NASA Astrophysics Data System (ADS)
Combriat, Thomas; Mekki-Berrada, Flore; Thibault, Pierre; Marmottant, Philippe
2018-01-01
Pulsating bubbles have proved to be a versatile tool for trapping and sorting particles. In this article, we investigate the different streaming patterns that can be obtained with a group of bubbles in a confined geometry under ultrasound. In the presence of an external flow strong enough to oppose the streaming velocities but not drag the trapped bubbles, we observe either the appearance of exclusion zones near the bubbles or asymmetric streaming patterns that we interpret as the superposition of a two-dimensional (2D) streaming function and of a potential flow. When studying a lattice of several bubbles, we show that the streaming pattern can be accurately predicted by superimposing the contributions of every pair of bubbles present in the lattice, thus allowing one to predict the sizes and the shapes of exclusion zones created by a group of bubbles under acoustic excitation. We suggest that such systems could be used to enhance mixing at a small scale or to catch and release chemical species initially trapped in vortices created around bubble pairs.
Toytman, I; Silbergleit, A; Simanovski, D; Palanker, D
2010-10-01
Transparent biological tissues can be precisely dissected with ultrafast lasers using optical breakdown in the tight focal zone. Typically, tissues are cut by sequential application of pulses, each of which produces a single cavitation bubble. We investigate the hydrodynamic interactions between simultaneous cavitation bubbles originating from multiple laser foci. Simultaneous expansion and collapse of cavitation bubbles can enhance the cutting efficiency, by increasing the resulting deformations in tissue, and the associated rupture zone. An analytical model of the flow induced by the bubbles is presented and experimentally verified. The threshold strain of the material rupture is measured in a model tissue. Using the computational model and the experimental value of the threshold strain one can compute the shape of the rupture zone in tissue resulting from application of multiple bubbles. With the threshold strain of 0.7 two simultaneous bubbles produce a continuous cut when applied at the distance 1.35 times greater than that required in sequential approach. Simultaneous focusing of the laser in multiple spots along the line of intended cut can extend this ratio to 1.7. Counterpropagating jets forming during collapse of two bubbles in materials with low viscosity can further extend the cutting zone-up to approximately a factor of 1.5.
Bubble pinch-off and scaling during liquid drop impact on liquid pool
NASA Astrophysics Data System (ADS)
Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh
2012-08-01
Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.
NASA Astrophysics Data System (ADS)
Fuzier, Sylvie; Coutier Delgosha, Olivier; Coudert, S. Ébastien; Dazin, Antoine
2011-11-01
The physical description of hydrodynamic cavitation is complex as it includes strongly unsteady, turbulent and phase change phenomena. Because the bubbles in the cavitation area render this zone opaque, nonintrusive experimental observation inside this zone is difficult and little is known about the detailed bubble, flow structure and physics inside. A novel approach using LIF-PIV to investigate the dynamics inside the cavitation area generated through a venturi is presented. The velocity in the liquid and of the bubbles are measured simultaneously and correlated with areas of various bubble structure. The influence of the bubble structure on the turbulence in the liquid is also studied.
In-situ observation of bubble trapping in polar firn
NASA Astrophysics Data System (ADS)
Florian Schaller, Christoph; Freitag, Johannes; Sowers, Todd; Vinther, Bo; Weinhart, Alexander; Eisen, Olaf
2017-04-01
The air trapped in polar ice cores is not a direct record of past atmospheric composition but is strongly influenced by the process of firnification as bubbles are only sealed at a certain point, when the respective horizontal layer reaches a so called "critical" porosity. In order to investigate this process, we performed high-resolution (approximately 25 μm) 3D-XCT measurements of the complete lock-in zone for two polar ice cores representing opposite extremes of the temperature and accumulation rate range: B53, close to Dome Fuji, East Antarctica and RECAP_S2, Renland, Greenland. For every 1m core segment, we scanned a minimum number of five sections of approximately 3.5cm height of the full core diameter with a focus on homogenous layers. This allows us to non-destructively deduce detailed profiles of open and closed porosity on a solid statistical basis. For each of the cores individually, we find that the trapping of bubbles in a single layer is solely determined by its total porosity and thereby independent of depth. We can confirm the existence of a distinct Schwander-type relation of closed and total porosity. Even though the two cores deviate from each other significantly in critical porosity, 0.0907 for B53 compared to 0.1025 for RECAP_S2, we observe many similarities. We hypothesize, that the determining factors of bubble trapping are the average size and variability of pore space structures. This could potentially allow the reconstruction of past close-off porosities from the remaining pore structures in deep ice, e.g. from bubble number densities.
Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling
NASA Astrophysics Data System (ADS)
Mumford, K. G.; Soucy, N. C.
2017-12-01
Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to increase transport rates linked to vapor intrusion, and will serve as a basis for further development of conceptual and numerical models to investigate the conditions under which this mechanism may play an important role.
In Situ Thermal Remediation of DNAPL Source Zones
2011-12-01
electrode locations, the red Xs are injection and extraction .......... 20 Figure 3. 3. Photograph showing detail of the visualization tank...tank. The green circles are thermocouple locations, the blue squares are electrode locations, the red Xs are injection and extraction...through that zone. As water continues to move into that zone and outgas bubbles, the bubbles will move upward. In general terms, it has been
Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.
2012-06-06
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumptionmore » that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.« less
Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C
2012-01-01
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.
NASA Astrophysics Data System (ADS)
Shvarts, D.; Oron, D.; Kartoon, D.; Rikanati, A.; Sadot, O.; Srebro, Y.; Yedvab, Y.; Ofer, D.; Levin, A.; Sarid, E.; Ben-Dor, G.; Erez, L.; Erez, G.; Yosef-Hai, A.; Alon, U.; Arazi, L.
2016-10-01
The late-time nonlinear evolution of the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities for random initial perturbations is investigated using a statistical mechanics model based on single-mode and bubble-competition physics at all Atwood numbers (A) and full numerical simulations in two and three dimensions. It is shown that the RT mixing zone bubble and spike fronts evolve as h ~ α · A · gt2 with different values of a for the bubble and spike fronts. The RM mixing zone fronts evolve as h ~ tθ with different values of θ for bubbles and spikes. Similar analysis yields a linear growth with time of the Kelvin-Helmholtz mixing zone. The dependence of the RT and RM scaling parameters on A and the dimensionality will be discussed. The 3D predictions are found to be in good agreement with recent Linear Electric Motor (LEM) experiments.
NASA Astrophysics Data System (ADS)
Zheng, Donghong; Che, Defu
2007-08-01
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas-liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10-3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas-liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.
Klunder, Edgar B [Bethel Park, PA
2011-08-09
The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.
Formation of Nitrogen Bubbles During Solidification of Duplex Stainless Steels
NASA Astrophysics Data System (ADS)
Dai, Kaiju; Wang, Bo; Xue, Fei; Liu, Shanshan; Huang, Junkai; Zhang, Jieyu
2018-04-01
The nucleation and growth of nitrogen bubbles for duplex stainless steels are of great significance for the formation mechanism of bubbles during solidification. In the current study, numerical method and theoretical analysis of formula derivation were used to study the formation of nitrogen bubbles during solidification. The critical sizes of the bubble for homogeneous nucleation and heterogeneous nucleation at the solid-liquid interface during solidification were derived theoretically by the classical nucleation theory. The results show that the calculated values for the solubility of nitrogen in duplex stainless steel are in good agreement with the experimental values which are quoted by references: for example, when the temperature T = 1823 K and the nitrogen partial pressure P_{{N2 }} = 40P^{Θ} , the calculated value (0.8042 wt pct) for the solubility of Fe-12Cr alloy nitrogen in molten steel is close to the experimental value (0.780 wt pct). Moreover, the critical radii for homogeneous nucleation and heterogeneous nucleation are identical during solidification. On the one hand, with the increasing temperature or the melt depth, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. On the other hand, with the decreasing initial content of nitrogen or the cooling rate, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. Furthermore, when the melt depth is greater than the critical depth, which is determined by the technological conditions, the change in the Gibbs free energy for the nucleation is not conducive enough to form new bubbles.
Wicaksana, F; Fan, A G; Chen, V
2005-01-01
Bubbling has been used to enhance various processes. In this paper we deal with the effect of bubbling on submerged hollow fibre membranes, where bubbling is applied to prevent severe membrane fouling. Previous work with submerged hollow fibres has observed that significant fibre movement can be induced by bubbling and that there is a qualitative relationship between fibre movement and filtration performance. Therefore, the aim of the present research has been to analyse the link between bubbling, fibre movement and critical flux, identified as the flux at which the transmembrane pressure (TMP) starts to rise. Tests were performed on vertical isolated fibres with a model feed of yeast suspension. The fibres were subject to steady bubbling from below. The parameters of interest were the fibre characteristics, such as tightness, diameter and length, as well as feed concentration. The results confirmed that the critical fluxes are affected by the fibre characteristics and feed concentration. Higher critical flux values can be achieved by using loose fibres, smaller diameters and longer fibres. The enhancement is partially linked to fibre movement and this is confirmed by improved performance when fibres are subject to mechanical movement in the absence of bubbling.
Bubble, critical zone and the crash of Royal Ahold
NASA Astrophysics Data System (ADS)
Broekstra, Gerrit; Sornette, Didier; Zhou, Wei-Xing
2005-02-01
We find that the seed of the 2002/03 crisis of the Dutch supermarket giant AHOLD was planted in 1996. We have adapted Weidlich's theory of opinion formation to describe the formation of buy or sell decisions among investors, based on a competition between the mechanisms of herding and of personal opinion opposing the herd. Using our identification of a “critical zone” starting in mid-1997 describing the maturation of a systemic instability forewarning of an inevitable crash fueled by raising expectations of investors to maintain strong herding pressures, our study opens the possibility of developing early warning signals but also suggests to top management ways of dealing with the coming crisis.
Numerical Simulations of Inclusion Behavior in Gas-Stirred Ladles
NASA Astrophysics Data System (ADS)
Lou, Wentao; Zhu, Miaoyong
2013-06-01
A computation fluid dynamics-population balance model (CFD-PBM) coupled model has been proposed to investigate the bubbly plume flow and inclusion behavior including growth, size distribution, and removal in gas-stirred ladles, and some new and important phenomena and mechanisms were presented. For the bubbly plume flow, a modified k- ɛ model with extra source terms to account for the bubble-induced turbulence was adopted to model the turbulence, and the bubble turbulent dispersion force was taken into account to predict gas volume fraction distribution in the turbulent gas-stirred system. For inclusion behavior, the phenomena of inclusions turbulent random motion, bubbles wake, and slag eye forming on the molten steel surface were considered. In addition, the multiple mechanisms both that promote inclusion growth due to inclusion-inclusion collision caused by turbulent random motion, shear rate in turbulent eddy, and difference inclusion Stokes velocities, and the mechanisms that promote inclusion removal due to bubble-inclusion turbulence random collision, bubble-inclusion turbulent shear collision, bubble-inclusion buoyancy collision, inclusion own floatation near slag-metal interface, bubble wake capture, and wall adhesion were investigated. The importance of different mechanisms and total inclusion removal ratio under different conditions, and the distribution of inclusion number densities in ladle, were discussed and clarified. The results show that at a low gas flow rate, the inclusion growth is mainly attributed to both turbulent shear collision and Stokes collision, which is notably affected by the Stokes collision efficiency, and the inclusion removal is mainly attributed to the bubble-inclusion buoyancy collision and inclusion own floatation near slag-metal interface. At a higher gas flow rate, the inclusions appear as turbulence random motion in bubbly plume zone, and both the inclusion-inclusion and inclusion-bubble turbulent random collisions become important for inclusion growth and removal. With the increase of the gas flow rate, the total removal ratio increases, but when the gas flow rate exceeds 200 NL/min in 150-ton ladle, the total removal ration almost does not change. For the larger size inclusions, the number density in bubbly plume zone is less than that in the sidewall recirculation zones, but for the small size inclusions, the distribution of number density shows the opposite trend.
Effect of surface mobility on the particle sliding along a bubble or a solid sphere.
Wang, Weixing; Zhou, Zhiang; Nandakumar, K; Xu, Zhenghe; Masliyah, Jacob H
2003-03-01
The sliding velocity of glass beads on a spherical surface, made either of an air bubble or of a glass sphere held stationary, is measured to investigate the effect of surface mobility on the particle sliding velocity. The sliding process is recorded with a digital camera and analyzed frame by frame. The sliding glass bead was found to accelerate with increasing angular position on the collector's surface. It reaches a maximum velocity at an angular position of about 100 degrees and then, under certain conditions, the glass bead leaves the surface of the collector. The sliding velocity of the glass bead depends strongly on the surface mobility of a bubble, decreasing with decreasing surface mobility. By a mobile surface we mean one which cannot set up resistive forces to an applied stress on the surface. The sliding velocity on a rigid surface, such as a glass sphere, is much lower than that on a mobile bubble surface. The sliding velocity can be described through a modified Stokes equation. A numerical factor in the modified Stokes equation is determined by fitting the experimental data and is found to increase with decreasing surface mobility. Hydrophobic glass beads sliding on a hydrophobic glass sphere were found to stick at the point of impact without sliding if the initial angular position of the impact is less than some specific angle, which is defined as the critical sticking angle. The sticking of the glass beads can be attributed to the capillary contracting force created by the formation of a cavity due to spontaneous receding of the nonwetting liquid from the contact zone. The relationship between the critical sticking angle and the particle size is established based on the Yushchenko [J. Colloid Interface Sci. 96 (1983) 307] analysis.
NASA Astrophysics Data System (ADS)
Oppenheimer, J. C.; Cashman, K. V.; Rust, A.; Dobson, K. J.; Bacon, C. R.; Dingwell, D. B.
2016-12-01
In order to constrain gas migration behaviors in crystal-rich magmas, we compare results of analogue experiments to frozen structures in andesitic enclaves. In the analogue experiments air was injected into mixtures of syrup and particles sandwiched between glass plates. We observed a significant increase in bubble deformation and coalescence when particle fractions increased beyond a critical value (the random loose packing). At high particle fractions, bubble growth re-organized (compacted) the particles adjacent to the bubble walls. This caused liquid segregation into patches within the particle suspension and into large void spaces near the outer edge of experiments. We compare these experiments to void morphologies in a 58 x 70 x 73 cm andesitic enclave from silicic-andesite lava flows of Mt Mazama, Oregon (Bacon, 1986). This enclave is zoned, with a vesicle-rich center and a glass-rich rim, suggesting gas-driven melt segregation from the center to the rim. We use both 2D (optical microscopy and SEM) and 3D (X-ray tomography) techniques to image crystal textures and bubble shapes. The center of the enclave bears scattered patches of groundmass in the main phenocryst framework. These patches are similar to those observed in experiments, and thus melt segregation in the enclave may have occurred both toward the rim and toward these patches. Bubble morphologies reveal two main types of bubbles. (1) Lobate and finger-like bubbles, similar to the deformed bubbles in experiments, are found exclusively in the groundmass patches. They are also often associated with compacted crystal structures at the bubble walls. (2) Diktytaxitic textures - angular bubbles flattened against phenocrysts - are abundant in the crystal networks. These voids are entirely connected in 3D and formed the gas-rich center of the enclave. They likely represent a gas migration regime where the expanding gas front cannot deform the crystal structure but instead invades the pore-space between crystals, pushing out residual melt (filter pressing). The switch between regimes appears to depend on crystal size and aspect ratio. The similar features between bubbles in the enclave and in experiments are encouraging, and suggest that crystal-induced bubble deformation, and gas-driven melt segregation, may be common in crystal-rich magmas.
What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation.
Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Frenkel, Daan; Dobnikar, Jure; Zhang, Xianren
2017-12-22
The process of homogeneous bubble nucleation is almost impossible to probe experimentally, except near the critical point or for liquids under large negative tension. Elsewhere in the phase diagram, the bubble nucleation barrier is so high as to be effectively insurmountable. Consequently, there is a severe lack of experimental studies of homogenous bubble nucleation under conditions of practical importance (e.g., cavitation). Here we use a simple geometric relation to show that we can obtain information about the homogeneous nucleation process from Molecular Dynamics studies of bubble formation in solvophobic nanopores on a solid surface. The free energy of pinned nanobubbles has two extrema as a function of volume: one state corresponds to a free-energy maximum ("the critical nucleus"), the other corresponds to a free-energy minimum (the metastable, pinned nanobubble). Provided that the surface tension does not depend on nanobubble curvature, the radius of the curvature of the metastable surface nanobubble is independent of the radius of the pore and is equal to the radius of the critical nucleus in homogenous bubble nucleation. This observation opens the way to probe the parameters that determine homogeneous bubble nucleation under experimentally accessible conditions, e.g. with AFM studies of metastable nanobubbles. Our theoretical analysis also indicates that a surface with pores of different sizes can be used to determine the curvature corrections to the surface tension. Our conclusions are not limited to bubble nucleation but suggest that a similar approach could be used to probe the structure of critical nuclei in crystal nucleation.
El-Atwani, Osman; Nathaniel II, James E.; Leff, Asher C.; ...
2016-10-18
Nanocrystalline materials are radiation-tolerant materials’ candidates due to their high defect sink density. Here, nanocrystalline iron films were irradiated with 10 keV helium ions in situ in a transmission electron microscope at elevated temperatures. Grain-size-dependent bubble density changes and denuded zone occurrence were observed at 700 K, but not at 573 K. This transition, attributed to increased helium–vacancy migration at elevated temperatures, suggests that nanocrystalline microstructures are more resistant to swelling at 700 K due to decreased bubble density. Finally, denuded zone formation had no correlation with grain size and misorientation angle under the conditions studied.
Dynamics of degassing at Kilauea Volcano, Hawaii
NASA Astrophysics Data System (ADS)
Vergniolle, Sylvie; Jaupart, Claude
1990-03-01
At Kilauea volcano, Hawaii, the recent long-lived eruptions of Mauna Ulu and Pu'u O'o have occurred in two major stages, defining a characteristic eruptive pattern. The first stage consists of cyclic changes of activity between episodes of "fire fountaining" and periods of quiescence or effusion of vesicular lava. The second stage consists only of continuous effusion of lava. We suggest that these features reflect the dynamics of magma degassing in a chamber which empties into a narrow conduit. In the volcano chamber, gas bubbles rise through magma and accumulate at the roof in a foam layer. The foam flows toward the conduit, and its shape is determined by a dynamic balance between the input of bubbles from below and the output into the conduit. The foam thickness is proportional to (μlQ/ɛ2 ρl g)1/4, where μ l and ρl are the viscosity and density of magma, ɛ is the gas volume fraction in the foam, g is the acceleration of gravity, and Q is the gas flux. The bubbles in the foam deform under the action of buoyancy, and the maximum permissible foam thickness is hc = 2σ/ɛρlgR, where σ is the coefficient of surface tension and R is the original bubble radius. If this critical thickness is reached, the foam collapses into a large gas pocket which erupts into the conduit. Foam accumulation then resumes, and a new cycle begins. The attainment of the foam collapse threshold requires a gas flux in excess of a critical value which depends on viscosity, surface tension, and bubble size. Hence two different eruption regimes are predicted: (1) alternating regimes of foam buildup and collapse leading to the periodic eruption of large gas volumes and (2) steady foam flow at the roof leading to continuous bubbly flow in the conduit. The essential result is that the continuous process of degassing can lead to discontinuous eruptive behavior. Data on eruption rates and repose times between fountaining phases from the 1969 Mauna UIu and the 1983-1986 Pu'u O'o eruptions yield constraints on three key variables. The area of the chamber roof must be a few tens of square kilometers, with a minimum value of about 8 km2. Magma reservoirs of similar dimensions are imaged by seismic attenuation tomography below the east rift zone. Close to the roof, the gas volume fraction is a few percent, and the gas bubbles have diameters lying between 0.1 and 0.6 mm. These estimates are close to the predictions of models for bubble nucleation and growth in basaltic melts, as well as to the observations on deep submarine basalts. The transition between cyclic and continuous activity occurs when the mass flux of gas becomes lower than a critical value of the order of 103 kg/s. In this model, changes of eruptive regime reflect changes in the amount and size of bubbles which reach the chamber roof.
Expansion of a compressible gas bubble in Stokes flow
NASA Astrophysics Data System (ADS)
Pozrikidis, C.
2001-09-01
The flow-induced deformation of an inviscid bubble occupied by a compressible gas and suspended in an ambient viscous liquid is considered at low Reynolds numbers with particular reference to the pressure developing inside the bubble. Ambient fluid motion alters the bubble pressure with respect to that established in the quiescent state, and requires the bubble to expand or contract according to an assumed equation of state. When changes in the bubble volume are prohibited by a global constraint on the total volume of the flow, the ambient pressure is modified while the bubble pressure remains constant during the deformation. A numerical method is developed for evaluating the pressure inside a two-dimensional bubble in an ambient Stokes flow on the basis of the normal component of the interfacial force balance involving the capillary pressure, the normal viscous stress, and the pressure at the free surface on the side of the liquid; the last is computed by evaluating a strongly singular integral. Dynamical simulations of bubble deformation are performed using the boundary integral method properly implemented to remove the multiplicity of solutions due to the a priori unknown rate of expansion, and three particular problems are discussed in detail: the shrinkage of a bubble at a specified rate, the deformation of a bubble subject to simple shear flow, and the deformation of a bubble subject to a purely elongational flow. In the case of shrinkage, it is found that the surface tension plays a critical role in determining the behaviour of the bubble pressure near the critical time when the bubble disappears. In the case of shear or elongational flow, it is found that the bubble contracts during an initial period of deformation from the circular shape, and then it expands to obtain a stationary shape whose area is higher than that assumed in the quiescent state. Expansion may destabilize the bubble by raising the capillary number above the critical threshold under which stationary shapes can be found.
NASA Astrophysics Data System (ADS)
Roy, J. W.; Smith, J. E.
2006-12-01
A number of mechanisms can lead to the presence of disconnected bubbles or ganglia of gas phase in groundwater. When associated with or near a DNAPL phase, the disconnected gas phase experiences mass transfer of dissolved gases including the volatile components of the DNAPL. The properties of the gas phase interface, such as interfacial tension and contact angle, can also be affected. This work addresses the behavior of spontaneous continual growth of initially trapped seed gas bubbles within DNAPL source zones. Three different experiments were performed in a 2-dimensional transparent flow cell 15 cm by 20 cm by 1.5 cm. In each case, a DNAPL pool was created within larger glass beads over smaller glass beads that served as a capillary barrier. The DNAPL consisted of either a 1:2 (v/v) tetrachloroethene (PCE) to benzene mixture, single component PCE, or single component TCE. The experiments effectively demonstrate spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone. A cycle of gas phase growth and mobilization was facilitated by the presence of secondary seed bubbles left behind due to snap-off during vertical bubble (ganglion) mobilization. This gas phase growth process was relatively slow but continuous and could be expected to continue until the NAPL is completely dissolved. Some implications of the demonstrated behavior for water flow and mass transfer within and near the DNAPL source zone are highlighted.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2012-01-01
The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.
Metaphors and models: the ASR bubble in the Floridan aquifer.
Vacher, H L; Hutchings, William C; Budd, David A
2006-01-01
Studies at the intersection of cognitive science and linguistics have revealed the crucial role that metaphors play in shaping our thoughts about phenomena we cannot see. According to the domains interaction theory of cognition, a metaphoric expression sets up mappings between a target domain that we wish to understand and a familiar source domain. The source domain contains elements ("commonplaces") that we manipulate mentally, like parts of an analogue model, to illuminate the target domain. This paper applies the structure of domains interaction theory to analyze the dynamics of a metaphor in hydrogeology: the so-called bubble formed by water injected into an aquifer during aquifer storage and recovery (ASR). Of the four commonplaces of bubbles--(1) they are discrete; (2) they are geometrically simple; (3) they rise; and (4) they burst--we focus on the first two using both displacement and dispersion (tracer) models for both homogeneous and heterogeneous storage zones patterned from geological studies of the Suwannee Limestone of Sarasota County, Florida. The displacement model easily shows that "bottle brush" better represents the geometric complexity predicted from the known and inferred heterogeneity. There is virtually no difference, however, in the prediction of recovery efficiency using the dispersion model for a bubble (homogeneous flow zone) vs. bottle brush (heterogeneous flow zone). On the other hand, only the bottle brush reveals that unrecovered tracer is located preferentially in the low-permeability layers that lie adjacent to high-permeability channels in the flow zones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Atwani, Osman; Nathaniel II, James E.; Leff, Asher C.
Nanocrystalline materials are radiation-tolerant materials’ candidates due to their high defect sink density. Here, nanocrystalline iron films were irradiated with 10 keV helium ions in situ in a transmission electron microscope at elevated temperatures. Grain-size-dependent bubble density changes and denuded zone occurrence were observed at 700 K, but not at 573 K. This transition, attributed to increased helium–vacancy migration at elevated temperatures, suggests that nanocrystalline microstructures are more resistant to swelling at 700 K due to decreased bubble density. Finally, denuded zone formation had no correlation with grain size and misorientation angle under the conditions studied.
German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S
2016-12-12
In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (<100 nm radius), and weakly dependent on the nature of the gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.
Bubble formation in water with addition of a hydrophobic solute.
Okamoto, Ryuichi; Onuki, Akira
2015-07-01
We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.
Bubble evolution in Kr-irradiated UO2 during annealing
NASA Astrophysics Data System (ADS)
He, L.; Bai, X. M.; Pakarinen, J.; Jaques, B. J.; Gan, J.; Nelson, A. T.; El-Azab, A.; Allen, T. R.
2017-12-01
Transmission electron microscopy observation of Kr bubble evolution in polycrystalline UO2 annealed at high temperature was conducted in order to understand the inert gas behavior in oxide nuclear fuel. The average diameter of intragranular bubbles increased gradually from 0.8 nm in as-irradiated sample at room temperature to 2.6 nm at 1600 °C and the bubble size distribution changed from a uniform distribution to a bimodal distribution above 1300 °C. The size of intergranular bubbles increased more rapidly than intragranular ones and bubble denuded zones near grain boundaries formed in all the annealed samples. It was found that high-angle grain boundaries held bigger bubbles than low-angle grain boundaries. Complementary atomistic modeling was conducted to interpret the effects of grain boundary character on the Kr segregation. The area density of strong segregation sites in the high-angle grain boundaries is much higher than that in the low angle grain boundaries.
Field testing model predictions of foam coverage and bubble content in the surf zone
NASA Astrophysics Data System (ADS)
Shi, F.; Kirby, J. T.; Ma, G.; Holman, R. A.; Chickadel, C. C.
2012-12-01
Field-scale modeling of surfzone bubbles and foam coverage is challenging in terms of the computational intensity of multi-phase bubble models based on Navier-Stokes/VOF formulation. In this study, we developed the NHWAVE-bubble package, which includes a 3D non-hydrostatic wave model NHWAVE (Ma et al., 2012), a multi-phase bubble model and a foam model. NHWAVE uses a surface and bottom following sigma coordinate system, making it more applicable to 3D modeling of nearshore waves and circulation in a large-scale field domain. It has been extended to include a multiphase description of polydisperse bubble populations following the approach applied in a 3D VOF model by Ma et al. (2012). A model of a foam layer on the water surface is specified in the model package using a shallow water formulation based on a balance of drag forces due to wind and water column motion. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The model is applied in a field scale domain at FRF, Duck, NC where optical data in either visible band (ARGUS) or infrared band were collected during 2010 Surf Zone Optics experiments. The decay of image brightness or intensity following the passage of wave crests is presumably tied to both decay of bubble populations and foam coverage after passage of a broken wave crest. Infrared imagery is likely to provide more detailed information which could separate active breaking from passive foam decay on the surface. Model results will be compared with the measurements with an attention to distinguishing between active generation and passive decay of the foam signature on the water surface.
Sound propagation in a monodisperse bubble cloud: from the crystal to the glass.
Devaud, M; Hocquet, T; Leroy, V
2010-05-01
We present a theoretical study of the propagation of a monochromatic pressure wave in an unbounded monodisperse bubbly liquid. We begin with the case of a regular bubble array--a bubble crystal--for which we derive a dispersion relation. In order to interpret the different branches of this relation, we introduce a formalism, the radiative picture, which is the adaptation to acoustics of the standard splitting of the electric field in an electrostatic and a radiative part in Coulomb gauge. In the case of an irregular or completely random array--a bubble glass--and at wavelengths large compared to the size of the bubble array spatial inhomogeneities, the difference between order and disorder is not felt by the pressure wave: a dispersion relation still holds, coinciding with that of a bubble crystal with the same bubble size and air volume fraction at the centre of its first Brillouin zone. This relation is discussed and compared to that obtained by Foldy in the framework of his multiscattering approach.
NASA Astrophysics Data System (ADS)
Roy, James W.; Smith, James E.
2007-01-01
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.
Roy, James W; Smith, James E
2007-01-30
Disconnected bubbles or ganglia of trapped gas may occur below the top of the capillary fringe through a number of mechanisms. In the presence of dense non-aqueous phase liquid (DNAPL), the disconnected gas phase experiences mass transfer of dissolved gases, including volatile components from the DNAPL. The properties of the gas phase interface can also change. This work shows for the first time that when seed gas bubbles exist spontaneous gas phase growth can be expected to occur and can significantly affect water-gas-DNAPL distributions, fluid flow, and mass transfer. Source zone behaviour was observed in three different experiments performed in a 2-dimensional flow cell. In each case, a DNAPL pool was created in a zone of larger glass beads over smaller glass beads, which served as a capillary barrier. In one experiment effluent water samples were analyzed to determine the vertical concentration profile of the plume above the pool. The experiments effectively demonstrated a) a cycle of spontaneous gas phase expansion and vertical advective mobilization of gas bubbles and ganglia above the DNAPL source zone, b) DNAPL redistribution caused by gas phase growth and mobilization, and c) that these processes can significantly affect mass transport from a NAPL source zone.
A theoretical method for selecting space craft and space suit atmospheres.
Vann, R D; Torre-Bueno, J R
1984-12-01
A theoretical method for selecting space craft and space suit atmospheres assumes that gas bubbles cause decompression sickness and that the risk increases when a critical bubble volume is exceeded. The method is consistent with empirical decompression exposures for humans under conditions of nitrogen equilibrium between the lungs and tissues. Space station atmospheres are selected so that flight crews may decompress immediately from sea level to station pressure without preoxygenation. Bubbles form as a result of this decompression but are less than the critical volume. The bubbles are absorbed during an equilibration period after which immediate transition to suit pressure is possible. Exercise after decompression and incomplete nitrogen equilibrium are shown to increase bubble size, and limit the usefulness of one previously tested stage decompression procedure for the Shuttle. The method might be helpful for evaluating decompression procedures before testing.
Volumes of critical bubbles from the nucleation theorem
NASA Astrophysics Data System (ADS)
Wilemski, Gerald
2006-09-01
A corollary of the nucleation theorem due to Kashchiev [Nucleation: Basic Theory with Applications (Butterworth-Heinemann, Oxford, 2000)] allows the volume V* of a critical bubble to be determined from nucleation rate measurements. The original derivation was limited to one-component, ideal gas bubbles with a vapor density much smaller than that of the ambient liquid. Here, an exact result is found for multicomponent, nonideal gas bubbles. Provided a weak density inequality holds, this result reduces to Kashchiev's simple form which thus has a much broader range of applicability than originally expected. Limited applications to droplets are also mentioned, and the utility of the pT,x form of the nucleation theorem as a sum rule is noted.
NASA Astrophysics Data System (ADS)
Liu, W. B.; Zhang, J. H.; Ji, Y. Z.; Xia, L. D.; Liu, H. P.; Yun, D.; He, C. H.; Zhang, C.; Yang, Z. G.
2018-03-01
High temperature (550 °C) He ions irradiation was performed on nanostructured (NS) and coarsen-grained (CG) reduced activation steel to investigate the effects of GBs/interfaces on the formation of bubbles during irradiation. Experimental results showed that He bubbles were preferentially trapped at dislocations and/or grain boundaries (GBs) for both of the samples. Void denuded zones (VDZs) were observed in the CG samples, while VDZs near GBs were unobvious in NS sample. However, both the average bubble size and the bubble density in peak damage region of the CG sample were significantly larger than that observed in the NS sample, which indicated that GBs play an important role during the irradiation, and the NS steel had better irradiation resistance than its CG counterpart.
Bubble coalescence in a Newtonian fluid
NASA Astrophysics Data System (ADS)
Garg, Vishrut; Basaran, Osman
2017-11-01
Bubble coalescence plays a central role in the hydrodynamics of gas-liquid systems such as bubble column reactors, spargers, and foams. Two bubbles approaching each other at velocity V coalesce when the thin film between them ruptures, which is often the rate-limiting step. Experimental studies of this system are difficult, and recent works provide conflicting results on the effect of V on coalescence times. We simulate the head-on approach of two bubbles of equal radii R in an incompressible Newtonian fluid (density ρ, viscosity μ, and surface tension σ) by solving numerically the free boundary problem comprised of the Navier Stokes and continuity equations. Simulations are made challenging by the existence of highly disparate lengthscales, i.e. film thickness and drop radii, which are resolved by using the method of elliptic mesh generation. For a given liquid, the bubbles are shown to coalesce for all velocities below a critical value. The effects of Ohnesorge number Oh = μ /√{ ρσR } on coalescence time and critical velocity are also investigated.
Tuohy, Robin M; Wallace, Paul J.; Loewen, Matthew W; Swanson, Don; Kent, Adam J R
2016-01-01
Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai‘i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n=10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n=38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea’s summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea’s east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.
NASA Astrophysics Data System (ADS)
Tuohy, Robin M.; Wallace, Paul J.; Loewen, Matthew W.; Swanson, Donald A.; Kent, Adam J. R.
2016-07-01
Concentrations of H2O and CO2 in olivine-hosted melt inclusions can be used to estimate crystallization depths for the olivine host. However, the original dissolved CO2 concentration of melt inclusions at the time of trapping can be difficult to measure directly because in many cases substantial CO2 is transferred to shrinkage bubbles that form during post-entrapment cooling and crystallization. To investigate this problem, we heated olivine from the 1959 Kīlauea Iki and 1960 Kapoho (Hawai'i) eruptions in a 1-atm furnace to temperatures above the melt inclusion trapping temperature to redissolve the CO2 in shrinkage bubbles. The measured CO2 concentrations of the experimentally rehomogenized inclusions (⩽590 ppm for Kīlauea Iki [n = 10]; ⩽880 ppm for Kapoho, with one inclusion at 1863 ppm [n = 38]) overlap with values for naturally quenched inclusions from the same samples, but experimentally rehomogenized inclusions have higher within-sample median CO2 values than naturally quenched inclusions, indicating at least partial dissolution of CO2 from the vapor bubble during heating. Comparison of our data with predictions from modeling of vapor bubble formation and published Raman data on the density of CO2 in the vapor bubbles suggests that 55-85% of the dissolved CO2 in the melt inclusions at the time of trapping was lost to post-entrapment shrinkage bubbles. Our results combined with the Raman data demonstrate that olivine from the early part of the Kīlauea Iki eruption crystallized at <6 km depth, with the majority of olivine in the 1-3 km depth range. These depths are consistent with the interpretation that the Kīlauea Iki magma was supplied from Kīlauea's summit magma reservoir (∼2-5 km depth). In contrast, olivine from Kapoho, which was the rift zone extension of the Kīlauea Iki eruption, crystallized over a much wider range of depths (∼1-16 km). The wider depth range requires magma transport during the Kapoho eruption from deep beneath the summit region and/or from deep beneath Kīlauea's east rift zone. The deeply derived olivine crystals and their host magma mixed with stored, more evolved magma in the rift zone, and the mixture was later erupted at Kapoho.
Critical point analysis of phase envelope diagram
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soetikno, Darmadi; Siagian, Ucok W. R.; Kusdiantara, Rudy, E-mail: rkusdiantara@s.itb.ac.id
2014-03-24
Phase diagram or phase envelope is a relation between temperature and pressure that shows the condition of equilibria between the different phases of chemical compounds, mixture of compounds, and solutions. Phase diagram is an important issue in chemical thermodynamics and hydrocarbon reservoir. It is very useful for process simulation, hydrocarbon reactor design, and petroleum engineering studies. It is constructed from the bubble line, dew line, and critical point. Bubble line and dew line are composed of bubble points and dew points, respectively. Bubble point is the first point at which the gas is formed when a liquid is heated. Meanwhile,more » dew point is the first point where the liquid is formed when the gas is cooled. Critical point is the point where all of the properties of gases and liquids are equal, such as temperature, pressure, amount of substance, and others. Critical point is very useful in fuel processing and dissolution of certain chemicals. Here in this paper, we will show the critical point analytically. Then, it will be compared with numerical calculations of Peng-Robinson equation by using Newton-Raphson method. As case studies, several hydrocarbon mixtures are simulated using by Matlab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marti-Lopez, L.; Ocana, R.; Porro, J. A.
2009-07-01
We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2013-01-01
Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.
Bubble propagation in a pipe filled with sand.
Gendron, D; Troadec, H; Måløy, K J; Flekkøy, E G
2001-08-01
Granular flow with strong hydrodynamic interactions has been studied experimentally. Experiments have been carried out to study the movement of a single bubble in an inclined tube filled with glass beads and air. A maximum bubble velocity was found at an inclined angle straight theta(m). The density variations in the sand were measured by capacitance measurements, and a decompactification zone was observed just above the bubble when the inclination angle straight theta was larger than straight theta(m). The length of the decompactification front increased with increasing inclination angle and disappeared for angles smaller than straight theta(m). Both pressure and visualization experiments were carried out and compared with the density measurements.
Models and observations of foam coverage and bubble content in the surf zone
NASA Astrophysics Data System (ADS)
Kirby, J. T.; Shi, F.; Holman, R. A.
2010-12-01
Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.
Study on ambient noise generated from breaking waves simulated by a wave maker in a tank
NASA Astrophysics Data System (ADS)
Wei, Ruey-Chang; Chan, Hsiang-Chih
2002-11-01
This paper studies ambient noise in the surf zone that was simulated by a piston-type wave maker in a tank. The experiment analyzed the bubbles of a breaking wave by using a hydrophone to receive the acoustic signal, and the images of bubbles were recorded by a digital video camera to observe the distribution of the bubbles. The slope of the simulated seabed is 1:5, and the dimensions of the water tank are 35 m x1 m x1.2 m. The studied parameters of ambient noise generated by breaking wave bubbles were wave height, period, and water depth. Short-time Fourier transform was applied to obtain the acoustic spectrum of bubbles, MATLAB programs were used to calculate mean sound pressure level, and determine the number of bubbles. Bubbles with resonant frequency from 0.5 to 10 kHz were studied, counted from peaks in the spectrum. The number of bubbles generated by breaking waves could be estimated by the bubbles energy distributions. The sound pressure level of ambient noise was highly related to the wave height and period, with correlation coefficient 0.7.
Sizes of nanobubbles from nucleation rate measurements
NASA Astrophysics Data System (ADS)
Wilemski, G.
2003-03-01
In homogeneous bubble nucleation, the critical nucleus typically has nanometer dimensions. The volume V of a critical bubble can be determined from the simple equation (partial W/partial p)_T=V, where W is the reversible work of nucleus formation and p is the ambient pressure of the liquid phase in which bubble formation is occurring. The relation, W/kT=-ln J+ln A, where J is the steady state nucleation rate and A is the weakly pressure-dependent kinetic prefactor, allows V to be determined from rate measurements. The original derivation of this equation for V from the nucleation theorem was limited to one-component, ideal gas bubbles with a gas density much smaller than that of the ambient liquid. [D. Kashchiev, Nucleation: basic theory with applications (Butterworth-Heinemann, Oxford, 2000) p. 226.] The result is actually much more general, and it will be shown that it applies to multi-component, nonideal gas bubbles, provided the same density inequality holds. When the bubble phase and liquid densities are comparable, a more complicated, but also general and rigorous result is found.
Amos, Richard T.; Mayer, K. Ulrich
2006-01-01
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O2 to waters otherwise depleted in O2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH4 partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.
NASA Astrophysics Data System (ADS)
Amos, Richard T.; Ulrich Mayer, K.
2006-09-01
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O 2 to waters otherwise depleted in O 2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH 4 partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.
Experimental and Theoretical Investigations of Cavitation in Water
NASA Technical Reports Server (NTRS)
Ackeret, J.
1945-01-01
The cavitation in nozzles on airfoils of various shape and on a sphere are experimentally investigated. The limits of cavitation and the extension of the zone of the bubbles in different stages of cavitation are photographically established. The pressure in the bubble area is constant and very low, jumping to high values at the end of the area. The analogy with the gas compression shock is adduced and discussed. The collapse of the bubbles under compression shock produces very high pressures internally, which must be contributory factors to corrosion. The pressure required for purely mechanical corrosion is also discussed.
Vroblesky, Don A.; Lorah, Michelle M.
1991-01-01
Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.
The Elementary Bubble Project: Exploring Critical Media Literacy in a Fourth-Grade Classroom
ERIC Educational Resources Information Center
Gainer, Jesse S.; Valdez-Gainer, Nancy; Kinard, Timothy
2009-01-01
This article addresses issues surrounding critical media literacy using popular culture texts. The authors focus on the example of their work with a fourth-grade class involved in a project to unpack the messages of popular media and advertising texts. This project, which they call the Elementary Bubble Project, was inspired by guerilla artist Ji…
Wu, Hanping; Wilkins, Luke R; Ziats, Nicholas P; Haaga, John R; Exner, Agata A
2014-01-01
To examine the accuracy of the unenhanced zone at contrast material-enhanced ultrasonography (US) in predicting coagulative necrosis during and 21 days after radiofrequency (RF) ablation by using radiologic-pathologic comparison. Animal studies were approved by the Institutional Animal Care and Use Committee. The livers of 28 rats underwent US-guided RF ablation. In four animals, contrast-enhanced US was performed during ablation and 2 hours and 2, 7, 14, and 21 days after ablation. The unenhanced zone area on US images was measured. DiI-labeled microbubbles were administered during ablation at 2, 4, and 6 minutes or at 2 hours and 2, 7, 14, and 21 days after ablation in the remaining 24 animals (n = 3 at each time point). One minute later, the animal was euthanized, and the ablated liver was harvested. Tissue samples were imaged to quantify total fluorescence, and NADH staining was performed on the same slice. Hematoxylin-eosin staining was also performed. The findings on fluorescence images, NADH-stained images, and hematoxylin-eosin-stained images were compared. The areas of DiI bubble-negative zones, NADH-negative zones, and lightly NADH-staining zones were measured. Data were analyzed by using one-way analysis of variance. The area of the unenhanced zone on contrast-enhanced US images increased during RF ablation and reached a maximum within 2 days after ablation. At histopathologic examination, a transition zone manifested adjacent to the coagulation zone until 2 days after ablation. The DiI-bubble negative zone on fluorescence images and the damaged zone (transition zone plus coagulation zone) on NADH-stained images increased rapidly within 2 hours after ablation, then slowly reached the maximum on day 2. The ratios of the mean areas of these two zones at hour 2 to those at day 2 were 94.6% and 95.6%, respectively. High uniformity between the damaged zone on NADH-stained images and the DiI bubble-negative zone on fluorescence images was noted at all time points. The temporary transition zone in NADH staining is partially damaged and should transition to nonviability 2 days after ablation. These results demonstrate that contrast-enhanced US can help delineate the maximum area of cell damage (to within 5% of the maximum) as early as 2 hours after ablation. Contrast-enhanced US may be a simple and accurate tool for monitoring the effects of RF ablation and quantifying the size of thermal damage after treatment. © RSNA, 2013.
DARLA: Data Assimilation and Remote Sensing for Littoral Applications
2011-09-30
measurements from the Surf Zone Optics (SZO) experiment in September, 2011. Since optical reflectance saturates for surf zone bubble depths greater than...Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents...pilot experiment at Duck, NC during the Surf Zone Optics DRI Experiment in September, 2010 and participated in planning of the upcoming RIVET DRI
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
NASA Astrophysics Data System (ADS)
German, Sean R.
This dissertation presents experimental and computational studies of individual nanobubbles electrochemically generated at platinum nanoelectrodes. Chapter 1 provides an overview of the physics governing bubble dynamics and a brief summary of the literature regarding nanobubbles. Chapter 2 describes a fast scan voltammetric method for measurement of nanobubble dissolution rates. After a nanobubble is nucleated from gas generated via an electrode reaction, the electrode potential is rapidly stepped to a value where the bubble is unstable and begins to dissolve. The electrode potential is immediately scanned back to values where the bubble was initially stable. Depending on the rate of this second voltammetric scan, the initial bubble may or may not have time to dissolve. The fastest scan rate at which the bubble dissolves is used to determine the bubble's lifetime. The results indicate that dissolution of a H2 or N2 nanobubble is, in part, limited by the transfer of molecules across the gas/water interface. Chapter 3 presents electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of a nanobubble of H 2, N2, or O2 at a Pt nanodisk electrode. The results are analyzed using classical thermodynamic relationships to provide an estimate of the size of the critical gas nucleus that grows into a stable bubble. This critical nucleus size is independent of the radius of the Pt nanodisk employed and weakly dependent on the nature of the gas. Chapter 4 reports electrochemical measurements of Laplace pressures within single H2 bubbles between 7 and 200 nm radius (corresponding, respectively, to between 200 and 7 atmospheres). The current, associated with H2 gas generation, supporting a steady-state nanobubble is modulated by application of external pressure. The slope of the current-pressure response allows extrapolation of the bubble's curvature-dependent internal pressure. The results demonstrate a linear relationship between a bubble's Laplace pressure and its reciprocal radius, verifying the classical thermodynamic description of H2 nanobubbles as small as 10 nm. Chapter 5 summarizes these results and places them in the context of current research. Future directions for further studies are suggested.
Mise en oeuvre et etalonnage d'une soufflerie de recherche sur les couches limites
NASA Astrophysics Data System (ADS)
Pioton, Julien
In order to reproduce a turbulent boundary layer separation bubble in a laboratory at the École de Technologie Supérieure of Montreal, an open-circuit wind tunnel equipped with a blow-down centrifugal fan has been implemented and calibrated for this research project. The methodology for the conception of the wind tunnel components, based on the results obtained from previous experiments, has been validated by the comparison between experimental and theoretical pressure losses along the wind tunnel. Dimensionless mean axial velocity measurements in the working section have showed an irrotational uniform flow zone at the contraction end, which demonstrates the satisfactory performance of the flowconditioning components located upstream from the working section. Mean axial velocity and total pressure measurements along the working section have allowed for estimates of the location of boundary between irrotational and rotational flow at the separation bubble. The maximum mean height of the boundary layer has been estimated at around 15 cm. Oil film visualisations have revealed a mean bubble separation length of approximately 52 cm. Theses oil visualisations, supported by mean lateral velocity measurements in the current configuration of the working section, have indicated important three-dimensional effects and significant dissymmetry in the vicinity of the separation and reattachment zones at the separation bubble.
Gas exchange in the ice zone: the role of small waves and big animals
NASA Astrophysics Data System (ADS)
Loose, B.; Takahashi, A.; Bigdeli, A.
2016-12-01
The balance of air-sea gas exchange and net biological carbon fixation determine the transport and transformation of carbon dioxide and methane in the ocean. Air-sea gas exchange is mostly driven by upper ocean physics, but biology can also play a role. In the open ocean, gas exchange increases proportionate to the square of wind speed. When sea ice is present, this dependence breaks down in part because breaking waves and air bubble entrainment are damped out by interactions between sea ice and the wave field. At the same time, sea ice motions, formation, melt, and even sea ice-associated organisms can act to introduce turbulence and air bubbles into the upper ocean, thereby enhancing air-sea gas exchange. We take advantage of the knowledge advances of upper ocean physics including bubble dynamics to formulate a model for air-sea gas exchange in the sea ice zone. Here, we use the model to examine the role of small-scale waves and diving animals that trap air for insulation, including penguins, seals and polar bears. We compare these processes to existing parameterizations of wave and bubble dynamics in the open ocean, to observe how sea ice both mitigates and locally enhances air-sea gas transfer.
Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale; ...
2014-07-14
In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuezhi; Hewson, John C.; Amendola, Pasquale
In our study, Chlorella zofingiensis harvesting by dissolved air flotation (DAF) was critically evaluated with regard to algal concentration, culture conditions, type and dosage of coagulants, and recycle ratio. Harvesting efficiency increased with coagulant dosage and leveled off at 81%, 86%, 91%, and 87% when chitosan, Al 3+, Fe 3+, and cetyl trimethylammonium bromide (CTAB) were used at dosages of 70, 180, 250, and 500 mg g -1, respectively. The DAF efficiency-coagulant dosage relationship changed with algal culture conditions. In evaluating the influence of the initial algal concentration and recycle ratio revealed that, under conditions typical for algal harvesting, wemore » found that it is possible that the number of bubbles is insufficient. A DAF algal harvesting model was developed to explain this observation by introducing mass-based floc size distributions and a bubble limitation into the white water blanket model. Moreover, the model revealed the importance of coagulation to increase floc-bubble collision and attachment, and the preferential interaction of bubbles with larger flocs, which limited the availability of bubbles to the smaller sized flocs. The harvesting efficiencies predicted by the model agree reasonably with experimental data obtained at different Al 3+ dosages, algal concentrations, and recycle ratios. Based on this modeling, critical parameters for efficient algal harvesting were identified.« less
Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92
NASA Astrophysics Data System (ADS)
Hildebrand, Nathaniel; Dwivedi, Anubhav; Nichols, Joseph W.; Jovanović, Mihailo R.; Candler, Graham V.
2018-01-01
We investigate flow instability created by an oblique shock wave impinging on a Mach 5.92 laminar boundary layer at a transitional Reynolds number. The adverse pressure gradient of the oblique shock causes the boundary layer to separate from the wall, resulting in the formation of a recirculation bubble. For sufficiently large oblique shock angles, the recirculation bubble is unstable to three-dimensional perturbations and the flow bifurcates from its original laminar state. We utilize direct numerical simulation (DNS) and global stability analysis to show that this first occurs at a critical shock angle of θ =12 .9∘ . At bifurcation, the least-stable global mode is nonoscillatory and it takes place at a spanwise wave number β =0.25 , in good agreement with DNS results. Examination of the critical global mode reveals that it originates from an interaction between small spanwise corrugations at the base of the incident shock, streamwise vortices inside the recirculation bubble, and spanwise modulation of the bubble strength. The global mode drives the formation of long streamwise streaks downstream of the bubble. While the streaks may be amplified by either the lift-up effect or by Görtler instability, we show that centrifugal instability plays no role in the upstream self-sustaining mechanism of the global mode. We employ an adjoint solver to corroborate our physical interpretation by showing that the critical global mode is most sensitive to base flow modifications that are entirely contained inside the recirculation bubble.
Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.
1999-07-01
Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less
CONTINUOUSLY SENSITIVE BUBBLE CHAMBER
Good, R.H.
1959-08-18
A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.
NASA Astrophysics Data System (ADS)
Wang, Binbin; Socolofsky, Scott A.; Breier, John A.; Seewald, Jeffrey S.
2016-04-01
This paper reports the results of quantitative imaging using a stereoscopic, high-speed camera system at two natural gas seep sites in the northern Gulf of Mexico during the Gulf Integrated Spill Research G07 cruise in July 2014. The cruise was conducted on the E/V Nautilus using the ROV Hercules for in situ observation of the seeps as surrogates for the behavior of hydrocarbon bubbles in subsea blowouts. The seeps originated between 890 and 1190 m depth in Mississippi Canyon block 118 and Green Canyon block 600. The imaging system provided qualitative assessment of bubble behavior (e.g., breakup and coalescence) and verified the formation of clathrate hydrate skins on all bubbles above 1.3 m altitude. Quantitative image analysis yielded the bubble size distributions, rise velocity, total gas flux, and void fraction, with most measurements conducted from the seafloor to an altitude of 200 m. Bubble size distributions fit well to lognormal distributions, with median bubble sizes between 3 and 4.5 mm. Measurements of rise velocity fluctuated between two ranges: fast-rising bubbles following helical-type trajectories and bubbles rising about 40% slower following a zig-zag pattern. Rise speed was uncorrelated with hydrate formation, and bubbles following both speeds were observed at both sites. Ship-mounted multibeam sonar provided the flare rise heights, which corresponded closely with the boundary of the hydrate stability zone for the measured gas compositions. The evolution of bubble size with height agreed well with mass transfer rates predicted by equations for dirty bubbles.
NASA Technical Reports Server (NTRS)
Dewitt, K. J.; Brockwell, J. L.
1985-01-01
The long term objective of the experiment is to observe the dissolution of isolated, immobile gas bubbles of specified size and composition in a solvent liquid of known concentration in the reduced gravity environment of earth orbit. Preliminary bubble dissolution experiment conducted both in the NASA Lewis 2.2 sec drop tower and in normal gravity using SO2 - Toluene system were not completely successful in their objective. The method of gas injection and lack of bubble interface stabiliy experienced due to the extreme solubility of SO in Toluene has the effects of changing the problem from that of bubble dissolution to one of bubble formation stability and subsequent dissolution in a liquid of unknown initial solute concentration. Current work involves further experimentation in order to refine the bubble injection system and to investigate the concept of having a bubble with a critical radius in a state of unstable equilibrium.
Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms
NASA Technical Reports Server (NTRS)
Thomas, Charles R.; Holt, R. Glynn; Roy, Ronald A.
2002-01-01
Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM, and temperatures of at least 10,000K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence (SBSL), yet there remain at least four unexplained phenomena associated with SBSL in 1g: the light emission mechanism itself, the existence of anisotropies in the emitted light, the disappearance of the bubble at some critical acoustic pressure, and the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these. We are developing KC-135 experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the predictions of existing theories.
The Regime Shift Associated with the 2004–2008 US Housing Market Bubble
Cheong, Siew Ann
2016-01-01
The Subprime Bubble preceding the Subprime Crisis of 2008 was fueled by risky lending practices, manifesting in the form of a large abrupt increase in the proportion of subprime mortgages issued in the US. This event also coincided with critical slowing down signals associated with instability, which served as evidence of a regime shift or phase transition in the US housing market. Here, we show that the US housing market underwent a regime shift between alternate stable states consistent with the observed critical slowing down signals. We modeled this regime shift on a universal transition path and validated the model by estimating when the bubble burst. Additionally, this model reveals loose monetary policy to be a plausible cause of the phase transition, implying that the bubble might have been deflatable by a timely tightening of monetary policy. PMID:27583633
NASA Technical Reports Server (NTRS)
Durian, Douglas J.; Gopal, Anthony D.; Vera, Moin U.; Langer, Stephen A.
1996-01-01
Diffusing-wave spectroscopy measurements show that ordinarily solid aqueous foams flow by a series of stick-slip avalanche-like rearrangements of neighboring bubbles from one tight packing configuration to another. Contrary to a recent prediction, the distribution of avalanche sizes do not obey a power-law distribution characteristic of self-organized criticality. This can be understood from a simple model of foam mechanics based on bubble-bubble interactions.
Thermal desorption behavior of helium in aged titanium tritide films
NASA Astrophysics Data System (ADS)
Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.
2015-11-01
The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.
Size limits the formation of liquid jets during bubble bursting
Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat
2011-01-01
A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715
The role of grain size in He bubble formation: Implications for swelling resistance
El-Atwani, Osman; Nathaniel, II, James E.; Leff, Asher C.; ...
2016-12-07
Here, nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas rangingmore » from 3000 to 7500 nm 2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm 2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.« less
NASA Astrophysics Data System (ADS)
Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan; Greinert, Jens
2014-05-01
We use new gas-hydrate geochemistry analyses, echosounder data, and three-dimensional P-Cable seismic data to study a gas-hydrate and free-gas system in 1200 m water depth at the Vestnesa Ridge offshore NW Svalbard. Geochemical measurements of gas from hydrates collected at the ridge revealed a thermogenic source. The presence of thermogenic gas and temperatures of ˜3.3°C result in a shallow top of the hydrate stability zone (THSZ) at ˜340 m below sea level (mbsl). Therefore, hydrate-skinned gas bubbles, which inhibit gas-dissolution processes, are thermodynamically stable to this shallow water depth. This was confirmed by hydroacoustic observations of flares in 2010 and 2012 reaching water depths between 210 and 480 mbsl. At the seafloor, bubbles are released from acoustically transparent zones in the seismic data, which we interpret as regions where free gas is migrating through the hydrate stability zone (HSZ). These intrusions result in vertical variations in the base of the HSZ (BHSZ) of up to ˜150 m, possibly making the shallow hydrate reservoir more susceptible to warming. Such Arctic gas-hydrate and free-gas systems are important because of their potential role in climate change and in fueling marine life, but remain largely understudied due to limited data coverage in seasonally ice-covered Arctic environments.
Formulation and Characterization of Echogenic Lipid–Pluronic Nanobubbles
Krupka, Tianyi M.; Solorio, Luis; Wilson, Robin E.; Wu, Hanping; Azar, Nami; Exner, Agata A.
2012-01-01
The advent of microbubble contrast agents has enhanced the capabilities of ultrasound as a medical imaging modality and stimulated innovative strategies for ultrasound-mediated drug and gene delivery. While the utilization of microbubbles as carrier vehicles has shown encouraging results in cancer therapy, their applicability has been limited by a large size which typically confines them to the vasculature. To enhance their multifunctional contrast and delivery capacity, it is critical to reduce bubble size to the nanometer range without reducing echogenicity. In this work, we present a novel strategy for formulation of nanosized, echogenic lipid bubbles by incorporating the surfactant Pluronic, a triblock copolymer of ethylene oxide copropylene oxide coethylene oxide into the formulation. Five Pluronics (L31, L61, L81, L64 and P85) with a range of molecular weights (Mw: 1100 to 4600 Da) were incorporated into the lipid shell either before or after lipid film hydration and before addition of perfluorocarbon gas. Results demonstrate that Pluronic–lipid interactions lead to a significantly reduced bubble size. Among the tested formulations, bubbles made with Pluronic L61 were the smallest with a mean hydrodynamic diameter of 207.9 ± 74.7 nm compared to the 880.9 ± 127.6 nm control bubbles. Pluronic L81 also significantly reduced bubble size to 406.8 ± 21.0 nm. We conclude that Pluronic is effective in lipid bubble size control, and Pluronic Mw, hydrophilic–lipophilic balance (HLB), and Pluronic/ lipid ratio are critical determinants of the bubble size. Most importantly, our results have shown that although the bubbles are nanosized, their stability and in vitro and in vivo echogenicity are not compromised. The resulting nanobubbles may be better suited for contrast enhanced tumor imaging and subsequent therapeutic delivery. PMID:19957968
Sonoluminescence in Space: The Critical Role of Buoyancy in Stability and Emission Mechanisms
NASA Technical Reports Server (NTRS)
Holt, R. Glynn; Roy, Ronald A.
1999-01-01
Sonoluminescence is the term used to describe the emission of light from a violently collapsing bubble. Sonoluminescence ("light from sound") is the result of extremely nonlinear pulsations of gas/vapor bubbles in liquids when subject to sufficiently high amplitude acoustic pressures. In a single collapse, a bubble's volume can be compressed more than a thousand-fold in the span of less than a microsecond. Even the simplest consideration of the thermodynamics yields pressures on the order of 10,000 ATM. and temperatures of at least 10,000 K. On the face of things, it is not surprising that light should be emitted from such an extreme process. Since 1990 (the year that Gaitan discovered light from a single bubble) there has been a tremendous amount of experimental and theoretical research in stable, single-bubble sonoluminescence. Yet there remain four fundamental mysteries associated with this phenomenon: 1) the light emission mechanism itself; 2) the mechanism for anomalous mass flux stability; 3) the disappearance of the bubble at some critical acoustic pressure; and 4) the appearance of quasiperiodic and chaotic oscillations in the flash timing. Gravity, in the context of the buoyant force, is implicated in all four of these unexplained phenomena. We are developing microgravity experiments probing the effect of gravity on single bubble sonoluminescence. By determining the stability boundaries experimentally in microgravity, and measuring not only light emission but mechanical bubble response, we will be able to directly test the unambiguous predictions of existing theories. By exploiting the microgravity environment we will gain new knowledge impossible to obtain in earth-based labs which will enable explanations for the above mysteries. We will also be in a position to make new discoveries about bubbles which emit light.
Dynamics of cavitation clouds within a high-intensity focused ultrasonic beam
NASA Astrophysics Data System (ADS)
Lu, Yuan; Katz, Joseph; Prosperetti, Andrea
2013-07-01
In this experimental study, we generate a 500 kHz high-intensity focused ultrasonic beam, with pressure amplitude in the focal zone of up to 1.9 MPa, in initially quiescent water. The resulting pressure field and behavior of the cavitation bubbles are measured using high-speed digital in-line holography. Variations in the water density and refractive index are used for determining the spatial distribution of the acoustic pressure nonintrusively. Several cavitation phenomena occur within the acoustic partially standing wave caused by the reflection of sound from the walls of the test chamber. At all sound levels, bubbly layers form in the periphery of the focal zone in the pressure nodes of the partial standing wave. At high sound levels, clouds of vapor microbubbles are generated and migrate in the direction of the acoustic beam. Both the cloud size and velocity vary periodically, with the diameter peaking at the pressure nodes and velocity at the antinodes. A simple model involving linearized bubble dynamics, Bjerknes forces, sound attenuation by the cloud, added mass, and drag is used to predict the periodic velocity of the bubble cloud, as well as qualitatively explain the causes for the variations in the cloud size. The analysis shows that the primary Bjerknes force and drag dominate the cloud motion, and suggests that the secondary Bjerknes force causes the oscillations in the cloud size.
The growth of oscillating bubbles in an ultrasound field
NASA Astrophysics Data System (ADS)
Yamauchi, Risa; Yamashita, Tatsuya; Ando, Keita
2017-11-01
From our recent experiments to test particle removal by underwater ultrasound, dissolved gas supersaturation is found to play an important role in physical cleaning; cavitation bubble nucleation can be triggered easily by weak ultrasound under the supersaturation and mild motion of the bubbles contributes to efficient cleaning without erosion. The state of gas bubble nuclei in water is critical to the determination of a cavitation inception threshold. Under ultrasound forcing, the size of bubble nuclei is varied by the transfer of dissolved gas (i.e., rectified diffusion); the growth rate will be promoted by the supersaturation and is thus expected to contribute to cavitation activity enhancement. In the present work, we experimentally study rectified diffusion for bubbles attached at glass surfaces in an ultrasound field. We will present the evolution of bubble nuclei sizes with varying parameters such as dissolved oxygen supersaturation, and ultrasound intensity and frequency. the Research Grant of Keio Leading-edge Laboratory of Science & Technology.
Lifetime of Bubble Rafts: Cooperativity and Avalanches
NASA Astrophysics Data System (ADS)
Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique
2007-06-01
We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.
Lifetime of bubble rafts: cooperativity and avalanches.
Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique
2007-06-15
We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes.
NASA Astrophysics Data System (ADS)
Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.
2016-12-01
Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.
Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F
2015-09-01
The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.
Flow of foams in two-dimensional disordered porous media
NASA Astrophysics Data System (ADS)
Dollet, Benjamin; Geraud, Baudouin; Jones, Sian A.; Meheust, Yves; Cantat, Isabelle; Institut de Physique de Rennes Team; Geosciences Rennes Team
2015-11-01
Liquid foams are a yield stress fluid with elastic properties. When a foam flow is confined by solid walls, viscous dissipation arises from the contact zones between soap films and walls, giving very peculiar friction laws. In particular, foams potentially invade narrow pores much more efficiently than Newtonian fluids, which is of great importance for enhanced oil recovery. To quantify this effect, we study experimentally flows of foam in a model two-dimensional porous medium, consisting of an assembly of circular obstacles placed randomly in a Hele-Shaw cell, and use image analysis to quantify foam flow at the local scale. We show that bubbles split as they flow through the porous medium, by a mechanism of film pinching during contact with an obstacle, yielding two daughter bubbles per split bubble. We quantify the evolution of the bubble size distribution as a function of the distance along the porous medium, the splitting probability as a function of bubble size, and the probability distribution function of the daughter bubbles. We propose an evolution equation to model this splitting phenomenon and compare it successfully to the experiments, showing how at long distance, the porous medium itself dictates the size distribution of the foam.
Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation
NASA Astrophysics Data System (ADS)
Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan
2018-05-01
Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.
Wang, Binbin; Socolofsky, Scott A; Lai, Chris C K; Adams, E Eric; Boufadel, Michel C
2018-06-01
Subsea oil well blowouts and pipeline leaks release oil and gas to the environment through vigorous jets. Predicting the breakup of the released fluids in oil droplets and gas bubbles is critical to predict the fate of petroleum compounds in the marine water column. To predict the gas bubble size in oil well blowouts and pipeline leaks, we observed and quantified the flow behavior and breakup process of gas for a wide range of orifice diameters and flow rates. Flow behavior at the orifice transitions from pulsing flow to continuous discharge as the jet crosses the sonic point. Breakup dynamics transition from laminar to turbulent at a critical value of the Weber number. Very strong pure gas jets and most gas/liquid co-flowing jets exhibit atomization breakup. Bubble sizes in the atomization regime scale with the jet-to-plume transition length scale and follow -3/5 power-law scaling for a mixture Weber number. Copyright © 2018 Elsevier Ltd. All rights reserved.
The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels
NASA Astrophysics Data System (ADS)
Boziuk, Thomas; Smith, Marc K.; Glezer, Ari
2012-11-01
Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.
Detecting vapour bubbles in simulations of metastable water
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es
2014-11-14
The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less
Bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1990-03-01
Bubble generation in transformers has been demonstrated under certain overload conditions. The release of large quantities of bubbles would pose a dielectric breakdown hazard. A bubble prediction model developed under EPRI Project 1289-4 attempts to predict the bubble evolution temperature under different overload conditions. This report details a verification study undertaken to confirm the validity of the above model using coil structures subjected to overload conditions. The test variables included moisture in paper insulation, gas content in oil, and the type of oil preservation system. Two aged coils were also tested. The results indicated that the observed bubble temperatures weremore » close to the predicted temperatures for models with low initial gas content in the oil. The predicted temperatures were significantly lower than the observed temperatures for models with high gas content. Some explanations are provided for the anomalous behavior at high gas levels in oil. It is suggested that the dissolved gas content is not a significant factor in bubble evolution. The dominant factor in bubble evolution appears to be the water vapor pressure which must reach critical levels before bubbles can be released. Further study is needed to make a meaningful revision of the bubble prediction model. 8 refs., 13 figs., 11 tabs.« less
Bader, Kenneth B; Haworth, Kevin J; Maxwell, Adam D; Holland, Christy K
2018-01-01
Histotripsy utilizes focused ultrasound to generate bubble clouds for transcutaneous tissue liquefaction. Bubble activity maps are under development to provide image guidance and monitor treatment progress. The aim of this paper was to investigate the feasibility of using plane wave B-mode and passive cavitation images to be used as binary classifiers of histotripsy-induced liquefaction. Prostate tissue phantoms were exposed to histotripsy pulses over a range of pulse durations (5- ) and peak negative pressures (12-23 MPa). Acoustic emissions were recorded during the insonation and beamformed to form passive cavitation images. Plane wave B-mode images were acquired following the insonation to detect the hyperechoic bubble cloud. Phantom samples were sectioned and stained to delineate the liquefaction zone. Correlation between passive cavitation and plane wave B-mode images and the liquefaction zone was assessed using receiver operating characteristic (ROC) curve analysis. Liquefaction of the phantom was observed for all the insonation conditions. The area under the ROC (0.94 versus 0.82), accuracy (0.90 versus 0.83), and sensitivity (0.81 versus 0.49) was greater for passive cavitation images relative to B-mode images ( ) along the azimuth of the liquefaction zone. The specificity was greater than 0.9 for both imaging modalities. These results demonstrate a stronger correlation between histotripsy-induced liquefaction and passive cavitation imaging compared with the plane wave B-mode imaging, albeit with limited passive cavitation image range resolution.
Mesner, Larry D.; Valsakumar, Veena; Karnani, Neerja; Dutta, Anindya; Hamlin, Joyce L.; Bekiranov, Stefan
2011-01-01
We have used a novel bubble-trapping procedure to construct nearly pure and comprehensive human origin libraries from early S- and log-phase HeLa cells, and from log-phase GM06990, a karyotypically normal lymphoblastoid cell line. When hybridized to ENCODE tiling arrays, these libraries illuminated 15.3%, 16.4%, and 21.8% of the genome in the ENCODE regions, respectively. Approximately half of the origin fragments cluster into zones, and their signals are generally higher than those of isolated fragments. Interestingly, initiation events are distributed about equally between genic and intergenic template sequences. While only 13.2% and 14.0% of genes within the ENCODE regions are actually transcribed in HeLa and GM06990 cells, 54.5% and 25.6% of zonal origin fragments overlap transcribed genes, most with activating chromatin marks in their promoters. Our data suggest that cell synchronization activates a significant number of inchoate origins. In addition, HeLa and GM06990 cells activate remarkably different origin populations. Finally, there is only moderate concordance between the log-phase HeLa bubble map and published maps of small nascent strands for this cell line. PMID:21173031
Gas-Enhanced Ultra-High Shear Mixing: A Concept and Applications
NASA Astrophysics Data System (ADS)
Czerwinski, Frank; Birsan, Gabriel
2017-04-01
The processes of mixing, homogenizing, and deagglomeration are of paramount importance in many industries for modifying properties of liquids or liquid-based dispersions at room temperature and treatment of molten or semi-molten alloys at high temperatures, prior to their solidification. To implement treatments, a variety of technologies based on mechanical, electromagnetic, and ultrasonic principles are used commercially or tested at the laboratory scale. In a large number of techniques, especially those tailored toward metallurgical applications, the vital role is played by cavitation, generation of gas bubbles, and their interaction with the melt. This paper describes a novel concept exploring an integration of gas injection into the shear zone with ultra-high shear mixing. As revealed via experiments with a prototype of the cylindrical rotor-stator apparatus and transparent media, gases injected radially through the high-speed rotor generate highly refined bubbles of high concentration directly in the shear zone of the mixer. It is believed that an interaction of large volume of fine gas bubbles with the liquid, superimposed on ultra-high shear, will enhance mixing capabilities and cause superior refining and homogenizing of the liquids or solid-liquid slurries, thus allowing their effective property modification.
NASA Astrophysics Data System (ADS)
Tsuda, Shin-Ichi; Nakano, Yuta; Watanabe, Satoshi
2017-11-01
Recently, several studies using Molecular Dynamics (MD) simulation have been conducted for investigation of Ostwald ripening of cavitation bubbles in a finite space. The previous studies focused a characteristic length of bubbles as one of the spatially-averaged quantities, but each bubble behavior was not been investigated in detail. The objective of this study is clarification of the characteristics of each bubble behavior in Ostwald ripening, and we conducted MD simulation of a Lennard-Jones fluid in a semi-confined space. As a result, the time dependency of the characteristic length of bubbles as a spatially-averaged quantity suggested that the driving force of the Ostwald ripening is Evaporation/Condensation (EC) across liquid-vapor surface, which is the same result as the previous works. The radius change of the relatively larger bubbles also showed the same tendency to a classical EC model. However, the sufficiently smaller bubbles than the critical size, e.g., the bubbles just before collapsing, showed a different characteristic from the classical EC model. Those smaller bubbles has a tendency to be limited by mechanical non-equilibrium in which viscosity of liquid is dominant rather than by EC across liquid-vapor surface. This work was supported by JSPS KAKENHI Grant Number JP16K06085.
Membrane-Based Gas Traps for Ammonia, Freon-21, and Water Systems to Simplify Ground Processing
NASA Technical Reports Server (NTRS)
Ritchie, Stephen M. C.
2003-01-01
Gas traps are critical for the smooth operation of coolant loops because gas bubbles can cause loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and blockage of passages to remote systems. Coolant loops are ubiquitous in space flight hardware, and thus there is a great need for this technology. Conventional gas traps will not function in micro-gravity due to the absence of buoyancy forces. Therefore, clever designs that make use of adhesion and momentum are required for adequate separation, preferable in a single pass. The gas traps currently used in water coolant loops on the International Space Station are composed of membrane tube sets in a shell. Each tube set is composed of a hydrophilic membrane (used for water transport and capture of bubbles) and a hydrophobic membrane (used for venting of air bubbles). For the hydrophilic membrane, there are two critical pressures, the pressure drop and the bubble pressure. The pressure drop is the decrease in system pressure across the gas trap. The bubble pressure is the pressure required for air bubbles to pass across the water filled membrane. A significant difference between these pressures is needed to ensure complete capture of air bubbles in a single pass. Bubbles trapped by the device adsorb on the hydrophobic membrane in the interior of the hydrophilic membrane tube. After adsorption, the air is vented due to a pressure drop of approximately 1 atmosphere across the membrane. For water systems, the air is vented to the ambient (cabin). Because water vapor can also transport across the hydrophobic membrane, it is critical that a minimum surface area is used to avoid excessive water loss (would like to have a closed loop for the coolant). The currently used gas traps only provide a difference in pressure drop and bubble pressure of 3-4 psid. This makes the gas traps susceptible to failure at high bubble loading and if gas venting is impaired. One mechanism for the latter is when particles adhere to the hydrophobic membrane, promoting formation of a water layer about it that can blind the membrane for gas transport (Figure 1). This mechanism is the most probable cause for observed failures with the existing design. The objective of this project was to devise a strategy for choosing new membrane materials (database development and procedure), redesign of the gas trap to mitigate blinding effects, and to develop a design that can be used in ammonia and Freon-21 coolant loops.
Bubbles in Titan’s Seas: Nucleation, Growth, and RADAR Signature
NASA Astrophysics Data System (ADS)
Cordier, Daniel; Liger-Belair, Gérard
2018-05-01
In the polar regions of Titan, the main satellite of Saturn, hydrocarbon seas have been discovered by the Cassini–Huygens mission. RADAR observations have revealed surprising and transient bright areas over the Ligeia Mare surface. As suggested by recent research, bubbles could explain these strange features. However, the nucleation and growth of such bubbles, together with their RADAR reflectivity, have never been investigated. All of these aspects are critical to an actual observation. We have thus applied the classical nucleation theory to our context, and we developed a specific radiative transfer model that is appropriate for bubble streams in cryogenic liquids. According to our results, the sea bed appears to be the most plausible place for the generation of bubbles, leading to a signal comparable to observations. This conclusion is supported by thermodynamic arguments and by RADAR properties of a bubbly column. The latter are also valid in the case of bubble plumes, due to gas leaking from the sea floor.
Bubble propagation on a rail: a concept for sorting bubbles by size
NASA Astrophysics Data System (ADS)
Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne
We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.
Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.
2003-01-01
The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.
NASA Astrophysics Data System (ADS)
Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan
2017-11-01
The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.
Primordial black hole formation by vacuum bubbles
NASA Astrophysics Data System (ADS)
Deng, Heling; Vilenkin, Alexander
2017-12-01
Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.
Jet formation of SF6 bubble induced by incident and reflected shock waves
NASA Astrophysics Data System (ADS)
Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang
2017-12-01
The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
A variety of dynamical features of sliding bubbles and their impact on wall heat transfer were observed at subcooled flow boiling conditions in a vertical square test channel. Among the wide range of parameters observed, we particularly focus in this paper on (i) the sliding bubbles’ effect on wall heat transfer (supplemantry discussion to the authors’ previous work in Yoo et al. (2016a,b)) and (ii) the wall area influenced by sliding bubbles in subcooled boiling flow. At first, this study reveals that the degree of wall heat transfer improvement due to sliding bubbles depended less on the wall superheat conditionmore » as the mass flux increased. Also, the sliding bubble trajectory was found to be one of the critical factors in order to properly describe the wall heat transfer associated with sliding bubbles. In particular, the wall area influenced by sliding bubbles depended strongly on both sliding bubble trajectory and sliding bubble size; the sliding bubble trajectory was also observed to be closely related to the sliding bubble size. Importantly, these results indicate the limitation of current approach in CFD analyses especially for the wall area of bubble influence. In addition, the analyses on the temporal fraction of bubbles’ residence (FR) along the heated wall show that the sliding bubbles typically travel through narrow path with high frequency while the opposite was observed downstream. That is, both FR and sliding bubble trajectory depended substantially on the distance from nucleation site, which is expected to be similar for the quenching heat transfer mode induced by sliding bubbles.« less
Effects of non-condensable gas on the dynamic oscillations of cavitation bubbles
NASA Astrophysics Data System (ADS)
Zhang, Yuning
2016-11-01
Cavitation is an essential topic of multiphase flow with a broad range of applications. Generally, there exists non-condensable gas in the liquid and a complex vapor/gas mixture bubble will be formed. A rigorous prediction of the dynamic behavior of the aforementioned mixture bubble is essential for the development of a complete cavitation model. In the present paper, effects of non-condensable gas on the dynamic oscillations of the vapor/gas mixture bubble are numerically investigated in great detail. For the completeness, a large parameter zone (e.g. bubble radius, frequency and ratio between gas and vapor) is investigated with many demonstrating examples. The mechanisms of mass diffusion are categorized into different groups with their characteristics and dominated regions given. Influences of non-condensable gas on the wave propagation (e.g. wave speed and attenuation) in the bubbly liquids are also briefly discussed. Specifically, the minimum wave speed is quantitatively predicted in order to close the pressure-density coupling relationship usually employed for the cavitation modelling. Finally, the application of the present finding on the development of cavitation model is demonstrated with a brief discussion of its influence on the cavitation dynamics. This work was financially supported by the National Natural Science Foundation of China (Project No.: 51506051).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
Experiments showed that recrystallization dramatically speeds up the gas bubble swelling kinetics in metallic UMo fuels. In this work a recrystallization model is developed to study the effect of microstructures and radiation conditions on recrystallization kinetics. The model integrates the rate theory of intra-granular gas bubble and interstitial loop evolution and a phase field model of recrystallization zone evolution. A fast passage method is employed to describe one dimensional diffusion of interstitials which have diffusivity several order magnitude larger than that of the fission gas Xe. With the model, the effect of grain sizes on recrystallization kinetics is simulated.
Critical slowing down associated with regime shifts in the US housing market
NASA Astrophysics Data System (ADS)
Tan, James Peng Lung; Cheong, Siew Siew Ann
2014-02-01
Complex systems are described by a large number of variables with strong and nonlinear interactions. Such systems frequently undergo regime shifts. Combining insights from bifurcation theory in nonlinear dynamics and the theory of critical transitions in statistical physics, we know that critical slowing down and critical fluctuations occur close to such regime shifts. In this paper, we show how universal precursors expected from such critical transitions can be used to forecast regime shifts in the US housing market. In the housing permit, volume of homes sold and percentage of homes sold for gain data, we detected strong early warning signals associated with a sequence of coupled regime shifts, starting from a Subprime Mortgage Loans transition in 2003-2004 and ending with the Subprime Crisis in 2007-2008. Weaker signals of critical slowing down were also detected in the US housing market data during the 1997-1998 Asian Financial Crisis and the 2000-2001 Technology Bubble Crisis. Backed by various macroeconomic data, we propose a scenario whereby hot money flowing back into the US during the Asian Financial Crisis fueled the Technology Bubble. When the Technology Bubble collapsed in 2000-2001, the hot money then flowed into the US housing market, triggering the Subprime Mortgage Loans transition in 2003-2004 and an ensuing sequence of transitions. We showed how this sequence of couple transitions unfolded in space and in time over the whole of US.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
Perturbation of a radially oscillating single-bubble by a micron-sized object.
Montes-Quiroz, W; Baillon, F; Louisnard, O; Boyer, B; Espitalier, F
2017-03-01
A single bubble oscillating in a levitation cell is acoustically monitored by a piezo-ceramics microphone glued on the cell external wall. The correlation of the filtered signal recorded over distant cycles on one hand, and its harmonic content on the other hand, are shown to carry rich information on the bubble stability and existence. For example, the harmonic content of the signal is shown to increase drastically once air is fully dissociated in the bubble, and the resulting pure argon bubble enters into the upper branch of the sonoluminescence regime. As a consequence, the bubble disappearance can be unambiguously detected by a net drop in the harmonic content. On the other hand, we perturb a stable sonoluminescing bubble by approaching a micron-sized fiber. The bubble remains unperturbed until the fiber tip is approached within a critical distance, below which the bubble becomes unstable and disappears. This distance can be easily measured by image treatment, and is shown to scale roughly with 3-4 times the bubble maximal radius. The bubble disappearance is well detected by the drop of the microphone harmonic content, but several thousands of periods after the bubble actually disappeared. The delay is attributed to the slow extinction of higher modes of the levitation cell, excited by the bubble oscillation. The acoustic detection method should however allow the early detection and imaging of non-predictable perturbations of the bubble by foreign micron-sized objects, such as crystals or droplets. Copyright © 2016 Elsevier B.V. All rights reserved.
Morphological record of oxygenic photosynthesis in conical stromatolites.
Bosak, Tanja; Liang, Biqing; Sim, Min Sub; Petroff, Alexander P
2009-07-07
Conical stromatolites are thought to be robust indicators of the presence of photosynthetic and phototactic microbes in aquatic environments as early as 3.5 billion years ago. However, phototaxis alone cannot explain the ubiquity of disrupted, curled, and contorted laminae in the crests of many Mesoproterozoic, Paleoproterozoic, and some Archean conical stromatolites. Here, we demonstrate that cyanobacterial production of oxygen in the tips of modern conical aggregates creates contorted laminae and submillimeter-to-millimeter-scale enmeshed bubbles. Similarly sized fossil bubbles and contorted laminae may be present only in the crestal zones of some conical stromatolites 2.7 billion years old or younger. This implies not only that cyanobacteria built Proterozoic conical stromatolites but also that fossil bubbles may constrain the timing of the evolution of oxygenic photosynthesis.
Black holes and the multiverse
NASA Astrophysics Data System (ADS)
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Experiment on smooth, circular cylinders in cross-flow in the critical Reynolds number regime
NASA Astrophysics Data System (ADS)
Miau, J. J.; Tsai, H. W.; Lin, Y. J.; Tu, J. K.; Fang, C. H.; Chen, M. C.
2011-10-01
Experiments were conducted for 2D circular cylinders at Reynolds numbers in the range of 1.73 × 105-5.86 × 105. In the experiment, two circular cylinder models made of acrylic and stainless steel, respectively, were employed, which have similar dimensions but different surface roughness. Particular attention was paid to the unsteady flow behaviors inferred by the signals obtained from the pressure taps on the cylinder models and by a hot-wire probe in the near-wake region. At Reynolds numbers pertaining to the initial transition from the subcritical to the critical regimes, pronounced pressure fluctuations were measured on the surfaces of both cylinder models, which were attributed to the excursion of unsteady flow separation over a large circumferential region. At the Reynolds numbers almost reaching the one-bubble state, it was noted that the development of separation bubble might switch from one side to the other with time. Wavelet analysis of the pressure signals measured simultaneously at θ = ±90° further revealed that when no separation bubble was developed, the instantaneous vortex-shedding frequencies could be clearly resolved, about 0.2, in terms of the Strouhal number. The results of oil-film flow visualization on the stainless steel cylinder of the one-bubble and two-bubble states showed that the flow reattachment region downstream of a separation bubble appeared not uniform along the span of the model. Thus, the three dimensionality was quite evident.
Black holes and the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleatingmore » during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.« less
1979-12-28
Doppler sound made by a bubble passing through the inson- ified volume blood vessel resembles a very sharp truncated whistle , chirp or click depending...the Doppler ultrasound , suffered the "slings and arrows of outrageous criticism" to borrow and beat a phrase. It is not appropriate to go into this
NASA Astrophysics Data System (ADS)
Lakehal, D.; Métrailler, D.; Reboux, S.
2017-06-01
This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which confirms that the bubbles increase the energy at smaller scales. The coherent structures in the boundary layer are broken by the bubbles, which disrupts the formation of long structures, reducing the streamwise integral length scale.
Log-periodic view on critical dates of the Chinese stock market bubbles
NASA Astrophysics Data System (ADS)
Li, Chong
2017-01-01
We present an analysis of critical dates of three historical Chinese stock market bubbles (July 2006-Oct. 2007, Dec. 2007-Oct. 2008, Oct. 2014-June 2015) based on the Shanghai Shenzhen CSI 300 index (CSI300). This supports that the log-periodic power law singularity (LPPLS) model can describe well the behavior of super-exponential (power law with finite-time singularity) increase or decrease of the CSI300 index, suggesting that the LPPLS is available to predict the critical date. We also attempt to analyze the fitting parameter α of the LPPLS and the forecast gap which is between the last observed date and the expected critical date, proposing that the forecast gap is an alternative way for advanced warning of the market conversion.
Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue.
Canchi, Saranya; Kelly, Karen; Hong, Yu; King, Michael A; Subhash, Ghatu; Sarntinoranont, Malisa
2017-10-01
Multiscale damage due to cavitation is considered as a potential mechanism of traumatic brain injury (TBI) associated with explosion. In this study, we employed a TBI relevant hippocampal ex vivo slice model to induce bubble cavitation. Placement of single reproducible seed bubbles allowed control of size, number, and tissue location to visualize and measure deformation parameters. Maximum strain value was measured at 45 µs after bubble collapse, presented with a distinct contour and coincided temporally and spatially with the liquid jet. Composite injury maps combined this maximum strain value with maximum measured bubble size and location along with histological injury patterns. This facilitated the correlation of bubble location and subsequent jet direction to the corresponding regions of high strain which overlapped with regions of observed injury. A dynamic threshold strain range for tearing of cerebral cortex was estimated to be between 0.5 and 0.6. For a seed bubble placed underneath the hippocampus, cavitation induced damage was observed in hippocampus (local), proximal cerebral cortex (marginal) and the midbrain/forebrain (remote) upon histological evaluation. Within this test model, zone of cavitation injury was greater than the maximum radius of the bubble. Separation of apposed structures, tissue tearing, and disruption of cellular layers defined early injury patterns that were not detected in the blast-exposed half of the brain slice. Ultrastructural pathology of the neurons exposed to cavitation was characterized by disintegration of plasma membrane along with loss of cellular content. The developed test system provided a controlled experimental platform to study cavitation induced high strain deformations on brain tissue slice. The goal of the future studies will be to lower underpressure magnitude and cavitation bubble size for more sensitive evaluation of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
FAR-ULTRAVIOLET OBSERVATIONS OF THE SPICA NEBULA AND THE INTERACTION ZONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Yeon-Ju; Min, Kyoung-Wook; Lim, Tae-Ho
2013-09-01
We report the analysis results of far-ultraviolet (FUV) observations, made for a broad region around {alpha} Vir (Spica) including the interaction zone of Loop I and the Local Bubble. The whole region was optically thin and a general correlation was seen between the FUV continuum intensity and the dust extinction, except in the neighborhood of the bright central star, indicating the dust scattering nature of the FUV continuum. We performed Monte Carlo radiative transfer simulations to obtain the optical parameters related to the dust scattering as well as to the geometrical structure of the region. The albedo and asymmetry factormore » were found to be 0.38 {+-} 0.06 and 0.46 {+-} 0.06, respectively, in good agreement with the Milky Way dust grain models. The distance to and the thickness of the interaction zone were estimated to be 70{sup +4}{sub -8} pc and 40{sup +8}{sub -10} pc, respectively. The diffuse FUV continuum in the northern region above Spica was mostly the result of scattering of the starlight from Spica, while that in the southern region was mainly due to the background stars. The C IV {lambda}{lambda}1548, 1551 emission was found throughout the whole region, in contrast to the Si II* {lambda}1532 emission which was bright only within the H II region. This indicates that the C IV line arises mostly at the shell boundaries of the bubbles, with a larger portion likely from the Loop I than from the Local Bubble side, whereas the Si II* line is from the photoionized Spica Nebula.« less
Magnetite Scavenging and the Buoyancy of Bubbles in Magmas
NASA Astrophysics Data System (ADS)
Gualda, G. A.; Ghiorso, M. S.
2005-12-01
It is generally assumed that when eruptions are triggered, magmas are bubble-free, and all the vesicularity observed in pumice is due to nucleation and growth during ascent. However, decompression experiments show that bubbles tend to nucleate on magnetite crystals at relatively low supersaturation, and there is convincing evidence that an exsolved gas phase was present during much of the evolution of the Bishop magma. The fate of pre-eruptive bubbles depends directly on their buoyancy, which can be strongly modified by the presence of crystals attached to the bubble-melt interface. That crystals tend to attach to bubbles is indicated by experiments and observations, and can be explained theoretically. Whether, however, crystals and bubbles can be held together by interface forces is yet uncertain, and we use the available knowledge on surface energies to explore this problem. We call adhesion energy the surface energy change due to attachment of a crystal to a bubble. We show that sticking a bubble to a mineral substrate is always energetically favored over keeping bubble and mineral separate. Because the adhesion energy is a strong function of the wetting angle, different minerals will be more strongly attached to bubbles than others. In particular, oxide minerals will attach to a given bubble much more strongly than any silicates. One interesting consequence of the attachment of grains to a bubble is that this can cause these bubble-crystal pairs to be neutrally buoyant, preventing bubble rise and crystal sinking. The criterion for buoyancy of a bubble-crystal pair can be calculated as the condition when the apparent weight of the crystal and the bubble are opposite and equal. If a bubble-mineral pair is to remain joined, the binding force has to be provided by the adhesion force, which is also a strong function of the wetting angle. Since the adhesion force is linear on R, and the buoyancy force is proportional to R cubed, there is a critical bubble radius below which the adhesion force will be strong enough to keep the pair together. Using the available experimental data, we show that crystals as large as 1 mm in diameter could be attached to bubbles and form neutrally buoyant pairs. The presence of multiple crystals in a single bubble would allow bubbles larger than the critical size to become neutrally buoyant. Under the limiting assumption that all magnetite crystals form neutrally buoyant pairs with bubbles, it is possible to compute the maximum gas volume fraction that can be stored as neutrally buoyant bubble-magnetite aggregates. The total abundance of magnetite is only ca. 0.1 vol. %, which yields maximum gas volume fractions on the order of 0.1-0.2 vol. %. About 2-3 vol % of gas can be accounted for if all minerals form neutrally-buoyant aggregates. These values are orders of magnitude lower than the abundance of exsolved gas inferred from melt inclusions in the Bishop magma. Nonetheless, our recent observation of one such aggregate in the early-erupted Bishop Tuff suggests that this is indeed a viable mechanism for storing exsolved gas in magmas. The inevitable conclusion is that a range of pre-eruptive bubbles existed, from magnetite-free, but only a very small fraction of them could have magnetite crystals attached to them. Our treatment shows that there should be an intrinsic association between magnetite crystals and bubbles. However, study our tomography datasets shows that most magnetite crystals are free of bubbles. Not only is this surprising; the puzzling conclusion is that nucleation away from crystals (homogeneous nucleation?) is favored over heterogeneous nucleation on crystal substrates.
Nucleation of Bubbles by Electrons in Liquid Helium-4
NASA Astrophysics Data System (ADS)
Yang, Y.; Sirisky, S.; Wei, W.; Seidel, G. M.; Maris, H. J.
2018-02-01
We report on experiments in which we study cavitation resulting from electrons in liquid helium. Electrons are introduced into the liquid by a radioactive source. After an electron comes to rest in the liquid, it forces open a small cavity referred to as an electron bubble. To study cavitation, a sound pulse is generated by means of a hemispherical piezoelectric transducer producing a large-amplitude pressure oscillation at the acoustic focus. If an electron is in the vicinity of the focus and the negative-going pressure swing exceeds a critical value, a cavitation bubble is produced which can be detected by light scattering. Two distinct critical pressures P_{el} and P_{rare} have been measured. The first corresponds to cavitation resulting from the application of a reduced pressure to liquid containing an electron which has already formed an electron bubble. The second is the critical pressure needed to lead to cavitation when an electron enters the liquid at a time and place where there is already a reduced pressure. We have measured these two pressures as a function of temperature and consider possible explanations for the difference between them. In addition to these clearly seen cavitation thresholds, there are some cavitation events that have been detected with a threshold that is at an even smaller negative pressure than P_{el} and P_{rare}.
NASA Astrophysics Data System (ADS)
Taccoen, Nicolas; Lequeux, François; Gunes, Deniz Z.; Baroud, Charles N.
2016-01-01
Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of Δ Pcollapse∝R-1 , but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic understanding to predict the aging of particle-stabilized foams, by applying classical Ostwald ripening models. We find that the smallest armored bubbles should fail, as the dissolution stress on these bubbles increases more rapidly than the armor strength. Both the experimental and theoretical results can readily be generalized to more complex particle interactions and shell structures.
Bubble baths: just splashing around?
NASA Astrophysics Data System (ADS)
Robinson, Wesley; Speirs, Nathan; Sharker, Saberul Islam; Hurd, Randy; Williams, Bj; Truscott, Tadd
2016-11-01
Soap Bubbles on the water surface would seem to be an intuitive means for splash suppression, but their presence appears to be a double edged sword. We present on the water entry of hydrophilic spheres where the liquid surface is augmented by the presence of a bubble layer, similar to a bubble bath. While the presence of a bubble layer can diminish splashing upon impact at low Weber numbers, it also induces cavity formation at speeds below the critical velocity. The formation of a cavity generally results in larger Worthington jets and thus, larger amounts of ejected liquid. Bubble layers induce cavity formation by wetting the sphere prior to liquid impact, causing them to form cavities similar to those created by hydrophobic spheres. Droplets present on a pre-wetted sphere disrupt the flow of the advancing liquid during entry, pushing it away from the impacting body to form an entrained air cavity. This phenomena was noted by Worthington with pre-wetted stone marbles, and suggests that the application of a bubble layer is generally ineffective as a means of splash suppression.
Slowing down bubbles with sound
NASA Astrophysics Data System (ADS)
Poulain, Cedric; Dangla, Remie; Guinard, Marion
2009-11-01
We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.
Xenon migration in UO2 under irradiation studied by SIMS profilometry
NASA Astrophysics Data System (ADS)
Marchand, B.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Garnier, C.; Raimbault, L.; Sainsot, P.; Epicier, T.; Delafoy, C.; Fraczkiewicz, M.; Gaillard, C.; Toulhoat, N.; Perrat-Mabilon, A.; Peaucelle, C.
2013-09-01
During Pressurized Water Reactor operation, around 25% of the created Fission Products (FP) are Xenon and Krypton. They have a low solubility in the nuclear fuel and can either (i) agglomerate into bubbles which induce mechanical stress in the fuel pellets or (ii) be released from the pellets, increasing the pressure within the cladding and decreasing the thermal conductivity of the gap between pellets and cladding. After fifty years of studies on the nuclear fuel, all mechanisms of Fission Gas Release (FGR) are still not fully understood. This paper aims at studying the FGR mechanisms by decoupling thermal and irradiation effects and by assessing the Xenon behavior for the first time by profilometry. Samples are first implanted with 136Xe at 800 keV corresponding to a projected range of 140 nm. They are then either annealed in the temperature range 1400-1600 °C, or irradiated with heavy energy ions (182 MeV Iodine) at Room Temperature (RT), 600 °C or 1000 °C. Depth profiles of implanted Xenon in UO2 are determined by Secondary Ion Mass Spectrometry (SIMS). It is shown that Xenon is mobile during irradiation at 1000 °C. In contrast, thermal treatments do not induce any Xenon migration process: these results are correlated to the formation of Xenon bubbles observed by Transmission Electron Microscopy. At depths lower than about 40 nm (zone 1), no bubbles are observed, At depths in between 40 nm and 110 nm (zone 2), a large number of small bubbles (around 2 nm in diameter) can be observed. By comparing with the SRIM profile, it appears that this area corresponds to the maximum of the defect profile, The third zone displays two bubble populations. The first population has the same size than the bubbles present in zone 2. The bubble size of the second population is significantly larger (up to around 10 nm). A STEM micrograph is presented in Fig. 4. It highlights the Xenon bubbles more clearly. It appears that the largest bubbles are located mainly near dislocations which are predominantly in zone 3. TEM micrographs obtained on the samples annealed at 1400 °C (not shown here) show only small sized bubbles (around 2 nm). The presence of these bubbles could explain that no Xenon migration occurs even after annealing at 1600 °C during 16 h. Moreover, concerning Xe thermal resolution, this can only occur if the bubble is overpressurized [21]. It was shown by Martin et al. [22] that at high temperature (over 1400 °C) non pressurized aggregates are observed. So in our experiments, Xe thermal resolution is unlikely.The bubble sizes measured after 1400 °C and 1600 °C annealing are in agreement with literature data, in particular, with those of Michel et al. [23] obtained in Xenon implanted UO2 samples. Indeed they observed 1 nm sized bubbles at 600 °C, which could reach 3 nm at 1400 °C. Either conditions of the Neumann type for which the surface is impermeable which means that the Xenon flux is equal to zero and can be expressed by Eq. (2). {dC}/{dx}|surface=0 Or conditions of the Dirichlet type with a constant Xenon concentration at the surface expressed by Eq. (3). C(0,t)=constant We chose Neumann conditions since we observed a slight increase of Xenon concentration at the surface for the profiles of the samples irradiated at 600 °C and at 1000 °C. In order to simulate the evolution of the Xenon concentration profiles, as-implanted profiles were first fitted with Gaussian shaped curves. The evolution of these curves was then simulated by using the one dimensional finite difference method. Therefore, the total depth profile was discretized into 1.5 nm slices. D, v, k parameters were thus deduced from successive iterations until the final profile is correctly fitted. It is important to keep in mind that each migration mechanism induces a particular modification of the profile shape: a broadening is characteristic of a diffusion process, a profile shift is significant of a transport process and an area decrease means a release mechanism. Consequently, only one set of parameters can allow a correct fit of the final profile.This method was applied for the sample irradiated at 1000 °C and the fitted spectrum is presented in Fig. 6. The obtained values are respectively: D=9.5×10-16 cm s, v=3.1×10-10 cm s and k=2.5×10-5 s. The deduced apparent diffusion coefficient (9.5 × 10-16 cm2 s-1) is one order of magnitude higher than the one given by Turnbull [25] who studied the fission gas release of in-pile irradiated UO2 pellets and who found around 1 × 10-16 cm2 s-1 at 1000 °C.The differences between our results and Turnbull results could be mainly explained by the fact that Turnbull deduced his results from in-pile experiments whereas we performed irradiation on UO2 samples implanted with Xenon. More precisely, Turnbull experiments were made with a neutron flux of 4 × 1016 m-2 s-1 generating fission products with a wide energy range up to 110 MeV. In our experiments, irradiation was performed with Iodine ions of a single energy (186 MeV) with a pretty high flux of 5 × 1019 I m-2 s-1.Moreover, Turnbull measured Xe release and had to use the Booth model to determine Xe diffusion coefficient. In this last model, several hypotheses are made, the major ones being a spherical shape of grains and no possible accumulation of Xenon at the grain surface. Our diffusion coefficient is obtained after solving the Fick's equation without any hypothesis on the grain geometry.
Bifurcation scenarios for bubbling transition.
Zimin, Aleksey V; Hunt, Brian R; Ott, Edward
2003-01-01
Dynamical systems with chaos on an invariant submanifold can exhibit a type of behavior called bubbling, whereby a small random or fixed perturbation to the system induces intermittent bursting. The bifurcation to bubbling occurs when a periodic orbit embedded in the chaotic attractor in the invariant manifold becomes unstable to perturbations transverse to the invariant manifold. Generically the periodic orbit can become transversely unstable through a pitchfork, transcritical, period-doubling, or Hopf bifurcation. In this paper a unified treatment of the four types of bubbling bifurcation is presented. Conditions are obtained determining whether the transition to bubbling is soft or hard; that is, whether the maximum burst amplitude varies continuously or discontinuously with variation of the parameter through its critical value. For soft bubbling transitions, the scaling of the maximum burst amplitude with the parameter is derived. For both hard and soft transitions the scaling of the average interburst time with the bifurcation parameter is deduced. Both random (noise) and fixed (mismatch) perturbations are considered. Results of numerical experiments testing our theoretical predictions are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
Critical Nuclei Size, Rate, and Activation Energy of H2 Gas Nucleation.
German, Sean R; Edwards, Martin A; Ren, Hang; White, Henry S
2018-03-21
Electrochemical measurements of the nucleation rate of individual H 2 bubbles at the surface of Pt nanoelectrodes (radius = 7-41 nm) are used to determine the critical size and geometry of H 2 nuclei leading to stable bubbles. Precise knowledge of the H 2 concentration at the electrode surface, C H 2 surf , is obtained by controlled current reduction of H + in a H 2 SO 4 solution. Induction times of single-bubble nucleation events are measured by stepping the current, to control C H 2 surf , while monitoring the voltage. We find that gas nucleation follows a first-order rate process; a bubble spontaneously nucleates after a stochastic time delay, as indicated by a sudden voltage spike that results from impeded transport of H + to the electrode. Hundreds of individual induction times, at different applied currents and using different Pt nanoelectrodes, are used to characterize the kinetics of phase nucleation. The rate of bubble nucleation increases by four orders of magnitude (0.3-2000 s -1 ) over a very small relative change in C H 2 surf (0.21-0.26 M, corresponding to a ∼0.025 V increase in driving force). Classical nucleation theory yields thermodynamic radii of curvature for critical nuclei of 4.4 to 5.3 nm, corresponding to internal pressures of 330 to 270 atm, and activation energies for nuclei formation of 14 to 26 kT, respectively. The dependence of nucleation rate on H 2 concentration indicates that nucleation occurs by a heterogeneous mechanism, where the nuclei have a contact angle of ∼150° with the electrode surface and contain between 35 and 55 H 2 molecules.
The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex
NASA Technical Reports Server (NTRS)
Shariff, Karim; Mansour, Nagi N. (Technical Monitor)
2002-01-01
Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.
Extreme Morphologic and Venting Changes in Methane Seeps at Southern Hydrate Ridge, Cascadia Margin
NASA Astrophysics Data System (ADS)
Bigham, K.; Kelley, D. S.; Solomon, E. A.; Delaney, J. R.
2017-12-01
Two highly active methane hydrate seeps have been visited over a 7-year period as part of the construction and operation of NSF's Ocean Observatory Initiative's Regional Cable Array at Southern Hydrate Ridge. The site is located 90 km west of Newport, Oregon, at a water depth of 800 m. The seeps, Einstein's Grotto (OOI instrument deployment site) and Smokey Tavern (alternate site to the north), have been visited yearly from 2010 to 2017 with ROVs. Additionally, a digital still camera deployed from 2014 to 2017 at Einstein's Grotto, has been documenting the profound morphologic and biological changes at this site. A cabled pressure sensor, Acoustic Doppler Current Profiler, hydrophone, seismometer array, and uncabled fluid samplers have also been operational at the site for the duration of the camera's deployment. During this time, Einstein's Grotto has evolved from a gentle mound with little venting, to a vigorously bubbling pit bounded by a near vertical wall. Early on bubble emissions blew significant amounts of sediment into the water column and thick Beggiatoa mats coverd the mound. Most recently the face of the pit has collapsed, although bubble plumes are still emitted from the site. The Smokey Tavern site has undergone more extreme changes. Similar to Einstein's Grotto it was first characterized by gentle hummocks with dispersed bacterial mats. In subsequent years, it developed an extremely rugged, elongated collapsed area with vertical walls and jets of methane bubbles rising from small pits near the base of the collapse zone. Meter-across nearly sediment-free blocks of methane hydrate were exposed on the surface and in the walls of the collapse zone. In 2016, this area was unrecognizable with a much more subdued topography, and weak venting of bubbles. Exposed methane hydrate was not visible. From these observations new evolutionary models for methane seeps are being developed for Southern Hydrate Ridge.
Microstructural defects in He-irradiated polycrystalline α-SiC at 1000 °C
NASA Astrophysics Data System (ADS)
Han, Wentuo; Li, Bingsheng
2018-06-01
In order to investigate the effect of the high-temperature irradiation on microstructural evolutions of the polycrystalline SiC, an ion irradiation at 1000 °C with the 500 keV He2+ was imposed to the α-SiC. The platelets, He bubbles, dislocation loops, and particularly, their interaction with the stacking fault and grain boundaries were focused on and characterized by the cross-sectional transmission electron microscopy (XTEM). The platelets expectably exhibit a dominant plane of (0001), while planes of (01-10) and (10-16) are also found. Inside the platelet, the over-pressurized bubbles exist and remarkably cause a strong-strain zone surrounding the platelet. The disparate roles between the grain boundaries and stacking faults in interacting with the bubbles and loops are found. The results are compared with the previous weighty findings and discussed.
PDMS free-flow electrophoresis chips with integrated partitioning bars for bubble segregation.
Köhler, Stefan; Weilbeer, Claudia; Howitz, Steffen; Becker, Holger; Beushausen, Volker; Belder, Detlev
2011-01-21
In this work, a microfluidic free-flow electrophoresis device with a novel approach for preventing gas bubbles from entering the separation area is presented. This is achieved by integrating partitioning bars to reduce the channel depth between electrode channels and separation chamber in order to obtain electrical contact and simultaneously prevent bubbles from entering the separation area. The three-layer sandwich chip features a reusable carrier plate with integrated ports for fluidic connection combined with a softlithographically cast microfluidic PDMS layer and a sealing glass slide. This design allows for a straightforward and rapid chip prototyping process. The performance of the device is demonstrated by free-flow zone electrophoretic separations of fluorescent dye mixtures as well as by the separation of labeled amines and amino acids with separation voltages up to 297 V.
Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface
NASA Astrophysics Data System (ADS)
Delwiche, K.; Hemond, H.
2017-12-01
Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.
Foam Flow Through a 2D Porous Medium: Evolution of the Bubble Size Distribution
NASA Astrophysics Data System (ADS)
Meheust, Y.; Géraud, B.; Cantat, I.; Dollet, B.
2017-12-01
Foams have been used for decades as displacing fluids for EOR and aquifer remediation, and more recently as carriers of chemical amendments for remediation of the vadose zone. Bulk foams are shear-thinning fluids; but for foams with bubbles of order at least the typical pore size of the porous medium, the rheology cannot be described at the continuum scale, as viscous dissipation occurs mostly at the contact between soap films and solid walls. We have investigated the flow of an initially monodisperse foam through a transparent 2D porous medium[1]. The resulting complex flow phenomenology has been characterized quantitatively from optical measurements of the bubble dynamics. In addition to preferential flow path and local flow intermittency, we observe an irreversible evolution of the probability density function (PDF) for bubbles size as bubbles travel along the porous medium. This evolution is due to bubble fragmentation by lamella division, which is by far the dominant mechanism of film creation/destruction. We measure and characterize this evolution of the PDF as a function of the experimental parameters, and model it numerically based on a fragmentation equation, with excellent agreement. The model uses two ingredients obtained from the experimental data, namely the statistics of the bubble fragmentation rate and of the fragment size distributions[2]. It predicts a nearly-universal scaling of all PDFs as a function of the bubble area normalized by the initial mean bubble area. All the PDFs measured in various experiments, with different mean flow velocities, initial bubble sizes and foam qualities, collapse on a master distribution which is only dependent on the geometry of the medium.References:[1] B. Géraud, S. A. Jones, I. Cantat, B. Dollet & Y. Méheust (2016), WRR 52(2), 773-790. [2] B. Géraud, Y. Méheust, I. Cantat & B. Dollet (2017), Lamella division in a foam flowing through a two-dimensional porous medium: A model fragmentation process, PRL 118, 098003.
Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.
Choi, Munseok; Na, Yang; Kim, Sung-Jin
2015-12-01
In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
On the shape of giant soap bubbles.
Cohen, Caroline; Darbois Texier, Baptiste; Reyssat, Etienne; Snoeijer, Jacco H; Quéré, David; Clanet, Christophe
2017-03-07
We study the effect of gravity on giant soap bubbles and show that it becomes dominant above the critical size [Formula: see text], where [Formula: see text] is the mean thickness of the soap film and [Formula: see text] is the capillary length ([Formula: see text] stands for vapor-liquid surface tension, and [Formula: see text] stands for the liquid density). We first show experimentally that large soap bubbles do not retain a spherical shape but flatten when increasing their size. A theoretical model is then developed to account for this effect, predicting the shape based on mechanical equilibrium. In stark contrast to liquid drops, we show that there is no mechanical limit of the height of giant bubble shapes. In practice, the physicochemical constraints imposed by surfactant molecules limit the access to this large asymptotic domain. However, by an exact analogy, it is shown how the giant bubble shapes can be realized by large inflatable structures.
Enhancements of Nucleate Boiling Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, W. J.
2000-01-01
This paper presents two means for enhancing nucleate boiling and critical heat flux under microgravity conditions: using micro-configured metal-graphite composites as the boiling surface and dilute aqueous solutions of long-chain alcohols as the working fluid. In the former, thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix plays an important role in bubble detachment. Thus boiling-heat transfer performance does not deteriorate in a reduced-gravity environment. In the latter cases, the surface tension-temperature gradient of the long-chain alcohol solutions turns positive as the temperature exceeds a certain value. Consequently, the Marangoni effect does not impede, but rather aids in bubble departure from the heating surface. This feature is most favorable in microgravity. As a result, the bubble size of departure is substantially reduced at higher frequencies. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. In addition, performance equations for nucleate boiling and critical heat flux in dilute aqueous solutions of long-chain alcohols are obtained.
Propagation of a finite bubble in a Hele-Shaw channel of variable depth
NASA Astrophysics Data System (ADS)
Juel, Anne; Franco-Gomez, Andres; Thompson, Alice; Hazel, Andrew
2017-11-01
We study the propagation of finite bubbles in a Hele-Shaw channel, where a centred rail is introduced to provide a small axially-uniform depth constriction. We demonstrate experimentally that this channel geometry can be used as a passive sorting device. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes on the order of the rail width can propagate over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a depth-averaged theory which reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions. In contrast, for larger bubbles and sufficiently large imposed flow rates, we find that initially centred bubbles do not converge onto a steady mode of propagation. Instead they transiently explore weakly unstable steady modes, an evolution which results in their break-up and eventual settling into a steady state of changed topology. The financial support of CONICYT and the Leverhulme Trust are gratefully acknowledged.
Manipulation of Microbubble Clusters Using Focused Ultrasound
NASA Astrophysics Data System (ADS)
Matsuzaki, Hironobu; Osaki, Taichi; Kawaguchi, Kei; Unga, Johan; Ichiyanagi, Mitsuhisa; Azuma, Takashi; Suzuki, Ryo; Maruyama, Kazuo; Takagi, Shu
2017-11-01
In recent years, microbubbles (MBs) are expected to be utilized for the ultrasound drug delivery system (DDS). For the MB-DDS, it is important to establish a method of controlling bubbles and bubble clusters using ultrasound field. The objective of this study is to clarify behaviors of bubble clusters with various physical conditions. MBs in the ultrasound field are subjected to the primary Bjerknes force. The force traps MBs at the focal region of the focused ultrasound field. The trapped MBs form a bubble cluster at the region. A bubble cluster continues growing with absorbing surrounding bubbles until it reaches a maximum size beyond which it disappears from the focal region. In the present study, two kinds of MBs are used for the experiment. One is Sonazoid with average diameter of 2.6 um and resonant frequency of 5 MHz. The other is developed by Teikyo Univ., with average diameter of 1.5 um and presumed resonant frequency of 4 MHz. The bubble cluster's behaviors are analyzed using the high-speed camera. Sonazoid clusters have larger critical size than the other in every frequency, and its cluster size is inversely proportional to the ultrasound frequency, while Teikyo-bubble clusters have different tendency. These results are discussed in the presentation.
Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.
Chen, Qianjin; Luo, Long
2018-04-17
We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.
Bubble induced flow field modulation for pool boiling enhancement over a tubular surface
NASA Astrophysics Data System (ADS)
Raghupathi, P. A.; Joshi, I. M.; Jaikumar, A.; Emery, T. S.; Kandlikar, S. G.
2017-06-01
We demonstrate the efficacy of using a strategically placed enhancement feature to modify the trajectory of bubbles nucleating on a horizontal tubular surface to increase both the critical heat flux (CHF) and the heat transfer coefficient (HTC). The CHF on a plain tube is shown to be triggered by a local dryout at the bottom of the tube due to vapor agglomeration. To mitigate this effect and delay CHF, the nucleating bubble trajectory is modified by incorporating a bubble diverter placed axially at the bottom of the tube. The nucleating bubble at the base of the diverter experiences a tangential evaporation momentum force (EMF) which causes the bubble to grow sideways away from the tube and avoid localized bubble patches that are responsible for CHF initiation. High speed imaging confirmed the lateral displacement of the bubbles away from the diverter closely matched with the theoretical predictions using EMF and buoyancy forces. Since the EMF is stronger at higher heat fluxes, bubble displacement increases with heat flux and results in the formation of separate liquid-vapor pathways wherein the liquid enters almost unobstructed at the bottom and the vapor bubble leaves sideways. Experimental results yielded CHF and HTC enhancements of ˜60% and ˜75%, respectively, with the diverter configuration when compared to a plain tube. This work can be used for guidance in developing enhancement strategies to effectively modulate the liquid-vapor flow around the heater surface at various locations to enhance HTC and CHF.
Air bubbles induce a critical continuous stress to prevent marine biofouling accumulation
NASA Astrophysics Data System (ADS)
Belden, Jesse; Menesses, Mark; Dickenson, Natasha; Bird, James
2017-11-01
Significant shear stresses are needed to remove established hard fouling organisms from a ship hull. Given that there is a link between the amount of time that fouling accumulates and the stress required to remove it, it is not surprising that more frequent grooming requires less shear stress. One approach to mitigate marine biofouling is to continuously introduce a curtain of air bubbles under a submerged surface; it is believed that this aeration exploits the small stresses induced by rising bubbles to continuously prevent accumulation. Although curtains of rising bubbles have successfully prevented biofouling accumulation, it is unclear if a single stream of bubbles could maintain a clean surface. In this talk, we show that single bubble stream aeration can prevent biofouling accumulation in regions for which the average wall stress exceeds approximately 0.01 Pa. This value is arrived at by comparing observations of biofouling growth and prevention from field studies with laboratory measurements that probe the associated flow fields. We also relate the spatial and temporal characteristics of the flow to the size and frequency of the rising bubbles, which informs the basic operating conditions required for aeration to continuously prevent biofouling accumulation.
Analysis of bubble plume spacing produced by regular breaking waves
NASA Astrophysics Data System (ADS)
Phaksopa, J.; Haller, M. C.
2012-12-01
The breaking wave process in the ocean is a significant mechanism for energy dissipation, splash, and entrainment of air. The relationship between breaking waves and bubble plume characteristics is still a mystery because of the complexity of the breaking wave mechanism. This study takes a unique approach to quantitatively analyze bubble plumes produced by regular breaking waves. Various previous studies have investigated the formation and the characteristics of bubble plumes using either field observations, laboratory experiments, or numerical modeling However, in most observational work the plume characteristics have been studied from the underneath the water surface. In addition, though numerical simulations are able to include much of the important physics, the computational costs are high and bubble plume events are only simulated for short times. Hence, bubble plume evolution and generation throughout the surf zone is not yet computationally feasible. In the present work we take a unique approach to analyzing bubble plumes. These data may be of use for model/data comparisons as numerical simulations become more tractable. The remotely sensed video data from freshwater breaking waves in the OSU Large Wave Flume (Catalan and Haller, 2008) are analyzed. The data set contains six different regular wave conditions and the video intensity data are used to estimate the spacing of plume events (wavenumber spectrum), to calculate the spectral width (i.e. the range of plume spacing), and to relate these with the wave conditions. The video intensity data capture the evolution of the wave passage over a fixed bed arranged in a bar-trough morphology. Bright regions represent the moving path or trajectory coincident with bubble plume of each wave. It also shows the bubble foam were generated and released from wave crest shown in the form of bubble tails with almost regular spacing for each wave. The bubble tails show that most bubbles did not move along with wave. For the estimation of wavenumber spectrum, the density is high at low wavenumber and it decreases toward high wavenumber. The average spectrum bandwidth was estimated and represented as the bubble event spacing for each run. It is found that its magnitude varies with wave conditions range from 8.81 - 11.82 and is related to the waveheight. Additionally, the calculated wavenumbers from power density function vary in the range of 0.80 - 1.58 meters-1. It is found that the bubble wavenumbers are mostly higher than the wavenumbers calculated from the linear wave theory between 0.2L-0.7L. In other words, the bubble plume length does not exceed the progressive wavelength.
The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W
Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.; ...
2016-05-26
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. But, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we usemore » traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We also show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. Finally, we uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.« less
The thermodynamic and kinetic interactions of He interstitial clusters with bubbles in W
NASA Astrophysics Data System (ADS)
Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.; Voter, Arthur F.
2016-05-01
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we use traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.
Lakghomi, B; Lawryshyn, Y; Hofmann, R
2015-01-01
Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.
NASA Astrophysics Data System (ADS)
Jansson, Pär; Ferré, Benedicte
2017-04-01
Transport of methane in seawater occurs by diffusion and advection in the dissolved phase, and/or as free gas in form of bubbles. The fate of methane in bubbles emitted from the seafloor depends on both bubble size and ambient conditions. Larger bubbles can transport methane higher into the water column, potentially reaching the atmosphere and contributing to greenhouse gas concentrations and impacts. Single bubble or plume models have been used to predict the fate of bubble mediated methane gas emissions. Here, we present a new process based two-phase (free and dissolved) gas model in one dimension, which has the capability to dynamically couple water column properties such as temperature, salinity and dissolved gases with the free gas species contained in bubbles. The marine two-phase gas model in one dimension (M2PG1) uses a spectrum of bubbles and an Eulerian formulation, discretized on a finite-volume grid. It employs the most up-to-date equations for solubility and compressibility of the included gases, nitrogen, oxygen, carbon dioxide and methane. M2PG1 is an extension of PROBE (Omstedt, 2011), which facilitates atmospheric coupling and turbulence closures to realistically predict vertical mixing of all properties, including dissolved methane. This work presents the model's first application in an Arctic Ocean environment at the landward limit of the methane-hydrate stability zone west of Svalbard, where we observe substantial methane bubble release over longer time periods. The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT. Omstedt, A. (2011). Guide to process based modeling of lakes and coastal seas: Springer.
C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions
NASA Astrophysics Data System (ADS)
Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.
2016-12-01
Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelles, D. S.; Browning, James Frederick; Snow, Clark Sheldon
Er(D,T){sub 2-x} {sup 3}He{sub x}, erbium di-tritide, films of thicknesses 500 nm, 400 nm, 300 nm, 200 nm, and 100 nm were grown and analyzed by Transmission Electron Microscopy, X-Ray Diffraction, and Ion Beam Analysis to determine variations in film microstructure as a function of film thickness and age, due to the time-dependent build-up of {sup 3}He in the film from the radioactive decay of tritium. Several interesting features were observed: One, the amount of helium released as a function of film thickness is relatively constant. This suggests that the helium is being released only from the near surface regionmore » and that the helium is not diffusing to the surface from the bulk of the film. Two, lenticular helium bubbles are observed as a result of the radioactive decay of tritium into {sup 3}He. These bubbles grow along the [111] crystallographic direction. Three, a helium bubble free zone, or 'denuded zone' is observed near the surface. The size of this region is independent of film thickness. Four, an analysis of secondary diffraction spots in the Transmission Electron Microscopy study indicate that small erbium oxide precipitates, 5-10 nm in size, exist throughout the film. Further, all of the films had large erbium oxide inclusions, in many cases these inclusions span the depth of the film.« less
When gasoline containing ethanol is spilled to ground water, natural anaerobic biodegradation of the ethanol can produce copious quantities of methane gas, which bubbles out of the ground water and enters the unsaturated zone. Depending on local circumstances, the concentration...
"Immortal" liquid film formed by colliding bubble at oscillating solid substrates
NASA Astrophysics Data System (ADS)
Zawala, Jan
2016-05-01
This paper presents an experimental study of the behavior of an ascending air bubble (equivalent radius 0.74 mm) colliding with a solid substrate. The substrate is either motionless or oscillating with a precisely adjusted acceleration, slightly higher than gravity. It is shown that the stability of the liquid film formed between the striking bubble and the solid surface depends not only on the hydrophobic/hydrophilic properties of the solid but also on the energetic interrelations in the system. The results indicate that the rupture of the bubble and its attachment at a smooth hydrophobic solid surface are related to the viscous dissipation of energy, leading to a gradual decrease in the bubble deformation, and in consequence in the radius of the formed separating liquid film. When the film radius is small enough, the bubble ruptures and attaches to the hydrophobic solid surface. Moreover, it is shown that when the bubble deformations are forced to be constant, by applying properly adjusted oscillations of the solid substrate (energy supply conditions), bubble rupture can be prevented and a constant bubble bouncing is observed, irrespective of the hydrophobic/hydrophilic properties of the solid substrate. Under such energy supply conditions, the liquid film can be considered "immortal." The numerical calculations performed for the respective system, in which constant kinetic energy is induced, confirm that the liquid film can persist indefinitely owing to its constant radius, which is too large to reach the critical thickness for rupture during the collision time.
Stability, diffusion and interactions of nonlinear excitations in a many body system
NASA Astrophysics Data System (ADS)
Coste, Christophe; Jean, Michel Saint; Dessup, Tommy
2017-04-01
When repelling particles are confined in a quasi-one-dimensional trap by a transverse potential, a configurational phase transition happens. All particles are aligned along the trap axis at large confinement, but below a critical transverse confinement they adopt a staggered row configuration (zigzag phase). This zigzag transition is a subcritical pitchfork bifurcation in extended systems and in systems with cyclic boundary conditions in the longitudinal direction. Among many evidences, phase coexistence is exhibited by localized nonlinear patterns made of a zigzag phase embedded in otherwise aligned particles. We give the normal form at the bifurcation and we show that these patterns can be described as solitary wave envelopes that we call bubbles. They are stable in a large temperature range and can diffuse as quasi-particles, with a diffusion coefficient that may be deduced from the normal form. The potential energy of a bubble is found to be lower than that of the homogeneous bifurcated phase, which explains their stability. We observe also metastable states, that are pairs of solitary wave envelopes which spontaneously evolve toward a stable single bubble. We evidence a strong effect of the discreteness of the underlying particles system and introduce the concept of topological frustration of a bubble pair. A configuration is frustrated when the particles between the two bubbles are not organized in a modulated staggered row. For a nonfrustrated (NF) bubble pair configuration, the bubbles interaction is attractive so that the bubbles come closer and eventually merge as a single bubble. In contrast, the bubbles interaction is found to be repulsive for a frustrated (F) configuration. We describe a model of interacting solitary wave that provides all qualitative characteristics of the interaction force: it is attractive for NF-systems, repulsive for F-systems, and decreases exponentially with the bubbles distance.
Zhang, Qun; Zhang, Qunzhi; Sornette, Didier
2016-01-01
We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the "S&P 500 1987" bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Danny, E-mail: danny-perez@lanl.gov; Sandoval, Luis; Voter, Arthur F.
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. However, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we usemore » traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. We also uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Danny; Sandoval, Luis; Uberuaga, Blas P.
Due to its enviable properties, tungsten is a leading candidate plasma facing material in nuclear fusion reactors. But, like many other metals, tungsten is known to be affected by the high doses of helium atoms incoming from the plasma. Indeed, the implanted interstitial helium atoms cluster together and, upon reaching a critical cluster size, convert into substitutional nanoscale He bubbles. These bubbles then grow by absorbing further interstitial clusters from the matrix. This process can lead to deleterious changes in microstructure, degradation of mechanical properties, and contamination of the plasma. In order to better understand the growth process, we usemore » traditional and accelerated molecular dynamics simulations to investigate the interactions between interstitial He clusters and pre-existing bubbles. These interactions are characterized in terms of thermodynamics and kinetics. We also show that the proximity of the bubble leads to an enhancement of the trap mutation rate and, consequently, to the nucleation of satellite bubbles in the neighborhood of existing ones. Finally, we uncover a number of mechanisms that can lead to the subsequent annihilation of such satellite nanobubbles.« less
Black holes as bubble nucleation sites
NASA Astrophysics Data System (ADS)
Gregory, Ruth; Moss, Ian G.; Withers, Benjamin
2014-03-01
We consider the effect of inhomogeneities on the rate of false vacuum decay. Modelling the inhomogeneity by a black hole, we construct explicit Euclidean instantons which describe the nucleation of a bubble of true vacuum centred on the inhomogeneity. We find that inhomogeneity significantly enhances the nucleation rate over that of the Coleman-de Luccia instanton — the black hole acts as a nucleation site for the bubble. The effect is larger than previously believed due to the contributions to the action from conical singularities. For a sufficiently low initial mass, the original black hole is replaced by flat space during this process, as viewed by a single causal patch observer. Increasing the initial mass, we find a critical value above which a black hole remnant survives the process. This resulting black hole can have a higher mass than the original black hole, but always has a lower entropy. We compare the process to bubble-to-bubble transitions, where there is a semi-classical Lorentzian description in the WKB approximation.
Bubble and Slug Flow at Microgravity Conditions: State of Knowledge and Open Questions
NASA Technical Reports Server (NTRS)
Colin, C.; Fabre, J.; McQuillen, J.
1996-01-01
Based on the experiments carried out over the past decade at microgravity conditions, an overview of our current knowledge of bubbly and slug flows is presented. The transition from bubble to slug flow, the void fraction and the pressure drop are discussed from the data collected in the literature. The transition from bubble to slug flow may be predicted by introducing a critical void fraction that depends on the fluid properties and the pipe diameter; however, the role of coalescence which controls this transition is not clearly understood. The void fraction may be accurately calculated using a drift-flux model. It is shown from local measurements that the drift of the gas with respect to the mixture is due to non-uniform radial distribution of void fraction. The pressure drop happens to be controlled by the liquid flow for bubbly flow whereas for slug flow the experimental results show that pressure drops is larger than expected. From this study, the guidelines for future research in microgravity are given.
Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.
Taylor, M T; Qian, Tiezheng
2016-03-01
The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.
DNA bubble dynamics as a quantum Coulomb problem.
Fogedby, Hans C; Metzler, Ralf
2007-02-16
We study the dynamics of denaturation bubbles in double-stranded DNA. Demonstrating that the associated Fokker-Planck equation is equivalent to a Coulomb problem, we derive expressions for the bubble survival distribution W(t). Below Tm, W(t) is associated with the continuum of scattering states of the repulsive Coulomb potential. At Tm, the Coulomb potential vanishes and W(t) assumes a power-law tail with nontrivial dynamic exponents: the critical exponent of the entropy loss factor may cause a finite mean lifetime. Above Tm (attractive potential), the long-time dynamics is controlled by the lowest bound state. Correlations and finite size effects are discussed.
Evaporation of droplets in a Champagne wine aerosol
NASA Astrophysics Data System (ADS)
Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas
2016-04-01
In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry.
Evaporation of droplets in a Champagne wine aerosol.
Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas
2016-04-29
In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry.
Volatile dynamics in crystal-rich magma bodies, perspectives from laboratory experiments and theory
NASA Astrophysics Data System (ADS)
Faroughi, S.; Parmigiani, A.; Huber, C.
2013-12-01
The amount of volatiles and the dynamics of bubbles play a significant role on the transition between different volcanic eruption behaviors. The transport of exsolved volatiles through zoned magma chambers is complex and remains poorly constrained. Here we focus on the different transport of volatiles under two end member regimes: crystal-poor systems (bubbles form a suspension) versus crystal-rich reservoirs (multiphase porous media flow). We present a combination of multiphase flow laboratory experiments (using silicon oil and water) and a theoretical argument based on Stokes flow streamfunctions to contrast the differences between the transport of exsolved volatiles in both regimes. The first set of experiments involves the buoyant migration of water droplets in silicon oil in the absence of glass beads. We measure the non-linear hydrodynamic interaction between bubbles and its effect on slowing down the average flux of water droplets as the water volume fraction increases. Our experimental results are compared to a theoretical argument in which a streamfunction formulation is used to estimate the effect of a suspension on bubble migration. We find a good agreement between the new theory and our experimental results. The second set of experiments focuses on the transport of water (non-wetting fluid) in porous media saturated with viscous silicon oils. Contrary to suspension dynamics, in multiphase porous media, an increase in the saturation of non-wetting fluid leads to a non-linear increase in its volumetric flux. The steady-state migration of non-wetting fluid is controlled by the formation of viscous fingering instability that greatly enhances transport. We propose that the regime of energy dissipation during the migration of bubbles in heterogeneous magma reservoirs can change, leading to bubble accumulation in crystal-poor regions as fingering becomes unstable and volatiles form a disperse bubble suspension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solis, D.
1998-10-16
The DART code is based upon a thermomechanical model that can predict swelling, recrystallization, fuel-meat interdiffusion and other issues related with MTR dispersed FE behavior under irradiation. As a part of a common effort to develop an optimized version of DART, a comparison between DART predictions and CNEA miniplates irradiation experimental data was made. The irradiation took place during 1981-82 for U3O8 miniplates and 1985-86 for U{sub 3}Si{sub x} at Oak Ridge Research Reactor (ORR). The microphotographs were studied by means of IMAWIN 3.0 Image Analysis Code and different fission gas bubbles distributions were obtained. Also it was possible tomore » find and identify different morphologic zones. In both kinds of fuels, different phases were recognized, like particle peripheral zones with evidence of Al-U reaction, internal recrystallized zones and bubbles. A very good agreement between code prediction and irradiation results was found. The few discrepancies are due to local, fabrication and irradiation uncertainties, as the presence of U{sub 3}Si phase in U{sub 3}Si{sub 2} particles and effective burnup.« less
NASA Astrophysics Data System (ADS)
Baidakov, Vladimir G.
2016-02-01
The process of bubble nucleation in a Lennard-Jones (LJ) liquid is studied by molecular dynamics (MD) simulation. The bubble nucleation rate J is determined by the mean life-time method at temperatures above that of the triple point in the region of negative pressures. The results of simulation are compared with classical nucleation theory (CNT) and modified classical nucleation theory (MCNT), in which the work of formation of a critical bubble is determined in the framework of the van der Waals-Cahn-Hilliard gradient theory (GT). It has been found that the values of J obtained in MD simulation systematically exceed the data of CNT, and this excess in the nucleation rate reaches 8-10 orders of magnitude close to the triple point temperature. The results of MCNT are in satisfactory agreement with the data of MD simulation. To describe the properties of vapor-phase nuclei in the framework of GT, an equation of state has been built up which describes stable, metastable and labile regions of LJ fluids. The surface tension of critical bubbles γ has been found from CNT and data of MD simulation as a function of the radius of curvature of the surface of tension R*. The dependence γ(R*) has also been calculated from GT. The Tolman length has been determined, which is negative and in modulus equal to ≈(0.1 - 0.2) σ. The paper discusses the applicability of the Tolman formula to the description of the properties of critical nuclei in nucleation.
Modeling of Vapor Bubble Growth Under Nucleate Boiling Conditions in Reduced Gravity
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W.
1995-01-01
A dynamic model is developed to describe the evolution of a vapor bubble growing at a nucleation site on a superheated surface under arbitrary gravity. The bubble is separated from the surface by a thin microlayer and grows due to the evaporation from the microlayer interface. The average thickness of the microlayer increases as the bubble expands along the surface if the evaporation rate is lower than some critical value. The corresponding threshold value of the surface temperature has to be associated with the burn-out crisis. Two main reasons make for bubble separation, which are the buoyancy force and a force caused by the vapor momentum that comes to the bubble with vapor molecules. The latter force is somewhat diminished if condensation takes place at the upper bubble surface in subcooled liquids. The action of the said forces is opposed by inertia of the additional mass of liquid as the bubble center rises above the surface and by inertia of liquid being expelled by the growing bubble in radial directions. An extra pressure force arises due to the liquid inflow into the microlayer with a finite velocity. The last force helps in holding the bubble close to the surface during an initial stage of bubble evolution. Two limiting regimes with distinctly different properties can be singled out, depending on which of the forces that favor bubble detachment dominates. Under conditions of moderately reduced gravity, the situation is much the same as in normal gravity, although the bubble detachment volume increases as gravity diminishes. In microgravity, the buoyancy force is negligible. Then the bubble is capable of staying near the surface for a long time, with intensive evaporation from the microlayer. It suggests a drastic change in the physical mechanism of heat removal as gravity falls below a certain sufficiently low level. Inferences of the model and conclusions pertaining to effects caused on heat transfer processes by changes in bubble hydrodynamics induced by gravity are discussed in connection with experimental evidence, both available in current and in as yet unpublished literature.
NASA Technical Reports Server (NTRS)
Corrigan, Jackie
2004-01-01
A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM, a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.
Bubble nucleation in simple and molecular liquids via the largest spherical cavity method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Miguel A., E-mail: m.gonzalez12@imperial.ac.uk; Department of Chemistry, Imperial College London, London SW7 2AZ; Abascal, José L. F.
2015-04-21
In this work, we propose a methodology to compute bubble nucleation free energy barriers using trajectories generated via molecular dynamics simulations. We follow the bubble nucleation process by means of a local order parameter, defined by the volume of the largest spherical cavity (LSC) formed in the nucleating trajectories. This order parameter simplifies considerably the monitoring of the nucleation events, as compared with the previous approaches which require ad hoc criteria to classify the atoms and molecules as liquid or vapor. The combination of the LSC and the mean first passage time technique can then be used to obtain themore » free energy curves. Upon computation of the cavity distribution function the nucleation rate and free-energy barrier can then be computed. We test our method against recent computations of bubble nucleation in simple liquids and water at negative pressures. We obtain free-energy barriers in good agreement with the previous works. The LSC method provides a versatile and computationally efficient route to estimate the volume of critical bubbles the nucleation rate and to compute bubble nucleation free-energies in both simple and molecular liquids.« less
NASA Astrophysics Data System (ADS)
Dallaston, Michael; McCue, Scott
2012-11-01
When an inviscid bubble expands into a viscous fluid in a Hele-Shaw cell, the bubble boundary is unstable, in general forming long fingers (the Saffman-Taylor instability). In order to make the problem well-posed, a regularising boundary effect must be included. The most widely studied of these are surface tension, which penalises high curvatures, and kinetic undercooling, which penalises high velocities. Both these effects act as a stabilising influence on the free boundary. Less attention has been paid to the case of contracting bubbles, which shrink to a single point (or points) in finite time. In this case, the two effects are in competition, as surface tension stabilises the boundary, while kinetic undercooling destabilises it. This leads to bifurcation behaviour in the asymptotic (near-extinction) shape of the bubble as the relative strengths of the two effects are varied. In particular, there is a critical range of parameter values for which both circular and slit-type bubbles are stable, with a third (unstable) oval-type shape also present. We discuss some numerical and analytic techniques for solving the full free boundary problem and for exploring this interesting extinction behaviour.
Cavitation in confined water: ultra-fast bubble dynamics
NASA Astrophysics Data System (ADS)
Vincent, Olivier; Marmottant, Philippe
2012-02-01
In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.
NASA Astrophysics Data System (ADS)
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-01
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Kruppa, Tobias; Neuhaus, Tim; Messina, René; Löwen, Hartmut
2012-04-07
A binary mixture of particles interacting via long-ranged repulsive forces is studied in gravity by computer simulation and theory. The more repulsive A-particles create a depletion zone of less repulsive B-particles around them reminiscent to a bubble. Applying Archimedes' principle effectively to this bubble, an A-particle can be lifted in a fluid background of B-particles. This "depletion bubble" mechanism explains and predicts a brazil-nut effect where the heavier A-particles float on top of the lighter B-particles. It also implies an effective attraction of an A-particle towards a hard container bottom wall which leads to boundary layering of A-particles. Additionally, we have studied a periodic inversion of gravity causing perpetuous mutual penetration of the mixture in a slit geometry. In this nonequilibrium case of time-dependent gravity, the boundary layering persists. Our results are based on computer simulations and density functional theory of a two-dimensional binary mixture of colloidal repulsive dipoles. The predicted effects also occur for other long-ranged repulsive interactions and in three spatial dimensions. They are therefore verifiable in settling experiments on dipolar or charged colloidal mixtures as well as in charged granulates and dusty plasmas.
Liter-scale production of uniform gas bubbles via parallelization of flow-focusing generators.
Jeong, Heon-Ho; Yadavali, Sagar; Issadore, David; Lee, Daeyeon
2017-07-25
Microscale gas bubbles have demonstrated enormous utility as versatile templates for the synthesis of functional materials in medicine, ultra-lightweight materials and acoustic metamaterials. In many of these applications, high uniformity of the size of the gas bubbles is critical to achieve the desired properties and functionality. While microfluidics have been used with success to create gas bubbles that have a uniformity not achievable using conventional methods, the inherently low volumetric flow rate of microfluidics has limited its use in most applications. Parallelization of liquid droplet generators, in which many droplet generators are incorporated onto a single chip, has shown great promise for the large scale production of monodisperse liquid emulsion droplets. However, the scale-up of monodisperse gas bubbles using such an approach has remained a challenge because of possible coupling between parallel bubbles generators and feedback effects from the downstream channels. In this report, we systematically investigate the effect of factors such as viscosity of the continuous phase, capillary number, and gas pressure as well as the channel uniformity on the size distribution of gas bubbles in a parallelized microfluidic device. We show that, by optimizing the flow conditions, a device with 400 parallel flow focusing generators on a footprint of 5 × 5 cm 2 can be used to generate gas bubbles with a coefficient of variation of less than 5% at a production rate of approximately 1 L h -1 . Our results suggest that the optimization of flow conditions using a device with a small number (e.g., 8) of parallel FFGs can facilitate large-scale bubble production.
NASA Astrophysics Data System (ADS)
Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro
2016-11-01
Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).
NASA Astrophysics Data System (ADS)
Boufadel, Michel C.; Gao, Feng; Zhao, Lin; Özgökmen, Tamay; Miller, Richard; King, Thomas; Robinson, Brian; Lee, Kenneth; Leifer, Ira
2018-03-01
Improved understanding of the character of an uncontrolled pipeline flow is critical for the estimation of the oil discharge and droplet size distribution both essential for evaluating oil spill impact. Measured oil and gas properties at the wellhead of the Macondo255 and detailed numerical modeling suggested that the flow within the pipe could have been "churn," whereby oil and gas tumble violently within the pipe and is different from the bubbly flow commonly assumed for that release. The churn flow would have produced 5 times the energy loss in the pipe compared to bubbly flow, and its plume would have entrained 35% more water than that of the bubbly flow. Both findings suggest that the oil discharge in Deepwater Horizon could have been overestimated, by up to 200%. The resulting oil droplet size distribution of churn flow is likely smaller than that of bubbly flow.
Evaporation of droplets in a Champagne wine aerosol
Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas
2016-01-01
In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry. PMID:27125240
A model for large amplitude oscillations of coated bubbles accounting for buckling and rupture
NASA Astrophysics Data System (ADS)
Marmottant, Philippe; van der Meer, Sander; Emmer, Marcia; Versluis, Michel; de Jong, Nico; Hilgenfeldt, Sascha; Lohse, Detlef
2005-12-01
We present a model applicable to ultrasound contrast agent bubbles that takes into account the physical properties of a lipid monolayer coating on a gas microbubble. Three parameters describe the properties of the shell: a buckling radius, the compressibility of the shell, and a break-up shell tension. The model presents an original non-linear behavior at large amplitude oscillations, termed compression-only, induced by the buckling of the lipid monolayer. This prediction is validated by experimental recordings with the high-speed camera Brandaris 128, operated at several millions of frames per second. The effect of aging, or the resultant of repeated acoustic pressure pulses on bubbles, is predicted by the model. It corrects a flaw in the shell elasticity term previously used in the dynamical equation for coated bubbles. The break-up is modeled by a critical shell tension above which gas is directly exposed to water.
Cavitation propagation in water under tension
NASA Astrophysics Data System (ADS)
Noblin, Xavier; Yip Cheung Sang, Yann; Pellegrin, Mathieu; Materials and Complex Fluids Team
2012-11-01
Cavitation appears when pressure decreases below vapor pressure, generating vapor bubbles. It can be obtain in dynamical ways (acoustic, hydraulic) but also in quasi-static conditions. This later case is often observed in nature, in trees, or during the ejection of ferns spores. We study the cavitation bubbles nucleation dynamics and its propagation in a confined microfabricated media. This later is an ordered array of microcavities made in hydrogel filled with water. When the system is put into dry air, it dehydrates, water leaves the cavities and tension (negative pressure) builds in the cavities. This can be sustained up to a critical pressure (of order -20 MPa), then cavitation bubbles appear. We follow the dynamics using ultra high speed imaging. Events with several bubbles cavitating in a few microseconds could be observed along neighboring cells, showing a propagation phenomenon that we discuss. ANR CAVISOFT 2010-JCJC-0407 01.
Characterisation of bubbles in liquids using acoustic techniques
NASA Astrophysics Data System (ADS)
Ramble, David Gary
1997-12-01
This thesis is concerned with the characterisation of air bubbles in a liquid through the use of a range of acoustic techniques, with the ultimate aim of minimising the ambiguity of the result and the complexity of the task. A bubble is particularly amenable to detection by using acoustical methods because there usually exists a large acoustic impedance mismatch between the gas/vapour inside the bubble and that of the surrounding liquid. The bubble also behaves like a single degree-of-freedom oscillator when excited, and as such exhibits a well-defined resonance frequency which is related to its radius. Though techniques which exploit this resonance property of the bubble are straightforward to apply, the results are prone to ambiguities as larger bubbles can geometrically scatter more sound than a smaller resonant bubble. However, these drawbacks can be overcome by using acoustical methods which make use of the nonlinear behaviour of bubbles. A particular nonlinear technique monitors the second harmonic emission of the bubble which is a global maximum at resonance. In addition, a two- frequency excitation technique is used which involves exciting the bubble with a fixed high frequency signal (the imaging signal, ωi) of the order of megahertz, and a lower variable frequency (the pumping signal, ωp) which is tuned to the bubble's resonance. The bubble couples these two sound fields together to produce sum-and-difference terms which peak at resonance. The two most promising combination frequency signals involve the coupling of the bubble's fundamental with the imaging frequency to give rise to a ωi+ωp signal, and the coupling of a subharmonic signal at half the resonance frequency of the bubble to give rise to a ωi/pmωp/2 signal. Initially, theory is studied which outlines the advantages and disadvantages of each of the acoustic techniques available. Experiments are then conducted in a large tank of water on simple bubble populations, ranging from stationary single and paired bubbles, to a single rising bubble stream. The techniques are first applied sequentially for calibration purposes and then a selection are applied simultaneously to enable a direct comparison of these methods. Following this, the techniques are applied to the more challenging and practical acoustic environment of a fluid-filled pipe, where the first experimental measurement in a pipe of the ωi/pm ωp/2 signal is obtained. The mechanisms and theory responsible for the optimal acoustic techniques are then investigated further, where it is shown that the ωi/pm ωp signal is a particularly robust signal, whereas the ωi/pmωp/2 signal's main drawback is related to its parametric nature. This last point is demonstrated by the very good agreement obtained when comparing the experimentally measured ωi/pmωp/2 threshold with the onset threshold for surface waves set-up around the bubble wall, calculated using surface-wave theory derived for spherical surfaces. Therefore, because of its greater reliability (with respect to repeatability and lack of ambiguity) compared to all the other monitored signals (ωp,/ 2ωp,/ ωp/2,/ ωp,/ ωi/pm 2ωp and ωi/pm ωp/2), the ωi/pmωp signal was chosen to investigate for the first time the bubble population in the surf zone. Finally, from the results of the sea trials and the laboratory results an optimal bubble sizing methodology is given where the limitations of one technique can find compensation in the deployment of another.
NASA Astrophysics Data System (ADS)
Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann, G.
2012-04-01
More than 500 bubble-induced hydroacoustic anomalies (flares) were found in the water column above the seafloor in the study area comprising about 430 km2 at the Don-Kuban paleo-fan (Eastern Black Sea) by using ship mounted single beam and multibeam echosounders. Almost all flares originated from the seafloor above the gas hydrate stability zone (GHSZ), which in that region is located below ~700 m water depth. This observation confirms the sealing mechanism of gas hydrate, which impedes migration of free gas through the GHSZ and subsequent bubble emission from the seafloor. However, an intense seep site, called the "Kerch seep area" was discovered as an exception at 890 m water depth well within the GHSZ. In situ temperature measurements in shallow sediments indicate locally elevated temperatures probably caused by enhanced upward fluid flow. The base of the GHSZ in this region is generally situated at about 150 m below the seafloor. However, the local thermal anomalies result in a thinning of the gas hydrate occurrence zone to only a few meters below the seafloor and allow free gas to reach the seafloor. At sites where gas migrated into near-surface deposits, shallow gas hydrate deposits evolved and up-doming of overlying sediments led to the formation of mounds rising several meters from the surrounding seafloor. Further gas bubbles ascending from greater depth are accumulated below the gas hydrate layer at the base of the mound structures and migrate horizontally to their rims. At the mound edges gas bubbles either might form fresh gas hydrates and increase the extent of the mound structures by pushing up overlying sediments or escape at several sites into the water column. Two mounds were mapped in ultra-high resolution during dives with the autonomous underwater vehicle 'AUV MARUM SEAL 5000'. Several individual flares were detected in the Kerch seep area using hydroacoustic systems. Repeated surveys in that area conducted during three cruises within four years suggested that gas discharge varied spatially and temporally while the total number of flares remained rather constant. During seafloor inspections with MARUḾs remotely operated vehicle 'ROV QUEST 4000 m' gas bubble emission sites were investigated in detail. Gas bubbles collected during the ROV dives mainly consisted of methane predominantly of microbial origin. By analyzing the high-definition video material the gas flux from several bubble emission sites was calculated. In combination with the hydroacoustic results (flare distributions) it is estimated that about 2.2 - 87 × 106 mol CH4/yr are emitted from the seafloor at the Kerch seep area. Despite this high mass of methane injected into the hydrosphere, the peak of the highest flares at ~350 m water depth as revealed by echosounder recording suggest that the ascending methane completely dissolves in the water column and does not pass the sea-atmosphere boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martens, C.S.; Albert, D.B.; Alperin, M.J.
Methane concentrations in the pore waters of Eckernfoerde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling dissolved and gas bubble methane distributions in the bay's sediments is indirectly revealed through methane concentration versus depth profiles, depth variations in the stable C and H isotope composition of methane, and the C isotope composition of total dissolved inorganic carbon ({Sigma}CO{submore » 2}). Direct radiotracer measurements indicate that AMO rates of over 15 mM/yr are focused at the base of the sulfate reduction zone. Diagenetic equations that describe the depth destructions of the {delta}{sup 13}C and {delta}D values of methane reproduce isotopic shifts observed throughout the methane oxidation zone and are best fit with kinetic isotope fractionation factors of 1.012 {+-} 0.001 and 1.120 {plus{underscore}minus} 0.020 respectively.« less
Zhang, Qun; Zhang, Qunzhi; Sornette, Didier
2016-01-01
We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS) structures in the log-price dynamics to diagnose financial bubbles by providing three main innovations. First, we introduce the quantile regression to the LPPLS detection problem. This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori unknown complicated residuals. Second, we propose to combine the many quantile regressions with a multi-scale analysis, which aggregates and consolidates the obtained ensembles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™ and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed study of the “S&P 500 1987” bubble and presenting analyses of 16 historical bubbles, we show that the quantile regression of LPPLS signals contributes useful early warning signals. The comparison between the constructed signals and the price development in these 16 historical bubbles demonstrates their significant predictive ability around the real critical time when the burst/rally occurs. PMID:27806093
Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.
2016-10-01
Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo ..alpha..-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd2Ti2O7 over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd2Ti2O7 implanted with 2 x 1016 He/cm2, even after post-implantation irradiations with 7 MeV Au3+ at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd2Ti2O7 and pristine Gd2Ti2O7, respectively,more » after implantation of 2 x 1017 He/cm2. The critical He concentration for bubble nucleation in Gd2Ti2O7 is estimated to be 6 at.% He.« less
Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C
2015-03-01
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated. Copyright © 2014. Published by Elsevier B.V.
Sujith, K S; Ramachandran, C N
2016-02-07
The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.
Bubble Dynamics on a Heated Surface
NASA Technical Reports Server (NTRS)
Kassemi, M.; Rashidnia, N.
1999-01-01
In this work, we study steady and oscillatory thermocapillary and natural convective flows generated by a bubble on a heated solid surface. The interaction between gas and vapor bubbles with the surrounding fluid is of interest for both space and ground-based processing. A combined numerical-experimental approach is adopted here. The temperature field is visualized using Mach-Zehnder and/or Wollaston Prism Interferometry and the flow field is observed by a laser sheet flow visualization technique. A finite element numerical model is developed which solves the transient two-dimensional continuity, momentum, and energy equations and includes the effects of temperature-dependent surface tension and bubble surface deformation. Below the critical Marangoni number, the steady state low-g and 1-g temperature and velocity fields predicted by the finite element model are in excellent agreement with both the visualization experiments in our laboratory and recently published experimental results in the literature. Above the critical Marangoni number, the model predicts an oscillatory flow which is also closely confirmed by experiments. It is shown that the dynamics of the oscillatory flow are directly controlled by the thermal and hydrodynamic interactions brought about by combined natural and thermocapillary convection. Therefore, as numerical simulations show, there are considerable differences between the 1-g and low-g temperature and flow fields at both low and high Marangoni numbers. This has serious implications for both materials processing and fluid management in space.
Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina
2016-01-01
Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.
Magma deformation and emplacement in rhyolitic dykes
NASA Astrophysics Data System (ADS)
McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter
2016-04-01
Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle-ductile microtextures and bubble populations point towards multi-step and multi-rate magma decompression, and we propose that gas overpressure in bubbles created tensile micro-cracks, whose coalescence culminated in macroscopic fragmentation. Finally, we infer that bubble collapse was associated with both localised brittle magma failure at shallow levels and macroscopic magma fragmentation deeper within the magmatic system. Processes recorded by the Húsafell dyke exposures appear akin to those occurring in the shallow conduits of Chaitén and Cordón Caulle during recent rhyolitic eruptions[2,3]. The field evidence presented here therefore bridges the gap between eruption observations and the deeper geological record, and so provides new insight into conduit evolution during explosive-hybrid-effusive eruptive phases[2,3] and the influence of country rock. The parallels between intrusive dyke textures and those found in extruded silicic lavas suggest that processes recorded in the dykes, including bubble collapse, volatile resorption, thermally-induced vesiculation and the formation of brittle-ductile shear zones, also occur within extrusive flows, contributing to their extreme textural heterogeneity[4]. [1] Saemundsson K & Noll H (1974) Jökull 24, 40-59. [2] Schipper CI et al. (2013) JVGR, 262, 25-37. [3] Castro JC et al. (2014) EPSL, 405, 52-61. [4] Shields JK et al. (2016) JVGR, 310, 137-158.
Cavitation studies in microgravity
NASA Astrophysics Data System (ADS)
Kobel, Philippe; Obreschkow, Danail; Farhat, Mohamed; Dorsaz, Nicolas; de Bosset, Aurele
The hydrodynamic cavitation phenomenon is a major source of erosion for many industrial systems such as cryogenic pumps for rocket propulsion, fast ship propellers, hydraulic pipelines and turbines. Erosive processes are associated with liquid jets and shockwaves emission fol-lowing the cavity collapse. Yet, fundamental understanding of these processes requires further cavitation studies inside various geometries of liquid volumes, as the bubble dynamics strongly depends the surrounding pressure field. To this end, microgravity represents a unique platform to produce spherical fluid geometries and remove the hydrostatic pressure gradient induced by gravity. The goal of our first experiment (flown on ESA's parabolic flight campaigns 2005 and 2006) was to study single bubble dynamics inside large spherical water drops (having a radius between 8 and 13 mm) produced in microgravity. The water drops were created by a micro-pump that smoothly expelled the liquid through a custom-designed injector tube. Then, the cavitation bubble was generated through a fast electrical discharge between two electrodes immersed in the liquid from above. High-speed imaging allowed to analyze the implications of isolated finite volumes and spherical free surfaces on bubble evolution, liquid jets formation and shock wave dynamics. Of particular interest are the following results: (A) Bubble lifetimes are shorter than in extended liquid volumes, which could be explain by deriving novel corrective terms to the Rayleigh-Plesset equation. (B) Transient crowds of micro-bubbles (smaller than 1mm) appeared at the instants of shockwaves emission. A comparison between high-speed visualizations and 3D N-particle simulations of a shock front inside a liquid sphere reveals that focus zones within the drop lead to a significantly increased density of induced cavitation. Considering shock wave crossing and focusing may hence prove crucially useful to understand the important process of cavitation erosion. The aim of our future microgravity experiment is to assess the direct effects of gravity on cavitation bubble collapse through a comparison of single cavitation bubbles collapsing in mi-crogravity, normal gravity, and hypergravity. In particular, we shall investigate the shape of the bubble in its final collapse stage and the amount of energy dissipated in the dominant collapse channels, such as liquid jet, shock wave, and rebound bubble. The highly spherical bubbles will be produced via a point-like plasma generated by a high power laser beam. One major hypothesis that we will test is an increase in shock wave energy with decreasing gravity as a consequence of the higher final sphericity and suppression of liquid jets. To support this, we introduce an analytical model for the gravity-perturbed asymmetric collapse of spherical bubbles, and demonstrate that all initially spherical bubbles develop a gravity-related vertical jet along their collapse.
Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification
NASA Technical Reports Server (NTRS)
Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.
1999-01-01
Solidification experiments, especially microgravity solidification experiments are often hampered by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there are currently no effective means of preventing their formation or eliminating their adverse effects, particularly, during low-g experiments. Marangoni Convection caused by these voids can drastically change the transport processes in the melt and, therefore, introduce enormous difficulties in interpreting the results of the space investigations. Recent microgravity experiments by Matthiesen, Andrews, and Fripp are all good examples of how the presence of voids and bubbles affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. In this work we examine mixing caused by Marangoni convection generated by voids and bubbles in the melt during both 1-g and low-g solidification experiments. The objective of the research is to perform a detailed and comprehensive combined numerical-experimental study of Marangoni convection caused by voids during the solidification process and to show how it can affect segregation and growth conditions by modifying the flow, temperature, and species concentration fields in the melt. While Marangoni convection generated by bubbles and voids in the melt can lead to rapid mixing that would negate the benefits of microgravity processing, it could be exploited in some terrestrial processing to ensure effective communication between a melt/solid interface and a gas phase stoichiometry control zone. Thus we hope that this study will not only aid us in interpreting the results of microgravity solidification experiments hampered by voids and bubbles but to guide us in devising possible means of minimizing the adverse effects of Marangoni convection in future space experiments or of exploiting its beneficial mixing features in ground-based solidification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juanes, Ruben
The overall goals of this research are: (1) to determine the physical fate of single and multiple methane bubbles emitted to the water column by dissociating gas hydrates at seep sites deep within the hydrate stability zone or at the updip limit of gas hydrate stability, and (2) to quantitatively link theoretical and laboratory findings on methane transport to the analysis of real-world field-scale methane plume data placed within the context of the degrading methane hydrate province on the US Atlantic margin. The project is arranged to advance on three interrelated fronts (numerical modeling, laboratory experiments, and analysis of field-basedmore » plume data) simultaneously. The fundamental objectives of each component are the following: Numerical modeling: Constraining the conditions under which rising bubbles become armored with hydrate, the impact of hydrate armoring on the eventual fate of a bubble’s methane, and the role of multiple bubble interactions in survival of methane plumes to very shallow depths in the water column. Laboratory experiments: Exploring the parameter space (e.g., bubble size, gas saturation in the liquid phase, “proximity” to the stability boundary) for formation of a hydrate shell around a free bubble in water, the rise rate of such bubbles, and the bubble’s acoustic characteristics using field-scale frequencies. Field component: Extending the results of numerical modeling and laboratory experiments to the field-scale using brand new, existing, public-domain, state-of-the-art real world data on US Atlantic margin methane seeps, without acquiring new field data in the course of this particular project. This component quantitatively analyzes data on Atlantic margin methane plumes and place those new plumes and their corresponding seeps within the context of gas hydrate degradation processes on this margin.« less
Numerical relativity and the early Universe
NASA Astrophysics Data System (ADS)
Mironov, Sergey
2016-10-01
We consider numerical simulations in general relativity in ADM formalism with cosmological ansatz for the metric. This ansatz is convenient for investigations of the Universe creation in laboratory with Galileons. Here we consider toy model for the software: spherically symmetric scalar field minimally coupled to the gravity with asymmetric double well potential. We studied the dependence of radius of critical bubble on the parameters of the theory. It demonstrates the wide applicability of thin-wall approximation. We did not find any kind of stable bubble solution.
Resonances, radiation pressure and optical scattering phenomena of drops and bubbles
NASA Technical Reports Server (NTRS)
Marston, P. L.; Goosby, S. G.; Langley, D. S.; Loporto-Arione, S. E.
1982-01-01
Acoustic levitation and the response of fluid spheres to spherical harmonic projections of the radiation pressure are described. Simplified discussions of the projections are given. A relationship between the tangential radiation stress and the Konstantinov effect is introduced and fundamental streaming patterns for drops are predicted. Experiments on the forced shape oscillation of drops are described and photographs of drop fission are displayed. Photographs of critical angle and glory scattering by bubbles and rainbow scattering by drops are displayed.
Prediction of thickness distribution of thermoformed multilayer ABS/PMMA sheets
NASA Astrophysics Data System (ADS)
Jobey, Caroline; Allanic, Nadine; Mousseau, Pierre; Deterre, Rémi
2016-10-01
In thermoforming, one of the main difficulties is to avoid the presence of weak thickness in the most deformed zones. After the heating stage, a bubbling step, leading to a first rate of deformation, is often used. In this work, we assess how the initial bubbling deformation can be controlled in order to obtain a homogeneous final thickness of the product. Experiments are performed on a multilayer sheet product. An industrial mould, corresponding to a casing of a non-licensed car, was adapted on a lab thermoformer. After presenting experimental thermal profiles of the multilayer sheets measured during the heating stage, a first geometric model is investigated to predict the thickness distribution. Numerical results are compared with measurements.
Visualization of entry flow separation for oscillating flow in tubes
NASA Technical Reports Server (NTRS)
Qiu, Songgang; Simon, Terence W.
1992-01-01
Neutrally buoyant helium-filled soap bubbles with laser illumination are used to document entry flow separation for oscillating flow in tubes. For a symmetric entry case, the size of the separation zone appears to mildly depend on Reynolds number in the acceleration phase, but is roughly Reynolds number independent in the deceleration phase. For the asymmetric entry case, the separation zone was larger and appeared to grow somewhat during the deceleration phase. The separation zones for both entry geometry cases remain relatively small throughout the cycle. This is different from what would be observed in all-laminar, oscillator flows and is probably due to the high turbulence of the flow, particularly during the deceleration phase of the cycle.
A study on air bubble wetting: Role of surface wettability, surface tension, and ionic surfactants
NASA Astrophysics Data System (ADS)
George, Jijo Easo; Chidangil, Santhosh; George, Sajan D.
2017-07-01
Fabrication of hydrophobic/hydrophilic surfaces by biomimicking nature has attracted significant attention recently due to their potential usage in technologies, ranging from self-cleaning to DNA condensation. Despite the potential applications, compared to surfaces of tailored wettability, less attention has been paid towards development and understanding of air bubble adhesion and its dynamics on surfaces with varying wettability. In this manuscript, following the commonly used approach of oxygen plasma treatment, polydimethylsiloxane surfaces with tunable wettability are prepared. The role of plasma treatment conditions on the surface hydrophilicity and the consequent effect on adhesion dynamics of an underwater air bubble is explored for the first time. The ATR-FTIR spectroscopic analysis reveals that the change in hydrophilicity arises from the chemical modification of the surface, manifested as Si-OH vibrations in the spectra. The thickness of the formed thin liquid film at the surface responsible for the experimentally observed air bubble repellency is estimated from the augmented Young-Laplace equation. The concentration dependent studies using cationic as well as anionic surfactant elucidate that the reduced surface tension of the aqueous solution results in a stable thicker film and causes non-adherence of air bubble to the aerophilic surface. Furthermore, the study carried out to understand the combined effect of plasma treatment and surfactants reveals that even below critical micelle concentration, a negatively charged surface results in air bubble repellency for the anionic surfactant, whereas only enhanced air bubble contact angle is observed for the cationic surfactant.
NASA Astrophysics Data System (ADS)
Robertson, J.; Metcalfe, G.; Wang, S.; Barnes, S. J.
2014-12-01
The concentration of bubbles, crystals or droplets into small volumes of magma is a key trigger for many interesting magmatic processes. For example, gas slugs driving Strombolian eruptions form from the coalesence of exsolved bubbles within a volcanic conduit, while Ni-Cu-PGE magmatic sulfide deposits require a concentration of dense sulfide droplets from a large volume of magma to form a massive ore body. However the physical mechanism for this clustering remains unresolved - especially since small particles in active magma flows are expected to mostly track flow streamlines rather than clustering. We have uncovered a previously unreported clustering mechanism which is applicable to magmatic flows. This mechanism involves the interaction of particles with two kinds of chaotic flow structure: (a) high-strain regions within the well-mixed chaotic zones of the flow, and (b) unmixed islands of stability within the chaotic flow, known as Kolmogorov-Arnold-Moser (KAM) regions. The first figure shows the difference between chaotic and KAM regions in a chaotic laminar pipe flow. Trapping occurs when particles are scattered from high-strain regions in the chaotic zones and become trapped in the KAM regions, leading to a rapid concentration of particles relative to their original distribution (shown in the second series of figures). Using a combination of these analogue experiments and theoretical analysis we outline the conditions under which this clustering process can occur. We examine the onset of secondary density-related instabilities and the effects of increased particle-particle interaction within the clustered particles, and highlight the impact of particle clustering on the dynamics of magma ascent and emplacement.
An arthroscopic evaluation of the anatomical "critical zone".
Naidoo, N; Lazarus, L; Osman, S A; Satyapal, K S
2017-01-01
The "critical zone", a region of speculated vascularity, is situated approximately 10 mm proximal to the insertion of the supraspinatus tendon. Despite its obvious role as an anatomical landmark demarcator, its patho-anatomic nature has been identified as the source of rotator cuff pathology. Although many studies have attempted to evaluate the vascularity of this region, the architecture regarding the exact length, width and shape of the critical zone, remains unreported. This study aimed to determine the shape and morphometry of the "critical zone" arthroscopically. The sample series, which was comprised of 38 cases (n = 38) specific to pathological types, employed an anatomical investigation of the critical zone during routine real-time arthroscopy. Demographic representation: i) sex: 19 males, 19 females; ii) age range: 18-76 years; iii) race: white (n = 29), Indian (n = 7) and coloured (n = 2). The incidence of shape and the mean lengths and widths of the critical zone were determined in accordance with the relevant demographic factors and patient history. Although the cresenteric shape was predominant, hemispheric and sail-shaped critical zones were also identified. The lengths and widths of the critical zone appeared markedly increased in male individuals. While the increase in age may account for the increased incidence of rotator cuff degeneration due to poor end-vascular supply, the additional factors of height and weight presented as major determinants of the increase in size of the critical zone. In addition, the comparisons of length and width with each other and shape yielded levels of significant difference, therefore indicating a directly proportional relationship between the length and width of the critical zone. This detailed understanding of the critical zone may prove beneficial for the success of post-operative rotator cuff healing.
Bubble oscillation and inertial cavitation in viscoelastic fluids.
Jiménez-Fernández, J; Crespo, A
2005-08-01
Non-linear acoustic oscillations of gas bubbles immersed in viscoelastic fluids are theoretically studied. The problem is formulated by considering a constitutive equation of differential type with an interpolated time derivative. With the aid of this rheological model, fluid elasticity, shear thinning viscosity and extensional viscosity effects may be taken into account. Bubble radius evolution in time is analyzed and it is found that the amplitude of the bubble oscillations grows drastically as the Deborah number (the ratio between the relaxation time of the fluid and the characteristic time of the flow) increases, so that, even for moderate values of the external pressure amplitude, the behavior may become chaotic. The quantitative influence of the rheological fluid properties on the pressure thresholds for inertial cavitation is investigated. Pressure thresholds values in terms of the Deborah number for systems of interest in ultrasonic biomedical applications, are provided. It is found that these critical pressure amplitudes are clearly reduced as the Deborah number is increased.
Vertical two-phase flow regimes and pressure gradients under the influence of SDS surfactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duangprasert, Tanabordee; Sirivat, Anuvat; Siemanond, Kitipat
2008-01-15
Two-phase gas/liquid flows in vertical pipes have been systematically investigated. Water and SDS surfactant solutions at various concentrations were used as the working fluids. In particular, we focus our work on the influence of surfactant addition on the flow regimes, the corresponding pressure gradients, and the bubble sizes and velocity. Adding the surfactant lowers the air critical Reynolds numbers for the bubble-slug flow and the slug flow transitions. The pressure gradients of SDS solutions are lower than those of pure water especially in the slug flow and the slug-churn flow regimes, implying turbulent drag reduction. At low Re{sub air}, themore » bubble sizes of the surfactant solution are lower than those of pure water due to the increase in viscosity. With increasing and at high Re{sub air}, the bubble sizes of the SDS solution become greater than those of pure water which is attributed to the effect of surface tension. (author)« less
Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels
NASA Astrophysics Data System (ADS)
Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari
2011-11-01
Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.
Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao
2018-07-06
Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g -1 , demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g -1 . These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.
Condensation of vapor bubble in subcooled pool
NASA Astrophysics Data System (ADS)
Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.
2017-02-01
We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.
NASA Astrophysics Data System (ADS)
Wang, Bowen; Zhang, Weigang; Wang, Lei; Wei, Jiake; Bai, Xuedong; Liu, Jingyue; Zhang, Guanhua; Duan, Huigao
2018-07-01
Design and synthesis of integrated, interconnected porous structures are critical to the development of high-performance supercapacitors. We develop a novel and facile synthesis technic to construct three-dimensional carbon-bubble foams with hierarchical pores geometry. The carbon-bubble foams are fabricated by conformally coating, via catalytic decomposition of ethanol, a layer of carbon coating onto the surfaces of pre-formed ZnO foams and then the removal of the ZnO template by a reduction-evaporation process. Both the wall thickness and the pore size can be well tuned by adjusting the catalytic decomposition time and temperature. The as-synthesized carbon-bubble foams electrode retains 90.3% of the initial capacitance even after 70 000 continuous cycles under a high current density of 20 A g‑1, demonstrating excellent long-time electrochemical and cycling stability. The symmetric device displays rate capability retention of 81.8% with the current density increasing from 0.4 to 20 A g‑1. These achieved electrochemical performances originate from the unique structural design of the carbon-bubble foams, which provide not only abundant transport channels for electron and ion but also high active surface area accessible by the electrolyte ions.
Bubble nuclei within the self-consistent Hartree-Fock mean field plus pairing approach
NASA Astrophysics Data System (ADS)
Phuc, L. Tan; Hung, N. Quang; Dang, N. Dinh
2018-02-01
The depletion of the nuclear density at its center, called the nuclear bubble, is studied within the Skyrme Hartree-Fock mean field consistently incorporating the superfluid pairing. The latter is obtained within the finite-temperature Bardeen-Cooper-Schrieffer theory and within the approach using the exact pairing. The numerical calculations are carried out for 22O and 34Si nuclei, whose bubble structures, caused by a very low occupancy of the 2 s1 /2 level, were previously predicted at T =0 . Among 24 Skyrme interactions under consideration, the MSk3 is the only one which reproduces the experimentally measured occupancy of the 2 s1 /2 proton level as well as the binding energy, and consequently produces the most pronounced bubble structure in 34Si. As compared to the approaches employing the same BSk14 interaction, our approach with exact pairing predicts a pairing effect which is stronger in 22O and weaker in 34Si. The increase in temperature depletes the bubble structure and completely washes it out when the temperature reaches a critical value, at which the factor measuring the depletion of the nucleon density vanishes.
Modeling of sonochemistry in water in the presence of dissolved carbon dioxide.
Authier, Olivier; Ouhabaz, Hind; Bedogni, Stefano
2018-07-01
CO 2 capture and utilization (CCU) is a process that captures CO 2 emissions from sources such as fossil fuel power plants and reuses them so that they will not enter the atmosphere. Among the various ways of recycling CO 2 , reduction reactions are extensively studied at lab-scale. However, CO 2 reduction by standard methods is difficult. Sonochemistry may be used in CO 2 gas mixtures bubbled through water subjected to ultrasound waves. Indeed, the sonochemical reduction of CO 2 in water has been already investigated by some authors, showing that fuel species (CO and H 2 ) are obtained in the final products. The aim of this work is to model, for a single bubble, the close coupling of the mechanisms of bubble dynamics with the kinetics of gas phase reactions in the bubble that can lead to CO 2 reduction. An estimation of time-scales is used to define the controlling steps and consequently to solve a reduced model. The calculation of the concentration of free radicals and gases formed in the bubble is undertaken over many cycles to look at the effects of ultrasound frequency, pressure amplitude, initial bubble radius and bubble composition in CO 2 . The strong effect of bubble composition on the CO 2 reduction rate is confirmed in accordance with experimental data from the literature. When the initial fraction of CO 2 in the bubble is low, bubble growth and collapse are slightly modified with respect to simulation without CO 2 , and chemical reactions leading to CO 2 reduction are promoted. However, the peak collapse temperature depends on the thermal properties of the CO 2 and greatly decreases as the CO 2 increases in the bubble. The model shows that initial bubble radius, ultrasound frequency and pressure amplitude play a critical role in CO 2 reduction. Hence, in the case of a bubble with an initial radius of around 5 μm, CO 2 reduction appears to be more favorable at a frequency around 300 kHz than at a low frequency of around 20 kHz. Finally, the industrial application of ultrasound to CO 2 reduction in water would be largely dependent on sonochemical efficiency. Under the conditions tested, this process does not seem to be sufficiently efficient. Copyright © 2018 Elsevier B.V. All rights reserved.
How do schizophrenia patients use visual information to decode facial emotion?
Lee, Junghee; Gosselin, Frédéric; Wynn, Jonathan K; Green, Michael F
2011-09-01
Impairment in recognizing facial emotions is a prominent feature of schizophrenia patients, but the underlying mechanism of this impairment remains unclear. This study investigated the specific aspects of visual information that are critical for schizophrenia patients to recognize emotional expression. Using the Bubbles technique, we probed the use of visual information during a facial emotion discrimination task (fear vs. happy) in 21 schizophrenia patients and 17 healthy controls. Visual information was sampled through randomly located Gaussian apertures (or "bubbles") at 5 spatial frequency scales. Online calibration of the amount of face exposed through bubbles was used to ensure 75% overall accuracy for each subject. Least-square multiple linear regression analyses between sampled information and accuracy were performed to identify critical visual information that was used to identify emotional expression. To accurately identify emotional expression, schizophrenia patients required more exposure of facial areas (i.e., more bubbles) compared with healthy controls. To identify fearful faces, schizophrenia patients relied less on bilateral eye regions at high-spatial frequency compared with healthy controls. For identification of happy faces, schizophrenia patients relied on the mouth and eye regions; healthy controls did not utilize eyes and used the mouth much less than patients did. Schizophrenia patients needed more facial information to recognize emotional expression of faces. In addition, patients differed from controls in their use of high-spatial frequency information from eye regions to identify fearful faces. This study provides direct evidence that schizophrenia patients employ an atypical strategy of using visual information to recognize emotional faces.
NASA Astrophysics Data System (ADS)
Weidner, E. F.; Weber, T. C.; Mayer, L. A.
2017-12-01
Quantifying methane flux originating from marine seep systems in climatically sensitive regions is of critically importance for current and future climate studies. Yet, the methane contribution from these systems has been difficult to estimate given the broad spatial scale of the ocean and the heterogeneity of seep activity. One such region is the Eastern Siberian Arctic Sea (ESAS), where bubble release into the shallow water column (<40 meters average depth) facilitates transport of methane to the atmosphere without oxidation. Quantifying the current seep methane flux from the ESAS is necessary to understand not only the total ocean methane budget, but also to provide baseline estimates against which future climate-induced changes can be measured. At the 2016 AGU fall meeting, we presented a new acoustic-based flux methodology using a calibrated broadband split-beam echosounder. The broad (14-24 kHz) bandwidth provides a vertical resolution of 10 cm, making possible the identification of single bubbles. After calibration using 64 mm copper sphere of known backscatter, the acoustic backscatter of individual bubbles is measured and compared to analytical models to estimate bubble radius. Additionally, bubbles are precisely located and traced upwards through the water column to estimate rise velocity. The combination of radius and rise velocity allows for gas flux estimation. Here, we follow up with the completed implementation of this methodology applied to the Herald Canyon region of the western ESAS. From the 68 recognized seeps, bubble radii and rise velocity were computed for more than 550 individual bubbles. The range of bubble radii, 1-6 mm, is comparable to those published by other investigators, while the radius dependent rise velocities are consistent with published models. Methane flux for the Herald Canyon region was estimated by extrapolation from individual seep flux values.
Bubbling in vibrated granular films.
Zamankhan, Piroz
2011-02-01
With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.
The Critical Zone: A Necessary Framework for Understanding Surface Earth Processes
NASA Astrophysics Data System (ADS)
Dietrich, W. E.
2016-12-01
One definition of the critical zone is: the thin veneer of Earth that extends from the top of the vegetation to the base of weathered bedrock. With this definition we can envision the critical zone as a distinct entity with a well-defined top and a fairly well-defined bottom that is distributed across terrestrial earth landscapes. It is a zone of co-evolving processes and, importantly, much of this zone is well below the soil mantle (and commonly more than 10 times thicker than the soil). Weathering advance into fresh bedrock creates a hydrologically-conductive skin that mediates runoff and solute chemistry, stores water used by vegetation, releases water as baseflow to streams, influences soil production and hillslope evolution, and feeds gasses to the atmosphere. Especially in seasonally dry environments, rock moisture in the critical zone, i.e. moisture that is exchangeable and potentially mobile in the matrix and fractures of the bedrock, can be a significant source of water to plants and is a previously unrecognized large component of the water budget that matters to climate models. First observations on the systematic variation of the critical zone across hillslopes have led to four distinct theories representing four distinct processes for what controls the depth to fresh bedrock (and thus the thickness of this zone across a hillslope). These theories are motivating geophysical surveys, deep drilling, and other actions to parameterize and explore the power of these models. Studies at the NSF-supported Critical Zone Observatories have taught us that the critical zone is an entity and that enduring field studies reveal key processes. A challenge we now face is how to include this emerging understanding of the critical zone into models of reactive transport, hydrologic processes and water supply, critical zone structure, landscape evolution, and climate.
NASA Technical Reports Server (NTRS)
Herman, Cila
1996-01-01
Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The goal of our research is to experimentally investigate the potential of EHD and the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions.
Clague, D.A.; Davis, A.S.; Bischoff, J.L.; Dixon, J.E.; Geyer, R.
2000-01-01
Glassy bubble-wall fragments, morphologically similar to littoral limu o Pele, have been found in volcanic sands erupted on Lo'ihi Seamount and along the submarine east rift zone of Kilauea Volcano. The limu o Pele fragments are undegassed with respect to H2O and S and formed by mild steam explosions. Angular glass sand fragments apparently form at similar, and greater, depths by cooling-contraction granulation. The limu o Pele fragments from Lo'ihi Seamount are dominantly tholeiitic basalt containing 6.25-7.25% MgO. None of the limu o Pele samples from Lo'ihi Seamount contains less than 5.57% MgO, suggesting that higher viscosity magmas do not form lava bubbles. The dissolved CO2 and H2O contents of 7 of the limu o Pele fragments indicate eruption at 1200??300 m depth (120??30 bar). These pressures exceed that generally thought to limit steam explosions. We conclude that hydrovolcanic eruptions are possible, with appropriate pre-mixing conditions, at pressures as great as 120 bar.
Measuring Interlayer Shear Stress in Bilayer Graphene
NASA Astrophysics Data System (ADS)
Wang, Guorui; Dai, Zhaohe; Wang, Yanlei; Tan, PingHeng; Liu, Luqi; Xu, Zhiping; Wei, Yueguang; Huang, Rui; Zhang, Zhong
2017-07-01
Monolayer two-dimensional (2D) crystals exhibit a host of intriguing properties, but the most exciting applications may come from stacking them into multilayer structures. Interlayer and interfacial shear interactions could play a crucial role in the performance and reliability of these applications, but little is known about the key parameters controlling shear deformation across the layers and interfaces between 2D materials. Herein, we report the first measurement of the interlayer shear stress of bilayer graphene based on pressurized microscale bubble loading devices. We demonstrate continuous growth of an interlayer shear zone outside the bubble edge and extract an interlayer shear stress of 40 kPa based on a membrane analysis for bilayer graphene bubbles. Meanwhile, a much higher interfacial shear stress of 1.64 MPa was determined for monolayer graphene on a silicon oxide substrate. Our results not only provide insights into the interfacial shear responses of the thinnest structures possible, but also establish an experimental method for characterizing the fundamental interlayer shear properties of the emerging 2D materials for potential applications in multilayer systems.
Replication landscape of the human genome
Petryk, Nataliya; Kahli, Malik; d'Aubenton-Carafa, Yves; Jaszczyszyn, Yan; Shen, Yimin; Silvain, Maud; Thermes, Claude; Chen, Chun-Long; Hyrien, Olivier
2016-01-01
Despite intense investigation, human replication origins and termini remain elusive. Existing data have shown strong discrepancies. Here we sequenced highly purified Okazaki fragments from two cell types and, for the first time, quantitated replication fork directionality and delineated initiation and termination zones genome-wide. Replication initiates stochastically, primarily within non-transcribed, broad (up to 150 kb) zones that often abut transcribed genes, and terminates dispersively between them. Replication fork progression is significantly co-oriented with the transcription. Initiation and termination zones are frequently contiguous, sometimes separated by regions of unidirectional replication. Initiation zones are enriched in open chromatin and enhancer marks, even when not flanked by genes, and often border ‘topologically associating domains' (TADs). Initiation zones are enriched in origin recognition complex (ORC)-binding sites and better align to origins previously mapped using bubble-trap than λ-exonuclease. This novel panorama of replication reveals how chromatin and transcription modulate the initiation process to create cell-type-specific replication programs. PMID:26751768
Think Bubbles and Socrates: Teaching Critical Thinking to Millennials in Public Relations Classes
ERIC Educational Resources Information Center
Tallent, Rebecca J.; Barnes, Justin J.
2015-01-01
Critical thinking skills are crucial in the public relations profession, but teaching these skills to the Millennial Generation is vastly different from previous generations. How can a professor get past No Child Left Behind's dependence on test review guides and "everybody wins" in getting students to think for themselves? Using the…
Ultrasonic bubbles in medicine: influence of the shell.
Postema, Michiel; Schmitz, Georg
2007-04-01
Ultrasound contrast agents consist of microscopically small bubbles encapsulated by an elastic shell. These microbubbles oscillate upon ultrasound insonification, and demonstrate highly nonlinear behavior, ameliorating their detectability. (Potential) medical applications involving the ultrasonic disruption of contrast agent microbubble shells include release-burst imaging, localized drug delivery, and noninvasive blood pressure measurement. To develop and enhance these techniques, predicting the cracking behavior of ultrasound-insonified encapsulated microbubbles has been of importance. In this paper, we explore microbubble behavior in an ultrasound field, with special attention to the influence of the bubble shell. A bubble in a sound field can be considered a forced damped harmonic oscillator. For encapsulated microbubbles, the presence of a shell has to be taken into account. In models, an extra damping parameter and a shell stiffness parameter have been included, assuming that Hooke's Law holds for the bubble shell. At high acoustic amplitudes, disruptive phenomena have been observed, such as microbubble fragmentation and ultrasonic cracking. We analyzed the occurrence of ultrasound contrast agent fragmentation, by simulating the oscillating behavior of encapsulated microbubbles with various sizes in a harmonic acoustic field. Fragmentation occurs exclusively during the collapse phase and occurs if the kinetic energy of the collapsing microbubble is greater than the instantaneous bubble surface energy, provided that surface instabilities have grown big enough to allow for break-up. From our simulations it follows that the Blake critical radius is not a good approximation for a fragmentation threshold. We demonstrated how the phase angle differences between a damped radially oscillating bubble and an incident sound field depend on shell parameters.
NASA Astrophysics Data System (ADS)
Gulley, J. D.; Cohen, M. J.; Kramer, M. G.; Martin, J. B.; Graham, W. D.
2013-12-01
Carbonate terrains cover 20% of Earth's ice-free land and are modified through interactions between rocks, water and biota that couple ecosystems processes to weathering reactions within the critical zone. Weathering in carbonate systems differs from the Critical Zone Reactor model developed for siliciclastic systems because reactions in siliciclastic critical zones largely consist of incongruent weathering (e.g., feldspar to secondary clay minerals) that typically occur in the soil zone within a few meters of the land surface. These incongruent reactions create regolith, which is removed by physical transport mechanisms that drive landscape denudation. In contrast, carbonate critical zones are mostly composed of homogeneous and soluble minerals, which dissolve congruently with the weathering products exported in solution, limiting regolith in the soil mantle to small amounts of insoluble residues. These reactions can extend to depths greater than 2 km below the surface. As water at the land surface drains preferentially through vertical joints and horizontal bedding planes of the carbonate critical zones, it is 'charged' with biologically-derived carbon dioxide, which decreases pH, dissolves carbonate rock, and enlarges subsurface flowpaths through feedbacks between flow and dissolution. Caves are extreme end products of this process and are key morphological features of carbonate critical zones. Caves link surface processes to the deep subsurface and serve as efficient delivery agents for oxygen, carbon and nutrients to zones within the critical zone that are deficient in all three, interrupting vertical and horizontal chemical gradients that would exist if caves were not present. We present select data from air and water-filled caves in the upper Floridan aquifer, Florida, USA, that demonstrate how caves, acting as very large preferential flow paths, alter processes in carbonate relative to siliciclastic critical zones. While caves represent an extreme end member of hydraulic and chemical heterogeneity that has no direct counterpart siliciclastic systems, these large voids provide easily accessible laboratories to investigate processes in carbonate critical zones, and how they differ from standard siliciclastic models of critical zones.
The sudden coalescene model of the boiling crisis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrica, P.M.; Clausse, A.
1995-09-01
A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.
Noise reduction by the application of an air-bubble curtain in offshore pile driving
NASA Astrophysics Data System (ADS)
Tsouvalas, A.; Metrikine, A. V.
2016-06-01
Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer becomes critical.
Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry
NASA Astrophysics Data System (ADS)
Gucker, Sarah M. N.
The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges. This steam plasma creates its own gas pocket via field emission. This steam plasma is shown to have strong decontamination properties, with residual effects lasting beyond two weeks that continue to decompose contaminants. Finally, a "two-dimensional bubble" was developed and demonstrated as a novel diagnostic device to study the gas-water interface, the reaction zone. This device is shown to provide convenient access to the reaction zone and decomposition of various wastewater simulants is investigated.
NASA Astrophysics Data System (ADS)
Chadwick, O.
2014-12-01
The US Critical Zone Exploration Network (CZEN) is a network of sites designed to provide a better understanding of the integrated Earth surface system. The capacity of the critical zone to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state, which in turn depends on the time evolution of the critical zone. Many temperate and/or tectonically active critical zones contain a relatively short history due to rapid erosion but tectonically quiescent, tropical regions of the planet contain much longer records that need to be understood to cover the full suite of critical zone processes. Southern Hemisphere Critical Zone Observatories such as those proposed for Kruger National Park (KNP) in South Africa and for portions of the Yilgarn Craton in Western Australa will allow us to extend our temporal understanding of development of spatial heterogeneity in the chemical and physical structure of the critical zone. In addition to considering Earth and climate boundary conditions, these sites incorporate the roles that humans play in driving critical zone processes. For instance along the edges of KNP there is strong evidence of soil erosions due to periurbanization and small-scale agriculture. The existence of KNP provides an important contrast between a "natural" and "human-dominated" landscape that can be exploited to evaluate human impacts on critical zone resources and to develop targeted mitigation strategies. Western Australia has an exploitive economy that relies on large-scale agriculture and mineral extraction, both are intensive users of water which is scarce. The proposed CZO there will be partly focused on managing water under intense economic pressures. It is evident that if funding can be found for these sites they will enhance both critical zone science and practical applied science.
Evaluation of safety of hypobaric decompressions and EVA from positions of probabilistic theory
NASA Astrophysics Data System (ADS)
Nikolaev, V. P.
Formation and subsequent evolution of gas bubbles in blood and tissues of subjects exposed to decompression are casual processes in their nature. Such character of bubbling processes in a body predetermines probabilistic character of decompression sickness (DCS) incidence in divers, aviators and astronauts. Our original probabilistic theory of decompression safety is based on stochastic models of these processes and on the concept of critical volume of a free gas phase in body tissues. From positions of this theory, the probability of DCS incidence during single-stage decompressions and during hypobaric decompressions under EVA in particular, is defined by the distribution of possible values of nucleation efficiency in "pain" tissues and by its critical significance depended on the parameters of a concrete decompression. In the present study the following is shown: 1) the dimensionless index of critical nucleation efficiency for "pain" body tissues is a more adequate index of decompression stress in comparison with Tissue Ratio, TR; 2) a priory the decompression under EVA performed according to the Russian protocol is more safe than decompression under EVA performed in accordance with the U.S. protocol; 3) the Russian space suit operated at a higher pressure and having a higher "rigidity" induces a stronger inhibition of mechanisms of cavitation and gas bubbles formation in tissues of a subject located in it, and by that provides a more considerable reduction of the DCS risk during real EVA performance.
Combustion dynamics of low vapour pressure nanofuel droplets
NASA Astrophysics Data System (ADS)
Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi
2017-07-01
Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is manifested in two frequency ranges: (i) buoyant flame flickering and (ii) auxiliary frequencies arising from high intensity secondary ejections due to bubble ruptures. Addition of alumina NPs enhances the heat absorption rate and ensures the rapid transfer of fuel parcels (detached daughter droplets) from droplet surface to flame front through secondary ejections. Therefore, average HR shows an increasing trend with particle loading rate (PLR). The perikinetic agglomeration model is used to explain the formation of gelatinous sheath during the last phase of droplet burning. Gelatinous mass formed results in bubble entrapment. SEM images of combustion precipitates show entrapped bubble cavities along with surface and sub-surface blowholes. Morphology of combustion precipitate shows a strong variation with PLRs. We have established the coupling mechanisms among heat release, shape oscillations, and secondary atomizations that underline the combustion behaviour of such low vapour pressure nanofuels.
Growth and Morphology of Supercritical Fluids, a Fluid Physics Experiment Conducted on Mir, Complete
NASA Technical Reports Server (NTRS)
Wilkinson, R. Allen
2001-01-01
The Growth and Morphology of Supercritical Fluids (GMSF) is an international experiment facilitated by the NASA Glenn Research Center and under the guidance of U.S. principal investor Professor Hegseth of the University of New Orleans and three French coinvestigators: Daniel Beysens, Yves Garrabos, and Carole Chabot. The GMSF experiments were concluded in early 1999 on the Russian space station Mir. The experiments spanned the three science themes of near-critical phase separation rates, interface dynamics in near-critical boiling, and measurement of the spectrum of density fluctuation length scales very close to the critical point. The fluids used were pure CO2 or SF6. Three of the five thermostats used could adjust the sample volume with the scheduled crew time. Such a volume adjustment enabled variable sample densities around the critical density as well as pressure steps (as distinct from the usual temperature steps) applied to the sample. The French-built ALICE II facility was used for these experiments. It allows tightly thermostated (left photograph) samples (right photograph) to be controlled and viewed/measured. Its diagnostics include interferometry, shadowgraph, high-speed pressure measurements, and microscopy. Data were logged on DAT tapes, and PCMCIA cards and were returned to Earth only after the mission was over. The ground-breaking near critical boiling experiment has yielded the most results with a paper published in Physical Review Letters (ref. 1). The boiling work also received press in Science Magazine (ref. 2). This work showed that, in very compressible near-critical two-phase pure fluids, a vapor bubble was induced to temporarily overheat during a rapid heating of the sample wall. The temperature rise in the vapor was 23-percent higher than the rise in the driving container wall. The effect is due to adiabatic compression of the vapor bubble by the rapid expansion of fluid near the boundary during heatup. Thermal diffusivity is low near the critical point, so getting heat out of the compressed bubble is observably slow. This gives the appearance of a backward heat flow, or heat flow from a cold surface to a warm fluid.
Modeling biogenic gas bubbles formation and migration in coarse sand
NASA Astrophysics Data System (ADS)
Ye, S.
2011-12-01
Shujun Ye Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210093, China; sjye@nju.edu.cn Brent E. Sleep Department of Civil Engineering, University of Toronto, Toronto, ON, M5S 1A4 CANADA; sleep@ecf.utoronto.ca Methane gas generation in porous media was investigated in an anaerobic two-dimensional sand-filled cell. Inoculation of the lower portion of the cell with a methanogenic culture and addition of methanol to the bottom of the cell led to biomass growth and formation of a gas phase. The formation, migration, distribution and saturation of gases in the cell were visualized by the charge-coupled device (CCD) camera. Gas generated at the bottom of the cell in the biologically active zone moved upwards in discrete fingers, so that gas phase saturations (gas-filled fraction of void space) in the biologically active zone at the bottom of the cell did not exceed 40-50%, while gas accumulation at the top of the cell produced gas phase saturations as high as 80%. Macroscopic invasion percolation (MIP) at near pore scale[Glass, et al., 2001; Kueper and McWhorter, 1992]was used to model gas bubbles growth in porous media. The nonwetting phase migration pathway can be yielded directly by MIP. MIP was adopted to simulate the expansion, fragmentation, and mobilization of gas clusters in the cell. The production of gas, and gas phash saturations were simulated by a continuum model - compositional simulator (COMPSIM) [Sleep and Sykes, 1993]. So a combination of a continuum model and a MIP model was used to simulate the formation, fragmentation and migration of biogenic gas bubbles. Key words: biogenic gas; two dimensional; porous media; MIP; COMPSIM
Microfabric and Structures in Glacial Ice
NASA Astrophysics Data System (ADS)
Monz, M.; Hudleston, P. J.
2017-12-01
Similar to rocks in active orogens, glacial ice develops both structures and fabrics that reflect deformation. Crystallographic preferred orientation (CPO), associated with mechanical anisotropy, develops as ice deforms, and as in rock, directly reflects the conditions and mechanisms of deformation and influences the overall strength. This project aims to better constrain the rheologic properties of natural ice through microstructural analysis and to establish the relationship of microfabric to macroscale structures. The focus is on enigmatic fabric patterns found in coarse grained, "warm" (T > -10oC) ice deep in ice sheets and in valley glaciers. Deformation mechanisms that produce such patterns are poorly understood. Detailed mapping of surface structures, including bedding, foliation, and blue bands (bubble-free veins of ice), was done in the ablation zone of Storglaciären, a polythermal valley glacier in northern Sweden. Microstructural studies on samples from a transect across the ablation zone were carried out in a cold room. Crystal size was too large for use of electron backscattered diffraction to determine CPO, therefore a Rigsby universal stage, designed specifically for ice, was used. In thick and thin sections, recrystallized grains are locally variable in both size (1mm-7cm in one thin section) and shape and clearly reflect recrystallization involving highly mobile grain boundaries. Larger crystals are often branching, and appear multiple times throughout one thin section. There is a clear shape preferred orientation that is generally parallel with foliation defined by bubble alignment and concentration. Locally, there appears to be an inverse correlation between bubble concentration and smoothness of grain boundaries. Fabric in samples that have undergone prolonged shear display roughly symmetrical multimaxima patterns centered around the pole to foliation. The angular distances between maxima suggest a possible twin relationship that may have developed from a preexisting single-maximum fabric.
Criticality Characteristics of Current Oil Price Dynamics
NASA Astrophysics Data System (ADS)
Drożdż, S.; Kwapień, J.; Oświęcimka, P.
2008-10-01
Methodology that recently leads us to predict to an amazing accuracy the date (July 11, 2008) of reverse of the oil price up trend is briefly summarized and some further aspects of the related oil price dynamics elaborated. This methodology is based on the concept of discrete scale invariance whose finance-prediction-oriented variant involves such elements as log-periodic self-similarity, the universal preferred scaling factor λ≈2, and allows a phenomenon of the "super-bubble". From this perspective the present (as of August 22, 2008) violent - but still log-periodically decelerating - decrease of the oil prices is associated with the decay of such a "super-bubble" that has started developing about one year ago on top of the longer-term oil price increasing phase (normal bubble) whose ultimate termination is evaluated to occur in around mid 2010.
NASA Astrophysics Data System (ADS)
Xia, Lang
Bubbles occur in many natural and biological flows as well as in numerous industrial phenomena, such as pumps, propellers, turbines, and chemical processing plants. They have been widely studied in the past leading to a large body of literature. However, bubbles appearing in different situations differ significantly in their physical characteristics and behaviors. Recently, bubbles of diameter less than 10 micrometers have found applications in diagnostic ultrasound imaging. These microbubble-based ultrasound contrast agents (UCA) are intravenously administered in patients before ultrasound imaging. Due to the compressive gas core, they generate substantial ultrasound echoes leading to significant enhancement of image quality and contrast. Free bubbles of a micrometer diameter experience a large surface tension induced Laplace pressure leading to their quick dissolution in milliseconds. UCAs are stabilized by coating them with a shell of lipids, polymers, proteins, and other surface-active materials and changing the gas content from air to a high molecular weight low solubility gas such as perfluorocarbon. The past literature of bubble dynamics are mostly restricted to free bubbles. The stabilizing shell of UCAs, however, critically affects their dynamics. In this thesis, we performed acoustic characterization of several UCAs coated with polymer and lipids. We experimentally measured their acoustic attenuation and scattering, of which the data were used in mathematical models to determine shell properties and nonlinear dynamics. Several different interfacial rheological models were employed. Experimental acoustic characterization was also extended to a novel type of nanoparticle suspension--polymersomes, vesicles encapsulated by amphiphilic polymers. The later part of the thesis is devoted to modeling the effects of the presence of coated microbubbles to the overall effective bulk properties of bubbly liquids. Introduction of microbubbles in the liquids does not only modify the bulk properties of the medium (bubbly liquids) but also significantly changes the natures of the propagating waves (e.g., the sound velocity in bubble suspension was found to be as low as 20 m/s). We investigate the nonlinear nature of the acoustic wave in bubbly liquids. Specifically, we theoretically show that microbubbles could change the nonlinearity of the medium, characterized by quantity B/A.
Fusion zone microstructure and porosity in electron beam welds of an α+β titanium alloy
NASA Astrophysics Data System (ADS)
Mohandas, T.; Banerjee, D.; Kutumba Rao, V. V.
1999-03-01
The effect of electron beam welding parameters on fusion zone (FZ) microstructure and porosity in a Ti -6.8 Al -3.42 Mo -1.9 Zr -0.21 Si alloy (Russian designation VT 9) has been investigated. It has been observed that the FZ grain width increased continuously with increase in heat input when the base metal was in the β heat-treated condition, while in the α+β heat-treated base metal welds, the FZ grain width increased only after a threshold energy input. The difference is attributed to both the weld thermal cycle and the pinning effect of equiaxed primary alpha on grain growth in the heat-affected zone (HAZ) of α+β heat-treated base metal. Postweld heat treatment (PWHT) in the subtransus and supertransus regions did not alter the columnar grain morphology in the FZ, possibly due to the lack of enough driving force for the formation of new grains by the breaking up of the columnar grains and grain boundary movement for grain growth. As the PWHTs were conducted in a furnace, the role of thermal gradients can be ruled out. Intragranular microstructure in the aswelded condition consisted of hexagonal martensite. The scale of the martensite laths depended on welding speed. The highest porosity was observed at intermediate welding speeds. At low speeds, a majority of pores formed at the fusion boundary, while at high speeds, occurrence of porosity was maximum at the weld center. The trends on porosity can be explained on the basis of solubility of hydrogen in titanium as a function of temperature and the influence of weld thermal cycle on nucleation, growth, and escape of hydrogen gas bubbles. The porosity at slow welding speeds is low because sufficient time exists for the nucleation, growth, and escape of hydrogen gas bubbles, while insufficient time exists for the nucleation of gas bubbles at high welding speeds. The effect of pickling of joint surface, vacuum annealing of the base metal, and successive remelting of the weld metal has also been investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, D.
A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less
Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chao, David F.; Yang, Wen-Jei
2000-01-01
Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of about 14 C on Cu-Gr surface and 19 C on Al-Gr surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez, Enrique; Schwen, Daniel; Hetherly, Jeffrey
Here, this paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-voidmore » transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. In conclusion, these results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling.« less
Martínez, Enrique; Schwen, Daniel; Hetherly, Jeffrey; ...
2015-11-30
Here, this paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-voidmore » transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. In conclusion, these results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling.« less
NASA Astrophysics Data System (ADS)
Sabrekov, Aleksandr F.; Runkle, Benjamin R. K.; Glagolev, Mikhail V.; Terentieva, Irina E.; Stepanenko, Victor M.; Kotsyurbenko, Oleg R.; Maksyutov, Shamil S.; Pokrovsky, Oleg S.
2017-08-01
Small lakes represent an important source of atmospheric CH4 from northern wetlands. However, spatiotemporal variations in flux magnitudes and the lack of knowledge about their main environmental controls contribute large uncertainty into the global CH4 budget. In this study, we measured methane fluxes from small lakes using chambers and bubble traps. Field investigations were carried out in July-August 2014 within the West Siberian middle and southern taiga zones. The average and median of measured methane chamber fluxes were 0.32 and 0.30 mgCH4 m-2 h-1 for middle taiga lakes and 8.6 and 4.1 mgCH4 m-2 h-1 for southern taiga lakes, respectively. Pronounced flux variability was found during measurements on individual lakes, between individual lakes and between zones. To analyze these differences and the influences of environmental controls, we developed a new dynamic process-based model. It shows good performance with emission rates from the southern taiga lakes and poor performance for individual lakes in the middle taiga region. The model shows that, in addition to well-known controls such as temperature, pH and lake depth, there are significant variations in the maximal methane production potential between these climatic zones. In addition, the model shows that variations in gas-filled pore space in lake sediments are capable of controlling the total methane emissions from individual lakes. The CH4 emissions exhibited distinct zonal differences not only in absolute values but also in their probability density functions: the middle taiga lake fluxes were best described by a lognormal distribution while the southern taiga lakes followed a power-law distribution. The latter suggests applicability of self-organized criticality theory for methane emissions from the southern taiga zone, which could help to explain the strong variability within individual lakes.
Sharp Interface Tracking in Rotating Microflows of Solvent Extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glimm, James; Almeida, Valmor de; Jiao, Xiangmin
2013-01-08
The objective of this project is to develop a specialized sharp interface tracking simulation capability for predicting interaction of micron-sized drops and bubbles in rotating flows relevant to optimized design of contactor devices used in solvent extraction processes of spent nuclear fuel reprocessing. The primary outcomes of this project include the capability to resolve drops and bubbles micro-hydrodynamics in solvent extraction contactors, determining from first principles continuum fluid mechanics how micro-drops and bubbles interact with each other and the surrounding shearing fluid for realistic flows. In the near term, this effort will play a central role in providing parameters andmore » insight into the flow dynamics of models that average over coarser scales, say at the millimeter unit length. In the longer term, it will prove to be the platform to conduct full-device, detailed simulations as parallel computing power reaches the exaflop level. The team will develop an accurate simulation tool for flows containing interacting droplets and bubbles with sharp interfaces under conditions that mimic those found in realistic contactor operations. The main objective is to create an off-line simulation capability to model drop and bubble interactions in a domain representative of the averaged length scale. The technical approach is to combine robust interface tracking software, subgrid modeling, validation quality experiments, powerful computational hardware, and a team with simulation modeling, physical modeling and technology integration experience. Simulations will then fully resolve the microflow of drops and bubbles at the microsecond time scale. This approach is computationally intensive but very accurate in treating important coupled physical phenomena in the vicinity of interfaces. The method makes it possible to resolve spatial scales smaller than the typical distance between bubbles and to model some non-equilibrium thermodynamic features such as finite critical tension in cavitating liquids« less
Sarkar, Kausik; Katiyar, Amit; Jain, Pankaj
2009-01-01
Gas diffusion from an encapsulated microbubble is modeled using an explicit linear relation for gas permeation through the encapsulation. Both the cases of single gas (air) and multiple gases (perfluorocarbon inside the bubble and air dissolved in surrounding liquid) are considered. An analytical expression for the dissolution time for an encapsulated air bubble is obtained; it showed that for small permeability the dissolution time increases linearly with decreasing permeability. A perfluorocarbon-filled contrast microbubble such as Definity was predicted to experience a transient growth due to air infusion before it dissolves in conformity with previous experimental findings. The growth phase occurs only for bubbles with a critical value of initial partial mole fraction of perfluorocarbon relative to air. With empirically obtained property values, the dissolution time of a 2.5 micron diameter (same as that of Definity) lipid coated octafluoropropane bubble with surface tension 25 mN/m predicts a lifetime of 42 minutes in an air saturated medium. The properties such as shell permeability, surface tension, relative mole fraction of octafluoropropane are varied to investigate their effects on the time scales of bubble growth and dissolution including their asymptotic scalings where appropriate. The dissolution dynamics scales with permeability, in that when the time is nondimensioanlized with permeability, curves for different permeabilities collapse on a single curve. Investigation of bubbles filled with other gases (non-octafluoropropane perfluorocarbon and sulfur hexafluoride) indicates longer dissolution time due to lower solubility and lower diffusivity for larger gas molecules. For such micron size encapsulated bubbles, lifetime of hours is possible only at extremely low surface tension (<1mN/m) or at extreme oversaturation. PMID:19616160
NASA Astrophysics Data System (ADS)
Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.
2018-04-01
The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.
Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.
Chen, Qianjin; Luo, Long; White, Henry S
2015-04-21
We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.
DMEK lenticule preparation using an air dissection technique: central versus peripheral injection.
Feizi, Sepehr; Javadi, Mohammad Ali
2016-01-01
To compare 2 sites of air injection to prepare donor lenticules for Descemet membrane (DM) endothelial keratoplasty. Fifty-one human corneoscleral buttons from donors aged 4 to 57 years were used. Corneoscleral buttons were placed endothelial side up and a 27-G needle was inserted just outside Schwalbe line and advanced immediately beneath the endothelium. Air was injected centrally inside the 8-mm zone (group 1) or peripherally approximately 1 mm in front of the limbus (group 2). Air injection was continued to extend the DM detachment as far as possible into the corneal periphery. Comparisons of central versus peripheral air injection were performed for reproducibility, the rate of usable tissue, and the type and diameter of the acquired bubble. The mean donor age was 30.0 ± 12.9 years. A big bubble was achieved following central or peripheral air injection in all cases. A usable donor lenticule (≥ 8.0 mm) was achieved in 95.7% of cases in group 1 and 89.3% of cases in group 2 (p>0.99). Both injection sites were comparable with regard to the diameter of the achieved bubbles (9.57 ± 2.11 mm versus 10.22 ± 2.34 mm, respectively, p = 0.32), the chance of complete DM detachment (39.1% versus 53.6%, respectively, p = 0.25), and the risk of bubble bursting (4.4% versus 7.1%, respectively, p = 0.41). The odds of a type 2 bubble increased by 11.86 for peripheral air injections compared to central injections (p = 0.01). Both injection sites exhibited comparable rates of usable donor lenticules. However, peripheral air injection was more likely to yield stroma-free grafts.
Geyser preplay and eruption in a laboratory model with a bubble trap
NASA Astrophysics Data System (ADS)
Adelstein, Esther; Tran, Aaron; Saez, Carolina Muñoz; Shteinberg, Alexander; Manga, Michael
2014-09-01
We present visual observations and temperature measurements from a laboratory model of a geyser. Our model incorporates a bubble trap, a zone in which vapor can accumulate in the geyser's subsurface plumbing, in a vertical conduit connected to a basal chamber. Analogous features have been identified at several natural geysers. We observe three types of eruptions: 1) rising bubbles eject a small volume of liquid in a weak spout (small eruption); 2) boiling occurs in the conduit above the bubble trap (medium eruption); and 3) boiling occurs in the conduit and chamber (large eruption). In the last two cases, boiling in the conduit causes a rapid hydrostatic pressure drop that allows for the rise and eruption of liquid water in a vigorous spout. Boiling initiates at depth rather than propagating downward from the surface. In a single eruption cycle, multiple small eruptions precede every medium and large eruption. At least one eruption cycle that culminates in a medium eruption (i.e., a quiescent period followed by a series of small eruptions leading up to a medium eruption) precedes every eruption cycle that culminates in a large eruption. We find that the transfer of fluid with high enthalpy to the upper conduit during small and medium eruptions is necessary to heat the upper conduit and prepare the system for the full boiling required for a large eruption. The placement of the bubble trap midway up the conduit allows for more efficient heating of the upper conduit. Our model provides insight into the influence of conduit geometry on eruption style and the importance of heat transfer by smaller events in preparing the geyser system for eruption.
Modeling subharmonic response from contrast microbubbles as a function of ambient static pressure
Katiyar, Amit; Sarkar, Kausik; Forsberg, Flemming
2011-01-01
Variation of subharmonic response from contrast microbubbles with ambient pressure is numerically investigated for non-invasive monitoring of organ-level blood pressure. Previously, several contrast microbubbles both in vitro and in vivo registered approximately linear (5–15 dB) subharmonic response reduction with 188 mm Hg change in ambient pressure. In contrast, simulated subharmonic response from a single microbubble is seen here to either increase or decrease with ambient pressure. This is shown using the code BUBBLESIM for encapsulated microbubbles, and then the underlying dynamics is investigated using a free bubble model. The ratio of the excitation frequency to the natural frequency of the bubble is the determining parameter—increasing ambient pressure increases natural frequency thereby changing this ratio. For frequency ratio below a lower critical value, increasing ambient pressure monotonically decreases subharmonic response. Above an upper critical value of the same ratio, increasing ambient pressure increases subharmonic response; in between, the subharmonic variation is non-monotonic. The precise values of frequency ratio for these three different trends depend on bubble radius and excitation amplitude. The modeled increase or decrease of subharmonic with ambient pressure, when one happens, is approximately linear only for certain range of excitation levels. Possible reasons for discrepancies between model and previous experiments are discussed. PMID:21476688
Progress Report on the US Critical Zone Observatory Program
NASA Astrophysics Data System (ADS)
Barrera, E. C.
2014-12-01
The Critical Zone Observatory (CZO) program supported by the National Science Foundation originated from the recommendation of the Earth Science community published in the National Research Council report "Basic Research Opportunities in Earth Sciences" (2001) to establish natural laboratories to study processes and systems of the Critical Zone - the surface and near-surface environment sustaining nearly all terrestrial life. After a number of critical zone community workshops to develop a science plan, the CZO program was initiated in 2007 with three sites and has now grown to 10 sites and a National Office, which coordinates research, education and outreach activities of the network. Several of the CZO sites are collocated with sites supported by the US Long Term Ecological Research (LTER) and the Long Term Agricultural Research (LTAR) programs, and the National Ecological Observatory Network (NEON). Future collaboration with additional sites of these networks will add to the potential to answer questions in a more comprehensive manner and in a larger regional scale about the critical zone form and function. At the international level, CZOs have been established in many countries and strong collaborations with the US program have been in place for many years. The next step is the development of a coordinated international program of critical zone research. The success of the CZO network of sites can be measured in transformative results that elucidate properties and processes controlling the critical zone and how the critical zone structure, stores and fluxes respond to climate and land use change. This understanding of the critical zone can be used to enhance resilience and sustainability, and restore ecosystem function. Thus, CZO science can address major societal challenges. The US CZO network is a facility open to research of the critical zone community at large. Scientific data and information about the US program are available at www.criticalzone.org.
Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation.
Goldobin, Denis S; Krauzin, Pavel V
2015-12-01
We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids.
Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloys
NASA Astrophysics Data System (ADS)
Huang, Jianglin; Warnken, Nils; Gebelin, Jean-Christophe; Strangwood, Martin; Reed, Roger C.
2012-02-01
The transport of hydrogen during fusion welding of the titanium alloy Ti-6Al4V is analyzed. A coupled thermodynamic/kinetic treatment is proposed for the mass transport within and around the weld pool. The modeling indicates that hydrogen accumulates in the weld pool as a consequence of the thermodynamic driving forces that arise; a region of hydrogen depletion exists in cooler, surrounding regions in the heat-affected zone and beyond. Coupling with a hydrogen diffusion-controlled bubble growth model is used to simulate bubble growth in the melt and, thus, to make predictions of the hydrogen concentration barrier needed for pore formation. The effects of surface tension of liquid metal and the radius of preexisting microbubble size on the barrier are discussed. The work provides insights into the mechanism of porosity formation in titanium alloys.
Bubbling in unbounded coflowing liquids.
Gañán-Calvo, Alfonso M; Herrada, Miguel A; Garstecki, Piotr
2006-03-31
An investigation of the stability of low density and viscosity fluid jets and spouts in unbounded coflowing liquids is presented. A full parametrical analysis from low to high Weber and Reynolds numbers shows that the presence of any fluid of finite density and viscosity inside the hollow jet elicits a transition from an absolute to a convective instability at a finite value of the Weber number, for any value of the Reynolds number. Below that critical value of the Weber number, the absolute character of the instability leads to local breakup, and consequently to local bubbling. Experimental data support our model.
Corrosion pitting of SiC by molten salts
NASA Technical Reports Server (NTRS)
Jacobson, N. S.; Smialek, J. L.
1986-01-01
The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.
Magnet safety and stability related coolant states: critical fluid dynamics at peak flux
NASA Astrophysics Data System (ADS)
Ravikumar, K. V.; Carandang, R. M.; Frederking, T. H. K.
The stability of superconducting magnets is endangered under certain distinct conditions of the fluid serving as magnet coolant. A severe compromising of safety takes place at the peak heat flux of nucleate boiling. Progress in analysing first order phase transitions for cryoliquids and room temperature liquids, in the presence of heat flow, has led to better understanding of the parameters related to vapour bubble phenomena. The present work addresses the consequences arising from bubble frequency results, including model calculations for the effective masses of the saturated fluids involved in the two-phase transport at the peak flux.
NASA Astrophysics Data System (ADS)
Baker, D. R.
2012-12-01
Measurements of volcanic gas compositions are often presumed to be directly related to equilibrium compositions of fluids exsolved at depth in magmatic systems that rapidly escape into the atmosphere. In particular, changes in the ratios of volatile species concentrations in volcanic gases have been interpreted to reflect influx of new magma batches or changes in the degassing depth. However, other mechanisms can also yield changes in volcanic gas compositions. One such mechanism is diffusive fractionation during rapid bubble growth. Such fractionation can occur because radial growth rates of bubbles in magmas are estimated to be in the range of 10-6 to 10-3 m s-1 and diffusion coefficients of minor volatiles (e.g., Cl, F, S, CO2) are orders of magnitude slower, 10-12 to 10-9 m2 s-1. Thus a bubble that rapidly grows and subsequently loses its volatiles to the surface may contribute a fluid sample whose concentration is affected by the interplay between the kinetics of bubble growth and volatile diffusion in the melt. A finite difference code was developed to calculate the effects of rapid bubble growth on the concentration of minor elements in the bubble for a spherical growth geometry. The bubble is modeled with a fixed growth rate and a constant equilibrium fluid-melt partition coefficient, KD. Bubbles were modeled to grow to a radius of 50 μm, the size at which the dominant bubble growth mechanism appears to change from diffusion to coalescence. The critical variables that control the departure from equilibrium behavior are the K D and the ratio of the growth velocity, V, to the diffusivity, D. Modeling bubble growth in a magma chamber at 100 MPa demonstrates that when KD is in the range of 10 to 1000 at low V/D values (e.g., 103 m-1) the composition of the fluid is at, or near, equilibrium with the melt. However, as V/D increases the bubble composition deviates increasingly from equilibrium. For V/D ratios of 105 and equilibrium KD's of either 50 or 100 (similar to estimates for S), a bubble with a 50 μm radius will contain a fluid whose concentration was apparently determined by a KD of less than 10. These models also demonstrate that the combination of rapid bubble growth with slow diffusion can deplete the melt in the volatile species only within the immediate neighborhood, on the order of 100 μm. If bubbles are spaced further apart the melts may retain significant concentrations of dissolved volatiles, which could lead to secondary and tertiary nucleation events. These models for diffusive fractionation during rapid bubble growth suggest that changes in the ratios of minor elements in volcanic gases may be influenced by bubble growth rate changes. Volatiles with lower diffusivities and volatiles with very high or very low partition coefficients will be more influenced by this process. Diffusive fractionation may be responsible for the drop in the CO2/SO2 ratios sometimes observed prior to large eruptions of Stromboli volcano.
Molecular dynamics simulations of bubble formation and cavitation in liquid metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insepov, Z.; Hassanein, A.; Bazhirov, T. T.
2007-11-01
Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly stretched region of the liquid phase diagram;more » and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-2700 K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory (CNT).« less
Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D.
2011-01-01
High resolution direct-push profiling over short vertical distances was used to investigate CH4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH4 and CO2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in ??13CCH4 from an average of - 57.6??? (?? 1.7???) in the methanogenic zone to - 39.6??? (?? 8.7???) at 105 m downgradient, strongly suggest CH4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O2 across the water table is leading to aerobic degradation of CH4 at this interface. Dissolved N2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O2 through aerobic degradation of CH4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O2 transport mechanisms. ?? 2011 Elsevier B.V. All rights reserved.
Statistical characterization of planar two-dimensional Rayleigh-Taylor mixing layers
NASA Astrophysics Data System (ADS)
Sendersky, Dmitry
2000-10-01
The statistical evolution of a planar, randomly perturbed fluid interface subject to Rayleigh-Taylor instability is explored through numerical simulation in two space dimensions. The data set, generated by the front-tracking code FronTier, is highly resolved and covers a large ensemble of initial perturbations, allowing a more refined analysis of closure issues pertinent to the stochastic modeling of chaotic fluid mixing. We closely approach a two-fold convergence of the mean two-phase flow: convergence of the numerical solution under computational mesh refinement, and statistical convergence under increasing ensemble size. Quantities that appear in the two-phase averaged Euler equations are computed directly and analyzed for numerical and statistical convergence. Bulk averages show a high degree of convergence, while interfacial averages are convergent only in the outer portions of the mixing zone, where there is a coherent array of bubble and spike tips. Comparison with the familiar bubble/spike penetration law h = alphaAgt 2 is complicated by the lack of scale invariance, inability to carry the simulations to late time, the increasing Mach numbers of the bubble/spike tips, and sensitivity to the method of data analysis. Finally, we use the simulation data to analyze some constitutive properties of the mixing process.
Impact of methane flow through deformable lake sediments on atmospheric release
NASA Astrophysics Data System (ADS)
Scandella, B.; Juanes, R.
2010-12-01
Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.
Molten silicate mantle during a giant impact. Speciation from vapor to supercritical state
NASA Astrophysics Data System (ADS)
Caracas, R.; Stewart, S. T.
2017-12-01
We employ large-scale first-principles molecular dynamics simulations to understand the physical and chemical behavior of the molten protolunar disk, at the atomic level. We consider the average composition of the Earth's mantle as proposed by Sun and McDonough (1995). We cover the 0.75 - 7.5 g/cm3 density range and 2000 - 10000 K temperature range. This allows us to investigate the entire disk, from the interior of the molten core to the outer regions of the vaporized disk. At high density, the liquid is highly polymerized and viscous, consistent with previous studies. At low density and low temperatures, in the 2000 to 4000 K range, we capture the nucleation of bubbles. The bubbles contain a low-density gas phase rich in individual alkaline and calc-alkaline cations and SiOx groups. When volatiles are present in the system, such molecular species are the first ones to evaporate and be present in these bubbles. We propose numerical tools to detect the liquid-vapor equilibrium. The critical curves are reached consistently regardless of the thermodynamic path we chose to obtain the low densities. We analyze the equilibrium between the gas of the bubbles and the liquid. At high temperature, we identify the supercritical region characterized by one homogeneous fluid, rich in ionic species. We show that the chemical speciation is very different from the one obtained at ambient pressure conditions. Critical curves are necessary to understand the separation and degassing of volatiles during the recovery from a giant impact. Acknowledgements: This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n°681818 - IMPACT). The ab initio simulations were performed on the GENCI supercomputers, under eDARI/CINES grants x106368.
A high-fidelity approach towards simulation of pool boiling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios
2016-01-15
A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms atmore » early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.« less
NASA Astrophysics Data System (ADS)
Chorover, Jon; Derry, Louis A.; McDowell, William H.
2017-11-01
Critical zone science seeks to develop mechanistic theories that describe critical zone structure, function, and long-term evolution. One postulate is that hydrogeochemical controls on critical zone evolution can be inferred from solute discharges measured down-gradient of reactive flow paths. These flow paths have variable lengths, interfacial compositions, and residence times, and their mixing is reflected in concentration-discharge (C-Q) relations. Motivation for this special section originates from a U.S. Critical Zone Observatories workshop that was held at the University of New Hampshire, 20-22 July 2015. The workshop focused on resolving mechanistic CZ controls over surface water chemical dynamics across the full range of lithogenic (e.g., nonhydrolyzing and hydrolyzing cations and oxyanions) and bioactive solutes (e.g., organic and inorganic forms of C, N, P, and S), including dissolved and colloidal species that may cooccur for a given element. Papers submitted to this special section on "concentration-discharge relations in the critical zone" include those from authors who attended the workshop, as well as others who responded to the open solicitation. Submissions were invited that utilized information pertaining to internal, integrated catchment function (relations between hydrology, biogeochemistry, and landscape structure) to help illuminate controls on observed C-Q relations.
Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer
NASA Technical Reports Server (NTRS)
Kim, Jungho; McQuillen, John; Balombin, Joe
2002-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.
NASA Astrophysics Data System (ADS)
Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.
2018-03-01
A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.
Bubble Entropy: An Entropy Almost Free of Parameters.
Manis, George; Aktaruzzaman, Md; Sassi, Roberto
2017-11-01
Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors. Objective : A critical point in any definition of entropy is the selection of the parameters employed to obtain an estimate in practice. We propose a new definition of entropy aiming to reduce the significance of this selection. Methods: We call the new definition Bubble Entropy . Bubble Entropy is based on permutation entropy, where the vectors in the embedding space are ranked. We use the bubble sort algorithm for the ordering procedure and count instead the number of swaps performed for each vector. Doing so, we create a more coarse-grained distribution and then compute the entropy of this distribution. Results: Experimental results with both real and synthetic HRV signals showed that bubble entropy presents remarkable stability and exhibits increased descriptive and discriminating power compared to all other definitions, including the most popular ones. Conclusion: The definition proposed is almost free of parameters. The most common ones are the scale factor r and the embedding dimension m . In our definition, the scale factor is totally eliminated and the importance of m is significantly reduced. The proposed method presents increased stability and discriminating power. Significance: After the extensive use of some entropy measures in physiological signals, typical values for their parameters have been suggested, or at least, widely used. However, the parameters are still there, application and dataset dependent, influencing the computed value and affecting the descriptive power. Reducing their significance or eliminating them alleviates the problem, decoupling the method from the data and the application, and eliminating subjective factors.
Self-sustained radial oscillating flows between parallel disks
NASA Astrophysics Data System (ADS)
Mochizuki, S.; Yang, W.-J.
1985-05-01
It is pointed out that radial flow between parallel circular disks is of interest in a number of physical systems such as hydrostatic air bearings, radial diffusers, and VTOL aircraft with centrally located downward-positioned jets. The present investigation is concerned with the problem of instability in radial flow between parallel disks. A time-dependent numerical study and experiments are conducted. Both approaches reveal the nucleation, growth, migration, and decay of annular separation bubbles (i.e. vortex or recirculation zones) in the laminar-flow region. A finite-difference technique is utilized to solve the full unsteady vorticity transport equation in the theoretical procedure, while the flow patterns in the experiments are visualized with the aid of dye-injection, hydrogen-bubble, and paraffin-mist methods. It is found that the separation and reattachment of shear layers in the radial flow through parallel disks are unsteady phenomena. The sequence of nucleation, growth, migration, and decay of the vortices is self-sustained.
NASA Astrophysics Data System (ADS)
Tsiglifis, Kostas; Pelekasis, Nikos A.
2007-07-01
The details of nonlinear oscillations and collapse of elongated bubbles, subject to large internal overpressure, are studied by a boundary integral method. Weak viscous effects on the liquid side are accounted for by integrating the equations of motion across the boundary layer that is formed adjacent to the interface. For relatively large bubbles with initial radius R0 on the order of millimeters, PSt=PSt'/(2σ/R0)˜300 and Oh =μ/(σR0ρ)1/2˜200, and an almost spherical initial shape, S˜1, Rayleigh-Taylor instability prevails and the bubble breaks up as a result of growth of higher modes and the development of regions of very small radius of curvature; σ, ρ, μ, and PSt' denote the surface tension, density, viscosity, and dimensional static pressure in the host liquid while S is the ratio between the length of the minor semiaxis of the bubble, taken as an axisymmetric ellipsoid, and its equivalent radius R0. For finite initial elongations, 0.5⩽S <1, the bubble collapses either via two jets that counterpropagate along the axis of symmetry and eventually coalesce at the equatorial plane, or in the form of a sink flow approaching the center of the bubble along the equatorial plane. This pattern persists for the above range of initial elongations examined and large internal overpressure amplitudes, ɛB⩾1, irrespective of Oh. It is largely due to the phase in the growth of the second Legendre mode during the after-bounce of the oscillating bubble, during which it acquires large enough positive accelerations for collapse to take place. For smaller bubbles with initial radius on the order of micrometers, PSt˜4 and Oh ˜20, and small initial elongations, 0.75
Active Focal Zone Sharpening for High-Precision Treatment Using Histotripsy
Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy L.; Fowlkes, J. Brian; Roberts, William W.; Cain, Charles A.
2011-01-01
The goal of this study is to develop a focal zone sharpening strategy that produces more precise lesions for pulsed cavitational ultrasound therapy, or histotripsy. Precise and well-confined lesions were produced by locally suppressing cavitation in the periphery of the treatment focus without affecting cavitation in the center. The local suppression of cavitation was achieved using cavitation nuclei preconditioning pulses to actively control cavitation in the periphery of the focus. A 1-MHz 513-element therapeutic array was used to generate both the therapy and the nuclei preconditioning pulses. For therapy, 10-cycle bursts at 100-Hz pulse repetition frequency with P−/P+ pressure of 21/76 MPa were delivered to the geometric focus of the therapeutic array. For nuclei preconditioning, a different pulse was delivered to an annular region immediately surrounding the focus before each therapy pulse. A parametric study on the effective pressure, pulse duration, and delivery time of the preconditioning pulse was conducted in red blood cell-gel phantoms, where cavitational damage was indicated by the color change resulting from local cell lysis. Results showed that a short-duration (20 µs) preconditioning pulse at a medium pressure (P−/P+ pressure of 7.2/13.6 MPa) delivered shortly before (30 µs) the therapy pulse substantially suppressed the peripheral damage by 77 ± 13% while complete fractionation in the focal center was maintained. High-speed imaging of the bubble cloud showed a substantial decrease in the maximum width of the bubble cloud by 48 ± 24% using focal zone sharpening. Experiments in ex vivo livers confirmed that highly confined lesions were produced in real tissues as well as in the phantoms. This study demonstrated the feasibility of active focal zone sharpening using cavitation nuclei preconditioning, allowing for increased treatment precision compared with the natural focal width of the therapy transducer. PMID:21342816
Active focal zone sharpening for high-precision treatment using histotripsy.
Wang, Tzu-Yin; Xu, Zhen; Hall, Timothy; Fowlkes, J; Roberts, William; Cain, Charles
2011-02-01
The goal of this study is to develop a focal zone sharpening strategy that produces more precise lesions for pulsed cavitational ultrasound therapy, or histotripsy. Precise and well-confined lesions were produced by locally suppressing cavitation in the periphery of the treatment focus without affecting cavitation in the center. The local suppression of cavitation was achieved using cavitation nuclei preconditioning pulses to actively control cavitation in the periphery of the focus. A 1-MHz 513-element therapeutic array was used to generate both the therapy and the nuclei preconditioning pulses. For therapy, 10-cycle bursts at 100-Hz pulse repetition frequency with P-/P+ pressure of 21/76 MPa were delivered to the geometric focus of the therapeutic array. For nuclei preconditioning, a different pulse was delivered to an annular region immediately surrounding the focus before each therapy pulse. A parametric study on the effective pressure, pulse duration, and delivery time of the preconditioning pulse was conducted in red blood cell-gel phantoms, where cavitational damage was indicated by the color change resulting from local cell lysis. Results showed that a short-duration (20 μs) preconditioning pulse at a medium pressure (P-/P+ pressure of 7.2/13.6 MPa) delivered shortly before (30 μs) the therapy pulse substantially suppressed the peripheral damage by 77 ± 13% while complete fractionation in the focal center was maintained. High-speed imaging of the bubble cloud showed a substantial decrease in the maximum width of the bubble cloud by 48 ± 24% using focal zone sharpening. Experiments in ex vivo livers confirmed that highly confined lesions were produced in real tissues as well as in the phantoms. This study demonstrated the feasibility of active focal zone sharpening using cavitation nuclei preconditioning, allowing for increased treatment precision compared with the natural focal width of the therapy transducer.
Oxygen Transfer in Moving Bed Biofilm Reactor and Integrated Fixed Film Activated Sludge Processes.
2017-11-17
A demonstrated approach to design the, so-called, medium-bubble air diffusion network for oxygen transfer into the aerobic zone(s) of moving bed biofilm reactor (MBBR) and integrated fixed-film activated sludge (IFAS) processes is described in this paper. Operational full-scale biological water resource recovery systems treating municipal sewerage demonstrate that medium-bubble air diffusion networks designed using the method presented here provide reliable service. Further improvement is possible, however, as knowledge gaps prevent more rational process designs. Filling such knowledge gaps can potentially result in higher performing and more economical systems. Small-scale system testing demonstrates significant enhancement of oxygen transfer capacity due to the presence of media, but quantification of such effects in full-scale systems is lacking, and is needed. Establishment of the relationship between diffuser submergence, aeration rate, and biofilm carrier fill fraction will enhance MBBR and IFAS aerobic process design, cost, and performance. Limited testing of full-scale systems is available to allow computation of alpha valuess. As with clean water testing of full-scale systems, further full-scale testing under actual operating conditions is required to more fully quantify MBBR and IFAS system oxygen transfer performance under a wide range of operating conditions. Control of MBBR and IFAS aerobic zone oxygen transfer systems can be optimized by recognizing that varying residual dissolved oxygen (DO) concentrations are needed, depending on operating conditions. For example, the DO concentration in the aerobic zone of nitrifying IFAS processes can be lowered during warm weather conditions when greater suspended growth nitrification can occur, resulting in the need for reduced nitrification by the biofilm compartment. Further application of oxygen transfer control approaches used in activated sludge systems to MBBR and IFAS systems, such as ammonia-based oxygen transfer system control, has been demonstrated to further improve MBBR and IFAS system energy-efficiency.
Universal scaling laws of top jet drop size and speed in bubble bursting
NASA Astrophysics Data System (ADS)
Ganan-Calvo, Alfonso
2017-11-01
The collapse of a bubble of radius Ro at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R follows a universal flow pattern that can be universally scaled using the difference between the parent bubble radius and a critical radius R* =Oh*-2μ2 /(ρσ) below which no droplet is ejected for a given Newtonian liquid. Here, Oh* = 0.037 is the critical Ohnesorge number, where Oh = μ /(ρσRo) 1 / 2 ; ρ, σ and μ are the liquid density, surface tension and viscosity. Based on a flow singularity occurring for Ro =R* , a scaling analysis of the complex flow structure at the onset of jet ejection for Ro >R* leads to the diameter of the first emitted droplet and the initial ejection velocity: D =kd(Ro -R*) 5 / 4R* - 1 / 4 and V =kv σμ-1(Ro -R*) 3 / 4R* - 3 / 4 , respectively. A remarkable collapse of data taken from available literature since 1954 to 2017 furnishes the universal constants kd = 0.1 and kv = 1.6 , for negligible gravity effects.The role of gravity is subdominant and can be reflected by the exponential dependence of the scaling laws obtained on the Bond number. This work was supported by the Ministerio de Economy Competitividad, Plan Estatal 2013-2016 Retos, project DPI2016-78887-C3-1-R.
A New Theory of Nucleate Pool Boiling in Arbitrary Gravity
NASA Technical Reports Server (NTRS)
Buyevich, Y. A.; Webbon, Bruce W.
1995-01-01
Heat transfer rates specific to nucleate pool boiling under various conditions are determined by the dynamics of vapour bubbles that are originated and grow at nucleation sites of a superheated surface. A new dynamic theory of these bubbles has been recently developed on the basis of the thermodynamics of irreversible processes. In contrast to other existing models based on empirically postulated equations for bubble growth and motion, this theory does not contain unwarrantable assumptions, and both the equations are rigorously derived within the framework of a unified approach. The conclusions of the theory are drastically different from those of the conventional models. The bubbles are shown to detach themselves under combined action of buoyancy and a surface tension force that is proven to add to buoyancy in bubble detachment, but not the other way round as is commonly presumed. The theory ensures a sound understanding of a number of so far unexplained phenomena, such as effect caused by gravity level and surface tension on the bubble growth rate and dependence of the bubble characteristics at detachment on the liquid thermophysical parameters and relevant temperature differences. The theoretical predictions are shown to be in a satisfactory qualitative and quantitative agreement with observations. When being applied to heat transfer at nucleate pool boiling, this bubble dynamic theory offers an opportunity to considerably improve the main formulae that are generally used to correlate experimental findings and to design boiling heat removal in various industrial applications. Moreover, the theory makes possible to pose and study a great deal of new problems of essential impact in practice. Two such problems are considered in detail. One problem concerns the development of a principally novel physical model for the first crisis of boiling. This model allows for evaluating critical boiling heat fluxes under various conditions, and in particular at different gravity levels, with a good agreement with experimental evidence. The other problem bears upon equilibrium shapes of a detached bubble near a heated surface in exceedingly low gravity. In low gravity or in weightlessness, the bubble can remain in the close vicinity of the surface for a long time, and its shape is greatly affected by the Marangoni effect due to both temperature and possible surfactant concentration being nonuniform along the interface. The bubble performs at these conditions like a heat pipe, with evaporation at the bubble lower boundary and condensation at its upper boundary, and ultimately ensures a substantial increase in heat removal as compared with that in normal gravity. Some other problems relevant to nucleate pool and forced convection boiling heat transfer are also discussed.
NASA Astrophysics Data System (ADS)
Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan; Greinert, Jens; Rasmussen, Tine L.
2013-04-01
We study an arctic sediment drift in ~1200 m water depth at Vestnesa Ridge, offshore western Svalbard. The ridge is spotted with pockmarks that range in size from a few meters to hundreds of meters in diameter and centimeters to tens of meters in height (e.g. Vogt et al., 1994). There is a strong negative-polarity seismic reflection below the ridge that is interpreted to record a negative impedance contrast marking the boundary between gas hydrate and water above and free gas and water below: it is the bottom-simulating reflector (BSR). Seismically transparent zones, interpreted as gas chimneys, extend from pockmarks at the seafloor to depths below the BSR (180-220 meters below the seafloor) (Bünz et al., 2012). Gas flares, gas hydrate, and methane-seep-specific biological communities (pogonphora and begiatoa bacterial mats) have been observed adjacent to pockmarks at the ridge (Bünz et al., 2012). We present new single-beam echosounding data that were acquired during 2010 and 2012 cruises on the R/V Helmer Hanssen at Vestnesa Ridge using a Simrad EK60 system that operates at frequencies of 18 and 38 kHz. During both cruises which lasted 3-5 days, we detected continuous bubble release from 4 separate pockmarks in 2010 and 6 separate pockmarks in 2012. There were no noticeable, short-term (hourly or daily) variations in the bubble release from the pockmarks, indicating that the venting from the pockmarks does not undergo rapid changes. Plumes from the pockmarks rise between 875 to 925m above the seafloor to a final water depth of 325 to 275m, respectively. This depth is in excellent agreement with the top of the hydrate stability zone (275 meters below sea level) for the gas composition of hydrate sampled at the ridge (96.31% C1; 3.36% C2; 0.21% C3; 0.11% IC4; 0.01% NC4). This suggests that hydrate skins are forming around the gas bubbles, inhibiting the dissolution of gas, and allowing the bubbles to rise to such great heights in the water column. Our results provide hard constraints for bubble-dissolution models (e.g. McGinnis et al., 2006) that can validate whether a gas-hydrate-rimmed bubble can survive the ~900m rise through the water column. Long-term monitoring of such gas-hydrate and fluid-flow systems is important for quantifying methane fluxes to the ocean, for identifying the source(s) of the venting gas, and for better understanding the environmental conditions under which deep-sea biological communities exist. References Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., Consolaro, C., and Mienert, J., 2012, Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. : Marine Geology v. 332-334, p. 189-197. McGinnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E., and Wüest, A., 2006, The fate of rising methane bubbles in stratified waters: What fraction reaches the atmosphere?: Journal of Geophysical Research, v. 111, C09007, doi:10.1029/2005JC003183. Vogt, P. R., Crane, K., Sundvor, E., Max, M. D., and Pfirman, S. L., 1994, Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait: Geology, v. 22, no. 3, p. 255-258.
Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro
2017-01-01
Introduction: The popularity of SCUBA diving is steadily increasing together with the number of dives and correlated diseases per year. The rules that govern correct decompression procedures are considered well known even if the majority of Decompression Sickness (DCS) cases are considered unexpected confirming a bias in the "mathematical ability" to predict DCS by the current algorithms. Furthermore, little is still known about diving risk factors and any individual predisposition to DCS. This study provides an in-depth epidemiological analysis of the diving community, to include additional risk factors correlated with the development of circulating bubbles and DCS. Materials and Methods: An originally developed database (DAN DB) including specific questionnaires for data collection allowed the statistical analysis of 39,099 electronically recorded open circuit dives made by 2,629 European divers (2,189 males 83.3%, 440 females 16.7%) over 5 years. The same dive parameters and risk factors were investigated also in 970 out of the 39,099 collected dives investigated for bubble formation, by 1-min precordial Doppler, and in 320 sea-level dives followed by DCS symptoms. Results: Mean depth and GF high of all the recorded dives were 27.1 m, and 0.66, respectively; the average ascent speed was lower than the currently recommended "safe" one (9-10 m/min). We found statistically significant relationships between higher bubble grades and BMI, fat mass, age, and diving exposure. Regarding incidence of DCS, we identified additional non-bubble related risk factors, which appear significantly related to a higher DCS incidence, namely: gender, strong current, heavy exercise, and workload during diving. We found that the majority of the recorded DCS cases were not predicted by the adopted decompression algorithm and would have therefore been defined as "undeserved." Conclusion: The DAN DB analysis shows that most dives were made in a "safe zone," even if data show an evident "gray area" in the "mathematical" ability to predict DCS by the current algorithms. Some other risk factors seem to influence the possibility to develop DCS, irrespective of their effect on bubble formation, thus suggesting the existence of some factors influencing or enhancing the effects of bubbles.
Measurement and reduction of micro-bubble formation in high-viscosity fluids
NASA Astrophysics Data System (ADS)
Tom, Glenn; Liu, Wei
2012-03-01
Gases at high drive pressure can initially dissolve into the fluids used in lithography and other critical processes during the fabrication of integrated circuits. In the low pressure portion of the dispense train, the dissolved gases can revert to bubbles. These bubbles can: 1. Affect the compressibility of the working fluid and change the flow characteristics of the dispense heads which require frequent re-tuning of the coating tools. 2. Contribute to defect formation if the bubbles are trapped on the surface of the wafer. Photosensitive Polyimides (PI) have high viscosities (1000 to 20,000 cP). Because of the high viscosity, high-powered, expensive pumps are needed to effectively remove the fluid from its container. Suction from the pump filling cycle easily causes cavitation, which can create flow rate variability, and micro-bubble formation. It is a common practice to apply pressure to the PI resists to minimize cavitation in the pump. The trade-off to this practice is the entrainment (dissolution) of the drive gas into the resist and the risk of micro-bubbles forming later in the dispense train. In the current study, ATMI measured the effects of two methods of pressure dispense from the container on the amount of gas entrained in a viscous fluid: (1) indirect pressure dispense and (2) direct pressure dispense. The main analytical method employed to measure the amount of dissolved gases is a gas chromatograph (GC), which can measure the concentration of gases dissolved in a volatile fluid. It is not suitable to measure gases in low volatility fluids. The new test method developed, however, is capable of measuring dissolved gases in low volatility fluids.
NASA Astrophysics Data System (ADS)
Langenbach, K.; Heilig, M.; Horsch, M.; Hasse, H.
2018-03-01
A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO2). The molecular model of CO2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.
Langenbach, K; Heilig, M; Horsch, M; Hasse, H
2018-03-28
A new method for predicting homogeneous bubble nucleation rates of pure compounds from vapor-liquid equilibrium (VLE) data is presented. It combines molecular dynamics simulation on the one side with density gradient theory using an equation of state (EOS) on the other. The new method is applied here to predict bubble nucleation rates in metastable liquid carbon dioxide (CO 2 ). The molecular model of CO 2 is taken from previous work of our group. PC-SAFT is used as an EOS. The consistency between the molecular model and the EOS is achieved by adjusting the PC-SAFT parameters to VLE data obtained from the molecular model. The influence parameter of density gradient theory is fitted to the surface tension of the molecular model. Massively parallel molecular dynamics simulations are performed close to the spinodal to compute bubble nucleation rates. From these simulations, the kinetic prefactor of the hybrid nucleation theory is estimated, whereas the nucleation barrier is calculated from density gradient theory. This enables the extrapolation of molecular simulation data to the whole metastable range including technically relevant densities. The results are tested against available experimental data and found to be in good agreement. The new method does not suffer from typical deficiencies of classical nucleation theory concerning the thermodynamic barrier at the spinodal and the bubble size dependence of surface tension, which is typically neglected in classical nucleation theory. In addition, the density in the center of critical bubbles and their surface tension is determined as a function of their radius. The usual linear Tolman correction to the capillarity approximation is found to be invalid.
A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin
Archer, D.
2014-06-03
A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less
NASA Astrophysics Data System (ADS)
Sirivithayapakorn, Sanya; Keller, Arturo
2003-12-01
We present results from pore-scale observations of colloid transport in an unsaturated physical micromodel. The experiments were conducted separately using three different sizes of carboxylate polystyrene latex spheres and Bacteriophage MS2 virus. The main focus was to investigate the pore-scale transport processes of colloids as they interact with the air-water interface (AWI) of trapped air bubbles in unsaturated porous media, as well as the release of colloids during imbibition. The colloids travel through the water phase but are attracted to the AWI by either collision or attractive forces and are accumulated at the AWI almost irreversibly, until the dissolution of the air bubble reduces or eliminates the AWI. Once the air bubbles are near the end of the dissolution process, the colloids can be transported by advective liquid flow, as colloidal clusters. The clusters can then attach to other AWI down-gradient or be trapped in pore throats that would have allowed them to pass through individually. We also observed small air bubbles with attached colloids that traveled through the porous medium during the gas dissolution process. We used Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to help explain the observed results. The strength of the force that holds the colloids at the AWI was estimated, assuming that the capillary force is the major force that holds the colloids at the AWI. Our calculations indicate that the forces that hold the colloids at the AWI are larger than the energy barrier between the colloids. Therefore it is quite likely that the clusters of colloids are formed by the colloids attached at the AWI as they move closer at the end of the bubble dissolution process. Coagulation at the AWI may increase the overall filtration for colloids transported through the vadose zone. Just as important, colloids trapped in the AWI might be quite mobile when the air bubbles are released at the end of the dissolution process, resulting in increased breakthrough. These pore-scale mechanisms are likely to play a significant role in the macroscopic transport of colloids in unsaturated porous media.
Getting the gas out - developing gas networks in magmatic systems
NASA Astrophysics Data System (ADS)
Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde
2015-04-01
Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity melts) or (2) to develop sufficient porosity for full connectivity of a bubble network (in high viscosity melts). In contrast, our experiments suggest that the presence of solid particles may greatly enhance gas escape. On the one hand, the addition of solid particles increases the bulk viscosity of the mixture, which reduces the migration rate of large single bubbles. On the other hand, the strength of networks created by touching crystals inhibits bulk magma deformation and forces smaller bubbles to deform to occupy the spaces between particles, thereby increasing both the bubble shape anisotropy and, correspondingly, the probability of bubble coalescence. Gas pathways created in this way take advantage of inhomogeneities in the spatial distribution of crystals and allow large-scale gas release at relatively low vesicularities. This mechanism of gas escape is likely to be important not only in mafic arc volcanoes, where shallow conduits are likely to be highly crystalline, but also for degassing of crystal-mush-dominated magmatic systems.
NASA Astrophysics Data System (ADS)
Baac, Hyoung Won; Lee, Taehwa; Ok, Jong G.; Hall, Timothy; Jay Guo, L.
2013-12-01
Pulsed ultrasonic cavitation is a promising modality for non-contact targeted therapy, enabling mechanical ablation of the tissue. We demonstrate a spatio-temporal superposition approach of two ultrasound pulses (high and low frequencies) producing a tight cavitation zone of 100 μm in water, which is an-order-of-magnitudes smaller than those obtained by the existing high-amplitude transducers. Particularly, laser-generated focused ultrasound (LGFU) was employed for the high-frequency operation (15 MHz). As demonstrated, LGFU plays a primary role to define the cavitation zone. The generation rate of cavitation bubbles could be dramatically increased up to 4.1% (cf. 0.06% without the superposition) with moderated threshold requirement.
Albijanic, Boris; Ozdemir, Orhan; Nguyen, Anh V; Bradshaw, Dee
2010-08-11
Bubble-particle attachment in water is critical to the separation of particles by flotation which is widely used in the recovery of valuable minerals, the deinking of wastepaper, the water treatment and the oil recovery from tar sands. It involves the thinning and rupture of wetting thin films, and the expansion and relaxation of the gas-liquid-solid contact lines. The time scale of the first two processes is referred to as the induction time, whereas the time scale of the attachment involving all the processes is called the attachment time. This paper reviews the experimental studies into the induction and attachment times between minerals and air bubbles, and between oil droplets and air bubbles. It also focuses on the experimental investigations and mathematical modelling of elementary processes of the wetting film thinning and rupture, and the three-phase contact line expansion relevant to flotation. It was confirmed that the time parameters, obtained by various authors, are sensitive enough to show changes in both flotation surface chemistry and physical properties of solid surfaces of pure minerals. These findings should be extended to other systems. It is proposed that measurements of the bubble-particle attachment can be used to interpret changes in flotation behaviour or, in conjunction with other factors, such as particle size and gas dispersion, to predict flotation performance. Copyright 2010 Elsevier B.V. All rights reserved.
Energy Input is a Primary Controller of Methane Bubbling in Subarctic Lakes (Invited)
NASA Astrophysics Data System (ADS)
Wik, M.; Thornton, B.; Bastviken, D.; MacIntyre, S.; Varner, R. K.; Crill, P. M.
2013-12-01
Methane (CH4) emission from inland waters is suggested to be equal in greenhouse gas strength to approximately 25% of the carbon (C) uptake of all land-based ecosystems combined. A substantial amount of CH4 escapes lake surfaces via ebullition (bubbling), which is considered a highly heterogeneous and difficult pathway to predict. We use four summer seasons of ebullition data from three subarctic lakes to demonstrate striking (r2 of up to 0.997) linear relationships between cumulative bubble CH4 flux from June to September and four easily measurable, energy-related parameters of the lakes (solar shortwave input, number of ice-free days and shallow and deep water sediment temperature). In our lakes, there is essentially no ebullition at low temperatures, but ebullition increases exponentially above 6°C. It appears that persistent gas releases cannot start immediately after ice out due to a delay in the recharge of enough gas to form bubbles. Lack of continuous sampling procedures has until now made it difficult to identify relationships and confirm that heat energy transfer alone is a strong driver for ebullition that is independent of possible seasonal changes in organic substrate. In contrast to earlier studies highlighting the extreme variability of ebullition, we suggest that gas venting is a highly predictable process if measurements are made in a consistent manner across many different lake zones and over long time periods. Future changes to energy input to lakes and ponds may thus predictably alter the CH4 source strength of water bodies across northern landscapes.
NASA Technical Reports Server (NTRS)
Palaparthi, Ravi; Maldarelli, Charles; Papageorgiou, Dimitri; Singh, Bhim (Technical Monitor)
2001-01-01
Thermocapillary migration is a method for moving bubbles in space in the absence of buoyancy. A temperature gradient is the continuous phase in which a bubble is situated, and the applied gradient impressed on the bubble surface causes one pole of the drop to be cooler than the opposite pole. As the surface tension is a decreasing function of temperature, the cooler pole pulls at the warmer pole, creating a flow that propels the bubble in the direction of the warmer fluid. A major impediment to the practical use of thermocapillary to direct the movement of bubbles in space is the fact that surfactant impurities, which are unavoidably present in the continuous phase, can significantly reduce the migration velocity. A surfactant impurity adsorbed onto the bubble interface is swept to the trailing end of the bubble. When bulk concentrations are low (which is the case with an impurity), diffusion of surfactant to the front end is slow relative to convection, and surfactant collects at the back end of the bubble. Collection at the back lowers the surface tension relative to the front end setting up a reverse tension gradient. (This can also be the case if kinetic desorption of surfactant at the back end of the bubble is much slower than convection.) For buoyancy driven bubble motions in the absence of a thermocapillarity, the tension gradient opposes the surface flow, and reduces the surface and terminal velocities (the interface becomes more solid-like and bubbles translate as solid particles). When thermocapillary forces are present, the reverse tension gradient set up by the surfactant accumulation reduces the temperature-induced tension gradient, and can decrease to near zero the bubble's thermocapillary velocity. The objective of our research is to develop a method for enhancing the thermocapillary migration of bubbles which have be retarded by the adsorption onto the bubble surface of a surfactant impurity. Our remobilization theory proposes to use surfactant molecules which kinetically rapidly exchange between the bulk and the surface and are at high bulk concentrations. Because the remobilizing surfactant is present at much higher concentrations than the impurity, it adsorbs to the bubble surface much faster than the impurity when the bubble is formed, and thereby prevents the impurity from adsorbing onto the surface. In addition, the rapid kinetic exchange and high bulk concentration maintain a saturated surface with uniform surface concentrations. This prevents retarding surface tension gradients and keeps the thermocapillary velocity high. In our reports over the first 2 years, we presented numerical simulations of the bubble motion and surfactant transport which verified theoretically the concept of remobilization, and the development of an apparatus to track and measure the velocity of rising bubbles in a glycerol/water surfactant solution. This year, we detail experimental observations of remobilization. Two polyethylene oxide surfactants were studied, C12E6 (CH3(CH2)11(OCH2)6OH) and C10E8 (CH3(CH2)4(OCH2CH2)8OH). Measurements of the kinetic exchange for these surfactants show that the one with the longer hydrophobe chain C12E6 has a lower rate of kinetic exchange. In addition, this surfactant is much less soluble in the glycerol/water mixture because of the shorter ethoxylate chain. As a result, we found that C12E6 had only a very limited ability to remobilize rising bubbles because of the limited kinetic exchange and reduced solubility. However, C10E8, with its higher solubility and more rapid exchange was found to dramatically remobilize rising bubbles. We also compared our theoretical calculations to the experimental measurements of velocity for both the non-remobilizing and remobilizing surfactants and found excellent agreement. We further observed that for C10E8 at high concentrations, which exceeded the critical micelle concentrations, additional remobilization was measured. In this case the rapid exchange of monomer between micelle and surfactant provides an additional mechanism for maintaining a uniform surface concentrations.
Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.
Nowakowski, A F; Ballil, A; Nicolleau, F C G A
2015-08-01
The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.
NASA Astrophysics Data System (ADS)
Schnitzer, Ory; Frankel, Itzchak; Yariv, Ehud
2013-11-01
In Taylor's theory of electrohydrodynamic drop deformation (Proc. R. Soc. Lond. A, vol. 291, 1966, pp. 159-166), inertia is neglected at the outset, resulting in fluid velocity that scales as the square of the applied-field magnitude. For large drops, with increasing field strength the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number investigation. Balancing viscous stresses and electrical shear forces in this limit reveals a different velocity scaling, with the 4/3-power of the applied-field magnitude. We focus here on the flow over a gas bubble. It is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. At leading order in the Capillary number, the bubble deforms due to (i) Maxwell stresses; (ii) the hydrodynamic boundary-layer pressure associated with centripetal acceleration; and (iii) the intense pressure distribution acting over the narrow equatorial deflection zone, appearing as a concentrated load. Remarkably, the unique flow topology and associated scalings allow to obtain a closed-form expression for this deformation through application of integral mass and momentum balances. On the bubble scale, the concentrated pressure load is manifested in the appearance of a non-smooth equatorial dimple.
Stability and modal analysis of shock/boundary layer interactions
NASA Astrophysics Data System (ADS)
Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio
2017-02-01
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).
NASA Astrophysics Data System (ADS)
Agishev, B. Y.; Boltenko, E. A.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Komov, A. T.; Smorchova, Y. V.
2018-03-01
The effectiveness of the heat exchange intensifier “rib-twisted wire” is considered in this paper. The main goal is to study the influence of the wire coiling step t on heat transfer and hydraulic resistance for different values Ḣ of the dimensionless height of the edge Ḣ, as well as some results on heat exchange during bubbly boiling in an annular channel. Show: • a brief description and an image of the heat exchange intensifier “rib-twisted wire” • generalized results of studies of heat exchange and hydraulic resistance in the annular channel in the single-phase convection with different geometric characteristics of the intensifier; • empirical correlations of the generalized experimental results that allow to calculating the coefficient of hydraulic resistance and heat transfer in the range of regime parameters in the single-phase convection that is being studied. • some results of experiments in bubbly boiling regimes and near-critical thermal loads.
Micro-bubble emission boiling with the cavitation bubble blow pit
Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A.
2016-01-01
The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors’ knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB. PMID:27628271
NASA Astrophysics Data System (ADS)
Zhu, Y. G.
2015-12-01
In addition to material and energy flows, the dynamics and functions of the Earth's critical zone are intensively mediated by biological actions performed by diverse organisms. These biological actions are modulated by the expression of functional genes and their translation into enzymes that catalyze geochemical reactions, such as nutrient turnover and pollutant biodegradation. Although geobiology, as an interdisciplinary research area, is playing and vital role in linking biological and geochemical processes at different temporal and spatial scales, the distribution and transport of functional genes have rarely been investigated from the Earth's critical zone perspectives. To illustrate the framework of studies on the transport and transformation of genetic information in the critical zone, antibiotic resistance is taken as an example. Antibiotic resistance genes are considered as a group of emerging contaminants, and their emergence and spread within the critical zone on one hand are induced by anthropogenic activities, and on other hand are threatening human health worldwide. The transport and transformation of antibiotic resistance genes are controlled by both horizontal gene transfer between bacterial cells and the movement of bacteria harboring antibiotic resistance genes. In this paper, the fate and behavior of antibiotic resistance genes will be discussed in the following aspects: 1) general overview of environmental antibiotic resistance; 2) high through quantification of the resistome in various environmental media; 3) pathways of resistance gene flow within the critical zone; and 4) potential strategies in mitigating antibiotic resistance, particularly from the critical zone perspectives.
Thin Fresnel zone plate lenses for focusing underwater sound
NASA Astrophysics Data System (ADS)
Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.
2015-07-01
A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.
Thin Fresnel zone plate lenses for focusing underwater sound
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, David C., E-mail: david.calvo@nrl.navy.mil; Thangawng, Abel L.; Nicholas, Michael
A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ringmore » cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.« less
Reduction of Bubble Cavitation by Modifying the Diffraction Wave from a Lithotripter Aperture
2012-01-01
Abstract Purpose A new method was devised to suppress the bubble cavitation in the lithotripter focal zone to reduce the propensity of shockwave-induced renal injury. Materials and Methods An edge extender was designed and fabricated to fit on the outside of the ellipsoidal reflector of an electrohydraulic lithotripter to disturb the generation of diffraction wave at the aperture, but with little effect on the acoustic field inside the reflector. Results Although the peak negative pressures at the lithotripter focus using the edge extender at 20 kV were similar to that of the original configuration (-11.1±0.9 vs −10.6±0.7 MPa), the duration of the tensile wave was shortened significantly (3.2±0.54 vs 5.83±0.56 μs, P<0.01). There is no difference, however, in both the amplitude and duration of the compressive shockwaves between these two configurations as well as the −6 dB beam width in the focal plane. The significant suppression effect of bubble cavitation was confirmed by the measured bubble collapse time using passive cavitation detection. At the lithotripter focus, while only about 30 shocks were needed to rupture a blood vessel phantom using the original HM-3 reflector at 20 kV, no damage could be produced after 300 shocks using the edge extender. Meanwhile, the original HM-3 lithotripter at 20 kV can achieve a stone comminution efficiency of 50.4±2.0% on plaster-of-Paris stone phantom after 200 shocks, which is comparable to that of using the edge extender (46.8±4.1%, P=0.005). Conclusions Modifying the diffraction wave at the lithotripter aperture can suppress the shockwave-induced bubble cavitation with significant reduced damage potential on the vessel phantom but satisfactory stone comminution ability. PMID:22332839
Could Martian Strawberries Be? -- Prebiotic Chemical Evolution on an Early Wet Mars
NASA Astrophysics Data System (ADS)
Lerman, L.
2005-03-01
The universality of chemical physics dictates the ubiquity of bubbles, aerosols, and droplets on planets with water and simple amphiphiles. Their ability to functionally support prebiotic chemical evolution seems critical: on the early Earth and Mars, and quite likely for Titan and Europa.
Using trading strategies to detect phase transitions in financial markets.
Forró, Z; Woodard, R; Sornette, D
2015-04-01
We show that the log-periodic power law singularity model (LPPLS), a mathematical embodiment of positive feedbacks between agents and of their hierarchical dynamical organization, has a significant predictive power in financial markets. We find that LPPLS-based strategies significantly outperform the randomized ones and that they are robust with respect to a large selection of assets and time periods. The dynamics of prices thus markedly deviate from randomness in certain pockets of predictability that can be associated with bubble market regimes. Our hybrid approach, marrying finance with the trading strategies, and critical phenomena with LPPLS, demonstrates that targeting information related to phase transitions enables the forecast of financial bubbles and crashes punctuating the dynamics of prices.
Using trading strategies to detect phase transitions in financial markets
NASA Astrophysics Data System (ADS)
Forró, Z.; Woodard, R.; Sornette, D.
2015-04-01
We show that the log-periodic power law singularity model (LPPLS), a mathematical embodiment of positive feedbacks between agents and of their hierarchical dynamical organization, has a significant predictive power in financial markets. We find that LPPLS-based strategies significantly outperform the randomized ones and that they are robust with respect to a large selection of assets and time periods. The dynamics of prices thus markedly deviate from randomness in certain pockets of predictability that can be associated with bubble market regimes. Our hybrid approach, marrying finance with the trading strategies, and critical phenomena with LPPLS, demonstrates that targeting information related to phase transitions enables the forecast of financial bubbles and crashes punctuating the dynamics of prices.
Critical Zone Services as a Measure for Evaluating the Trade-offs in Intensively Managed Landscapes
NASA Astrophysics Data System (ADS)
Richardson, M.; Kumar, P.
2015-12-01
The Critical Zone includes the range of biophysical processes occurring from the top of the vegetation canopy to the weathering zone below the groundwater table. These services (Field et al. 2015) provide a measure to value processes that support the goods and services from our landscapes. In intensively managed landscapes the provisioning and regulating services are being altered through anthropogenic energy inputs so as to derive more agricultural productivity from the landscapes. Land use change and other alterations to the environment result in positive and/or negative net Critical Zone services. Through studies in the Critical Zone Observatory for Intensively Managed Landscapes (IMLCZO), this research seeks to answer questions such as: Are perennial bioenergy crops or annual replaced crops better for the land and surrounding environment? How do we evaluate the products and services from the land for the energy and resources we put in? Before the economic valuation of Critical Zone services, these questions seemed abstract. However, with developments such as Critical Zone services and life cycle assessments, they are more concrete. To evaluate the trade-offs between positive and negative impacts, life cycle assessments are used to create an inventory of all the energy inputs and outputs in a landscape management system. Total energy is computed by summing the mechanical energy used to construct tile drains, fertilizer, and other processes involved in intensely managed landscapes and the chemical energy gained by the production of biofuels from bioenergy crops. A multi-layer canopy model (MLCan) computes soil, water, and nutrient outputs for each crop type, which can be translated into Critical Zone services. These values are then viewed alongside the energy inputs into the system to show the relationship between agricultural practices and their corresponding ecosystem and environmental impacts.
Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha
2018-07-01
Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parhizkar, Maryam; Stride, Eleanor; Edirisinghe, Mohan
2014-07-21
This work investigates the generation of monodisperse microbubbles using a microfluidic setup combined with electrohydrodynamic processing. A basic T-junction microfluidic device was modified by applying an electrical potential difference across the outlet channel. A model glycerol air system was selected for the experiments. In order to investigate the influence of the electric field strength on bubble formation, the applied voltage was increased systematically up to 21 kV. The effect of solution viscosity and electrical conductivity was also investigated. It was found that with increasing electrical potential difference, the size of the microbubbles reduced to ~25% of the capillary diameter whilst their size distribution remained narrow (polydispersity index ~1%). A critical value of 12 kV was found above which no further significant reduction in the size of the microbubbles was observed. The findings suggest that the size of the bubbles formed in the T-junction (i.e. in the absence of the electric field) is strongly influenced by the viscosity of the solution. The eventual size of bubbles produced by the composite device, however, was only weakly dependent upon viscosity. Further experiments, in which the solution electrical conductivity was varied by the addition of a salt indicated that this had a much stronger influence upon bubble size.
Heat Transfer Enhancement due to Bubble Pumping in FC-72 Near the Saturation Temperature
1991-03-01
boiling, (2) reducing wall superheat during nucleate boiling and (3) enhancing critical heat flux ( Mudawar , 1990) . Since the heat transfer potential of...flux from a simulated electronic chip attached to the wall of a vertical rectangular channel was determined by Mudawar and Madox (1988). They concluded...Surface Boiling," Industrial and Engineering Chemistry, vol. 41, No. 9, 1949. Mudawar , I., and D.E. Maddox, Critical Heat Flux in Subcooled Flow Boiling
Acoustic explorations of the upper ocean boundary layer
NASA Astrophysics Data System (ADS)
Vagle, Svein
2005-04-01
The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.
Hydropedology: Synergistic integration of soil science and hydrology in the Critical Zone
Lin, H.S.; McDonnell, J.J.; Nimmo, John R.; Pachepsky, Y. A.
2016-01-01
Soil and water are the two critical components of theEarth’s Critical Zone (Figure 1): Soil modulates the connection between bedrock and the atmospheric boundary layer and water is a major driving force and transport agent between these two zones. The interactions between soil and water are so intimate and complex that they cannot be effectively studied in a piecemeal manner; they require a systems approach. In this spirit, hydropedology has emerged in recent years as a synergistic integration of soil science and hydrology that offers a renewed perspective and an integrated approach to understanding interactive pedologic and hydrologic processes and their properties in the Critical Zone.
`Dhara': An Open Framework for Critical Zone Modeling
NASA Astrophysics Data System (ADS)
Le, P. V.; Kumar, P.
2016-12-01
Processes in the Critical Zone, which sustain terrestrial life, are tightly coupled across hydrological, physical, biological, chemical, pedological, geomorphological and ecological domains over both short and long timescales. Observations and quantification of the Earth's surface across these domains using emerging high resolution measurement technologies such as light detection and ranging (lidar) and hyperspectral remote sensing are enabling us to characterize fine scale landscape attributes over large spatial areas. This presents a unique opportunity to develop novel approaches to model the Critical Zone that can capture fine scale intricate dependencies across the different processes in 3D. The development of interdisciplinary tools that transcend individual disciplines and capture new levels of complexity and emergent properties is at the core of Critical Zone science. Here we introduce an open framework for high-performance computing model (`Dhara') for modeling complex processes in the Critical Zone. The framework is designed to be modular in structure with the aim to create uniform and efficient tools to facilitate and leverage process modeling. It also provides flexibility to maintain, collaborate, and co-develop additional components by the scientific community. We show the essential framework that simulates ecohydrologic dynamics, and surface - sub-surface coupling in 3D using hybrid parallel CPU-GPU. We demonstrate that the open framework in Dhara is feasible for detailed, multi-processes, and large-scale modeling of the Critical Zone, which opens up exciting possibilities. We will also present outcomes from a Modeling Summer Institute led by Intensively Managed Critical Zone Observatory (IMLCZO) with representation from several CZOs and international representatives.
NASA Astrophysics Data System (ADS)
Ameli, Ali; Erlandsson, Martin; Beven, Keith; Creed, Irena; McDonnell, Jeffrey; Bishop, Kevin
2017-04-01
The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flowpath dynamics drive the spatio-temporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flowpaths are complex and difficult to map quantitatively. Here, we couple a new integrated flow and particle tracking transport model with a general reversible Transition-State-Theory style dissolution rate-law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration to intrinsic weathering rate, vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As the ratio of equilibrium concentration to intrinsic weathering rate decreases, the spatial distribution of concentration in the critical zone becomes more uniform for a wide range of flow rates, and stream C-Q relation approaches chemostatic behaviour, regardless of the degree of vertical heterogeneity in Ks. These findings suggest that the transport-controlled mechanisms in the hillslope can lead to chemostatic C-Q relations in the stream while the hillslope surface reaction-controlled mechanisms are associated with an inverse stream C-Q relation. In addition, as the ratio of equilibrium concentration to intrinsic weathering rate decreases, the concentration in the critical zone and stream become less dependent on groundwater age (or transit time)
NASA Astrophysics Data System (ADS)
Ameli, Ali A.; Beven, Keith; Erlandsson, Martin; Creed, Irena F.; McDonnell, Jeffrey J.; Bishop, Kevin
2017-01-01
The permeability architecture of the critical zone exerts a major influence on the hydrogeochemistry of the critical zone. Water flow path dynamics drive the spatiotemporal pattern of geochemical evolution and resulting streamflow concentration-discharge (C-Q) relation, but these flow paths are complex and difficult to map quantitatively. Here we couple a new integrated flow and particle tracking transport model with a general reversible Transition State Theory style dissolution rate law to explore theoretically how C-Q relations and concentration in the critical zone respond to decline in saturated hydraulic conductivity (Ks) with soil depth. We do this for a range of flow rates and mineral reaction kinetics. Our results show that for minerals with a high ratio of equilibrium concentration (Ceq) to intrinsic weathering rate (Rmax), vertical heterogeneity in Ks enhances the gradient of weathering-derived solute concentration in the critical zone and strengthens the inverse stream C-Q relation. As
Flow regimes and mechanistic modeling of critical heat flux under subcooled flow boiling conditions
NASA Astrophysics Data System (ADS)
Le Corre, Jean-Marie
Thermal performance of heat flux controlled boiling heat exchangers are usually limited by the Critical Heat Flux (CHF) above which the heat transfer degrades quickly, possibly leading to heater overheating and destruction. In an effort to better understand the phenomena, a literature review of CHF experimental visualizations under subcooled flow boiling conditions was performed and systematically analyzed. Three major types of CHF flow regimes were identified (bubbly, vapor clot and slug flow regime) and a CHF flow regime map was developed, based on a dimensional analysis of the phenomena and available data. It was found that for similar geometric characteristics and pressure, a Weber number (We)/thermodynamic quality (x) map can be used to predict the CHF flow regime. Based on the experimental observations and the review of the available CHF mechanistic models under subcooled flow boiling conditions, hypothetical CHF mechanisms were selected for each CHF flow regime, all based on a concept of wall dry spot overheating, rewetting prevention and subsequent dry spot spreading. It is postulated that a high local wall superheat occurs locally in a dry area of the heated wall, due to a cyclical event inherent to the considered CHF two-phase flow regime, preventing rewetting (Leidenfrost effect). The selected modeling concept has the potential to span the CHF conditions from highly subcooled bubbly flow to early stage of annular flow. A numerical model using a two-dimensional transient thermal analysis of the heater undergoing nucleation was developed to mechanistically predict CHF in the case of a bubbly flow regime. In this type of CHF two-phase flow regime, the high local wall superheat occurs underneath a nucleating bubble at the time of bubble departure. The model simulates the spatial and temporal heater temperature variations during nucleation at the wall, accounting for the stochastic nature of the boiling phenomena. The model has also the potential to evaluate the post-DNB heater temperature up to the point of heater melting. Validation of the proposed model was performed using detailed measured wall boiling parameters near CHF, thereby bypassing most needed constitutive relations. It was found that under limiting nucleation conditions; a peak wall temperature at the time of bubble departure can be reached at CHF preventing wall cooling by quenching. The simulations show that the resulting dry patch can survive the surrounding quenching event, preventing further nucleation and leading to a fast heater temperature increase. For more practical applications, the model was applied at known CHF conditions in simple geometry coupled with one-dimensional and three-dimensional (CFD) codes. It was found that, in the case where CHF occurs under bubbly flow conditions, the local wall superheat underneath nucleating bubbles is predicted to reach the Leidenfrost temperature. However, a better knowledge of statistical variations in wall boiling parameters would be necessary to correctly capture the CHF trends with mass flux (or Weber number). In addition, consideration of relevant parameter influences on the Leidenfrost temperature and consideration of interfacial microphysics at the wall would allow improved simulation of the wall rewetting prevention and subsequent dry patch spreading.
Conventional in vitro exposure studies of airborne pollutants involve, for example, the addition of particulate matter (PM) or PM extracts to the cell culture medium, or the bubbling of gases into the culture medium; these methods alter the pollutant’s physical and chemical...
Simulation in Metallurgical Processing: Recent Developments and Future Perspectives
NASA Astrophysics Data System (ADS)
Ludwig, Andreas; Wu, Menghuai; Kharicha, Abdellah
2016-08-01
This article briefly addresses the most important topics concerning numerical simulation of metallurgical processes, namely, multiphase issues (particle and bubble motion and flotation/sedimentation of equiaxed crystals during solidification), multiphysics issues (electromagnetic stirring, electro-slag remelting, Cu-electro-refining, fluid-structure interaction, and mushy zone deformation), process simulations on graphical processing units, integrated computational materials engineering, and automatic optimization via simulation. The present state-of-the-art as well as requirements for future developments are presented and briefly discussed.
2007-09-01
since water depth was only 800 m. Interestingly the signal from the 3rd drop has charge-seafloor range and bubble pulse frequency closer to what would...Hydrophone. A near-source hydrophone recording system was put together by Scripps Institution of Oceanography’s (SIO’s) Ocean Bottom Seismograph ...needed. We have thus proposed another research cruise to obtain more detailed measurements . Our new plan calls for several improvements to the previous
Critical Transition in Critical Zone of Intensively Managed Landscapes
NASA Astrophysics Data System (ADS)
Kumar, P.
2017-12-01
Intensification of industrial agriculture has resulted in severe unintended global impacts, including degradation of arable land and eutrophication of receiving water bodies. Modern agricultural practices rely on significant direct and indirect human energy inputs, which have created imbalances between increased rates of biogeochemical processes related to production and background rates of natural processes. These imbalances have cascaded through the deep inter-dependencies between carbon, soil, water, nutrient and ecological processes, resulting in a critical transition of the Critical Zone and creating emergent dynamics and evolutionary trajectories. Understanding of these novel organization and function of the Critical Zone is vital for developing sustainable agricultural practices.
Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory1[OPEN
Espino, Susana; Nima, Neda; Do, Aissa Y.T.; Michaud, Joseph M.; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Steppe, Kathy
2017-01-01
Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. PMID:27927981
Xylem Surfactants Introduce a New Element to the Cohesion-Tension Theory.
Schenk, H Jochen; Espino, Susana; Romo, David M; Nima, Neda; Do, Aissa Y T; Michaud, Joseph M; Papahadjopoulos-Sternberg, Brigitte; Yang, Jinlong; Zuo, Yi Y; Steppe, Kathy; Jansen, Steven
2017-02-01
Vascular plants transport water under negative pressure without constantly creating gas bubbles that would disable their hydraulic systems. Attempts to replicate this feat in artificial systems almost invariably result in bubble formation, except under highly controlled conditions with pure water and only hydrophilic surfaces present. In theory, conditions in the xylem should favor bubble nucleation even more: there are millions of conduits with at least some hydrophobic surfaces, and xylem sap is saturated or sometimes supersaturated with atmospheric gas and may contain surface-active molecules that can lower surface tension. So how do plants transport water under negative pressure? Here, we show that angiosperm xylem contains abundant hydrophobic surfaces as well as insoluble lipid surfactants, including phospholipids, and proteins, a composition similar to pulmonary surfactants. Lipid surfactants were found in xylem sap and as nanoparticles under transmission electron microscopy in pores of intervessel pit membranes and deposited on vessel wall surfaces. Nanoparticles observed in xylem sap via nanoparticle-tracking analysis included surfactant-coated nanobubbles when examined by freeze-fracture electron microscopy. Based on their fracture behavior, this technique is able to distinguish between dense-core particles, liquid-filled, bilayer-coated vesicles/liposomes, and gas-filled bubbles. Xylem surfactants showed strong surface activity that reduces surface tension to low values when concentrated as they are in pit membrane pores. We hypothesize that xylem surfactants support water transport under negative pressure as explained by the cohesion-tension theory by coating hydrophobic surfaces and nanobubbles, thereby keeping the latter below the critical size at which bubbles would expand to form embolisms. © 2017 American Society of Plant Biologists. All Rights Reserved.
Physical and chemical controls on the critical zone
Anderson, S.P.; Von Blanckenburg, F.; White, A.F.
2007-01-01
Geochemists have long recognized a correlation between rates of physical denudation and chemical weathering. What underlies this correlation? The Critical Zone can be considered as a feed-through reactor. Downward advance of the weathering front brings unweathered rock into the reactor. Fluids are supplied through precipitation. The reactor is stirred at the top by biological and physical processes. The balance between advance of the weathering front by mechanical and chemical processes and mass loss by denudation fixes the thickness of the Critical Zone reactor. The internal structure of this reactor is controlled by physical processes that create surface area, determine flow paths, and set the residence time of material in the Critical Zone. All of these impact chemical weathering flux.
NASA Astrophysics Data System (ADS)
Moreira-Turcq, Patricia; Carlo Espinoza, Jhan; Filizola, Naziano; Martinez, Jean-Michel
2018-01-01
The Critical Zone has been defined as the thin layer of the continental surfaces extending from fresh bedrock and the bottom of groundwater up to vegetation canopy, where soil, rock, water, air, and living organisms interact (Banwart et al., 2012; Lin et al., 2011). Despite the Critical Zone's importance to terrestrial life, it remains poorly understood. In this context, understanding the complex interactions between physical, chemical, and biological processes of the Critical Zone requires long-term observations (Anderson et al., 2012; Brantley et al., 2017), not only because different mechanisms have varying time frames, but also because it is necessary to monitor its natural and anthropogenic evolution in response to global climate and environmental changes.
NASA Astrophysics Data System (ADS)
Larsen, Jessica F.
2016-11-01
The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.
Numerical modeling of the wind flow over a transverse dune
Araújo, Ascânio D.; Parteli, Eric J. R.; Pöschel, Thorsten; Andrade, José S.; Herrmann, Hans J.
2013-01-01
Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee — the separation bubble — displays a surprisingly strong dependence on the wind shear velocity, u*: it is nearly independent of u* for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u* for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u* is larger than approximately 0.39 m/s, whereas a larger value of u* (about 0.49 m/s) is required to initiate this reverse transport. PMID:24091456
NASA Astrophysics Data System (ADS)
Grant, G.
2013-12-01
The great promise of critical zone science and observatories (CZOs) emerging over the past decade was that real progress towards understanding the earth's near-surface environment could be made through coordinated studies of processes and interactions that occur within that thin layer between the bottom of the atmosphere and the top of competent bedrock - the critical zone. How well has this promise been realized, and where is the science now headed? Drawing on recent findings from CZOs and elsewhere, I identify a number of exciting and potentially transformative new ideas and threads at the boundaries of hydrology, geomorphology, pedology, and ecology. These include: 1). New understanding of interactions and feedbacks among soil weathering, pathways for water, tree roots, and bedrock fractures. A fundamental insight emerging from critical zone studies is that soils are far more interestingly structured than simple textbook models of homogeneous substrates with exponentially decreasing permeability with depth. Instead, the near-surface is now seen as a complex network of voids, paths, conduits, and storage zones that are both formed and exploited by the movement of water, geochemical reactions, and organisms. This evolving perspective on the critical zone has implications for a wide range of issues, including the residence time and chemistry of water, rates of weathering, slope stability, and long-term soil fertility. 2. Growing appreciation for the role of biology in conditioning and transforming its own physical environment within the critical zone. This includes the role of trees in hydraulically redistributing water, fracturing bedrock, and contributing to long-term soil erosion and landscape evolution through tree fall and throw and vegetation effects on moisture regimes. 3. Similarly, the importance of understanding linkages among soils, water, and vegetation has never been greater as a warming climate dramatically changes the 'rules of the game'. New understanding of feedbacks among vegetation growth and water uptake, soil moisture regimes, snowpack dynamics, and overall forest health are challenging previous assumptions about how best to manage forest environments in the face of a warming atmosphere and increased frequencies of disturbance. Time will tell whether these new perspectives represent incremental or fundamental shifts in our thinking about the critical zone, but it is clearly an exciting time for critical zone science and scientists.
Low Reynolds number airfoil survey, volume 1
NASA Technical Reports Server (NTRS)
Carmichael, B. H.
1981-01-01
The differences in flow behavior two dimensional airfoils in the critical chordlength Reynolds number compared with lower and higher Reynolds number are discussed. The large laminar separation bubble is discussed in view of its important influence on critical Reynolds number airfoil behavior. The shortcomings of application of theoretical boundary layer computations which are successful at higher Reynolds numbers to the critical regime are discussed. The large variation in experimental aerodynamic characteristic measurement due to small changes in ambient turbulence, vibration, and sound level is illustrated. The difficulties in obtaining accurate detailed measurements in free flight and dramatic performance improvements at critical Reynolds number, achieved with various types of boundary layer tripping devices are discussed.
NASA Astrophysics Data System (ADS)
Collins, C.; Maxwell, R. M.; Visser, A.
2016-12-01
The critical zone is the region of the Earth's crust where hydrogeology, ecology, and climate interact. As many critical zone processes are fundamental, the significance of studying critical zone processes goes beyond understanding the local ecohydrological setting. Therefore studying critical zone governing processes requires an interdisciplinary approach that integrates simulation and observation. In this study, a high-resolution integrated hydrologic model, ParFlow-CLM, was developed for the Providence Creek watershed. Providence Creek is a highly instrumented critical zone observatory (CZO) located in the southern Sierra Nevada Mountains, a region currently experiencing a range of short-term responses (i.e. tree mortality) to a severe four-year drought. Sources of plant water use, pathways and residence times of water through the subsurface are identified using a suite of isotopic signatures and numerical particle tracking. Implications of using a fully coupled integrated hydrologic model accompanied by tracer analysis include better understanding of water partitioning and water storage in the regolith and vegetation water use during drought time conditions. The importance of subsurface storage, plant available water and lateral flow during the 2012-2015 drought to mitigate vegetation stress are addressed and verified against observed tree mortality. The stream flow response to tree mortality in the aftermath of the drought, analogous to the Colorado Mountain Pine Beetle case, provides insight into the potential effects of proposed forest management practices.
'One physical system': Tansley's ecosystem as Earth's critical zone.
Richter, Daniel deB; Billings, Sharon A
2015-05-01
Integrative concepts of the biosphere, ecosystem, biogeocenosis and, recently, Earth's critical zone embrace scientific disciplines that link matter, energy and organisms in a systems-level understanding of our remarkable planet. Here, we assert the congruence of Tansley's (1935) venerable ecosystem concept of 'one physical system' with Earth science's critical zone. Ecosystems and critical zones are congruent across spatial-temporal scales from vegetation-clad weathering profiles and hillslopes, small catchments, landscapes, river basins, continents, to Earth's whole terrestrial surface. What may be less obvious is congruence in the vertical dimension. We use ecosystem metabolism to argue that full accounting of photosynthetically fixed carbon includes respiratory CO₂ and carbonic acid that propagate to the base of the critical zone itself. Although a small fraction of respiration, the downward diffusion of CO₂ helps determine rates of soil formation and, ultimately, ecosystem evolution and resilience. Because life in the upper portions of terrestrial ecosystems significantly affects biogeochemistry throughout weathering profiles, the lower boundaries of most terrestrial ecosystems have been demarcated at depths too shallow to permit a complete understanding of ecosystem structure and function. Opportunities abound to explore connections between upper and lower components of critical-zone ecosystems, between soils and streams in watersheds, and between plant-derived CO₂ and deep microbial communities and mineral weathering. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Rios, K. L.; Feineman, M. D.; Bybee, G. M.
2016-12-01
Dated at 2.056 Ga and encompassing an estimated 65,000 km2 in surface area and 650,000 km3 in volume the Bushveld Igneous Complex in South Africa contains the largest and most unique layered mafic intrusion in the world. It contains 80-90% of the world's minable platinum group elements. Scientists are interested in understanding the origin of this intrusion due to its massive size, unique assemblage of minerals, and strongly zoned stratigraphy. Iron isotopes may help us to understand the roles of partial mantle melting and fractional crystallization in magma genesis and differentiation. For example, it may be possible to determine what role fractional crystallization of oxides and sulfides played in the formation of the Rustenburg Layered Suite (RLS) by comparing δ56Fe in samples from the Lower, Critical, Main and Upper Zones. The use of MC-ICPMS has made it more routine to study the fractionation of stable iron isotopes in natural systems; however, this technique has only been applied in a few studies of the RLS, mostly restricted to the Upper Main and Upper Zones. In this study δ56Fe was determined in Upper Zone magnetite, Critical Zone chromitite and Critical Zone sulfides using MC-ICP-MS. Previous research has shown that early crystallizing mafic phases incorporate the lighter 54Fe isotope leaving a residual magma with a higher δ56Fe value. Therefore, if the Upper Zone magma represents a high-degree differentiate of the parental Bushveld magma, then magmas from the Upper Zone would be expected to have a higher δ56Fe than magmas contributing to the Lower, Critical and Main Zones. The results of this experiment were indeed consistent with this hypothesis. The δ56Fe values recorded for the three sample types were: magnetite 0.19 ±0.03‰; sulfides -0.45 ±0.03‰ to -0.81 ±0.03‰; and chromitite 0.03 ±0.05‰. The sulfides of the Critical Zone are isotopically lighter than would be predicted based on equilibrium sulfide-melt fractionation, if the parental melt of the Critical Zone were in equilibrium with previously published whole rock data for Upper Zone. This is consistent with interpretations of the Upper Zone as a high degree differentiate of the Bushveld Parental Magma.
NASA Astrophysics Data System (ADS)
Lai, Lipeng; Turitsyn, Konstantin S.; Zhang, Wendy W.
2008-11-01
Recent studies reveal that an inertial implosion, analogous to the collapse of a large cavity in water, governs how a submerged air bubble disconnects from a nozzle. For the bubble, slight asymmetries in the initial neck shape give rise to vibrations that grow pronounced over time. These results motivate our study of the final stage of asymmetric cavity collapse. We are particularly interested in the generic situation where the initial condition is sufficiently well-focused that a cavity can implode inwards energetically. Yet, because the initial condition is not perfectly symmetric, the implosion fails to condense all the energy. We consider cavity shapes in the slender-body limit, for which the collapse dynamics is quasi two-dimensional. In this limit, each cross-section of the cavity evolves as if it were a distorted void immersed in an inviscid and irrotational fluid. Simulations of a circular void distorted by an elongation-compression vibrational mode reveal that a variety of outcomes are possible in the 2D problem. Opposing sides of the void surface can curve inwards and contact smoothly in a finite amount of time. Depending on the phase of the vibration excited, the contact can be either north-south or east-west. Phase values that lie in the transition zone from one orientation to the other give rise to final shapes with large lengthscale separation. We show also that the final outcome varies non-monotonically with the initial amplitude of the vibrational mode.
Are winds in cities always slower than in the countryside? Modelling the Urban Wind Island Effect
NASA Astrophysics Data System (ADS)
Droste, Arjan; Steeneveld, Gert-Jan
2017-04-01
Though the Urban Heat Island has been extensively studied, relatively little has been documented about differences in wind between the city as a whole and the countryside. Urban winds are difficult to capture in both observations and modelling, due to the complex urban canyon and neighbourhood geometry. This study uses a straightforward mixed-layer model (Tennekes & Driedonks, 1981) to investigate the contrast between the diurnal cycle of wind in the urban and the rural environment. The model contains one urban and one rural column, to identify differences in wind patterns between city and countryside under equal geostrophic forcing. The model has been evaluated against rural observations from the 213 m. Cabauw tower (the Netherlands), and the urban observations from the BUBBLE campaign (Basel, Rotach et al., 2005). The influence of the urban fabric on the wind is investigated by varying the surface underneath the column model using the 10 urban Local Climate Zones, thereby altering building height, fraction of impervious surface, and initial boundary-layer depth. First results show that for high initial urban boundary-layer depths compared to the rural boundary-layer depth, the urban column can be much windier than its rural counterpart: i.e. the urban Wind Island Effect. The effect appears to be most prominent in the morning and the late afternoon (up to 1 m/s), for Local Climate Zones with lower buildings (3 or 7). BUBBLE observations confirm the timing of the Wind Island Effect, though with weaker magnitude.
NASA Astrophysics Data System (ADS)
Li, Shi-Chen; Yu, Sen-Jiang; He, Linghui; Ni, Yong
2018-03-01
Complex surface patterns generated by nonlinear buckling originate from various symmetry-breaking instabilities. Identifying possible key factors that regulate the instability modes is critical to reveal the mechanism of the surface pattern selection. In this paper, how another two factors (ridge cracking and interface sliding) including Poisson's ratio influence the morphological symmetry breaking in straight-sided blisters are systematically studied. Morphology diagrams from stability analysis show that ridge cracking and low Poisson's ratio promote symmetric instability mode and favor bubble-like blisters while interface sliding and high Poisson's ratio facilitate antisymmetric instability mode and result in telephone cord buckles. The analytical predictions are evidenced by experimental observations on annealed silicon nitride films on glass substrates and confirmed by nonlinear numerical simulations. This study explains how and why the rarely observed bubble-like blisters in accompany with ridge crack can appear in brittle thin films in comparison with the ubiquitously observed telephone cord buckles that usually form as the development of an antisymmetric instability mode when straight-sided blisters undergo the super-critical isotropic compression.
A neutron dosemeter for nuclear criticality accidents.
d'Errico, F; Curzio, G; Ciolini, R; Del Gratta, A; Nath, R
2004-01-01
A neutron dosemeter which offers instant read-out has been developed for nuclear criticality accidents. The system is based on gels containing emulsions of superheated dichlorodifluoromethane droplets, which vaporise into bubbles upon neutron irradiation. The expansion of these bubbles displaces an equivalent volume of gel into a graduated pipette, providing an immediate measure of the dose. Instant read-out is achieved using an array of transmissive optical sensors which consist of coupled LED emitters and phototransistor receivers. When the gel displaced in the pipette crosses the sensing region of the photomicrosensors, it generates a signal collected on a computer through a dedicated acquisition board. The performance of the device was tested during the 2002 International Accident Dosimetry Intercomparison in Valduc, France. The dosemeter was able to follow the initial dose gradient of a simulated accident, providing accurate values of neutron kerma; however, the emulsion was rapidly depleted of all its drops. A model of the depletion effects was developed and it indicates that an adequate dynamic range of the dose response can be achieved by using emulsions of smaller droplets.
How a short double-stranded DNA bends
NASA Astrophysics Data System (ADS)
Shin, Jaeoh; Lee, O.-Chul; Sung, Wokyung
2015-04-01
A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 102-106 than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.
Lumped Multi-Bubble Analysis of Injection Cooling System for Storage of Cryogenic Liquids
NASA Astrophysics Data System (ADS)
Saha, Pritam; Sandilya, Pavitra
2017-12-01
Storage of cryogenic liquids is a critical issue in many cryogenic applications. Subcooling of the liquid by bubbling a gas has been suggested to extend the storage period by reducing the boil-off loss. Liquid evaporation into the gas may cause liquid subcooling by extracting the latent heat of vaporization from the liquid. The present study aims at studying the factors affecting the liquid subcooling during gas injection. A lumped parameter model is presented to capture the effects of bubble dynamics (coalescence, breakup, deformation etc.) on the heat and mass transport between the gas and the liquid. The liquid subcooling has been estimated as a function of the key operating variables such as gas flow rate and gas injection temperature. Numerical results have been found to predict the change in the liquid temperature drop reasonably well when compared with the previously reported experimental results. This modelling approach can therefore be used in gauging the significance of various process variables on the liquid subcooling by injection cooling, as well as in designing and rating an injection cooling system.
NASA Astrophysics Data System (ADS)
Mitrakusuma, Windy H.; Deendarlianto, Kamal, Samsul; Indarto, Nuriyadi, M.
2016-06-01
Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO2 coating (UVN), and stainless steel with TiO2 coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussion will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.
Combining liquid inertia with pressure recovery from bubble expansion for enhanced flow boiling
NASA Astrophysics Data System (ADS)
Kalani, A.; Kandlikar, S. G.
2015-11-01
In this paper, we demonstrate using liquid inertia force in a taper gap microchannel geometry to provide a high level of heat dissipation capacity accompanied by a high heat transfer coefficient and low pressure drop during flow boiling. The high mass flux increases liquid inertia force and promotes vapor removal from the manifold, thereby increasing critical heat flux (CHF) and heat transfer coefficient. The tapered gap above the microchannels provides an increasing cross-sectional area in the flow direction. This gap allows bubbles to emerge from microchannels and expand within the gap along the flow direction. The bubble evaporation and expansion in tapered gap causes pressure recovery and reduces the total pressure drop. The pressure recovery increases with the increased evaporation rate at higher heat fluxes. Using a 6% taper and a moderately high inlet liquid flow Reynolds number of 1095, we have reached a CHF of 1.07 kW/cm2 with a heat transfer coefficient of 295 kW/m2 °C and a pressure drop of 30 kPa.
NASA Technical Reports Server (NTRS)
Panzarella, Charles
2004-01-01
As humans prepare for the exploration of our solar system, there is a growing need for miniaturized medical and environmental diagnostic devices for use on spacecrafts, especially during long-duration space missions where size and power requirements are critical. In recent years, the biochip (or Lab-on-a- Chip) has emerged as a technology that might be able to satisfy this need. In generic terms, a biochip is a miniaturized microfluidic device analogous to the electronic microchip that ushered in the digital age. It consists of tiny microfluidic channels, pumps and valves that transport small amounts of sample fluids to biosensors that can perform a variety of tests on those fluids in near real time. It has the obvious advantages of being small, lightweight, requiring less sample fluids and reagents and being more sensitive and efficient than larger devices currently in use. Some of the desired space-based applications would be to provide smaller, more robust devices for analyzing blood, saliva and urine and for testing water and food supplies for the presence of harmful contaminants and microorganisms. Our group has undertaken the goal of adapting as well as improving upon current biochip technology for use in long-duration microgravity environments. In addition to developing computational models of the microfluidic channels, valves and pumps that form the basis of every biochip, we are also trying to identify potential problems that could arise in reduced gravity and develop solutions to these problems. One such problem is due to the prevalence of bubbly sample fluids in microgravity. A bubble trapped in a microfluidic channel could be detrimental to the operation of a biochip. Therefore, the process of bubble formation in microgravity needs to be studied, and a model of this process has been developed and used to understand how bubbles develop and move through biochip components. It is clear that some type of bubble filter would be necessary in Space, and several bubble filter designs are being evaluated.
Reidenberg, Joy S; Laitman, Jeffrey T
2007-06-01
Cetaceans (whales, dolphins, and porpoises) have developed extensive protective barriers to exclude water or food from the respiratory tract, including valvular nostrils, an intranarial elongated larynx, and a sphincteric soft palate. A barrier breach can be lethal, as asphyxiation may occur from incursions of water (drowning) or food (choking). Humpback whales (Megaptera novaeangliae), however, exhibit a possibly unique and paradoxical behavior concerning respiratory protection: they release a "bubble cloud" (a cluster of tiny bubbles) underwater from the mouth. How they do this remains unclear. This study tests the hypothesis that the larynx plays a role in enabling bubble cloud emission. The anatomy and position of the larynx was examined in seven specimens of Megaptera novaeangliae. Results indicate that the epiglottis can be manually removed from behind the soft palate and placed in the oral cavity during dissection. Unlike that of toothed whales (odontocetes), the humpback whale larynx does not appear to be permanently intranarial. The elongated and trough-shaped epiglottis may function as a tube when placed against the undersurface of the soft palate and, thus, facilitate channeling air from the larynx to the oral cavity. The pointed tip and lateral edges of the epiglottis fit tightly against the undersurface of the soft palate, perhaps functioning as a one-way valve that lets air out but prevents water from entering. Bubble cloud generation likely involves air passing directly from the larynx into the oral cavity, and then expulsion through the mesh of the baleen plates. A laryngeal-oral connection, however, compromises the anatomical aquatic adaptations that normally protect the respiratory tract. A potential for drowning exists during the critical interval in which the larynx is intraoral and during re-insertion back to the normal intranarial position. The retention of this risky behavior indicates the importance of bubble clouds in predator avoidance, prey capture, and/or social signaling. 2007 Wiley-Liss, Inc.
The Nucleation Rate of Single O2 Nanobubbles at Pt Nanoelectrodes.
Soto, Álvaro Moreno; German, Sean R; Ren, Hang; van der Meer, Devaraj; Lohse, Detlef; Edwards, Martin A; White, Henry S
2018-06-13
Nanobubble nucleation is a problem that affects efficiency in electrocatalytic reactions since those bubbles can block the surface of the catalytic sites. In this article, we focus on the nucleation rate of O 2 nanobubbles resulting from the electrooxidation of H 2 O 2 at Pt disk nanoelectrodes. Bubbles form almost instantaneously when a critical peak current, i nb p , is applied, but for lower currents, bubble nucleation is a stochastic process in which the nucleation (induction) time, t ind , dramatically decreases as the applied current approaches i nb p , a consequence of the local supersaturation level, ζ, increasing at high currents. Here, by applying different currents below i nb p , nanobubbles take some time to nucleate and block the surface of the Pt electrode at which the reaction occurs, providing a means to measure the stochastic t ind . We study in detail the different conditions in which nanobubbles appear, concluding that the electrode surface needs to be preconditioned to achieve reproducible results. We also measure the activation energy for bubble nucleation, E a , which varies in the range from (6 to 30) kT, and assuming a spherically cap-shaped nanobubble nucleus, we determine the footprint diameter L = 8-15 nm, the contact angle to the electrode surface θ = 135-155°, and the number of O 2 molecules contained in the nucleus (50 to 900 molecules).
Effect of diameter of metal nanowires on pool boiling heat transfer with FC-72
NASA Astrophysics Data System (ADS)
Kumar G., Udaya; S., Suresh; M. R., Thansekhar; Babu P., Dinesh
2017-11-01
Effect of varying diameter of metal nanowires on pool boiling heat transfer performance is presented in this study. Copper nanowires (CuNWs) of four different diameters (∼35 nm, ∼70 nm, ∼130 nm and ∼200 nm) were grown directly on copper specimen using template-based electrodeposition technique. Both critical heat flux (CHF) and boiling heat transfer coefficient (h) were found to be improved in surfaces with nanowires as compared to the bare copper surface. Moreover, both the parameters were found to increase with increasing diameter of the nanowires. The percentage increases observed in CHF for the samples with nanowires were 38.37%, 40.16%, 48.48% and 45.57% whereas the percentage increase in the heat transfer coefficient were 86.36%, 95.45%, 184.1% and 131.82% respectively as compared to the bare copper surface. Important reasons believed for this enhancement were improvement in micron scale cavity density and cavity size which arises as a result of the coagulation and grouping of nanowires during the drying process. In addition to this, superhydrophilic nature, capillary effect, and enhanced bubble dynamics parameters (bubble frequency, bubble departure diameter, and nucleation site density) were found to be the concurring mechanisms responsible for this enhancement in heat transfer performance. Qualitative bubble dynamics analysis was done for the surfaces involved and the visual observations are provided to support the results presented and discussed.
The evolution of helium from aged Zr tritides: A thermal helium desorption spectrometry study
NASA Astrophysics Data System (ADS)
Cheng, G. J.; Huang, G.; Chen, M.; Zhou, X. S.; Liu, J. H.; Peng, S. M.; Ding, W.; Wang, H. F.; Shi, L. Q.
2018-02-01
The evolution of He from Zr-tritides was investigated for aging times up to about 6.5 years using analytical thermal helium desorption spectrometry (THDS). Zr films were deposited onto Mo substrates and then converted into Zr-tritides (ZrT1.70∼1.95) inside a tritiding apparatus loaded with pure tritium gas. During aging, there are at least five forms of He in Zr-tritides, and more than 99% of He atoms are in the form of He bubbles. The isolated He bubbles in lattices begin to link with each other when the He/Zr atom ratio reaches about 0.21, and are connected to grain boundaries or dislocation networks at He concentration of He/Zr ≈ 0.26. An interconnected system of channels decorated by bubbles evolves from the network dislocations, dislocation loops and internal boundaries. These He filled networks are formed completely when the He/Zr atom ratio is about 0.38. Once the He/Zr reached about 0.45, the networks of He bubble penetrate to the film surface and He begins an "accelerated release". This critical ratio of He to Zr for He accelerated release is much greater than that found previously for Ti-tritides (0.23-0.30). The difference of He retention in Zr-tritides and Ti-tritides was also discussed in this paper.
Single-bubble boiling under Earth's and low gravity
NASA Astrophysics Data System (ADS)
Khusid, Boris; Elele, Ezinwa; Lei, Qian; Tang, John; Shen, Yueyang
2017-11-01
Miniaturization of electronic systems in terrestrial and space applications is challenged by a dramatic increase in the power dissipation per unit volume with the occurrence of localized hot spots where the heat flux is much higher than the average. Cooling by forced gas or liquid flow appears insufficient to remove high local heat fluxes. Boiling that involves evaporation of liquid in a hot spot and condensation of vapor in a cold region can remove a significantly larger amount of heat through the latent heat of vaporization than force-flow cooling can carry out. Traditional methods for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles from the heating surface. In contrast, we unexpectedly observed a new boiling regime of water under Earth's gravity and low gravity in which a bubble was pinned on a small heater up to 270°C and delivered a heat flux up to 1.2 MW/m2 that was as high as the critical heat flux in the classical boiling regime on Earth .Low gravity measurements conducted in parabolic flights in NASA Boeing 727. The heat flux in flight and Earth's experiments was found to rise linearly with increasing the heater temperature. We will discuss physical mechanisms underlying heat transfer in single-bubble boiling. The work supported by NASA Grants NNX12AM26G and NNX09AK06G.
Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion
NASA Astrophysics Data System (ADS)
Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.
2005-10-01
This paper provides the theoretical basis for energetic vapor bubble implosions induced by a standing acoustic wave. Its primary goal is to describe, explain, and demonstrate the plausibility of the experimental observations by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] of thermonuclear fusion for imploding cavitation bubbles in chilled deuterated acetone. A detailed description and analysis of these data, including a resolution of the criticisms that have been raised, together with some preliminary HYDRO code simulations, has been given by Nigmatulin et al. [Vestnik ANRB (Ufa, Russia) 4, 3 (2002); J. Power Energy 218-A, 345 (2004)] and Lahey et al. [Adv. Heat Transfer (to be published)]. In this paper a hydrodynamic shock (i.e., HYDRO) code model of the spherically symmetric motion for a vapor bubble in an acoustically forced liquid is presented. This model describes cavitation bubble cluster growth during the expansion period, followed by a violent implosion during the compression period of the acoustic cycle. There are two stages of the bubble dynamics process. The first, low Mach number stage, comprises almost all the time of the acoustic cycle. During this stage, the radial velocities are much less than the sound speeds in the vapor and liquid, the vapor pressure is very close to uniform, and the liquid is practically incompressible. This process is characterized by the inertia of the liquid, heat conduction, and the evaporation or condensation of the vapor. The second, very short, high Mach number stage is when the radial velocities are the same order, or higher, than the sound speeds in the vapor and liquid. In this stage high temperatures, pressures, and densities of the vapor and liquid take place. The model presented herein has realistic equations of state for the compressible liquid and vapor phases, and accounts for nonequilibrium evaporation/condensation kinetics at the liquid/vapor interface. There are interacting shock waves in both phases, which converge toward and reflect from the center of the bubble, causing dissociation, ionization, and other related plasma physics phenomena during the final stage of bubble collapse. For a vapor bubble in a deuterated organic liquid (e.g., acetone), during the final stage of collapse there is a nanoscale region (diameter ˜100nm) near the center of the bubble in which, for a fraction of a picosecond, the temperatures and densities are extremely high (˜108K and ˜10g/cm3, respectively) such that thermonuclear fusion may take place. To quantify this, the kinetics of the local deuterium/deuterium (D/D) nuclear fusion reactions was used in the HYDRO code to determine the intensity of the fusion reactions. Numerical HYDRO code simulations of the bubble implosion process have been carried out for the experimental conditions used by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] at Oak Ridge National Laboratory. The results show good agreement with the experimental data on bubble fusion that was measured in chilled deuterated acetone.
AmeriFlux US-CZ4 Sierra Critical Zone, Sierra Transect, Subalpine Forest, Shorthair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Michael
This is the AmeriFlux version of the carbon flux data for the site US-CZ4 Sierra Critical Zone, Sierra Transect, Subalpine Forest, Shorthair. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of four Southern Sierra Critical Zone Observatory flux towers operated along an elevation gradient (sites are USCZ1, USCZ2, USCZ3 and USCZ4). This site is a lodgepole pine subalpine woodland with no recent disturbance.
NASA Astrophysics Data System (ADS)
Carr, B.; Zhang, Y.; Ren, S.; Flinchum, B. A.; Parsekian, A.; Holbrook, S.; Riebe, C. S.; Moravec, B. G.; Chorover, J.; Pelletier, J. D.; Richter, D. D., Jr.
2017-12-01
Four prominent hypotheses exist and predict conceptual models defining the base of the critical zone. These hypotheses lack insights and constraints from borehole data since few deep (> 20 m) boreholes (and even fewer connected wellfields) are present in the U.S. Critical Zone Observatories (CZO) and similar critical zone study sites (CZs). The influence and interaction of fracture presence, fracture density, fracture orientation, groundwater presence and groundwater flow have only begun to be analyzed relative to any definition of the base of the critical zone. In this presentation, we examine each hypothesis by jointly evaluating borehole geophysical logs and groundwater testing datasets collected by the Wyoming Center for Environmental Hydrology and Geophysics (WyCEHG) since 2014 at these deep CZO or CZ boreholes. Deep boreholes allow a unique opportunity to observe the factors influencing groundwater transmissivity/storage capacity within the three main subsurface CZ layers: Unconsolidated (soil/saprolite), Fractured/weathered Bedrock, and Protolith bedrock (i.e. less fractured bedrock). The boreholes used in this study consist of: 1) nine wells of the Blair-Wallis (WY) WyCEHG CZ, 2) two wells in Catalina-Jemez CZO (Valle Caldera NM) and 3) one borehole at the Calhoun (SC) CZO. At this time, these are the only sites that contain boreholes with depths ranging from at least 20 m up to 70m that have been geophysically logged with full-waveform seismic, acoustic and optical televiewer, electric, electromagnetic, flowmeter (impeller and heat pulse), fluid temperature, fluid conductivity and nuclear magnetic resonance. Further, the Blair-Wallis CZ site contains five hydraulically connected wells that allow us to estimate formation transmissivity and storage coefficients at increasing scales by conducting: slug tests, FLUTe™ borehole profiling, and cross-hole pumping tests. These well tests provide direct hydraulic data of the bedrock (both fractured and protolith) that can be integrated with geophysical logging data. Because fracture permeability is the dominant mechanism for groundwater transport in these igneous environments, a joint analysis of geophysical logging and hydraulic testing data provides in situ material-property-based refinements for the defining the base of the critical zone.
NASA Astrophysics Data System (ADS)
Duncan, M. S.; Dasgupta, R.
2011-12-01
Partial melts of subducting sediments is thought to be a critical agent in carrying trace elements and water to arc basalt source regions. For subduction zones that contain significant amount of carbonates in ocean-floor sediments, sediment melts likely also act as a carrier of CO2. However, the CO2 carrying capacity of natural rhyolitic melts at sub-arc depths remains unconstrained. We conducted experiments on a synthetic composition, similar to average, low-degree experimental partial melt of pelitic sediments. The composition was constructed with reagent grade oxides and carbonates, the source of excess CO2. Experiments were conducted between 1 and 3 GPa at 1200 °C in Au80Pd20 capsules using a piston cylinder apparatus with a half-inch BaCO3 assembly at Rice University. Quench products showed glasses with bubbles, the latter suggesting saturation of the melt with a CO2-rich vapor phase. Oxygen fugacity during the experiments was not strictly controlled but the presence of CO2 bubbles and absence of graphite indicates fO2 above the CCO buffer. Major element concentrations of glasses were measured using EPMA. The CO2 and H2O contents of experimental doubly polished (50-110 μm), bubble-free portions of the glass chips were determined using a Thermo Nicolet Fourier Transform Infrared Spectrometer. Spectra were recorded with a resolution of 4 cm-1, 512 scans, from 650 to 4000 cm-1, under a nitrogen purge to eliminate atmospheric gases. Dissolved volatile concentrations were quantified using the Beer-Lambert law and linear molar absorption coefficients from previous studies [1, 2]. Total dissolved carbon dioxide of experimental glasses was determined from the intensity of the ν3 antisymmetric stretch bands of CO32- at 1430 cm-1 and CO2mol at 2348 cm-1. Dissolved water content of experimental glasses was determined from the intensity of O-H stretching at 3520 cm-1. Estimated total CO2 concentrations at 3 GPa are in the range of 1-2 wt%, for melts with H2O contents between 1.5 and 2.5 wt%. Compared to previous work on CO2 solubility in complex rhyolitic melts at lower pressures [3-5], there is a general trend of increasing CO2 solubility with pressure. Dissolved CO2 is present both as molecular CO2 and as CO32-, consistent with previous, simple system studies at high pressures [e.g. 2, 6]. The CO2mol/CO2Tot values are within the range of previous high pressure studies [e.g. 7] and range from 0.35 to 0.55. Experiments at variable P, T, and melt water content are underway. [1] Fine and Stolper (1985), CMP, 91, 105-121; [2] Stolper et al. (1987), AM, 72, 1071-1085; [3] Blank et al. (1993), EPSL, 119, 27-36; [4] Fogel and Rutherford (1990), AM, 75, 1331-1326; [5] Tamic et al. (2001), CG, 174, 333-347; [6] Mysen and Virgo (1980), AM, 65, 855-899; [7] Mysen (1976), AJS, 276, 969-996.
Wang, Feng; Tzanakis, Iakovos; Eskin, Dmitry; Mi, Jiawei; Connolley, Thomas
2017-11-01
The cavitation-induced fragmentation of primary crystals formed in Al alloys were investigated for the first time by high-speed imaging using a novel experimental approach. Three representative primary crystal types, Al 3 Ti, Si and Al 3 V with different morphologies and mechanical properties were first extracted by deep etching of the corresponding Al alloys and then subjected to ultrasonic cavitation processing in distilled water. The dynamic interaction between the cavitation bubbles and primary crystals was imaged in situ and in real time. Based on the recorded image sequences, the fragmentation mechanisms of primary crystals were studied. It was found that there are three major mechanisms by which the primary crystals were fragmented by cavitation bubbles. The first one was a slow process via fatigue-type failure. A cyclic pressure exerted by stationary pulsating bubbles caused the propagation of a crack pre-existing in the primary crystal to a critical length which led to fragmentation. The second mechanism was a sudden process due to the collapse of bubbles in a passing cavitation cloud. The pressure produced upon the collapse of the cloud promoted rapid monotonic crack growth and fast fracture in the primary crystals. The third observed mechanism was normal bending fracture as a result of the high pressure arising from the collapse of a bubble cloud and the crack formation at the branch connection points of dendritic primary crystals. The fragmentation of dendrite branches due to the interaction between two freely moving dendritic primary crystals was also observed. A simplified fracture analysis of the observed phenomena was performed. The specific fragmentation mechanism for the primary crystals depended on their morphology and mechanical properties. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Discovery of a Synchrotron Bubble Associated with PSR J1015–5719
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.-Y.; Bandiera, R.; Hunstead, R. W.
We report the discovery of a synchrotron nebula, G283.1−0.59, associated with PSR J1015−5719. Radio observations using the Molonglo Observatory Synthesis Telescope and the Australia Telescope Compact Array at 36, 16, 6, and 3 cm reveal a complex morphology. The pulsar is embedded in the “head” of the nebula with fan-shaped diffuse emission. This is connected to a circular bubble of 20″ radius and a collimated tail extending over 1′. Polarization measurements show a highly ordered magnetic field in the nebula. It wraps around the edge of the head and shows an azimuthal configuration near the pulsar, then switches direction quasi-periodicallymore » near the bubble and in the tail. Together with the flat radio spectrum observed, we suggest that this system is most plausibly a pulsar wind nebula (PWN), with the head as a bow shock that has a low Mach number and the bubble as a shell expanding in a dense environment. The bubble could act as a magnetic bottle trapping the relativistic particles. A comparison with other bow-shock PWNe with higher Mach numbers shows similar structure and B -field geometry, implying that pulsar velocity may not be the most critical factor in determining the properties of these systems. We also derive analytic expressions for the projected standoff distance and shape of an inclined bow shock. It is found that the projected distance is always larger than the true distance in three dimensions. On the other hand, the projected shape is not sensitive to the inclination after rescaling with the projected standoff distance.« less
The Brittle-Ductile Transition in Crystal and Bubble-bearing Magmas
NASA Astrophysics Data System (ADS)
Caricchi, L.; Pistone, M.; Cordonnier, B.; Tripoli, B.; Ulmer, P.; Reusser, E.; Marone, F.; Burlini, L.
2011-12-01
The strain response of magma is critically dependent upon its viscosity, the magnitude of the applied stress and the experimental time-scale. The brittle-ductile transition in pure silicate melts is expected for an applied stress approaching 108±0.5 Pa (Dingwell, 1997). However, magmas are mostly mixture of crystal and bubble-bearing silicate melts. To date, there are no data to constrain the ductile-brittle transition for three-phase magmas. Thus, we conducted consistent torsion experiments at high temperature (673-973 K) and high pressure (200 MPa), in the strain rate range 1*10-5-4*10-3 s-1, using a HT-HP internally-heated Paterson-type rock deformation apparatus. The samples are composed of hydrous haplogranitic glass, quartz crystals (24-65 vol%) and CO2-rich gas-pressurized bubbles (9-12 vol%). The applied strain rate was increased until brittle failure occurred; micro-fracturing and healing processes commonly occurred before sample macroscopic fracturing. The experimental results highlight a clear relationship between the effective viscosity of the three-phase magmas, strain rate, temperature and the onset of brittle-ductile behavior. Crystal- and bubble-free melts at high viscosity (1011-1011.6 Pa*s at 673 K) show brittle behavior in the strain rate range between 1*10-4 and 5*10-4 s-1. For comparable viscosities crystal and bubble-bearing magmas show a transition to brittle behavior at lower strain rates. Synchrotron-based 3D imaging of fractured samples, show the presence of fractures with an antithetic trend with respect to shear strain directions. The law found in this study expresses the transition from ductile to brittle behavior for real magmas and could significantly improve our understanding of the control of brittle processes on extrusion of high-viscosity magmas and degassing at silicic volcanoes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chemerisov, Sergey; Gromov, Roman; Makarashvili, Vakho
Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects ofmore » convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.« less
Scaffolding Critical Thinking in the Zone of Proximal Development
ERIC Educational Resources Information Center
Wass, Rob; Harland, Tony; Mercer, Alison
2011-01-01
This paper explores student experiences of learning to think critically. Twenty-six zoology undergraduates took part in the study for three years of their degree at the University of Otago, New Zealand. Vygotsky's developmental model of the Zone of Proximal Development (ZPD) provided a framework as we examined how critical thinking was developed.…
Siphonophores and the Deep Scattering Layer.
Barham, E G
1963-05-17
Bathyscaphe dives in the San Diego Trough have revealed a close spatial relation between siphonophores and the deep scattering layer as recorded by precision depth recording echo-sounders. Measurements of gas bubbles within the flotation structures of Nanomia bijuga captured in a closing net in an ascended scattering layer indicate that these are very close to the resonant size for 12-kcy/sec sound. Because such organisms are capable of making prolonged vertical migrations, and are widespread geographically, they are very probably the major cause of stratified zones of scattering throughout the oceans of the world.
NASA Astrophysics Data System (ADS)
Guimarães, L. F.; De Campos, C. P.; Lima, E. F. D.; Janasi, V. A.
2015-12-01
Voluminous acidic volcanics from the Paraná-Etendeka Magmatic Province crop out in the southern part of Brazil. The conduits responsible for the feeding of this intermediate/acid volcanism are preserved and well exposed in the São Marcos region (Lima et al. 2012; Geologia USP 12:49-64). Conduits are aligned along a NW-SE trend and have thicknesses up to 1 km. These structures are often characterized by mixing between dacitic and rhyodacitic magmas, with intercalation between two major zones: 1) reddish or grayish vitrophiricdacite/rhyodacite, sub-divided in massive or vesiculated; 2) reddish or grayish vitrophiric fragmented dacite/rhyodacite composed of bubble-rich angular to rounded blocks. Such fragments commonly deform coeval to the flow. A third zone dominated by filaments depicts a chaotic stretching-and-folding process from the mixture of the acid magmas. We used classical field measurements of flow structures and recognized main flow directions in these feeder-dikes. They follow two preferential directions: NW, ranging from N272° to N 355°, and NE, varying from N20° to N85°. These directions are indicative of a transtensive fissural system, which seems to be related to conjugated fractures. Evidence of an important fragmentation process in the conduits point towards the presence of related products in this region, thus rheomorphic deposits such as those observed elsewhere (e.g. Uruguay and Namibia) are expected to occur. Possible vestiges of these deposits could be represented by restricted outcrops of lens-shaped and banded hipohyaline, occasionally bubble-rich, dacites. The presence of continuous pseudotachylitic levels, tightly folded bands with horizontal axial planes together with local deformed bubble-rich pumice-like lens could be indicative of remelting and rheomorphism of previous vulcanoclastic material. Coulees and compound (lobed) dacitic lava flows, reaching up to 5-8 meters length, occur as the uppermost deposits and correspond to the effusive products that followed and predominate in this part of the province. Financing: FAPESP
Tularosa Basin Play Fairway Analysis: Partial Basin and Range Heat and Zones of Critical Stress Maps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adam Brandt
Interpolated maps of heat flow, temperature gradient, and quartz geothermometers are included as TIF files. Zones of critical stress map is also included as a TIF file. The zones are given a 5km diameter buffer. The study area is only a part of the Basin and Range, but it does includes the Tularosa Basin.
NASA Astrophysics Data System (ADS)
Yang, B.; Emerson, S. R.; Bushinsky, S. M.
2016-02-01
Export of organic carbon from the surface ocean to depth (the biological pump) helps maintain the pCO2 of the atmosphere and the O2 content of the oxygen minimum zones of the ocean. In the upper ocean, at steady state over a seasonal cycle the net organic carbon export is equal to the Annual Net Community Production (ANCP). The geographic distribution of this quantity determined by satellite-predicted Net Primary Production (NPP) and the recycling efficiency in the euphotic zone is more heterogeneous than the limited experimental estimates of ANCP. We evaluate the relationship between these two estimates of ANCP in the subtropical Western North Pacific Ocean ( 165o E and 20o N) using oxygen measurements on Argo Floats. In January of 2015 we deployed four floats with Anderaa oxygen sensors attached to a 60 cm stick on top of the float end cap, which can be readily calibrated against atmospheric pO2. We present data from these floats and air-sea oxygen flux calculations. The degree of oxygen supersaturation in summer is 1-2 percent, and in winter it fluctuates between being over and undersaturated. Evaluating the role of bubbles in winter is critical to an accurate determination of the annual flux. While there is not a full year of data at the time of writing this abstract, there will be when the Ocean Science meeting is held. So far, after nine months of measurements, there is a net flux of oxygen to the atmosphere, indicating that photosynthesis exceeds respiration. In February we will present a full annual cycle of air-sea oxygen flux and an estimate of ANCP in this very rarely studied region of the ocean.
Philanthropy Gets in the Ring: Edu-Funders Get Serious about Education Policy
ERIC Educational Resources Information Center
Hess, Frederick M.
2012-01-01
Foundations must encourage rigorous debate over objectives, strategies, and outcomes as they become more engaged in policy-focused giving. In doing this, they must make it abundantly clear that they won't blacklist critics. The value of skeptics is that they raise unpleasant issues and make it possible for those inside an organizational bubble to…
First-order inflation. [in cosmology
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1992-01-01
I discuss the most recent model of inflation. In first-order inflation the inflationary epoch is associated with a first-order phase transition, with the most likely candidate being GUT symmetry breaking. The transition from the false-vacuum inflationary phase to the true-vacuum radiation-dominated phase proceeds through the nucleation and percolation of true-vacuum bubbles. The first successful and simplest model of first-order inflation, extended inflation, is discussed in some detail: evolution of the cosmic-scale factor, reheating, density perturbations, and the production of gravitational waves both from quantum fluctuations and bubble collisions. Particular attention is paid to the most critical issue in any model of first-order inflation: the requirements on the nucleation rate to ensure a graceful transition from the inflationary phase to the radiation-dominated phase.
Behavior of an aeroelastic system beyond critical point of instability
NASA Astrophysics Data System (ADS)
Sekar, T. Chandra; Agarwal, Ravindra; Mandal, Alakesh Chandra; Kushari, Abhijit
2017-11-01
Understanding the behavior of an aeroelastic system beyond the critical point is essential for effective implementation of any active control scheme since the control system design depends on the type of instability (bifurcation) the system encounters. Previous studies had found the aeroelastic system to enter into chaos beyond the point of instability. In the present work, an attempt has been made to carry out an experimental study on an aeroelastic model placed in a wind tunnel, to understand the behavior of aerodynamics around a wing section undergoing classical flutter. Wind speed was increased from zero until the model encountered flutter. Pressure at various locations along the surface of wing and acceleration at multiple points on the wing were measured in real time for the entire duration of experiment. A Leading Edge Separation Bubble (LSB) was observed beyond the critical point. The growing strength of the LSB with increasing wind speed was found to alter the aerodynamic moment acting on the system, which forced the system to enter into a second bifurcation. Based on the nature of the response, the system appears to undergo periodic doubling bifurcation rather than Hopf-bifurcation, resulting in chaotic motion. Eliminating the LSB can help in preventing the system from entering chaos. Any active flow control scheme that can avoid or counter the formation of leading edge separation bubble can be a potential solution to control the classical flutter.
76 FR 63202 - Security Zones; Captain of the Port Lake Michigan Zone
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-12
...-AA87 Security Zones; Captain of the Port Lake Michigan Zone AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: Based on a review of safety and security zones around critical infrastructure in the... Chicago Harbor & Burnham Park Harbor--Safety and Security Zone regulation and the Security Zones; Captain...
Geophysics applications in critical zone science: emerging topics
USDA-ARS?s Scientific Manuscript database
Geophysical studies have resulted in remarkable advances in characterization of critical zone. The geophysics applications uncover the relationships between structure and function in subsurface as they seek to define subsurface structural units with individual properties of retention and trans...
Real-Time Visualization of Joint Cavitation
Rowe, Lindsay
2015-01-01
Cracking sounds emitted from human synovial joints have been attributed historically to the sudden collapse of a cavitation bubble formed as articular surfaces are separated. Unfortunately, bubble collapse as the source of joint cracking is inconsistent with many physical phenomena that define the joint cracking phenomenon. Here we present direct evidence from real-time magnetic resonance imaging that the mechanism of joint cracking is related to cavity formation rather than bubble collapse. In this study, ten metacarpophalangeal joints were studied by inserting the finger of interest into a flexible tube tightened around a length of cable used to provide long-axis traction. Before and after traction, static 3D T1-weighted magnetic resonance images were acquired. During traction, rapid cine magnetic resonance images were obtained from the joint midline at a rate of 3.2 frames per second until the cracking event occurred. As traction forces increased, real-time cine magnetic resonance imaging demonstrated rapid cavity inception at the time of joint separation and sound production after which the resulting cavity remained visible. Our results offer direct experimental evidence that joint cracking is associated with cavity inception rather than collapse of a pre-existing bubble. These observations are consistent with tribonucleation, a known process where opposing surfaces resist separation until a critical point where they then separate rapidly creating sustained gas cavities. Observed previously in vitro, this is the first in-vivo macroscopic demonstration of tribonucleation and as such, provides a new theoretical framework to investigate health outcomes associated with joint cracking. PMID:25875374
NASA Astrophysics Data System (ADS)
Seyrich, Maximilian; Sornette, Didier
2016-04-01
We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power sa (with a>1) of the cluster sizes s, similarly to a generalized percolation susceptibility. The power sa of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold pc. Realistic dynamics are generated by modeling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.
OZCAR: the French network of Critical Zone Observatories: principles and scientific objectives
NASA Astrophysics Data System (ADS)
Braud, Isabelle; Gaillardet, Jérôme; Hankard, Fatim; Le Borgne, Tanguy; Nord, Guillaume; Six, Delphine; Galy, Catherine; Laggoun-Défarge, Fatima; Tallec, Tiphaine; Pauwels, Hélène
2017-04-01
This contribution aims at presenting the principles that underlined the creation of the OZCAR research infrastructure, gathering various Critical Zone Observatories in France, and the scientific questions that drives the observation settings. The Critical Zone includes the fine zone between the lower atmosphere at the top of the canopy down to the bedrock-soil interface. This lithosphere-atmosphere boundary is critical for the availability of life-sustaining resources and critical for humanity because this is the zone where we live, where we build our cities, from which we extract our food and our water and where we release most of our wastes. This is the fragile zone on which the natural ecosystem relies because this is where nutrients are being released from the rocks. OZCAR is a distributed research infrastructure gathering instrumented sites and catchments on continental surfaces all dedicated to the observation and monitoring of the different compartments of the Critical Zone at the national scale. All these observatories (more that 40) were all built up on specific questions (acid deposition, flood prediction, urban hydrology…), some of them more than 50 years ago, but they have all in common to be highly instrumented, permanently funded as infrastructures. They all share the same overarching goal of understanding and predicting the Critical Zone in a changing world. OZCAR gathers instrumented catchments, hydrogeological sites, peatlands, glacier and permafrost regions and a spatial observatory under the common umbrella of understanding water and biogeochemical cycles and the associated fluxes of energy by using natural gradients and experimentation. Based on the collaboration with Southern Countries, OZCAR's sites have a global coverage including tropical areas and high mountainous regions in the Andes and the Himalaya. OZCAR benefits from a French investments project called CRITEX (Innovative equipment for the critical zone, https://www.critex.fr/critex-3/observatories/ ) that is centered on the development and deployment of innovative instrumentation in the sites. OZCAR was launched in 2016 under the leadership of the French Ministry in charge of Higher Education and Research, assembling all French Research Institutions involved in environmental studies and with the ambition of facilitating interdisciplinary research in terrestrial surfaces, stimulating instrumental development and being visible at the international level. The paper will presents the main common scientific questions, challenges in terms of instrumentation and experimentation deployment, in particular in terms of co-location of sites, data base and modelling activities that the OZCAR network plan to address in the next years.
Rooze, Joost; Rebrov, Evgeny V; Schouten, Jaap C; Keurentjes, Jos T F
2011-01-01
The sonochemical oxidation efficiency (η(ox)) of a commercial titanium alloy ultrasound horn has been measured using potassium iodide as a dosimeter at its main resonance frequency (20 kHz) and two higher resonance frequencies (41 and 62 kHz). Narrow power and frequency ranges have been chosen to minimise secondary effects such as changing bubble stability, and time available for radical diffusion from the bubble to the liquid. The oxidation efficiency, η(ox), is proportional to the frequency and to the power transmitted to the liquid (275 mL) in the applied power range (1-6 W) under argon. Luminol radical visualisation measurements show that the radical generation rate increases and a redistribution of radical producing zones is achieved at increasing frequency. Argon, helium, air, nitrogen, oxygen, and carbon dioxide have been used as saturation gases in potassium iodide oxidation experiments. The highest η(ox) has been observed at 5 W under air at 62 kHz. The presence of carbon dioxide in air gives enhanced nucleation at 41 and 62 kHz and has a strong influence on η(ox). This is supported by the luminol images, the measured dependence of η(ox) on input power, and bubble images recorded under carbon dioxide. The results give insight into the interplay between saturation gas and frequency, nucleation, and their effect on η(ox). Copyright © 2010 Elsevier B.V. All rights reserved.
Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël
2011-03-01
The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. To monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume using the same multi-element probe. Bubble nucleation was induced using a focused transducer (660 kHz, f-number = 1) driven by a high-power electric burst (up to 300 W) of one to two cycles. Detection was performed with a linear array (4 to 7 MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unnucleated medium. These indicated the appearance of stable cavitating regions. Because of the ultrafast frame rate, active detection occurred as quickly as 330 μs after the high-amplitude excitation and the dynamics of the induced regions were studied individually.
Gateau, Jérôme; Aubry, Jean-François; Pernot, Mathieu; Fink, Mathias; Tanter, Mickaël
2011-01-01
The activation of natural gas nuclei to induce larger bubbles is possible using short ultrasonic excitations of high amplitude, and is required for ultrasound cavitation therapies. However, little is known about the distribution of nuclei in tissues. Therefore, the acoustic pressure level necessary to generate bubbles in a targeted zone and their exact location are currently difficult to predict. In order to monitor the initiation of cavitation activity, a novel all-ultrasound technique sensitive to single nucleation events is presented here. It is based on combined passive detection and ultrafast active imaging over a large volume and with the same multi-element probe. Bubble nucleation was induced with a focused transducer (660kHz, f#=1) driven by a high power (up to 300 W) electric burst of one to two cycles. Detection was performed with a linear array (4–7MHz) aligned with the single-element focal point. In vitro experiments in gelatin gel and muscular tissue are presented. The synchronized passive detection enabled radio-frequency data to be recorded, comprising high-frequency coherent wave fronts as signatures of the acoustic emissions linked to the activation of the nuclei. Active change detection images were obtained by subtracting echoes collected in the unucleated medium. These indicated the appearance of stable cavitating regions. Thanks to the ultrafast frame rate, active detection occurred as soon as 330 μs after the high amplitude excitation and the dynamics of the induced regions were studied individually. PMID:21429844
Foam flow in a model porous medium: II. The effect of trapped gas.
Jones, S A; Getrouw, N; Vincent-Bonnieu, S
2018-05-09
Gas trapping is an important mechanism in both Water or Surfactant Alternating Gas (WAG/SAG) and foam injection processes in porous media. Foams for enhanced oil recovery (EOR) can increase sweep efficiency as they decrease the gas relative permeability, and this is mainly due to gas trapping. However, gas trapping mechanisms are poorly understood. Some studies have been performed during corefloods, but little work has been carried out to describe the bubble trapping behaviour at the pore scale. We have carried out foam flow tests in a micromodel etched with an irregular hexagonal pattern. Image analysis of the foam flow allowed the bubble centres to be tracked and local velocities to be obtained. It was found that the flow in the micromodel is dominated by intermittency and localized zones of trapped gas. The quantity of trapped gas was measured both by considering the fraction of bubbles that were trapped (via velocity thresholding) and by measuring the area fraction containing immobile gas (via image analysis). A decrease in the quantity of trapped gas was observed for both increasing total velocity and increasing foam quality. Calculations of the gas relative permeability were made with the Brooks Corey equation, using the measured trapped gas saturations. The results showed a decrease in gas relative permeabilities, and gas mobility, for increasing fractions of trapped gas. It is suggested that the shear thinning behaviour of foam could be coupled to the saturation of trapped gas.
NASA Astrophysics Data System (ADS)
Khoshechin, Mohsen; Salimi, Farhad; Jahangiri, Alireza
2018-04-01
In this research, the effect of surface roughness and concentration of solution on bubble departing frequency and nucleation site density for pool boiling of water/diethanolamine (DEA) binary solution were investigated experimentally. In this investigation, boiling heat transfer coefficient, bubble departing frequency and nucleation site density have been experimentally investigated in various concentrations and heat fluxes. Microstructured surfaces with a wide range of well-defined surface roughness were fabricated, and a heat flux between 1.5-86 kW/m2 was achieved under atmospheric conditions. The Results indicated that surface roughness and concentration of solution increase the bubble departing frequency and nucleation site density with increasing heat flux. The boiling heat transfer coefficient in mixtures of water/DEA increases with increasing concentration of DEA in water. The experimental results were compared with predictions of several used correlations in the literatures. Results showed that the boiling heat transfer coefficients of this case study are much higher than the predicted values by major existing correlations and models. The excellent agreement for bubble departing frequency found between the models of Jackob and Fritz (1966) and experimental data and also the nucleation site density were in close agreement with the model of Paul (1983) data. f bubble departure frequency, 1/s or Hz N Number of nucleation sites per area per time R c Minimum cavity size, m D c critical diameter, m g gravitational acceleration, m/s2 ρ density, kg/m3 T temperature, °c ΔT temperature difference, °c d d vapor bubble diameter, m h fg enthalpy of vaporization, J/kg R Roughness, μm Ja Jakob number cp specific heat, J/kg °c Pr Prandtl number Ar Archimedes number h Heat transfer coefficient, J/(m2 °c) tg time it takes to grow a bubble, s q/A heat flux (kW/m2) tw time required to heat the layer, s gc Correction coefficient of incompatible units R a Surface roughness A heated surface area d departure ONB onset of nucleate boiling w surface wall s saturation v vapor l liquid θ groove angle (o) γ influence parameter of heating surface material σ surface tension, N/m.
Gravity Effects in Diffusive Coarsening of Bubble Lattices: von Neumann's Law
NASA Technical Reports Server (NTRS)
Noever, David A.
2000-01-01
von Neumann modelled the evolution of two-dimensional soap froths as a purely diffusive phenomenon; the area growth of a given cell was found to depend only on the geometry of the bubble lattice. In the model, hexagons are stable, pentagons shrink and heptagons grow. The simplest equivalent to the area growth law is / approximately t(sub beta). The result depends on assuming (1) an incompressible gas; (2) bubble walls which meet at 120 deg and (3) constant wall thickness and curvature. Each assumption is borne out in experiments except the last one: bubble wall thickness between connecting cells varies in unit gravity because of gravity drainage. The bottom part of the soap membrane is thickened, the top part is thinned, such that gas diffusion across the membrane shows a complex dependence on gravity. As a result, experimental tests of von Neumann's law have been influenced by effects of gravity; fluid behavior along cell borders can give non-uniform wall thicknesses and thus alter the effective area and gas diffusion rates between adjacent bubbles. For area plotted as a function of time, Glazier (J.A. Glazier, S.P. Gross, and I. Stavans, Phys. Rev. A. 36, 306 (1987); J. Stavans, J.A, Glazier, Phys. Rev. Lett. 62, 1318 (1989).) suggest that in some cases their failure to observe von Neumann's predicted growth exponent ((sup beta)theor(sup =1; beta)exp(sup =0.70 + 0.10)) may have been the result of such "fluid drainage onto the lower glass plate". Additional experiments which varied plate spacing gave different beta exponents in a fashion consistent with this suggestion. During preliminary long duration experiments (approximately 100 h) aboard Spacelab-J, a low-gravity test of froth coarsening has examined (1) power law scaling of von Neumann's law (beta values) in the appropriate diffusive limits; (2) new bubble lattice dynamics such as greater fluid wetting behavior on froth membranes in low gravity; and (3) explicit relations for the gravity dependence of the second moment (or disorder parameter) governing the geometric spread in cell-sidedness around the mean of perfect hexagonal filling. By reducing the gravity-induced distortion in lattice wall thickness, the diffusion-limited regime of bubble coarsening becomes available for performing critical tests of network dynamics.
Injection flow during steam condensation in silicon microchannels
NASA Astrophysics Data System (ADS)
Wu, Huiying; Yu, Mengmeng; Cheng, Ping; Wu, Xinyu
2007-08-01
An experimental investigation with the combined use of visualization and measurement techniques was performed on flow pattern transitions and wall temperature distributions in the condensation of steam in silicon microchannels. Three sets of trapezoidal silicon microchannels, having hydraulic diameters of 53.0 µm, 77.5 µm and 128.5 µm, respectively, were tested under different flow and cooling conditions. It was found that during the transitions from the annular flow to the slug/bubbly flow, a peculiar flow pattern injection flow appeared in silicon microchannels. The location at which the injection flow occurred was dependent on the Reynolds number, condensation number and hydraulic diameter. With increase in the Reynolds number, or decrease in the condensation number and hydraulic diameter, the injection flow moved towards the channel outlet. Based on the experimental results, a dimensionless correlation for the location of injection flow in functions of the Reynolds number, condensation number and hydraulic diameter was proposed for the first time. This correlation can be used to determine the annular flow zone and the slug/bubbly flow zone, and further to determine the dominating condensation flow pattern in silicon microchannels. Wall temperature distributions were also explored in this paper. It was found that near the injection flow, wall temperatures have a rapid decrease in the flow direction, while upstream and downstream far away from the injection flow, wall temperatures decreased mildly. Thus, the location of injection flow can also be determined based on the wall temperature distributions. The results presented in this paper help us to better understand the condensation flow and heat transfer in silicon microchannels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitrakusuma, Windy H., E-mail: windyhm@polban.ac.id; Refrigeration and Airconditioning Department, Politeknik Negeri Bandung, Jl. Gegerkalong Hilir, Ds. Ciwaruga Kotak Pos 1234 Bandung; Deendarlianto,
2016-06-03
Onset of nucleate boiling of a droplet when impacted onto hot surface was investigated. Three kinds of surfaces, normal stainless steel (NSS), stainless steel with TiO{sub 2} coating (UVN), and stainless steel with TiO{sub 2} coating and radiated by ultraviolet ray were employed to examine the effect of wettability. The droplet size was 2.4 mm diameter, and dropped under different We number. The image is generated by high speed camera with the frame speed of 1000 fps. The boiling conditions are identified as natural convection, nucleate boiling, critical heat flux, transition, and film boiling. In the present report, the discussionmore » will be focused on the beginning of nucleate boiling on the droplet. Nucleate boiling occurs when bubbles are generated. These bubbles are probably caused by nucleation on the impurities within the liquid rather than at nucleation sites on the heated surface because the bubbles appear to be in the bulk of the liquid instead of at the liquid-solid interface. In addition, the smaller the contact angle, the fastest the boiling.« less
Attenuation in gas-charged magma
NASA Astrophysics Data System (ADS)
Collier, L.; Neuberg, J. W.; Lensky, N.; Lyakhovsky, V.; Navon, O.
2006-05-01
Low frequency seismic events observed on volcanoes, such as Soufriere Hills Volcano, Montserrat, are thought to be caused by a resonating system. The modelling of seismic waves in gas-charged magma is critical for the understanding of seismic resonance effects in conduits, dykes and cracks. Seismic attenuation, which depends mainly on magma viscosity, gas and crystal content, is an essential factor in such modelling attempts. So far only two-phase gas-melt systems with the assumption of no diffusion and transport of volatiles between the melt and the gas bubbles have been considered. In this study, we develop a method of quantifying attenuation within gas-charged magma, including the effects of diffusion and exsolution of gas into the bubbles. The results show that by including such bubble growth processes attenuation levels are increased within magma. The resulting complex behaviour of attenuation with pressure and frequency indicates that two factors are controlling attenuation, the first due to viscous hindrance or the melt, and the second due diffusion processes. The level of attenuation within a gas-charged magma conduit suggests an upper limit on the length of a resonating conduit section of just a few hundred meters.
NASA Astrophysics Data System (ADS)
Loose, B.; Kelly, R. P.; Bigdeli, A.; Moran, S. B.
2014-12-01
The polar sea ice zones are regions of high primary productivity and interior water mass formation. Consequently, the seasonal sea ice cycle appears important to both the solubility and biological carbon pumps. To estimate net CO2 transfer in the sea ice zone, we require accurate estimates of the air-sea gas transfer velocity. In the open ocean, the gas transfer velocity is driven by wind, waves and bubbles - all of which are strongly altered by the presence of sea ice, making it difficult to translate open ocean estimates of gas transfer to the ice zone. In this study, we present profiles of 222Rn and 226Ra throughout the mixed-layer and euphotic zone. Profiles were collected spanning a range of sea ice cover conditions from 40 to 100%. The profiles of Rn/Ra can be used to estimate the gas transfer velocity, but the 3.8 day half-life of 222Rn implies that mixed layer radon will have a memory of the past ~20 days of gas exchange forcing, which may include a range of sea ice cover conditions. Here, we compare individual estimates of the gas transfer velocity to the turbulent forcing conditions constrained from shipboard and regional reanalysis data to more appropriately capture the time history upper ocean Rn/Ra.
Effect of Nozzle Geometry on Characteristics of Submerged Gas Jet and Bubble Noise.
Bie, Hai-Yan; Ye, Jian-Jun; Hao, Zong-Rui
2016-10-01
Submerged exhaust noise is one of the main noise sources of underwater vehicles. The nozzle features of pipe discharging systems have a great influence on exhaust noise, especially on the noise produced by gas-liquid two-phase flow outside the nozzle. To study the influence of nozzle geometry on underwater jet noises, a theoretical study was performed on the critical weber number at which the jet flow field morphology changes. The underwater jet noise experiments of different nozzles under various working conditions were carried out. The experimental results implied that the critical weber number at which the jet flow transformed from bubbling regime to jetting regime was basically identical with the theoretical analysis. In the condition of jetting regime, the generated cavity of elliptical and triangular nozzles was smaller than that of the circular nozzle, and the middle- and high-frequency bands increased nonlinearly. The radiated noise decreased with the decrease in nozzle diameter. Combined with theoretical analysis and experimental research, three different submerged exhaust noise reduction devices were designed, and the validation tests proved that the noise reduction device with folds and diversion cone was the most effective. © 2015 Society for Laboratory Automation and Screening.
Marangoni Effects on Near-Bubble Microscale Transport During Boiling of Binary Fluid Mixtures
NASA Technical Reports Server (NTRS)
V. Carey; Sun, C.; Carey, V. P.
2000-01-01
In earlier investigations, Marangoni effects were observed to be the dominant mechanism of boiling transport in 2-propanol/water mixtures under reduced gravity conditions. In this investigation we have examined the mechanisms of binary mixture boiling by exploring the transport near a single bubble generated in a binary mixture between a heated surface and cold surface. The temperature field created in the liquid around the bubble produces vaporization over the portion of its interface near the heated surface and condensation over portions of its interface near the cold surface. Experiments were conducted using different mixtures of water and 2-propanol under 1g conditions and under reduced gravity conditions aboard the KC135 aircraft. Since 2-propanol is more volatile than water, there is a lower concentration of 2-propanol near the hot surface and a higher concentration of 2-propanol near the cold plate relative to the bulk quantity. This difference in interface concentration gives rise to strong Marangoni effects that move liquid toward the hot plate in the near bubble region for 2-propanol and water mixtures. In the experiments in this study, the pressure of the test system was maintained at about 5 kPa to achieve the full spectrum of boiling behavior (nucleate boiling, critical heat flux and film boiling) at low temperature and heat flux levels. Heat transfer data and visual documentation of the bubble shape were extracted from the experimental results. In the 1-g experiments at moderate to high heat flux levels, the bubble was observed to grow into a mushroom shape with a larger top portion near the cold plate due to the buoyancy effect. The shape of the bubble was somewhat affected by the cold plate subcooling and the superheat of the heated surface. At low superheat levels for the heated surface, several active nucleation sites were observed, and the vapor stems from them merged to form a larger bubble. The generation rate of vapor is moderate in this regime and the bubble shape is cylindrical in appearance. In some instances, the bubble interface appeared to oscillate. At higher applied heat flux levels, the top of the bubble became larger, apparently to provide more condensing interface area adjacent to the cold plate. Increasing the applied heat flux ultimately led to dry-out of the heated surface, with conditions just prior to dryout corresponding to the maximum heat flux (CHF). A more stable bubble was observed when the system attained the minimum heat flux (for film boiling). In this regime, most of the surface under the bottom of the bubble was dry with nucleate boiling sometimes occuring around the contact perimeter of the bubble at heated surface. Different variations (e.g. gap between two plates, molar concentration of the liquid mixture) of the experiments were examined to determine parametric effects on the boiling process and to determine the best conditions for the KC135 reduced gravity tests. Variation of the gap was found to have a minor impact on the CHF. However, reducing the gap between the hot and cold surface was observed to significantly reduce the minimum heat flux for fixed molar concentration of 2-propanol. In the reduced gravity experiments aboard the KC135 aircraft, the bubble formed in the 6.4 mm gap was generally cylindrical or barrel shaped and it increased its extent laterally as the surface superheat increased. In reduced gravity experiments, dryout of the heated surface under the bubble was observed to occur at a lower superheated temperature than for 1g conditions. Observed features of the boiling process and heat transfer data under reduced gravity will be discussed in detail. The results of the reduced gravity experiments will also be compared to those obtained in comparable 1g experiments. In tandem with the experiments we are also developing a computational model of the transport in the liquid surrounding the bubble during the boiling process. The computational model uses a level set method to model motion of the interface. It will incorporate a macroscale treatment of the transport in the liquid gap between the surfaces and a microscale treatment of transport in the regions between the bubble interface and the solid surfaces. The features of the model will be described in detail. Future research directions suggested by the results to date will also be discussed.
Influence of obstacles on bubbles rising in water-saturated sand
NASA Astrophysics Data System (ADS)
Poryles, Raphaël; Varas, Germán; Vidal, Valérie
2017-06-01
This work investigates the dynamics of air rising through a water-saturated sand confined in a Hele- Shaw cell in which a circular obstacle is trapped. The air is injected at constant flow rate through a single nozzle at the bottom center of the cell. Without obstacle, in a similar configuration, previous studies pointed out the existence of a fluidized zone generated by the central upward gas motion which entrains two granular convection rolls on its sides. Here, a circular obstacle which diameter is of the order of the central air channel width is trapped at the vertical of the injection nozzle. We analyze the influence of the obstacle location on the size of the fluidized zone and its impact on the morphology of the central air channel. Finally, we quantify the variations of the granular free surface. Two configurations with multiple obstacles are also considered.
Fu, Xiaotong; Mavrogiannis, Nicholas; Ibo, Markela; Crivellari, Francesca; Gagnon, Zachary R
2017-01-01
We present a new type of free-flow electrophoresis (FFE) device for performing on-chip microfluidic isotachophoresis and zone electrophoresis. FFE is performed using metal gallium electrodes, which are isolated from a main microfluidic flow channel using thin micron-scale polydimethylsiloxane/carbon black (PDMS/CB) composite membranes integrated directly into the sidewalls of the microfluidic channel. The thin membrane allows for field penetration and effective electrophoresis, but serves to prevent bubble generation at the electrodes from electrolysis. We experimentally demonstrate the ability to use this platform to perform on-chip free-flow electrophoretic separation and isotachophoretic concentration. Due to the small size and simple fabrication procedure, this PDMS/CB platform could be used as a part of an on-chip upstream sample preparation toolkit for portable microfluidic diagnostic applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Somma-Vesuvius Plinian Eruptions fed by mafic magma: insights from bubbles in melt inclusions
NASA Astrophysics Data System (ADS)
Esposito, R.; Redi, D.; Cannatelli, C.; Danyushevsky, L. V.; Lima, A.; Bodnar, R. J.; De Vivo, B.
2014-12-01
Mt. Somma-Vesuvius Plinian eruptions were first described by Pliny the younger in 79 AD during the infamous eruption that destroyed Pompeii. Today, such eruptions are still a concern to the nearly 3 million people living in the Naples metropolitan area. Understanding the source for Mt. Somma-Vesuvius magma and the coexisting volatile phase is vital to better constrain the long-term eruptive behavior of this volcano. In the present study, ~ 50 olivine phenocrysts were selected from lavas and pumices produced during mild effusive events referred to as inter-Plinian eruptions, and from highly explosive Plinian eruptions that occurred at Mt. Somma-Vesuvius between 33000 ka and 1631 AD. Selected olivine phenocrysts containing MI were examined petrographically and analyzed for Fo content. Fo varies from 69 to 73 mole% for inter-Plinian olivine crystals and from 84 to 90 mole% with one zoned olivine containing 76-81 mole% Fo, for Plinian olivine crystals. Investigated MI vary from slightly crystallized to highly crystallized. Selected crystallized MI were reheated using the Vernadsky stage, and quenched to a homogeneous glass (Group 1) or glass plus a vapor bubble (Group 2). On one hand, MI of Group 1 are hosted in olivine ranging from Fo72 to Fo76 and were all erupted from the Pompeii eruption (white pumice deposit). On the other hand, MI of Group 2 are trapped in olivine ranging from Fo69 to Fo81 and from Fo84 to Fo90, and the hosts are representative of both Plinian and inter-Plinian events. The only eruption where Group-1 and Group-2 MI coexist is the Pompeii eruption. Group 2 MIs were further analyzed by Raman to test for the presence of volatiles (CO2 or H2O) in the vapor bubbles. CO2 was detected in all MI analyzed. CO2 density was determined using the distance between the two Fermi-diad peaks, and ranges between 0.14 and 0.55 g/cm3. Six MI also showed evidence for H2O in the vapor bubble. In addition, carbonates were detected at the glass-vapor interface of five MI. This study shows that the CO2-rich fluid phase, which might exsolve from Plinian melts contain a significant amount of H2O. In addition, the first melting temperature of the fluids in the vapor bubble (~ -58ºC) suggests that volatile components, other than CO2, are included in the vapor bubbles.
Chaotic bubbling and nonstagnant foams.
Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard
2007-06-01
We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.
NASA Technical Reports Server (NTRS)
Kim, Jungho
2004-01-01
Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. Recently, time and space resolved heat transfer data were obtained in both earth and low gravity environments using an array of microheaters varying in size between 100 microns to 700 microns. These heaters were operated in both constant temperature as well as constant heat flux mode. Heat transfer under nucleating bubbles in earth gravity were directly measured using a microheater array with 100 m resolution operated in constant temperature mode with low and high subcooled bulk liquid along with images from below and from the side. The individual bubble departure diameter and energy transfer were larger with low subcooling but the departure frequency increased at high subcooling, resulting in higher overall heat transfer. The bubble growth for both subcoolings was primarily due to energy transfer from the superheated liquid layer relatively little was due to wall heat transfer during the bubble growth process. Oscillating bubbles and sliding bubbles were also observed in highly subcooled boiling. Transient conduction and/or microconvection was the dominant heat transfer mechanism in the above cases. A transient conduction model was developed and compared with the experimental data with good agreement. Data was also obtained with the heater array operated in a constant heat flux mode and measuring the temperature distribution across the array during boiling. The instantaneous heat transfer into the substrate was numerically determined and subtracted from the supplied heat to obtain the wall to liquid heat flux.
Mitsche, Matthew A.; Wang, Libo; Small, Donald M.
2010-01-01
Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces including all membranes, the alveoli of the lung, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg-phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low salt buffer. The surface tension (γ) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts ~12 and 15 mN/m of pressure (Π) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette and the surface was compressed to study the Π/area relationship. To determine the surface concentration (Γ), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques, thus Γ on the bubble can be determined by overlaying the two isotherms. TO and EPC are both surface active so in a mixed TO/EPC monolayer both molecules will be exposed to water. Since TO is less surface active than EPC, as Π increases the TO is progressively ejected. To understand the Π/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Γ can be estimated. This allows determination of Γ of EPC on a TO bubble as a function of Π. PMID:20151713
Mitsche, Matthew A; Wang, Libo; Small, Donald M
2010-03-11
Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.
NASA Astrophysics Data System (ADS)
Brooks, P. D.; Swetnam, T. L.; Barnard, H. R.; Singha, K.; Harpold, A.; Litvak, M. E.
2017-12-01
Spatial patterns in vegetation long have been used to scale both landsurface-atmosphere exchanges of water and carbon as well as to infer subsurface structure. These pursuits typical proceed in isolation and rarely do inferences gained from one community propagate to related efforts in another. Perhaps more importantly, vegetation often is treated as an emergent property of landscape-climate interactions rather than an active modifier of both critical zone structure and energy fluxes. We posit that vegetation structure and activity are under utilized as a tool towards understanding landscape evolution and present examples that begin to disentangle the role of vegetation as both an emergent property and an active control on critical zone structure and function. As climate change, population growth, and land use changes threaten water resources worldwide, the need for the new insights vegetation can provide becomes not just a basic science priority, but a pressing applied science question with clear societal importance. This presentation will provide an overview of recent efforts to address the dual role of vegetation in both modifying and reflecting critical zone structure in the western North American forests. For example, interactions between topography and stand scale vegetation structure influence both solar radiation and turbulence altering landscape scale partitioning of evaporation vs transpiration with major impacts of surface water supply. Similarly, interactions between topographic shading, lateral redistribution of plant available water, and subsurface storage create a mosaic of drought resistance and resilience across complex terrain. These complex interactions between geophysical and vegetation components of critical zone structure result in predictable patterns in catchment scale hydrologic partitioning within individual watersheds while simultaneously suggesting testable hypotheses for why catchments under similar climate regimes respond so differently to drought stress.
NASA Astrophysics Data System (ADS)
Sun, Hui; Li, Xin; Hu, Mingyong
2017-08-01
The unique spatial distribution of corneal elasticity is shown by the nonhomogeneous structure of the cornea. It is critical to understanding how biomechanics control corneal stability and refraction and one way to do this job is non-invasive measurement of this distribution. Femtosecond laser pulses have the ability to induce optical breakdown and produced cavitation in the anterior and posterior cornea. A confocal ultrasonic transducer applied 6.5 ms acoustic radiation forcechirp bursts to the bubble at 1.5 MHz while monitoring bubble position using pulse-echoes at 20 MHz. The laser induced breakdown spectroscopy (LIBS) were measured in the anterior and posterior cornea with the plasmas that induced by the same femtosecond laser to see whether the laser induced plasmas signals will show relationship to Young's modulus.
Reply to "Comment on `Simple improvements to classical bubble nucleation models'"
NASA Astrophysics Data System (ADS)
Tanaka, Kyoko K.; Tanaka, Hidekazu; Angélil, Raymond; Diemand, Jürg
2016-08-01
We reply to the Comment by Schmelzer and Baidakov [Phys. Rev. E 94, 026801 (2016)]., 10.1103/PhysRevE.94.026801 They suggest that a more modern approach than the classic description by Tolman is necessary to model the surface tension of curved interfaces. Therefore we now consider the higher-order Helfrich correction, rather than the simpler first-order Tolman correction. Using a recent parametrization of the Helfrich correction provided by Wilhelmsen et al. [J. Chem. Phys. 142, 064706 (2015)], 10.1063/1.4907588, we test this description against measurements from our simulations, and find an agreement stronger than what the pure Tolman description offers. Our analyses suggest a necessary correction of order higher than the second for small bubbles with radius ≲1 nm. In addition, we respond to other minor criticism about our results.
Capillary channel flow experiments aboard the International Space Station
NASA Astrophysics Data System (ADS)
Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.
2013-12-01
In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.
Approaching behavior of a pair of spherical bubbles in quiescent liquids
NASA Astrophysics Data System (ADS)
Sanada, Toshiyuki; Kusuno, Hiroaki
2015-11-01
Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.
NASA Astrophysics Data System (ADS)
Dobson, Katherine; Pistone, Mattia; Fife, Julie; Cordonnier, Benoit; Blundy, Jon; Dingwell, Don; Lee, Peter
2015-04-01
The crystal and bubble cargoes of magmas are critical to controlling magma mobility and rheology. These cargos vary in both time and space and the local, and bulk, rheological behaviour are correspondingly heterogeneous. Tracking how these heterogeneous cargoes evolve, and how crystals and bubbles interact with each other in deforming systems is a critical challenge in volcanology, as these processes control both the chemical and physical evolution of the magma, including phenomena such as melt-crystal segregation, strain localisation, and fragmentation. The only methodology available to track these processes in real time, and at the scale of individual melt-crystal-bubble interactions is high speed x-ray tomography. This non-destructive imaging technique allows the rapid acquisition of sequential 3D images that capture the physical, and to some degree chemical, microstructure of the sample during a deformation cycle. We utilise in situ tomographic methods developed in materials science to perfume magmatic deformation experiments on synthesized three phase systems at magmatic temperatures. Through a novel combination of a high temperature laser heating system [1] in situ micro-precision deformation apparatus [2] and the temporal and spatial resolution available at the TOMCAT beam line at the Swiss Light Source synchrotron facility we performed in situ observations of the microstructural evolution of a synthesized anhydrous borosilicate melt seeded with a variable concentration of non-reactive rutile crystals and air bubbles (30-70 volume %). The experiments were conducted at 800-1000C, under constant deformation rates of 0.25-5.00 microns/second. Each 3D image has 2D and 3D spatial resolution of approximately 3 microns per pixel, and each 3D image took ~3 seconds to acquire. Here we present this innovative high speed, high temperature, syn-deformation tomographic data , and show how it can be used to trace the location and local distribution of each crystal and bubble within a small volume cylindrical experimental charge (3mm diameter, 5mm length) undergoing shear along a single vertical plane. By qualitative and quantitative analysis of the sequential images collected over 5-15 minute deformation cycles we track the local bubble, crystal and melt concentrations on a range of spatial scales. From this we calculate a spatially heterogeneous and dynamic local viscosity [3] and assess our results against recently developed 3-phase rheological models [4]. We will present how this real time 4D information can be used to quantify the dynamics of magma motion, discuss the implications of spatially and temporally variable rheological behaviours, and show how this novel technique can be integrated with other volcanology methods to improve our understanding of volcanic and magmatic processes. [1] Fife et al. 2012. J. Synchrotron Rad. 19, 352-358 [2] Kareh et al. 2014 Nature Comm. 5 4464. [3] Giordano, et al. 2008 EPSL 271 123-134. [4] Truby et al. 2015 P.Roy.Soc.A. 2015471 20140557
NASA Astrophysics Data System (ADS)
Gaczkowski, B.; Roccatagliata, V.; Flaischlen, S.; Kröll, D.; Krause, M. G. H.; Burkert, A.; Diehl, R.; Fierlinger, K.; Ngoumou, J.; Preibisch, T.
2017-12-01
Context. Lupus I cloud is found between the Upper Scorpius (USco) and Upper Centaurus-Lupus (UCL) subgroups of the Scorpius-Centaurus OB association, where the expanding USco H I shell appears to interact with a bubble currently driven by the winds of the remaining B stars of UCL. Aims: We investigate whether the Lupus I molecular could have formed in a colliding flow, and in particular, how the kinematics of the cloud might have been influenced by the larger scale gas dynamics. Methods: We performed APEX 13CO(2-1)and C18O(2-1) line observations of three distinct parts of Lupus I that provide kinematic information on the cloud at high angular and spectral resolution. We compare those results to the atomic hydrogen data from the GASS H I survey and our dust emission results presented in the previous paper. Based on the velocity information, we present a geometric model for the interaction zone between the USco shell and the UCL wind bubble. Results: We present evidence that the molecular gas of Lupus Iis tightly linked to the atomic material of the USco shell. The CO emission in Lupus Iis found mainly at velocities between vLSR = 3-6 km s-1, which is in the same range as the H I velocities. Thus, the molecular cloud is co-moving with the expanding USco atomic H I shell. The gas in the cloud shows a complex kinematic structure with several line-of-sight components that overlay each other. The nonthermal velocity dispersion is in the transonic regime in all parts of the cloud and could be injected by external compression. Our observations and the derived geometric model agree with a scenario in which Lupus Iis located in the interaction zone between the USco shell and the UCL wind bubble. Conclusions: The kinematics observations are consistent with a scenario in which the Lupus Icloud formed via shell instabilities. The particular location of Lupus I between USco and UCL suggests that counterpressure from the UCL wind bubble and pre-existing density enhancements, perhaps left over from the gas stream that formed the stellar subgroups, may have played a role in its formation. This publication is based on data acquired with the Atacama Pathfinder Experiment (APEX), which is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.The 13CO(2-1) and C18O(2-1) spectral cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/608/A102
Formulating a coastal zone health metric for landuse impact management in urban coastal zones.
Anilkumar, P P; Varghese, Koshy; Ganesh, L S
2010-11-01
The need for ICZM arises often due to inadequate or inappropriate landuse planning practices and policies, especially in urban coastal zones which are more complex due to the larger number of components, their critical dimensions, attributes and interactions. A survey of literature shows that there is no holistic metric for assessing the impacts of landuse planning on the health of a coastal zone. Thus there is a need to define such a metric. The proposed metric, CHI (Coastal zone Health Indicator), developed on the basis of coastal system sustainability, attempts to gauge the health status of any coastal zone. It is formulated and modeled through an expert survey and pertains to the characteristic components of coastal zones, their critical dimensions, and relevant attributes. The proposed metric is applied to two urban coastal zones and validated. It can be used for more coast friendly and sustainable landuse planning/masterplan preparation and thereby for the better management of landuse impacts on coastal zones. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Slejko, F. F.; Petrini, R.
Bubble growth in ascending viscous magmas by volatile exsolution from the melt structure is important in causing the magma fragmentation which determines the trans- form from a lava flow to a pyroclastic explosion. Volatile solubility and speciation in the melt vary during pressure and temperature changes. The pressure drop which oc- curs as a magma rises towards the surface in a volcanic conduit, causes the release of the volatiles dissolved in the melt and the progressive growth in the size of bubbles against the retarding forces to expansion generated by the polymeric interconnections in the silicate melt structure. At some critical growth rate with respect to the relax- ation time of the melt structure, the disruption of the interbubbles walls in the melt marks the fragmentation threshold, with the transition from a viscous bubbly liquid to a fast-uprising gas carrying on fragments of vesiculated magma. Highly polymer- ized, silica-rich melts are characterised by relaxation times which may be long com- pared to the quick growth and deformation of bubbles during rapid magma decom- pression and cooling, and the glassy pumices which form may retain informations on the vesiculation and degassing processes which occurred close to the fragmentation depth. Furthermore, the formation of vesicles during the cooling and decompression of an ascending volatile-supersaturated high-silica magma is strongly favoured by the occurrence of bubble nucleating sites in the melt. In order to investigate the influ- ence of the structure and iron speciation on bubble growth during explosive volcan- ism, a dense glass and a vesiculated pumice glass coexisting in the same pyroclastic unit of the Astroni volcano tephra in the Phlegraean Fields Caldera (4.1-3.8 ka BP) were investigated by 29Si 2D phase adjusted spinning sidebands (PASS) NMR, 1H MAS NMR, electron spin resonance (ESR) and Mössbauer spectroscopy. 29Si 2D PASS spectra show that silicon copolymerizes in the structure dominantly by Q3 and Q4 groups, with partly overlapping chemical shift. Spectrum fittings indicate that the dense glass is characterised by a larger abundance of Q3 species compared to the vesiculated pumice, suggesting a less polymerized structure. 1H MAS spectra reveal a larger amount of hydrogen concentration in the dense glass, partly attributable to structural hydroxyl groups possibly in Q3-OH terminations depolymerizing the glass structure. The less polymerized structure of the dense glass could have allowed an easier volatile exsolution, preventing the bubble formation. The EPR spectra indicate that the Fe3+ has similar surroundings in both samples, suggesting that Fe3+ is likely to occur in both network forming and modifying sites. Nevertheless, the vesiculated glass is characterised by a significantly higher amount of magnetite particles, which could have enhanced the bubble nucleation. Mössbauer spectra show four doublets attributable to ferric iron in both tetrahedral and octahedral sites and ferrous iron only in octahedral coordination. The oxidation of Fe2+ to Fe3+ observed in the vesicu- lated glass with respect to the dense glass could be an evidence of pressure drop with consequent bubble expansion.
Interaction mechanism of double bubbles in hydrodynamic cavitation
NASA Astrophysics Data System (ADS)
Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin
2013-06-01
Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.
AmeriFlux US-CZ2 Sierra Critical Zone, Sierra Transect, Ponderosa Pine Forest, Soaproot Saddle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Michael
This is the AmeriFlux version of the carbon flux data for the site US-CZ2 Sierra Critical Zone, Sierra Transect, Ponderosa Pine Forest, Soaproot Saddle. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of four Southern Sierra Critical Zone Observatory flux towers operated along an elevation gradient (sites are USCZ1, USCZ2, USCZ3 and USCZ4). This site is an oak/pine forest, with occasional thinning and wildfire, a prescribed understory burn ~2012, and severe drought and ~80% canopy mortality in 2011-15
AmeriFlux US-CZ3 Sierra Critical Zone, Sierra Transect, Sierran Mixed Conifer, P301
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goulden, Michael
This is the AmeriFlux version of the carbon flux data for the site US-CZ3 Sierra Critical Zone, Sierra Transect, Sierran Mixed Conifer, P301. Site Description - Half hourly data are available at https://www.ess.uci.edu/~california/. This site is one of four Southern Sierra Critical Zone Observatory flux towers operated along an elevation gradient (sites are USCZ1, USCZ2, USCZ3 and USCZ4). This site is a pine/fir forest; it historically experienced logging and wildfire, was thinned in ~2012, and experienced severe drought and ~20% canopy mortality in 2011-15.
Gleeson, Deirdre; Mathes, Falko; Farrell, Mark; Leopold, Matthias
2016-11-15
The Critical Zone is defined as the thin, permeable layer from the tops of the trees to the bottom of the bedrock that sustains terrestrial life on Earth. The geometry and shape of the various weathering zones are known as the critical zone architecture. At the centre of the Critical Zone are soils and the microorganisms that inhabit them. In Western Australia, the million-year-old stable weathering history and more recent lateral erosion during the past hundreds of thousands of years have created a geomorphic setting where deep weathering zones are now exposed on the surface along the flanks of many lateritic hills. These old weathering zones provide diverse physical and chemical properties that influence near surface pedologic conditions and thus likely shape current surface microbiology. Here, we present data derived from a small lateritic hill on the UWA Farm Ridgefield. Spatial soil sampling revealed the contrasting distribution patterns of simple soil parameters such as pH (CaCl2) and electric conductivity. These are clearly linked with underlying changes of the critical zone architecture and show a strong contrast with low values of pH3.3 at the top of the hill to pH5.3 at the bottom. These parameters were identified as major drivers of microbial spatial variability in terms of bacterial and archaeal community composition but not abundance. In addition, we used sensitive (14)C labelling to assess turnover of three model organic nitrogen compounds - an important biogeochemical functional trait relating to nutrient availability. Though generally rapid and in the order of rates reported elsewhere (t½<5h), some points in the sampling area showed greatly reduced turnover rates (t½>10h). In conclusion, we have shown that the weathering and erosion history of ancient Western Australia affects the surface pedology and has consequences for microbial community structure and function. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Mahale, Anant D.; Prudhomme, Robert K.; Rebenfeld, Ludwig
1993-01-01
A technique based on matching the refractive index of an invading liquid to that of a fiber mat was used to study entrapment of air ('voids') that occurs during forced in-plane radial flow into nonwoven multifilament glass networks. The usefulness of this technique is demonstrated in quantifying and mapping the air pockets. Experiments with a series of fluids with surface tensions varying from 28 x 10(exp -3) to 36 x 10(exp -3) N/m, viscosities from 45 x 10(exp -3) to 290 x 10(exp -3) Pa.s, and inlet flow rates from 0.15 x 10(exp -6) to 0.75 x 10(exp -6) m(exp 3)/s, showed that void content is a function of the capillary number characterizing the flow process. A critical value of capillary number, Ca = 2.5 x 10(exp -3), identifies a zone below which void content increases exponentially with decreasing capillary number. Above this critical value, negligible entrapment of voids is observed. Similar experiments carried out on surface treated nonwoven mats spanning a range of equilibrium contact angles from 20 deg to 78 deg showed that there is a critical contact angle above which negligible entrapment is observed. Below this value, there is no apparent effect of contact angle on the void fraction - capillary number relationship described earlier. Studies on the effect of filament wettability, and fluid velocity and viscosity on the size of the entrapment (voids) were also carried out. These indicate that larger sized entrapments which envelop more than one pore are favored by a low capillary number in comparison to smaller, pore level bubbles. Experiments were carried out on deformed mats - imposing high permeability spots at regular intervals on a background of low permeability. The effect of these spatial fluctuations in heterogeneity of the mat on entrapment is currently being studied.
Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.
Wu, Yingjie; Si, Tieyan; Lin, Xiankun; He, Qiang
2015-01-11
The use of a near-infrared (NIR) laser for reversible modulation of a bubble-driven Janus polymer capsule motor is demonstrated. This process was mediated through illumination of the metal face of the Janus capsule motor at the critical concentration of peroxide fuel. Such an effective control of the propulsion of chemically powered microengines holds a considerable promise for diverse applications.
Numerical simulation on the cavitation of waterjet propulsion pump
NASA Astrophysics Data System (ADS)
Xia, C. Z.; Cheng, L.; Shang, Y. N.; Zhou, J. R.; Yang, F.; Jin, Y.
2016-05-01
Waterjet propulsion system is widely used in high speed vessels with advantages of simple transmission mechanism, low noise underwater and good manoeuvrability. Compared with the propeller, waterjet propulsion can be used flow stamping to increasing cavitation resistance at high speed. But under certain conditions, such as low ship speed or high ship speed, cavitation problem still exists. If water-jet propulsion pump is run in cavitation condition for a long time, then the cavitation will cause a great deal of noise CFD is applied to analysis and predict the process of production and development of cavitation in waterjet propulsion pump. Based on the cavitation model of Zwart-Gerber-Belamri and a mixture of homogeneous flow model, commercial CFD software CFX was taken for characteristics of cavitation under the three operating conditions. Commercial software ANSYS 14.0 is used to build entity model, mesh and numerical simulation. The grid independence analysis determine the grid number of mixed flow pump model is about 1.6 million and the grid number of water-jet pump system unit is about 2.7 million. The cavitation characteristics of waterjet pump under three operating conditions are studied. The results show that the cavitation development trend is similar design and small rate of flow condition .Under the design conditions Cavitation bubbles are mainly gathered in suction surface of blade near the inlet side of the hub under the primary stage, and gradually extended to the water side in the direction of the rim with the loss of the inlet total pressure. Cavitation appears in hub before the blade rim, but the maximum value of gas content in blade rim is bigger than that in hub. Under large flow conditions, bubble along the direction of wheel hub extends to the rim gradually. Cavitation is found in the pressure surface of blade near the hub region under the critical point of cavitation nearby. When NPSHa is lower than critical point, the area covering by bubbles is about 40% in the suction surface of blade. It means that the critical point of cavitation of pump system is not the accrue point of install cavitation but cavitation has been developed to a certain stage.
Susan L. Brantley; William H. McDowell; William E. Dietrich; Timothy S. White; Praveen Kumar; Suzanne P. Anderson; Jon Chorover; Kathleen Ann Lohse; Roger C. Bales; Daniel D. Richter; Gordon Grant; Jérôme Gaillardet
2017-01-01
The critical zone (CZ), the dynamic living skin of the Earth, extends from the top of the vegetative canopy through the soil and down to fresh bedrock and the bottom of the groundwater. All humans live in and depend on the CZ. This zone has three co-evolving surfaces: the top of the vegetative canopy, the ground surface, and a deep subsurface below which Earthâs...
Visualization of airflow growing soap bubbles
NASA Astrophysics Data System (ADS)
Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin
2016-11-01
Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.
NASA Astrophysics Data System (ADS)
Liu, Yue-Lin; Yu, Yang; Dai, Zhen-Hong
2015-01-01
Using first-principles calculations, we investigate the stabilities of He and Hen-vacancy (HenV) clusters in α-Fe and W. Vacancy formation energies are 2.08 eV in α-Fe and 3.11 eV in W, respectively. Single He in both α-Fe and W prefers to occupy the tetrahedral interstitial site. We recalculated the He solution energy considering the effect of zero-point energy (ZPE). The ZPEs of He in α-Fe and W at the tetrahedral (octahedral) interstitial site are 0.072 eV (0.031 eV) and 0.078 eV (0.034 eV), respectively. The trapping energies of single He at vacancy in α-Fe and W are -2.39 eV and -4.55 eV, respectively. By sequentially adding He into vacancy, a monovacancy trap up to 10 He atoms distributing in the vacancy vicinity. Based on the above results combined with statistical model, we evaluate the concentrations of all relevant HenV clusters as a function of He chemical potential. The critical HenV concentration is found to be ∼10-40 (atomic) at the critical temperature T = 600 K in α-Fe and T = 1600 K in W, respectively. Beyond the critical HenV concentrations, considerable HenV aggregate to form HenVm clusters. By further growing of HenVm, the HenVm clusters grow bigger resulting in the larger He bubble formation.
Evaluation of a steady-state test of foam stability
NASA Astrophysics Data System (ADS)
Hutzler, Stefan; Lösch, Dörte; Carey, Enda; Weaire, Denis; Hloucha, Matthias; Stubenrauch, Cosima
2011-02-01
We have evaluated a steady-state test of foam stability, based on the steady-state height of a foam produced by a constant velocity of gas flow. This test is mentioned in the book by Bikerman [Foams, Springer, Berlin, 1973] and an elementary theory was developed for it by Verbist et al. [J. Phys. Condens. Matter 8 (1996) p. 3715]. For the study, we used an aqueous solution of the cationic surfactant dodecyl trimethylammonium bromide, C12TAB, at a concentration of two times the critical micelle concentration (2 cmc). During foam generation, bubbles collapse at the top of the column which, in turn, eventually counterbalances the rate of bubble production at the bottom. The resulting balance can be described mathematically by an appropriate solution of the foam drainage equation under specified boundary conditions. Our experimental findings are in agreement with the theoretical predictions of a diverging foam height at a critical gas velocity and a finite foam height in the limit of zero velocity. We identify a critical liquid fraction below which a foam is unstable as an important parameter for characterizing foam stability. Furthermore, we deduce an effective viscosity of the liquid which flows through the foam. Currently unexplained are two experimental observations, namely sudden changes of the steady-state foam height in experiments that run over several hours and a reduction in foam height once an overflow of the foam from the containing vessel has occurred.
Kor, Mohammad; Korczyk, Piotr M; Addai-Mensah, Jonas; Krasowska, Marta; Beattie, David A
2014-10-14
The adsorption of carboxymethylcellulose polymers on molybdenite was studied using spectroscopic ellipsometry and atomic force microscopy imaging with two polymers of differing degrees of carboxyl group substitution and at three different electrolyte conditions: 1 × 10(-2) M KCl, 2.76 × 10(-2) M KCl, and simulated flotation process water of multicomponent electrolyte content, with an ionic strength close to 2.76 × 10(-2) M. A higher degree of carboxyl substitution in the adsorbing polymer resulted in adsorbed layers that were thinner and with more patchy coverage; increasing the ionic strength of the electrolyte resulted in increased polymer layer thickness and coverage. The use of simulated process water resulted in the largest layer thickness and coverage for both polymers. The effect of the adsorbed polymer layer on bubble-particle attachment was studied with single bubble-surface collision experiments recorded with high-speed video capture and image processing and also with single mineral molybdenite flotation tests. The carboxymethylcellulose polymer with a lower degree of substitution resulted in almost complete prevention of wetting film rupture at the molybdenite surface under all electrolyte conditions. The polymer with a higher degree of substitution prevented rupture only when adsorbed from simulated process water. Molecular kinetic theory was used to quantify the effect of the polymer on the dewetting dynamics for collisions that resulted in wetting film rupture. Flotation experiments confirmed that adsorbed polymer layer properties, through their effect on the dynamics of bubble-particle attachment, are critical to predicting the effectiveness of polymers used to prevent mineral recovery in flotation.
Sigalotti, Leonardo Di G; Troconis, Jorge; Sira, Eloy; Peña-Polo, Franklin; Klapp, Jaime
2015-07-01
The rapid evaporation and explosive boiling of a van der Waals (vdW) liquid drop in microgravity is simulated numerically in two-space dimensions using the method of smoothed particle hydrodynamics. The numerical approach is fully adaptive and incorporates the effects of surface tension, latent heat, mass transfer across the interface, and liquid-vapor interface dynamics. Thermocapillary forces are modeled by coupling the hydrodynamics to a diffuse-interface description of the liquid-vapor interface. The models start from a nonequilibrium square-shaped liquid of varying density and temperature. For a fixed density, the drop temperature is increased gradually to predict the point separating normal boiling at subcritical heating from explosive boiling at the superheat limit for this vdW fluid. At subcritical heating, spontaneous evaporation produces stable drops floating in a vapor atmosphere, while at near-critical heating, a bubble is nucleated inside the drop, which then collapses upon itself, leaving a smaller equilibrated drop embedded in its own vapor. At the superheat limit, unstable bubble growth leads to either fragmentation or violent disruption of the liquid layer into small secondary drops, depending on the liquid density. At higher superheats, explosive boiling occurs for all densities. The experimentally observed wrinkling of the bubble surface driven by rapid evaporation followed by a Rayleigh-Taylor instability of the thin liquid layer and the linear growth of the bubble radius with time are reproduced by the simulations. The predicted superheat limit (T(s)≈0.96) is close to the theoretically derived value of T(s)=1 at zero ambient pressure for this vdW fluid.
Double bubble with the big-bubble technique during deep anterior lamellar keratoplasty.
Wise, Stephanie; Dubord, Paul; Yeung, Sonia N
2017-04-28
To report a case of intraoperative double bubble that formed during big-bubble DALK surgery in a patient with corneal scarring secondary to herpetic stromal keratitis. Case report. A 22 year old woman presented with a large corneal scar, likely secondary to previous herpetic stromal keratitis. She underwent big-bubble DALK surgery for visual rehabilitation. Intraoperatively, a mixed bubble with persistent type 2 bubble postoperatively was noted. The second bubble resorbed with clearance of the graft and good visual outcome after 6 weeks. This case report describes the unusual development of a mixed bubble during big-bubble DALK surgery. This graft cleared with resolution of the second bubble postoperatively without further surgical intervention.
Reanalysis of water and carbon cycle models at a critical zone observatory
USDA-ARS?s Scientific Manuscript database
The Susquehanna Shale Hills Critical Zone Observatory (SSHCZO) is a forested, hill-slope catchment located in the temperate-climate of central Pennsylvania with an extensive network of ground-based instrumentation for model testing and development. In this paper we discuss the use of multi-state fi...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.
2016-04-28
In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less
NASA Astrophysics Data System (ADS)
Pizarro, M.; Cannatelli, C.; Morata, D.
2017-12-01
Melt inclusions Assemblages (MIAs) are considered the best tool available to provide insights into the pre-eruptive volatile contents in the magma and define the pattern of degassing at depth. Lastarria volcano is located in northern Chile, in the Central Volcanic Zone (CVZ). Lastarria's fumarolic activity is currently the most important source of gases of the CVZ and the volcano also exhibits constant deformation. The study of volatile contents in MIAs, allows us to determine the magmatic processes beneath Lastarria volcano, and there for, understand the current status of the volcanic system (deformation and fumarolic activity). We determined the pre-eruptive volatile content (H2O, CO2, F, S, Cl) in the magma by analyzing MIs hosted in feldspars and pyroxenes from 7 samples of lava and pyroclastic rocks, belonging to different eruptive periods of the volcano. All the samples are andesitic in composition. Lava samples contain phenocrysts of plagioclase and pyroxene (up to 45%) and a vitreous groundmass with microlites of plagioclase, pyroxenes, opaque minerals, and limited biotites. Pyroclastic samples contain phenocrysts of plagioclase and pyroxene (up to 30%), and a vitreous matrix with microlites of plagioclase and pyroxene. At least 3 MIAs have been described in feldspars from the lava samples: MIA1, completely homogenized, MIA2 composed of homogeneous glass and one bubble, and MIA3 composed of homogeneous glass and multiple bubbles. All MIAs display sizes between 3 and 200 um. In the pyroxenes, we have observed a wide range of MIAs, showing different sizes and various degrees of recrystallization, from completely homogenized to totally recrystallized. The petrographic study in the feldespars from the pyroclastic rocks shows two types of MIAs: MIA1, containing homogeneous glass associated with a single bubble, and MIA2, showing homogeneous glass with multiple bubbles. Few MIs appear to be slightly recrystallized. The size of this MIAs varies between 3 and 150 um. Pyroxene-hosted MIs are almost all recrystallized, with sizes varying between 3 and 60 um. Preliminary observations show that MIAs hosted in pyroclastic rocks contain a greater amount of bubbles than MIAs hosted in the lava, possibly indicating that a greater degree of volatile saturation can be linked with the explosive phase of Lastarria volcano.
Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California
NASA Astrophysics Data System (ADS)
Adams, Paul M.; Lynch, David K.; Buckland, Kerry N.; Johnson, Patrick D.; Tratt, David M.
2017-11-01
The Salton Trough lies in the transition between the San Andreas Fault and oblique spreading centers and transform faults in the Gulf of California. The Salton Sea Geothermal Field is the northernmost expression of those spreading centers. In 2007 two ammonia-emitting fumarole fields that had been submerged beneath the Salton Sea were exposed for the first time in nearly 50 years. As the sea level continued to drop these fields have developed a number of boiling pools, mud pots, gryphons and a unique suite of ammonium sulfate minerals. These have been studied over time with long-wave infrared remote sensing coupled with ground truth surveys backed by laboratory analyses of the minerals. Many vents lie at the center of concentric rings of mineralization with systematic occurrence of different minerals from center to edge. Three semi-concentric zones (fumarole, transition and evaporite) have been defined with respect to ammonia-emitting vents and bubbling pools. The scale of these zones range from several meters, localized around individual vents, to that of the fumarole fields as a whole. The fumarole zone is closest to the vents and locally contains cavernous sulfur crystals and significant deposits of gypsum, mascagnite, boussingaultite and other ammonium sulfates. The transition zone comprises a dark brown surficial band of inconspicuous sodium nitrate underlain by anhydrite/bassanite that is thought to have formed by ammonia-oxidizing microbes interacting with the ammonium sulfates of the outer fumarole zone. The evaporite zone is the outermost and contains blödite, thenardite and glauberite, which are typical of the sulfates associated with the shoreline of the Salton Sea. Remote sensing has shown that the mineral zones have remained relatively stable from 2013 to 2017, with minor variations depending on rainfall, temperature and levels of agricultural runoff.
Bubble dynamics and bubble-induced turbulence of a single-bubble chain
NASA Astrophysics Data System (ADS)
Lee, Joohyoung; Park, Hyungmin
2016-11-01
In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.
Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation
NASA Astrophysics Data System (ADS)
Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon
2018-02-01
Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.
Nonspherical laser-induced cavitation bubbles
NASA Astrophysics Data System (ADS)
Lim, Kang Yuan; Quinto-Su, Pedro A.; Klaseboer, Evert; Khoo, Boo Cheong; Venugopalan, Vasan; Ohl, Claus-Dieter
2010-01-01
The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40μm . In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles. The bubble dynamics is recorded with a high-speed camera at framing rates of up to 300000 frames per second. The observed bubble evolution is compared to predictions from an axisymmetric boundary element simulation which provides good qualitative agreement. Interesting dynamic features that are observed in both the experiment and simulation include the inversion of the major and minor axis for elliptical bubbles, the rotation of the shape for square bubbles, and the formation of a unidirectional jet for V-shaped bubbles. Further we demonstrate that specific bubble shapes can either be formed directly through the intensity distribution of a single laser focus, or indirectly using secondary bubbles that either confine the central bubble or coalesce with the main bubble. The former approach provides the ability to generate in principle any complex bubble geometry.
Aspherical bubble dynamics and oscillation times
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godwin, R.P.; Chapyak, E.J.; Noack, J.
1999-03-01
The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightlymore » from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.« less
Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.
Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y
2016-03-01
Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect. Copyright © 2015 Elsevier B.V. All rights reserved.
An Experimental Study of Boiling in Reduced and Zero Gravity Fields
NASA Technical Reports Server (NTRS)
Usiskin, C. M.; Siegel, R.
1961-01-01
A pool boiling apparatus was mounted on a counterweighted platform which could be dropped a distance of nine feet. By varying the size of the counterweight, the effective gravity field on the equipment was adjusted between zero and unity. A study of boiling burnout in water indicated that a variation in the critical heat flux according to the one quarter power of gravity was reasonable. A consideration of the transient burnout process was necessary in order to properly interpret the data. A photographic study of nucleate boiling showed how the velocity of freely rising vapor bubbles decreased as gravity was reduced. The bubble diameters at the time of breakoff from the heated surface were found to vary inversely as gravity to the 1/3.5 power. Motion pictures were taken to illustrate both nucleate and film boiling in the low gravity range.
Growth dynamics and gas transport mechanism of nanobubbles in graphene liquid cells.
Shin, Dongha; Park, Jong Bo; Kim, Yong-Jin; Kim, Sang Jin; Kang, Jin Hyoun; Lee, Bora; Cho, Sung-Pyo; Hong, Byung Hee; Novoselov, Konstantin S
2015-02-02
Formation, evolution and vanishing of bubbles are common phenomena in nature, which can be easily observed in boiling or falling water, carbonated drinks, gas-forming electrochemical reactions and so on. However, the morphology and the growth dynamics of the bubbles at nanoscale have not been fully investigated owing to the lack of proper imaging tools that can visualize nanoscale objects in the liquid phase. Here, we demonstrate for the first time that the nanobubbles in water encapsulated by graphene membrane can be visualized by in-situ ultra-high vacuum transmission electron microscopy. Our microscopic results indicate two distinct growth mechanisms of merging nanobubbles and the existence of a critical radius of nanobubbles that determines the unusually long stability of nanobubbles. Interestingly, the gas transport through ultrathin water membranes at nanobubble interface is free from dissolution, which is clearly different from conventional gas transport that includes condensation, transmission and evaporation.
Observing eruptions of gas-rich compressible magmas from space
Kilbride, Brendan McCormick; Edmonds, Marie; Biggs, Juliet
2016-01-01
Observations of volcanoes from space are a critical component of volcano monitoring, but we lack quantitative integrated models to interpret them. The atmospheric sulfur yields of eruptions are variable and not well correlated with eruption magnitude and for many eruptions the volume of erupted material is much greater than the subsurface volume change inferred from ground displacements. Up to now, these observations have been treated independently, but they are fundamentally linked. If magmas are vapour-saturated before eruption, bubbles cause the magma to become more compressible, resulting in muted ground displacements. The bubbles contain the sulfur-bearing vapour injected into the atmosphere during eruptions. Here we present a model that allows the inferred volume change of the reservoir and the sulfur mass loading to be predicted as a function of reservoir depth and the magma's oxidation state and volatile content, which is consistent with the array of natural data. PMID:28000791
Extreme conditions in a dissolving air nanobubble
NASA Astrophysics Data System (ADS)
Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru
2016-07-01
Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.
Numerical modelling of underwater detonation of non-ideal condensed-phase explosives
NASA Astrophysics Data System (ADS)
Schoch, Stefan; Nikiforakis, Nikolaos
2015-01-01
The interest in underwater detonation tests originated from the military, since the expansion and subsequent collapse of the explosive bubble can cause considerable damage to surrounding structures or vessels. In military applications, the explosive is typically represented as a pre-burned material under high pressure, a reasonable assumption due to the short reaction zone lengths, and complete detonation of the unreacted explosive. Hence, numerical simulations of underwater detonation tests have been primarily concerned with the prediction of target loading and the damage incurred rather than the accurate modelling of the underwater detonation process. The mining industry in contrast has adopted the underwater detonation test as a means to experimentally characterise the energy output of their highly non-ideal explosives depending on explosive type and charge configuration. This characterisation requires a good understanding of how the charge shape, pond topography, charge depth, and additional charge confinement affect the energy release, some of which can be successfully quantified with the support of accurate numerical simulations. In this work, we propose a numerical framework which is able to capture the non-ideal explosive behaviour and in addition is capable of capturing both length scales: the reaction zone and the pond domain. The length scale problem is overcome with adaptive mesh refinement, which, along with the explosive model, is validated against experimental data of various TNT underwater detonations. The variety of detonation and bubble behaviour observed in non-ideal detonations is demonstrated in a parameter study over the reactivity of TNT. A representative underwater mining test containing an ammonium-nitrate fuel-oil ratestick charge is carried out to demonstrate that the presented method can be readily applied alongside experimental underwater detonation tests.
Sidewall crystallization and saturation front formation in silicic magma chambers
NASA Astrophysics Data System (ADS)
Lake, E. T.
2012-12-01
The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface driven processes of conduction and crystallization front migration. In the former case, volatile saturation occurs uniformly chamber wide, in the latter volatile saturation occurs along an inward propagating front. Ambient thermal gradient primarily controls the propagation rate; warm (> 30 °C / km) geothermal gradients promote 1000m+ thick crystal mush zones but slow crystallization front propagation. Cold geothermal gradients support the opposite. Magma chamber geometry plays a second order role in controlling propagation rates; bodies with high surface to magma ratio and large Earth's surface parallel faces exhibit more rapid propagation and smaller mush zones. Crystallization front propagation occurs at speeds of up to 6 cm/year (rhyolitic magma, thin sill geometry, 10 °C / km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate and ascend under certain conditions. Saturation front propagation is fixed by pressure and magma crystal content; above certain modest initial water contents (4.4 wt% in a dacite) mobile magma above 10 km depth always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt% in a dacite at 5 km depth), creating an upper saturated interface for most common (4 - 6 wt%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. Magma de-densification by bubble nucleation promotes convection and homogenization in dacitic systems. If the fluid pocket grew rapidly without draining, hydro-fracturing and eruption would result. The combination of fluid escape pathways and metal scavenging would generate economic vein or porphyry deposits.
The dynamics of histotripsy bubbles
NASA Astrophysics Data System (ADS)
Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.
2011-09-01
Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.
Miehls, Scott M.; Johnson, Nicholas S.; Hrodey, Pete J.
2017-01-01
Control of the invasive Sea Lamprey Petromyzon marinus is critical for management of commercial and recreational fisheries in the Laurentian Great Lakes. Use of physical barriers to block Sea Lampreys from spawning habitat is a major component of the control program. However, the resulting interruption of natural streamflow and blockage of nontarget species present substantial challenges. Development of an effective nonphysical barrier would aid the control of Sea Lampreys by eliminating their access to spawning locations while maintaining natural streamflow. We tested the effect of a nonphysical barrier consisting of strobe lights, low-frequency sound, and a bubble screen on the movement of Sea Lampreys in an experimental raceway designed as a two-choice maze with a single main channel fed by two identical inflow channels (one control and one blocked). Sea Lampreys were more likely to move upstream during trials when the strobe light and low-frequency sound were active compared with control trials and trials using the bubble screen alone. For those Sea Lampreys that did move upstream to the confluence of inflow channels, no combination of stimuli or any individual stimulus significantly influenced the likelihood that Sea Lampreys would enter the blocked inflow channel, enter the control channel, or return downstream.
Infrared thermometry study of nanofluid pool boiling phenomena
2011-01-01
Infrared thermometry was used to obtain first-of-a-kind, time- and space-resolved data for pool boiling phenomena in water-based nanofluids with diamond and silica nanoparticles at low concentration (<0.1 vol.%). In addition to macroscopic parameters like the average heat transfer coefficient and critical heat flux [CHF] value, more fundamental parameters such as the bubble departure diameter and frequency, growth and wait times, and nucleation site density [NSD] were directly measured for a thin, resistively heated, indium-tin-oxide surface deposited onto a sapphire substrate. Consistent with other nanofluid studies, the nanoparticles caused deterioration in the nucleate boiling heat transfer (by as much as 50%) and an increase in the CHF (by as much as 100%). The bubble departure frequency and NSD were found to be lower in nanofluids compared with water for the same wall superheat. Furthermore, it was found that a porous layer of nanoparticles built up on the heater surface during nucleate boiling, which improved surface wettability compared with the water-boiled surfaces. Using the prevalent nucleate boiling models, it was possible to correlate this improved surface wettability to the experimentally observed reductions in the bubble departure frequency, NSD, and ultimately to the deterioration in the nucleate boiling heat transfer and the CHF enhancement. PMID:21711754
Experimental investigation of cavitation induced air release
NASA Astrophysics Data System (ADS)
Kowalski, Karoline; Pollak, Stefan; Hussong, Jeanette
Variations in cross-sectional areas may lead to pressure drops below a critical value, such that cavitation and air release are provoked in hydraulic systems. Due to a relatively slow dissolution of gas bubbles, the performance of hydraulic systems will be affected on long time scales by the gas phase. Therefore predictions of air production rates are desirable to describe the system characteristics. Existing investigations on generic geometries such as micro-orifice flows show an outgassing process due to hydrodynamic cavitation which takes place on time scales far shorter than diffusion processes. The aim of the present investigation is to find a correlation between global, hydrodynamic flow characteristics and cavitation induced undissolved gas fractions generated behind generic flow constrictions such as an orifice or venturi tube. Experimental investigations are realised in a cavitation channel that enables an independent adjustment of the pressure level upstream and downstream of the orifice. Released air fractions are determined by means of shadowgraphy imaging. First results indicate that an increased cavitation activity leads to a rapid increase in undissolved gas volume only in the choking regime. The frequency distribution of generated gas bubble size seems to depend only indirectly on the cavitation intensity driven by an increase of downstream coalescence events due to a more densely populated bubbly flow.
Musculoskeletal-induced Nucleation in Altitude Decompression Sickness
NASA Technical Reports Server (NTRS)
Pollock, N. W.; Natoli, M. J.; Conkin, J.; Wessel, J. H., III; Gernhardt, M. L.
2014-01-01
Musculoskeletal activity has the potential to both improve and compromise decompression safety. Exercise enhances inert gas elimination during oxygen breathing prior to decompression (prebreathe), but it may also promote bubble nuclei formation (nucleation), which can lead to gas phase separation and bubble growth and increase the risk of decompression sickness (DCS). The timing, pattern and intensity of musculoskeletal activity and the level of tissue supersaturation may be critical to the net effect. There are limited data available to evaluate cost-benefit relationships. Understanding the relationship is important to improve our understanding of the underlying mechanisms of nucleation in exercise prebreathe protocols and to quantify risk in gravity and microgravity environments. Data gathered during NASA's Prebreathe Reduction Program (PRP) studies combined oxygen prebreathe and exercise followed by low pressure (4.3 psi; altitude equivalent of 30,300 ft [9,235 m]) microgravity simulation to produce two protocols used by astronauts preparing for extravehicular activity. Both the Phase II/CEVIS (cycle ergometer vibration isolation system) and ISLE (in-suit light exercise) trials eliminated ambulation to more closely simulate the microgravity environment. The CEVIS results (35 male, 10 female) serve as control data for this NASA/Duke study to investigate the influence of ambulation exercise on bubble formation and the subsequent risk of DCS.
NASA Astrophysics Data System (ADS)
Prosperetti, Andrea
2017-01-01
This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.
ERIC Educational Resources Information Center
Layne, Heidi; Lipponen, Lasse
2016-01-01
This paper reports on the results of a narrative-grounded investigation of student teachers' intercultural experiences and learning during their teaching practice. Our interest is in the meaning of the intercultural contact zone and how education for diversities is conceptualised and reflected upon in Finnish teacher education. Critical event…
NASA Astrophysics Data System (ADS)
Tufaile, Alberto; Sartorelli, José Carlos
2003-08-01
An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.
NASA Astrophysics Data System (ADS)
Brantley, S. L.
2014-12-01
Citizens living in areas of shale-gas development such as the Marcellus gas play in Pennsylvania and surrounding states are cognizant of the possibility that drilling and production of natural gas -- including hydraulic fracturing -- may have environmental impacts on their water. The Critical Zone is defined as the zone from vegetation canopy to the lower limits of groundwater. This definition is nebulous in terms of the lower limit, and yet, defining the bottom of the Critical Zone is important if citizens are to embrace shale-gas development. This is because, although no peer-reviewed study has been presented that documents a case where hydraulic fracturing or formation fluids have migrated upwards from fracturing depths to drinking water resources, a few cases of such leakage have been alleged. On the other hand, many cases of methane migration into aquifers have been documented to occur and some have been attributed to shale-gas development. The Critical Zone science community has a role to play in understanding such contamination problems, how they unfold, and how they should be ameliorated. For example, one big effort of the Critical Zone science community is to promote sharing of data describing the environment. This data effort has been extended to provide data for citizens to understand water quality by a team known as the Shale Network. As scientists learn to publish data online, these efforts must also be made accessible to non-scientists. As citizens access the data, the demand for data will grow and all branches of government will eventually respond by providing more accessible data that will help the public and policy-makers make decisions.
Monte Carlo simulation of spectral reflectance and BRDF of the bubble layer in the upper ocean.
Ma, Lanxin; Wang, Fuqiang; Wang, Chengan; Wang, Chengchao; Tan, Jianyu
2015-09-21
The presence of bubbles can significantly change the radiative properties of seawater and these changes will affect remote sensing and underwater target detection. In this work, the spectral reflectance and bidirectional reflectance characteristics of the bubble layer in the upper ocean are investigated using the Monte Carlo method. The Hall-Novarini (HN) bubble population model, which considers the effect of wind speed and depth on the bubble size distribution, is used. The scattering coefficients and the scattering phase functions of bubbles in seawater are calculated using Mie theory, and the inherent optical properties of seawater for wavelengths between 300 nm and 800 nm are related to chlorophyll concentration (Chl). The effects of bubble coating, Chl, and bubble number density on the spectral reflectance of the bubble layer are studied. The bidirectional reflectance distribution function (BRDF) of the bubble layer for both normal and oblique incidence is also investigated. The results show that bubble populations in clear waters under high wind speed conditions significantly influence the reflection characteristics of the bubble layer. Furthermore, the contribution of bubble populations to the reflection characteristics is mainly due to the strong backscattering of bubbles that are coated with an organic film.
NASA Astrophysics Data System (ADS)
Wlostowski, A. N.; Harman, C. J.; Molotch, N. P.
2017-12-01
The physical and biological architecture of the Earth's Critical Zone controls hydrologic partitioning, storage, and chemical evolution of precipitated water. The Critical Zone Observatory (CZO) Network provides an ideal platform to explore linkages between catchment structure and hydrologic function across a gradient of geologic and climatic settings. A legacy of hypothesis-motivated research at each site has generated a wealth of data characterizing the architecture and hydrologic function of the critical zone. We will present a synthesis of this data that aims to elucidate and explain (in the sense of making mutually intelligible) variations in hydrologic function across the CZO network. Top-down quantitative signatures of the storage and partitioning of water at catchment scales extracted from precipitation, streamflow, and meteorological data will be compared with each other, and provide quantitative benchmarks to assess differences in perceptual models of hydrologic function at each CZO site. Annual water balance analyses show that CZO sites span a wide gradient of aridity and evaporative partitioning. The aridity index (PET/P) ranges from 0.3 at Luquillo to 4.3 at Reynolds Creek, while the evaporative index (E/P) ranges from 0.3 at Luquillo (Rio Mamayes) to 0.9 at Reynolds Creek (Reynolds Creek Outlet). Snow depth and SWE observations reveal that snowpack is an important seasonal storage reservoir at three sites: Boulder, Jemez, Reynolds Creek and Southern Sierra. Simple dynamical models are also used to infer seasonal patterns of subsurface catchment storage. A root-zone water balance model reveals unique seasonal variations in plant-available water storage. Seasonal patterns of plant-available storage are driven by the asynchronicity of seasonal precipitation and evaporation cycles. Catchment sensitivity functions are derived at each site to infer relative changes in hydraulic storage (the apparent storage reservoir responsible for modulating streamflow generation). Storage-discharge relationships vary widely across the Network, and may be associated with inter-site differences in sub-surface architecture. Moving forward, we seek to reconcile top-down analysis results against the bottom-up understanding of critical zone structure and hydrologic function at each CZO site.
3D simulation of polyurethane foam injection and reacting mold flow in a complex geometry
NASA Astrophysics Data System (ADS)
Özdemir, İ. Bedii; Akar, Fırat
2018-05-01
The aim of the present work is to develop a flow model which can be used to determine the paths of the polyurethane foam in the mold filling process of a refrigerator cabinet so that improvements in the distribution and the size of the venting holes can be achieved without the expensive prototyping and experiments. For this purpose, the multi-component, two-phase chemically reacting flow is described by Navier Stokes and 12 scalar transport equations. The air and the multi-component foam zones are separated by an interface, which moves only with advection since the mass diffusion of species are set zero in the air zone. The inverse density, viscosity and other diffusion coefficients are calculated by a mass fraction weighted average of the corresponding temperature-dependent values of all species. Simulations are performed in a real refrigerator geometry, are able to reveal the problematical zones where air bubbles and voids trapped in the solidified foam are expected to occur. Furthermore, the approach proves itself as a reliable design tool to use in deciding the locations of air vents and sizing the channel dimensions.
A study of nucleate boiling and critical heat flux with EHD enhancement
NASA Astrophysics Data System (ADS)
Hristov, Y.; Zhao, D.; Kenning, D. B. R.; Sefiane, K.; Karayiannis, T. G.
2009-05-01
The paper describes results from an experimental and theoretical study of the effect of an electric field on nucleate boiling and the critical heat flux (CHF) in pool boiling of R123 at atmospheric pressure on a horizontal wall with a smooth surface. Two designs of electrode (parallel rods and wire mesh) were used. The experimental data exhibit some differences from the data obtained by other researchers in similar experiments on a wall with a different surface finish and with a slightly different design of wire mesh electrode. The hydrodynamic model for EHD enhancement of CHF cannot reconcile the differences. A theoretical model has been developed for the growth of a single vapour bubble on a superheated wall in an electric field, leading to a numerical simulation based on the level-set method. The model includes matching of sub-models for the micro- and macro-regions, conduction in the wall, distortion of the electric field by the bubble, the temperature dependence of electrical properties and free-charge generation. In the present form of the model, some of these effects are realised in an approximate form. The capability to investigate dry-spot formation and wall temperature changes that might lead to CHF has been demonstrated.
Ultrasound Techniques for Space Applications
NASA Technical Reports Server (NTRS)
Rooney, James A.
1985-01-01
Ultrasound has proven to be a safe non-invasive technique for imaging organs and measuring cardiovascular function. It has unique advantages for application to problems with man in space including evaluation of cardiovascular function both in serial studies and during critical operations. In addition, specialized instrumentation may be capable of detecting the onset of decompression sickness during EVA activities. A spatial location and three-dimensional reconstruction system is being developed to improve the accuracy and reproducibility for serial comparative ultrasound studies of cardiovascular function. The three-dimensional method permits the acquisition of ultrasonic images from many views that can be recombined into a single reconstruction of the heart or vasculature. In addition to conventional imaging and monitoring systems, it is sometimes necessary or desirable to develop instrumentation for special purposes. One example of this type of development is the design of a pulsed-Doppler system to monitor cerebral blood flow during critical operations such as re-entry. A second example is the design of a swept-frequency ultrasound system for the detection of bubbles in the circulatory system and/or soft tissues as an early indication of the onset of decompression sickness during EVA activities. This system exploits the resonant properties of bubbles and can detect both fundamental and second harmonic emissions from the insonified region.
NASA Astrophysics Data System (ADS)
Hüttl, Reinhard F.; Gerwin, Werner
2010-05-01
Recently, earth surface structures reaching from vegetation to the groundwater in the near underground have been termed "critical zone". This zone is "critical" to supporting life on Earth and, thus, the understanding of processes within this zone is of great importance in environmental sciences. Investigating the critical zone requires interdisciplinary and integrative research approaches across the fields of geomorphology, ecology, biology, soil science, hydrology and environmental modeling. A central motivation of the critical zone concept is the need for moving beyond traditional disciplinary boundaries to a more holistic and integrated study of the Earth surface system. However, the critical zone is characterized by complex interactions between abiotic and biotic structures and processes which need to be analyzed for improving our understanding of ecosystem functioning as well as of ecosystem development. To gain a better understanding of these fundamental questions it might be helpful to look at initial ecosystems, i.e. at ecosystems in the initial phase of development. It can be hypothesized that the complexity of a very young ecosystem is lower compared to mature systems and, therefore, structure-process interactions might become more obvious at early than at later stages of development. In this context, an artificial watershed was constructed with well known boundary conditions to investigate the initial ecosystem phase. The catchment ‘Chicken Creek' in Lusatia (Germany; 150 km SE from Berlin) has an area of 6 ha. It was set up with a layer of post-glacial sandy sediments overlying an aquiclude made of clay at the base. These hydrological starting conditions allowed for the formation of a groundwater body within the sandy layer of the experimental catchment. Further, after completion of the construction works in September 2005 the site was left to natural succession and no measures like planting or fertilization were carried out. As the initial phase of ecosystem development is highly dynamic under the prevailing climate conditions and ecosystem structures are formed and altered very rapidly the careful observation of the ongoing processes is essential. Thus, a comprehensive ecological monitoring programme has been started immediately after completion of the watershed to investigate the development and differentiation of structures and processes and their interactions. This paper highlights the conceptual approach of the project and particularly of the artificial watershed. Findings of this comprehensive project over a period of 4 years will be presented.
The constructed catchment Chicken Creek as Critical Zone Observatory under transition
NASA Astrophysics Data System (ADS)
Gerwin, Werner; Schaaf, Wolfgang; Elmer, Michael; Hinz, Christoph
2014-05-01
The constructed catchment Chicken Creek was established in 2005 as an experimental landscape laboratory for ecosystem research. The 6 ha area with clearly defined horizontal as well as vertical boundary conditions was left for an unrestricted primary succession. All Critical Zone elements are represented at this site, which allows the study of most processes occurring at the interface of bio-, pedo-, geo- and hydrosphere. It provides outstanding opportunities for investigating interactions and feedbacks between different evolving compartments during ecosystem development. The catchment is extensively instrumented since 2005 in order to detect transition stages of the ecosystem. Data recorded with a high spatial and temporal resolution include hydrological, geomorphological, pedological, limnological as well as biological parameters. In contrast to other Critical Zone Observatories, this site offers the unique situation of an early stage ecosystem with highly dynamic system properties. The first years of development were characterized by a fast formation of geomorphological structures due to massive erosion processes at the initially non-vegetated surface. Hydrological processes led to the establishment of a local groundwater body within 5 years. In the following years the influence of biological structures like vegetation patterns gained an increasing importance. Feedbacks between developing vegetation and e.g. hydrological features became more and more dominant. As a result, different phases of ecosystem development could be distinguished until now. This observatory offers manifold possibilities to identify and disentangle complex interactions between Critical Zone processes in situ under natural conditions. The originally low complexity of the system is growing with time facilitating the identification of influences of newly developing structures on system functions. Thus, it is possible to study effects of small-scale processes on the whole system at the landscape scale. In addition, the highly dynamic initial system properties allow the observation of multifaceted changes of Critical Zone properties and functions within short periods of time. Chicken Creek could complement the existing network of Critical Zone Observatories which are usually established at ecosystems in a mature state.
Possible high sonic velocity due to the inclusion of gas bubbles in water
NASA Astrophysics Data System (ADS)
Banno, T.; Mikada, H.; Goto, T.; Takekawa, J.
2010-12-01
If formation water becomes multi-phase by inclusion of gas bubbles, sonic velocities would be strongly influenced. In general, sonic velocities are knocked down due to low bulk moduli of the gas bubbles. However, sonic velocities may increase depending on the size of gas bubbles, when the bubbles in water or other media oscillate due to incoming sonic waves. Sonic waves are scattered by the bubbles and the superposition of the incoming and the scattered waves result in resonant-frequency-dependent behavior. The phase velocity of sonic waves propagating in fluids containing bubbles, therefore, probably depends on their frequencies. This is a typical phenomenon called “wave dispersion.” So far we have studied about the bubble impact on sonic velocity in bubbly media, such as the formation that contains gas bubbles. As a result, it is shown that the bubble resonance effect is a key to analyze the sonic phase velocity increase. Therefore to evaluate the resonance frequency of bubbles is important to solve the frequency response of sonic velocity in formations having bubbly fluids. There are several analytical solutions of the resonance frequency of bubbles in water. Takahira et al. (1994) derived a equation that gives us the resonance frequency considering bubble - bubble interactions. We have used this theory to calculate resonance frequency of bubbles at the previous work. However, the analytical solution of the Takahira’s equation is based on several assumptions. Therefore we used a numerical approach to calculate the bubble resonance effect more precisely in the present study. We used the boundary element method (BEM) to reproduce a bubble oscillation in incompressible liquid. There are several reasons to apply the BEM. Firstly, it arrows us to model arbitrarily sets and shapes of bubbles. Secondly, it is easy to use the BEM to reproduce a boundary-surface between liquid and gas. The velocity potential of liquid surrounding a bubble satisfies the Laplace equation when the liquid is supposed to be incompressible. We got the boundary integral equation from the Laplace equation and solved the boundary integral equation by the BEM. Then, we got the gradient of the velocity potential from the BEM. We used this gradient to get time derivative of the velocity potential from the Bernouii’s equation. And we used the second order Adams-Bashforth method to execute time integration of the velocity potential. We conducted this scheme iteratively to calculate a bubble oscillation. At each time step, we input a pressure change as a sinusoidal wave. As a result, we observed a bubble oscillation following the pressure frequency. We also evaluated the resonance frequency of a bubble by changing the pressure frequency. It showed a good agreement with the analytical solution described above. Our future work is to extend the calculation into plural bubbles condition. We expect that interaction between bubbles becomes strong and resonance frequency of bubbles becomes small when distance between bubbles becomes small.
Bubbles in an acoustic field: an overview.
Ashokkumar, Muthupandian; Lee, Judy; Kentish, Sandra; Grieser, Franz
2007-04-01
Acoustic cavitation is the fundamental process responsible for the initiation of most of the sonochemical reactions in liquids. Acoustic cavitation originates from the interaction between sound waves and bubbles. In an acoustic field, bubbles can undergo growth by rectified diffusion, bubble-bubble coalescence, bubble dissolution or bubble collapse leading to the generation of primary radicals and other secondary chemical reactions. Surface active solutes have been used in association with a number of experimental techniques in order to isolate and understand these activities. A strobe technique has been used for monitoring the growth of a single bubble by rectified diffusion. Multibubble sonoluminescence has been used for monitoring the growth of the bubbles as well as coalescence between bubbles. The extent of bubble coalescence has also been monitored using a newly developed capillary technique. An overview of the various experimental results has been presented in order to highlight the complexities involved in acoustic cavitation processes, which on the other hand arise from a simple, mechanical interaction between sound waves and bubbles.
Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles
NASA Astrophysics Data System (ADS)
Filippov, L. O.; Royer, J. J.; Filippova, I. V.
2017-07-01
The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.
DOT National Transportation Integrated Search
2013-11-01
This report presents research performed analyzing crashes in work zones in the state of New Jersey so as to : identify critical areas in work zones susceptible to crashes and key factors that contribute to these crashes. A field : data collection on ...
Bubbles with shock waves and ultrasound: a review.
Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong
2015-10-06
The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed 'acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics-bubble interactions, with a focus on shock wave-bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the 'resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave-bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead.
Bubbles with shock waves and ultrasound: a review
Ohl, Siew-Wan; Klaseboer, Evert; Khoo, Boo Cheong
2015-01-01
The study of the interaction of bubbles with shock waves and ultrasound is sometimes termed ‘acoustic cavitation'. It is of importance in many biomedical applications where sound waves are applied. The use of shock waves and ultrasound in medical treatments is appealing because of their non-invasiveness. In this review, we present a variety of acoustics–bubble interactions, with a focus on shock wave–bubble interaction and bubble cloud phenomena. The dynamics of a single spherically oscillating bubble is rather well understood. However, when there is a nearby surface, the bubble often collapses non-spherically with a high-speed jet. The direction of the jet depends on the ‘resistance' of the boundary: the bubble jets towards a rigid boundary, splits up near an elastic boundary, and jets away from a free surface. The presence of a shock wave complicates the bubble dynamics further. We shall discuss both experimental studies using high-speed photography and numerical simulations involving shock wave–bubble interaction. In biomedical applications, instead of a single bubble, often clouds of bubbles appear (consisting of many individual bubbles). The dynamics of such a bubble cloud is even more complex. We shall show some of the phenomena observed in a high-intensity focused ultrasound (HIFU) field. The nonlinear nature of the sound field and the complex inter-bubble interaction in a cloud present challenges to a comprehensive understanding of the physics of the bubble cloud in HIFU. We conclude the article with some comments on the challenges ahead. PMID:26442143
Bubble dynamics in a standing sound field: the bubble habitat.
Koch, P; Kurz, T; Parlitz, U; Lauterborn, W
2011-11-01
Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure.
Laboratory experiments on fragmentation of highly-viscous bubbly syrup
NASA Astrophysics Data System (ADS)
Kurihara, H.; Kameda, M.; Ichihara, M.
2006-12-01
Fragmentation of vesicular magma by rapid decompression is a key process in explosive eruptions. To determine the fragmentation criteria, we carried out laboratory experiments on magma fragmentation using analogous materials. We used commercial syrup as an analogous material of magma, because the viscosity was widely altered by adding or subtracting water contents in the syrup. We made the bubbly syrup by adding hydrogen peroxide with manganese oxide in the syrup. The amount of hydrogen peroxide is proportional to the gas volume fraction in the syrup. We measured the rheological properties of the syrup. Zero shear viscosity η was measured by a rotating viscometer and a fiber elongation technique. Glass transition temperature was measured by differential scanning calorimetry. The measured data indicated that the temperature dependence of viscosity was described well using Williams-Landel-Ferry (WLF) equation. The solid content of syrup alters the viscosity as well as the glass transition temperature, though it may hardly affect the rigidity μ, which was measured by ultrasonic test in our previous work. We used a pressurized vertical tube with a large vacuum vessel to apply the rapid decompression on the material. An acrylic container, filled with the bubbly syrup, was placed in the bottom of the pressurized tube. By rupturing the diaphragms inserted between the tube and the vacuum vessel, the bubbly syrup is rapidly decompressed due to expansion of the pressurized gas in the tube. A high-speed video camera was used to obtain sequential images of the materials. Pressure transducers were mounted on the sidewall of the tube and the bottom of the container. The initial pressure was varied from 1 MPa to 5 MPa. The gas-volume fraction of the syrup under pressure was fixed as 2 % to 20%. The viscosity varied from 105 Pa·s to 108 Pa·s. We successfully observed three principal behaviors using the present analogous material; brittle fragmentation, partial fracture and ductile expansion without crack initiation. From all the experimental data, in conclusion, the fragmentation is observed when the pressure drop Δ p reaches a critical value within the order of relaxation time of syrup, which is defined as η/μ. Simultaneously, the initial gas volume fraction should be larger than a critical value, which decreases as the initial high-pressure is larger.
How many bubbles in your glass of bubbly?
Liger-Belair, Gérard
2014-03-20
The issue about how many carbon dioxide bubbles are likely to nucleate in a glass of champagne (or bubbly) is of concern for sommeliers, wine journalists, experienced tasters, and any open minded physical chemist wondering about complex phenomena at play in a glass of bubbly. The whole number of bubbles likely to form in a single glass is the result of the fine interplay between dissolved CO2, tiny gas pockets trapped within particles acting as bubble nucleation sites, and ascending bubble dynamics. Based on theoretical models combining ascending bubble dynamics and mass transfer equations, the falsely naı̈ve question of how many bubbles are likely to form per glass is discussed in the present work. A theoretical relationship is derived, which provides the whole number of bubbles likely to form per glass, depending on various parameters of both the wine and the glass itself.
Using a Novel Optical Sensor to Characterize Methane Ebullition Processes
NASA Astrophysics Data System (ADS)
Delwiche, K.; Hemond, H.; Senft-Grupp, S.
2015-12-01
We have built a novel bubble size sensor that is rugged, economical to build, and capable of accurately measuring methane bubble sizes in aquatic environments over long deployment periods. Accurate knowledge of methane bubble size is important to calculating atmospheric methane emissions from in-land waters. By routing bubbles past pairs of optical detectors, the sensor accurately measures bubbles sizes for bubbles between 0.01 mL and 1 mL, with slightly reduced accuracy for bubbles from 1 mL to 1.5 mL. The sensor can handle flow rates up to approximately 3 bubbles per second. Optional sensor attachments include a gas collection chamber for methane sampling and volume verification, and a detachable extension funnel to customize the quantity of intercepted bubbles. Additional features include a data-cable running from the deployed sensor to a custom surface buoy, allowing us to download data without disturbing on-going bubble measurements. We have successfully deployed numerous sensors in Upper Mystic Lake at depths down to 18 m, 1 m above the sediment. The resulting data gives us bubble size distributions and the precise timing of bubbling events over a period of several months. In addition to allowing us to characterize typical bubble size distributions, this data allows us to draw important conclusions about temporal variations in bubble sizes, as well as bubble dissolution rates within the water column.
Kanyanee, Tinakorn; Borst, Walter L; Jakmunee, Jaroon; Grudpan, Kate; Li, Jianzhong; Dasgupta, Purnendu K
2006-04-15
Soap bubbles provide a fascinating tool that is little used analytically. With a very low liquid volume to surface area ratio, a soap bubble can potentially provide a very useful interface for preconcentration where mass transfer to an interfacial surface is important. Here we use an automated system to create bubbles of uniform size and film thickness. We utilize purified Triton-X 100, a nonionic surfactant, to make soap bubbles. We use such bubbles as a gas-sampling interface. Incorporating hydrogen peroxide into the bubble provides a system where electrical conductance increases as the bubble is exposed to low concentrations of sulfur dioxide gas. We theoretically derive the conductance of a hollow conducting spherical thin film with spherical cap electrodes. We measure the film thickness by incorporating a dye in the bubble making solution and laser transmission photometry and find that it agrees well with the geometrically computed thickness. With the conductance of the bubble-making soap solution being measured by conventional methods, we show that the measured values of the bubble conductance with known bubble and electrode dimensions closely correspond to the theoretically computed value. Finally, we demonstrate that sub-ppm levels of SO(2) can readily be detected by the conductivity change of a hydrogen peroxide-doped soap bubble, measured in situ, when the gas flows around the bubble.
Cavitation during wire brushing
NASA Astrophysics Data System (ADS)
Li, Bo; Zou, Jun; Ji, Chen
2016-11-01
In our daily life, brush is often used to scrub the surface of objects, for example, teeth, pots, shoes, pool, etc. And cleaning rust and stripping paint are accomplished using wire brush. Wire brushes also can be used to clean the teeth for large animals, such as horses, crocodiles. By observing brushing process in water, we capture the cavitation phenomenon on the track of moving brush wire. It shows that the cavitation also can affect the surface. In order to take clear and entire pictures of cavity, a simplified model of one stainless steel wire brushing a boss is adopted in our experiment. A transparent organic tank filled with deionized water is used as a view box. And a high speed video camera is used to record the sequences. In experiment, ambient pressure is atmospheric pressure and deionized water temperature is kept at home temperature. An obvious beautiful flabellate cavity zone appears behind the moving steel wire. The fluctuation of pressure near cavity is recorded by a hydrophone. More movies and pictures are used to show the behaviors of cavitation bubble following a restoring wire. Beautiful tracking cavitation bubble cluster is captured and recorded to show.
Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio
2013-01-01
The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499
Parthasarathy, Anand; Por, Yong Ming; Tan, Donald T H
2007-10-01
To describe a quick and simple "small-bubble" technique to immediately determine the success of attaining complete Descemet's membrane (DM) separation from corneal stroma through Anwar's "big-bubble" technique of deep anterior lamellar keratoplasty (DALK) for complete stromal removal. A partial trephination was followed by a lamellar dissection of the anterior stroma. Deep stromal air injection was then attempted to achieve the big bubble to help separate the stroma from the DM. To confirm that a big bubble had been achieved, a small air bubble was injected into the anterior chamber (AC) through a limbal paracentesis. If the small bubble is then seen at the corneal periphery, it confirms that the big-bubble separation of DM was successful because the convex nature of the bubble will cause it to protrude posteriorly, forcing the small AC bubble to the periphery. If the small AC bubble is not seen in the corneal periphery, this means that it is present in the centre, beneath the opaque corneal stroma, and therefore the big bubble has not been achieved. We used the small-bubble technique to confirm the presence of the big bubble in three (one keratoconus, one interstitial keratitis and one dense corneal scar) out of 41 patients who underwent DALK. The small-bubble technique confirmed that the big bubble was achieved in the eye of all three patients. Complete stromal removal with baring of the DM was achieved, and postoperatively all three eyes achieved best corrected vision of 6/6. The small-bubble technique can be a useful surgical tool for corneal surgeons attempting lamellar keratoplasty using the big-bubble technique. It helps in confirming the separation of DM from the deep stroma, which is important in achieving total stromal replacement. It will help to make the transition to lamellar keratoplasty smoother, enhance corneal graft success and improve visual outcomes in patients.
Acoustic bubble removal method
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)
1983-01-01
A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.
Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishna, R.; Baten, J.M. van
About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions.more » The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.« less
NASA Astrophysics Data System (ADS)
Rathod, Maureen L.
Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has a larger impact. Examination of maximum stable bubble diameter through the mixer predicted areas of higher bubble dispersion based on flow type. This research has advanced simulation of non-Newtonian fluid and shown that direct calculation of extension rate is possible, demonstrating the effect of extension rate on bubble break-up.
NASA Astrophysics Data System (ADS)
Wainwright, Carroll L.
2012-09-01
I present a numerical package (CosmoTransitions) for analyzing finite-temperature cosmological phase transitions driven by single or multiple scalar fields. The package analyzes the different vacua of a theory to determine their critical temperatures (where the vacuum energy levels are degenerate), their supercooling temperatures, and the bubble wall profiles which separate the phases and describe their tunneling dynamics. I introduce a new method of path deformation to find the profiles of both thin- and thick-walled bubbles. CosmoTransitions is freely available for public use.Program summaryProgram Title: CosmoTransitionsCatalogue identifier: AEML_v1_0Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEML_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8775No. of bytes in distributed program, including test data, etc.: 621096Distribution format: tar.gzProgramming language: Python.Computer: Developed on a 2009 MacBook Pro. No computer-specific optimization was performed.Operating system: Designed and tested on Mac OS X 10.6.8. Compatible with any OS with Python installed.RAM: Approximately 50 MB, mostly for loading plotting packages.Classification: 1.9, 11.1.External routines: SciPy, NumPy, matplotLibNature of problem: I describe a program to analyze early-Universe finite-temperature phase transitions with multiple scalar fields. The goal is to analyze the phase structure of an input theory, determine the amount of supercooling at each phase transition, and find the bubble-wall profiles of the nucleated bubbles that drive the transitions.Solution method: To find the bubble-wall profile, the program assumes that tunneling happens along a fixed path in field space. This reduces the equations of motion to one dimension, which can then be solved using the overshoot/undershoot method. The path iteratively deforms in the direction opposite the forces perpendicular to the path until the perpendicular forces vanish (or become very small). To find the phase structure, the program finds and integrates the change in a phase's minimum with respect to temperature.Running time: Approximately 1 minute for full analysis of the two-scalar-field test model on a 2.5 GHz CPU.
NASA Astrophysics Data System (ADS)
Cahalan, R. C.; Dufek, J.
2015-12-01
A model has been developed to determine the theoretical limits of steam survival in a water column during a subaqueous explosive eruption. Understanding the role of steam dynamics in particle transport and the evolution of the thermal budget is critical to addressing the first order questions of subaqueous eruption mechanics. Ash transport in subaqueous eruptions is initially coupled to the fate of volatile transport. The survival of steam bubbles to the water surface could enable non-wetted ash transport from the vent to a subaerial ash cloud. Current eruption models assume a very simple plume mixing geometry, that cold water mixes with the plume immediately after erupting, and that the total volume of steam condenses in the initial phase of mixing. This limits the survival of steam to within tens of meters above the vent. Though these assumptions may be valid, they are unproven, and the calculations based on them do not take into account any kinetic constraints on condensation. The following model has been developed to evaluate the limits of juvenile steam survival in a subaqueous explosive eruption. This model utilizes the analytical model for condensation of steam injected into a sub-cooled pool produced in Park et al. (2007). Necessary parameterizations require an iterative internal calculation of the steam saturation temperature and vapor density for each modeled time step. The contribution of volumetric expansion due to depressurization of a rising bubble is calculated and used in conjunction with condensation rate to calculate the temporal evolution of bubble volume and radius. Using steam bubble volume with the BBO equation for Lagrangian transport in a fluid, the bubble rise velocity is calculated and used to evaluate the rise distance. The steam rise model proves a useful tool to compare the effects of steam condensation, volumetric expansion, volume flux, and water depth on the dynamics of juvenile steam. The modeled results show that a sufficiently high volatile flux could lead to the survival of steam bubbles from >1km depths to the ocean surface, though low to intermediate fluxes lead to fairly rapid condensation. Building on this result we also present the results of simulations of multiphase steam jets and consider the likelihood of collapse inside a vapor envelope.
Experimental study on wake structure of single rising clean bubble
NASA Astrophysics Data System (ADS)
Sato, Ayaka; Takedomi, Yuta; Shirota, Minori; Sanada, Toshiyuki; Watanabe, Masao
2007-11-01
Wake structure of clean bubble rising in quiescent silicone oil solution of photochromic dye is experimentally studied. A single bubble is generated, immediately after UV sheet light illuminates the part of the liquid just above the bubble generation nozzle in order to activate photochromic dye. Once the bubble passes across the colored part of the liquid, the bubble is accompanied by some portion of activated dye tracers; hence the flow structure in the rear of the single rising bubble is visualized. We capture stereo images of both wake structure and bubble motion. We study how wake structure changes with the increase in bubble size. We observe the stable axisymmetric wake structure, which is called `standing eddy' when bubble size is relatively small, and then wake structure becomes unstable and starts to oscillate with the increase in bubble size. With further increase in bubble size, a pair of streamwise vortices, which is called `double thread', is observed. We discuss in detail this transition from the steady wake to unsteady wake structure, especially double thread wake development and hairpin vortices shedding, in relation to the transition from rectilinear to spiral or zigzag bubble motions.
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli
2010-01-01
The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.
Review-Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems.
Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram
2017-01-01
Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself.
Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.
Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin
2015-07-28
Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated.
Optical Polarization in the Nearshore
NASA Astrophysics Data System (ADS)
Holman, R.
2008-12-01
A recent addition to the suite of optical remote sensing methods that have been used to study nearshore processes is the use of imaging polarimetric cameras. Both the degree of polarization and the azimuth of polarized light contain information about the imaged surfaces from which light has been reflected or scattered. In 2007, a polarimetric Argus camera was installed atop the tower at Duck, NC. This talk will examine the various polarization signatures that can be exploited, including the potential for measuring the sea surface slope spectrum of nearshore surf zone waves, the slope of the foreshore beach, water content of foreshore sediments and bubble signatures of dissipating waves.
Investigations of flowfields found in typical combustor geometries
NASA Technical Reports Server (NTRS)
Lilley, D. G.; Mclaughlin, D. K.
1981-01-01
The flowfields of gas turbine combustion chambers were investigated. Six flowfield configurations with sidewall angles alpha = 90 and 45 deg. and swirl vane angles phi = 0, 45 and 70 deg. are characterized. Photography of neutrally-buoyant helium-filled soap bubbles, tufts, and injected smoke helps to characterize the time-mean streamlines, recirculation zones and regions of highly turbulent flow. Five-hole pitot probe pressure measurements allow the determination of time-mean velocities u, v and w. An advanced computer code equipped with a standard two-equation kappa-epsilon turbulence model was used to predict corresponding flow situations and to compare results with the experimental data.
A variable mixing-length ratio for convection theory
NASA Technical Reports Server (NTRS)
Chan, K. L.; Wolff, C. L.; Sofia, S.
1981-01-01
It is argued that a natural choice for the local mixing length in the mixing-length theory of convection has a value proportional to the local density scale height of the convective bubbles. The resultant variable mixing-length ratio (the ratio between the mixing length and the pressure scale height) of this theory is enhanced in the superadiabatic region and approaches a constant in deeper layers. Numerical tests comparing the new mixing length successfully eliminate most of the density inversion that typically plagues conventional results. The new approach also seems to indicate the existence of granular motion at the top of the convection zone.
A Raman spectroscopic study of a fulgurite.
Carter, Elizabeth A; Hargreaves, Michael D; Kee, Terence P; Pasek, Matthew A; Edwards, Howell G M
2010-07-13
A Raman microspectroscopic study of several fulgurites has been undertaken. A fulgurite is an amorphous mineraloid, a superheated glassy solid that is formed when a lightning bolt hits a sandy or rocky ground and thermal energy is transferred. The Raman spectra revealed several forms of crystalline and fused silica and also the presence of polyaromatic hydrocarbons found in an interfacial zone of a glass bubble. This, together with the presence of anatase, a low-temperature polymorph of TiO(2), suggested that some regions of the fulgurite specimen were not subjected to temperatures of 1800 degrees C, which are attained when lightning hits the surface of sand or a rock.
Bubble Proliferation in Shock Wave Lithotripsy Occurs during Inertial Collapse
NASA Astrophysics Data System (ADS)
Pishchalnikov, Yuri A.; McAteer, James A.; Pishchalnikova, Irina V.; Williams, James C.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2008-06-01
In shock wave lithotripsy (SWL), firing shock pulses at slow pulse repetition frequency (0.5 Hz) is more effective at breaking kidney stones than firing shock waves (SWs) at fast rate (2 Hz). Since at fast rate the number of cavitation bubbles increases, it appears that bubble proliferation reduces the efficiency of SWL. The goal of this work was to determine the basis for bubble proliferation when SWs are delivered at fast rate. Bubbles were studied using a high-speed camera (Imacon 200). Experiments were conducted in a test tank filled with nondegassed tap water at room temperature. Acoustic pulses were generated with an electromagnetic lithotripter (DoLi-50). In the focus of the lithotripter the pulses consisted of a ˜60 MPa positive-pressure spike followed by up to -8 MPa negative-pressure tail, all with a total duration of about 7 μs. Nonlinear propagation steepened the shock front of the pulses to become sufficiently thin (˜0.03 μm) to impose differential pressure across even microscopic bubbles. High-speed camera movies showed that the SWs forced preexisting microbubbles to collapse, jet, and break up into daughter bubbles, which then grew rapidly under the negative-pressure phase of the pulse, but later coalesced to re-form a single bubble. Subsequent bubble growth was followed by inertial collapse and, usually, rebound. Most, if not all, cavitation bubbles emitted micro-jets during their first inertial collapse and re-growth. After jetting, these rebounding bubbles could regain a spherical shape before undergoing a second inertial collapse. However, either upon this second inertial collapse, or sometimes upon the first inertial collapse, the rebounding bubble emerged from the collapse as a cloud of smaller bubbles rather than a single bubble. These daughter bubbles could continue to rebound and collapse for a few cycles, but did not coalesce. These observations show that the positive-pressure phase of SWs fragments preexisting bubbles but this initial fragmentation does not yield bubble proliferation, as the daughter bubbles coalesce to reform a single bubble. Instead, bubble proliferation is the product of the subsequent inertial collapses.
NASA Astrophysics Data System (ADS)
Salkin, Louis; Courbin, Laurent; Panizza, Pascal
2012-09-01
Combining experiments and theory, we investigate the break-up dynamics of deformable objects, such as drops and bubbles, against a linear micro-obstacle. Our experiments bring the role of the viscosity contrast Δη between dispersed and continuous phases to light: the evolution of the critical capillary number to break a drop as a function of its size is either nonmonotonic (Δη>0) or monotonic (Δη≤0). In the case of positive viscosity contrasts, experiments and modeling reveal the existence of an unexpected critical object size for which the critical capillary number for breakup is minimum. Using simple physical arguments, we derive a model that well describes observations, provides diagrams mapping the four hydrodynamic regimes identified experimentally, and demonstrates that the critical size originating from confinement solely depends on geometrical parameters of the obstacle.
Behavior of Rapidly Sheared Bubble Suspensions
NASA Technical Reports Server (NTRS)
Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.
2002-01-01
An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.
CO2 concentration and occupancy density in the critical zones served by the VAV system
NASA Astrophysics Data System (ADS)
Etoua Evina, Ghislaine; Kajl, Stanislaw; Lamarche, Louis; Beltran-Galindo, Javier
2017-11-01
This article presents the results obtained from monitoring a VAV system with highly diversified zone occupancy density are presented in the article. The investigated VAV system meets the load for 72 zones (68 perimeters and 4 interiors) consisting of classrooms, offices, conference rooms, etc. with highly diversified occupancy densities from 1.875 to 2.5 m2/person for the classrooms and from 10 to 15 m2/person for the offices. The monitoring shows that the CO2 concentration can exceed the set point in the critical rooms. Simulation results are also presented in the article to show that it is often impossible to adjust the operation of such VAV systems because the adjusted System Outdoor Air Fractions, % OA, can reach 100% even where the zone CO2 concentration is not respected. The presented monitoring and simulation results were obtained in the winter, with the VAV system operating at partial load and with the minimum outdoor air flowrate required by the economizer system. As shown in the article, to respect the zone set point CO2 concentration in such period, the VAV system must operate mostly at a %OA equal to 100% instead of its minimum value. To circumvent this, the supply zone air flow rate may have to be designed taking into account the CO2 concentration resulting from the critical zones occupancy density.
Cavitation inception by the backscattering of pressure waves from a bubble interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahira, Hiroyuki, E-mail: takahira@me.osakafu-u.ac.jp; Ogasawara, Toshiyuki, E-mail: oga@me.osakafu-u.ac.jp; Mori, Naoto, E-mail: su101064@edu.osakafu-u.ac.jp
2015-10-28
The secondary cavitation that occurs by the backscattering of focused ultrasound from a primary cavitation bubble caused by the negative pressure part of the ultrasound (Maxwell, et al., 2011) might be useful for the energy exchange due to bubble oscillations in High Intensity Focused Ultrasound (HIFU). The present study is concerned with the cavitation inception by the backscattering of ultrasound from a bubble. In the present experiment, a laser-induced bubble which is generated by a pulsed focused laser beam with high intensity is utilized as a primary cavitation bubble. After generating the bubble, focused ultrasound is emitted to the bubble.more » The acoustic field and the bubble motion are observed with a high-speed video camera. It is confirmed that the secondary cavitation bubble clouds are generated by the backscattering from the laser-induced bubble. The growth of cavitation bubble clouds is analyzed with the image processing method. The experimental results show that the height and width of the bubble clouds grow in stepwise during their evolution. The direct numerical simulations are also conducted for the backscattering of incident pressure waves from a bubble in order to evaluate a pressure field near the bubble. It is shown that the ratio of a bubble collapse time t{sub 0} to a characteristic time of wave propagation t{sub S}, η = t{sub 0}/t{sub s}, is an important determinant for generating negative pressure region by backscattering. The minimum pressure location by the backscattering in simulations is in good agreement with the experiment.« less
The Remarkable Synchrotron Nebula Associated with PSR J1015-5719
NASA Astrophysics Data System (ADS)
Ng, Chi Yung; Bandiera, Rino; Hunstead, Richard; Johnston, Simon
2017-08-01
We report the discovery of a synchrotron nebula G283.1-0.59 associated with the young and energetic pulsar J1015-5719. Radio observations using the Molonglo Observatory Synthesis Telescope (MOST) and the Australia Telescope Compact Array (ATCA) at 36, 16, 6, and 3 cm reveal a complex morphology for the source. The pulsar is embedded in the "head" of the nebula with fan-shaped diffuse emission. This is connected to a circular bubble structure of 20" radius and followed by a collimated tail extending over 1'. Polarization measurements show a highly ordered magnetic field in the nebula. The intrinsic B-field wraps around the edge of the head and shows an azimuthal configuration near the pulsar, then switches direction quasi-periodically near the bubble and in the tail. Together with the flat radio spectrum observed, we suggest that this system is most plausibly a pulsar wind nebula (PWN), with the head as a bow shock that has a low Mach number and the bubble as a shell expanding in a dense environment, possibly due to flow instabilities. In addition, the bubble could act as a magnetic bottle trapping the relativistic particles. A comparison with other bow-shock PWNe with higher Mach numbers shows similar structure and B-field geometry, implying that pulsar velocity may not be the most critical factor in determining the properties of these systems.ATCA is part of the Australia Telescope National Facility which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. MOST is operated by The University of Sydney with support from the Australian Research Council and the Science Foundation for Physics within the University of Sydney. This work is supported by an ECS grant under HKU 709713P.
Super-Eddington Accretion in the Ultraluminous X-Ray Source NGC 1313 X-2: An Ephemeral Feast
NASA Astrophysics Data System (ADS)
Weng, Shan-Shan; Zhang, Shuang-Nan; Zhao, Hai-Hui
2014-01-01
We investigate the X-ray spectrum, variability, and the surrounding ionized bubble of NGC 1313 X-2 to explore the physics of super-Eddington accretion. Beyond the Eddington luminosity, the accretion disk of NGC 1313 X-2 is truncated at a large radius (~50 times the innermost stable circular orbit), and displays the similar evolution track with both luminous Galactic black-hole and neutron star X-ray binaries (XRBs). In super-critical accretion, the speed of radiatively driven outflows from the inner disk is mildly relativistic. Such ultra-fast outflows would be overionized and might produce weak Fe K absorption lines, which may be detected by the coming X-ray mission Astro-H. If NGC 1313 X-2 is a massive stellar XRB, the high luminosity indicates that an ephemeral feast is held in the source. That is, the source must be accreting at a hyper-Eddington mass rate to give the super-Eddington emission over ~104-105 yr. The expansion of the surrounding bubble nebula with a velocity of ~100 km s-1 might indicate that it has existed over ~106 yr and is inflated by the radiatively driven outflows from the transient with a duty cycle of activity of ~ a few percent. Alternatively, if the surrounding bubble nebula is produced by line-driven winds, less energy is required than the radiatively driven outflow scenario, and the radius of the Strömgren radius agrees with the nebula size. Our results are in favor of the line-driven winds scenario, which can avoid the conflict between the short accretion age and the apparently much longer bubble age inferred from the expansion velocity in the nebula.
Physical conditions and chemical processes during single-bubble sonoluminescence
NASA Astrophysics Data System (ADS)
Flannigan, David J.
In order to gain insight into the physical conditions and chemical processes associated with single-bubble sonoluminescence (SBSL), nonvolatile liquids such as concentrated sulfuric acid (H2SO 4) were explored. The SBSL radiant powers from H2SO 4 aqueous solutions were found to be over 103 times larger than those typically observed for SBSL from water. In addition, the emission spectra contain extensive bands and lines from molecules, atoms, and ions. The population of high-energy states of atoms (20 eV) and ions (37 eV) provides definitive experimental evidence of the formation of a plasma. By using various techniques (e.g., small molecules and atoms as intra-cavity probes, standard methods of plasma diagnostics, and spectrometric methods of pyrometry), it was possible to quantify the heavy particle temperatures (15,000 K), heavy particle densities (1021 cm-3) and pressures (4,000 bar), and plasma electron densities (1018 cm -3) generated during SBSL from H2SO4. It was also found that SBSL from H2SO4 containing mixtures of noble gas and air was quenched up to a critical acoustic pressure, above which the radiant powers increased by 104. From the spectral profiles it was determined that the air limited heating and plasma formation by endothermic chemical reactions and energy-transfer reactions. Simultaneous stroboscopic and spectroscopic studies of SBSL in H2SO4 containing alkali-metal sulfates showed that dramatic changes in the bubble dynamics correlated with the onset of emission from nonvolatile species such as Na and K atoms. These effects were attributed to the development of interfacial instabilities with increasing translational velocity of the bubble.
Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei
2018-01-24
Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.
Predawn plasma bubble cluster observed in Southeast Asia
NASA Astrophysics Data System (ADS)
Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Tsunoda, Roland; Yokoyama, Tatsuhiro; Supnithi, Pornchai; Ishii, Mamoru; Yatini, Clara
2016-06-01
Predawn plasma bubble was detected as deep plasma depletion by GNU Radio Beacon Receiver (GRBR) network and in situ measurement onboard Defense Meteorological Satellite Program F15 (DMSPF15) satellite and was confirmed by sparse GPS network in Southeast Asia. In addition to the deep depletion, the GPS network revealed the coexisting submesoscale irregularities. A deep depletion is regarded as a primary bubble. Submesoscale irregularities are regarded as secondary bubbles. Primary bubble and secondary bubbles appeared together as a cluster with zonal wavelength of 50 km. An altitude of secondary bubbles happened to be lower than that of the primary bubble in the same cluster. The observed pattern of plasma bubble cluster is consistent with the simulation result of the recent high-resolution bubble (HIRB) model. This event is only a single event out of 76 satellite passes at nighttime during 3-25 March 2012 that significantly shows plasma depletion at plasma bubble wall. The inside structure of the primary bubble was clearly revealed from the in situ density data of DMSPF15 satellite and the ground-based GRBR total electron content.
NASA Astrophysics Data System (ADS)
Dietrich, W. E.
2014-12-01
In the Eel River Critical Zone Observatory lies Rivendell, a heavily-instrumented steep forested hillslope underlain by nearly vertically dipping argillite interbedded with sandstone. Under this convex hillslope lies "Zb", the transition to fresh bedrock, which varies from less than 6 m below the surface near the channel to 20 m at the divide. Rempe and Dietrich (2014, PNAS) show that the Zb profile can be predicted from the assumption that weathering occurs when drainage is induced in the uplifting fresh bedrock under hillslopes by lateral head gradients driven by channel incision at the hillslope boundary. Infiltrating winter precipitation is impeded at the lower conductivity boundary at Zb, generating perched groundwater that dynamically pulses water laterally to the channel, controlling stream runoff. Below the soil and above the water table lies an unsaturated zone through which all recharge to the perched groundwater (and thus all runoff to channels) occurs. It is this zone and the waters in them that profoundly affect critical zone processes. In our seasonally dry environment, the first rains penetrate past the soil and moisten the underlying weathered bedrock (Salve et al., 2012, WRR). It takes about 200 to 400 mm of cumulative rain, however, before the underlying groundwater rises significantly. Oshun et al (in review) show that by this cumulative rainfall the average of the wide-ranging isotopic signature of rain reaches a nearly constant average annual value. Consequently, the recharging perched groundwater shows only minor temporal isotopic variation. Kim et al, (2014, GCA) find that the winter high-flow groundwater chemistry is controlled by relatively fast-reacting cation exchange processes, likely occurring in transit in the unsaturated zone. Oshun also demonstrates that the Douglas fir rely on this rock moisture as a water source, while the broadleaf trees (oaks and madrone) use mostly soil moisture. Link et al (2014 WRR) show that Doug fir declines in transpiration rate significantly compared to the madrone during summer high water stress periods, with may induce feedbacks from the forest to atmospheric temperature and humidity. Collectively these studies spotlight the seasonally dynamic unsaturated zone in the weathered bedrock beneath the soil as key to understanding critical zone processes.
Bubble migration in a compacting crystal-liquid mush
NASA Astrophysics Data System (ADS)
Boudreau, Alan
2016-04-01
Recent theoretical models have suggested that bubbles are unlikely to undergo significant migration in a compaction crystal mush by capillary invasion while the system remains partly molten. To test this, experiments of bubble migration during compaction in a crystal-liquid mush were modeled using deformable foam crystals in corn syrup in a volumetric burette, compacted with rods of varying weights. A bubble source was provided by sodium bicarbonate (Alka-Seltzer®). Large bubbles (>several crystal sizes) are pinched by the compacting matrix and become overpressured and deformed as the bubbles experience a load change from hydrostatic to lithostatic. Once they begin to move, they move much faster than the compaction-driven liquid. Bubbles that are about the same size as the crystals but larger than the narrower pore throats move by deformation or breaking into smaller bubbles as they are forced through pore restrictions. Bubbles that are less than the typical pore diameter generally move with the liquid: The liquid + bubble mixture behaves as a single phase with a lower density than the bubble-free liquid, and as a consequence it rises faster than bubble-free liquid and allows for faster compaction. The overpressure required to force a bubble through the matrix (max grain size = 5 mm) is modest, about 5 %, and it is estimated that for a grain size of 1 mm, the required overpressure would be about 25 %. Using apatite distribution in a Stillwater olivine gabbro as an analog for bubble nucleation and growth, it is suggested that relatively large bubbles initially nucleate and grow in liquid-rich channels that develop late in the compaction history. Overpressure from compaction allows bubbles to rise higher into hotter parts of the crystal pile, where they redissolve and increase the volatile content of the liquid over what it would have without the bubble migration, leading to progressively earlier vapor saturation during crystallization of the interstitial liquid. Bubbles can also move rapidly by `surfing' on porosity waves that can develop in a compacting mush.
Study on the bubble transport mechanism in an acoustic standing wave field.
Xi, Xiaoyu; Cegla, Frederic B; Lowe, Michael; Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2011-12-01
The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface. Copyright © 2011 Elsevier B.V. All rights reserved.
Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Arscott, Steve
2013-06-01
Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.
High-speed motion picture camera experiments of cavitation in dynamically loaded journal bearings
NASA Technical Reports Server (NTRS)
Jacobson, B. O.; Hamrock, B. J.
1982-01-01
A high-speed camera was used to investigate cavitation in dynamically loaded journal bearings. The length-diameter ratio of the bearing, the speeds of the shaft and bearing, the surface material of the shaft, and the static and dynamic eccentricity of the bearing were varied. The results reveal not only the appearance of gas cavitation, but also the development of previously unsuspected vapor cavitation. It was found that gas cavitation increases with time until, after many hundreds of pressure cycles, there is a constant amount of gas kept in the cavitation zone of the bearing. The gas can have pressures of many times the atmospheric pressure. Vapor cavitation bubbles, on the other hand, collapse at pressures lower than the atmospheric pressure and cannot be transported through a high-pressure zone, nor does the amount of vapor cavitation in a bearing increase with time. Analysis is given to support the experimental findings for both gas and vapor cavitation.
How are soap bubbles blown? Fluid dynamics of soap bubble blowing
NASA Astrophysics Data System (ADS)
Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin
2013-11-01
Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.
Acoustic measurement of bubble size and position in a piezo driven inkjet printhead
NASA Astrophysics Data System (ADS)
van der Bos, Arjan; Jeurissen, Roger; de Jong, Jos; Stevens, Richard; Versluis, Michel; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Lohse, Detlef
2008-11-01
A bubble can be entrained in the ink channel of a piezo-driven inkjet printhead, where it grows by rectified diffusion. If large enough, the bubble counteracts the pressure buildup at the nozzle, resulting in nozzle failure. Here an acoustic sizing method for the volume and position of the bubble is presented. The bubble response is detected by the piezo actuator itself, operating in a sensor mode. The method used to determine the volume and position of the bubble is based on a linear model in which the interaction between the bubble and the channel are included. This model predicts the acoustic signal for a given position and volume of the bubble. The inverse problem is to infer the position and volume of the bubble from the measured acoustic signal. By solving it, we can thus acoustically measure size and position of the bubble. The validity of the presented method is supported by time-resolved optical observations of the dynamics of the bubble within an optically accessible ink-jet channel.
NASA Astrophysics Data System (ADS)
Han, Bing; Liu, Liu; Ni, Xiao-Wu
2017-08-01
In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.
The structure evolution mechanism of electrodeposited porous Ni films on NH4Cl concentration
NASA Astrophysics Data System (ADS)
Yu, Xiangtao; Wang, Mingyong; Wang, Zhi; Gong, Xuzhong; Guo, Zhancheng
2016-01-01
NH4Cl was an important component for the electrodeposition of porous metal films through hydrogen bubble template approach. The effects of NH4Cl concentrations on pore formation and structure evolution of the electrodeposited porous Ni films were studied. It was found that Ni films electrodeposited from solutions with 0.250.35 M NH4Cl were compact. When NH4Cl concentrations were 0.40.75 M and 0.853 M, porous Ni films with dish-like and honeycomb-like pores were electrodeposited, respectively. To form porous structure, the critical amounts of Ni in mass deposited onto the electrode must be achieved. However, at lower NH4Cl concentration, Ni electrodeposition was interrupted after about 15 s due to Ni2+ hydrolysis. The critical amounts of Ni in mass were not reached, and compact Ni films were obtained. When NH4Cl concentrations exceeded 0.4 M, Ni2+ hydrolysis was inhibited due to the enhanced buffer ability of solution and Ni(NH3)n2+ (2 n 6) complexes became the discharged ions. Ni electrodeposition proceeded continuously and reached the critical amounts of Ni in mass, and porous Ni films were formed. At higher NH4Cl concentration, hydrogen was produced mainly by the electrochemical reduction of NH4+. pH near cathode was hardly changed, and Ni2+ ions with low overpotential were reduced. The rough Ni films were formed, which led to smaller break-off diameter of bubbles. Therefore, the pore sizes of Ni films were decreased.
Critical porosity of gas enclosure in polar firn independent of climate
NASA Astrophysics Data System (ADS)
Florian Schaller, Christoph; Freitag, Johannes; Eisen, Olaf
2017-11-01
In order to interpret the paleoclimatic record stored in the air enclosed in polar ice cores, it is crucial to understand the fundamental lock-in process. Within the porous firn, bubbles are sealed continuously until the respective horizontal layer reaches a critical porosity. Present-day firn air models use a postulated temperature dependence of this value as the only parameter to adjust to the surrounding conditions of individual sites. However, no direct measurements of the firn microstructure could confirm these assumptions. Here we show that the critical porosity is a climate-independent constant by providing an extensive data set of micrometer-resolution 3-D X-ray computer tomographic measurements for ice cores representing different extremes of the temperature and accumulation ranges. We demonstrate why indirect measurements suggest a climatic dependence and substantiate our observations by applying percolation theory as a theoretical framework for bubble trapping. The incorporation of our results significantly influences the dating of trace gas records, changing gas-age-ice-age differences by up to more than 1000 years. This may further help resolve inconsistencies, such as differences between East Antarctic δ15N records (as a proxy for firn height) and model results. We expect our findings to be the basis for improved firn air and densification models, leading to lower dating uncertainties. The reduced coupling of proxies and surrounding conditions may allow for more sophisticated reinterpretations of trace gas records in terms of paleoclimatic changes and will benefit the development of new proxies, such as the air content as a marker of local insolation.
A Study of Nucleate Boiling with Forced Convection in Microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1999-01-01
The ultimate objective of basic studies of flow boiling in microgravity is to improve the understanding of the processes involved, as manifested by the ability to predict its behavior. This is not yet the case for boiling heat transfer even in earth gravity, despite the considerable research activity over the past 30 years. The elements that constitute the nucleate boiling process - nucleation, growth, motion, and collapse of the vapor bubbles (if the bulk liquid is subcooled) - are common to both pool and flow boiling. It is well known that the imposition of bulk liquid motion affects the vapor bubble behavior relative to pool boiling, but does not appear to significantly influence the heat transfer. Indeed, it has been recommended in the past that empirical correlations or experimental data of pool boiling be used for design purposes with forced convection nucleate boiling. It is anticipated that such will most certainly not be possible for boiling in microgravity, based on observations made with pool boiling in microgravity. In earth gravity buoyancy will act to remove the vapor bubbles from the vicinity of the heater surface regardless of how much the imposed bulk velocity is reduced, depending, of course, on the geometry of the system. Vapor bubbles have been observed to dramatically increase in size in pool boiling in microgravity, and the heat flux at which dryout took place was reduced considerably below what is generally termed the critical heat flux (CHF) in earth gravity, depending on the bulk liquid subcooling. However, at heat flux levels below dryout, the nucleate pool boiling process was enhanced considerably over that in earth gravity, in spite of the large vapor bubbles formed in microgravity and perhaps as a consequence. These large vapor bubbles tended to remain in the vicinity of the heater surface, and the enhanced heat transfer appeared to be associated with the presence of what variously has been referred to as a liquid microlayer between the bubble and the heater surface. The enhancement of the boiling process with low velocities in earth gravity for those orientations producing the formation of a liquid macrolayer described above, accompanied by "sliding" vapor bubbles, has been demonstrated. The enhancement was presented as a function of orientation, subcooling, and heated length, while a criterion for the heat transfer for mixed natural/forced convection nucleate boiling was given previously. A major unknown in the prediction and application of flow boiling heat transfer in microgravity is the upper limit of the heat flux for the onset of dryout (or critical heat flux - CHF), for given conditions of fluid-heater surfaces, including geometry, system pressure and bulk liquid subcooling. It is clearly understood that the behavior in microgravity will be no different than on earth with sufficiently high flow velocities, and would require no space experimentation. However, the boundary at which this takes place is still an unknown. Previous results of CHF measurements were presented for low velocity flow boiling at various orientations in earth gravity as a function of flow velocity and bulk liquid subcooling, along with preliminary measurements of bubble residence times on a flat heater surface. This showed promise as a parameter to be used in modeling the CHF, both in earth gravity and in microgravity. The objective of the work here is to draw attention to and show results of current modeling efforts for the CHF, with low velocities in earth gravity at different orientations and subcoolings. Many geometrical possibilities for a heater surface exist in flowing boiling, with boiling on the inner and outer surfaces of tubes perhaps being the most common. If the vapor bubble residence time on and departure size from the heater surface bear a relationship to the CHF, as results to be given indicate, it is important that visualization of and access to vapor bubble growth be conveniently available for research purposes. In addition, it is desirable to reduce the number of variables as much as possible in a fundamental study. These considerations dictated the use of a flat heater surface, which is rectangular in shape, 1.91 cm by 3.81 cm (0.75 x 1.5 inches), consisting either of a 400 Angstrom thick semi-transparent gold film sputtered on a quartz substrate which serves simultaneously as a heater and a resistance thermometer, or a copper substrate of the same size. The heater substrate is a disc which can be rotated so that the heated length in the flow direction can be changed from 1.91 to 3.81 cm (0.75 to 1.5 inches). The fluid is R-113, and the velocities can be varied between 0.5 cm/s and 60 cm/s. For a sufficiently low velocity the CHF can be modeled reasonably well at various orientations by the correlation for pool boiling corrected for the influence of bulk liquid subcooling, multiplied by the square root of q, the angle relative to horizontal. This arises from equating buoyancy and drag forces in the inverted positions where the vapor bubbles are held against the heater surface as they slide. A distortion of the measurements relative to pool boiling occurs as the flow velocity increases. In modeling this effect at different levels of subcooling it appeared appropriate to estimate the volumetric rate of vapor generation, using measurements of bubble frequency (or residence time), void fraction and average bubble boundary layer thickness. These were determined with the use of a platinum hot wire probe 0.025 mm in diameter by 1.3 mm long, applying a constant current to distinguish between contact with liquid or vapor. Two-dimensional spatial variations are obtained with a special mechanism to resolve displacements in increments of 0.025 mm. From such measurements it was determined that the fraction of the surface heat transfer resulting in evaporation varies inversely with the subcooling correction factor for the CHF. The measured inverse bubble residence time is normalized relative to that predicted for an infinite horizontal flat plate at the CHF, and is correlated well with the CHF normalized relative to that for pool boiling, for various orientation angles and subcooling levels. This correspondence is then combined with a normalizing factor for the energy flux leaving the heater surface at the CHF and the computed bubble radius at departure, determined from the balance between the outward velocity of the interface due to evaporation and the buoyance induced velocity of the center of mass of the bubble. The product of the CHF and the corresponding residence time was determined to be a constant for all orientations at a given bulk flow velocity and liquid subcooling, and must be determined empirically for each velocity and subcooling at present. It then becomes possible to predict the CHF for the different orientations, velocities, and subcoolings. These are compared with normalized measurements of the CHF for velocities ranging from 4 cm/s to 55 cm/s, subcoolings from 2.8 to 22.2 K, over orientations angles of 360 degrees.
ERIC Educational Resources Information Center
Simoson, Andrew; Wentzky, Bethany
2011-01-01
Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…
A note on effects of rational bubble on portfolios
NASA Astrophysics Data System (ADS)
Wang, Chan; Nie, Pu-yan
2018-02-01
In general, demand increases in wealth and decreases in price in microeconomics. We thereby propose a completely different perspective. By establishing expected utility function of investors, this article introduces one rational bubble asset and one bubble free asset in portfolios and focuses on the effects of bubble on investment portfolios from wealth and price perspectives. All conclusions are obtained by theoretical analysis with microeconomics theory. We argue that inferior goods and Giffen behavior can occur for the bubble free asset in microeconomic fields. The results can help investors to recognize bubble assets and bubble free assets more scientifically. Both bubble and bubble free assets can be inferior goods under some conditions, so we cannot to say which asset better than the other one absolutely.
NASA Astrophysics Data System (ADS)
KIM, E.; Jung, J.; Kang, S.; Choi, Y.
2016-12-01
In-situ bioremediation using bubbles as an oxygen carrier has shown its applicability for aerobic biodegradation of organic pollutants in the subsurface. By recent progresses, generation of nano-sized bubbles is possible, which have enhanced oxygen transfer efficiencies due to their high interfacial area and stability. We are developing an in-situ bioremediation technique using nano-bubbles as an oxygen carrier. In this study, nano-bubbles were characterized for their size and oxygen supply capacity. Nano-bubbles were generated with pure oxygen and pure helium gas. The stable nano-bubbles suspended in water were sonicated to induce the bubbles to coalesce, making them to rise and be released out of the water. By removing the bubbles, the water volume was decreased by 0.006%. The gas released from the bubble suspension was collected to measure the amount of gas in the nano-bubbles. For sparingly soluble helium gas 17.9 mL/L was released from the bubble suspension, while for oxygen 46.2 mL/L was collected. For the oxygen nano-bubble suspension, it is likely that the release of dissolved oxygen (DO) contributed to the collected gas volume. After removing the oxygen nano-bubbles, 36.0 mg/L of DO was still present in water. Altogether, the oxygen nano-bubble suspension was estimated to have 66.2 mg/L of oxygen in a dissolved form and 25.6 mg/L as nano-bubbles. A high DO level in the water was possible because of their large Laplace pressure difference across the fluid interface. Applying Young-Laplace equation and ideal gas law, the bubble diameter was estimated to be approximately 10 nm, having an internal pressure of 323 atm. Considering the saturation DO of 8.26 mg/L for water in equilibrium with the atmosphere, the total oxygen content of 91.8 mg/L in the nano-bubble suspension suggests its great potential as an oxygen carrier. Studies are underway to verify the enhanced aerobic biodegradation of organic pollutants in soils by injecting nano-bubble suspensions.
Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)
1995-01-01
The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.
Review—Physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems
Taqieddin, Amir; Nazari, Roya; Rajic, Ljiljana; Alshawabkeh, Akram
2018-01-01
Electrochemical systems suffer from poor management of evolving gas bubbles. Improved understanding of bubbles behavior helps to reduce overpotential, save energy and enhance the mass transfer during chemical reactions. This work investigates and reviews the gas bubbles hydrodynamics, behavior, and management in electrochemical cells. Although the rate of bubble growth over the electrode surface is well understood, there is no reliable prediction of bubbles break-off diameter from the electrode surface because of the complexity of bubbles motion near the electrode surface. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) are the most common experimental techniques to measure bubble dynamics. Although the PIV is faster than LDA, both techniques are considered expensive and time-consuming. This encourages adapting Computational Fluid Dynamics (CFD) methods as an alternative to study bubbles behavior. However, further development of CFD methods is required to include coalescence and break-up of bubbles for better understanding and accuracy. The disadvantages of CFD methods can be overcome by using hybrid methods. The behavior of bubbles in electrochemical systems is still a complex challenging topic which requires a better understanding of the gas bubbles hydrodynamics and their interactions with the electrode surface and bulk liquid, as well as between the bubbles itself. PMID:29731515
Contact angle measurements of a polyphenyl ether to 190 C on M-50 steel
NASA Technical Reports Server (NTRS)
Jones, W. R., Jr.
1981-01-01
Contact angle measurements were performed for a polyphenyl ether on steel in nitrogen. A tilting plate and a sessile drop apparatus were used. Surface tension was measured with a maximum bubble pressure apparatus. Critical surface energies of spreading were found to be 30.1 and 31.3 dynes/cm. It was concluded that the polyphenyl ether is inherently autophobic and will not spread on its own surface film.
A computational study of the taxonomy of vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Gatski, Thomas B.
1990-01-01
The results of a fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier-Stokes equations are presented. The solutions show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown. Common features between bubble-type and spiral-type breakdown are identified and the role of flow stagnation and the critical state are discussed as complimentary ideas describing the initiation of breakdown.
ERIC Educational Resources Information Center
White, Timothy; Wymore, Adam; Dere, Ashlee; Hoffman, Adam; Washburne, James; Conklin, Martha
2017-01-01
Earth's critical zone (CZ) is the uppermost layer of Earth's continents, which supports ecosystems and humans alike. CZ science aims to understand how interactions among rock, soil, water, air, and terrestrial organisms influence Earth as a habitable system. Thus, CZ science provides the framework for a holistic-systems approach to teaching Earth…
ERIC Educational Resources Information Center
Leonardo, Zeus; Manning, Logan
2017-01-01
Best known for arguing that individual development is part of social and historical development Vygotsky's entry into education may be captured by his concept of the "zone of proximal development" (ZPD). ZPD has not yet been synthesized with a critical study of whiteness. When ZPD is used to explain racial disparities in the service of…
NASA Astrophysics Data System (ADS)
Lim, Ho-Joon; Chang, Kuang-An; Su, Chin B.; Chen, Chi-Yueh
2008-12-01
A fiber optic reflectometer (FOR) technique featuring a single fiber probe is investigated for its feasibility of measuring the bubble velocity, diameter, and void fraction in a multiphase flow. The method is based on the interference of the scattered signal from the bubble surface with the Fresnel reflection signal from the tip of the optical fiber. Void fraction is obtained with a high accuracy if an appropriate correction is applied to compensate the underestimated measurement value. Velocity information is accurately obtained from the reflected signals before the fiber tip touches the bubble surface so that several factors affecting the traditional dual-tip probes such as blinding, crawling, and drifting effects due to the interaction between the probe and bubbles can be prevented. The coherent signals reflected from both the front and rear ends of a bubble can provide velocity information. Deceleration of rising bubbles and particles due to the presence of the fiber probe is observed when they are very close to the fiber tip. With the residence time obtained, the bubble chord length can be determined by analyzing the coherent signal for velocity determination before the deceleration starts. The bubble diameters are directly obtained from analyzing the signals of the bubbles that contain velocity information. The chord lengths of these bubbles measured by FOR represent the bubble diameters when the bubble shape is spherical or represent the minor axes when the bubble shape is ellipsoidal. The velocity and size of bubbles obtained from the FOR measurements are compared with those obtained simultaneously using a high speed camera.
Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...
2017-05-06
Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less
Interaction of lithotripter shockwaves with single inertial cavitation bubbles
Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei
2008-01-01
The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296
Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei
2007-01-01
The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon
Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less
Ordering Interfluves: a Simple Proposal for Understanding Critical Zone Evolution and Function
NASA Astrophysics Data System (ADS)
Brecheisen, Z. S.; Richter, D., Jr.; Moon, S.; Halpin, P. N.
2015-12-01
A geomorphic interfluve ordering system, a reciprocal to the Hortonian-Strahler stream network order, is envisioned at the Calhoun Critical Zone Observatory (CCZO) in the South Carolina Piedmont. In this system the narrowest and most highly dissected interfluves (gentle ridges and hilltops) are 1st order and increase in rank dendritically through interfluve branching and broadening. Interfluve order attends to the structure, function, and management of residual porous-solid systems in the transport of water, solutes, and eroded solids in our deeply weathered (>30m soil/saprolite) critical zone. Recently generated geospatial data regarding the interactions of geomorphology, human land use, and forest ecology further strengthen the utility of this system. These upland networks and corresponding "land-sheds" have potential in linking recent work in the fields of geophysics and geomorphology regarding bedrock weathering front dynamics. Patterns of bedrock weathering depth, landcover & land-use change, and soil erosion are considered as they correspond to interfluve order. With LiDAR mapping and the burgeoning development and utilization of geophysical techniques and models enabling new quantitative research of critical zone landscape structure and function, many physiographic regions could benefit from a system that delineates and orders interfluve networks.
NASA Astrophysics Data System (ADS)
Kazemiroodsari, Hadi
Liquefaction is loss of shear strength in fully saturated loose sands caused by build-up of excess pore water pressure, during moderate to large earthquakes, leading to catastrophic failures of structures. Currently used liquefaction mitigation measures are often costly and cannot be applied at sites with existing structures. An innovative, practical, and cost effective liquefaction mitigation technique titled "Induced Partial Saturation" (IPS) was developed by researchers at Northeastern University. The IPS technique is based on injection of sodium percarbonate solution into fully saturated liquefaction susceptible sand. Sodium percarbonate dissolves in water and breaks down into sodium and carbonate ions and hydrogen peroxide which generates oxygen gas bubbles. Oxygen gas bubbles become trapped in sand pores and therefore decrease the degree of saturation of the sand, increase the compressibility of the soil, thus reduce its potential for liquefaction. The implementation of IPS required the development and validation of a monitoring and evaluation technique that would help ensure that the sands are indeed partially saturated. This dissertation focuses on this aspect of the IPS research. The monitoring system developed was based on using electric conductivity fundamentals and probes to detect the transport of chemical solution, calculate degree of saturation of sand, and determine the final zone of partial saturation created by IPS. To understand the fundamentals of electric conductivity, laboratory bench-top tests were conducted using electric conductivity probes and small specimens of Ottawa sand. Bench-top tests were used to study rate of generation of gas bubbles due to reaction of sodium percarbonate solution in sand, and to confirm a theory based on which degree of saturation were calculated. In addition to bench-top tests, electric conductivity probes were used in a relatively large sand specimen prepared in a specially manufactured glass tank. IPS was implemented in the prepared specimen to validate the numerical simulation model and explore the use of conductivity probes to detect the transport of chemical solution, estimate degree of saturation achieved due to injection of chemical solution, and evaluate final zone of partial saturation. The conductivity probe and the simulation results agreed well. To study the effect of IPS on liquefaction response of the sand specimen, IPS was implemented in a large (2-story high) sand specimen prepared in the laminar box of NEES Buffalo and then the specimen was subjected to harmonic shaking. Electric conductivity probes were used in the specimen treatment by controlling the duration and spacing of injection of the chemical solution, in monitoring the transport of chemical solution, in the estimation of zone of partial saturation achieved, and in the estimation of degree of saturation achieved due to implementation of IPS. The conductivity probes indicated partial saturation of the specimen. The shaking tests results confirmed the partial saturation state of the sand specimen. In addition, to the laboratory works, electric conductivity probes were used in field implementation of IPS in a pilot test at the Wildlife Liquefaction Array (WLA) of NEES UCSB site. The conductivity probes in the field test helped decide the optimum injection pressure, the injection tube spacing, and the degree of saturation that could be achieved in the field. The various laboratory and field tests confirmed that electric conductivity and the probes devised and used can be invaluable in the implementation of IPS, by providing information regarding transport of the chemical solution, the spacing of injection tubes, duration of injection, and the zone and degree of partial saturation caused by IPS.
Time-Dependent Changes in a Shampoo Bubble
NASA Astrophysics Data System (ADS)
Chattopadhyay, Arun
2000-10-01
This article demonstrates the fascinating phenomenon of time evolution of a shampoo bubble through experiments that can be performed by undergraduate students. The changes in thickness of the bubble films with time are followed by UV-vis spectroscopy. The change in chemical composition as a bubble film evolves is monitored by FTIR spectroscopy. It is observed that the change in thickness of a typical shampoo bubble film enclosed in a container is gradual and slow, and the hydrocarbon components of the bubble drain from the bubble much more slowly than water. An additional agent, such as acetonitrile, strikingly alters the dynamics of evolution of such a bubble.
Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.
Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura
2002-10-01
Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.
Vanhille, Christian
2017-01-01
This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs). PMID:28106748
Repeated bubble breakup and coalescence in perturbed Hele-Shaw channels
NASA Astrophysics Data System (ADS)
Thompson, Alice; Franco-Gomez, Andres; Hazel, Andrew; Juel, Anne
2017-11-01
The introduction of an axially-uniform, centred constriction in a Hele-Shaw channel leads to multiple propagation modes for both air fingers and bubbles, including symmetric and asymmetric steadily propagating modes along with oscillations. These multiple modes correspond to a non-trivial bifurcation structure, and relate to the plethora of steadily propagating bubbles and fingers which exist in the Saffman-Taylor system. In both experiments and depth-averaged computations, a very small centred occlusion can be enough to trigger bubble breakup, with a single large centred bubble splitting into two smaller bubbles which propagate along each side of the channel. We present numerical simulations for the depth-averaged model, implementing geometric criteria for pinchoff and coalescence in order to track the bubble before and beyond breakup. We find that the two-bubble state is itself unstable, with finger competition causing one bubble to move ahead; the trailing bubble then moves across the channel to merge with the leading bubble. However, the story is not always so simple, enabling complicated cascades of splitting and merging bubbles. We compare the general dynamical behaviour, basins of attraction, and the details of merging and splitting, to experimental observations.
Odds of observing the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahlen, A.
2010-03-15
Eternal inflation predicts that our observable universe lies within a bubble (or pocket universe) embedded in a volume of inflating space. The interior of the bubble undergoes inflation and standard cosmology, while the bubble walls expand outward and collide with other neighboring bubbles. The collisions provide either an opportunity to make a direct observation of the multiverse or, if they produce unacceptable anisotropy, a threat to inflationary theory. The probability of an observer in our bubble detecting the effects of collisions has an absolute upper bound set by the odds of being in the part of our bubble that liesmore » in the forward light cone of a collision; in the case of collisions with bubbles of identical vacua, this bound is given by the bubble nucleation rate times (H{sub O}/H{sub I}){sup 2}, where H{sub O} is the Hubble scale outside the bubbles and H{sub I} is the scale of the second round of inflation that occurs inside our bubble. Similar results were obtained by Freigovel et al. using a different method for the case of collisions with bubbles of much larger cosmological constant; here, it is shown to hold in the case of collisions with identical bubbles as well.« less
Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles
Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.
2011-01-01
Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027
Inertial collapse of bubble pairs near a solid surface
NASA Astrophysics Data System (ADS)
Alahyari Beig, Shahaboddin; Johnsen, Eric
2017-11-01
Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.
Vanhille, Christian
2017-01-17
This work deals with a theoretical analysis about the possibility of using linear and nonlinear acoustic properties to modify ultrasound by adding gas bubbles of determined sizes in a liquid. We use a two-dimensional numerical model to evaluate the effect that one and several monodisperse bubble populations confined in restricted areas of a liquid have on ultrasound by calculating their nonlinear interaction. The filtering of an input ultrasonic pulse performed by a net of bubbly-liquid cells is analyzed. The generation of a low-frequency component from a single cell impinged by a two-frequency harmonic wave is also studied. These effects rely on the particular dispersive character of attenuation and nonlinearity of such bubbly fluids, which can be extremely high near bubble resonance. They allow us to observe how gas bubbles can change acoustic signals. Variations of the bubbly medium parameters induce alterations of the effects undergone by ultrasound. Results suggest that acoustic signals can be manipulated by bubbles. This capacity to achieve the modification and control of sound with oscillating gas bubbles introduces the concept of bubbly-liquid-based acoustic metamaterials (BLAMMs).
A Study of Bubble and Slug Gas-Liquid Flow in a Microgravity Environment
NASA Technical Reports Server (NTRS)
McQuillen, J.
2000-01-01
The influence of gravity on the two-phase flow dynamics is obvious.As the gravity level is reduced,there is a new balance between inertial and interfacial forces, altering the behavior of the flow. In bubbly flow,the absence of drift velocity leads to spherical-shaped bubbles with a rectilinear trajectory.Slug flow is a succession of long bubbles and liquid slug carrying a few bubbles. There is no flow reversal in the thin liquid film as the long bubble and liquid slug pass over the film. Although the flow structure seems to be simpler than in normal gravity conditions,the models developed for the prediction of flow behavior in normal gravity and extended to reduced gravity flow are unable to predict the flow behavior correctly.An additional benefit of conducting studies in microgravity flows is that these studies aide the development of understanding for normal gravity flow behavior by removing the effects of buoyancy on the shape of the interface and density driven shear flows between the gas and the liquid phases. The proposal calls to study specifically the following: 1) The dynamics of isolated bubbles in microgravity liquid flows will be analyzed: Both the dynamics of spherical isolated bubbles and their dispersion by turbulence, their interaction with the pipe wall,the behavior of the bubbles in accelerated or decelerated flows,and the dynamics of isolated cylindrical bubbles, their deformation in accelerated/decelerated flows (in converging or diverging channels), and bubble/bubble interaction. Experiments will consist of the use of Particle Image Velocimetry (PIV) and Laser Doppler Velocimeters (LDV) to study single spherical bubble and single and two cylindrical bubble behavior with respect to their influence on the turbulence of the surrounding liquid and on the wall 2) The dynamics of bubbly and slug flow in microgravity will be analyzed especially for the role of the coalescence in the transition from bubbly to slug flow (effect of fluid properties and surfactant), to identify clusters that promote coalescence and transition the void fraction distribution in bubbly and slug flow,to measure the wall friction in bubbly flow. These experiments will consist of multiple bubbles type flows and will utilize hot wire and film anemometers to measure liquid velocity and wall shear stress respectively and double fiber optic probes to measure bubble size and velocity as a function of tube radius and axial location.
Size distributions of micro-bubbles generated by a pressurized dissolution method
NASA Astrophysics Data System (ADS)
Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.
2012-03-01
Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble number density is proposed, and the evaluated visibility agrees well with the visibility measured in the upper tank.
Balancing the costs of mobility investments in work zones : phase 1 final report.
DOT National Transportation Integrated Search
2015-06-01
Work zone safety and mobility continue to be critical transportation concerns in Michigan and elsewhere. : Previous research has led to the development of a variety of tools, performance measures and decision-making frameworks to analyze work zone sa...
76 FR 48751 - Security Zones; Captain of the Port Lake Michigan Zone
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-09
...-AA87 Security Zones; Captain of the Port Lake Michigan Zone AGENCY: Coast Guard, DHS. ACTION: Notice of... in the Chicago area, the Captain of the Port Sector Lake Michigan has determined that to better... critical infrastructure in the Chicago area. Based on this review, the Captain of the Port Sector Lake...
The role of the hyporheic zone across stream networks
Steven M. Wondzell
2011-01-01
Many hyporheic papers state that the hyporheic zone is a critical component of stream ecosystems, and many of these papers focus on the biogeochemical effects of the hyporheic zone on stream solute loads. However, efforts to show such relationships have proven elusive, prompting several questions: Are the effects of the hyporheic zone on stream ecosystems so highly...
AlTaan, S L; Termote, K; Elalfy, M S; Hogan, E; Werkmeister, R; Schmetterer, L; Holland, S; Dua, H S
2016-01-01
Purpose To define optical coherence tomography (OCT) characteristics of type-1, type-2, and mixed big bubbles (BB) seen in deep anterior lamellar keratoplasty. Methods Human sclero-corneal discs were obtained from UK (30) and Canada (16) eye banks. Air was injected into corneal stroma until a BB formed. UK samples were fixed in formalin before scanning with Fourier-domain (FD-OCT). One pair of each type of BB was scanned fresh. All BB obtained from Canada were scanned fresh with time-domain (TD-OCT). For each OCT machine used, type-1 BB from which Descemets membrane (DM) was partially peeled, were also scanned. The morphological characteristics of the scans were studied. Results FD-OCT of the posterior wall of type-1 (Dua's layer (DL) with DM) and type-2 BB (DM alone) both revealed a double-contour hyper-reflective curvilinear image with a hypo-reflective zone in between. The anterior line of type-2 BB was thinner than that seen with type-1 BB. In mixed BB, FD-OCT showed two separate curvilinear images. The anterior image was a single hyper-reflective line (DL), whereas the posterior image, representing the posterior wall of type-2 BB (DM) was made of two hyper-reflective lines with a dark space in between. TD-OCT images were similar with less defined component lines, but the entire extent of the BB could be visualised. Conclusion On OCT examination the DM and DL present distinct features, which can help identify type-1, type-2, and mixed BB. These characteristics will help corneal surgeons interpret intraoperative OCT during lamellar corneal surgery. PMID:27472215
A physical description of fission product behavior fuels for advanced power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaganas, G.; Rest, J.; Nuclear Engineering Division
2007-10-18
The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuelsmore » under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.« less
Modeling and analysis of elastic fields in tibia and fibula
NASA Astrophysics Data System (ADS)
Ghosh, M.; Chowdhury, B. U.; Parvej, M. S.; Afsar, A. M.
2017-12-01
In this study, stress analysis of tibia and fibula subjected to body weight in static condition was carried out. The tibia and fibula were fabricated by casting process. A 3-D solid model of tibia and fibula was developed in SolidWorks by using the geometry of cross sections at different locations of the fabricated tibia and fibula. The 3-D model was analyzed by ANSYS to evaluate the stress, strain, and deformation for identifying the critical sections of tibia and fibula. It is found that, in terms of deformation, the critical zone is the contact zone between tibia-fibula and patella. However, in terms of stress, the critical zone is located on fibula between 25% and 40% height from the lower mating portion of the tibia and fibula.
Physical analysis of the process of cavitation in xylem sap.
Shen, Fanyi; Gao, Rongfu; Liu, Wenji; Zhang, Wenjie
2002-06-01
Recent studies have confirmed that cavitation in xylem is caused by air bubbles. We analyzed expansion of a preexistent bubble adhering to a crack in a conduit wall and a bubble formed by the passage of air through a pore of a pit membrane, a process known as air seeding. We consider that there are two equilibrium states for a very small air bubble in the xylem: one is temporarily stable with a bubble radius r1 at point s1 on the curve P(r) relating pressure within the bubble (P) with bubble radius (r); the other is unstable with a bubble radius r2 at point s2 on Pr (where r1 < r2). In each equilibrium state, the bubble collapse pressure (2sigma/r, where sigma is surface tension of water) is balanced by the pressure difference across its surface. In the case of a bubble from a crack in a conduit wall, which is initially at point s1, expansion will occur steadily as water potential decreases. The bubble will burst only if the xylem pressure drops below a threshold value. A formula giving the threshold pressure for bubble bursting is proposed. In the case of an air seed entering a xylem conduit through a pore in a pit membrane, its initial radius may be r2 (i.e., the radius of the pore by which the air seed entered the vessel) at point s2 on Pr. Because the bubble is in an unstable equilibrium when entering the conduit, it can either expand or contract to point s1. As water vaporizes into the air bubble at s2, P rises until it exceeds the gas pressure that keeps the bubble in equilibrium, at which point the bubble will burst and induce a cavitation event in accordance with the air-seeding hypothesis. However, other possible perturbations could make the air-seeded bubble contract to s1, in which case the bubble will burst at a threshold pressure proposed for a bubble expanding from a crack in a conduit wall. For this reason some cavitation events may take place at a xylem threshold pressure (Pl'*) other than that determined by the formula, Plp'* = -2sigma/rp, proposed by Sperry and Tyree (1988), which is applicable only to air-seeded bubbles at s2. The more general formula we propose for calculating the threshold pressure for bubble breaking is consistent with the results of published experiments.
Modeling quiescent phase transport of air bubbles induced by breaking waves
NASA Astrophysics Data System (ADS)
Shi, Fengyan; Kirby, James T.; Ma, Gangfeng
Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.
NASA Technical Reports Server (NTRS)
Azuma, H.
1993-01-01
The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the loop according to whether its diameter is larger or smaller than that of the main resonant radius. In our experiment fine bubbles will be observed to move according to an acoustic field formed in a cylindrical cell. The existence of bubbles varies the acoustic speed, and the interactive force between bubbles will make the bubble behavior collective and complicated. This experiment will be very useful to development of bubble removable technology as well as to the understanding of bubble behavior.
Soap bubbles in paintings: Art and science
NASA Astrophysics Data System (ADS)
Behroozi, F.
2008-12-01
Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.
Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field
NASA Astrophysics Data System (ADS)
Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.
2004-03-01
The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.