. The main areas of focus are on: 1. Coal gasification with respect to pollution prevention and reduction. 2. Solid waste treatment through bioremediation technology and 3. Industrial wastewater treatment Synthesizing ion catalysts suitable for use in slurry bubble column reaction was carried out. Construction of an autoclave continuous stirred tank reactor has been completed. At the initial stage of the development of this program, work was conducted in themore » area of formic acid recovery from waste streams, which yielded useful results. We also succeeded in the removal of priority metal ions such as cadmium, chromium, copper, lead, mercury, nickel, silver, thallium, zinc, etc., from industrial and municipal wastewater by using natural wastes. The process uses tree leaves to adsorb the metal ions in the wastewater. The ultimate goal is to develop inexpensive, highly available, effective metal ion adsorbents from natural wastes as an alternative to existing commercial adsorbents, and also to explain the possible adsorption mechanism that is taking place. This technology uses natural wastes to eliminate other wastes. Obviously, there are several advantages: (1) the negative impact on environment is eliminated, (2) the complicated regeneration step is not needed, and (3) the procedure saves money and energy. Twelve different types of leaves have been tested with lead, zinc, and nickel. The study mechanism showed that the leaf tannin is an active ingredient in the adsorption of metal ions. The ion-exchange mechanism controlled the adsorption process.« less

  9. State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems

    NASA Astrophysics Data System (ADS)

    Lyczkowski, R. W.; Bouillard, J. X.; Ding, J.; Chang, S. L.; Burge, S. W.

    1994-05-01

    As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBR's) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBR's and pneumatic and slurry components are computed by ANL's EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre- and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale, and biomass as energy sources; to retain energy security; and to remediate waste and ecological problems.

  10. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    PubMed

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  11. INTERACTIONS OF THE INFRARED BUBBLE N4 WITH ITS SURROUNDINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hong-Li; Li, Jin-Zeng; Yuan, Jing-Hua

    The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with H ii regions have been considered to be good samples for investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the H ii region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a widemore » wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 × 10{sup 22} cm{sup −2}, mean volume density of about 4.4 × 10{sup 4} cm{sup −3}, and a mean mass of 320 M{sub ⊙}. In addition, from PAH emission seen at 8 μm, free–free emission detected at 20 cm, and a probability density function in special regions, we could identify clear signatures of the influence of the H ii region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.« less

  12. 40 CFR 86.522-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... performance on the most sensitive range. (2) Zero the carbon monoxide analyzer with either zero grade air or zero grade nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and... action. (Use of conditioning columns is one form of corrective action which may be taken.) (b) Initial...

  13. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  14. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  15. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  16. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  17. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  18. Water column imaging on hydrothermal vent in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  19. Comparison of homogenization techniques and incidence of aflatoxin contamination in dried figs for export.

    PubMed

    Bircan, Cavit

    2009-01-01

    To determine differences in mean aflatoxin contamination and subsample variance from dry and slurry homogenizations, 10 kg of six different, naturally contaminated dried fig samples were collected from various exporting companies in accordance with the EU Commission Directive. The samples were first dry-mixed for 5 min using a blender and sub-sampled seven times; the remainder was slurry homogenized (1 : 1, v/v) and sub-sampled seven times. Aflatoxin B1 and total aflatoxin levels were recorded and coefficient of variations (CV) computed for all sub-samples. Only a small reduction in sub-sample variations, indicated by the lower CV values, and slight differences in mean aflatoxin B1 and total aflatoxin levels were observed when slurry homogenization was applied. Therefore, 7326 dried figs, destined for export from Turkey to the EU and collected during the 2008 crop year, were dry-homogenized and tested for aflatoxins (B1, B2, G1 and G2) by immunoaffinity column clean-up using RP-HPLC. While 34% of the samples contained detectable levels of total aflatoxins (0.20-208.75 µg kg(-1)), only 9% of them exceeded the EU limit of 4 µg kg(-1) in the range 2.0-208.75 µg kg(-1), respectively. A substantial increase in the incidence of aflatoxins was observed in 2008, most likely due to the drought stress experienced in Aydin province as occurred in 2007.

  20. Shock-induced collapse of a bubble inside a deformable vessel

    PubMed Central

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  1. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu

    USGS Publications Warehouse

    Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob

    2014-01-01

    Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures indicating heterogeneous bubble nucleation, progressively more complex growth history and shear-localization; and the highest degrees of microlite crystallization, most evolved melt compositions and lowest relative temperatures. These findings suggest that collapsing columns in Ruapehu have been produced when strain localization is prominent, early bubble nucleation occurs and variation in decompression rate across the conduit is greatest. This study shows that examination of pumice from steady phases that precede column collapse may be used to predict subsequent column behaviour.

  2. Physical properties of the WAIS Divide ice core

    USGS Publications Warehouse

    Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.

    2014-01-01

    The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.

  3. Are winds in cities always slower than in the countryside? Modelling the Urban Wind Island Effect

    NASA Astrophysics Data System (ADS)

    Droste, Arjan; Steeneveld, Gert-Jan

    2017-04-01

    Though the Urban Heat Island has been extensively studied, relatively little has been documented about differences in wind between the city as a whole and the countryside. Urban winds are difficult to capture in both observations and modelling, due to the complex urban canyon and neighbourhood geometry. This study uses a straightforward mixed-layer model (Tennekes & Driedonks, 1981) to investigate the contrast between the diurnal cycle of wind in the urban and the rural environment. The model contains one urban and one rural column, to identify differences in wind patterns between city and countryside under equal geostrophic forcing. The model has been evaluated against rural observations from the 213 m. Cabauw tower (the Netherlands), and the urban observations from the BUBBLE campaign (Basel, Rotach et al., 2005). The influence of the urban fabric on the wind is investigated by varying the surface underneath the column model using the 10 urban Local Climate Zones, thereby altering building height, fraction of impervious surface, and initial boundary-layer depth. First results show that for high initial urban boundary-layer depths compared to the rural boundary-layer depth, the urban column can be much windier than its rural counterpart: i.e. the urban Wind Island Effect. The effect appears to be most prominent in the morning and the late afternoon (up to 1 m/s), for Local Climate Zones with lower buildings (3 or 7). BUBBLE observations confirm the timing of the Wind Island Effect, though with weaker magnitude.

  4. Completing the evolution of supernova remnants and their bubbles

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Cox, Donald P.

    1992-01-01

    The filling fraction of hot gas in the ISM is reexamined with new calculations of the very long term evolution of SNRs and their fossil hot bubbles. Results are presented of a 1D numerical solution of the evolution of an SNR in a homogeneous medium with a nonthermal pressure corresponding to a 5-micro-G magnetic field and density of 0.2/cu cm. Comparison is made with a control simulation having no magnetic field pressure. It is found that the evolutions, once they have become radiative, differ in several significant ways, while both differ appreciably from qualitative pictures presented in the past. Over most of the evolution of either case, the hot bubble in the interior occupies only a small fraction of the shocked volume, the remainder in a thick shell of slightly compressed material. Column densities and radial distributions of O VI, N V, C IV, and Si IV as well as examples of absorption profiles for their strong UV lines are presented.

  5. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less

  6. Shock-induced bubble collapse in a vessel: Implications for vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran; Colonius, Tim

    2014-11-01

    In shockwave lithotripsy, shocks are repeatedly focused on kidney stones so to break them. The process leads to cavitation in tissue, which leads to hemorrhage. We hypothesize that shock-induced collapse (SIC) of preexisting bubbles is a potential mechanism for vascular injury. We study it numerically with an idealized problem consisting of the three-dimensional SIC of an air bubble immersed in a cylindrical water column embedded in gelatin. The gelatin is a tissue simulant and can be treated as a fluid due to fast time scales and small spatial scales of collapse. We thus model the problem as a compressible multicomponent flow and simulate it with a shock- and interface-capturing numerical method. The method is high-order, conservative and non-oscillatory. Fifth-order WENO is used for spatial reconstruction and an HLLC Riemann solver upwinds the fluxes. A third-order TVD-RK scheme evolves the solution. We evaluate the potential for injury in SIC for a range of pressures, bubble and vessel sizes, and tissue properties. We assess the potential for injury by comparing the finite strains in tissue, obtained by particle tracking, to ultimate strains from experiments. We conclude that SIC may contribute to vascular rupture and discuss the smallest bubble sizes needed for injury. This research was supported by NIH Grant No. 2PO1DK043881 and utilized XSEDE, which is supported by NSF Grant No. OCI-1053575.

  7. Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.

  8. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Boutchko, Rostyslav; Rayz, Vitaliy L.; Vandehey, Nicholas T.; O'Neil, James P.; Budinger, Thomas F.; Nico, Peter S.; Druhan, Jennifer L.; Saloner, David A.; Gullberg, Grant T.; Moses, William W.

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99mTc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  9. Imaging and modeling of flow in porous media using clinical nuclear emission tomography systems and computational fluid dynamics.

    PubMed

    Boutchko, Rostyslav; Rayz, Vitaliy L; Vandehey, Nicholas T; O'Neil, James P; Budinger, Thomas F; Nico, Peter S; Druhan, Jennifer L; Saloner, David A; Gullberg, Grant T; Moses, William W

    2012-01-01

    This paper presents experimental and modeling aspects of applying nuclear emission tomography to study fluid flow in laboratory packed porous media columns of the type frequently used in geophysics, geochemistry and hydrology research. Positron emission tomography (PET) and single photon emission computed tomography (SPECT) are used as non-invasive tools to obtain dynamic 3D images of radioactive tracer concentrations. Dynamic sequences obtained using 18 F-FDG PET are used to trace flow through a 5 cm diameter × 20 cm tall sand packed column with and without an impermeable obstacle. In addition, a custom-made rotating column setup placed in a clinical two-headed SPECT camera is used to image 99m Tc-DTPA tracer propagation in a through-flowing column (10 cm diameter × 30 cm tall) packed with recovered aquifer sediments. A computational fluid dynamics software package FLUENT is used to model the observed flow dynamics. Tracer distributions obtained in the simulations in the smaller column uniformly packed with sand and in the column with an obstacle are remarkably similar to the reconstructed images in the PET experiments. SPECT results demonstrate strongly non-uniform flow patterns for the larger column slurry-packed with sub-surface sediment and slow upward flow. In the numerical simulation of the SPECT study, two symmetric channels with increased permeability are prescribed along the column walls, which result in the emergence of two well-defined preferential flow paths. Methods and results of this work provide new opportunities in hydrologic and biogeochemical research. The primary target application for developed technologies is non-destructive, non-perturbing, quantitative imaging of flow dynamics within laboratory scale porous media systems.

  10. Simulation and observation of line-slip structures in columnar structures of soft spheres

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  11. Simulation and observation of line-slip structures in columnar structures of soft spheres.

    PubMed

    Winkelmann, J; Haffner, B; Weaire, D; Mughal, A; Hutzler, S

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  12. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  13. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  14. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  15. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  16. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  17. Modelling of microalgal growth and lipid production in Dunaliella tertiolecta using nitrogen-phosphorus-potassium fertilizer medium in sintered disk chromatographic glass bubble column.

    PubMed

    Kumar, Anup; Guria, Chandan; Chitres, G; Chakraborty, Arunangshu; Pathak, A K

    2016-10-01

    A comprehensive mathematical model involving NPK-10:26:26 fertilizer, NaCl, NaHCO3, light and temperature operating variables for Dunaliella tertiolecta cultivation is formulated to predict microalgae-biomass and lipid productivity. Proposed model includes Monod/Andrews kinetics for the absorption of essential nutrients into algae-biomass and Droop model involving internal nutrient cell quota for microalgae growth, assuming algae-biomass is composed of sugar, functional-pool and neutral-lipid. Biokinetic model parameters are determined by minimizing the residual-sum-of-square-errors between experimental and computed microalgae-biomass and lipid productivity using genetic algorithm. Developed model is validated with the experiments of Dunaliella tertiolecta cultivation using air-agitated sintered-disk chromatographic glass-bubble column and the effects of operating variables on microalgae-biomass and lipid productivity is investigated. Finally, parametric sensitivity analysis is carried out to know the sensitivity of model parameters on the obtained results in the input parameter space. Proposed model may be helpful in scale-up studies and implementation of model-based control strategy in large-scale algal cultivation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Impact of methane flow through deformable lake sediments on atmospheric release

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  19. Expandable mixing section gravel and cobble eductor

    DOEpatents

    Miller, Arthur L.; Krawza, Kenneth I.

    1997-01-01

    In a hydraulically powered pump for excavating and transporting slurries in hich it is immersed, the improvement of a gravel and cobble eductor including an expandable mixing section, comprising: a primary flow conduit that terminates in a nozzle that creates a water jet internal to a tubular mixing section of the pump when water pressure is applied from a primary supply flow; a tubular mixing section having a center line in alignment with the nozzle that creates a water jet; a mixing section/exit diffuser column that envelopes the flexible liner; and a secondary inlet conduit that forms an opening at a bas portion of the column and adjacent to the nozzle and water jet to receive water saturated gravel as a secondary flow that mixes with the primary flow inside of the mixing section to form a combined total flow that exits the mixing section and decelerates in the exit diffuser.

  20. Synthesis of nano grade hollow silica sphere via a soft template method.

    PubMed

    Tsai, Ming-Shyong; Li, Miao Ju; Yen, Fu-Hsu

    2008-06-01

    The nano grade hollow silica sphere (HSS) was synthesized by a novel soft template method. We found that the precipitate of aluminate had a porous structure that could be the soft template for HSS. After mixing the colloidal silica with the aluminate precipitate, the bubble trapped in this porous structure could form the nano grade HSS. The aluminate precipitate was removed by adjusting the pH of the slurry to approximately 1. The outside diameter, the specific surface, and the mean pore size diameter of the forming HSS were 60-90 nm, 571 m2/g, and 3 nm, respectively. The formed HSS was collected by modifying the surface with Si(OCH3)3CHCH2 (VTMO) and then filtrating the precipitated gel in the n-butanol and ethanol solvent system.

  1. Environmental assessment of a watertube boiler firing a coal-water slurry. Volume 2. Data supplement. Final report, January 1984-March 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeRosier, R.; Waterland, L.R.

    1986-02-01

    This report is a compendium of detailed test sampling and analysis data obtained in field tests of a watertube industrial boiler burning a coal/water slurry (CWS). Test data reported include preliminary stack test data, boiler operating data, and complete flue-gas emission results. Flue-gas emission measurements included continuous monitoring for criteria pollutants; onsite gas chromatography (GC) for volatile hydrocarbons (Cl-C6); Methods 5/8 sampling for particulate, SO/sub 2/, and SO/sub 3/ emissions; source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR), liquidmore » column (LC) chromatography separation, and low-resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), and trace-element emissions using spark-source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS); N/sub 2/O emissions by gas chromatography/electron-capture detector (GC/ECD); and biological assay testing of SASS and ash-stream samples.« less

  2. Cavitation luminescence in a water hammer: Upscaling sonoluminescence

    NASA Astrophysics Data System (ADS)

    Su, C.-K.; Camara, C.; Kappus, B.; Putterman, S. J.

    2003-06-01

    Oscillatory acceleration and deceleration of a column of water leads to a pipe hammer as well as cavitation. With a small amount of xenon gas dissolved in the water, we can detect a stream of predominantly ultraviolet subnanosecond flashes of light which are attributed to collapsing bubbles. The observed emission can exceed 108 photons for a single collapse and has a peak power over 0.4 W.

  3. BURST OF STAR FORMATION DRIVES BUBBLE IN GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These NASA Hubble Space Telescope snapshots reveal dramatic activities within the core of the galaxy NGC 3079, where a lumpy bubble of hot gas is rising from a cauldron of glowing matter. The picture at left shows the bubble in the center of the galaxy's disk. The structure is more than 3,000 light-years wide and rises 3,500 light-years above the galaxy's disk. The smaller photo at right is a close-up view of the bubble. Astronomers suspect that the bubble is being blown by 'winds' (high-speed streams of particles) released during a burst of star formation. Gaseous filaments at the top of the bubble are whirling around in a vortex and are being expelled into space. Eventually, this gas will rain down upon the galaxy's disk where it may collide with gas clouds, compress them, and form a new generation of stars. The two white dots just above the bubble are probably stars in the galaxy. The close-up reveals that the bubble's surface is lumpy, consisting of four columns of gaseous filaments that tower above the galaxy's disk. The filaments disperse at a height of 2,000 light-years. Each filament is about 75 light-years wide. Velocity measurements taken by the Canada-France-Hawaii Telescope in Hawaii show that the gaseous filaments are ascending at more than 4 million miles an hour (6 million kilometers an hour). According to theoretical models, the bubble formed when ongoing winds from hot stars mixed with small bubbles of very hot gas from supernova explosions. Observations of the core's structure by radio telescopes indicate that those processes are still active. The models suggest that this outflow began about a million years ago. They occur about every 10 million years. Eventually, the hot stars will die, and the bubble's energy source will fade away. Astronomers have seen evidence of previous outbursts from radio and X-ray observations. Those studies show rings of dust and gas and long plumes of material, all of which are larger than the bubble. NGC 3079 is 50 million light-years from Earth in the constellation Ursa Major. The colors in this image accentuate important details in the bubble. Glowing gas is red and starlight is blue/green. Hubble's Wide Field and Planetary Camera 2 snapped this picture in 1998. The results appear in the July 1, 2001 issue of the Astrophysical Journal. Credits: NASA, Gerald Cecil (University of North Carolina), Sylvain Veilleux (University of Maryland), Joss Bland-Hawthorn (Anglo-Australian Observatory), and Alex Filippenko (University of California at Berkeley).

  4. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    NASA Astrophysics Data System (ADS)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  5. Particle transport in subaqueous eruptions: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Verolino, A.; White, J. D. L.; Zimanowski, B.

    2018-01-01

    Subaqueous volcanic eruptions are natural events common under the world's oceans. Here we report results from bench-scale underwater explosions that entrain and eject particles into a water tank. Our aim was to examine how particles are transferred to the water column and begin to sediment from it, and to visualize and interpret evolution of the 'eruption' cloud. Understanding particle transfer to water is a key requirement for using deposit characteristics to infer behaviour and evolution of an underwater eruption. For the experiments here, we used compressed argon to force different types of particles, under known driving pressures, into water within a container, and recorded the results at 1 MPx/frame and 1000 fps. Three types of runs were completed: (1) particles within water were driven into a water-filled container; (2) dry particles were driven into water; (3) dry particles were driven into air at atmospheric pressure. Across the range of particles used for all subaqueous runs, we observed: a) initial doming, b) a main expansion of decompressing gas, and c) a phase of necking, when a forced plume separated from the driving jet. Phase c did not take place for the subaerial runs. A key observation is that none of the subaqueous explosions produced a single, simple, open cavity; in all cases, multiphase mixtures of gas bubbles, particles and water were formed. Explosions in which the expanding argon ejects particles in air, analogous to delivery of particles created in an explosion, produce jets and forced plumes that release particles into the tank more readily than do those in which particles in water are driven into the tank. The latter runs mimic propulsion of an existing vent slurry by an explosion. Explosions with different particle types also yielded differences in behaviour controlled primarily by particle mass, particle density, and particle-population homogeneity. Particles were quickly delivered into the water column during plume rise following necking, with minor transfer along initial-jet margins, and for breaching explosions additional delivery from splashdown of tephra jets. Plume rise after necking also draws upward and re-entrains some groups of particles. Most delivered particles participate in initiating vertical sediment-gravity flows, some of which reached the tank floor and began lateral flow within the short duration of our experiments. Particles transferred from plume margins locally were sufficiently well-separated to settle independently from suspension.

  6. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.

    PubMed

    Nakamura, Keisuke; Nakamura, Hiroki; Saito, Shingo; Shibukawa, Masami

    2015-01-20

    In this paper, we present a new chromatographic method termed surface-bubble-modulated liquid chromatography (SBMLC), that has a hybrid separation medium incorporated with surface nanobubbles. Nanobubbles or nanoscale gas phases can be fixed at the interface between water and a hydrophobic material by delivering water into a dry column packed with a nanoporous material. The incorporation of a gas phase at the hydrophobic surface leads to the formation of the hybrid separation system consisting of the gas phase, hydrophobic moieties, and the water/hydrophobic interface or the interfacial water. One can change the volume of the gas phase by pressure applied to the column, which in turn alters the area of water/hydrophobic interface or the volume of the interfacial water, while the amount of the hydrophobic moiety remains constant. Therefore, this strategy provides a novel technique not only for manipulating the separation selectivity by pressure but also for elucidating the mechanism of accumulation or retention of solute compounds in aqueous solutions by a hydrophobic material. We evaluate the contributions of the interfacial water at the surface of an octadecyl bonded silica and the bonded layer itself to the retention of various solute compounds in aqueous solutions on the column packed with the material by SBMLC. The results show that the interfacial water formed at the hydrophobic surface has a key role in retention even though its volume is rather small. The manipulation of the separation selectivity of SBMLC for some organic compounds by pressure is demonstrated.

  7. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.

    PubMed

    Chen, Jin; Henson, Michael A

    2016-11-01

    Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H 2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Pyroclast/snow interactions and thermally driven slurry formation. Part 1: Theory for monodisperse grain beds

    USGS Publications Warehouse

    Walder, J.S.

    2000-01-01

    Lahars are often produced as pyroclastic flows move over snow. This phenomenon involves a complicated interplay of mechanical and thermal processes that need to be separated to get at the fundamental physics. The thermal physics of pyroclast/snow interactions form the focus of this paper. A theoretical model is developed of heat- and mass transfer at the interface between a layer of uniformly sized pyroclasts and an underlying bed of snow, for the case in which there is no relative shear motion between pyroclasts and snow. A microscale view of the interface is required to properly specify boundary conditions. The physical model leads to the prediction that the upward flux of water vapor - which depends upon emplacement temperature, pyroclast grain size, pyroclast-layer thickness, and snow permeability - is sometimes sufficient to fluidize the pyroclasts. Uniform fluidization is usually unstable to bubble formation, which leads to vigorous convection of the pyroclasts themselves. Thus, predicted threshold conditions for fluidization are tantamount to predicted thresholds for particle convection. Such predictions are quantitatively in good agreement with results of experiments described in part 2 of this paper. Because particle convection commonly causes scour of the snow bed and transformation of the pyroclast layer to a slurry, there exists a 'thermal scour' process for generating lahars from pyroclastic flows moving over snow regardless of the possible role of mechanical scour.

  9. Role of fluid in the mechanism of formation of volcaniclastic and coherent kimberlite facies: a diamond perspective

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Yana; Chinn, Ingrid

    2016-04-01

    Dissolution features on diamonds recovered from kimberlites vary depending on the dissolution conditions and can be used as a reliable proxy for volatiles and their role in kimberlite emplacement. Volatiles determine the mechanism of magma emplacement; variation in volatile content and CO2/CO2+H2O ratio may affect the geology of kimberlite bodies and formation of coherent vs. volcaniclastic kimberlite facies. Here we examine the evolution of a kimberlite system during ascent using the resorption morphology of its diamond population. We use 655 macro-diamonds from a complex kimberlite pipe in the Orapa kimberlite field (Botswana) to examine the role of volatiles in the formation of the three facies comprising this pipe: two coherent kimberlite facies (CKA and CKB) and one massive volcaniclastic facies (MVK). The diamonds come from three drillholes through each of the studied kimberlite facies. Separate diamond samples derived from 2 - 13 m intervals were combined into 40 m depth intervals for statistical purposes. Four independent morphological methods allowed us to reliably discriminate products of resorption in kimberlite magma from resorption in the mantle, and use the former in our study. We found that the proportion of diamonds with kimberlitic resorption is the lowest in CKA - 22%, medium in MVK - 50%, and highest in CKB - 73%, and it increases with depth in each of the drillholes. Each kimberlite facies shows its own style of kimberlite-induced resorption on rounded tetrahexahedron (THH) diamonds: glossy surfaces in MVK, rough corroded surfaces in CKB, and combination of glossy surfaces with chains of circular pits in CKA, where these pits represent the initial stages of development of corrosive features observed on CKB diamonds. Based on the results of our previous experimental studies we propose that resorption of MVK diamonds is a product of interaction with COH fluid, resorption of CKB diamonds is a product of interaction with a volatile-undersaturated melt (possibly carbonatitic), and CKA diamonds show an overprint of melt-controlled resorption over a fluid-controlled resorption. We propose an early separation of the fluid phase during the ascent of this kimberlite magma, segregation of this fluid and rise towards the top of the magma column. Over-pressurisation caused by the expansion of this fluid worked as a driving force for the magma ascent acceleration. The magma column has separated into two parts: (1) the bubble-rich magma towards the top, explosive emplacement of which formed the MVK facies, followed by the "tailing" bubble-poor magma quietly arriving to form the CKA facies, and (2) magma that lost volatiles to the upwardly escaping bubbles, in which a slower ascent caused more intensive diamond resorption and delayed emplacement, forming the CKB facie. It is possible that formation, buoyancy, and growth of fluid bubbles controls the ascent of the kimberlite magma, where emplacement of bubble-rich magma forms volcaniclastic kimberlite facies, while fast rise of the bubbles through the magma column separates the fluid-rich phase that moves up preparing the conduit in the surrounding rocks and forms an explosive pipe at the surface, from a volatile-depleted magma, which slowly rises and fills the pipe with CK kimberlite facies.

  10. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the improved performance of transducer at higher than over 3 atm pressure. Keywords: ultrasonic , flow , particle , Sediment , Cumulative mass

  11. Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass

    NASA Astrophysics Data System (ADS)

    Fotovat, Farzam

    This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (U<0.6 m/s), while at high velocities, the bubbling trend of beds containing different fractions of biomass is comparable. The addition of biomass particles to a bed of sand leads to an increase in the mean voidage of the bed; however, the voidage of each phase remains unaffected. It is observed that large biomass particles trigger a break-up of the bubbles, which results in boosting bubbling frequency. The fraction of bubbles at the center of the bed increases with the load of biomass. At the wall region, however, it starts to decrease by adding 2% wt. biomass to pure sand and then increases with the further addition of biomass. The Radioactive Particle Tracking (RPT) technique is implemented in the second section of this work to study the motion and distribution of biomass particles at U=0.36 m/s and U=0.64 m/s. In this regard, an active biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced segregation of sand and biomass. The opposite trend is observed at U=0.64 m/s. This prompts a more uniform distribution of particles along the bed and brings about a higher degree of mixing. The average rise velocity of biomass is 0.2 times the bubble velocity, regardless of the biomass load or fluidization velocity. A one-dimensional model is proposed to predict the volume fraction of biomass along the bed. Some of the terms of this model are linked to the fluidizing behavior of biomass particles as deduced from the RPT findings. The fluidization of sand and cylindrical biomass particles is also simulated using the BARRACUDA CPFD software, which is based on the Lagrangian-Eulerian approach. Simulation and experimental results are compared in order to evaluate the capability of the numerical approach to predict the bubbling characteristics of the sand-biomass mixture for systems differing in composition and fluidization velocity. The last part of this thesis is devoted to the separation of the main components of the shredded bulky waste. A step-wise process has been developed based on the elutriation and density segregation techniques. After removal of the light and interwoven species of the shredded waste by elutriation, the nonelutriated materials are further separated into two successive fluidization columns. Polypropylene and glass beads are introduced as the fluidization media in these columns in order to make density segregation of the target and not-target components possible. Hence, undesirable combustible matters and hard plastic are separated as the overflow of the first and second fluidization steps. A second elutriation column is also devised to separate and recover fiber and soft plastic. To determine optimal operating conditions, several influential parameters, such as the elutriation velocity and time, the size and density of the fluidization media, and the initial configuration of the feedstock and bed material, are explored. The kinetics of segregation is also derived for both fluidization steps. (Abstract shortened by UMI.).

  12. Portable rotating discharge plasma device

    NASA Astrophysics Data System (ADS)

    Dwyer, B. L.; Brooks, N. H.; Lee, R. L.

    2011-10-01

    We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.

  13. Corrected Article: Simulation and observation of line-slip structures in columnar structures of soft spheres [Phys. Rev. E 96, 012610 (2017)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  14. Consultancy on Large-Scale Submerged Aerobic Cultivation Process Design - Final Technical Report: February 1, 2016 -- June 30, 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crater, Jason; Galleher, Connor; Lievense, Jeff

    NREL is developing an advanced aerobic bubble column model using Aspen Custom Modeler (ACM). The objective of this work is to integrate the new fermentor model with existing techno-economic models in Aspen Plus and Excel to establish a new methodology for guiding process design. To assist this effort, NREL has contracted Genomatica to critique and make recommendations for improving NREL's bioreactor model and large scale aerobic bioreactor design for biologically producing lipids at commercial scale. Genomatica has highlighted a few areas for improving the functionality and effectiveness of the model. Genomatica recommends using a compartment model approach with an integratedmore » black-box kinetic model of the production microbe. We also suggest including calculations for stirred tank reactors to extend the models functionality and adaptability for future process designs. Genomatica also suggests making several modifications to NREL's large-scale lipid production process design. The recommended process modifications are based on Genomatica's internal techno-economic assessment experience and are focused primarily on minimizing capital and operating costs. These recommendations include selecting/engineering a thermotolerant yeast strain with lipid excretion; using bubble column fermentors; increasing the size of production fermentors; reducing the number of vessels; employing semi-continuous operation; and recycling cell mass.« less

  15. Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion.

    PubMed

    Huang, Haiming; Liu, Jiahui; Jiang, Yang

    2015-11-12

    This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L(-1), 1:1 and 1 L min(-1), respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible.

  16. Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion

    PubMed Central

    Huang, Haiming; Liu, Jiahui; Jiang, Yang

    2015-01-01

    This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L–1, 1:1 and 1 L min–1, respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible. PMID:26558521

  17. Separation of cannabinoids on three different mixed-mode columns containing carbon/nanodiamond/amine-polymer superficially porous particles.

    PubMed

    Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R

    2015-09-01

    Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, D.

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less

  20. The energy balance within a bubble column evaporator

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air temperatures, and indicated the better energy efficiency, of 7.55 kW·h per m3 of pure water, compared to traditional thermal desalination techniques.

  1. Multi-stage slurry system used for grinding and polishing materials

    DOEpatents

    Hed, P. Paul; Fuchs, Baruch A.

    2001-01-01

    A slurry system draws slurry from a slurry tank via one of several intake pipes, where each pipe has an intake opening at a different depth in the slurry. The slurry is returned to the slurry tank via a bypass pipe in order to continue the agitation of the slurry. The slurry is then diverted to a delivery pipe, which supplies slurry to a polisher. The flow of slurry in the bypass pipe is stopped in order for the slurry in the slurry tank to begin to settle. As the polishing continues, slurry is removed from shallower depths in order to pull finer grit from the slurry. When the polishing is complete, the flow in the delivery pipe is ceased. The flow of slurry in the bypass pipe is resumed to start agitating the slurry. In another embodiment, the multiple intake pipes are replaced by a single adjustable pipe. As the slurry is settling, the pipe is moved upward to remove the finer grit near the top of the slurry tank as the polishing process continues.

  2. Sources, extent and history of methane seepage on the continental shelf off northern Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Simone; Lepland, Aivo; Chand, Shyam; Schubert, Carsten J.; Eichinger, Florian; Knies, Jochen

    2014-05-01

    Active natural hydrocarbon gas seepage was recently discovered in the Hola area on the continental shelf off Vesterålen, northern Norway. We conducted acoustic and geochemical investigations to assess the modern and past extent, source and pathways of the gas seepage . Water column echosounder surveys showed bubble plumes up to several tens of metres above the seafloor. Analyses of dissolved methane in the water column indicated slightly elevated concentrations (50 nM) close to the seafloor. To identify fluxes and origin of methane in the sediments we analysed sediment pore water chemistry, the isotopic composition of methane and of dissolved inorganic carbon (d13CCH4, d2HCH4, d13CDIC) in three closely spaced (

  3. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska 1. Origin of Strombolian activity

    USGS Publications Warehouse

    Vergniolle, S.; Boichu, M.; Caplan-Auerbach, J.

    2004-01-01

    The 1999 basaltic eruption of Shishaldin volcano (Alaska, USA) displayed both classical Strombolian activity and an explosive Subplinian plume. Strombolian activity at Shishaldin occurred in two major phases following the Subplinian activity. In this paper, we use acoustic measurements to interpret the Strombolian activity. Acoustic measurements of the two Strombolian phases show a series of explosions that are modeled by the vibration of a large overpressurised cylindrical bubble at the top of the magma column. Results show that the bubble does not burst at its maximum radius, as expected if the liquid film is stretched beyond its elasticity. But bursting occurs after one cycle of vibration, as a consequence of an instability of the air-magma interface close to the bubble minimum radius. During each Strombolian period, estimates of bubble length and overpressure are calculated. Using an alternate method based on acoustic power, we estimate gas velocity to be 30-60 m/s, in very good agreement with synthetic waveforms. Although there is some variation within these parameters, bubble length and overpressure for the first Strombolian phase are found to be ??? 82 ?? 11 m and 0.083 MPa. For the second Strombolian phase, bubble length and overpressure are estimated at 24 ?? 12 m and 0.15 MPa for the first 17 h after which bubble overpressure shows a constant increase, reaching a peak of 1.4 MPa, just prior to the end of the second Strombolian phase. This peak suggests that, at the time, the magma in the conduit may contain a relatively large concentration of small bubbles. Maximum total gas volume and gas fluxes at the surface are estimated to be 3.3 ?? 107 and 2.9 ?? 103 m3/s for the first phase and 1.0 ?? 108 and 2.2 ?? 103 m3/s for the second phase. This gives a mass flux of 1.2 ?? 103 and 8.7 ?? 102 kg/s, respectively, for the first and the second Strombolian phases. ?? 2004 Elsevier B.V. All rights reserved.

  4. Physical conditions for trapping air by a microtrichia-covered insect cuticle during temporary submersion

    NASA Astrophysics Data System (ADS)

    Neumann, Dietrich; Woermann, Dietrich

    2009-08-01

    The intertidal midge Clunio, which reproduces on exposed rocky seashores, becomes enclosed in an irregularly shaped air bubble during short submersion by incoming waves. This water-repellent property of Clunio’s cuticle is caused by a complete cover of hydrophobic microtrichia offering an effective surf tolerance. These microtrichia not only trap a thin air layer above the cuticle but also maintain a larger air bubble between the insect’s ventral side and legs. The effectiveness of the water repellence was quantitatively characterised on the basis of a known model (Crisp and Thorpe, Discuss Faraday Soc 3:210-220, 1948). The parameters of the model are the contact angle θ (>90°) at the contact line of air/water/microtrichia and the distance between individual microtrichia and their radius. When the microtrichia are 1.1 μm apart and have a radius of 0.1 μm and an estimated contact angle θ of 140°, the air layer is stable against hydrostatic pressures of up to 3 m water column. As shown by a modified version of the model, considerably larger air bubbles can be trapped by the microtrichia cover of the legs up to distances of 0.5 mm from the body. The widely spaced (about 8 μm apart) and longer setae of Clunio are not involved in the formation of air layers and air bubble.

  5. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    DTIC Science & Technology

    2008-01-01

    various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be

  6. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    1999-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  7. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, L.R.; Lundquist, S.H.

    1999-08-10

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions. 2 figs.

  8. Adsorbent for metal ions and method of making and using

    DOEpatents

    White, Lloyd R.; Lundquist, Susan H.

    2000-01-01

    A method comprises the step of spray-drying a solution or slurry comprising (alkali metal or ammonium) (metal) hexacyanoferrate particles in a liquid, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size in the range of 1 to 500 micrometers, said particles being active towards Cs ions. The particles, which can be of a single salt or a combination of salts, can be used free flowing, in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove Cs ions from aqueous solutions.

  9. The contribution of anaerobic ammonium oxidation to nitrogen loss in two temperate eutrophic estuaries

    NASA Astrophysics Data System (ADS)

    Teixeira, Catarina; Magalhães, Catarina; Joye, Samantha B.; Bordalo, Adriano A.

    2014-04-01

    Studies of anaerobic ammonium oxidation (anammox) continue to show the significance of this metabolic pathway for the removal of nitrogen (N) in several natural environments, including estuaries. However, the seasonal dynamics of the anammox process and related environmental controls within estuarine systems remains poorly explored. We evaluated the seasonal anammox activity along a salinity gradient in two temperate Atlantic estuaries, the Ave and the Douro (NW Portugal). Anammox potential rates were measured in anaerobic sediment slurries using 15N-labeled NO3- and NH4+ amendments. Production of 29N2 and 30N2 in the slurries was quantified using membrane inlet mass spectrometry (MIMS). Environmental characteristics of the sediment and water column were also monitored. Anammox potentials in the Ave and Douro estuarine sediments varied between 0.8-8.4, and 0-2.9 nmol cm-3 wet sediment h-1, respectively, with high seasonal and spatial fluctuations. Inorganic nitrogen availability emerged as the primary environmental control of anammox activity, while water temperature appeared to modulate seasonal variations. The contribution of anammox to overall N2 production averaged over 20%, suggesting that the role of anammox in removing fixed N from these two systems cannot be neglected.

  10. Entrapment of alpha1-acid glycoprotein in high-performance affinity columns for drug-protein binding studies.

    PubMed

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S

    2016-05-15

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (±0.5)×10(5)M(-1), which agreed with a previously reported value of 1.0 (±0.1)×10(5)M(-1). Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Entrapment of Alpha1-Acid Glycoprotein in High-Performance Affinity Columns for Drug-Protein Binding Studies

    PubMed Central

    Bi, Cong; Jackson, Abby; Vargas-Badilla, John; Li, Rong; Rada, Giana; Anguizola, Jeanethe; Pfaunmiller, Erika; Hage, David S.

    2015-01-01

    A slurry-based method was developed for the entrapment of alpha1-acid glycoprotein (AGP) for use in high-performance affinity chromatography to study drug interactions with this serum protein. Entrapment was achieved based on the physical containment of AGP in hydrazide-activated porous silica supports and by using mildly oxidized glycogen as a capping agent. The conditions needed for this process were examined and optimized. When this type of AGP column was used in binding studies, the association equilibrium constant (Ka) measured by frontal analysis at pH 7.4 and 37°C for carbamazepine with AGP was found to be 1.0 (± 0.5) × 105 M−1, which agreed with a previously reported value of 1.0 (± 0.1) × 105 M−1. Binding studies based on zonal elution were conducted for several other drugs with such columns, giving equilibrium constants that were consistent with literature values. An entrapped AGP column was also used in combination with a column containing entrapped HSA in a screening assay format to compare the binding of various drugs to AGP and HSA. These results also agreed with previous data that have been reported in literature for both of these proteins. The same entrapment method could be extended to other proteins and to the investigation of additional types of drug-protein interactions. Potential applications include the rapid quantitative analysis of biological interactions and the high-throughput screening of drug candidates for their binding to a given protein. PMID:26627938

  12. Direct Numerical Simulations of Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar

    2013-03-01

    Many natural and industrial processes, such as rain and gas exchange between the atmosphere and oceans, boiling heat transfer, atomization and chemical reactions in bubble columns, involve multiphase flows. Often the mixture can be described as a disperse flow where one phase consists of bubbles or drops. Direct numerical simulations (DNS) of disperse flow have recently been used to study the dynamics of multiphase flows with a large number of bubbles and drops, often showing that the collective motion results in relatively simple large-scale structure. Here we review simulations of bubbly flows in vertical channels where the flow direction, as well as the bubble deformability, has profound implications on the flow structure and the total flow rate. Results obtained so far are summarized and open questions identified. The resolution for DNS of multiphase flows is usually determined by a dominant scale, such as the average bubble or drop size, but in many cases much smaller scales are also present. These scales often consist of thin films, threads, or tiny drops appearing during coalescence or breakup, or are due to the presence of additional physical processes that operate on a very different time scale than the fluid flow. The presence of these small-scale features demand excessive resolution for conventional numerical approaches. However, at small flow scales the effects of surface tension are generally strong so the interface geometry is simple and viscous forces dominate the flow and keep it simple also. These are exactly the conditions under which analytical models can be used and we will discuss efforts to combine a semi-analytical description for the small-scale processes with a fully resolved simulation of the rest of the flow. We will, in particular, present an embedded analytical description to capture the mass transfer from bubbles in liquids where the diffusion of mass is much slower than the diffusion of momentum. This results in very thin mass-boundary layers that are difficult to resolve, but the new approach allows us to simulate the mass transfer from many freely evolving bubbles and examine the effect of the interactions of the bubbles with each other and the flow. We will conclude by attempting to summarize the current status of DNS of multiphase flows. Support by NSF and DOE (CASL)

  13. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  14. 2006 SME annual meeting & 7th ICARD, March 26-29, 2006, St. Louis, Missouri. Pre-prints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2006-07-01

    Subjects covered by the papers include: enhanced coalbed methane through carbon sequestration, application of laser surface coatings for raw coal screen wear resistance enhancement, application of cross-flow teeter-bed separator in the US coal industry, arsenic removal from drinking water, modelling of fire spread along combustibles in a mine entry, coal's role in sustaining society, real time characterisation of frother bubble thin films, diesel emissions, overcoming stress measurements form underground coal amines, dry jigging coal, estimation of roof strata strength, improving screen bowl centrifuge performance, installation of ventilation shaft at a New Mexico coal mine, evaluation of feasibility of CO{sub 2}more » sequestration in deep coal, robot-human control interaction in mining operations, small mine and contractor safety, coal dust explosibility meter, US coal mine fatalities versus age of mine, and water and slurry bulkheads in underground coal mines.« less

  15. Biosensor System for Continuous Monitoring of Organophosphate Aerosols (Postprint)

    DTIC Science & Technology

    2007-05-01

    performed by chromatog- aphy coupled with mass selective detectors or various types of pectroscopy (Staaf and Ostman, 2005; Bjorklund et al., 2004...diverted to aste while the bubble-free flow was directed through the IMER olumns and into a single wavelength absorbance detector . The ow rate was...maintained at 2 ml/min by a second piston pump ositioned between the debubbler and the IMER columns so that he sample was under positive pressure as it

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, D.

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H 2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less

  17. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor.

    PubMed

    Ogbonna, J C; Mashima, H; Tanaka, H

    2001-01-01

    Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.

  18. Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2016-01-01

    Alternative biotechnological protocol for large-scale artemisinin production was established. It featured enhanced growth and artemisinin production by cultivation of hairy roots in nutrient mist bioreactor (NMB) coupled with novel cultivation strategies. Artemisinin is used for the treatment of cerebral malaria. Presently, its main source is from seasonal plant Artemisia annua. This study featured investigation of growth and artemisinin production by A. annua hairy roots (induced by Agrobacterium rhizogenes-mediated genetic transformation of explants) in three bioreactor configurations-bubble column reactor, NMB and modified NMB particularly to establish their suitability for commercial production. It was observed that cultivation of hairy roots in a non-stirred bubble column reactor exhibited a biomass accumulation of 5.68 g/l only while batch cultivation in a custom-made NMB exhibited a higher biomass concentration of 8.52 g/l but relatively lower artemisinin accumulation of 0.22 mg/g was observed in this reactor. A mixture of submerged liquid-phase growth (for 5 days) followed by gas-phase cultivation in nutrient mist reactor operation strategy (for next 15 days) was adopted for hairy root cultivation in this investigation. Reasonably, high (23.02 g/l) final dry weight along with the artemisinin accumulation (1.12 mg/g, equivalent to 25.78 mg/l artemisinin) was obtained in this bioreactor, which is the highest reported artemisinin yield in the gas-phase NMB cultivation.

  19. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    JAMES G. GOODWIN, JR.; JAMES J. SPIVEY; K. JOTHIMURUGESAN

    1998-09-17

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H{sub 2} ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C{sub 5}{sup +} selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation.« less

  20. Molten salt rolling bubble column, reactors utilizing same and related methods

    DOEpatents

    Turner, Terry D.; Benefiel, Bradley C.; Bingham, Dennis N.; Klinger, Kerry M.; Wilding, Bruce M.

    2015-11-17

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. The crucible may contain a molten salt bath. A downtube is disposed at least partially within the interior crucible along an axis. The downtube includes a conduit having a first end in communication with a carbon source and an outlet at a second end of the conduit for introducing the carbon material into the crucible. At least one opening is formed in the conduit between the first end and the second end to enable circulation of reaction components contained within the crucible through the conduit. An oxidizing material may be introduced through a bottom portion of the crucible in the form of gas bubbles to react with the other materials.

  1. Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji

    2018-07-01

    Understanding {Ly{α}} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α}} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM (integer-galactic medium) transmission of {Ly{α}} photons. We find that {Ly{α}} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and H I column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller H II bubbles. Our model predicts future wide deep surveys with next-generation telescopes, such as James Webb Space Telescope, European Extremely Large Telescope, and Thirty Metre Telescope, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ {a few } × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant H II bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant H II bubbles with the size {≳ } 250 kpc at z ˜ 10.

  2. Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji

    2018-04-01

    Understanding {Ly{α }} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α }} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM transmission of {Ly{α }} photons. We find that {Ly{α }} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and HI column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller HII bubbles. Our model predicts future wide deep surveys with next generation telescopes, such as JWST, E-ELT and TMT, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ a few × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant HII bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant HII bubbles with the size ≳ 250 kpc at z ˜ 10.

  3. Heard Island and McDonald Islands Acoustic Plumes: Split-beam Echo sounder and Deep Tow Camera Observations of Gas Seeps on the Central Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.

    2016-12-01

    Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.

  4. Continuous magnetic separator and process

    DOEpatents

    Oder, Robin R.; Jamison, Russell E.

    2008-04-22

    A continuous magnetic separator and process for separating a slurry comprising magnetic particles into a clarified stream and a thickened stream. The separator has a container with a slurry inlet, an overflow outlet for the discharge of the clarified slurry stream, and an underflow outlet for the discharge of a thickened slurry stream. Magnetic particles in the slurry are attracted to, and slide down, magnetic rods within the container. The slurry is thus separated into magnetic concentrate and clarified slurry. Flow control means can be used to control the ratio of the rate of magnetic concentrate to the rate of clarified slurry. Feed control means can be used to control the rate of slurry feed to the slurry inlet.

  5. Comparison and analysis of organic components of biogas slurry from eichhornia crassipes solms and corn straw biogas slurry

    NASA Astrophysics Data System (ADS)

    Li, Q.; Li, Y. B.; Liu, Z. H.; Min, J.; Cui, Y.; Gao, X. H.

    2017-11-01

    Biogas slurry is one of anaerobic fermentations, and biomass fermentation biogas slurries with different compositions are different. This paper mainly presents through the anaerobic fermentation of Eichhornia crassipes solms biogas slurry and biogas slurry of corn straw, the organic components of two kinds of biogas slurry after extraction were compared by TLC, HPLC and spectrophotometric determination of nucleic acid and protein of two kinds of biogas slurry organic components, and analyzes the result of comparison.

  6. Hubble peers inside a celestial geode

    NASA Astrophysics Data System (ADS)

    2004-08-01

    celestial geode hi-res Size hi-res: 148 Kb Credits: ESA/NASA, Yäel Nazé (University of Liège, Belgium) and You-Hua Chu (University of Illinois, Urbana, USA) Hubble peers inside a celestial geode In this unusual image, the NASA/ESA Hubble Space Telescope captures a rare view of the celestial equivalent of a geode - a gas cavity carved by the stellar wind and intense ultraviolet radiation from a young hot star. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. Low resolution version (JPG format) 148 Kb High resolution version (TIFF format) 1929 Kb Acknowledgment: This image was created with the help of the ESA/ESO/NASA Photoshop FITS Liberator. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. The object, called N44F, is being inflated by a torrent of fast-moving particles (what astronomers call a 'stellar wind') from an exceptionally hot star (the bright star just below the centre of the bubble) once buried inside a cold dense cloud. Compared with our Sun (which is losing mass through the so-called 'solar wind'), the central star in N44F is ejecting more than a 100 million times more mass per second and the hurricane of particles moves much faster at 7 million km per hour (as opposed to less than 1.5 million km per hour for our Sun). Because the bright central star does not exist in empty space but is surrounded by an envelope of gas, the stellar wind collides with this gas, pushing it out, like a snow plough. This forms a bubble, whose striking structure is clearly visible in the crisp Hubble image. The nebula N44F is one of a handful of known interstellar bubbles. Bubbles like these have been seen around evolved massive stars (called 'Wolf-Rayet stars'), and also around clusters of stars (where they are called 'super-bubbles'). But they have rarely been viewed around isolated stars, as is the case here. On closer inspection N44F harbours additional surprises. The interior wall of its gaseous cavity is lined with several four to eight light-year high finger-like columns of cool dust and gas. (The structure of these 'columns' is similar to the Eagle Nebula’s iconic 'Pillars of Creation' photographed by Hubble a decade ago, and is seen in a few other nebulae as well). The fingers are created by a blistering ultraviolet radiation from the central star. Like wind socks caught in a gale, they point in the direction of the energy flow. These pillars look small in this image only because they are much farther away from us then the Eagle Nebula’s pillars. N44F is located about 160 000 light-years in the neighbouring dwarf galaxy the Large Magellanic Cloud, in the direction of the southern constellation Dorado. N44F is part of the larger N44 complex, which contains a large super-bubble, blown out by the combined action of stellar winds and multiple supernova explosions. N44 itself is roughly 1000 light-years across. Several compact star-forming regions, including N44F, are found along the rim of the central super-bubble. This image was taken with Hubble's Wide Field Planetary Camera 2, using filters that isolate light emitted by sulphur (shown in blue, a 1200-second exposure) and hydrogen gas (shown in red, a 1000-second exposure).

  7. Effect of irrigation regimes on mobilization of nonreactive tracers and dissolved and particulate phosphorus in slurry-injected soils

    NASA Astrophysics Data System (ADS)

    GlæSner, Nadia; Kjaergaard, Charlotte; RubæK, Gitte H.; Magid, Jakob

    2011-12-01

    Understanding the mobilization processes of phosphorus (P) in the plow layer are essential to quantify potential P losses and suggest management strategies to reduce P losses. This study is aimed at examining nonequilibrium exchange dynamics on the mobilization of slurry-amended Br-, and dissolved and particulate P in slurry-injected soils. We compared leaching from intact soil columns (20 cm diam., 20 cm high) under unsaturated flow (suction at the lower boundary of 5 hPa) subjected to continuous irrigation at 2 mm hr-1, and intermittent irrigation at 2 mm hr-1 and 10 mm hr-1 to with interruptions of 10 h duration simulate periodic precipitation events. Suction was increased to 20 hPa during interruptions to allow drainage of the largest pores. Irrigation interruptions induced fluctuations in leaching of nonreactive tracers, particles, and particulate P indicating nonequilibrium transport. A nonreactive tracer, 3H2O, applied with irrigation water, diffused from mobile to less mobile pore regions during interruptions, leading to a lower mass recovery during low-intermittent (76.4%) compared with continuous irrigation (86.6%). In contrast, mass recovery of slurry-injected Br- increased as Br- diffused from less mobile to mobile pore regions during low-intermittent (53%-64%) compared with continuous irrigation (42%-47%). Despite high fluctuations during the leaching of particles and particulate P during low-intermittent irrigation, accumulated values did not differ from continuous irrigation. Increased preferential flow during high-intermittent irrigation lowered the mass exchange between pore regions of nonreactive tracers, particles, and particulate P compared with low-intermittent irrigation. The leaching of dissolved inorganic and organic P was low during all of the experiments and scarcely affected by the irrigation regime. These results highlight that nonequilibrium exchange dynamics are important when evaluating processes affecting mobilization and transport in structured soils. Leaching experiments, including cycles of irrigation interruptions and gravitational drainage, thus, adds significantly to the understanding and interpretation of processes affecting mobilization and transport under natural conditions.

  8. Effects of bubbling operations on a thermally stratified reservoir: implications for water quality amelioration.

    PubMed

    Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J

    2012-01-01

    Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.

  9. Using Computer Simulations to Model Scoria Cone Growth

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Mehta, R. D.

    2016-12-01

    Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.

  10. Galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A lumpy bubble of hot gas rises from a cauldron of glowing matter in a distant galaxy, as seen by NASA's Hubble Space Telescope.

    The new images, taken by Hubble's Wide Field and Planetary Camera 2, are online at http://oposite.stsci.edu/pubinfo/pr/2001/28 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major, has a huge bubble in the center of its disc, as seen in the image on the left. The smaller photo at right shows a close-up of the bubble. The two white dots are stars.

    Astronomers suspect the bubble is being blown by 'winds,' or high-speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc. The filaments whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them and form a new generation of stars.

    Theoretical models indicate the bubble formed when winds from hot stars mixed with small bubbles of hot gas from supernova explosions. Radio telescope observations indicate those processes are still active. Eventually, the hot stars will die, and the bubble's energy source will fade away.

    The images, taken in 1998, show glowing gas as red and starlight as blue/green. Results appear in the July 1, 2001 issue of the Astrophysical Journal. More information about the Hubble Space Telescope is at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.

  11. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less

  12. Sub-micron particles in northwest Atlantic shelf water

    NASA Astrophysics Data System (ADS)

    Longhurst, A. R.; Koike, I.; Li, W. K. W.; Rodriguez, J.; Dickie, P.; Kepay, P.; Partensky, F.; Bautista, B.; Ruiz, J.; Wells, M.; Bird, D. F.

    1992-01-01

    The existence of numerous (1.0 × 10 7 ml -1) sub-micron particles has been confirmed in northwest Atlantic shelf water. These particles were counted independently by two different resistive-pulse instruments, and their existence confirmed by our ability to reduce their numbers by ultracentrifugation, serial dilution and surface coagulation in a bubbling column. There are important implications for the dynamics of DOM in seawater if, as seems probable, these particles represent a fraction of "dissolved" organic material in seawater.

  13. Coal slurry fuel supply and purge system

    DOEpatents

    McDowell, Robert E.; Basic, Steven L.; Smith, Russel M.

    1994-01-01

    A coal slurry fuel supply and purge system for a locomotive engines is disclosed which includes a slurry recirculation path, a stand-by path for circulating slurry during idle or states of the engine when slurry fuel in not required by the engine, and an engine header fluid path connected to the stand-by path, for supplying and purging slurry fuel to and from fuel injectors. A controller controls the actuation of valves to facilitate supply and purge of slurry to and from the fuel injectors. A method for supplying and purging coal slurry in a compression ignition engine is disclosed which includes controlling fluid flow devices and valves in a plurality of fluid paths to facilitate continuous slurry recirculation and supply and purge of or slurry based on the operating state of the engine.

  14. Transport of Lactate-modified Nanoscale Iron Particles in Porous Media

    NASA Astrophysics Data System (ADS)

    Reddy, K. R.

    2012-12-01

    Nanoscale iron particles (NIP) have recently shown to be effective for dehalogenation of recalcitrant organic contaminants such as pentachlorphenol (PCP) and dinitrotoluene (DNT) in the environment. However, effective transport of NIP into the contaminated subsurface zones is crucial for the success of in-situ remediation. Previous studies showed that the transport of NIP in soils is very limited and surface-modification of NIP is required to achieve adequate transport. This paper investigates the transport of NIP and lactate-modified NIP (LMNIP) through four different porous media (sands with different particle size and distribution). A series of laboratory column experiments was conducted to quantify the transport of NIP and LMNIP at two different slurry concentrations of 1 g/L and 4 g/L under two different flow velcoities. NIP used in this study possessed magentic properties, thus a magnetic susceptibility sensor system was used to monitor the changes in magnetic susceptibility (MS) along the length of the column at different times during the experiments. At the end of testing, the distribution of total Fe in the sand column was measured. Results showed a linear correlation between the Fe concentration and MS and it was used to assess the transient transport of NIP and LMNIP in the sand columns. Results showed that LMNIP transported better than bare NIP and higher concentration of 4 g/L LMNIP exhibited unform and greater transport compared to other tested conditions. Transport of NIP increased in the order from fine Ottawa sand > medium field sand > coarse field sand > coarse Ottawa sand. Filtration theory and advective-dispersion equation with reaction were applied to capture the transport response of NIP and LMNIP in the sand columns.

  15. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    USGS Publications Warehouse

    Kieffer, S.W.

    1984-01-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water (??c ??? 103 g cm-2 s-1) and rock (??c ??? 3 ?? 105 g cm2 s-1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid-vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water-steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound

  16. Numerical simulation of vertical transport and oxidation of methane in Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Stepanenko, Victor; Iakovlev, Nikolai

    2013-04-01

    The high abundance of methane in shelf of East Siberian Arctic Seas (ESAS) has been a subject of a number of field studies (e.g. Shakhova et al., 2010). This experimental evidence provoked discussions on probable origins of that methane and possible feedbacks to modern climate change. For instance, the hypothesis of methane hydrates degradation under current ocean warming was tested recently in several modeling studies none of which supported this degradation to be significant feedback for climate change. Regardless the origin of methane the knowledge of its budget in the water column is important to link its bottom flux with emission to the atmosphere (and vice versa). It is frequently assumed that all methane released from a seabed of ESAS shelf reaches the atmosphere. When using ocean circulation models (Biastoch et al., 2011) this simplification is cancelled out but the vertical resolution of 3D models at the shelf (that is several tens meters deep) is not enough to accurately resolve turbulent transport of methane and other gases. Moreover, up the knowledge of authors none of the ocean models includes explicitly bubble transport of gases. These constrains motivate this study. In this study a high-resolution 1D single column ocean model is constructed to explicitly simulate the methane transport, oxidation and emission to the atmosphere. The model accounts for both vertical turbulent transport (using k-ɛ closure) and bubble transport of gases. The ground under the seabed is represented by multilayer heat and moisture transfer model, including methane hydrate evolution. It is forced by time series of atmospheric variables from NCEP reanalysis and horizontal advection terms taken from FEMAO-1 3D ocean model. The baseline simulation is performed for the period 1948-2011. The model is validated using temperature profiles measured at research vessels in ESAS. The annual cycle and multiyear variability of methane profiles in water are studied and compared to available in situ measurements. The components of methane budget in water column are calculated, and the ratio of bubble flux to turbulent one inter alia. A number of additional experiments are performed to assess the sensitivity of methane budget components to variation of uncertain parameters of the model (such as initial bubble radius). References 1) Shakhova, N., I.Semiletov, A.Salyuk, V.Yusupov, D.Kosmach, and Ö.Gustafsson. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 5 March 2010: Vol. 327 no. 5970 pp. 1246-1250 DOI: 10.1126/science.1182221. 2) Biastoch, A., T. Treude, L. H. Rüpke, U. Riebesell, C. Roth, E. B. Burwicz, W. Park, M. Latif, C. W. Büning, G. Madec, and K. Wallmann. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, Vol. 38, L08602, doi:10.1029/2011GL047222,2011.

  17. System and method for slurry handling

    DOEpatents

    Steele, Raymond Douglas; Oppenheim, Judith Pauline

    2015-12-29

    A system includes a slurry depressurizing system that includes a liquid expansion system configured to continuously receive a slurry at a first pressure and continuously discharge the slurry at a second pressure. For example, the slurry depressurizing system may include an expansion turbine to expand the slurry from the first pressure to the second pressure.

  18. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    DOEpatents

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  19. 900-m high gas plumes rising from marine sediments containing structure II hydrates at Vestnesa Ridge, offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan; Greinert, Jens; Rasmussen, Tine L.

    2013-04-01

    We study an arctic sediment drift in ~1200 m water depth at Vestnesa Ridge, offshore western Svalbard. The ridge is spotted with pockmarks that range in size from a few meters to hundreds of meters in diameter and centimeters to tens of meters in height (e.g. Vogt et al., 1994). There is a strong negative-polarity seismic reflection below the ridge that is interpreted to record a negative impedance contrast marking the boundary between gas hydrate and water above and free gas and water below: it is the bottom-simulating reflector (BSR). Seismically transparent zones, interpreted as gas chimneys, extend from pockmarks at the seafloor to depths below the BSR (180-220 meters below the seafloor) (Bünz et al., 2012). Gas flares, gas hydrate, and methane-seep-specific biological communities (pogonphora and begiatoa bacterial mats) have been observed adjacent to pockmarks at the ridge (Bünz et al., 2012). We present new single-beam echosounding data that were acquired during 2010 and 2012 cruises on the R/V Helmer Hanssen at Vestnesa Ridge using a Simrad EK60 system that operates at frequencies of 18 and 38 kHz. During both cruises which lasted 3-5 days, we detected continuous bubble release from 4 separate pockmarks in 2010 and 6 separate pockmarks in 2012. There were no noticeable, short-term (hourly or daily) variations in the bubble release from the pockmarks, indicating that the venting from the pockmarks does not undergo rapid changes. Plumes from the pockmarks rise between 875 to 925m above the seafloor to a final water depth of 325 to 275m, respectively. This depth is in excellent agreement with the top of the hydrate stability zone (275 meters below sea level) for the gas composition of hydrate sampled at the ridge (96.31% C1; 3.36% C2; 0.21% C3; 0.11% IC4; 0.01% NC4). This suggests that hydrate skins are forming around the gas bubbles, inhibiting the dissolution of gas, and allowing the bubbles to rise to such great heights in the water column. Our results provide hard constraints for bubble-dissolution models (e.g. McGinnis et al., 2006) that can validate whether a gas-hydrate-rimmed bubble can survive the ~900m rise through the water column. Long-term monitoring of such gas-hydrate and fluid-flow systems is important for quantifying methane fluxes to the ocean, for identifying the source(s) of the venting gas, and for better understanding the environmental conditions under which deep-sea biological communities exist. References Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., Consolaro, C., and Mienert, J., 2012, Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. : Marine Geology v. 332-334, p. 189-197. McGinnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E., and Wüest, A., 2006, The fate of rising methane bubbles in stratified waters: What fraction reaches the atmosphere?: Journal of Geophysical Research, v. 111, C09007, doi:10.1029/2005JC003183. Vogt, P. R., Crane, K., Sundvor, E., Max, M. D., and Pfirman, S. L., 1994, Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait: Geology, v. 22, no. 3, p. 255-258.

  20. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.

    2001-01-01

    A gelcasting method of making an internally graded article includes the steps of: preparing at least two slurries, each of the slurries including a different gelcastable powder suspended in a gelcasting solution, the slurries characterized by having comparable shrinkage upon drying and sintering thereof; casting the slurries into a mold having a selected shape, wherein relative proportions of the slurries is varied in at least one direction within the selected shape; gelling the slurries to form a solid gel while preserving the variation in relative proportions of the slurries; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying because of the variation in relative proportions of the starting slurries. A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  1. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  2. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor.

    PubMed

    Liu, Yangxian; Wang, Qian

    2014-10-21

    In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas.

  3. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  4. Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.

    PubMed

    Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego

    2017-10-01

    Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.

  5. Application of ozone micro-nano-bubbles to groundwater remediation.

    PubMed

    Hu, Liming; Xia, Zhiran

    2018-01-15

    Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    DOEpatents

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  7. Silver doped catalysts for treatment of exhaust

    DOEpatents

    Park, Paul Worn [Peoria, IL; Boyer, Carrie L [Shiloh, IL

    2006-12-26

    A method of making an exhaust treatment catalyst includes dispersing a metal-based material in a first solvent to form a first slurry and allowing polymerization of the first slurry to occur. Polymerization of the first slurry may be quenched and the first slurry may be allowed to harden into a solid. This solid may be redistributed in a second solvent to form a second slurry. The second slurry may be loaded with a silver-based material, and a silver-loaded powder may be formed from the second slurry.

  8. An investigation on the rheological behavior of metallic semi-solid slurries of Al-6.5 pct Si and semi-solid composite slurries of SiC particulates in an Al-6.5 pct Si alloy matrix

    NASA Technical Reports Server (NTRS)

    Moon, H.-K.; Ito, Y.; Cornie, J. A.; Flemings, M. C.

    1993-01-01

    The rheology of SiC particulate/Al-6.5 pct Si composite slurries was explored. The rheological behavior of the composite slurries shows both thixotropic and pseudoplastic behaviors. Isostructural experiments on the composite slurries revealed a Newtonian behavior beyond a high shear rate limit. The rheology of fully molten composite slurries over the low to high shear rate range indicates the existence of a low shear rate Newtonian region, an intermediate pseudoplastic region and a high shear rate Newtonian region. The isostructural studies indicate that the viscosity of a composite slurry depends upon the shearing history of a given volume of material. An unexpected shear thinning was noted for SiC particulate + alpha slurries as compared to semi-solid metallic slurries at the same fraction solid. The implications of these findings for the processing of slurries into cast components is discussed.

  9. Ammonia volatilization from farm tanks containing anaerobically digested animal slurry

    NASA Astrophysics Data System (ADS)

    Sommer, S. G.

    Ammonia (NH 3) volatilization from three full-scale tanks containing anaerobically digested animal slurry from one biogas plant was determined with a meteorological mass balance technique. No surface crust developed on the slurry. This provided an ideal system for analysing loss patterns from slurries without cover and to study the effect of a cover of straw and air-filled clay granules. Ammonia volatilization from uncovered slurry ranged from zero at subzero temperatures to 30 g N m -2 d -1 during summer. The high volatilization rate was attributed to a lack of surface cover, high slurry pH and high TAN (NH 3 + NH 4+) concentration. Ammonia volatilization from the covered slurry was insignificant. From the uncovered slurry the annual loss of NH3 was 3.3 kg N m -2 There was a significant effect of incident global radiation (ICR), air temperature at 20 cm (T_20) and rain on NH3 volatilization from the uncovered slurry. The straw covered slurry was significantly affected by T_20.

  10. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Archer, D.

    2015-05-01

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial-interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. There is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial-interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere-ocean-terrestrial carbon cycle.

  11. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES

    Archer, D.

    2015-05-21

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H 2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less

  12. Manifold Coal-Slurry Transport System

    NASA Technical Reports Server (NTRS)

    Liddle, S. G.; Estus, J. M.; Lavin, M. L.

    1986-01-01

    Feeding several slurry pipes into main pipeline reduces congestion in coal mines. System based on manifold concept: feeder pipelines from each working entry joined to main pipeline that carries coal slurry out of panel and onto surface. Manifold concept makes coal-slurry haulage much simpler than existing slurry systems.

  13. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    DOEpatents

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  14. Combustion characterization of carbonized RDF, Joint Venture Task No. 7. Topical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1995-04-30

    The overall objective of this research program was to demonstrate EnerTech's and the Energy & Environmental Research Center's (EERC) process of slurry carbonization for producing homogeneous, pumpable titels from refuse-derived fuel (RDF) with continuous pilot plant facilities, and to characterize flue gas and ash emissions from combustion of the carbonizd RDF slurry fuel. Please note that "Wet Thermal Oxidation" is EnerTech's trademark mme for combustion of the carbonized RDF slurry fuel. Carbonized RDF slurry fuels were produced with the EERC'S 7.5-tpd (wet basis) pilot plant facility. A hose diaphragm pump pressurized a 7- lo-wt% feed RDF slurry, with a viscositymore » of 500 cP, to approximately 2500 psig. The pressurized RDF slurry was heated by indirect heat exchangers to between 5850 -626°F, and its temperature and pressure was maintained in a downflow reactor. The carbonized slurry was flashed, concentrated in a filter press, and ground in an attritor. During operation of the pilot plant, samples of the feed RDF slurry, carbonization gas, condensate, carbonized solids, and filtrate were taken and analyzed. Pilot-scale slurry carbonization experiments with RDF produced a homogeneous pumpable slurry fuel with a higher heating value (HHV) of 3,000-6,600 Btu/lb (as-received basis), at a viscosity of 500 CP at 100 Hz decreasing, and ambient temperature. Greater-heating-value slurry fuels were produced at higher slurry carbonization temperatures. During slurry carbonization, polyvinyl chloride (PVC) plastics in the feed RDF also decompose to form hydrochloric acid and salts. Pilot-scale slurty carbonization experiments extracted 82-94% of the feed RDF chlorine content as chloride salts. Higher carbonization temperatures and higher alkali additions to the feed slurry produced a higher chlorine extraction.« less

  15. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2003-04-15

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  16. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B [Chicago, IL; Hoek, Terry Vanden [Chicago, IL; Kasza, Kenneth E [Palos Park, IL

    2008-09-09

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  17. Method for inducing hypothermia

    DOEpatents

    Becker, Lance B.; Hoek, Terry Vanden; Kasza, Kenneth E.

    2005-11-08

    Systems for phase-change particulate slurry cooling equipment and methods to induce hypothermia in a patient through internal and external cooling are provided. Subcutaneous, intravascular, intraperitoneal, gastrointestinal, and lung methods of cooling are carried out using saline ice slurries or other phase-change slurries compatible with human tissue. Perfluorocarbon slurries or other slurry types compatible with human tissue are used for pulmonary cooling. And traditional external cooling methods are improved by utilizing phase-change slurry materials in cooling caps and torso blankets.

  18. Conductivity and electrochemical performance of LiFePO4 slurry in the lithium slurry battery

    NASA Astrophysics Data System (ADS)

    Feng, Caimei; Chen, Yongchong; Liu, Dandan; Zhang, Ping

    2017-06-01

    Lithium slurry battery is a new type of energy storage technique which uses the slurry of solid active materials, conductive additions and liquid electrolyte as the electrode. The proportion of conductive addition and the active material has significant influence on the conductivity and electrochemical performance of the slurry electrode. In the present work, slurries with different volume ratios of LiFePO4 (LFP) and Ketjenblack (KB) were investigated by the electrochemical workstation and charge-discharge testing system (vs. Li/Li+). Results show that the conductivity of the slurry increases linearly with the addition of KB, and the measured specific capacity of the slurry reaches its theoretical value when the volume ratio of KB to LFP is around 0.2. Based on this ratio, a slurry battery with higher loading of LFP (19.1 wt.% in the slurry) was tested, and a specific capacity of 165 mAh/g at 0.2 mA/cm2 and 102 mAh/g at 5 mA/cm2 was obtained for LFP.

  19. Silica particles encapsulated poly(styrene-divinylbenzene) monolithic stationary phases for micro-high performance liquid chromatography.

    PubMed

    Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K

    2006-11-03

    In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which indicated that the chromatographic properties of the silica packing material were still active after polymerization. The prepared capillary columns were found to be stable and could easily be operated continuously up to a pressure of 350 bar without column damage and capillary can be cut to any desired length.

  20. Three Dimensional Simulations of Multiphase Flows Using a Lattice Boltzmann Method Suitable for High Density Ratios - 12126

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokaltun, Seckin; McDaniel, Dwayne; Roelant, David

    2012-07-01

    Multiphase flows involving gas and liquid phases can be observed in engineering operations at various Department of Energy sites, such as mixing of slurries using pulsed-air mixers and hydrogen gas generation in liquid waste tanks etc. The dynamics of the gas phase in the liquid domain play an important role in the mixing effectiveness of the pulsed-air mixers or in the level of gas pressure build-up in waste tanks. To understand such effects, computational fluid dynamics methods (CFD) can be utilized by developing a three-dimensional computerized multiphase flow model that can predict accurately the behavior of gas motion inside liquid-filledmore » tanks by solving the governing mathematical equations that represent the physics of the phenomena. In this paper, such a CFD method, lattice Boltzmann method (LBM), is presented that can model multiphase flows accurately and efficiently. LBM is favored over traditional Navier-Stokes based computational models since interfacial forces are handled more effectively in LBM. The LBM is easier to program, more efficient to solve on parallel computers, and has the ability to capture the interface between different fluid phases intrinsically. The LBM used in this paper can solve for the incompressible and viscous flow field in three dimensions, while at the same time, solve the Cahn-Hillard equation to track the position of the gas-liquid interface specifically when the density and viscosity ratios between the two fluids are high. This feature is of primary importance since the previous LBM models proposed for multiphase flows become unstable when the density ratio is larger than 10. The ability to provide stable and accurate simulations at large density ratios becomes important when the simulation case involves fluids such as air and water with a density ratio around 1000 that are common to many engineering problems. In order to demonstrate the capability of the 3D LBM method at high density ratios, a static bubble simulation is conducted to solve for the pressure difference between the inside and outside of a gas bubble in a liquid domain. Once the results show that the method is in agreement with the Laplace law, buoyant bubble simulations are conducted. The initial results obtained for bubble shape during the rising process was found to be in agreement with the theoretical expectations. (authors)« less

  1. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping.

    PubMed

    Brennan, Raymond B; Healy, Mark G; Fenton, Owen; Lanigan, Gary J

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called 'pollution swapping' potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application.

  2. The Effect of Chemical Amendments Used for Phosphorus Abatement on Greenhouse Gas and Ammonia Emissions from Dairy Cattle Slurry: Synergies and Pollution Swapping

    PubMed Central

    Brennan, Raymond B.; Healy, Mark G.; Fenton, Owen; Lanigan, Gary J.

    2015-01-01

    Land application of cattle slurry can result in incidental and chronic phosphorus (P) loss to waterbodies, leading to eutrophication. Chemical amendment of slurry has been proposed as a management practice, allowing slurry nutrients to remain available to plants whilst mitigating P losses in runoff. The effectiveness of amendments is well understood but their impacts on other loss pathways (so-called ‘pollution swapping’ potential) and therefore the feasibility of using such amendments has not been examined to date. The aim of this laboratory scale study was to determine how the chemical amendment of slurry affects losses of NH3, CH4, N2O, and CO2. Alum, FeCl2, Polyaluminium chloride (PAC)- and biochar reduced NH3 emissions by 92, 54, 65 and 77% compared to the slurry control, while lime increased emissions by 114%. Cumulative N2O emissions of cattle slurry increased when amended with alum and FeCl2 by 202% and 154% compared to the slurry only treatment. Lime, PAC and biochar resulted in a reduction of 44, 29 and 63% in cumulative N2O loss compared to the slurry only treatment. Addition of amendments to slurry did not significantly affect soil CO2 release during the study while CH4 emissions followed a similar trend for all of the amended slurries applied, with an initial increase in losses followed by a rapid decrease for the duration of the study. All of the amendments examined reduced the initial peak in CH4 emissions compared to the slurry only treatment. There was no significant effect of slurry amendments on global warming potential (GWP) caused by slurry land application, with the exception of biochar. After considering pollution swapping in conjunction with amendment effectiveness, the amendments recommended for further field study are PAC, alum and lime. This study has also shown that biochar has potential to reduce GHG losses arising from slurry application. PMID:26053923

  3. Multi-fluid CFD analysis in Process Engineering

    NASA Astrophysics Data System (ADS)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  4. The differences between soil grouting with cement slurry and cement-water glass slurry

    NASA Astrophysics Data System (ADS)

    Zhu, Mingting; Sui, Haitong; Yang, Honglu

    2018-01-01

    Cement slurry and cement-water glass slurry are the most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time-independent while the viscosity of cement-water glass slurry increases with time quickly and is presumed to be time-dependent. Due to the significantly rheology differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different, such as grouting pressure, grouting surrounding rock pressure, i.e., the change of surrounding rock pressure deduced by grouting pressure. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different geo-stress of 100 kPa, 150 kPa and 200 kPa were performed. The overload test on tunnel was performed to evaluate grouting effect of all surrounding curtain grouting experiments. In the present results, before 240 seconds, the grouting pressure increases slowly for both slurries; after 240 seconds the increase rate of grouting pressure for cement-water glass slurry increases quickly while that for cement slurry remains roughly constant. The increasing trend of grouting pressure for cement-water glass is similar to its viscosity. The setting time of cement-water glass slurry obtained from laboratory test is less than that in practical grouting where grout slurry solidifies in soil. The grouting effect of cement-water glass slurry is better than that of cement slurry and the grouting quality decreases with initial pressure.

  5. High frequency acoustic propagation under variable sea surfaces

    NASA Astrophysics Data System (ADS)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are considered, with the range-dependent model varying over the same time scales as the sea surface model and the range-independent model invariant over time. The bubble-induced sound speed and attenuation fluctuations are read in by the parabolic equation model, which allows for the effects of surface roughness and sub-surface bubbles to be computed separately or together. These merged acoustic models are validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the models are able to approximate the ensemble-averaged acoustic intensity at ranges of at least a kilometer for acoustic signals of 10-20 kHz. The rough surface model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds. The separate bubble models demonstrate the abilities to account for the intermittency of bubble plumes and to determine overall effect of bubbly layers, respectively. The models are shown to capture variations in the acoustic field occurring over time scales of less than a second to tens of seconds. Comparisons against data demonstrate the ability of the model to track acoustic transmissions under evolving sea surfaces. The effects of the evolving bubble field are demonstrated through the use of idealized test cases. For frequency ranges important to communications, surface roughness is shown to have the more dominant effect, with bubbles having an ancillary effect.

  6. Extreme Morphologic and Venting Changes in Methane Seeps at Southern Hydrate Ridge, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Bigham, K.; Kelley, D. S.; Solomon, E. A.; Delaney, J. R.

    2017-12-01

    Two highly active methane hydrate seeps have been visited over a 7-year period as part of the construction and operation of NSF's Ocean Observatory Initiative's Regional Cable Array at Southern Hydrate Ridge. The site is located 90 km west of Newport, Oregon, at a water depth of 800 m. The seeps, Einstein's Grotto (OOI instrument deployment site) and Smokey Tavern (alternate site to the north), have been visited yearly from 2010 to 2017 with ROVs. Additionally, a digital still camera deployed from 2014 to 2017 at Einstein's Grotto, has been documenting the profound morphologic and biological changes at this site. A cabled pressure sensor, Acoustic Doppler Current Profiler, hydrophone, seismometer array, and uncabled fluid samplers have also been operational at the site for the duration of the camera's deployment. During this time, Einstein's Grotto has evolved from a gentle mound with little venting, to a vigorously bubbling pit bounded by a near vertical wall. Early on bubble emissions blew significant amounts of sediment into the water column and thick Beggiatoa mats coverd the mound. Most recently the face of the pit has collapsed, although bubble plumes are still emitted from the site. The Smokey Tavern site has undergone more extreme changes. Similar to Einstein's Grotto it was first characterized by gentle hummocks with dispersed bacterial mats. In subsequent years, it developed an extremely rugged, elongated collapsed area with vertical walls and jets of methane bubbles rising from small pits near the base of the collapse zone. Meter-across nearly sediment-free blocks of methane hydrate were exposed on the surface and in the walls of the collapse zone. In 2016, this area was unrecognizable with a much more subdued topography, and weak venting of bubbles. Exposed methane hydrate was not visible. From these observations new evolutionary models for methane seeps are being developed for Southern Hydrate Ridge.

  7. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  8. Continuous inline blending of antimisting kerosene

    NASA Technical Reports Server (NTRS)

    Parikh, P.; Yavrouian, A.; Sarohia, V.

    1985-01-01

    A continuous inline blender was developed to blend polymer slurries with a stream of jet A fuel. The viscosity of the slurries ranged widely. The key element of the blender was a static mixer placed immediately downstream of the slurry injection point. A positive displacement gear pump for jet A was employed, and a progressive cavity rotary screw pump was used for slurry pumping. Turbine flow meters were employed for jet A metering while the slurry flow rate was calibrated against the pressure drop in the injection tube. While using one of the FM-9 variant slurries, a provision was made for a time delay between the addition of slurry and the addition of amine sequentially into the jet A stream.

  9. Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry.

    PubMed

    Yokoyama, Hiroshi; Waki, Miyoko; Moriya, Naoko; Yasuda, Tomoko; Tanaka, Yasuo; Haga, Kiyonori

    2007-02-01

    We examined hydrogen production from a dairy cow waste slurry (13.4 g of volatile solids per liter) by batch cultures in a temperature range from 37 to 85 degrees C, using microflora naturally present within the slurry. Without the addition of seed bacteria, hydrogen was produced by simply incubating the slurry, using the microflora within the slurry. Interestingly, two peaks of fermentation temperatures for hydrogen production from the slurry were observed at 60 and 75 degrees C (392 and 248 ml H2 per liter of slurry, respectively). After the termination of the hydrogen evolution, the microflora cultured at 60 degrees C displayed hydrogen-consuming activity, but hydrogen-consuming activity of the microflora cultured at 75 degrees C was not detected, at least for 24 days. At both 60 and 75 degrees C, the main by-product was acetate, and the optimum pH of the slurry for hydrogen production was around neutral. Bacteria related to hydrogen-producing moderate and extreme thermophiles, Clostridium thermocellum and Caldanaerobacter subterraneus, were detected in the slurries cultured at 60 and 75 degrees C, respectively, by denaturing gradient gel electrophoresis analyses, using the V3 region of 16S rDNA.

  10. Effects of cattle slurry acidification on ammonia and methane evolution during storage.

    PubMed

    Petersen, Søren O; Andersen, Astrid J; Eriksen, Jørgen

    2012-01-01

    Slurry acidification before storage is known to reduce NH(3) emissions, but recent observations have indicated that CH(4) emissions are also reduced. We investigated the evolution of CH(4) from fresh and aged cattle slurry during 3 mo of storage as influenced by pH adjustment to 5.5 with sulfuric acid. In a third storage experiment, cattle slurry acidified with commercial equipment on two farms was incubated. In the manipulation experiments, effects of acid and sulfate were distinguished by adding hydrochloric acid and potassium sulfate separately or in combination, rather than sulfuric acid. In one experiment sulfur was also added to slurry as the amino acid methionine in separate treatments. In each treatment 20-kg portions of slurry (n = 4) were stored for 95 d. All samples were subsampled nine to 10 times for determination of NH(3) and CH(4) evolution rates using a 2-L flow-through system. In all experiments, the pH of acidified cattle slurry increased gradually to between 6.5 and 7. Acidification of slurry reduced the evolution of CH(4) by 67 to 87%. The greatest reduction was observed with aged cattle slurry, which had a much higher potential for CH(4) production than fresh slurry. Sulfate and methionine amendment to cattle slurry without pH adjustment also significantly inhibited methanogenesis, probably as a result of sulfide production. The study suggests that complex microbial interactions involving sulfur transformations and pH determine the potential for CH(4) emission during storage of cattle slurry, and that slurry acidification may be a cost-effective greenhouse gas mitigation option. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.

  12. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    DOEpatents

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  13. Zeolite Combined with Alum and Polyaluminum Chloride Mixed with Agricultural Slurries Reduces Carbon Losses in Runoff from Grassed Soil Boxes.

    PubMed

    Murnane, J G; Brennan, R B; Fenton, O; Healy, M G

    2016-11-01

    Carbon (C) losses from agricultural soils to surface waters can migrate through water treatment plants and result in the formation of disinfection by-products, which are potentially harmful to human health. This study aimed to quantify total organic carbon (TOC) and total inorganic C losses in runoff after application of dairy slurry, pig slurry, or milk house wash water (MWW) to land and to mitigate these losses through coamendment of the slurries with zeolite (2.36-3.35 mm clinoptilolite) and liquid polyaluminum chloride (PAC) (10% AlO) for dairy and pig slurries or liquid aluminum sulfate (alum) (8% AlO) for MWW. Four treatments under repeated 30-min simulated rainfall events (9.6 mm h) were examined in a laboratory study using grassed soil runoff boxes (0.225 m wide, 1 m long; 10% slope): control soil, unamended slurries, PAC-amended dairy and pig slurries (13.3 and 11.7 kg t, respectively), alum-amended MWW (3.2 kg t), combined zeolite and PAC-amended dairy (160 and 13.3 kg t zeolite and PAC, respectively) and pig slurries (158 and 11.7 kg t zeolite and PAC, respectively), and combined zeolite and alum-amended MWW (72 and 3.2 kg t zeolite and alum, respectively). The unamended and amended slurries were applied at net rates of 31, 34, and 50 t ha for pig and dairy slurries and MWW, respectively. Significant reductions of TOC in runoff compared with unamended slurries were measured for PAC-amended dairy and pig slurries (52 and 56%, respectively) but not for alum-amended MWW. Dual zeolite and alum-amended MWW significantly reduced TOC in runoff compared with alum amendment only. We conclude that use of PAC-amended dairy and pig slurries and dual zeolite and alum-amended MWW, although effective, may not be economically viable to reduce TOC losses from organic slurries given the relatively low amounts of TOC measured in runoff from unamended slurries compared with the amounts applied. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. Biogas slurry pricing method based on nutrient content

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-ai; Guo, Honghai; Yang, Zhengtao; Xin, Shurong

    2017-11-01

    In order to promote biogas-slurry commercialization, A method was put forward to valuate biogas slurry based on its nutrient contents. Firstly, element contents of biogas slurry was measured; Secondly, each element was valuated based on its market price, and then traffic cost, using cost and market effect were taken into account, the pricing method of biogas slurry were obtained lastly. This method could be useful in practical production. Taking cattle manure raw meterial biogas slurry and con stalk raw material biogas slurry for example, their price were 38.50 yuan RMB per ton and 28.80 yuan RMB per ton. This paper will be useful for recognizing the value of biogas projects, ensuring biogas project running, and instructing the cyclic utilization of biomass resources in China.

  15. Evaluation of hybrid slurry resulting from the introduction of additives to mineral slurry.

    DOT National Transportation Integrated Search

    2011-09-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during excavation : and concreting. Florida Department of Transportation (FDOT) specifications require the use of mineral slurry : for all primary struct...

  16. Method and apparatus for improved wire saw slurry

    DOEpatents

    Costantini, Michael A.; Talbott, Jonathan A.; Chandra, Mohan; Prasad, Vishwanath; Caster, Allison; Gupta, Kedar P.; Leyvraz, Philippe

    2000-09-05

    A slurry recycle process for use in free-abrasive machining operations such as for wire saws used in wafer slicing of ingots, where the used slurry is separated into kerf-rich and abrasive-rich components, and the abrasive-rich component is reconstituted into a makeup slurry. During the process, the average particle size of the makeup slurry is controlled by monitoring the condition of the kerf and abrasive components and making necessary adjustments to the separating force and dwell time of the separator apparatus. Related pre-separator and post separator treatments, and feedback of one or the other separator slurry output components for mixing with incoming used slurry and recirculation through the separator, provide further effectiveness and additional control points in the process. The kerf-rich component is eventually or continually removed; the abrasive-rich component is reconstituted into a makeup slurry with a controlled, average particle size such that the products of the free-abrasive machining method using the recycled slurry process of the invention are of consistent high quality with less TTV deviation from cycle to cycle for a prolonged period or series of machining operations.

  17. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)-A Unique Microbial Habitat.

    PubMed

    Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.

  18. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)—A Unique Microbial Habitat

    PubMed Central

    Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741

  19. The Seismic Velocity In Gas-charged Magma

    NASA Astrophysics Data System (ADS)

    Sturton, S.; Neuberg, J. W.

    2001-12-01

    Long-period and hybrid events, seen at the Soufrière Hills Volcano, Montserrat, show dominant low frequency content suggesting the seismic wavefield is formed as a result of interface waves at the boundary between a fluid and a solid medium. This wavefield will depend on the impedance contrast between the two media and therefore the difference in seismic velocity. For a gas-charged magma, increasing pressure with depth reduces the volume of gas exsolved, increasing the seismic velocity with depth in the conduit. The seismic radiation pattern along the conduit can then be modelled. Where single events merge into tremor, gliding lines can sometimes be seen in the spectra and indicate either changes in the seismic parameters with time or varying triggering rates of single events.The differential equation describing the time dependence of bubble growth by diffusion is solved numerically for a stationary magma column undergoing a decompression event. The volume of gas is depth dependent and increases with time as the bubbles grow and expand. It is used to calculate the depth and time dependence of the density, pressure and seismic velocity. The effect of different viscosities associated with different magma types and concentration of water in the melt on the rate of bubble growth is explored. Crystal growth, which increases the concentration of water in the melt, affects the amount of gas that can be exsolved.

  20. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2013-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid enantiomers.

  1. Enabling Microliquid Chromatography by Microbead Packing of Microchannels

    NASA Technical Reports Server (NTRS)

    Balvin, Manuel; Zheng, Yun

    2014-01-01

    The microbead packing is the critical element required in the success of on-chip microfabrication of critical microfluidic components for in-situ analysis and detection of chiral amino acids. In order for microliquid chromatography to occur, there must be a stationary phase medium within the microchannel that interacts with the analytes present within flowing fluid. The stationary phase media are the microbeads packed by the process discussed in this work. The purpose of the microliquid chromatography is to provide a lightweight, low-volume, and low-power element to separate amino acids and their chiral partners efficiently to understand better the origin of life. In order to densely pack microbeads into the microchannels, a liquid slurry of microbeads was created. Microbeads were extracted from a commercially available high-performance liquid chromatography column. The silica beads extracted were 5 microns in diameter, and had surface coating of phenyl-hexyl. These microbeads were mixed with a 200- proof ethanol solution to create a microbead slurry with the right viscosity for packing. A microfilter is placed at the outlet via of the microchannel and the slurry is injected, then withdrawn across a filter using modified syringes. After each injection, the channel is flushed with ethanol to enhance packing. This cycle is repeated numerous times to allow for a tightly packed channel of microbeads. Typical microbead packing occurs in the macroscale into tubes or channels by using highly pressurized systems. Moreover, these channels are typically long and straight without any turns or curves. On the other hand, this method of microbead packing is completed within a microchannel 75 micrometers in diameter. Moreover, the microbead packing is completed into a serpentine type microchannel, such that it maximizes microchannel length within a microchip. Doing so enhances the interactions of the analytes with the microbeads to separate efficiently amino acids and amino acid enantiomers.

  2. A new magnetic compound fluid slurry and its performance in magnetic field-assisted polishing of oxygen-free copper

    NASA Astrophysics Data System (ADS)

    Wang, Youliang; Wu, Yongbo; Guo, Huiru; Fujimoto, Masakazu; Nomura, Mitsuyoshi; Shimada, Kunio

    2015-05-01

    In nano-precision surface finishing of engineering materials using MCF (magnetic compound fluid) slurry, the water-based MCF slurry is preferable from the viewpoint of the environmental issue and the running cost of cleaning workpiece and equipment. However, the uncoated-CIPs (carbonyl-iron-powders) within the conventional MCF slurry have low ability against aqueous corrosion, leading to the performance deterioration and working life shortening of the conventional MCF slurry. This study proposed a new MCF slurry containing ZrO2-coated CIPs instead of the uncoated CIPs. Its performance in the polishing of oxygen-free copper was compared experimentally with that of the conventional one. The results showed that the work-surface finish polished with the new slurry was in the same level as that with the conventional one when the slurry was used soon after prepared, i.e., the settling time was 0 min; however, as the settling time increased the uncoated-CIPs got rusty, leading to a deterioration in the slurry performance. By contrast, no rust was observed on ZrO2-coated CIPs even the settling time reached several days, indicating the employment of ZrO2-coated CIPs prolonged the working-life of the MCF slurry greatly.

  3. The use of additive ceramic hollow spheres on cement slurry to prevent lost circulation in formation `X' having low pressure fracture

    NASA Astrophysics Data System (ADS)

    Rita, Novia; Mursyidah, Syahindra, Michael

    2018-03-01

    When drilling, if the hydrostatic pressure is higher than formation pressure (fracture pressure) it will cause lost circulation during cementing process. To solve this problem, hydrostatic pressure of slurry can be decreased by lowering the slurry density by using some additives. Ceramic Hollow Spheres (CHS) is lightweight additive. This additive comes with low specific gravity so it can lowered the slurry density. When the low-density slurry used in cementing process, it can prevent low circulation and fractured formation caused by cement itself. Class G cement is used in this experiment with the standard density of this slurry is 15.8 ppg. With the addition of CHS, slurry density lowered to 12.5 ppg. CHS not only used to lower the slurry density, it also used to make the same properties with the standard slurry even the density has been lowered. Both thickening time and compressive strength have not change if the CHS added to the slurry. With addition of CHS, thickening time at 70 Bc reached in 03 hours 12 minutes. For the compressive strength, 2000 psi reached in 07 hours 07 minutes. Addition of CHS can save more time in cementing process of X formation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sommer, T.; Melick, T.; Morrison, D.

    The objective of this DOE sponsored project was to successfully fire coal-water slurry in a fire-tube boiler that was designed for oil/gas firing and establish a data base that will be relevant to a large number of existing installations. Firing slurry in a fire-tube configuration is a very demanding application because of the extremely high heat release rates and the correspondingly low furnace volume where combustion can be completed. Recognizing that combustion efficiency is the major obstacle when firing slurry in a fire-tube boiler, the program was focused on innovative approaches for improving carbon burnout without major modifications to themore » boiler. The boiler system was successfully designed and operated to fire coal-water slurry for extended periods of time with few slurry related operational problems. The host facility was a 3.8 million Btu/hr Cleaver-Brooks fire-tube boiler located on the University of Alabama Campus. A slurry atomizer was designed that provided outstanding atomization and was not susceptible to pluggage. The boiler was operated for over 1000 hours and 12 shipments of slurry were delivered. The new equipment engineered for the coal-water slurry system consisted of the following: combustion air and slurry heaters; cyclone; baghouse; fly ash reinjection system; new control system; air compressor; CWS/gas burner and gas valve train; and storage tank and slurry handling system.« less

  5. A laboratory study of sediment and contaminant release during gas ebullition.

    PubMed

    Yuan, Qingzhong; Valsaraj, Kalliat T; Reible, Danny D; Willson, Clinton S

    2007-09-01

    Significant quantities of gas are generated from labile organic matter in contaminated sediments. The implications for the gas generation and subsequent release of contaminants from sediments are unknown but may include enhanced direct transport such as pore water advection and diffusion. The behavior of gas in sediments and the resulting migration of a polyaromatic hydrocarbon, viz phenanthrene, were investigated in an experimental system with methane injection at the base of a sediment column. Hexane above the overlying water layer was used to trap any phenanthrene migrating out of the sediment layer. The rate of suspension of solid particulate matter from the sediment bed into the overlying water layer was also monitored. The experiments indicated that significant amounts of both solid particulate matter and contaminant can be released from a sediment bed by gas movement with the amount of release related to the volume of gas released. The effective mass transfer coefficient of gas bubble-facilitated contaminant release was estimated under field conditions, being around three orders of magnitude smaller than that of bioturbation. A thin sand-capping layer (2 cm) was found to dramatically reduce the amount of contaminant or particles released with the gas because it could prevent or at least reduce sediment suspension. Based on the experimental observations, gas bubble-facilitated contaminant transport pathways for both uncapped and capped systems were proposed. Sediment cores were sliced to obtain phenanthrene concentration. X-ray computed tomography (CT) was used to investigate the void space distribution in the sediment penetrated by gas bubbles. The results showed that gas bubble migration could redistribute the sediment void spaces and may facilitate pore water circulation in the sediment.

  6. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.

  7. A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors.

    PubMed

    Terán Hilares, Ruly; Kamoei, Douglas Viana; Ahmed, Muhammad Ajaz; da Silva, Silvio Silvério; Han, Jong-In; Santos, Júlio César Dos

    2018-05-01

    Hydrodynamic cavitation (HC) was adopted to assist alkaline-hydrogen peroxide pretreatment of sugarcane bagasse (SCB). In the following condition: 0.29 M of NaOH, 0.78% (v/v) of H 2 O 2 , 9.95 min of process time and 3 bar of inlet pressure, 95.4% of digestibility of cellulosic fraction was achieved. To take the best use of the pretreated biomass, the overall process was intensified by way of employing a packed bed flow-through column reactor and thus enabling to handle a high solid loading of 20%, thereby leading to cellulose and hemicellulose conversions to 74.7% and 75%, respectively. In the fermentation step, a bubble column reactor was introduced to maximize ethanol production from the pretreated SCB by Scheffersomyces stipitis NRRL-Y7124, resulting in 31.50 g/L of ethanol, 0.49 g/g of ethanol yield and 0.68 g/L.h of productivity. All this showed that our HC-assisted NaOH-H 2 O 2 pretreatment strategy along with the process intensification approach might offer an option for SCB-based biorefineries. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Effects of storage in ozonised slurry ice on the sensory and microbial quality of sardine (Sardina pilchardus).

    PubMed

    Campos, Carmen A; Rodríguez, Oscar; Losada, Vanesa; Aubourg, Santiago P; Barros-Velázquez, Jorge

    2005-08-25

    The use of slurry ice, both alone and in combination with ozone, as compared with traditional flake ice was investigated as a new refrigeration system for the storage of sardine (Sardina pilchardus). Microbiological, chemical and sensory analyses were carried out throughout a storage period of 22 days. According to sensory analyses, sardine specimens stored in ozonised slurry ice had a shelf life of 19 days, while counterpart batches stored in slurry ice or flake ice had shelf lives of 15 and 8 days, respectively. Storage in ozonised slurry ice led to significantly lower counts of aerobic mesophiles, psychrotrophic bacteria, anaerobes, coliforms, and both lipolytic and proteolytic microorganisms in sardine muscle, and of surface counts of mesophiles and psychrotrophic bacteria in sardine skin as compared with the slurry ice and the flake ice batches. In all cases, the slurry ice batch also exhibited significantly lower microbial counts, both in muscle and skin, than the flake ice batch. Chemical parameters revealed that the use of slurry ice slowed down the formation of TVB-N and TMA-N to a significant extent in comparison with storage in flake ice. A combination of slurry ice with ozone also allowed a better control of pH and TMA-N formation as compared with slurry ice alone. This work demonstrates that the combined use of slurry ice and ozone for the storage of sardine can be recommended to improve the quality and extend the shelf life of this fish species.

  9. DEMONSTRATION BULLETIN: SLURRY BIODEGRADATION, International Technology Corporation

    EPA Science Inventory

    This technology uses a slurry-phase bioreactor in which the soil is mixed with water to form a slurry. Microorganisms and nutrients are added to the slurry to enhance the biodegradation process, which converts organic wastes into relatively harmless byproducts of microbial metabo...

  10. Method of making a functionally graded material

    DOEpatents

    Lauf, Robert J.; Menchhofer, Paul A.; Walls, Claudia A.; Moorhead, Arthur J.

    2002-01-01

    A gelcasting method of making an internally graded article alternatively includes the steps of: preparing a slurry including a least two different phases suspended in a gelcasting solution, the phases characterized by having different settling characteristics; casting the slurry into a mold having a selected shape; allowing the slurry to stand for a sufficient period of time to permit desired gravitational fractionation in order to achieve a vertical compositional gradient in the molded slurry; gelling the slurry to form a solid gel while preserving the vertical compositional gradient in the molded slurry; drying the gel to form a dried green body; and sintering the dry green body to form a solid object, at least one property thereof varying along the vertical direction because of the compositional gradient in the molded slurry.

  11. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water ( ρ c ˜ 10 3g cm -2 s -1) and rock ( ρ c ˜ 3 × 10 5g cm 2 s -1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid—vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water—steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound speed can vary over nearly two orders of magnitude as it changes from an undersaturated liquid into a saturated two-phase mixture, tremor frequency might vary by this magnitude and very broad-band seismographs may be required if tremor is to be monitored as magma goes from an undersaturated liquid to a vesiculated froth. Cessation of fluid-induced seismicity may indicate that the processes that drive the transients cease, but it is also possible that the processes that drive the transients continue but the fluid properties change so that the fluid becomes acoustically decoupled from the rock on which seismometers are placed.

  12. Fermentation of Anaerobic Cow Waste as Bio-Slurry Organic Fertilizer and Nitrogen Chemical Fertilizer on Soybean

    NASA Astrophysics Data System (ADS)

    Yafizham; Sutarno

    2018-02-01

    The study aimed was to evaluate the effect of bio-slurry organic fertilizer and urea chemical fertilizer combination on fresh material weight, phosphorus and potassium soybean straw, and seed weight per soybean plant plot. The experiment was conducted with a randomized block design with a single treatment repeated 5 times consisting of P0: control (without fertilizer), P1: bio-slurry 10 t/ha + 25 kg of N/ha, P2: bio-slurry 10 t/ha + 50 kg of N/ha, P3: bio-slurry 10 t/ha + 75 kg of N/ha, P4: bio-slurry 10 t/ha + 100 kg of N/ha and P5: bio-slurry 10 t/ha. The results showed that bio-slurry treatment of 10 t/ha + 25 kg of N/ha resulted in the highest fresh weight and dry weight of soybean plants, respectively of 240.7 g and 22.33 g, but not significantly different from the bio-slurry treatment of 10 t/ha + 50 kg of N/ha which yielded fresh weight of 197.7 g and a dry weight of 19.08 g. P production of 10.23 g per plant was significantly higher than other treatments but didn’t differ significantly between P2 and P4 treatments of 8.05 and 7.17 g per plant. The bio-slurry treatment of 10 t/ha + 25 kg of N/ha also yielded K of 6.46 g per plant butn’t unlike the bio-slurry treatment of 10 t/ha + 50 kg of N/ha. While the number of pods per plant and weight of 100 grains of the highest soybean seeds were also produced from bio-slurry treatment of 10 t/ha + 25 kg of N/ha.

  13. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less

  14. High-sensitivity direct analysis of aflatoxins in peanuts and cereal matrices by ultra-performance liquid chromatography with fluorescence detection involving a large volume flow cell.

    PubMed

    Oulkar, Dasharath; Goon, Arnab; Dhanshetty, Manisha; Khan, Zareen; Satav, Sagar; Banerjee, Kaushik

    2018-04-03

    This paper reports a sensitive and cost effective method of analysis for aflatoxins B1, B2, G1 and G2. The sample preparation method was primarily optimised in peanuts, followed by its validation in a range of peanut-processed products and cereal (rice, corn, millets) matrices. Peanut slurry [12.5 g peanut + 12.5 mL water] was extracted with methanol: water (8:2, 100 mL), cleaned through an immunoaffinity column and thereafter measured directly by ultra-performance liquid chromatography-fluorescence (UPLC-FLD) detection, within a chromatographic runtime of 5 minutes. The use of a large volume flow cell in the FLD nullified the requirement of any post-column derivatisation and provided the lowest ever reported limits of quantification of 0.025 for B1 and G1 and 0.01 μg/kg for B2 and G2. The single laboratory validation of the method provided acceptable selectivity, linearity, recovery and precision for reliable quantifications in all the test matrices as well as demonstrated compliance with the EC 401/2006 guidelines for analytical quality control of aflatoxins in foodstuffs.

  15. Laboratory estimates of trace gas emissions following surface application and injection of cattle slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flessa, H.; Beese, F.

    2000-02-01

    Applying cattle slurry to soil may induce emissions of the greenhouse gases N{sub 2}O and CH{sub 4}. Their objective was to determine the effects of different application techniques (surface application and slit injection) of cattle (Bostaurus) slurry on the decomposition of slurry organic matter and the emissions of N{sub 2}O and CH{sub 4}. The effects of slurry application (43.6 m{sup 3} ha{sup {minus}1}) were studied for 9 wk under controlled laboratory conditions using a soil microcosm system with automated monitoring of the CO{sub 2}, N{sub 2}O, and CH{sub 4} fluxes. The soil used was a silty loam (Ap horizon ofmore » a cambisol) with a constant water-filled pore space of 67% during the experiment. About 38% of the organic matter applied with the slurry was decomposed within 9 wk. Production of CO{sub 2} was not affected by the application technique. Emissions of N{sub 2}O and CH{sub 4} from the injected slurry were significantly higher than from the surface-applied slurry, probably because of restricted aeration at the injected-slurry treatment. Total N{sub 2}O-N emissions were 0.2% (surface application) and 3.3% (slit injection) of the slurry N added. Methane emission occurred only during the first few days following application. The total net flux of CH{sub 4}-C for 2 wk was {minus}12 g ha{sup {minus}1} for the control (CH{sub 4} uptake), 2 g ha{sup {minus}1} for the surface-applied slurry, and 39 g ha{sup {minus}1} for the injected slurry. Slurry injection, which is recommended to reduce NH{sub 3} volatilization, appears to increase emissions of the greenhouse gases N{sub 2}O and CH{sub 4} from the fertilized fields.« less

  16. The influence of different geotechnically relevant amendments on the reductive degradation of TCE by nZVI

    NASA Astrophysics Data System (ADS)

    Freitag, Peter; Schöftner, Philipp; Waldner, Georg; Reichenauer, Thomas G.; Nickel, Claudia; Spitz, Marcus; Dietzel, Martin

    2014-05-01

    Trichloroethylene (TCE) was widely used as a cleaning and degreasing agent. Companies needing these agents were often situated in or close to built up areas, so spillage led to contaminated sites which now can only be remediated using in situ techniques. The situation is compounded by the fact that TCE tends to seep through ground water bodies forming pools at the bottom of the aquifer. When reacting with TCE, nanoscale zero valent iron (nZVI) is known to reduce it into non-toxic substances. The difficulty is to bring it in contact with the pollutant. Attempts using passive insertion into the groundwater via wells yielded mixed results. Reasons for this are that ZVI tends to coagulate, to sediment and to adsorb on the matrix of the aquifer. Also, in inhomogeneous aquifers a passive application of nZVI can be difficult and might not bring the desired results, due to existence of preferential flow paths. A possible solution to this problem is the physical in situ mixing of ZVI into the contaminant source. This can, in principle, be done by adapting jet grouting - a method that uses a high pressure slurry jet, consisting of water and geotechnical additives ("binders"), to mix and compact zones ("columns") in soil. These columns are commonly used to solve foundation problems but can also be used to solve the problem of delivering nZVI to TCE source zones. This paper examines the influence binders have on the degradation reaction between TCE and nZVI. The necessity of these binders is explained by the fact that the subsoil structure is rearranged during the jetting process leading to subsidence on the surface. These subsidences could result in damage to neighbouring structures. A series of batch experiments was conducted in this study. Contaminated groundwater was brought into contact with samples of slurries commonly used in geotechnical applications. We tested the effects of concresole, bentonite, zeolithe, fly ash, slag sand and cement on the kinetics of TCE degradation by nZVI. The degradation of TCE was measured using GC Headspace samples. Furthermore, additional experiments were conducted to investigate the interaction between binders and TCE as well as binders and nZVI. The results of these experiments led to the conclusion that jet grouting could be well suited for the delivery of nZVI to TCE contaminated source zones. Currently, soil column experiments and large-scale experiments in test facilities are performed to confirm the batch testing results.

  17. Method for removing metal ions from solution with titanate sorbents

    DOEpatents

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  18. 46 CFR Table 2 to Part 153 - Cargoes Not Regulated Under Subchapters D or O of This Chapter When Carried in Bulk on Non...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-ethylamino-6-isopropylamino-5-triazine solution # Choline chloride solution D Clay slurry III Coal slurry III... acid, dimethylamine salt solution * Y Choline chloride solutions Z Clay slurry OS Coal slurry OS...

  19. Modified starch containing liquid fuel slurry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metzger, G.W.

    1978-04-04

    A substantially water-free, high solids content, stably dispersed combustible fuel slurry is provided, with a method of preparing the slurry. The slurry contains a minor amount of a solid particulate carbonaceous material such as powdered coal, with substantially the entire balance of the slurry being comprised of a liquid hydrocarbon fuel, particularly a heavy fuel oil. In extremely minor amounts are anionic surfactants, particularly soaps, and a stabilizing amount of a starch modified with an anionic polymer.

  20. Slip casting nano-particle powders for making transparent ceramics

    DOEpatents

    Kuntz, Joshua D [Livermore, CA; Soules, Thomas F [Livermore, CA; Landingham, Richard Lee [Livermore, CA; Hollingsworth, Joel P [Oakland, CA

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  1. Effect of organized assemblies. Part 4. Formulation of highly concentrated coal-water slurry using a natural surfactant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debadutta Das; Sagarika Panigrahi; Pramila K. Misra

    2008-05-15

    Coal-water slurry has received considerable research nowadays due to its ability in substituting energy sources. The present work reports the formulation of highly concentrated coal-water slurry using a natural occurring surface active compound, saponin, extracted from the fruits of plant Sapindous laurifolia. The isolation of saponin from the plant and its surface activity has been discussed. The rheological characteristics of coal-water slurry have been investigated as a function of coal loading, ash content of coal, pH, temperature, and amount of saponin. The viscosity of the slurry and zeta potential are substantially decreased with concomitant shift of the isoelectric point ofmore » coal on adsorption of saponin to it. In the presence of 0.8% of saponin, coal-water slurry containing 64% weight fraction of coal could be achieved. The slurry is stable for a period of as long as 1 month in contrast to 4-5 h in the case of bare coal-water slurry. The results confirm the use of saponin as a suitable additive for coal-water slurry similar to the commercially available additive such as sodium dodecyl sulfate. Basing on the effect of pH on the zeta potential and viscosity of slurry, a suitable mechanism for saponin-coal interaction and orientation of saponin at the coal-water interface has been proposed. 47 refs., 12 figs., 5 tabs.« less

  2. Pseudoplasticity of Propellant Slurry with Varied Aluminium Content for Castability Development

    NASA Astrophysics Data System (ADS)

    Restasari, A.; Budi, R. S.; Hartaya, K.

    2018-04-01

    The modification of the percentage of aluminium is necessary to obtain certain specific impulse. But, it affects the pseudoplasticity of propellant in elapsed time that is important in casting. Therefore, this research attempts to investigate the pseudoplasticity of propellant slurry with varied aluminium contents and as time elapsed, the range of percentage of aluminium and time that allows propellant slurry to be well processed. The methods include measuring the viscosity of propellant slurries that contain 6, 8, 10, 12, 14, 16 and 18% of aluminium at varied shear rates until 40 minutes after mixing by using Brookfield viscometer. The graphs of viscosity versus shear rate were made to determine pseudoplasticity index. After that, the graph volume fraction versus pseudoplasticity index were made to be investigated. It is concluded that the more aluminium contents, the slurries with 6 to 12% aluminium contents exhibit more pseudoplastic behaviour, but the slurries with 12 to 16% aluminium exhibit less pseudoplastic. While, slurry of 18% aluminium exhibit high pseudoplasticity. In the correlation with the time, the slurry compositions of 6, 8, 14, 16% aluminium become more pseudoplastic as time elapsed. While, for compositions of 10, 12 and 18% aluminium, the trend becomes contrary. Based on the pseudoplasticity index, propellant slurries that contain 10 and 14% of aluminium are suitable for pressure casting. While for slurries with 6, 8 and 16% of aluminium are also suitable for vacuum casting. All of those suitability are possesed until 40 minutes after mixing. While, the composition of slurries that contain 12 and 18% of aluminium need to be modified to enhanced its castability.

  3. Rheometry of natural sediment slurries

    USGS Publications Warehouse

    Major, Jon J.; ,

    1993-01-01

    Recent experimental analyses of natural sediment slurries yield diverse results yet exhibit broad commonality of rheological responses under a range of conditions and shear rates. Results show that the relation between shear stress and shear rate is primarily nonlinear, that the relation can display marked hysteresis, that minimum shear stress can occur following yield, that physical properties of slurries are extremely sensitive to sediment concentration, and the concept of slurry yield strength is still debated. New rheometric analyses have probed viscoelastic behavior of sediment slurries. Results show that slurries composed of particles ??? 125 ?? m exhibit viscoelastic responses, and that shear stresses are relaxed over a range of time scales rather than by a single response time.

  4. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  5. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  6. DEHYDRATION OF DEUTERIUM OXIDE SLURRIES

    DOEpatents

    Hiskey, C.F.

    1959-03-10

    A method is presented for recovering heavy water from uranium oxide-- heavy water slurries. The method consists in saturating such slurries with a potassium nitrate-sodium nitrate salt mixture and then allowing the self-heat of the slurry to raise its temperature to a point slightly in excess of 100 deg C, thus effecting complete evaporation of the free heavy water from the slurry. The temperature of the slurry is then allowed to reach 300 to 900 deg C causing fusion of the salt mixture and expulsion of the water of hydration. The uranium may be recovered from the fused salt mixture by treatment with water to leach the soluble salts away from the uranium-containing residue.

  7. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  8. Fuel injection of coal slurry using vortex nozzles and valves

    DOEpatents

    Holmes, Allen B.

    1989-01-01

    Injection of atomized coal slurry fuel into an engine combustion chamber is achieved at relatively low pressures by means of a vortex swirl nozzle. The outlet opening of the vortex nozzle is considerably larger than conventional nozzle outlets, thereby eliminating major sources of failure due to clogging by contaminants in the fuel. Control fluid, such as air, may be used to impart vorticity to the slurry and/or purge the nozzle of contaminants during the times between measured slurry charges. The measured slurry charges may be produced by a diaphragm pump or by vortex valves controlled by a separate control fluid. Fluidic circuitry, employing vortex valves to alternatively block and pass cool slurry fuel flow, is disclosed.

  9. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  10. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, Arun S.; Singh, Dileep

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  11. Enhancing protein to extremely high content in photosynthetic bacteria during biogas slurry treatment.

    PubMed

    Yang, Anqi; Zhang, Guangming; Meng, Fan; Lu, Pei; Wang, Xintian; Peng, Meng

    2017-12-01

    This work proposed a novel approach to achieve an extremely high protein content in photosynthetic bacteria (PSB) using biogas slurry as a culturing medium. The results showed the protein content of PSB could be enhanced strongly to 90% in the biogas slurry, which was much higher than reported microbial protein contents. The slurry was partially purified at the same time. Dark-aerobic was more beneficial than light-anaerobic condition for protein accumulation. High salinity and high ammonia of the biogas slurry were the main causes for protein enhancement. In addition, the biogas slurry provided a good buffer system for PSB to grow. The biosynthesis mechanism of protein in PSB was explored according to theoretical analysis. During biogas slurry treatment, the activities of glutamate synthase and glutamine synthetase were increased by 26.55%, 46.95% respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Experimental study on the application of paraffin slurry to high density electronic package cooling

    NASA Astrophysics Data System (ADS)

    Cho, K.; Choi, M.

    Experiments were performed by using water and paraffin slurry to investigate thermal characteristics from a test multichip module. The parameters were the mass fraction of paraffin slurry (0, 2.5, 5, 7.5%), heat flux (10, 20, 30, 40W/cm2) and channel Reynolds numbers. The size of paraffin slurry particles was within 10-40μm. The local heat transfer coefficients for the paraffin slurry were larger than those for water. Thermally fully developed conditions were observed after the third or fourth row. The paraffin slurry with a mass fraction of 5% showed the most efficient cooling performance when the heat transfer and the pressure drop in the test section were considered simultaneously. A new correlation for the water and the paraffin slurry with a mass fraction of 5% was obtained for a channel Reynolds number over 5300.

  13. Drilling Holes in Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Daniels, J. G.; Ledbetter, Frank E., III; Penn, B. G.; White, W. L.

    1986-01-01

    Slurry of silicon carbide powder in water fed onto bit while drilling. Slurry contains about 60 percent silicon carbide by weight. Slurry recirculated by low-power pump. With slurry, dull tools cut as fast as, or faster than, sharp ones. Holes drilled rapidly and efficiently regardless of ply orientation; whether unidirectional, quasi-isotropic symmetrical, or cross-ply.

  14. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or proposed...

  15. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or proposed...

  16. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    DOEpatents

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  17. Rheological Behavior and Microstructure of Ceramic Particulate/Aluminum Alloy Composites. Ph.D. Thesis Final Technical Report

    NASA Technical Reports Server (NTRS)

    Moon, Hee-Kyung

    1990-01-01

    The rheological behavior and microstructure were investigated using a concentric cylinder viscometer for three different slurries: semi-solid alloy slurries of a matrix alloy, Al-6.5wt percent Si: composite slurries, SiC (sub p) (8.5 microns)/Al-6.5wt percent Si, with the same matrix alloy in the molten state, and composite slurries of the same composition with the matrix alloy in the semi-solid state. The pseudoplasticity of these slurries was obtained by step changes of the shear rate from a given initial shear rate. To study the thixotropic behavior of the system, a slurry was allowed to rest for different periods of time, prior to shearing at a given initial shear rate. In the continuous cooling experiments, the viscosities of these slurries were dependent on the shear rate, cooling rate, volume fraction of the primary solid of the matrix alloy, and volume fraction of silicon carbide. In the isothermal experiments, all three kinds of slurries exhibited non-Newtonian behavior, depending on the volume fraction of solid particles.

  18. Removal of Suspended Solids in Anaerobically Digested Slurries of Livestock and Poultry Manure by Coagulation Using Different Dosages of Polyaluminum Chloride

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhang, C. J.; Zhao, T. K.; Zhong, H.

    2017-01-01

    In this study, anaerobically digested slurries of livestock and poultry manure were pretreated by coagulation-sedimentation using an inorganic polymer coagulant, polyaluminum chloride (PAC). The effect of different PAC dosages on suspended solids (SS) removal and pH in the biogas slurries was assessed to provide reference values for reducing the organic load of biogas slurry in the coagulation-sedimentation process and explore the feasibility of reducing the difficulty in subsequent utilization or processing of biogas slurry. The results showed that for the pig slurry containing approximately 5000 mg/L SS, the removal rate of SS reached up to 81.6% with the coagulant dosage of 0.28 g/L PAC. For the chicken slurry containing approximately 2600 mg/L SS, the removal rate of SS was 30.2% with the coagulant dosage of 0.33 g/L PAC. The removal rate of SS in both slurries of livestock and poultry manure exhibited a downward trend with high PAC dosage. Therefore, there is a need to control the PAC dosage in practical use. The pH changed little in the two types of biogas slurries after treatment with different PAC dosages and both were in line with the standard values specified in the “Standards for Irrigation Water Quality”.

  19. Electrode Slurry Particle Density Mapping Using X-ray Radiography

    DOE PAGES

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.; ...

    2017-01-05

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  20. Technical Development of Slurry Three-Dimensional Printer

    NASA Astrophysics Data System (ADS)

    Jiang, Cho-Pei; Hsu, Huang-Jan; Lee, Shyh-Yuan

    2017-09-01

    The aim of this paper is to review the technical development of slurry three-dimensional printer (3DP) which based on photo-polymerization and constrained surface method. Basically, slurry consists of ceramic powder, resin and photo-initiator. The light engines for solidifying the photo-curable slurry can be classified as laser, liquid crystal panel (LCD), digital light processing (DLP). The slurry can be reacted and solidified by selective ray according to the reaction spectrum of photo-initiator. Ceramic powder used in this study is zirconia oxide. Experimental results show that ceramic particle size affects the viscosity of slurry severely resulting in low accuracy and the occurrence of micro crack in the layer casting procedure. Therefore, the effect of particle size on the curability and accuracy of built green part is discussed. A single dental crown is proposed to be fabricated by these three light engines as a benchmark for comparison. In addition, the cost and the limitation are compared in the aspect of dental crown fabrication. Consequently, the lowest cost is LCD-type slurry 3DP system. DLP-type slurry 3DP can produce green body with the fastest fabrication time. The volumetric error of sintered part that made by these three fabrication methods is similar because the composition of slurry is the same.

  1. The influence of additives on rheological properties of limestone slurry

    NASA Astrophysics Data System (ADS)

    Jaworska, B.; Bartosik, A.

    2014-08-01

    Limestone slurry appears in the lime production process as the result of rinsing the processed material. It consists of particles with diameter smaller than 2 mm and the water that is a carrier of solid fraction. Slurry is directed to the settling tank, where the solid phase sediments and the excess water through the transfer system is recovered for re-circulation. Collected at the bottom of the tank sludge is deposited in a landfill located on the premises. Rheological properties of limestone slurry hinder its further free transport in the pipeline due to generated flow resistance. To improve this state of affairs, chemical treatment of drilling fluid, could be applied, of which the main task is to give the slurry properties suitable for the conditions encountered in hydrotransport. This treatment consists of applying chemical additives to slurry in sufficient quantity. Such additives are called as deflocculants or thinners or dispersants, and are chemical compounds which added to aqueous solution are intended to push away suspended particles from each other. The paper presents the results of research allowing reduction of shear stress in limestone slurry. Results demonstrate rheological properties of limestone slurry with and without the addition of modified substances which causes decrease of slurry viscosity, and as a consequence slurry shear stress for adopted shear rate. Achieving the desired effects increases the degree of dispersion of the solid phase suspended in the carrier liquid and improving its ability to smooth flow with decreased friction.

  2. Effects of cattle-slurry treatment by acidification and separation on nitrogen dynamics and global warming potential after surface application to an acidic soil.

    PubMed

    Fangueiro, David; Pereira, José; Bichana, André; Surgy, Sónia; Cabral, Fernanda; Coutinho, João

    2015-10-01

    Cattle-slurry (liquid manure) application to soil is a common practice to provide nutrients and organic matter for crop growth but it also strongly impacts the environment. The objective of the present study was to assess the efficiency of cattle-slurry treatment by solid-liquid separation and/or acidification on nitrogen dynamics and global warming potential (GWP) following application to an acidic soil. An aerobic laboratory incubation was performed over 92 days with a Dystric Cambisol amended with raw cattle-slurry or separated liquid fraction (LF) treated or not by acidification to pH 5.5 by addition of sulphuric acid. Soil mineral N contents and NH3, N2O, CH4 and CO2 emissions were measured. Results obtained suggest that the acidification of raw cattle-slurry reduced significantly NH3 emissions (-88%) but also the GWP (-28%) while increased the N availability relative to raw cattle-slurry (15% of organic N applied mineralised against negative mineralisation in raw slurry). However, similar NH3 emissions and GWP were observed in acidified LF and non-acidified LF treatments. On the other hand, soil application of acidified cattle-slurry rather than non-acidified LF should be preferred attending the lower costs associated to acidification compared to solid-liquid separation. It can then be concluded that cattle-slurry acidification is a solution to minimise NH3 emissions from amended soil and an efficient strategy to decrease the GWP associated with slurry application to soil. Furthermore, the more intense N mineralisation observed with acidified slurry should lead to a higher amount of plant available N and consequently to higher crop yields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ice Slurry Ingestion and Physiological Strain During Exercise in Non-Compensable Heat Stress.

    PubMed

    Ng, Jason; Wingo, Jonathan E; Bishop, Phillip A; Casey, Jason C; Aldrich, Elizabeth K

    2018-05-01

    Precooling with ice slurry ingestion attenuates the increase in rectal temperature (Tre) during subsequent running and cycling. It remains unclear how this cooling method affects physiological strain during work while wearing protective garments. This study investigated the effect of ice slurry ingestion on physiological strain during work in hot conditions while wearing firefighter protective clothing. In three counterbalanced trials, eight men (mean ± SD; age = 21 ± 2 yr, height = 179.5 ± 3.5 cm, mass = 79.1 ± 4.1 kg, body fat = 11.4 ± 3.7%) wore firefighter protective clothing and walked (4 km · h-1, 12% incline, ∼7 METs) for 30 min in hot conditions (35°C, 40% RH). Every 2.5 min, subjects ingested 1.25 g · kg-1 (relative total: 15 g · kg-1, absolute total: 1186.7 ± 61.3 g) of a tepid (22.4 ± 1.7°C), cold (7.1 ± 1.5°C), or ice slurry (-1.3 ± 0.2°C) beverage. Heart rates (HR) were lower with ice slurry ingestion compared to both fluid trials starting 5 min into exercise (tepid = 158 ± 14, cold = 157 ± 11, ice slurry = 146 ± 13 bpm) and persisting for the remainder of the bout (min 30: tepid = 196 ± 10, cold = 192 ± 10, ice slurry = 181 ± 13 bpm). Tre was lower with ice slurry ingestion compared to cold and tepid trials (min 5: tepid = 37.17 ± 0.38, cold = 37.17 ± 0.39, ice slurry = 37.05 ± 0.43°C; min 30: tepid = 38.15 ± 0.29, cold = 38.31 ± 0.36, ice slurry = 37.95 ± 0.32°C). The physiological strain index (PSI) was lower with ice slurry ingestion compared to fluid trials starting at min 5 (tepid = 3.8 ± 0.7, cold = 3.8 ± 0.6, ice slurry = 3.0 ± 0.5) and remained lower throughout exercise (min 30: tepid = 8.2 ± 0.6, cold = 8.3 ± 0.9, ice slurry = 6.9 ± 1.2). A large quantity of ice slurry ingested under non-compensable heat stress conditions mitigated physiological strain during exercise by blunting the rise in heart rate and rectal temperature.Ng J, Wingo JE, Bishop PA, Casey JC, Aldrich EK. Ice slurry ingestion and physiological strain during exercise in non-compensable heat stress. Aerosp Med Hum Perform. 2018; 89(5):434-441.

  4. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, C.S.; Albert, D.B.; Alperin, M.J.

    Methane concentrations in the pore waters of Eckernfoerde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling dissolved and gas bubble methane distributions in the bay's sediments is indirectly revealed through methane concentration versus depth profiles, depth variations in the stable C and H isotope composition of methane, and the C isotope composition of total dissolved inorganic carbon ({Sigma}CO{submore » 2}). Direct radiotracer measurements indicate that AMO rates of over 15 mM/yr are focused at the base of the sulfate reduction zone. Diagenetic equations that describe the depth destructions of the {delta}{sup 13}C and {delta}D values of methane reproduce isotopic shifts observed throughout the methane oxidation zone and are best fit with kinetic isotope fractionation factors of 1.012 {+-} 0.001 and 1.120 {plus{underscore}minus} 0.020 respectively.« less

  5. Chemical Hydride Slurry for Hydrogen Production and Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH 2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at amore » time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston University have demonstrated the technical viability of the process and have provided data for the cost analyses that have been performed. We also concluded that a carbothermic process could also produce magnesium at acceptable costs. The use of slurry as a medium to carry chemical hydrides has been shown during this project to offer significant advantages for storing, delivering, and distributing hydrogen: • Magnesium hydride slurry is stable for months and pumpable. • The oils of the slurry minimize the contact of oxygen and moisture in the air with the metal hydride in the slurry. Thus reactive chemicals, such as lithium hydride, can be handled safely in the air when encased in the oils of the slurry. • Though magnesium hydride offers an additional safety feature of not reacting readily with water at room temperatures, it does react readily with water at temperatures above the boiling point of water. Thus when hydrogen is needed, the slurry and water are heated until the reaction begins, then the reaction energy provides heat for more slurry and water to be heated. • The reaction system can be relatively small and light and the slurry can be stored in conventional liquid fuel tanks. When transported and stored, the conventional liquid fuel infrastructure can be used. • The particular metal hydride of interest in this project, magnesium hydride, forms benign byproducts, magnesium hydroxide (“Milk of Magnesia”) and magnesium oxide. • We have estimated that a magnesium hydride slurry system (including the mixer device and tanks) could meet the DOE 2010 energy density goals. During the investigation of hydriding techniques, we learned that magnesium hydride in a slurry can also be cycled in a rechargeable fashion. Thus, magnesium hydride slurry can act either as a chemical hydride storage medium or as a rechargeable hydride storage system. Hydrogen can be stored and delivered and then stored again thus significantly reducing the cost of storing and delivering hydrogen. Further evaluation and development of this concept will be performed as follow-on work under another project. However, since the cost of reducing magnesium from magnesium oxide makes up 85% of the cost of the slurry, if hydrogen can be stored many times in the slurry, then the cost of storing hydrogen can be spread over many units of hydrogen and can be significantly reduced from the costs of a chemical hydride system. This may be the most important finding of this project. If the slurry is used to carry a rechargeable hydride, the slurry can be stored in a conventional liquid fuel tank and delivered to a release system as hydrogen is needed. The release system will contain only the hydride needed to produce the hydrogen desired. This is in contrast to conventional designs proposed for other rechargeable hydride systems that store all the hydride in a large and heavy pressure and heat transfer vessel.« less

  6. Process to remove actinides from soil using magnetic separation

    DOEpatents

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  7. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2006-04-18

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  8. Method for applying a high-temperature bond coat on a metal substrate, and related compositions and articles

    DOEpatents

    Hasz, Wayne Charles; Sangeeta, D

    2002-01-01

    A method for applying a bond coat on a metal-based substrate is described. A slurry which contains braze material and a volatile component is deposited on the substrate. The slurry can also include bond coat material. Alternatively, the bond coat material can be applied afterward, in solid form or in the form of a second slurry. The slurry and bond coat are then dried and fused to the substrate. A repair technique using this slurry is also described, along with related compositions and articles.

  9. Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Chen, Shuyue; Jiang, Xing; Lu, Guirong

    2017-07-01

    A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.

  10. Biological treatment of soils contaminated with hydrophobic organics using slurry- and solid-phase techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Daniel H.; Irvine, Robert L.

    1995-10-01

    Both slurry-phase and solid-phase bioremediation are effective ex situ soil decontamination methods. Slurrying is energy intensive relative to solid-phase treatment, but provides homogenization and uniform nutrient distribution. Limited contaminant bioavailability at concentrations above the required cleanup level reduces biodegradation rates and renders solid phase bioremediation more cost effective than complete treatment in a bio-slurry reactor. Slurrying followed by solid-phase bioremediation combines the advantages and minimizes the weaknesses of each treatment method when used alone. A biological treatment system consisting of slurrying followed by aeration in solid phase bioreactors was developed and tested in the laboratory using a silty clay loam contaminated with diesel fuel. The first set of experiments was designed to determine the impact of the water content and mixing time during slurrying on the rate an extent of contaminant removal in continuously aerated solid phase bioreactors. The second set of experiments compared the volatile and total diesel fuel removal in solid phase bioreactors using periodic and continuous aeration strategies. Results showed that slurrying for 1.5 hours at a water content less than saturation markedly increased the rate and extent of contaminant biodegradation in the solid phase bioreactors compared with soil having no slurry pretreatment. Slurrying the soil at or above its saturation moisture content resulted in lengthy dewatering times which prohibited aeration, thereby delaying the onset of biological treatment in the solid phase bioreactors. Results also showed that properly operated periodic aeration can provide less volatile contaminant removal and a grater fraction of biological contaminant removal than continuous aeration.

  11. Mechanical properties of metal dihydrides

    DOE PAGES

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less

  12. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skeel, V.A.; Nawrot, J.R.

    Since the Cooperative Wildlife Research Laboratory`s (CWRL) Mined Land Reclamation Program`s first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surfacemore » (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow ({le}12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled.« less

  13. Surface texture and composition of titanium brushed with toothpaste slurries of different pHs.

    PubMed

    Hossain, Awlad; Okawa, Seigo; Miyakawa, Osamu

    2007-02-01

    This in vitro study characterized the surface texture and composition of titanium brushed with toothpaste slurries of different pHs, and thereby elucidated mechanochemical interactions between the metal and abrasive material in dentifrice. Two fluoride-free toothpastes, which contained crystalline CaHPO(4).2H(2)O and amorphous SiO(2) particles as abrasive, were mixed with acidic buffers to provide slurries of pH 6.8 and 4.8. Specimens were cast from CP Ti, mirror-polished, and then toothbrushed at 120strokes/min for 350,400 strokes under a load of 2.45N. Specimen surfaces were characterized by means of SPM and EPMA. The obtained data were compared with the already reported results of water-diluted alkaline slurries. SPM data of each paste were analyzed using one-way ANOVA, followed by post hoc Tukey test. Irrespective of toothpaste, neutral slurries, as with alkaline slurries, yielded a chemically altered surface with rough texture, whereas acidic slurries formed a chemically clean surface with relatively smooth texture. Mechanochemical polishing effect might be mainly responsible for the cleanness and smoothness. Acidic slurry-induced smooth surface may minimize plaque formation. However, the augmentation of released titanium ions may be adverse to the human body. For evaluation of toothpaste abrasion effects on titanium, paste slurry pH should be taken into account.

  14. Alternate Reductant Cold Cap Evaluation Furnace Phase II Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, F. C.; Stone, M. E.; Miller, D. H.

    2014-09-03

    Savannah River Remediation (SRR) conducted a Systems Engineering Evaluation (SEE) to determine the optimum alternate reductant flowsheet for the Defense Waste Processing Facility (DWPF). Specifically, two proposed flowsheets (nitric–formic–glycolic and nitric–formic–sugar) were evaluated based upon results from preliminary testing. Comparison of the two flowsheets among evaluation criteria indicated a preference towards the nitric–formic–glycolic flowsheet. Further research and development of this flowsheet eliminated the formic acid, and as a result, the nitric–glycolic flowsheet was recommended for further testing. Based on the development of a roadmap for the nitric–glycolic acid flowsheet, Waste Solidification Engineering (WS-E) issued a Technical Task Request (TTR) tomore » address flammability issues that may impact the implementation of this flowsheet. Melter testing was requested in order to define the DWPF flammability envelope for the nitric-glycolic acid flowsheet. The Savannah River National Laboratory (SRNL) Cold Cap Evaluation Furnace (CEF), a 1/12 th scale DWPF melter, was selected by the SRR Alternate Reductant project team as the melter platform for this testing. The overall scope was divided into the following sub-tasks as discussed in the Task Technical and Quality Assurance Plan (TTQAP): Phase I - A nitric–formic acid flowsheet melter test (unbubbled) to baseline the CEF cold cap and vapor space data to the benchmark melter flammability models; Phase II - A nitric–glycolic acid flowsheet melter test (unbubbled and bubbled) to: Define new cold cap reactions and global kinetic parameters in support of the melter flammability model development; Quantify off-gas surging potential of the feed; Characterize off-gas condensate for complete organic and inorganic carbon species. After charging the CEF with cullet from Phase I CEF testing, the melter was slurry-fed with glycolic flowsheet based SB6-Frit 418 melter feed at 36% waste loading and was operated continuously for 25 days. Process data was collected throughout testing and included melter operation parameters and off-gas chemistry. In order to generate off-gas data in support of the flammability model development for the nitric-glycolic flowsheet, vapor space steady state testing in the range of ~300-750°C was conducted under the following conditions, (i) 100% (nominal and excess antifoam levels) and 125% stoichiometry feed and (ii) with and without argon bubbling. Adjustments to feed rate, heater outputs and purge air flow were necessary in order to achieve vapor space temperatures in this range. Surge testing was also completed under nominal conditions for four days with argon bubbling and one day without argon bubbling.« less

  15. Apparatus and method for transferring slurries

    DOEpatents

    Horton, J.R.

    1982-08-13

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  16. Apparatus and method for transferring slurries

    DOEpatents

    Horton, Joel R.

    1984-01-01

    Slurry is transferred to a high pressure region by pushing the slurry from the bottom of a transfer vessel with a pressurizing liquid admitted into the top of the vessel. While the pressurizing liquid is being introduced into the transfer vessel, pressurizing liquid which has mixed with slurry is drawn off from the transfer vessel at a point between its upper and lower ends.

  17. SEPARATING LIQUID MODERATOR FROM A SLURRY TYPE REACTOR

    DOEpatents

    Vernon, H.C.

    1961-07-01

    A system for evaporating moderator such as D/sub 2/O from an irradiated slurry or sloution characterized by two successive evaproators is described. In the first of these the most troublesome radioactivity dissipates before the slurry becomes too thick to be pumped out; in the second the slurry, now easier to handle, can be safely reduced to a sludge.

  18. Supersonic coal water slurry fuel atomizer

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Balsavich, John

    1991-01-01

    A supersonic coal water slurry atomizer utilizing supersonic gas velocities to atomize coal water slurry is provided wherein atomization occurs externally of the atomizer. The atomizer has a central tube defining a coal water slurry passageway surrounded by an annular sleeve defining an annular passageway for gas. A converging/diverging section is provided for accelerating gas in the annular passageway to supersonic velocities.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higa, Kenneth; Zhao, Hui; Parkinson, Dilworth Y.

    The internal structure of a porous electrode strongly influences battery performance. Understanding the dynamics of electrode slurry drying could aid in engineering electrodes with desired properties. For instance, one might monitor the dynamic, spatially-varying thickness near the edge of a slurry coating, as it should lead to non-uniform thickness of the dried film. This work examines the dynamic behavior of drying slurry drops consisting of SiO x and carbon black particles in a solution of carboxymethylcellulose and deionized water, as an experimental model of drying behavior near the edge of a slurry coating. An X-ray radiography-based procedure is developed tomore » calculate the evolving spatial distribution of active material particles from images of the drying slurry drops. To the authors’ knowledge, this study is the first to use radiography to investigate battery slurry drying, as well as the first to determine particle distributions from radiography images of drying suspensions. The dynamic results are consistent with tomography reconstructions of the static, fully-dried films. It is found that active material particles can rapidly become non-uniformly distributed within the drops. Heating can promote distribution uniformity, but seemingly must be applied very soon after slurry deposition. Higher slurry viscosity is found to strongly restrain particle redistribution.« less

  20. Interactions between phosphorus feeding strategies for pigs and dairy cows and separation efficiency of slurry.

    PubMed

    Sommer, S G; Maahn, M; Poulsen, H D; Hjorth, M; Sehested, J

    2008-01-01

    Phosphorus (P) in manure is a nutrient source for plants, but surplus P amended to fields represents a risk to the environment. This study examines the interactions between low-P diets for pigs and dairy cows and the separation of animal slurry into a solid P fraction and a liquid fraction. Replacing inorganic phosphates with phytase in pig feed reduced the concentration of P in slurry by 35%, but supplementing concentrates to dairy cows did not affect the P concentration in cattle slurry. Particle-size fractions of the slurry were not affected by these dietary changes. The amount of dry matter (DM) in the < 0.025 mm fraction was greater in pig slurry than in cattle slurry, but the relative amounts of P and nitrogen (N) were larger in the > 0.025 mm fraction. Replacing feed phosphate, in the form of mono-calcium phosphate, with phytase in the pig diet reduced the separation index (efficiency) of P from 80% to 60%.

  1. The importance of the solids loading on confirming the dielectric nanosize dependence of BaTiO₃ powders by slurry method.

    PubMed

    Zhou, Wei; Nie, Yi Mei; Li, Shu Jing; Liang, Hai Yan

    2013-01-01

    The dielectric nanosize dependence of BaTiO₃ powders was investigated by the slurry method, where two series of BaTiO₃ slurries with 10 vol% and 30 vol% solids loadings were prepared as model samples. Applying the Bruggeman-Hanai equation, the high-frequency limiting permittivity (ε(h)) of the slurries was extracted from the dielectric spectra. The ε(h) of the 10 vol% slurry showed abnormal size independence in the range from 100 nm to 700 nm, and the ε(h) of the 30 vol% slurry exhibited good agreement with the previous prediction. Through analysing quantitatively the response of ε(h) to the changing permittivity of the powders under different solids loading, it was found that the ε h of the slurry with lower solids loading is more inclined to be interfered by the systematic and random errors. Furthermore, a high permittivity value was found in the BaTiO₃ powders with 50 nm particle size.

  2. Nitrogen and phosphorus removal coupled with carbohydrate production by five microalgae cultures cultivated in biogas slurry.

    PubMed

    Tan, Fen; Wang, Zhi; Zhouyang, Siyu; Li, Heng; Xie, Youping; Wang, Yuanpeng; Zheng, Yanmei; Li, Qingbiao

    2016-12-01

    In this study, five microalgae strains were cultured for their ability to survive in biogas slurry, remove nitrogen resources and accumulate carbohydrates. It was proved that five microalgae strains adapted in biogas slurry well without ammonia inhibition. Among them, Chlorella vulgaris ESP-6 showed the best performance on carbohydrate accumulation, giving the highest carbohydrate content of 61.5% in biogas slurry and the highest ammonia removal efficiency and rate of 96.3% and 91.7mg/L/d respectively in biogas slurry with phosphorus and magnesium added. Additionally, the absence of phosphorus and magnesium that can be adverse for biomass accumulation resulted in earlier timing of carbohydrate accumulation and magnesium was firstly recognized and proved as the influence factor for carbohydrate accumulation. Microalgae that cultured in biogas slurry accumulated more carbohydrate in cell, making biogas slurry more suitable medium for the improvement of carbohydrate content, thus can be regarded as a new strategy to accumulate carbohydrate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Medical ice slurry production device

    DOEpatents

    Kasza, Kenneth E [Palos Park, IL; Oras, John [Des Plaines, IL; Son, HyunJin [Naperville, IL

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  4. Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tse, Peter W.

    2015-05-01

    Slurry pumps are commonly used in oil-sand mining for pumping mixtures of abrasive liquids and solids. These operations cause constant wear of slurry pump impellers, which results in the breakdown of the slurry pumps. This paper develops a prognostic method for estimating remaining useful life of slurry pump impellers. First, a moving-average wear degradation index is proposed to assess the performance degradation of the slurry pump impeller. Secondly, the state space model of the proposed health index is constructed. A general sequential Monte Carlo method is employed to derive the parameters of the state space model. The remaining useful life of the slurry pump impeller is estimated by extrapolating the established state space model to a specified alert threshold. Data collected from an industrial oil sand pump were used to validate the developed method. The results show that the accuracy of the developed method improves as more data become available.

  5. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries

    DOE PAGES

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; ...

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less

  6. High-mass Star Formation Toward Southern Infrared Bubble S10

    NASA Astrophysics Data System (ADS)

    Ranjan Das, Swagat; Tej, Anandmayee; Vig, Sarita; Ghosh, Swarna K.; Ishwara Chandra, C. H.

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2 M ⊙, lies ˜7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μm image. The masses and linear diameter of these range between ˜300-1600 M ⊙ and 0.2-1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.

  7. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow.

    PubMed

    Yoshimoto, Makoto; Yamashita, Takayuki; Yamashiro, Takuya

    2010-01-01

    Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO(2) through oxidation of cofactor NADH into NAD(+). For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO(2) gas-liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45 degrees C with N(2) or CO(2) as gas phase at the superficial gas velocity U(G) of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas-liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high U(G) with CO(2) bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO(2) in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO(2) in the airlift. (c) 2010 American Institute of Chemical Engineers

  8. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  9. Slurry-pressing consolidation of silicon nitride

    NASA Technical Reports Server (NTRS)

    Sanders, William A.; Kiser, James D.; Freedman, Marc R.

    1988-01-01

    A baseline slurry-pressing method for a silicon nitride material is developed. The Si3N4 composition contained 5.8 wt percent SiO2 and 6.4 wt percent Y2O3. Slurry-pressing variables included volume percent solids, application of ultrasonic energy, and pH. Twenty vol percent slurry-pressed material was approximately 11 percent stronger than both 30 vol percent slurry-pressed and dry-pressed materials. The Student's t-test showed the difference to be significant at the 99 percent confidence level. Twenty volume percent (300 h) slurry-pressed test bars exhibited strengths as high as 980 MPa. Large, columnar beta-Si3N4 grains caused failure in the highest strength specimens. The improved strength correlated with better structural uniformity as determined by radiography, optical microscopy, and image analysis.

  10. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, Joseph P.; Marek, James C.

    1989-01-01

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper (II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the orginal organic compounds, is subsequently blended with high level radioactive sludge and transferred to a virtrification facility for processing into borosilicate glass for long-term storage.

  11. Seismic Tremors and Three-Dimensional Magma Wagging

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3-D model, the spectrum of displacement and unsynchronized cross-correlation between displacements measured from different locations can be calculated, and this can be compared to more detailed seismic measurements on well monitored volcanoes.

  12. Effects of dairy slurry on silage fermentation characteristics and nutritive value of alfalfa.

    PubMed

    Coblentz, W K; Muck, R E; Borchardt, M A; Spencer, S K; Jokela, W E; Bertram, M G; Coffey, K P

    2014-11-01

    Dairy producers frequently ask questions about the risks associated with applying dairy slurry to growing alfalfa (Medicago sativa L.). Our objectives were to determine the effects of applying dairy slurry on the subsequent nutritive value and fermentation characteristics of alfalfa balage. Dairy slurry was applied to 0.17-ha plots of alfalfa; applications were made to the second (HARV1) and third (HARV2) cuttings during June and July of 2012, respectively, at mean rates of 42,400 ± 5271 and 41,700 ± 2397 L/ha, respectively. Application strategies included (1) no slurry, (2) slurry applied directly to stubble immediately after the preceding harvest, (3) slurry applied after 1 wk of post-ensiled regrowth, or (4) slurry applied after 2 wk of regrowth. All harvested forage was packaged in large, rectangular bales that were ensiled as wrapped balage. Yields of DM harvested from HARV1 (2,477 kg/ha) and HARV2 (781 kg/ha) were not affected by slurry application treatment. By May 2013, all silages appeared to be well preserved, with no indication of undesirable odors characteristic of clostridial fermentations. Clostridium tyrobutyricum, which is known to negatively affect cheese production, was not detected in any forage on either a pre- or post-ensiled basis. On a pre-ensiled basis, counts for Clostridium cluster 1 were greater for slurry-applied plots than for those receiving no slurry, and this response was consistent for HARV1 (4.44 vs. 3.29 log10 genomic copies/g) and HARV2 (4.99 vs. 3.88 log10 genomic copies/g). Similar responses were observed on a post-ensiled basis; however, post-ensiled counts also were greater for HARV1 (5.51 vs. 5.17 log10 genomic copies/g) and HARV2 (5.84 vs. 5.28 log10 genomic copies/g) when slurry was applied to regrowth compared with stubble. For HARV2, counts also were greater following a 2-wk application delay compared with a 1-wk delay (6.23 vs. 5.45 log10 genomic copies/g). These results suggest that the risk of clostridial fermentations in alfalfa silages is greater following applications of slurry. Based on pre- and post-ensiled clostridial counts, applications of dairy slurry on stubble are preferred (and less risky) compared with delayed applications on growing alfalfa. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. The new idea of transporting tailings-logs in tailings slurry pipeline and the innovation of technology of mining waste-fill method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin Yu; Wang Fuji; Tao Yan

    2000-07-01

    This paper introduced a new idea of transporting mine tailings-logs in mine tailings-slurry pipeline and a new technology of mine cemented filing of tailings-logs with tailings-slurry. The hydraulic principles, the compaction of tailings-logs and the mechanic function of fillbody of tailings-logs cemented by tailings-slurry have been discussed.

  14. Methods to enhance the characteristics of hydrothermally prepared slurry fuels

    DOEpatents

    Anderson, Chris M.; Musich, Mark A.; Mann, Michael D.; DeWall, Raymond A.; Richter, John J.; Potas, Todd A.; Willson, Warrack G.

    2000-01-01

    Methods for enhancing the flow behavior and stability of hydrothermally treated slurry fuels. A mechanical high-shear dispersion and homogenization device is used to shear the slurry fuel. Other improvements include blending the carbonaceous material with a form of coal to reduce or eliminate the flocculation of the slurry, and maintaining the temperature of the hydrothermal treatment between approximately 300.degree. to 350.degree. C.

  15. Method for enhanced atomization of liquids

    DOEpatents

    Thompson, Richard E.; White, Jerome R.

    1993-01-01

    In a process for atomizing a slurry or liquid process stream in which a slurry or liquid is passed through a nozzle to provide a primary atomized process stream, an improvement which comprises subjecting the liquid or slurry process stream to microwave energy as the liquid or slurry process stream exits the nozzle, wherein sufficient microwave heating is provided to flash vaporize the primary atomized process stream.

  16. US Atlantic Margin Methane Plumes Identified From Water Column Backscatter Data Acquired by NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    Kodis, M.; Skarke, A. D.; Ruppel, C. D.; Weber, T.; Lobecker, E.; Malik, M.

    2013-12-01

    The NOAA Office of Ocean Exploration and Research routinely uses NOAA Ship Okeanos Explorer to collect EM302 (30 kHz) multibeam bathymetric data and water column backscatter imagery. These backscatter data have been used to identify gas plumes associated with seafloor methane seeps as part of previous investigations in the Gulf of Mexico and at Blake Ridge. Here, we use QPS Fledermaus Midwater software to analyze over 200,000 km2 of multibeam data acquired on the continental slope and outer shelf of the US Atlantic margin in 2011, 2012, and 2013. Preliminary application of this analytical methodology in late 2012 revealed the first deepwater (> 1000 m water depth) cold seeps found on the US Atlantic margin north of Cape Hatteras as well as 47 new upper slope seeps (http://www.noaanews.noaa.gov/stories2012/20121219_gas_seeps.html). In this new analysis, we identify over 500 water column backscatter anomalies (WCA) originating at the seafloor and extending to various heights in the water column between Cape Hatteras and the Nantucket margin. Data set quality control was achieved through secondary independent analysis of all WCA backscatter records by a highly experienced researcher who assigned a quality factor to each anomaly. Additionally, a subset of the data was analyzed using a Matlab code designed to automatically detect WCA in backscatter data. These quality-control and WCA comparison procedures provide confidence that several hundred of the WCA are robust picks. The observed WCA are structurally consistent with previously confirmed gas bubble plumes, being vertically elongate, rooted at the seafloor, and deflected by currents. They are not structurally consistent with other common WCA such as schooling or swarming organisms. Additionally, the bases of selected WCA that were identified in this analysis have recently been visually and acoustically confirmed to be associated with emission of gas bubbles from the seafloor by the NOAA remotely operated vehicle Deep Discoverer. The physical characteristics and location of the WCA suggest that they are likely methane plumes, although this has yet to be confirmed by direct gas sampling. The WCA occur both in isolation and in clusters, and repeated observation of select seep fields indicated intermittent WCA identifications that could not be explained by uncertainties in the spatial resolution of the data. Thus, some of the WCA appear to exhibit ephemerality on time scales of hours to days. This research was undertaken while the lead author was a NOAA Hollings Scholar intern with the NOAA Office of Ocean Exploration and Research.

  17. News from the "blowout", a man-made methane pockmark in the North Sea: chemosynthetic communities and microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Steinle, Lea I.; Wilfert, Philipp; Schmidt, Mark; Bryant, Lee; Haeckel, Matthias; Lehmann, Moritz F.; Linke, Peter; Sommer, Stefan; Treude, Tina; Niemann, Helge

    2013-04-01

    The accidental penetration of a base-Quaternary shallow gas pocket by a drilling rig in 1990 caused a "blowout" in the British sector of the North Sea (57°55.29' N, 01°37.86' E). Large quantities of methane have been seeping out of this man-made pockmark ever since. As the onset of gas seepage is well constrained, this site can be used as a natural laboratory to gain information on the development of methane oxidizing microbial communities at cold seeps. During an expedition with the R/V Celtic Explorer in July and August 2012, we collected sediments by video-guided push-coring with an ROV (Kiel 6000) along a gradient from inside the crater (close to where a jet of methane bubbles enters the water column) outwards. We also sampled the water column in a grid above the blowout at three different depths. In this presentation, we provide evidence for the establishment of methanotrophic communities in the sediment (AOM communities) on a time scale of decades. Furthermore, we will report data on methane concentrations and anaerobic methane oxidation rates in the sediment. Finally, we will also discuss the spatial distribution of methane and aerobic methane oxidation rates in the water column.

  18. Hubble Sees a Star ‘Inflating’ a Giant Bubble

    NASA Image and Video Library

    2017-12-08

    For the 26th birthday of NASA’s Hubble Space Telescope, astronomers are highlighting a Hubble image of an enormous bubble being blown into space by a super-hot, massive star. The Hubble image of the Bubble Nebula, or NGC 7635, was chosen to mark the 26th anniversary of the launch of Hubble into Earth orbit by the STS-31 space shuttle crew on April 24, 1990 “As Hubble makes its 26th revolution around our home star, the sun, we celebrate the event with a spectacular image of a dynamic and exciting interaction of a young star with its environment. The view of the Bubble Nebula, crafted from WFC-3 images, reminds us that Hubble gives us a front row seat to the awe inspiring universe we live in,” said John Grunsfeld, Hubble astronaut and associate administrator of NASA’s Science Mission Directorate at NASA Headquarters, in Washington, D.C. The Bubble Nebula is seven light-years across—about one-and-a-half times the distance from our sun to its nearest stellar neighbor, Alpha Centauri, and resides 7,100 light-years from Earth in the constellation Cassiopeia. The seething star forming this nebula is 45 times more massive than our sun. Gas on the star gets so hot that it escapes away into space as a “stellar wind” moving at over four million miles per hour. This outflow sweeps up the cold, interstellar gas in front of it, forming the outer edge of the bubble much like a snowplow piles up snow in front of it as it moves forward. As the surface of the bubble's shell expands outward, it slams into dense regions of cold gas on one side of the bubble. This asymmetry makes the star appear dramatically off-center from the bubble, with its location in the 10 o’clock position in the Hubble view. Dense pillars of cool hydrogen gas laced with dust appear at the upper left of the picture, and more “fingers” can be seen nearly face-on, behind the translucent bubble. The gases heated to varying temperatures emit different colors: oxygen is hot enough to emit blue light in the bubble near the star, while the cooler pillars are yellow from the combined light of hydrogen and nitrogen. The pillars are similar to the iconic columns in the “Pillars of Creation” Eagle Nebula. As seen with the structures in the Eagle Nebula, the Bubble Nebula pillars are being illuminated by the strong ultraviolet radiation from the brilliant star inside the bubble. The Bubble Nebula was discovered in 1787 by William Herschel, a prominent British astronomer. It is being formed by a proto-typical Wolf-Rayet star, BD +60º2522, an extremely bright, massive, and short-lived star that has lost most of its outer hydrogen and is now fusing helium into heavier elements. The star is about four million years old, and in 10 million to 20 million years, it will likely detonate as a supernova. Hubble’s Wide Field Camera-3 imaged the nebula in visible light with unprecedented clarity in February 2016. The colors correspond to blue for oxygen, green for hydrogen, and red for nitrogen. This information will help astronomers understand the geometry and dynamics of this complex system. The Bubble Nebula is one of only a handful of astronomical objects that have been observed with several different instruments onboard Hubble. Hubble also imaged it with the Wide Field Planetary Camera (WFPC) in September 1992, and with Wide Field Planetary Camera-2 (WFPC2) in April 1999. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

  19. The Impact of Using Alternative Forages on the Nutrient Value within Slurry and Its Implications for Forage Productivity in Agricultural Systems

    PubMed Central

    Crotty, Felicity V.; Fychan, Rhun; Theobald, Vince J.; Sanderson, Ruth; Chadwick, David R.; Marley, Christina L.

    2014-01-01

    Alternative forages can be used to provide valuable home-grown feed for ruminant livestock. Utilising these different forages could affect the manure value and the implications of incorporating these forages into farming systems, needs to be better understood. An experiment tested the hypothesis that applying slurries from ruminants, fed ensiled red clover (Trifolium pratense), lucerne (Medicago sativa) or kale (Brassica oleracea) would improve the yield of hybrid ryegrass (Lolium hybridicum), compared with applying slurries from ruminants fed ensiled hybrid ryegrass, or applying inorganic N alone. Slurries from sheep offered one of four silages were applied to ryegrass plots (at 35 t ha−1) with 100 kg N ha−1 inorganic fertiliser; dry matter (DM) yield was compared to plots only receiving ammonium nitrate at rates of 0, 100 and 250 kg N ha−1 year−1. The DM yield of plots treated with 250 kg N, lucerne or red clover slurry was significantly higher than other treatments (P<0.001). The estimated relative fertiliser N equivalence (FNE) (fertiliser-N needed to produce same yield as slurry N), was greatest for lucerne (114 kg) >red clover (81 kg) >kale (44 kg) >ryegrass (26 kg ha−1 yr−1). These FNE values represent relative efficiencies of 22% (ryegrass), 52% (kale), 47% (red clover) and 60% for lucerne slurry, with the ryegrass slurry efficiency being lowest (P = 0.005). Soil magnesium levels in plots treated with legume slurry were higher than other treatments (P<0.001). Overall, slurries from ruminants fed alternative ensiled forages increased soil nutrient status, forage productivity and better N efficiency than slurries from ruminants fed ryegrass silage. The efficiency of fertiliser use is one of the major factors influencing the sustainability of farming systems, these findings highlight the cascade in benefits from feeding ruminants alternative forages, and the need to ensure their value is effectively captured to reduce environmental risks. PMID:24830777

  20. Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals

    NASA Astrophysics Data System (ADS)

    Sommer, S. G.; Olesen, J. E.

    In Europe ammonia (NH 3), volatilization from animal manure is the major source of NH 3 in the atmosphere. From March to July 1997, NH 3 volatilization from trail hose applied slurry was measured for seven days after application in six experiments. A statistical analysis of data showed that NH 3 volatilization rate during the first 4-5 h after slurry application increased significantly ( P<5%) with wind speed and soil slurry surface water content. NH 3 volatilization in the six measuring periods during the experiments increased significantly ( P<5%) with relative water content of the soil slurry surface, global radiation, pH, and decreased with increasing rainfall during each measuring period and rainfall accumulated from onset of each experiment. A mechanistic model of NH 3 volatilization was developed. Model inputs are climate variables, soil characteristics and total ammoniacal nitrogen (TAN=ammonium+ammonia) in the soil surface layer. A pH submodel for predicting pH at the surface of the soil slurry liquid was developed. The measured NH 3 volatilization was compared with model simulations. The simulated results explained 27% of the variation in measured NH 3 volatilization rates during all seven days, but 48% of measured volatilization rates during the first 24 h. Calculations with the model showed that applying slurry in the morning or in the afternoon reduced volatilization by 50% compared with a noon application. Spreading the slurry with trail hoses to a 60 cm high crop reduced losses by 75% compared with a spreading onto bare soil. Ammonia volatilization was 50% lower when the soil had dried out after slurry application compared with a wet slurry surface.

  1. Oxidative degradation and toxicity reduction of trichloroethylene (TCE) in water using TiO2/solar light: comparative study of TiO2 slurry and immobilized systems.

    PubMed

    Cho, Il-Hyoung; Park, Jae-Hong; Kim, Young-Gyu

    2005-01-01

    A solar-driven, photocatalyzed degradation system using TiO2 slurry and immobilized systems was constructed and applied to the degradation of trichloroethylene (TCE) contaminated water using TiO2 with solar light. The experiments were carried out under constant weather conditions on a sunny day. Solar photocatalytic treatment efficiency of the solar light/TiO2 slurry system was compared with that of the solar light/TiO2 immobilized system. The operation of the solar light/TiO2 slurry and immobilized systems showed 100% (TiO2 slurry system), 80% (TiO2 immobilized system) degradation of the TCE after 6 h, with a chloride production yield of approximately 89% (TiO2 slurry system), 72% (TiO2 immobilized system). The oxidants such as H2O2 and S2O8(2-) in the TiO2 slurry and immobilized systems increased TCE degradation rate by suppressing the electron/hole recombination process. The degradation rate and relative toxicity reduction of TCE followed the order of solar light/TiO2 slurry + S2O8(2-) > solar light/TiO2 slurry + H2O2 > solar light/TiO2 immobilized + S2O8(2-) > solar light/TiO2 slurry > solar light/TiO2 immobilized + H2O2 > solar light/TiO2 immobilized. Finally, following to the toxicity result, the acute toxicity was reduced by below toxicity endpoint (EC50 concentration) following the treatment. It means that many of the metabolites of TCE reduction are less toxic to Vibrio fischeri than the parent compound. Based on these results, TCE can be efficiently and safely treated in a solar-driven, photocatalyzed degradation system.

  2. Management factors affecting ammonia volatilization from land-applied cattle slurry in the Mid-Atlantic USA.

    PubMed

    Thompson, R B; Meisinger, J J

    2002-01-01

    Ammonia (NH3) volatilization commonly causes a substantial loss of crop-available N from surface-applied cattle slurry. Field studies were conducted with small wind tunnels to assess the effect of management factors on NH3 volatilization. Two studies compared NH3 volatilization from grass sward and bare soil. The average total NH3 loss was 1.5 times greater from slurry applied to grass sward. Two studies examined the effect of slurry dry matter (DM) content on NH3 loss under hot, summer conditions in Maryland, USA. Slurry DM contents were between 54 and 134 g kg(-1). Dry matter content did not affect total NH3 loss, but did influence the time course of NH3 loss. Higher DM content slurries had relatively higher rates of NH3 volatilization during the first 12 to 24 h, but lower rates thereafter. Under the hot conditions, the higher DM content slurries appeared to dry and crust more rapidly causing smaller rates of NH3 volatilization after 12 to 24 h, which offset the earlier positive effects of DM content on NH3 volatilization. Three studies compared immediate incorporation with different tillage implements. Total NH3 loss from unincorporated slurry was 45% of applied slurry NH4+-N, while losses following immediate incorporation with a moldboard plow, tandem-disk harrow, or chisel plow were, respectively, 0 to 3, 2 to 8, and 8 to 12%. These ground cover and DM content data can be used to improve predictions of NH3 loss under specific farming conditions. The immediate incorporation data demonstrate management practices that can reduce NH3 volatilization, which can improve slurry N utilization in crop-forage production.

  3. [Mechanism and technology of recovery flue gas desulphurization with magnesium oxide].

    PubMed

    Cui, Ke; Chai, Ming; Xu, Kang-fu; Ma, Yong-liang

    2006-05-01

    Taking magnesium oxide slurry as absorption solution, the simulation of bubbling absorption process of mixed SO2 gases was observed in laboratory. Experiment results show that with a high efficiency and stable situation, acidification of absorbing solution was caused by HSO3-; the acidification trend was in accordance with the pattern of hydrolyzing of SO2, pH changes slowly at high pH value with SO3(2-) and rapidly at low value with HSO3-. The experiments also show the insensitive effect of liquid temperature on the high desulphurization efficiency. With relatively high dissolution rate and oxidizability of MgSO3 as well as the high solubility of MgSO4, the desulphurization efficiency utilization of MgO. Industrial experiment of FGD of coal-fired boiler showed that by recycling absorbing liquid could be raised to the concentration of MgSO4 to the saturation concentration at the operation temperature (40-50 degrees C) without any adverse effects on FGD efficiency. Refinement and enrichment of active substance could promote the desulphurization process, thus showed the availability of technical and economy feasibility of recovery technology.

  4. Slurry burner for mixture of carbonaceous material and water

    DOEpatents

    Nodd, Dennis G.; Walker, Richard J.

    1987-01-01

    A carbonaceous material-water slurry burner includes a high pressure tip-emulsion atomizer for directing a carbonaceous material-water slurry into a combustion chamber for burning therein without requiring a support fuel or oxygen enrichment of the combustion air. Introduction of the carbonaceous material-water slurry under pressure forces it through a fixed atomizer wherein the slurry is reduced to small droplets by mixing with an atomizing air flow and directed into the combustion chamber. The atomizer includes a swirler located immediately adjacent to where the fuel slurry is introduced into the combustion chamber and which has a single center channel through which the carbonaceous material-water slurry flows into a plurality of diverging channels continuous with the center channel from which the slurry exits the swirler immediately adjacent to an aperture in the combustion chamber. The swirler includes a plurality of slots around its periphery extending the length thereof through which the atomizing air flows and by means of which the atomizing air is deflected so as to exert a maximum shear force upon the carbonaceous material-water slurry as it exits the swirler and enters the combustion chamber. A circulating coolant system or boiler feed water is provided around the periphery of the burner along the length thereof to regulate burner operating temperature, eliminate atomizer plugging, and inhibit the generation of sparklers, thus increasing combustion efficiency. A secondary air source directs heated air into the combustion chamber to promote recirculation of the hot combustion gases within the combustion chamber.

  5. Gaseous nitrogen and bacterial responses to raw and digested dairy manure applications in incubated soil.

    PubMed

    Saunders, Olivia E; Fortuna, Ann-Marie; Harrison, Joe H; Cogger, Craig G; Whitefield, Elizabeth; Green, Tonia

    2012-11-06

    A study was conducted under laboratory conditions to compare rates of nitrous oxide (N(2)O) and ammonia (NH(3)) emissions when soil was amended with anaerobically digested dairy manure slurry containing <30% food byproducts, raw dairy manure slurry, or urea. Slurries were applied via surface and subsurface methods. A second objective was to correlate genes regulating nitrification and denitrification with rates of N(2)O production, slurry treatment, and application method. Ammonia volatilization from incubated soil ranged from 140 g kg(-1) of total N applied in digested slurry to 230 g kg(-1) in urea. Subsurface application of raw dairy manure slurry decreased ammonia volatilization compared with surface application. Anaerobic digestion increased N(2)O production. Cumulative N(2)O loss averaged 27 g kg(-1) of total N applied for digested slurry, compared with 5 g kg(-1) for raw dairy slurry. Genes of interest included a 16S rRNA gene selective for β-subgroup proteobacterial ammonia-oxidizers, amoA, narG, and nosZ quantified with quantitative polymerase chain reaction (qPCR) and real-time polymerase chain reaction (RT-PCR). Application of anaerobically digested slurry increased nitrifier and denitrifier gene copies that correlated with N(2)O production. Expression of all genes measured via mRNA levels was affected by N applications to soil. This study provides new information linking genetic markers in denitrifier and nitrifier populations to N(2)O production.

  6. Effects of soil structure destruction on methane production and carbon partitioning between methanogenic pathways in tropical rain forest soils

    NASA Astrophysics Data System (ADS)

    Teh, Yit Arn; Silver, Whendee L.

    2006-03-01

    Controls on methanogenesis are often determined from laboratory incubations of soils converted to slurries. Destruction of soil structure during slurry conversion may disrupt syntrophic associations, kill methanogens, and/or alter the microsite distribution of methanogenic activity, suppressing CH4 production. The effects of slurry conversion on methanogenesis were investigated to determine if disruption of aggregate structure impacted methanogenesis, substrate utilization, and C partitioning between methanogenic pathways. Soils were collected from the tropical rain forest life zone of the Luquillo Experimental Forest, Puerto Rico, and exposed to different physical disturbances, including flooding and physical homogenization. Slurry conversion negatively impacted methanogenesis. Rates of CH4 production declined by a factor of 17 after well-aggregated soils were converted to slurries. Significantly more 13C-acetate was recovered in CO2 compared to CH4 after slurry conversion, suggesting that methanogens consumed less acetate after slurry conversion and may have competed less effectively with other anaerobes for acetate. Isotopic data indicate that the relative partitioning of C between aceticlastic and hydrogenotrophic pathways was unchanged after slurry conversion. These data suggest that experiments which destroy soil structure may significantly underestimate methanogenesis and overestimate the potential for other microorganisms to compete with methanogens for organic substrates. Current knowledge of the factors that regulate methanogenesis in soil may be biased by the findings of slurry-based experiments, that do not accurately represent the complex, spatially heterogeneous conditions found in well-aggregated soils.

  7. Coal liquefaction process

    DOEpatents

    Karr, Jr., Clarence

    1977-04-19

    An improved coal liquefaction process is provided which enables conversion of a coal-oil slurry to a synthetic crude refinable to produce larger yields of gasoline and diesel oil. The process is characterized by a two-step operation applied to the slurry prior to catalytic desulfurization and hydrogenation in which the slurry undergoes partial hydrogenation to crack and hydrogenate asphaltenes and the partially hydrogenated slurry is filtered to remove minerals prior to subsequent catalytic hydrogenation.

  8. Lapping slurry

    DOEpatents

    Simandl, Ronald F.; Upchurch, Victor S.; Leitten, Michael E.

    1999-01-01

    Improved lapping slurries provide for easier and more thorough cleaning of alumina workpieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid.

  9. Method for separating liquid and solid products of liquefaction of coal or like carbonaceous materials

    DOEpatents

    Malek, John M.

    1978-04-18

    A method of improving the quality of slurry products taken from coal liquefaction reactors comprising subjecting the slurry to treatment with an alkaline compound such as caustic soda in the presence of steam in order to decompose the phenolic and acidic materials present in the slurry, and to also lower the slurry viscosity to allow separation of solid particles by sedimentation.

  10. Using Frozen Barriers for Containment of Contaminants

    DTIC Science & Technology

    2017-09-21

    barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based

  11. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    PubMed Central

    Chen, Wenyan; Cai, Qiang; Zhao, Yuan; Zheng, Guojuan; Liang, Yuting

    2014-01-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v) and 1.95% (v/v) respectively, and embryonic development was inhibited at just 1% (v/v). Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR), while the LC50 of larvae was 75.23% (v/v) and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent. PMID:24995598

  12. Hydrogen Production in Radioactive Solutions in the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CRAWFORD, CHARLES L.

    2004-05-26

    In the radioactive slurries and solutions to be processed in the Defense Waste Processing Facility (DWPF), hydrogen will be produced continuously by radiolysis. This production results from alpha, beta, and gamma rays from decay of radionuclides in the slurries and solutions interacting with the water. More than 1000 research reports have published data concerning this radiolytic production. The results of these studies have been reviewed in a comprehensive monograph. Information about radiolytic hydrogen production from the different process tanks is necessary to determine air purge rates necessary to prevent flammable mixtures from accumulating in the vapor spaces above these tanks.more » Radiolytic hydrogen production rates are usually presented in terms of G values or molecules of hydrogen produced per 100ev of radioactive decay energy absorbed by the slurry or solution. With the G value for hydrogen production, G(H2), for a particular slurry and the concentrations of radioactive species in that slurry, the rate of H2 production for that slurry can be calculated. An earlier investigation estimated that the maximum rate that hydrogen could be produced from the sludge slurry stream to the DWPF is with a G value of 0.45 molecules per 100ev of radioactive decay energy sorbed by the slurry.« less

  13. Precipitate hydrolysis process for the removal of organic compounds from nuclear waste slurries

    DOEpatents

    Doherty, J.P.; Marek, J.C.

    1987-02-25

    A process for removing organic compounds from a nuclear waste slurry comprising reacting a mixture of radioactive waste precipitate slurry and an acid in the presence of a catalytically effective amount of a copper(II) catalyst whereby the organic compounds in the precipitate slurry are hydrolyzed to form volatile organic compounds which are separated from the reacting mixture. The resulting waste slurry, containing less than 10 percent of the original organic compounds, is subsequently blended with high level radioactive sludge land transferred to a vitrification facility for processing into borosilicate glass for long-term storage. 2 figs., 3 tabs.

  14. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1986-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  15. Convective heater

    DOEpatents

    Thorogood, Robert M.

    1983-01-01

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation.

  16. Convective heater

    DOEpatents

    Thorogood, R.M.

    1983-12-27

    A convective heater for heating fluids such as a coal slurry is constructed of a tube circuit arrangement which obtains an optimum temperature distribution to give a relatively constant slurry film temperature. The heater is constructed to divide the heating gas flow into two equal paths and the tube circuit for the slurry is arranged to provide a mixed flow configuration whereby the slurry passes through the two heating gas paths in successive co-current, counter-current and co-current flow relative to the heating gas flow. This arrangement permits the utilization of minimum surface area for a given maximum film temperature of the slurry consistent with the prevention of coke formation. 14 figs.

  17. BOILING SLURRY REACTOR AND METHOD FO CONTROL

    DOEpatents

    Petrick, M.; Marchaterre, J.F.

    1963-05-01

    The control of a boiling slurry nuclear reactor is described. The reactor consists of a vertical tube having an enlarged portion, a steam drum at the top of the vertical tube, and at least one downcomer connecting the steam drum and the bottom of the vertical tube, the reactor being filled with a slurry of fissionabie material in water of such concentration that the enlarged portion of the vertical tube contains a critical mass. The slurry boils in the vertical tube and circulates upwardly therein and downwardly in the downcomer. To control the reactor by controlling the circulation of the slurry, a gas is introduced into the downcomer. (AEC)

  18. Effect of Surface-active Additives on Physical Properties of Slurries of Vapor-process Magnesium

    NASA Technical Reports Server (NTRS)

    Pinns, Murray L

    1955-01-01

    The presence of 3 to 5 percent surface-active additive gave the lowest Brookfield apparent viscosity, plastic viscosity, and yield value that were obtained for slurry fuels containing approximately 50 percent vapor-process magnesium in JP-1 fuel. The slurries settled little and were easily remixed. A polyoxyethylene dodecyl alcohol was the most effective of 13 additives tested in reducing the Brookfield apparent viscosity and the yield value of the slurry. The seven most effective additives all had a hydroxyl group plus an ester or polyoxethylene group in the molecule. The densities of some of the slurries were measured.

  19. Oxidation of coal-water slurry feed to hydrogasifier

    DOEpatents

    Lee, Bernard S.

    1976-01-01

    An aqueous coal slurry is preheated, subjected to partial oxidation and vaporization by injection of high pressure oxygen and is introduced into a top section of a hydrogasifier in direct contact with hot methane-containing effluent gases where vaporization of the slurry is completed. The resulting solids are reacted in the hydrogasifier and the combined gases and vapors are withdrawn and subjected to purification and methanation to provide pipeline gas. The amount of oxygen injected into the slurry is controlled to provide the proper thermal balance whereby all of the water in the slurry can be evaporated in contact with the hot effluent gases from the hydrogasifier.

  20. Improving rheology and enzymatic hydrolysis of high-solid corncob slurries by adding lignosulfonate and long-chain fatty alcohols.

    PubMed

    Lou, Hongming; Wu, Shun; Li, Xiuli; Lan, Tianqing; Yang, Dongjie; Pang, Yuxia; Qiu, Xueqing; Li, Xuehui; Huang, Jinhao

    2014-08-20

    The effects of lignosulfonate (SXSL) and long-chain fatty alcohols (LFAs) on the rheology and enzymatic hydrolysis of high-solid corncob slurries were investigated. The application of 2.5% (w/w) SXSL increased the substrate enzymatic digestibility (SED) of high-solid corncob slurries at 72 h from 31.7 to 54.0%, but meanwhile it increased the slurry's yield stress and complex viscosity to make the slurry difficult to stir and pump. The smallest molecular weight (MW) SXSL fraction had the strongest enhancement on SED. The SXSL fraction with large MW had a negative effect on rheology. n-Octanol (C8) and n-decanol (C10) improved the rheological properties of high-solid slurry and are strong enough to counteract the negative effect of SXSL. Furthermore, C8 and C10 clearly enhanced the enzymatic hydrolysis of high-solid corncob slurries with and without SXSL. A mechanism was proposed to explain the observed negative effect of SXSL and the positive effect of LFAs on the rheological properties.

  1. The Importance of the Solids Loading on Confirming the Dielectric Nanosize Dependence of BaTiO3 Powders by Slurry Method

    PubMed Central

    Zhou, Wei; Nie, Yi Mei; Li, Shu Jing; Liang, Hai Yan

    2013-01-01

    The dielectric nanosize dependence of BaTiO3 powders was investigated by the slurry method, where two series of BaTiO3 slurries with 10 vol% and 30 vol% solids loadings were prepared as model samples. Applying the Bruggeman-Hanai equation, the high-frequency limiting permittivity (ε h) of the slurries was extracted from the dielectric spectra. The ε h of the 10 vol% slurry showed abnormal size independence in the range from 100 nm to 700 nm, and the ε h of the 30 vol% slurry exhibited good agreement with the previous prediction. Through analysing quantitatively the response of ε h to the changing permittivity of the powders under different solids loading, it was found that the ε h of the slurry with lower solids loading is more inclined to be interfered by the systematic and random errors. Furthermore, a high permittivity value was found in the BaTiO3 powders with 50 nm particle size. PMID:23844376

  2. Research on numerical simulation and protection of transient process in long-distance slurry transportation pipelines

    NASA Astrophysics Data System (ADS)

    Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.

    2013-12-01

    The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.

  3. Slurry Erosive Wear Evaluation of HVOF-Spray Cr2O3 Coating on Some Turbine Steels

    NASA Astrophysics Data System (ADS)

    Goyal, Deepak Kumar; Singh, Harpreet; Kumar, Harmesh; Sahni, Varinder

    2012-09-01

    In this study, Cr2O3 coatings were deposited on CF8M and CA6NM turbine steels by high-velocity oxy-fuel (HVOF)-spray process and analyzed with regard to their performance under slurry erosion conditions. High Speed Erosion Test Rig was used for slurry erosion tests, and the effects of three parameters, namely, average particle size, speed (rpm), and slurry concentration on slurry erosion of these materials were investigated. SEM micrographs on the surface of samples, before and after slurry erosion tests, were taken to study the erosion mechanism. For the uncoated steels, CA6NM steel showed better erosion resistance in comparison with CF8M steel. The HVOF-sprayed Cr2O3-coated CF8M and CA6NM steels showed better slurry erosion resistance in comparison with their uncoated counterparts. It may be due to the higher hardness as a result of HVOF-sprayed Cr2O3 coating in comparison with the uncoated CF8M and CA6NM steels.

  4. Evaluation of sulfur isotopic enrichment of urine metabolites for the differentiation of healthy and prostate cancer mice after the administration of 34S labelled yeast.

    PubMed

    Galilea San Blas, Oscar; Moreno Sanz, Fernando; Herrero Espílez, Pilar; Sainz Menéndez, Rosa María; Mayo Barallo, Juan Carlos; Marchante-Gayón, Juan Manuel; García Alonso, José Ignacio

    2017-01-01

    Sulfur isotopic enrichment of urine metabolites in healthy and prostate cancer mice using 34 S enriched yeast and High Performance Liquid Chromatography coupled to Multicollector Inductively Coupled Plasma Mass Spectrometry (HPLC-MC-ICP-MS) has been evaluated. A 30 weeks experiment (since the eleventh to the fortieth week of life) was carried out collecting the urine of three healthy mice and three transgenic mice with prostate cancer during 24h after a single oral administration of a 34 S enriched yeast slurry. The isotopic enrichment of different sulphur metabolites was monitored by coupling a C18 reverse phase HPLC column with a multicollector ICP-MS using a membrane desolvating system. Quantification of sulfur in the chromatographic peaks was carried out by post-column isotope dilution using a 33 S enriched spike. Differences between the 34 S enrichment in the urine metabolites of healthy and prostate cancer mice were found from the beginning of the disease. Both populations could be differentiated using a principal component analysis (PCA). Finally, 7 unknown mice were correctly classified in each population using a linear discriminant analysis. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James G. Goodwin, Jr.; James J. Spivey; K. Jothimurugesan

    1999-03-29

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. Iron-based (Fe) catalysts are preferred catalysts for F-T when using low CO/H2 ratio synthesis gases derived from modern coal gasifiers. This is because in addition to reasonable F-T activity, the F-T catalysts also possess high water gas shift (WGS) activity. However, a serious problem with themore » use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, making the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. The objectives of this research are to develop a better understanding of the parameters affecting attrition resistance of Fe F-T catalysts suitable for use in SBCRs and to incorporate this understanding into the design of novel Fe catalysts having superior attrition resistance. Catalyst preparations will be based on the use of spray drying and will be scalable using commercially available equipment. The research will employ among other measurements, attrition testing and F-T synthesis, including long duration slurry reactor runs in order to ascertain the degree of success of the various preparations. The goal is to develop an Fe catalyst which can be used in a SBCR having only an internal filter for separation of the catalyst from the liquid product, without sacrificing F-T activity and selectivity. The effect of silica addition via coprecipitation and as a binder to a doubly promoted Fischer-Tropsch synthesis iron catalyst (100 Fe/5 Cu/4.2 K) was studied. The catalysts were prepared by coprecipitation, followed by binder addition and drying in a 1 m diameter, 2 m tall spray dryer. The binder silica content was varied from 0 to 20 wt %. A catalyst with 12 wt % binder silica was found to have the highest attrition resistance. F-T reaction studies over 100 hours in a fixed-bed reactor showed that this catalyst maintained around 95 % CO conversion with a methane selectivity of less than 7 wt % and a C5 + selectivity of greater than 73 wt %. The effect of adding precipitated silica from 0 to 20 parts by weight to this catalyst (containing 12 wt % binder silica) was also studied. Addition of precipitated silica was found to be detrimental to attrition resistance and resulted in increased methane and reduced wax formation. An HPR series of proprietary catalysts was prepared to further improve the attrition resistance. Based on the experience gained, a proprietary HPR-43 catalyst has been successfully spray dried in 500 g quantity. This catalyst showed 95 % CO conversion over 125 h and had less than 4 % methane selectivity. Its attrition resistance was one of the highest among the catalyst tested.« less

  6. Lapping slurry

    DOEpatents

    Simandl, R.F.; Upchurch, V.S.; Leitten, M.E.

    1999-01-05

    Improved lapping slurries provide for easier and more thorough cleaning of alumina work pieces, as well as inhibit corrosion of the lapping table and provide for easier cleaning of the lapping equipment. The unthickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, and triethanolamine. The thickened lapping slurry comprises abrasive grains such as diamond abrasive dispersed in a carrier comprising water, glycerine, triethanolamine, a water soluble silicate, and acid. 1 fig.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, S.C.; Manwani, P.

    Coal-water slurries have been regarded as a potential substitute for heavy fuel oil. Various demonstrations of coal-water slurry combustion have been performed; however, a fundamental understanding of how the combustion process of a slurry fuel is enhanced is still not adequate. The combustion of coal-water mixture droplets suspended on microthermocouples has been investigated. It was found that droplets of lignite coal (which is a noncaking coal) burn effectively; however, droplets of bituminous coal (which is a caking coal) are relatively difficult to burn. During the heat-up of bituminous coal-water slurry droplets may turn to ''popcorn'' and show significant agglomeration. Themore » incomplete combustion of coal-water slurry droplets in furnaces has been reported, and this is a drawback of this process. The objective of the present study is to explore the possibility of enhancing the combustion of coal-water slurry droplets with the use of a combustible emulsified oil.« less

  8. Nitrous oxide from aerated dairy manure slurries: Effects of aeration rates and oxic/anoxic phasing.

    PubMed

    Molodovskaya, Marina; Singurindy, Olga; Richards, Brian K; Steenhuis, Tammo S

    2008-12-01

    Small-scale laboratory research was conducted to compare the effects of different aeration rates and oxic/anoxic phasing on nitrous oxide (N(2)O) formation from dairy manure slurries. Manure slurry samples were incubated in triplicate for three-weeks under a range of continuous sweep gas flows (0.01-0.23L min(-1)kg(-1) slurry) with and without oxygen (air and dinitrogen gas). The net release of N(2)O-N was affected by both aeration rates and oxic/anoxic conditions, whereas ammonia volatilization depended mainly on gas flow rates. Maximum N(2)O-N losses after three-weeks incubation were 4.2% of total slurry N. Major N losses (up to 50% of total slurry N) were caused by ammonia volatilization that increased with increasing gas flow rates. The lowest nitrous oxide and ammonia production was observed from low flow phased oxic/anoxic treatment.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less

  10. ICE SLURRY APPLICATIONS

    PubMed Central

    Kauffeld, M.; WANG, M. J.; Goldstein, V.; Kasza, K. E.

    2011-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  11. Combined slurry and cavitation erosion resistance of surface modified SS410 stainless steel

    NASA Astrophysics Data System (ADS)

    Amarendra, H. J.; Pratap, M. S.; Karthik, S.; Punitha Kumara, M. S.; Rajath, H. C.; Ranjith, H.; Shubhatunga, S. V.

    2018-03-01

    Slurry erosion and combined slurry and cavitation erosion resistance of thermal spray coatings are studied and compared with the as-received martensitic stainless steel material. 70Ni-Cr coatings are deposited on SS 410 material through plasma thermal spray process. The synergy effect of the combined slurry and cavitation erosion resistance of plasma thermal spray coatings were investigated in a slurry pot tester in the presence of bluff bodies known as Cavitation Inducers. Results showed the combined slurry and cavitation erosion resistance of martensitic stainless steel - 410 can be improved by plasma thermal spray coating. It is observed that the plasma spray coated specimens are better erosion resistant than the as- received material, subjected to erosion test under similar conditions. As-received and the surface modified steels are mechanically characterized for its hardness, bending. Morphological studies are conducted through scanning electron microscope.

  12. Seasonal persistence of faecal indicator organisms in soil following dairy slurry application to land by surface broadcasting and shallow injection.

    PubMed

    Hodgson, Christopher J; Oliver, David M; Fish, Robert D; Bulmer, Nicholas M; Heathwaite, A Louise; Winter, Michael; Chadwick, David R

    2016-12-01

    Dairy farming generates large volumes of liquid manure (slurry), which is ultimately recycled to agricultural land as a valuable source of plant nutrients. Different methods of slurry application to land exist; some spread the slurry to the sward surface whereas others deliver the slurry under the sward and into the soil, thus helping to reduce greenhouse gas (GHG) emissions from agriculture. The aim of this study was to investigate the impact of two slurry application methods (surface broadcast versus shallow injection) on the survival of faecal indicator organisms (FIOs) delivered via dairy slurry to replicated grassland plots across contrasting seasons. A significant increase in FIO persistence (measured by the half-life of E. coli and intestinal enterococci) was observed when slurry was applied to grassland via shallow injection, and FIO decay rates were significantly higher for FIOs applied to grassland in spring relative to summer and autumn. Significant differences in the behaviour of E. coli and intestinal enterococci over time were also observed, with E. coli half-lives influenced more strongly by season of application relative to the intestinal enterococci population. While shallow injection of slurry can reduce agricultural GHG emissions to air it can also prolong the persistence of FIOs in soil, potentially increasing the risk of their subsequent transfer to water. Awareness of (and evidence for) the potential for 'pollution-swapping' is critical in order to guard against unintended environmental impacts of agricultural management decisions. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Feedback by massive stars and the emergence of superbubbles. I. Energy efficiency and Vishniac instabilities

    NASA Astrophysics Data System (ADS)

    Krause, M.; Fierlinger, K.; Diehl, R.; Burkert, A.; Voss, R.; Ziegler, U.

    2013-02-01

    Context. Massive stars influence their environment through stellar winds, ionising radiation, and supernova explosions. This is signified by observed interstellar bubbles. Such feedback is an important factor for galaxy evolution theory and galactic wind models. The efficiency of the energy injection into the interstellar medium (ISM) via bubbles and superbubbles is uncertain, and is usually treated as a free parameter for galaxy scale effects. In particular, since many stars are born in groups, it is interesting to study the dependence of the effective energy injection on the concentration of the stars. Aims: We aim to reproduce observations of superbubbles, their relation to the energy injection of the parent stars, and to understand their effective energy input into the ISM, as a function of the spatial configuration of the group of parent stars. Methods: We study the evolution of isolated and merging interstellar bubbles of three stars (25, 32, and 60 M⊙) in a homogeneous background medium with a density of 10mp cm-3 via 3D-hydrodynamic simulations with standard ISM thermodynamics (optically thin radiative cooling and photo-electric heating) and time-dependent energy and mass input according to stellar evolutionary tracks. We vary the position of the three stars relative to each other to compare the energy response for cases of isolated, merging and initially cospatial bubbles. Results: Mainly due to the Vishniac instability, our simulated bubbles develop thick shells and filamentary internal structures in column density. The shell widths reach tens of per cent of the outer bubble radius, which compares favourably to observations. More energy is retained in the ISM for more closely packed groups, by up to a factor of three and typically a factor of two for intermediate times after the first supernova. Once the superbubble is established, different positions of the contained stars make only a minor difference to the energy tracks. For our case of three massive stars, the energy deposition varies only very little for distances up to about 30 pc between the stars. Energy injected by supernovae is entirely dissipated in a superbubble on a timescale of about 1 Myr, which increases slightly with the superbubble size at the time of the explosion. Conclusions: The Vishniac instability may be responsible for the broadening of the shells of interstellar bubbles. Massive star winds are significant energetically due to their - in the long run - more efficient, steady energy injection and because they evacuate the space around the massive stars. For larger scale simulations, the feedback effect of close groups of stars or clusters may be subsumed into one effective energy input with insignificant loss of energy accuracy. The movie associated to Fig. 3 is available at http://www.aanda.org

  14. Defining the upper viscosity limit for mineral slurries used in drilled shaft construction.

    DOT National Transportation Integrated Search

    2014-02-01

    Drilled shaft construction often requires the use of drill slurry to maintain borehole stability during : excavation and concreting. Florida Department of Transportation (FDOT) specifications require that the : mineral slurry used for all primary str...

  15. Dietary crude protein and tannin impact dairy manure chemistry and ammonia emissions from incubated soils.

    PubMed

    Powell, J M; Aguerre, M J; Wattiaux, M A

    2011-01-01

    Excess crude protein (CP) in dairy cow diets is excreted mostly as urea nitrogen (N), which increases ammonia (NH) emissions from dairy farms and heightens human health and environmental concerns. Feeding less CP and more tannin to dairy cows may enhance feed N use and milk production, abate NH emissions, and conserve the fertilizer N value of manure. Lab-scale ventilated chambers were used to evaluate the impacts of CP and tannin feeding on slurry chemistry, NH emissions, and soil inorganic N levels after slurry application to a sandy loam soil and a silt loam soil. Slurry from lactating Holstein dairy cows (Bos taurus) fed two levels of dietary CP (low CP [LCP], 155 g kg; high CP [HCP], 168 g kg) each fed at four levels of dietary tannin extract, a mixture from red quebracho (Schinopsis lorentzii) and chestnut (Castanea sativa) trees (0 tannin [0T]; low tannin [LT], 4.5 g kg; medium tannin [MT], 9.0 g kg; and high tannin [HT], 18.0 g kg) were applied to soil-containing lab-scale chambers, and NH emissions were measured 1, 3, 6, 12, 24, 36, and 48 h after slurry application. Emissions from the HCP slurry were 1.53 to 2.57 times greater ( < 0.05) than from the LCP slurry. At trial's end (48 h), concentrations of inorganic N in soils were greater ( < 0.05) in HCP slurry-amended soils than in LCP slurry-amended soils. Emissions from HT slurry were 28 to 49% lower ( < 0.05) than emissions from 0T slurry, yet these differences did not affect soil inorganic N levels. Emissions from the sandy loam soil were 1.07 to 1.15 times greater ( < 0.05) than from silt loam soil, a result that decreased soil inorganic N in the sandy loam compared with the silt loam soil. Larger-scale and longer-term field trails are needed to ascertain the effectiveness of feeding tannin extracts to dairy cows in abating NH loss from land-applied slurry and the impact of tannin-containing slurry on soil N cycles. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Two-liquid-phase slurry bioreactors to enhance the degradation of high-molecular-weight polycyclic aromatic hydrocarbons in soil.

    PubMed

    Villemur, R; Déziel, E; Benachenhou, A; Marcoux, J; Gauthier, E; Lépine, F; Beaudet, R; Comeau, Y

    2000-01-01

    High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) are pollutants that persist in the environment due to their low solubility in water and their sequestration by soil and sediments. The addition of a water-immiscible, nonbiodegradable, and biocompatible liquid, silicone oil, to a soil slurry was studied to promote the desorption of PAHs from soil and to increase their bioavailability. First, the transfer into silicone oil of phenanthrene, pyrene, chrysene, and benzo[a]pyrene added to a sterilized soil (sandy soil with 0.65% total volatile solids) was measured for 4 days in three two-liquid-phase (TLP) slurry systems each containing 30% (w/v) soil but different volumes of silicone oil (2.5%, 7.5%, and 15% [v/v]). Except for chrysene, a high percentage of these PAHs was transferred from soil to silicone oil in the TLP slurry system containing 15% silicone oil. Rapid PAH transfer occurred during the first 8 h, probably resulting from the extraction of nonsolubilized and of poorly sorbed PAHs. This was followed by a period in which a slower but constant transfer occurred, suggesting extraction of more tightly bound PAHs. Second, a HMW PAH-degrading consortium was enriched in a TLP slurry system with a microbial population isolated from a creosote-contaminated soil. This consortium was then added to three other TLP slurry systems each containing 30% (w/v) sterilized soil that had been artificially contaminated with pyrene, chrysene, and benzo[a]pyrene, but different volumes of silicone oil (10%, 20%, and 30% [v/v]). The resulting TLP slurry bioreactors were much more efficient than the control slurry bioreactor containing the same contaminated soil but no oil phase. In the TLP slurry bioreactor containing 30% silicone oil, the rate of pyrene degradation was 19 mg L(-)(1) day(-)(1) and no pyrene was detected after 4 days. The degradation rates of chrysene and benzo[a]pyrene in the 30% TLP slurry bioreactor were, respectively, 3.5 and 0.94 mg L(-)(1) day(-)(1). Low degradation of pyrene and no significant degradation of chrysene and benzo[a]pyrene occurred in the slurry bioreactor. This is the first report in which a TLP system was combined with a slurry system to improve the biodegradation of PAHs in soil.

  17. Canister, sealing method and composition for sealing a borehole

    DOEpatents

    Brown, Donald W [Los Alamos, NM; Wagh, Arun S [Orland Park, IL

    2003-05-13

    Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.

  18. System and method for continuous solids slurry depressurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leininger, Thomas Frederick; Steele, Raymond Douglas; Cordes, Stephen Michael

    A system includes a first pump having a first outlet and a first inlet, and a controller. The first pump is configured to continuously receive a flow of a slurry into the first outlet at a first pressure and to continuously discharge the flow of the slurry from the first inlet at a second pressure less than the first pressure. The controller is configured to control a first speed of the first pump against the flow of the slurry based at least in part on the first pressure, wherein the first speed of the first pump is configured to resistmore » a backflow of the slurry from the first outlet to the first inlet.« less

  19. Aluminum phosphate ceramics for waste storage

    DOEpatents

    Wagh, Arun; Maloney, Martin D

    2014-06-03

    The present disclosure describes solid waste forms and methods of processing waste. In one particular implementation, the invention provides a method of processing waste that may be particularly suitable for processing hazardous waste. In this method, a waste component is combined with an aluminum oxide and an acidic phosphate component in a slurry. A molar ratio of aluminum to phosphorus in the slurry is greater than one. Water in the slurry may be evaporated while mixing the slurry at a temperature of about 140-200.degree. C. The mixed slurry may be allowed to cure into a solid waste form. This solid waste form includes an anhydrous aluminum phosphate with at least a residual portion of the waste component bound therein.

  20. Attrition Resistant Iron-Based Catalysts For F-T SBCRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adeyinka A. Adeyiga

    2006-01-31

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+ H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-(FE) based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem withmore » the use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment; makes the separation of catalyst from the oil/wax product very difficult, if not impossible; and results in a steady loss of catalyst from the reactor. Under a previous Department of Energy (DOE)/University Research Grant (UCR) grant, Hampton University reported, for the first time, the development of demonstrably attrition-resistant Fe F-T synthesis catalysts having good activity, selectivity, and attrition resistance. These catalysts were prepared by spray drying Fe catalysts with potassium (K), copper (Cu), and silica (SiO{sub 2}) as promoters. SiO{sub 2} was also used as a binder for spray drying. These catalysts were tested for activity and selectivity in a laboratory-scale fixed-bed reactor. Fundamental understanding of attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried HPR-43 catalyst having average particle size (aps) of 70 {micro}m with high attrition resistance. This HPR-43 attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H{sub 2}/CO=0.67 and 2.0 NL/g-cat/h with C{sub 5+} selectivity of >78% and methane selectivity of less than 5% at an {alpha} of 0.9. Research is proposed to enable further development and optimization of these catalysts by (1) better understanding the role and interrelationship of various catalyst composition and preparation parameters on attrition resistance, activity, and selectivity of these catalysts, (2) the presence of sulfide ions on a precipitated iron catalyst, and (3) the effect of water on sulfided iron F-T catalysts for its activity, selectivity, and attrition. Catalyst preparations will be based on spray drying. The research employed, among other measurements, attrition testing and F-T synthesis at high pressure. Catalyst activity and selectivity is evaluated using a small fixed-bed reactor and a continuous stirred tank reactor (CSTR). The catalysts were prepared by co-precipitation, followed by binder addition and spray drying at 250 C in a 1-m-diameter, 2-m-tall spray dryer. The binder silica content was varied from 0 to 20 wt%. The results show that the use of small amounts of precipitated SiO{sub 2} alone in spray-dried Fe catalysts can result in good attrition resistance. All catalysts investigated with SiO2 wt% {le} 12 produced fines less than 10 wt% during the jet cup attrition test, making them suitable for long-term use in a slurry bubble column reactor. Thus, concentration rather than the type of SiO{sub 2} incorporated into catalyst has a more critical impact on catalyst attrition resistance of spray-dried Fe catalysts. Lower amounts of SiO{sub 2} added to a catalyst give higher particle densities and therefore higher attrition resistances. In order to produce a suitable SBCR catalyst, however, the amount of SiO{sub 2} added has to be optimized to provide adequate surface area, particle density, and attrition resistance. Two of the catalysts with precipitated and binder silica were tested in Texas A&M University's CSTR (Autoclave Engineers). The two catalysts were also tested at The Center for Applied Energy Research in Lexington, Kentucky of the University of Kentucky. Spray-dried catalysts with compositions 100 Fe/5 Cu/4.2 K/11 (P) SiO{sub 2} and 100 Fe/5 Cu/4.2 K/1.1 (B) SiO{sub 2} have excellent selectivity characteristics (low methane and high C{sub 5+} yields), but their productivity and stability (deactivation rate) need to be improved. Mechanical integrity (attrition strength) of these two catalysts was markedly dependent upon their morphological features. The attrition strength of the catalyst made out of largely spherical particles (1.1 (B) SiO{sub 2}) was considerably higher than that of the catalyst consisting of irregularly shaped particles (11 (P) SiO{sub 2}).« less

  1. Fluid mechanics of slurry flow through the grinding media in ball mills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Songfack, P.K.; Rajamani, R.K.

    1995-12-31

    The slurry transport within the ball mill greatly influences the mill holdup, residence time, breakage rate, and hence the power draw and the particle size distribution of the mill product. However, residence-time distribution and holdup in industrial mills could not be predicted a priori. Indeed, it is impossible to determine the slurry loading in continuously operating mills by direct measurement, especially in industrial mills. In this paper, the slurry transport problem is solved using the principles of fluid mechanics. First, the motion of the ball charge and its expansion are predicted by a technique called discrete element method. Then themore » slurry flow through the porous ball charge is tackled with a fluid-flow technique called the marker and cell method. This may be the only numerical technique capable of tracking the slurry free surface as it fluctuates with the motion of the ball charge. The result is a prediction of the slurry profile in both the radial and axial directions. Hence, it leads to the detailed description of slurry mass and ball charge within the mill. The model predictions are verified with pilot-scale experimental work. This novel approach based on the physics of fluid flow is devoid of any empiricism. It is shown that the holdup of industrial mills at a given feed percent solids can be predicted successfully.« less

  2. A Randomized Controlled Comparison of Esophageal Clearance Times of Oral Budesonide Preparations.

    PubMed

    Hefner, Jody N; Howard, Robin S; Massey, Robert; Valencia, Miland; Stocker, Derek J; Philla, Katherine Q; Goldman, Matthew D; Nylund, Cade M; Min, Steve B

    2016-06-01

    Topical steroids prepared as oral viscous slurries have become common in the treatment of eosinophilic esophagitis. Esophageal mucosal contact time correlates with clinical and histologic improvement. To compare the mucosal contact time of alternative oral viscous budesonide (OVB) slurries with the conventional sucralose OVB. A blinded randomized crossover trial investigating esophageal clearance of three OVB slurry preparations was done on healthy adults. Honey and xanthan gum OVB slurries were compared with standard sucralose OVB in 24 randomly assigned subjects. Each subject ingested the sucralose OVB and either the honey or xanthan gum OVB slurries. The esophageal clearance of each slurry was evaluated as an area under the curve (AUC) using 1 millicurie of technetium-99m-sulfur colloid (Tc99) co-administered in each OVB preparation using nuclear scintigraphy. A standardized taste survey was also administered. Xanthan gum had greater mucosal contact time compared to sucralose as measured by a higher AUC at 3 min (P = 0.002), while honey showed no significant difference in esophageal clearance relative to sucralose. Taste scores were significantly higher in the honey group, while scores for xanthan gum were no different from standard sucralose. OVB slurries utilizing xanthan gum may be a superior alternative to a sucralose-based slurry due to its increased mucosal contact time and similar taste tolerance. Honey may be a suitable alternative as well, due to its similar contact time and favorable taste.

  3. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non-edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.

  4. Seasonal variation in methane emission from stored slurry and solid manures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Husted, S.

    1994-05-01

    Methane (CH{sub 4}) is an important greenhouse gas and recent inventories have suggested that livestock manure makes a significant contribution to global CH{sub 4} emissions. The emission of CH{sub 4} from stored pig slurry, cattle slurry, pig solid manure, and cattle solid manure was followed during a 1-yr period. Methane emission was determined by dynamic chambers. Emission rates followed a ln-normal distribution for all four manures, Indicating large spatial and seasonal variation& Monthly geometric means for pig slurry, cattle slurry, pig solid manure, and cattle solid manure varied from 0.4 to 35.8, 0.0 to 34.5, 0.4 to 142.1, and 0.1more » to 42.7 g CH{sub 4} m{sup -3} d{sup -1}, respectively. For slurries CH{sub 4} emission rates increased significantly with storage temperatures, the Q{sub 10} value ranging from 14 to 5.7 depending on slurry type. The presence of a natural surface crust reduced CH{sub 4} emission from slurry by a factor of 11 to 12. Surface crust effects declined with increasing slurry temperature. Solid manures stored in dungheaps showed significant heat production. Pig solid manure temperatures were maintained at 30 to 60{degrees}C throughout most of the year, while cattle solid manure temperatures were close to ambient levels until late spring, when heat production was initiated. Methanogenesis in solid manure also increased with increasing temperatures. For pig solid manure, CH{sub 4} emission rates peaked at 35 to 45{degrees}C. No distinct temperature optimum could be detected for cattle solid manure, however, temperatures rarely exceeded 45{degrees}C. The Q{sub 10} values for dungheaps ranged from 2.7 to 10.3 depending on-manure type and Q{sub 10} temperature interval. Annual CH{sub 4} emissions from pig slurry, cattle slurry, pig solid manure, and cattle solid manure were estimated at 8.9, 15.5, 27.3, and 5.3 kg animal{sup -1} yr{sup -1}, respectively. 27 refs., 6 figs., 2 tabs.« less

  5. Impact of chemical amendment of dairy cattle slurry on phosphorus, suspended sediment and metal loss to runoff from a grassland soil.

    PubMed

    Brennan, R B; Fenton, O; Grant, J; Healy, M G

    2011-11-01

    Emerging remediation technologies such as chemical amendment of dairy cattle slurry have the potential to reduce phosphorus (P) solubility and consequently reduce P losses arising from land application of dairy cattle slurry. The aim of this study was to determine the effectiveness of chemical amendment of slurry to reduce incidental losses of P and suspended sediment (SS) from grassland following application of dairy cattle slurry and to examine the effect of amendments on metal concentrations in runoff water. Intact grassed-soil samples were placed in two laboratory runoff boxes, each 200-cm-long by 22.5-cm-wide by 5-cm-deep, before being amended with dairy cattle slurry (the study control) and slurry amended with either: (i) alum, comprising 8% aluminium oxide (Al(2)O(3)) (1.11:1 aluminium (Al):total phosphorus (TP) of slurry) (ii) poly-aluminium chloride hydroxide (PAC) comprising 10% Al(2)O(3) (0.93:1 Al:TP) (iii) analytical grade ferric chloride (FeCl(2)) (2:1 Fe:TP), (iv) and lime (Ca(OH)(2)) (10:1 Ca:TP). When compared with the study control, PAC was the most effective amendment, reducing dissolved reactive phosphorus (DRP) by up to 86% while alum was most effective in reducing SS (88%), TP (94%), particulate phosphorus (PP) (95%), total dissolved phosphorus (TDP) (81%), and dissolved unreactive phosphorus (DUP) (86%). Chemical amendment of slurry did not appear to significantly increase losses of Al and Fe compared to the study control, while all amendments increased Ca loss compared to control and grass-only treatment. While chemical amendments were effective, the reductions in incidental P losses observed in this study were similar to those observed in other studies where the time from slurry application to the first rainfall event was increased. Timing of slurry application may therefore be a much more feasible way to reduce incidental P losses. Future work must examine the long-term effects of amendments on P loss to runoff and not only incidental losses. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. REDUCTIVE DEHALOGENATION OF A NITROGEN HETEROCYCLIC HERBICIDE IN ANOXIC AQUIFER SLURRIES

    EPA Science Inventory

    We studied the metabolic fate of bromacil in anaerobic aquifer slurries held under denitrifying, sulfate-reducing, or methanogenic conditions. Liquid chromatograhy-mass spectrometry of the slurries confirmed that bromacil was debrominated under methanogenic conditions but was not...

  7. Nitrous oxide and methane emissions following application of animal manures to grassland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, D.R.; Pain, B.F.; Brookman, S.K.E.

    2000-02-01

    Nitrous oxide (N{sub 2}O) and methane (CH{sub 4}) emissions were measured from grassland following manure applications at three times of the year. Pig (Sus scrofa) slurry and dairy cow (Bos taurus) slurry were applied in April, at equal rates of ammoniacal-N (NH{sub 4}{sup +}-N), and in July, at equal volumetric rates (50 m{sup 3}ha{sup {minus}1}). In October, five manure types were applied to grassland plots at typical application rates: pig slurry, dilute diary cow effluent, pig farm yard manure (FYM), beef FYM and layer manure. Emissions were measured for 20, 22, and 24 d, respectively. In April, greater cumulative emissionsmore » of N{sub 2}O-N were measured following application of dairy cow slurry (1.51 kg ha{sup {minus}1}) than pig slurry (90.77 kg ha{sup {minus}1}). Cumulative CH{sub 4} emissions following application in April were significantly greater from the dairy cow slurry treatment (0.58 kg ha{sup {minus}1}) than the pig slurry treatment (0.13 kg ha{sup {minus}1}) (P < 0.05). In July, significantly greater N{sub 2}O-N emissions resulted from pig slurry-treated plots (0.57 kg ha{sup {minus}1}) than dairy cow slurry-treated plots (0.34 kg ha{sup {minus}1}). Cumulative net CH{sub 4} emissions were very low following July applications (<10 g ha{sup {minus}1}). In October, the lowest N{sub 2}O-N emission resulted from application of dilute dairy effluent, 0.15 kg ha{sup {minus}1}, with the greatest net emission from the application of pig slurry, 0.74 kg ha{sup {minus}1}. Methane emissions were greatest from the plots that received pig FYM, resulting in a mean cumulative net emission of 2.39 kg ha{sup {minus}1}.« less

  8. Estimation of Methane Emissions from Slurry Pits below Pig and Cattle Confinements

    PubMed Central

    Petersen, Søren O.; Olsen, Anne B.; Elsgaard, Lars; Triolo, Jin Mi; Sommer, Sven G.

    2016-01-01

    Quantifying in-house emissions of methane (CH4) from liquid manure (slurry) is difficult due to high background emissions from enteric processes, yet of great importance for correct estimation of CH4 emissions from manure management and effects of treatment technologies such as anaerobic digestion. In this study CH4 production rates were determined in 20 pig slurry and 11 cattle slurry samples collected beneath slatted floors on six representative farms; rates were determined within 24 h at temperatures close to the temperature in slurry pits at the time of collection. Methane production rates in pig and cattle slurry differed significantly at 0.030 and 0.011 kg CH4 kg-1 VS (volatile solids). Current estimates of CH4 emissions from pig and cattle manure management correspond to 0.032 and 0.015 kg CH4 kg-1, respectively, indicating that slurry pits under animal confinements are a significant source. Fractions of degradable volatile solids (VSd, kg kg-1 VS) were estimated using an aerobic biodegradability assay and total organic C analyses. The VSd in pig and cattle slurry averaged 0.51 and 0.33 kg kg-1 VS, and it was estimated that on average 43 and 28% of VSd in fresh excreta from pigs and cattle, respectively, had been lost at the time of sampling. An empirical model of CH4 emissions from slurry was reparameterised based on experimental results. A sensitivity analysis indicated that predicted CH4 emissions were highly sensitive to uncertainties in the value of lnA of the Arrhenius equation, but much less sensitive to uncertainties in VSd or slurry temperature. A model application indicated that losses of carbon in VS as CO2 may be much greater than losses as CH4. Implications of these results for the correct estimation of CH4 emissions from manure management, and for the mitigation potential of treatments such as anaerobic digestion, are discussed. PMID:27529692

  9. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality.

    PubMed

    Digre, Hanne; Erikson, Ulf; Aursand, Ida G; Gallart-Jornet, Lorena; Misimi, Ekrem; Rustad, Turid

    2011-01-01

    The main objectives of this study were to investigate (1) whether rested harvest of farmed cod was better maintained by chilling with slurry rather than by traditional ice storage, (2) whether chilling with slurry would be a feasible chilling method to assure low core temperatures (≤0 °C) at packing of gutted fish, and (3) the effects of superchilling compared with traditional ice on selected quality parameters of cod during storage. In the experiment, seawater slurry at -2.0 ± 0.3 °C was used. Anesthetized (AQUI-S™), percussion stunned, and stressed cod chilled in slurry were compared. Cod stored on ice were used as reference group. The fish were evaluated at the day of slaughter, and after 7 and 14 d of storage according to handling stress (initial muscle pH, muscle twitches, rigor mortis), core temperatures, quality index method, microbial counts, weight changes, salt and water content, water distribution, pH, adenosine triphosphate-degradation products, K-value, water-holding capacity, fillet color, and texture. Chilling cod in slurry was more rapid than chilling in ice. Prechilling (1 d) of cod in slurry before subsequent ice storage resulted in lower quality 7 d postmortem compared with both ice and continuous slurry storage. The potential advantages of superchilling became more prominent after 14 d with lower microbiological activity, better maintenance of freshness (lower total quality index scores and lower K-values) compared with fish stored on ice. A drawback with slurry-stored fish was that cloudy eyes developed earlier, in addition to weight gain and salt uptake compared to ice-stored fish. Practical Application: Chilling is an essential operation in any fish-processing plant. This manuscript addresses different applications of slurry ice in the processing and storage of Atlantic cod. Cod quality was assessed after 7 and 14 d of iced and superchilled storage.

  10. Ureic nitrogen transformation in multi-layer soil columns treated with urease and nitrification inhibitors.

    PubMed

    Giovannini, Camilla; Garcia-Mina, Josè M; Ciavatta, Claudio; Marzadori, Claudio

    2009-06-10

    The use of N-(n-butyl)thiophosphoric triamide (NBPT), as a urease inhibitor, is one of the most successful strategies utilized to increase the efficiency of urea-based fertilization. To date, NBPT has been added to the soil incorporated in fertilizers containing either urea or the inhibitor at a fixed percentage on the urea weight. The possibility of using NBPT physically separated from urea-based fertilizers could make its use more flexible. In particular, a granulated product containing NBPT could be utilized in soils treated with different urea-based fertilizers including livestock urine, the amount depending on soil characteristics and/or the urea source (e.g., mineral fertilizer, organo-mineral fertilizer, or animal slurry). In this study, a multilayer soil column device was used to investigate the influence of an experimental granular product (RV) containing NBPT and a garlic extract, combining the ability to protect NBPT by oxidation and nitrification inhibition activity, on (a) spatial variability of soil urease and nitrification activities and (b) timing of urea hydrolysis and mineral-N form accumulation (NO(2)(-), NO(3)(-), NH(4)(+)) in soil treated with urea. The results clearly demonstrated that RV can, effectively, inhibit the soil urease activity along the soil column profile up to 8-10 cm soil layer depth and that the inhibition power of RV was dependent on time and soil depth. However, nitrification activity is not significantly influenced by RV addition. In addition, the soil N transformations were clearly affected by RV; in fact, RV retarded urea hydrolysis and reduced the accumulation of NH(4)(+)-N and NO(2)(-)-N ions along the soil profile. The RV product was demonstrated to be an innovative additive able to modify some key ureic N trasformation processes correlated with the efficiency of the urea-based fertilization, in a soil column higher than 10 cm.

  11. Effect of slurry ice on the functional properties of proteins related to quality loss during skipjack tuna (Katsuwonus pelamis) chilled storage.

    PubMed

    Zhang, Bin; Deng, Shang-gui; Gao, Meng; Chen, Jing

    2015-04-01

    The effect of slurry ice on the quality of Skipjack tuna (Katsuwonus pelamis) during chilling storage was investigated and compared to flake ice. Slurry ice-treated samples showed significantly higher springiness and chewiness variables than the blank and flake ice-treated samples (P < 0.05). The growth of microorganisms in tuna muscle treated with slurry ice was also down significantly (P < 0.05), and the total aerobic counts didn't reach higher scores than 5.0 log CFU/g during the whole chilling storage. Additionally, the myofibrillar protein, Ca(2+)-ATPase activity, and total sulfydryl (SH) content in muscle treated with slurry ice were all significantly higher than the blank and flake-iced samples (P < 0.05). This was probably due to the faster cooling, subzero final-temperature, and larger heat exchange derived from slurry ice. Standard error of mean and sodium dodecyl sulfate-polyacrylamide gel electrophoresis results also confirmed that slurry ice treatment could effectively retard the degradation of myofibrillar proteins and showed a positive effect on the stability of tissue structures. © 2015 Institute of Food Technologists®

  12. Environmental consequences of future biogas technologies based on separated slurry.

    PubMed

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn M

    2011-07-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the whole slurry life cycle, including the flows bypassing the biogas plant. This study includes soil carbon balances and a method for quantifying the changes in yield resulting from increased nitrogen availability as well as for quantifying mineral fertilizers displacement. Soil carbon balances showed that between 13 and 50% less carbon ends up in the soil pool with the different biogas alternatives, as opposed to the reference slurry management.

  13. Feasibility Studies on Pipeline Disposal of Concentrated Copper Tailings Slurry for Waste Minimization

    NASA Astrophysics Data System (ADS)

    Senapati, Pradipta Kumar; Mishra, Barada Kanta

    2017-06-01

    The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.

  14. 46 CFR Table II to Part 150 - Grouping of Cargoes

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... solutions Clay slurry Corn syrup Dextrose solution 2,4-Dichlorophenoxyacetic acid, Diethanolamine salt...) Caramel solutions Clay slurry Coal slurry Corn syrup Dextrose solution 2,4-Dichlorophenoxyacetic acid... Coal tar, high temperature Coal tar pitch Decahydronaphthalene Degummed C9 (DOW) Diphenyl, Diphenyl...

  15. Tribological Properties Of Coal Slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1988-01-01

    Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.

  16. Method and apparatus for transporting liquid slurries

    DOEpatents

    Berry, Gregory F.; Lyczkowski, Robert W.; Wang, Chi-Sheng

    1993-01-01

    An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

  17. SBIR Reports on the Chemistry of Lithium Battery Technology

    DTIC Science & Technology

    1989-11-01

    isopropanol to produce a thick slurry of paste-like consistency. To this slurry, TFE emulsion ( DuPont TFE 30) was added dropwise until the weight of the...Breault et al (47), and began with the preparation of a dilute slurry of catalyst in water and adding DuPont TFE 30 emulsion dropwise to the slurry until...659. 18. H. Schaefer, C. Goeser, and L. Bayer , Z. anorg. allgem. Chem. 263, 87 (1950). 19. K. French, P. Cukor, C. Persiani, and J. Auborn, J

  18. Method and apparatus for transporting liquid slurries

    DOEpatents

    Berry, G.F.; Lyczkowski, R.W.; Chisheng Wang.

    1993-03-16

    An improved method and device to prevent erosion of slurry transport devices is disclosed which uses liquid injection to prevent contact by the slurry composition with the inner surface of the walls of the transport system. A non-abrasive liquid is injected into the slurry transport system and maintains intimate contact with the entire inner surface of the transport system, thereby creating a fluid barrier between the non-abrasive liquid and the inner surface of the transport system which thereby prevents erosion.

  19. Effect of plastic viscosity and yield value on spray characteristics of magnesium-slurry fuel

    NASA Technical Reports Server (NTRS)

    Prok, George M

    1957-01-01

    Magnesium slurries were sprayed onto a sheet of paper from an air-atomizing injector. Drop sizes and distributions were then determined from photomicrographs. Four different surface-active additives were used in preparing the slurries to give plastic viscosities between 0.22 and 0.51 poise and yield values between 150 and 810 dynes-cm(exp 2). It was found that there was no significant variation in the spray characteristics of these slurries when tested under the same conditions.

  20. In vivo dynamic analysis of water refilling in embolized xylem vessels of intact Zea mays leaves

    PubMed Central

    Ryu, Jeongeun; Hwang, Bae Geun; Lee, Sang Joon

    2016-01-01

    Background and Aims The refilling of embolized xylem vessels under tension is a major issue in water transport among vascular plants. However, xylem embolism and refilling remain poorly understood because of technical limitations. Direct observation of embolism repair in intact plants is essential to understand the biophysical aspects of water refilling in embolized xylem vessels. This paper reports on details of the water refilling process in leaves of the intact herbaceous monocot plant Zea mays and its refilling kinetics obtained by a direct visualization technique. Methods A synchrotron X-ray micro-imaging technique was used to monitor water refilling in embolized xylem vessels of intact maize leaves. Xylem embolism was artificially induced by using a glass capillary; real-time images of water refilling dynamics were consecutively captured at a frame rate of 50 f.p.s. Key Results Water supply in the radial direction initiates droplet formation on the wall of embolized xylem vessels. Each droplet grows into a water column; this phenomenon shows translation motion or continuous increase in water column volume. In some instances, water columns merge and form one large water column. Water refilling in the radial direction causes rapid recovery from embolism in several minutes. The average water refilling velocity is approx. 1 μm s−1. Conclusions Non-destructive visualization of embolized xylem vessels demonstrates rapid water refilling and gas bubble removal as key elements of embolism repair in a herbaceous monocot species. The refilling kinetics provides new insights into the dynamic mechanism of water refilling phenomena. PMID:27539601

Top