Reticulite, Scoria and Lava: Foam Formation in Hawaiian Fire Fountain Eruptions
NASA Astrophysics Data System (ADS)
Rust, A. C.; Cashman, K. V.
2006-12-01
Hawaiian fire fountain eruptions can generate three types of foams: 1) scoria pyroclasts characterized by spherical bubbles and typical vesicularities of 70-85%, 2) reticulite pyroclasts consisting of a polygonal network of trigonal glass struts and vesicularities of 95-99% and 3) lava flows with bubble contents as high as 70-80%. We use bubble textures to explore the origins of these three distinct foams. With these data and the observation that all three foam types can erupt simultaneously, we discuss the dynamics of Hawaiian eruptions. Our main focus is reticulite, which is a minor but ubiquitous product of relatively high Hawaiian fountains. Compared to scoria, reticulite is more vesicular and has a larger mean bubble size and a much more uniform bubble size distribution. It was previously suggested that reticulite results from further expansion of hot scoria foam. However, to form reticulite from scoria requires not only that gas expand faster than it can percolate through bubble networks in scoria, but also requires processes such as Ostwald ripening that will reduce the range of bubble sizes. Such processes commonly occur in the formation of polygonal soap foams for instance. However, we suggest that a better analogue for reticulite formation is popcorn. In particular we propose that reticulite did not evolve from scoria but from magma that experienced (1) near-instantaneous bubble nucleation followed by (2) rapid and uniform expansion to generate (3) a polyhedral 'dry' foam that then (4) experienced near-instantaneous film rupture and quenching throughout the foam. In contrast, it seems that there are other parts of the system where bubble nucleation is not instantaneous and yields a broader size distribution of bubbles that expand more slowly, maintain spherical shapes, and become permeable through coalescence of small melt films between spherical bubble walls. We suggest that reticulite only forms in relatively high fire fountains, not because of longer time for expansion but because of higher ascent rates in these eruptions.
Compression-induced stacking fault tetrahedra around He bubbles in Al
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Jian-Li, E-mail: shao-jianli@iapcm.ac.cn; Wang, Pei; He, An-Min
Classic molecular dynamics methods are used to simulate the uniform compression process of the fcc Al containing He bubbles. The formation of stacking fault tetrahedra (SFTs) during the collapse of He bubbles is found, and their dependence on the initial He bubble size (0.6–6 nm in diameter) is presented. Our simulations indicate only elastic deformation in the samples for the He bubble size not more than 2 nm. Instead, increasing the He bubble size, we detect several small SFTs forming on the surface of the He bubble (3 nm), as well as the two intercrossed SFTs around the He bubbles (4–6 nm). All thesemore » SFTs are observed to be stable under further compression, though there may appear some SF networks outside the SFTs (5–6 nm). Furthermore, the dynamic analysis on the SFTs shows that the yield pressure keeps a near-linear increase with the initial He bubble pressure, and the potential energy of Al atoms inside the SFTs is lower than outside because of their gliding inwards. In addition, the pressure increments of 2–6 nm He bubbles with strain are less than that of Al, which just provides the opportunity for the He bubble collapse and the SFTs formation. Note that the current work only focuses on the case that the number ratio between He atoms and Al vacancies is 1:1.« less
The alveolar surface network: a new anatomy and its physiological significance.
Scarpelli, E M
1998-08-01
It is generally held that the terminal lung unit (TLU) is an agglomeration of alveoli that opens into the branching air spaces of respiratory bronchioles, alveolar ducts, and alveolar sacs and that these structures are covered by a continuous thin liquid layer bearing a monomolecular film of surfactants at the open gas-liquid interface. The inherent structural and functional instability given TLUs by a broad liquid surface layer of this nature has been mitigated by the discovery that the TLU surface is in fact an agglomeration of bubbles, a foam (the alveolar surface network) that fills the TLU space and forms ultrathin foam films that 1) impart infrastructural stability to sustain aeration, 2) modulate circulation of surface liquid, both in series and in parallel, throughout the TLU and between TLUs and the liquid surface of conducting airways, 3) modulate surface liquid volume and exchange with interstitial liquid, and 4) sustain gas transfer between conducting airways and pulmonary capillaries throughout the respiratory cycle. The experimental evidence, from discovery to the present, is addressed in this report. Lungs were examined in thorax by stereomicroscopy immediately from the in vivo state at volumes ranging from functional residual capacity to maximal volume (Vmax). Lungs were then excised; bubble topography of all anterior and anterolateral surfaces was reaffirmed and also confirmed for all posterior and posterolateral surfaces. The following additional criteria verify the ubiquitous presence of normal intraalveolar bubbles. 1) Bubbles are absent in conducting airways. 2) Bubbles are stable and stationary in TLUs but can be moved individually by gentle microprobe pressure. 3) Adjoining bubbles move into the external medium through subpleural microincisions; there is no free gas, and vacated spaces are rendered airless. Adjacent bubbles may shift position in situ, while more distal bubbles remain stationary. 4) The position and movement of "large" bubbles identifies them as intraductal bubbles. 5) Transection of the lung reveals analogous bubble occurrence and history in central lung regions. 6) Bubbles become fixed in place and change shape when the lung is dried in air; the original shape and movement are restored when the lung is rewet. 7) All exteriorized bubbles are stable with lamellar (film) surface tension near zero. 8) Intact lungs prepared and processed by the new double-embedding technique reveal the intact TLU bubbles and bubble films. Lungs were also monitored directly by stereomicroscopy to establish their presence, transformations, and apparent function from birth through adulthood, as summarized in the following section. Intraalveolar bubbles and bubble films (the unit structures of the alveolar surface network) have been found in all mammalian species examined to date, including lambs, kids, and rabbit pups and adult mice, rats, rabbits, cats, and pigs. Rabbits were used for the definitive studies. 1) A unit bubble occupies each alveolus and branching airway of the TLU; unit bubbles in clusters correspond with alveolar clusters. 2) The appositions of unit bubble lamellae (films) form a network of liquid channels within the TLUs. The appositions are bubble to bubble (near alveolar entrances, at pores of Kohn, and between ductal bubbles), bubble to epithelial cell surface, and bubble to surface liquid of conducting airways. They rapidly form stable Newtonian black foam films (approximately 7 nm thick) under hydrodynamic conditions expected in vivo. 3) Lamellae of the foam films and bubbles tend to exclude bulk liquid and thus maintain near-zero surface tension. At the same time, the foam film formations--abetted by the constant but small retractive force of tissue recoil--stabilize unit bubble position within the network. 4) Unit bubble mobility in response to applied force increases as liquid accumulates within the network (e.g. (ABSTRACT TRUNCATED)
Outgassing From Open And Closed Magma Foams
NASA Astrophysics Data System (ADS)
von Aulock, Felix W.; Kennedy, Ben M.; Maksimenko, Anton; Wadsworth, Fabian B.; Lavallée, Yan
2017-06-01
During magma ascent, bubbles nucleate, grow, coalesce, and form a variably permeable porous network. The volcanic system opens and closes as bubble walls reorganize, seal or fail. In this contribution we cause obsidian to nucleate and grow bubbles to high gas volume fraction at atmospheric pressure by heating samples to 950 ºC for different times and we image the growth through a furnace. Following the experiment, we imaged the internal pore structure of selected samples in 3D and then dissected for analysis of textures and dissolved water content remnant in the glass. We demonstrate that in these high viscosity systems, during foaming and subsequent foam-maturation, bubbles near a free surface resorb via diffusion to produce an impermeable skin of melt around a foam. The skin thickens nonlinearly through time. The water concentrations at the outer and inner skin margins reflect the solubility of water in the melt at the partial pressure of water in atmospheric and water-rich bubble conditions, respectively. In this regime, mass transfer of water out of the system is diffusion limited and the sample shrinks slowly. In a second set of experiments in which we polished off the skin of the foamed samples and placed them back in the furnace, we observe rapid sample contraction and collapse of the connected pore network under surface tension as the system efficiently outgasses. In this regime, mass transfer of water is permeability limited. The mechanisms described here are relevant to the evolution of pore network heterogeneity in permeable magmas. We conclude that diffusion-driven skin formation can efficiently seal connectivity in foams. When rupture of melt film around gas bubbles (i.e. skin removal) occurs, then rapid outgassing and consequent foam collapse modulate gas pressurisation in the vesiculated magma.
The Fragility of Interdependency: Coupled Networks Switching Phenomena
NASA Astrophysics Data System (ADS)
Stanley, H. Eugene
2013-03-01
Recent disasters ranging from abrupt financial ``flash crashes'' and large-scale power outages to sudden death among the elderly dramatically exemplify the fact that the most dangerous vulnerability is hiding in the many interdependencies among different networks. In the past year, we have quantified failures in model of interconnected networks, and demonstrated the need to consider mutually dependent network properties in designing resilient systems. Specifically, we have uncovered new laws governing the nature of switching phenomena in coupled networks, and found that phenomena that are continuous ``second order'' phase transitions in isolated networks become discontinuous abrupt ``first order'' transitions in interdependent networks [S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin, ``Catastrophic Cascade of Failures in Interdependent Networks,'' Nature 464, 1025 (2010); J. Gao, S. V. Buldyrev, H. E. Stanley, and S. Havlin, ``Novel Behavior of Networks Formed from Interdependent Networks,'' Nature Physics 8, 40 (2012). We conclude by discussing the network basis for understanding sudden death in the elderly, and the possibility that financial ``flash crashes'' are not unlike the catastrophic first-order failure incidents occurring in coupled networks. Specifically, we study the coupled networks that are responsible for financial fluctuations. It appears that ``trend switching phenomena'' that we uncover are remarkably independent of the scale over which they are analyzed. For example, we find that the same laws governing the formation and bursting of the largest financial bubbles also govern the tiniest finance bubbles, over a factor of 1,000,000,000 in time scale [T. Preis, J. Schneider, and H. E. Stanley, ``Switching Processes in Financial Markets,'' Proc. Natl. Acad. Sci. USA 108, 7674 (2011); T. Preis and H. E. Stanley, ``Bubble Trouble: Can a Law Describe Bubbles and Crashes in Financial Markets?'' Physics World 24, No. 5, 29 (May 2011)]. This work was carried out in collaboration with a number of colleagues, including T. Preis, J. J. Schneider, S. Havlin, R. Parshani, S. V. Buldyrev, J. Gao, and G. Paul-see ``When Networks Network,'' Science News, 22 Sept. 2012.
Development of bubble microstructure in ErT2 films during aging
NASA Astrophysics Data System (ADS)
Bond, Gillian M.; Browning, James F.; Snow, Clark S.
2010-04-01
Helium bubbles form in metal tritide films as tritium decays into H3e, influencing mechanical properties and long-term film stability. The bubble nucleation and growth mechanisms comprise an active research area, but there has been only one previous systematic experimental study of helium bubble growth in metal tritides, on zirconium tritides. There have been no such studies on tritides such as ErT2 that form platelike bubbles and lack a secondary bubble population on a network of line dislocations, and yet such a study is needed to inform the modeling of helium bubble microstructure development in a broader range of metal tritides. Transmission electron microscopy has been used to study the growth and evolution of helium bubbles in ErT2 films over a four-year period. The results have been used to test the present models of helium bubble nucleation and growth in metal tritides, particularly those forming platelike bubbles. The results support the models of Trinkaus and Cowgill. The observations of nonuniform bubble thicknesses and the pattern of grain-boundary bubble formation, however, indicate that these models could be strengthened by closer attention to details of interfacial energy. It is strongly recommended that efforts be made (either experimentally or by calculation) to determine anisotropy of tritide/helium interfacial energy, both for clean, stoichiometric interfaces, and also allowing for such factors as nonstoichiometry and segregation.
Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition
NASA Astrophysics Data System (ADS)
Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.
2010-10-01
We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.
Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.
2010-10-01
We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less
Getting the gas out - developing gas networks in magmatic systems
NASA Astrophysics Data System (ADS)
Cashman, Katharine; Rust, Alison; Oppenheimer, Julie; Belien, Isolde
2015-04-01
Volcanic eruption style, and explosive potential, are strongly controlled by the pre-eruptive history of the magmatic volatiles: specifically, the more efficient the gas loss prior to eruption, the lower the likelihood of primary (magmatic) explosive activity. Commonly considered gas loss mechanisms include separated flow, where individual bubbles (or bubble clouds) travel at a rate that is faster than the host magma, and permeable flow, where gas escapes through permeable (connected) pathways developed within a (relatively) static matrix. Importantly, gas loss via separated flow is episodic, while gas loss via permeable flow is likely to be continuous. Analogue experiments and numerical models on three phase (solid-liquid-gas) systems also suggest a third mechanism of gas loss that involves the opening and closing of 'pseudo fractures'. Pseudo fractures form at a critical crystallinity that is close to the maximum particle packing. Fractures form by local rearrangement of solid particles and liquid to form a through-going gas fracture; gas escape is episodic, and modulated by the available gas volume and the rate of return flow of interstitial liquid back into the fracture. In all of the gas escape scenarios described above, a fundamental control on gas behaviour is the melt viscosity, which affects the rate of individual bubble rise, the rate of bubble expansion, the rate of film thinning (required for bubble coalescence), and the rate of melt flow into gas-generated fractures. From the perspective of magma degassing, rates of gas expansion and film thinning are key to the formation of an interconnected (permeable) gas pathway. Experiments with both analogue and natural materials show that bubble coalescence is relatively slow, and, in particle-poor melts, does not necessarily create permeable gas networks. As a result, degassing efficiency is modulated by the time scales required either (1) to produce large individual bubbles or bubble clouds (in low viscosity melts) or (2) to develop sufficient porosity for full connectivity of a bubble network (in high viscosity melts). In contrast, our experiments suggest that the presence of solid particles may greatly enhance gas escape. On the one hand, the addition of solid particles increases the bulk viscosity of the mixture, which reduces the migration rate of large single bubbles. On the other hand, the strength of networks created by touching crystals inhibits bulk magma deformation and forces smaller bubbles to deform to occupy the spaces between particles, thereby increasing both the bubble shape anisotropy and, correspondingly, the probability of bubble coalescence. Gas pathways created in this way take advantage of inhomogeneities in the spatial distribution of crystals and allow large-scale gas release at relatively low vesicularities. This mechanism of gas escape is likely to be important not only in mafic arc volcanoes, where shallow conduits are likely to be highly crystalline, but also for degassing of crystal-mush-dominated magmatic systems.
Uniform rotating field network structure to efficiently package a magnetic bubble domain memory
NASA Technical Reports Server (NTRS)
Murray, Glen W. (Inventor); Chen, Thomas T. (Inventor); Wolfshagen, Ronald G. (Inventor); Ypma, John E. (Inventor)
1978-01-01
A unique and compact open coil rotating magnetic field network structure to efficiently package an array of bubble domain devices is disclosed. The field network has a configuration which effectively enables selected bubble domain devices from the array to be driven in a vertical magnetic field and in an independent and uniform horizontal rotating magnetic field. The field network is suitably adapted to minimize undesirable inductance effects, improve capabilities of heat dissipation, and facilitate repair or replacement of a bubble device.
NASA Astrophysics Data System (ADS)
Seyrich, Maximilian; Sornette, Didier
2016-04-01
We present a plausible micro-founded model for the previously postulated power law finite time singular form of the crash hazard rate in the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles. The model is based on a percolation picture of the network of traders and the concept that clusters of connected traders share the same opinion. The key ingredient is the notion that a shift of position from buyer to seller of a sufficiently large group of traders can trigger a crash. This provides a formula to estimate the crash hazard rate by summation over percolation clusters above a minimum size of a power sa (with a>1) of the cluster sizes s, similarly to a generalized percolation susceptibility. The power sa of cluster sizes emerges from the super-linear dependence of group activity as a function of group size, previously documented in the literature. The crash hazard rate exhibits explosive finite time singular behaviors when the control parameter (fraction of occupied sites, or density of traders in the network) approaches the percolation threshold pc. Realistic dynamics are generated by modeling the density of traders on the percolation network by an Ornstein-Uhlenbeck process, whose memory controls the spontaneous excursion of the control parameter close to the critical region of bubble formation. Our numerical simulations recover the main stylized properties of the JLS model with intermittent explosive super-exponential bubbles interrupted by crashes.
Predawn plasma bubble cluster observed in Southeast Asia
NASA Astrophysics Data System (ADS)
Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Tsunoda, Roland; Yokoyama, Tatsuhiro; Supnithi, Pornchai; Ishii, Mamoru; Yatini, Clara
2016-06-01
Predawn plasma bubble was detected as deep plasma depletion by GNU Radio Beacon Receiver (GRBR) network and in situ measurement onboard Defense Meteorological Satellite Program F15 (DMSPF15) satellite and was confirmed by sparse GPS network in Southeast Asia. In addition to the deep depletion, the GPS network revealed the coexisting submesoscale irregularities. A deep depletion is regarded as a primary bubble. Submesoscale irregularities are regarded as secondary bubbles. Primary bubble and secondary bubbles appeared together as a cluster with zonal wavelength of 50 km. An altitude of secondary bubbles happened to be lower than that of the primary bubble in the same cluster. The observed pattern of plasma bubble cluster is consistent with the simulation result of the recent high-resolution bubble (HIRB) model. This event is only a single event out of 76 satellite passes at nighttime during 3-25 March 2012 that significantly shows plasma depletion at plasma bubble wall. The inside structure of the primary bubble was clearly revealed from the in situ density data of DMSPF15 satellite and the ground-based GRBR total electron content.
NASA Astrophysics Data System (ADS)
Corsetti, F. A.; Berelson, W.; Pepe-Ranney, C. P.; Mata, S. A.; Spear, J. R.
2016-12-01
Stromatolites have been defined multiple ways, but the presence of lamination is common to all definitions. Despite this commonality, the origin of the lamination in many ancient stromatolites remains vague. Lamination styles vary, but sub-mm light-dark couplets are common in many ancient stromatolites. Here, we investigate an actively forming incipient stromatolite from Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park, to better understand the formation of light-dark couplets similar to many ancient stromatolites in texture and structure. In the OPP stromatolites, a dense network of layer-parallel bundles of cyanobacterial filaments (a dark layer) is followed by an open network of layer-perpendicular or random filaments (a light layer) that reflect a diurnal cycle in the leading edge of the microbial mat that coats the stromatolite's surface. Silica crust encases the cyanobacterial filaments maintaining the integrity of the lamination. Bubbles formed via oxygenic photosynthesis are commonly trapped within the light layers, indicating that lithification occurs rapidly before the bubbles can collapse. The filamentous, non-heterocystous stromatoite-building cyanobacterium from OPP is most closely related to a stromatolite-building cyanobacterium from a hot spring in Japan. Once built, "tenants" from multiple microbial phyla move into the structure, mixing and mingling to produce a complicated integrated biogeochemical signal that may be difficult to untangle in ancient examples. While the cyanobacterial response to the diurnal cycle has been previously implicated in the formation of light-dark couplets, the OPP example highlights the importance of early lithification in maintaining the fabric. Thus, the presence of light-dark couplets and bubble structures may indicate very early lithification and therefore a certain degree of mineral saturation in the ancient ocean or other aquatic system, and that bubble structures, if present, may be evidence for oxygenic photosynthesis. Other lamination hypotheses suggest that lithification is driven by sulfate reduction within a stratified microbial mat—a possibility in some stromatolites, but the lithification engine must move deeper in the mat where the formation of fine light-dark couplets becomes more problematic.
Controls on methane released through ebullition in peatlands affected by permafrost degradation
Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, A. David; Harden, Jennifer W.; Czimczik, C.I.; Xu, Xiaomei; Chanton, J.P.; Waddington, James Michael
2014-01-01
Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.
Formation of soap bubbles by gas jet
NASA Astrophysics Data System (ADS)
Zhou, Maolei; Li, Min; Chen, Zhiyuan; Han, Jifeng; Liu, Dong
2017-12-01
Soap bubbles can be easily generated by various methods, while their formation process is complicated and still worth studying. A model about the bubble formation process was proposed in the study by Salkin et al. [Phys. Rev. Lett. 116, 077801 (2016)] recently, and it was reported that the bubbles were formed when the gas blowing velocity was above one threshold. However, after a detailed study of these experiments, we found that the bubbles could be generated in two velocity ranges which corresponded to the laminar and turbulent gas jet, respectively, and the predicted threshold was only effective for turbulent gas flow. The study revealed that the bubble formation was greatly influenced by the aerodynamics of the gas jet blowing to the film, and these results will help to further understand the formation mechanism of the soap bubble as well as the interaction between the gas jet and the thin liquid film.
Numerical analysis of bubble-cluster formation in an ultrasonic field
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Son, Gihun
2016-11-01
Bubble-cluster formation in an ultrasonic field is investigated numerically solving the conservation equations of mass, momentum and energy. The liquid-gas interface is calculated using the volume-of-fluid method with variable gas density to consider the bubble compressibility. The effect of liquid-gas phase change is also included as the interface source terms of the mass and energy equations. The numerical approach is tested through the simulation of the expansion and contraction motion of a compressed bubble adjacent to a wall. When the bubble is placed in an ultrasonic field, it oscillates radially and then collapses violently. Numerical simulation is also performed for bubble-cluster formation induced by an ultrasonic generator, where the generated bubbles are merged into a macrostructure along the acoustic flow field. The effects of ultrasonic power and frequency, liquid properties and pool temperature on the bubble-cluster formation are investigated. This work was supported by the Korea Institute of Energy Research.
Sevanto, Sanna; Holbrook, N. Michele; Ball, Marilyn C.
2012-06-06
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumptionmore » that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.« less
Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C
2012-01-01
Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.
Dynamics of investor spanning trees around dot-com bubble.
Ranganathan, Sindhuja; Kivelä, Mikko; Kanniainen, Juho
2018-01-01
We identify temporal investor networks for Nokia stock by constructing networks from correlations between investor-specific net-volumes and analyze changes in the networks around dot-com bubble. The analysis is conducted separately for households, financial, and non-financial institutions. Our results indicate that spanning tree measures for households reflected the boom and crisis: the maximum spanning tree measures had a clear upward tendency in the bull markets when the bubble was building up, and, even more importantly, the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time, we find less clear reactions in the minimal and maximal spanning trees of non-financial and financial institutions around the bubble, which suggests that household investors can have a greater herding tendency around bubbles.
Dynamics of investor spanning trees around dot-com bubble
Kivelä, Mikko; Kanniainen, Juho
2018-01-01
We identify temporal investor networks for Nokia stock by constructing networks from correlations between investor-specific net-volumes and analyze changes in the networks around dot-com bubble. The analysis is conducted separately for households, financial, and non-financial institutions. Our results indicate that spanning tree measures for households reflected the boom and crisis: the maximum spanning tree measures had a clear upward tendency in the bull markets when the bubble was building up, and, even more importantly, the minimum spanning tree measures pre-reacted the burst of the bubble. At the same time, we find less clear reactions in the minimal and maximal spanning trees of non-financial and financial institutions around the bubble, which suggests that household investors can have a greater herding tendency around bubbles. PMID:29897973
Formation and ascent of nonisothermal ionospheric and chromospheric bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genkin, L.G.; Erukhimov, L.M.; Myasnikov, E.N.
1987-11-01
The influences of nonisothermicity on the dynamics of ionospheric and chromospheric bubbles is discussed. The possibility of the existence in the ionosphere of a recombination-thermal instability, arising from the temperature dependence of the coefficient of charge exchange between molecules and atomic ions, is shown, and its influence on the formation and evolution of equatorial bubbles is analyzed. It is shown that the formation and dynamics of bubbles may depend on recombination processes and gravity, while plasma heating (predominantly by vertical electric fields) leads to the deepening and preservation of bubbles as they move to greater altitudes. The hypothesis is advancedmore » that the formation of bubbles may be connected with the ascent of clumps of molecules in ionospheric tornados.« less
Gas bubble formation in fused silica generated by ultra-short laser pulses.
Cvecek, Kristian; Miyamoto, Isamu; Schmidt, Michael
2014-06-30
During processing of glass using ultra-fast lasers the formation of bubble-like structures can be observed in several glass types such as fused silica. Their formation can be exploited to generate periodic gratings in glasses but for other glass processing techniques such as waveguide-writing or glass welding by ultra-fast lasers the bubble formation proves often detrimental. In this work we present experiments and their results in order to gain understanding of the origins and on the underlying formation and transportation mechanisms of the gas bubbles.
Chaotic bubbling and nonstagnant foams.
Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard
2007-06-01
We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.
NASA Astrophysics Data System (ADS)
Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou
2018-05-01
Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.
Vapor bubble generation around gold nano-particles and its application to damaging of cells
Kitz, M.; Preisser, S.; Wetterwald, A.; Jaeger, M.; Thalmann, G. N.; Frenz, M.
2011-01-01
We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage. PMID:21339875
Size limits the formation of liquid jets during bubble bursting
Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat
2011-01-01
A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715
Correlation between Gas Bubble Formation and Hydrogen Evolution Reaction Kinetics at Nanoelectrodes.
Chen, Qianjin; Luo, Long
2018-04-17
We report the correlation between H 2 gas bubble formation potential and hydrogen evolution reaction (HER) activity for Au and Pt nanodisk electrodes (NEs). Microkinetic models were formulated to obtain the HER kinetic information for individual Au and Pt NEs. We found that the rate-determining steps for the HER at Au and Pt NEs were the Volmer step and the Heyrovsky step, respectively. More interestingly, the standard rate constant ( k 0 ) of the rate-determining step was found to vary over 2 orders of magnitude for the same type of NEs. The observed variations indicate the HER activity heterogeneity at the nanoscale. Furthermore, we discovered a linear relationship between bubble formation potential ( E bubble ) and log( k 0 ) with a slope of 125 mV/decade for both Au and Pt NEs. As log ( k 0 ) increases, E bubble shifts linearly to more positive potentials, meaning NEs with higher HER activities form H 2 bubbles at less negative potentials. Our theoretical model suggests that such linear relationship is caused by the similar critical bubble formation condition for Au and Pt NEs with varied sizes. Our results have potential implications for using gas bubble formation to evaluate the HER activity distribution of nanoparticles in an ensemble.
Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud
NASA Astrophysics Data System (ADS)
Chang, Sheng; Cao, Xiangkun; Zou, Zongshu
2018-03-01
Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.
Regimes of Micro-bubble Formation Using Gas Injection into Ladle Shroud
NASA Astrophysics Data System (ADS)
Chang, Sheng; Cao, Xiangkun; Zou, Zongshu
2018-06-01
Gas injection into a ladle shroud is a practical approach to produce micro-bubbles in tundishes, to promote inclusion removal from liquid steel. A semi-empirical model was established to characterize the bubble formation considering the effect of shearing action combined with the non-fully bubble break-up by turbulence. The model shows a good accuracy in predicting the size of bubbles formed in complex flow within the ladle shroud.
Controls on the methane released through ebullition affected by permafrost degradation
S.J. Klapstein; M.R. Turetsky; A.D. McGuire; J.W. Harden; C.I. Czimczik; X. Xu; J.P. Chanton; J.M. Waddington
2014-01-01
Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine...
The effectiveness of simethicone in improving visibility during colonoscopy.
Park, Jae Jun; Lee, Sang Kil; Jang, Jae Young; Kim, Hyo Jong; Kim, Nam Hoon
2009-01-01
In colonoscopy examination, luminal visibility is frequently limited due to intraluminal bubbles. In present study was evaluated factors affecting bubble formation and the effects of simethicone in preventing bubble formation during colonoscopy. Consecutive patients (n=164) who received polyethylene glycol or sodium phosphate for bowel preparation were prospectively enrolled. Before colonoscopy, 57 patients took 80 mg simethicone after ingestion of bowel preparation solution and 107 did not to determine whether simethicone decreased bubble formation. Intraluminal gas bubbles were assessed and graded as follows: 0, minimal or none; 1, covering less than half the lumen; 2, covering at least half the lumen or the entire circumference. Grade 2 bubbles were regarded as significant, limiting visibility. Sodium phosphate preparation tended to have more bubbles than the polyethylene glycol. Significant bubbles were more likely to occur in males than females (p = 0.020). Significant bubbles were noted in 34.6% of patients without simethicone and 7% of patients with simethicone. Simethicone significantly lowered the incidence of bubbles during colonoscopy when given after a preparation solution (p < 0.05), The present study findings indicate that taking simethicone after an oral polyethylene glycol or sodium phosphate preparation can improve colonic visibility by diminishing colonic bubbles.
Bubble Formation from Wall Orifice in Liquid Cross-Flow Under Low Gravity
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2000-01-01
Two-phase flows present a wide variety of applications for spacecraft thermal control systems design. Bubble formation and detachment is an integral part of the two phase flow science. The objective of the present work is to experimentally investigate the effects of liquid cross-flow velocity, gas flow rate, and orifice diameter on bubble formation in a wall-bubble injection configuration. Data were taken mainly under reduced gravity conditions but some data were taken in normal gravity for comparison. The reduced gravity experiment was conducted aboard the NASA DC-9 Reduced Gravity Aircraft. The results show that the process of bubble formation and detachment depends on gravity, the orifice diameter, the gas flow rate, and the liquid cross-flow velocity. The data are analyzed based on a force balance, and two different detachment mechanisms are identified. When the gas momentum is large, the bubble detaches from the injection orifice as the gas momentum overcomes the attaching effects of liquid drag and inertia. The surface tension force is much reduced because a large part of the bubble pinning edge at the orifice is lost as the bubble axis is tilted by the liquid flow. When the gas momentum is small, the force balance in the liquid flow direction is important, and the bubble detaches when the bubble axis inclination exceeds a certain angle.
Formation of methane nano-bubbles during hydrate decomposition and their effect on hydrate growth.
Bagherzadeh, S Alireza; Alavi, Saman; Ripmeester, John; Englezos, Peter
2015-06-07
Molecular dynamic simulations are performed to study the conditions for methane nano-bubble formation during methane hydrate dissociation in the presence of water and a methane gas reservoir. Hydrate dissociation leads to the quick release of methane into the liquid phase which can cause methane supersaturation. If the diffusion of methane molecules out of the liquid phase is not fast enough, the methane molecules agglomerate and form bubbles. Under the conditions of our simulations, the methane-rich quasi-spherical bubbles grow to become cylindrical with a radius of ∼11 Å. The nano-bubbles remain stable for about 35 ns until they are gradually and homogeneously dispersed in the liquid phase and finally enter the gas phase reservoirs initially set up in the simulation box. We determined that the minimum mole fraction for the dissolved methane in water to form nano-bubbles is 0.044, corresponding to about 30% of hydrate phase composition (0.148). The importance of nano-bubble formation to the mechanism of methane hydrate formation, growth, and dissociation is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.
Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less
Microbubble transport through a bifurcating vessel network with pulsatile flow.
Valassis, Doug T; Dodde, Robert E; Esphuniyani, Brijesh; Fowlkes, J Brian; Bull, Joseph L
2012-02-01
Motivated by two-phase microfluidics and by the clinical applications of air embolism and a developmental gas embolotherapy technique, experimental and theoretical models of microbubble transport in pulsatile flow are presented. The one-dimensional time-dependent theoretical model is developed from an unsteady Bernoulli equation that has been modified to include viscous and unsteady effects. Results of both experiments and theory show that roll angle (the angle the plane of the bifurcating network makes with the horizontal) is an important contributor to bubble splitting ratio at each bifurcation within the bifurcating network. When compared to corresponding constant flow, pulsatile flow was shown to produce insignificant changes to the overall splitting ratio of the bubble despite the order one Womersley numbers, suggesting that bubble splitting through the vasculature could be modeled adequately with a more modest constant flow model. However, bubble lodging was affected by the flow pulsatility, and the effects of pulsatile flow were evident in the dependence of splitting ratio of bubble length. The ability of bubbles to remain lodged after reaching a steady state in the bifurcations is promising for the effectiveness of gas embolotherapy to occlude blood flow to tumors, and indicates the importance of understanding where lodging will occur in air embolism. The ability to accurately predict the bubble dynamics in unsteady flow within a bifurcating network is demonstrated and suggests the potential for bubbles in microfluidics devices to encode information in both steady and unsteady aspects of their dynamics.
Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water.
Tanaka, Kohei; Yamamoto, Kazuya; Kadokawa, Jun-ichi
2014-10-29
In this paper, we report that nanofiber network structures were constructed from chitin derivatives by gas bubbling and ultrasonic treatments in water. When chitin was first subjected to N2 gas bubbling with ultrasonication in water, the SEM images of the product showed nanofiber network morphology. However, nanofiber network was not re-constructed by the same N2 gas bubbling and ultrasonic treatments after agglomeration. We then have paid attention to an amidine group to provide the agglomeration-nanofibrillation behavior of chitin derivatives. An amidinated chitin was synthesized by the reaction of the amino groups in a partially deacetylated chitin with N,N-dimethylacetamide dimethyl acetal, which was subjected to CO2 gas bubbling and ultrasonic treatments in water to convert into an amidinium chitin by protonation. The SEM images of the product clearly showed nanofiber network morphology. We further examined re-nanofibrillation of the agglomerated material, which was obtained by mixing the nanofibrillated amidinium chitin with water, followed by drying under reduced pressure. Consequently, the material was re-nanofibrillated by N2 gas bubbling with ultrasonication in water owing to electrostatic repulsion between the amidinium groups. Furthermore, deprotonation of the amidinium chitin and re-protonation of the resulting amidinated chitin were conducted by alkaline treatment and CO2 gas bubbling-ultrasonic treatments, respectively. The material showed the agglomeration-nanofibrillation behavior during the processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wang, Yong; Lee, Dongyoung; Zhang, Lisa; Jeon, Hyojin; Mendoza-Elias, Joshua E.; Harvat, Tricia A.; Hassan, Sarah Z.; Zhou, Amanda; Eddington, David T.; Oberholzer, José
2012-01-01
Reliable long-term cell culture in microfluidic system is limited by air bubble formation and accumulation. In this study, we developed a bubble removal system capable of both trapping and discharging air bubbles in a consistent and reliable manner. Combined with PDMS (Polydimethylsiloxane) hydrophilic surface treatment and vacuum filling, a microfluidic perifusion system equipped with the bubble trap was successfully applied for long-term culture of mouse pancreatic islets with no bubble formation and no flow interruption. In addition to demonstrating normal cell viability and islet morphology, post-cultured islets exhibited normal insulin secretion kinetics, intracellular calcium signaling, and changes in mitochondrial potentials in response to glucose challenge. This design could be easily adapted by other microfluidic systems due to its simple design, ease of fabrication, and portability. PMID:22252566
Liquid phase stabilization versus bubble formation at a nanoscale curved interface
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Luo, Tengfei
2018-03-01
We investigate the nature of vapor bubble formation near a nanoscale-curved convex liquid-solid interface using two models: an equilibrium Gibbs model for homogenous nucleation, and a nonequilibrium dynamic van der Waals-diffuse-interface model for phase change in an initially cool liquid. Vapor bubble formation is shown to occur for sufficiently large radius of curvature and is suppressed for smaller radii. Solid-fluid interactions are accounted for and it is shown that liquid-vapor interfacial energy, and hence Laplace pressure, has limited influence over bubble formation. The dominant factor is the energetic cost of creating the solid-vapor interface from the existing solid-liquid interface, as demonstrated via both equilibrium and nonequilibrium arguments.
Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.
Mullins, Garrett R; Bruns, David E
2017-10-01
Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (p<0.01), LD (p<0.01), and potassium (p<0.02) in plasma. Removing air space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (p<0.02 vs conventionally filled collection tube). Clotted blood developed less foaming during PTS transport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (p<0.03) in serum than in plasma after PTS sample transport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Formation of Micro-Scale Gas Pockets From Underwater Wall Orifices
NASA Astrophysics Data System (ADS)
Pereira, Francisco A.; Gharib, Morteza
2012-11-01
Our experiments examine the formation of micro-scale gas pockets from orifices on walls with hydrophilic and hydrophobic wetting properties. Bubble injection is operated in a liquid at rest at constant flow rate and in a quasi-static regime, and the mechanism of bubble growth is investigated through high speed recordings. The growth dynamics is studied in terms of orifice size, surface wetting properties and buoyancy sign. The bubble formation is characterized by an explosive growth, with a pressure wave that causes the bubble to take highly transient shapes in its very initial stages, before stabilizing as a sphere and growing at a relatively slow rate. In case of positive buoyancy, the bubble elongates with the formation of a neck before detaching from the wall. When buoyancy acts towards the wall, the bubble attaches to the wall and expands laterally with a moving contact line. In presence of hydrophobic surfaces, the bubble attaches immediately to the wall irrespective of buoyancy direction and takes a hemispherical shape, expanding radially along the surface. A force balance is outlined to explain the different figures. The work was performed by FAP while on leave from CNR-INSEAN, and is supported by the Office of Naval Research (ONR).
Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.
Choi, Munseok; Na, Yang; Kim, Sung-Jin
2015-12-01
In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cartilage formation in the CELLS 'double bubble' hardware
NASA Technical Reports Server (NTRS)
Duke, P. J.; Arizpe, Jorge; Montufar-Solis, Dina
1991-01-01
The CELLS experiment scheduled to be flown on the first International Microgravity Laboratory is designed to study the effect of microgravity on the cartilage formation, by measuring parameters of growth in a differentiating cartilage cell culture. This paper investigates the conditions for this experiment by studying cartilage differentiation in the 'bubble exchange' hardware with the 'double bubble' design in which the bubbles are joined by a flange which also overlays the gasket. Four types of double bubbles (or double gas permeable membranes) were tested: injection-molded bubbles 0.01- and 0.005-in. thick, and compression molded bubbles 0.015- and 0.01-in. thick. It was found that double bubble membranes of 0.005- and 0.010-in. thickness supported cartilage differentiation, while the 0.015-in. bubbles did not. It was also found that nodule count, used in this study as a parameter, is not the best measure of the amount of cartilage differentiation.
Modeling of bubble dynamics in relation to medical applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P.A.; London, R.A.; Strauss, M.
1997-03-12
In various pulsed-laser medical applications, strong stress transients can be generated in advance of vapor bubble formation. To better understand the evolution of stress transients and subsequent formation of vapor bubbles, two-dimensional simulations are presented in channel or cylindrical geometry with the LATIS (LAser TISsue) computer code. Differences with one-dimensional modeling are explored, and simulated experimental conditions for vapor bubble generation are presented and compared with data. 22 refs., 8 figs.
Souday, Vincent; Koning, Nick J; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre
2016-01-01
To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. ISRCTN 31681480.
Threshold altitude for bubble decay and stabilization in rat adipose tissue at hypobaric exposures.
Randsoe, Thomas; Hyldegaard, Ole
2013-07-01
Bubble formation during altitude exposures, causing altitude decompression sickness (aDCS), has been referred to in theoretical models as venous gas embolisms (VGE). This has also been demonstrated by intravascular gas formation. Previous reports indicate that the formation of VGE and aDCS incidence increase abruptly for exposures exceeding 40-44 kPa ambient pressures. Further, extravascular micro air bubbles injected into adipose tissue grow transiently, then shrink and disappear while breathing oxygen (F1O2 = 1.0) at 71 kPa. At 25 kPa similar air bubbles will grow and stabilize during oxygen breathing without disappearing. We hypothesize that an ambient pressure threshold for either extravascular bubble stabilization or disappearance may be identified between 71 and 25 kPa. Whether extravascular bubbles will stabilize above a certain threshold has not been demonstrated before. In anesthetized rats, micro air bubbles (containing 79% nitrogen) of 500 nl were injected into exposed abdominal adipose tissue. Rats were decompressed in 2-35 min to either 60, 47, or 36 kPa and bubbles studied for 215 min during continued oxygen breathing (F1O2 = 1). Significantly more bubbles shrank and disappeared at 60 (14 of 17) and 47 kPa (14 of 15) as compared to bubbles exposed to 36 kPa (3 of 15) ambient pressure. The results indicate that a threshold causing extravascular bubble stabilization or decay is between 47 to 36 kPa. The results are in agreement with previous reports demonstrating an increase in the formation of VGE and symptoms of aDCS at altitudes higher than 44 kPa ambient pressure.
NASA Astrophysics Data System (ADS)
Abboud, Jack E.; Oweis, Ghanem F.
2013-01-01
An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.
NASA Astrophysics Data System (ADS)
Abboud, Jack E.; Oweis, Ghanem F.
2012-12-01
An inertial bubble collapsing near a solid boundary generates a fast impulsive microjet directed toward the boundary. The jet impacts the solid boundary at a high velocity, and this effect has been taken advantage of in industrial cleaning such as when tiny bubbles are driven ultrasonically to cavitate around machined parts to produce jets that are believed to induce the cleaning effect. In this experimental investigation, we are interested in the jetting from single cavities near a boundary. By introducing a through hole in the boundary beneath a laser-induced bubble, it is hypothesized that the forming jet, upon bubble implosion, will proceed to penetrate through the hole to the other side and that it may be utilized in useful applications such as precise surgeries. It was found that the growth of the bubble induced a fast flow through the hole and lead to the formation of secondary hydrodynamic cavitation. The experiments also showed the formation of a counter jet directed away from the hole and into the bubble. During the growth phase of the bubble, and near the point of maximum expansion, the bubble wall bulged out toward the hole in a `bulb' like formation, which sometimes resulted in the pinching-off of a secondary small bubble. This was ensued by the inward recoiling of the primary bubble wall near the pinch-off spot, which developed into a counter jet seen to move away from the hole and inward into the bubble.
Jet formation of SF6 bubble induced by incident and reflected shock waves
NASA Astrophysics Data System (ADS)
Zhu, Yuejin; Yu, Lei; Pan, Jianfeng; Pan, Zhenhua; Zhang, Penggang
2017-12-01
The computational results of two different cases on the evolution of the shock-SF6 heavy bubble interaction are presented. The shock focusing processes and jet formation mechanisms are analyzed by using the high resolution of computation schemes, and the influence of reflected shock waves is also investigated. It is concluded that there are two steps in the shock focusing process behind the incident shock wave, and the density and pressure values increase distinctly when the shock focusing process is completed. The local high pressure and vorticities in the vicinity of the downstream pole can propel the formation of the jet behind the incident shock wave. In addition, the gas is with the rightward velocity before the reflected shock wave impinges on the bubble; therefore, the evolutions of the waves and the bubble are more complicated when the reflected shock wave impinges on the SF6 bubble. Furthermore, the different end wall distances would affect the deformation degree of the bubble before the interaction of the reflected shock wave; therefore, the different left jet formation processes are found after the impingement of reflected shock waves when L = 27 mm. The local high pressure zones in the vicinity of the left bubble interface and the impingement of different shock waves can induce the local gas to shift the rightward velocity to the leftward velocity, which can further promote the formation of jets.
Evaporation, Boiling and Bubbles
ERIC Educational Resources Information Center
Goodwin, Alan
2012-01-01
Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…
Formation and evolution of bubbly screens in confined oscillating bubbly liquids.
Shklyaev, Sergey; Straube, Arthur V
2010-01-01
We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
Formation and evolution of bubbly screens in confined oscillating bubbly liquids
NASA Astrophysics Data System (ADS)
Shklyaev, Sergey; Straube, Arthur V.
2010-01-01
We consider the dynamics of dilute monodisperse bubbly liquid confined by two plane solid walls and subject to small-amplitude high-frequency oscillations normal to the walls. The initial state corresponds to the uniform distribution of bubbles and motionless liquid. The period of external driving is assumed much smaller than typical relaxation times for a single bubble but larger than the period of volume eigenoscillations. The time-averaged description accounting for the two-way coupling between the liquid and the bubbles is applied. We show that the model predicts accumulation of bubbles in thin sheets parallel to the walls. These singular structures, which are formally characterized by infinitely thin width and infinitely high concentration, are referred to as bubbly screens. The formation of a bubbly screen is described analytically in terms of a self-similar solution, which is in agreement with numerical simulations. We study the evolution of bubbly screens and detect a one-dimensional stationary state, which is shown to be unconditionally unstable.
Bubble formation during pulsed laser ablation: mechanism and implications
NASA Astrophysics Data System (ADS)
van Leeuwen, Ton G. J. M.; Jansen, E. Duco; Motamedi, Massoud; Welch, Ashley J.; Borst, Cornelius
1993-07-01
Holmium ((lambda) equals 2.09 micrometers ) and excimer ((lambda) equals 308 nm) lasers are used for ablation of tissue. In a previous study it was demonstrated that both excimer and holmium laser pulses produce fast expanding and collapsing vapor bubbles. To investigate whether the excimer induced bubble is caused by vaporization of water, the threshold fluence for bubble formation at a bare fiber tip in water was compared between the excimer laser (pulse length 115 ns) and the Q-switched and free-running holmium lasers (pulse length 1 microsecond(s) to 250 microsecond(s) , respectively). To induce bubble formation by excimer laser light in water, the absorber oxybuprocaine-hydrochloride (OBP-HCl) was added to the water. Fast flash photography was used to measure the threshold fluence as a function of the water temperature (6 - 90 degree(s)C) at environmental pressure. The ultraviolet excimer laser light is strongly absorbed by blood. Therefore, to document the implications of bubble formation at fluences above the tissue ablation threshold, excimer laser pulses were delivered in vitro in hemoglobin solution and in vivo in the femoral artery of the rabbit. We conclude that the principal content of the fast bubble induced by a 308 nm excimer laser pulse is water vapor. Therefore, delivery of excimer laser pulses in a water or blood environment will cause fast expanding water vapor bubbles, which may induce mechanical damage to adjacent tissue.
Pressure and tension waves from bubble collapse near a solid boundary: A numerical approach.
Lechner, Christiane; Koch, Max; Lauterborn, Werner; Mettin, Robert
2017-12-01
The acoustic waves being generated during the motion of a bubble in water near a solid boundary are calculated numerically. The open source package OpenFOAM is used for solving the Navier-Stokes equation and extended to include nonlinear acoustic wave effects via the Tait equation for water. A bubble model with a small amount of gas is chosen, the gas obeying an adiabatic law. A bubble starting from a small size with high internal pressure near a flat, solid boundary is studied. The sequence of events from bubble growth via axial microjet formation, jet impact, annular nanojet formation, torus-bubble collapse, and bubble rebound to second collapse is described. The different pressure and tension waves with their propagation properties are demonstrated.
The Development of the Command and Control Centre for Trial Kondari
2010-07-01
the C2 centre inside a blue bubble whose modems have privately assigned IP addresses which are authenticated by Telstra’s radius server. No other sim...cards can communicate on this private network unless authorised by the radius server. The Next IP network is a network bubble within the larger Next...for all machines on the network. EPLRS Network Manager (ENM) radio – authenticates and manages all the EPLRS radios. The basic plan’s final
Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.
Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin
2015-07-28
Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated.
Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses
NASA Astrophysics Data System (ADS)
Genc, Suzanne L.; Ma, Huan; Venugopalan, Vasan
2014-08-01
We demonstrate the formation of low- and high-density plasmas in aqueous media using sub-nanosecond laser pulses delivered at low numerical aperture (NA = 0.25). We observe two distinct regimes of plasma formation in deionized water, phosphate buffered saline, Minimum Essential Medium (MEM), and MEM supplemented with phenol red. Optical breakdown is first initiated in a low-energy regime and characterized by bubble formation without plasma luminescence with threshold pulse energies in the range of Ep ≈ 4-5 μJ, depending on media formulation. The onset of this regime occurs over a very narrow interval of pulse energies and produces small bubbles (Rmax = 2-20 μm) due to a tiny conversion (η < 0.01%) of laser energy to bubble energy EB. The lack of visible plasma luminescence, sharp energy onset, and low bubble energy conversion are all hallmarks of low-density plasma (LDP) formation. At higher pulse energies (Ep = 11-20 μJ), the process transitions to a second regime characterized by plasma luminescence and large bubble formation. Bubbles formed in this regime are 1-2 orders of magnitude larger in size ( R max ≳ 100 μ m ) due to a roughly two-order-of-magnitude increase in bubble energy conversion (η ≳ 3%). These characteristics are consistent with high-density plasma formation produced by avalanche ionization and thermal runaway. Additionally, we show that supplementation of MEM with fetal bovine serum (FBS) limits optical breakdown to this high-energy regime. The ability to produce LDPs using sub-nanosecond pulses focused at low NA in a variety of cell culture media formulations without FBS can provide for cellular manipulation at high throughput with precision approaching that of femtosecond pulses delivered at high NA.
Morphology of Two-Phase Layers with Large Bubbles
NASA Astrophysics Data System (ADS)
Vékony, Klára; Kiss, László I.
2010-10-01
The understanding of formation and movement of bubbles nucleated during aluminum reduction is essential for a good control of the electrolysis process. In our experiments, we filmed and studied the formation of a bubble layer under the anode in a real-size air-water electrolysis cell model. The maximum height of the bubbles was found to be up to 2 cm because of the presence of the so-called Fortin bubbles. Also, the mean height of the bubble layer was found to be much higher than published previously. The Fortin bubbles were investigated more closely, and their shape was found to be induced by a gravity wave formed at the gas-liquid interface. In addition, large bubbles were always observed to break up into smaller parts right before escaping from under the anode. This breakup and escape led to a large momentum transfer in the bath.
Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays
Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua
2015-01-01
Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143
Drops and Bubble in Materials Science
NASA Technical Reports Server (NTRS)
Doremus, R. H.
1982-01-01
The formation of extended p-n junctions in semiconductors by drop migration, mechanisms and morphologies of migrating drops and bubbles in solids and nucleation and corrections to the Volmer-Weber equations are discussed. Bubble shrinkage in the processing of glass, the formation of glass microshells as laser-fusion targets, and radiation-induced voids in nuclear reactors were examined.
Bubble baths: just splashing around?
NASA Astrophysics Data System (ADS)
Robinson, Wesley; Speirs, Nathan; Sharker, Saberul Islam; Hurd, Randy; Williams, Bj; Truscott, Tadd
2016-11-01
Soap Bubbles on the water surface would seem to be an intuitive means for splash suppression, but their presence appears to be a double edged sword. We present on the water entry of hydrophilic spheres where the liquid surface is augmented by the presence of a bubble layer, similar to a bubble bath. While the presence of a bubble layer can diminish splashing upon impact at low Weber numbers, it also induces cavity formation at speeds below the critical velocity. The formation of a cavity generally results in larger Worthington jets and thus, larger amounts of ejected liquid. Bubble layers induce cavity formation by wetting the sphere prior to liquid impact, causing them to form cavities similar to those created by hydrophobic spheres. Droplets present on a pre-wetted sphere disrupt the flow of the advancing liquid during entry, pushing it away from the impacting body to form an entrained air cavity. This phenomena was noted by Worthington with pre-wetted stone marbles, and suggests that the application of a bubble layer is generally ineffective as a means of splash suppression.
Pinch-off Scaling Law of Soap Bubbles
NASA Astrophysics Data System (ADS)
Davidson, John; Ryu, Sangjin
2014-11-01
Three common interfacial phenomena that occur daily are liquid drops in gas, gas bubbles in liquid and thin-film bubbles. One aspect that has been studied for these phenomena is the formation or pinch-off of the drop/bubble from the liquid/gas threads. In contrast to the formation of liquid drops in gas and gas bubbles in liquid, thin-film bubble pinch-off has not been well documented. Having thin-film interfaces may alter the pinch-off process due to the limiting factor of the film thickness. We observed the pinch-off of one common thin-film bubble, soap bubbles, in order to characterize its pinch-off behavior. We achieved this by constructing an experimental model replicating the process of a human producing soap bubbles. Using high-speed videography and image processing, we determined that the minimal neck radius scaled with the time left till pinch-off, and that the scaling law exponent was 2/3, similar to that of liquid drops in gas.
Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Nannan; Fu, Benwei; Key Laboratory of Marine, Mechanical and Manufacturing Engineering of the Ministry of Transport, Dalian 116026
Ultrasonic sound effect on bubble nucleation, oscillating motion activated by bubble formation, and its heat transfer enhancement of nanofluid was experimentally investigated. Nanofluid consists of distilled water and dysprosium (III) oxide (Dy{sub 2}O{sub 3}) nanoparticles with an average size of 98 nm and a mass ratio of 0.5%. Visualization results demonstrate that when the nanoparticles are added in the fluid influenced by the ultrasonic sound, bubble nucleation can be significantly enhanced. The oscillating motion initiated by the bubble formation of nanofluid under the influence of ultrasonic sound can significantly enhance heat transfer of nanofluid in an interconnected capillary loop.
Numerical study of ambient pressure for laser-induced bubble near a rigid boundary
NASA Astrophysics Data System (ADS)
Li, BeiBei; Zhang, HongChao; Han, Bing; Lu, Jian
2012-07-01
The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.
McKee, Hamish D; Irion, Luciane C D; Carley, Fiona M; Jhanji, Vishal; Brahma, Arun K
2011-10-01
To determine if residual corneal stroma remains on the recipient posterior lamella in big-bubble deep anterior lamellar keratoplasty (DALK). Pneumodissection using the big-bubble technique was carried out on eye-bank corneas mounted on an artificial anterior chamber. Samples that had a successful big-bubble formation were sent for histological evaluation to determine if any residual stroma remained on the Descemet membrane (DM). Big-bubble formation was achieved in 32 donor corneas. Two distinct types of big-bubble were seen: the bubble had either a white margin (30 corneas) or a clear margin (two corneas). The posterior lamellae of all the white margin corneas showed residual stroma on DM with a mean central thickness of 7.0 μm (range 2.6-17.4 μm). The clear margin corneas showed no residual stroma on DM. It should no longer be assumed that big-bubble DALK, where the bubble has a white margin, routinely bares DM. True baring of DM may only occur with the less commonly seen clear margin bubble.
Acconcia, Christopher; Leung, Ben Y C; Manjunath, Anoop; Goertz, David E
2015-10-01
In previous work, we examined microscale interactions between microbubbles and fibrin clots under exposure to 1 ms ultrasound pulses. This provided direct evidence that microbubbles were capable of deforming clot boundaries and penetrating into clots, while also affecting fluid uptake and inducing fibrin network damage. Here, we investigate the effect of short duration (15 μs) pulses on microscale bubble-clot interactions as function of bubble diameter (3-9 μm) and pressure. Individual microbubbles (n = 45) were placed at the clot boundary with optical tweezers and exposed to 1 MHz ultrasound. High-speed (10 kfps) imaging and 2-photon microscopy were performed during and after exposure, respectively. While broadly similar phenomena were observed as in the 1 ms pulse case (i.e., bubble penetration, network damage and fluid uptake), substantial quantitative differences were present. The pressure threshold for bubble penetration was increased from 0.39 MPa to 0.6 MPa, and those bubbles that did enter clots had reduced penetration depths and were associated with less fibrin network damage and nanobead uptake. This appeared to be due in large part to increased bubble shrinkage relative to the 1 ms pulse case. Stroboscopic imaging was performed on a subset of bubbles (n = 11) and indicated that complex bubble oscillations can occur during this process. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Liger-Belair, Gérard; Topgaard, Daniel; Voisin, Cédric; Jeandet, Philippe
2004-05-11
In this paper, the transversal diffusion coefficient D perpendicular of CO2 dissolved molecules through the wall of a hydrated cellulose fiber was approached, from the liquid bulk diffusion coefficient of CO2 dissolved molecules modified by an obstruction factor. The porous network between the cellulose microfibrils of the fiber wall was assumed being saturated with liquid. We retrieved information from previous NMR experiments on the self-diffusion of water in cellulose fibers to reach an order of magnitude for the transversal diffusion coefficient of CO2 molecules through the fiber wall. A value of about D perpendicular approximately 0.2D0 was proposed, D0 being the diffusion coefficient of CO2 molecules in the liquid bulk. Because most of bubble nucleation sites in a glass poured with carbonated beverage are cellulose fibers cast off from paper or cloth which floated from the surrounding air, or remaining from the wiping process, this result directly applies to the kinetics of carbon dioxide bubble formation from champagne and sparkling wines. If the cellulose fiber wall was impermeable with regard to CO2 dissolved molecules, it was suggested that the kinetics of bubbling would be about three times less than it is.
Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation
Sun, Cheng; Sprouster, David J.; Hattar, K.; ...
2018-02-09
In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.
Formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Cheng; Sprouster, David J.; Hattar, K.
In this paper, we report the formation of tetragonal gas bubble superlattice in bulk molybdenum under helium ion implantation at 573 K. The transmission electron microscopy study shows that the helium bubble lattice constant measured from the in-plane d-spacing is ~4.5 nm, while it is ~3.9 nm from the out-of-plane measurement. The results of synchrotron-based small-angle x-ray scattering agree well with the transmission electron microscopy results in terms of the measurement of bubble lattice constant and bubble size. The coupling of transmission electron microscopy and synchrotron high-energy X-ray scattering provides an effective approach to study defect superlattices in irradiated materials.
NASA Astrophysics Data System (ADS)
Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.
2014-10-01
Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.
Investigation of hydrogen bubbles behavior in tungsten by high-flux hydrogen implantation
NASA Astrophysics Data System (ADS)
Zhao, Jiangtao; Meng, Xuan; Guan, Xingcai; Wang, Qiang; Fang, Kaihong; Xu, Xiaohui; Lu, Yongkai; Gao, Jun; Liu, Zhenlin; Wang, Tieshan
2018-05-01
Hydrogen isotopes retention and bubbles formation are critical issues for tungsten as plasma-facing material in future fusion reactors. In this work, the formation and growing up behavior of hydrogen bubbles in tungsten were investigated experimentally. The planar TEM samples were implanted by 6.0keV hydrogens to a fluence of 3.38 ×1018 H ṡ cm-2 at room temperature, and well-defined hydrogen bubbles were observed by TEM. It was demonstrated that hydrogen bubbles formed when exposed to a fluence of 1.5 ×1018 H ṡ cm-2 , and the hydrogen bubbles grew up with the implantation fluence. In addition, the bubbles' size appeared larger with higher beam flux until saturated at a certain flux, even though the total fluence was kept the same. Finally, in order to understand the thermal annealing effect on the bubbles behavior, hydrogen-implanted samples were annealed at 400, 600, 800, and 1000 °C for 3 h. It was obvious that hydrogen bubbles' morphology changed at temperatures higher than 800 °C.
2003-01-01
media factors affecting: • Shared Understanding – explicit and operational knowledge • Decision-Making – what information format best helps decision...Passing the Bubble: Cognitive Efficiency of Augmented Video for Collaborative Transfer of Situational Understanding Collaboration and Knowledge ...operational knowledge ? • Informed Decision-Making – what information format is best to pass the bubble to a decision-maker 1/14/2003 ONR David Kirsh
Formation of Nitrogen Bubbles During Solidification of Duplex Stainless Steels
NASA Astrophysics Data System (ADS)
Dai, Kaiju; Wang, Bo; Xue, Fei; Liu, Shanshan; Huang, Junkai; Zhang, Jieyu
2018-04-01
The nucleation and growth of nitrogen bubbles for duplex stainless steels are of great significance for the formation mechanism of bubbles during solidification. In the current study, numerical method and theoretical analysis of formula derivation were used to study the formation of nitrogen bubbles during solidification. The critical sizes of the bubble for homogeneous nucleation and heterogeneous nucleation at the solid-liquid interface during solidification were derived theoretically by the classical nucleation theory. The results show that the calculated values for the solubility of nitrogen in duplex stainless steel are in good agreement with the experimental values which are quoted by references: for example, when the temperature T = 1823 K and the nitrogen partial pressure P_{{N2 }} = 40P^{Θ} , the calculated value (0.8042 wt pct) for the solubility of Fe-12Cr alloy nitrogen in molten steel is close to the experimental value (0.780 wt pct). Moreover, the critical radii for homogeneous nucleation and heterogeneous nucleation are identical during solidification. On the one hand, with the increasing temperature or the melt depth, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. On the other hand, with the decreasing initial content of nitrogen or the cooling rate, the critical nucleation radius of bubbles at the solid-liquid interface increases, but the bubble growth rate decreases. Furthermore, when the melt depth is greater than the critical depth, which is determined by the technological conditions, the change in the Gibbs free energy for the nucleation is not conducive enough to form new bubbles.
Massover, William H
2010-06-01
Irradiation of an amorphous layer of dried sodium phosphate buffer (pH = 7.0) by transmission electron microscopy (100-120 kV) causes rapid formation of numerous small spherical bubbles [10-100 A (= 1-10 nm)] containing an unknown gas. Bubbling is detected even with the first low-dose exposure. In a thin layer (ca. 100-150 A), bubbling typically goes through nucleation, growth, possible fusion, and end-state, after which further changes are not apparent; co-irradiated adjacent areas having a slightly smaller thickness never develop bubbles. In moderately thicker regions (ca. over 200 A), there is no end-state. Instead, a complex sequence of microstructural changes is elicited during continued intermittent high-dose irradiation: nucleation, growth, early simple fusions, a second round of extensive multiple fusions, general reduction of matrix thickness (producing flattening and expansion of larger bubbles, occasional bubble fission, and formation of very large irregularly-shaped bubbles by a third round of compound fusion events), and slow shrinkage of all bubbles. The ongoing lighter appearance of bubble lumens, maintenance of their rounded shape, and extensive changes in size and form indicate that gas content continues throughout their surprisingly long lifetime; the thin dense boundary layer surrounding all bubbles is proposed to be the main mechanism for their long lifetime.
NASA Astrophysics Data System (ADS)
von Aulock, Felix W.; Wadsworth, Fabian B.; Kennedy, Ben M.; Lavallee, Yan
2015-04-01
During ascent of magma, pressure decreases and bubbles form. If the volume increases more rapidly than the relaxation timescale, the magma fragments catastrophically. If a permeable network forms, the magma degasses non-violently. This process is generally assumed to be unidirectional, however, recent studies have shown how shear and compaction can drive self sealing. Here, we additionally constrain skin formation during degassing and sintering. We heated natural samples of obsidian in a dry atmosphere and monitored foaming and impermeable skin formation. We suggest a model for skin formation that is controlled by diffusional loss of water and bubble collapse at free surfaces. We heated synthetic glass beads in a hydrous atmosphere to measure the timescale of viscous sintering. The beads sinter at drastically shorter timescales as water vapour rehydrates an otherwise degassed melt, reducing viscosity and glass transition temperatures. Both processes can produce dense inhomogeneities within the timescales of magma ascent and effectively disturb permeabilities and form barriers, particularly at the margins of the conduit, where strain localisation takes place. Localised ash in failure zones (i.e. Tuffisite) then becomes associated with water vapour fluxes and alow rapid rehydration and sintering. When measuring permeabilities in laboratory and field, and when discussing shallow degassing in volcanoes, local barriers for degassing should be taken into account. Highlighting the processes that lead to the formation of such dense skins and sintered infills of cavities can help understanding the bulk permeabilities of volcanic systems.
NASA Astrophysics Data System (ADS)
Han, Quan-Fu; Liu, Yue-Lin; Zhang, Ying; Ding, Fang; Lu, Guang-Hong
2018-04-01
The solubility and bubble formation of hydrogen (H) in tungsten (W) are crucial factors for the application of W as a plasma-facing component under a fusion environment, but the data and mechanism are presently scattered, indicating some important factors might be neglected. High-energy neutron-irradiated W inevitably causes a local strain, which may change the solubility of H in W. Here, we performed first-principles calculations to predict the H solution behaviors under isotropic strain combined with temperature effect in W and found that the H solubility in interstitial lattice can be promoted/impeded by isotropic tensile/compressive strain over the temperature range 300-1800 K. The calculated H solubility presents good agreement with the experiment. Together, our previous results of anisotropic strain, except for isotropic compression, both isotropic tension and anisotropic tension/compression enhance H solution so as to reveal an important physical implication for H accumulation and bubble formation in W: strain can enhance H solubility, resulting in the preliminary nucleation of H bubble that further causes the local strain of W lattice around H bubble, which in turn improves the H solubility at the strained region that promotes continuous growth of the H bubble via a chain-reaction effect in W. This result can also interpret the H bubble formation even if no radiation damage is produced in W exposed to low-energy H plasma.
Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C
Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...
2016-02-03
Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less
Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.
2003-01-01
The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.
Possible high sonic velocity due to the inclusion of gas bubbles in water
NASA Astrophysics Data System (ADS)
Banno, T.; Mikada, H.; Goto, T.; Takekawa, J.
2010-12-01
If formation water becomes multi-phase by inclusion of gas bubbles, sonic velocities would be strongly influenced. In general, sonic velocities are knocked down due to low bulk moduli of the gas bubbles. However, sonic velocities may increase depending on the size of gas bubbles, when the bubbles in water or other media oscillate due to incoming sonic waves. Sonic waves are scattered by the bubbles and the superposition of the incoming and the scattered waves result in resonant-frequency-dependent behavior. The phase velocity of sonic waves propagating in fluids containing bubbles, therefore, probably depends on their frequencies. This is a typical phenomenon called “wave dispersion.” So far we have studied about the bubble impact on sonic velocity in bubbly media, such as the formation that contains gas bubbles. As a result, it is shown that the bubble resonance effect is a key to analyze the sonic phase velocity increase. Therefore to evaluate the resonance frequency of bubbles is important to solve the frequency response of sonic velocity in formations having bubbly fluids. There are several analytical solutions of the resonance frequency of bubbles in water. Takahira et al. (1994) derived a equation that gives us the resonance frequency considering bubble - bubble interactions. We have used this theory to calculate resonance frequency of bubbles at the previous work. However, the analytical solution of the Takahira’s equation is based on several assumptions. Therefore we used a numerical approach to calculate the bubble resonance effect more precisely in the present study. We used the boundary element method (BEM) to reproduce a bubble oscillation in incompressible liquid. There are several reasons to apply the BEM. Firstly, it arrows us to model arbitrarily sets and shapes of bubbles. Secondly, it is easy to use the BEM to reproduce a boundary-surface between liquid and gas. The velocity potential of liquid surrounding a bubble satisfies the Laplace equation when the liquid is supposed to be incompressible. We got the boundary integral equation from the Laplace equation and solved the boundary integral equation by the BEM. Then, we got the gradient of the velocity potential from the BEM. We used this gradient to get time derivative of the velocity potential from the Bernouii’s equation. And we used the second order Adams-Bashforth method to execute time integration of the velocity potential. We conducted this scheme iteratively to calculate a bubble oscillation. At each time step, we input a pressure change as a sinusoidal wave. As a result, we observed a bubble oscillation following the pressure frequency. We also evaluated the resonance frequency of a bubble by changing the pressure frequency. It showed a good agreement with the analytical solution described above. Our future work is to extend the calculation into plural bubbles condition. We expect that interaction between bubbles becomes strong and resonance frequency of bubbles becomes small when distance between bubbles becomes small.
Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Chang, Shinan
2002-01-01
The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.
Numerical simulation of single bubble dynamics under acoustic travelling waves.
Ma, Xiaojian; Huang, Biao; Li, Yikai; Chang, Qing; Qiu, Sicong; Su, Zheng; Fu, Xiaoying; Wang, Guoyu
2018-04-01
The objective of this paper is to apply CLSVOF method to investigate the single bubble dynamics in acoustic travelling waves. The Naiver-Stokes equation considering the acoustic radiation force is proposed and validated to capture the bubble behaviors. And the CLSVOF method, which can capture the continuous geometric properties and satisfies mass conservation, is applied in present work. Firstly, the regime map, depending on the dimensionless acoustic pressure amplitude and acoustic wave number, is constructed to present different bubble behaviors. Then, the time evolution of the bubble oscillation is investigated and analyzed. Finally, the effect of the direction and the damping coefficient of acoustic wave propagation on the bubble behavior are also considered. The numerical results show that the bubble presents distinct oscillation types in acoustic travelling waves, namely, volume oscillation, shape oscillation, and splitting oscillation. For the splitting oscillation, the formation of jet, splitting of bubble, and the rebound of sub-bubbles may lead to substantial increase in pressure fluctuations on the boundary. For the shape oscillation, the nodes and antinodes of the acoustic pressure wave contribute to the formation of the "cross shape" of the bubble. It should be noted that the direction of the bubble translation and bubble jet are always towards the direction of wave propagation. In addition, the damping coefficient causes bubble in shape oscillation to be of asymmetry in shape and inequality in size, and delays the splitting process. Copyright © 2017 Elsevier B.V. All rights reserved.
Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process
NASA Technical Reports Server (NTRS)
Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.
2012-01-01
Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.
Bubble Dynamics in Polymer Solutions Undergoing Shear.
1985-04-01
cavitation bubble in water has been established as the fundamental theoretical approach to understanding this phenomenon. LA_ Laser -induced...cavitation inception. 1-2 Polymer effects on cavity appearance. 2-1 Spherical laser -induced bubble dynamics. 2-2 Vapor cavity jet formation. 2-3 Bubble...distilled water. 2-6B Nonspherical bubble dynamics in dilute polymer. 3-1 Closed-loop hydraulic cavitation tunnel. 3-2 Laser system optical components. 3-3
The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels
NASA Astrophysics Data System (ADS)
Boziuk, Thomas; Smith, Marc K.; Glezer, Ari
2012-11-01
Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.
NASA Astrophysics Data System (ADS)
Calderon, Andres J.; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph L.
2010-06-01
Motivated by a developmental gas embolotherapy technique for selective occlusion of blood flow to tumors, we examined the transport of a pressure-driven semi-infinite bubble through a liquid-filled bifurcating channel. Homogeneity of bubble splitting as the bubble passes through a vessel bifurcation affects the degree to which the vascular network near the tumor can be uniformly occluded. The homogeneity of bubble splitting was found to increase with bubble driving pressure and to decrease with increased bifurcation angle. Viscous losses at the bifurcation were observed to affect the bubble speed significantly. The potential for oscillating bubble interfaces to induce flow recirculation and impart high stresses on the vessel endothelium was also observed.
NASA Astrophysics Data System (ADS)
Liu, W. B.; Zhang, J. H.; Ji, Y. Z.; Xia, L. D.; Liu, H. P.; Yun, D.; He, C. H.; Zhang, C.; Yang, Z. G.
2018-03-01
High temperature (550 °C) He ions irradiation was performed on nanostructured (NS) and coarsen-grained (CG) reduced activation steel to investigate the effects of GBs/interfaces on the formation of bubbles during irradiation. Experimental results showed that He bubbles were preferentially trapped at dislocations and/or grain boundaries (GBs) for both of the samples. Void denuded zones (VDZs) were observed in the CG samples, while VDZs near GBs were unobvious in NS sample. However, both the average bubble size and the bubble density in peak damage region of the CG sample were significantly larger than that observed in the NS sample, which indicated that GBs play an important role during the irradiation, and the NS steel had better irradiation resistance than its CG counterpart.
The formation of soap bubbles created by blowing on soap films
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2015-11-01
Using either circular bubble wands or long-lasting vertically falling soap films having an adjustable steady state thickness, we study the formation of soap bubbles created when air is blown through a nozzle onto a soap film. We vary nozzle radius, film size, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are generated. The response is sensitive to confinement, that is, the ratio between film and jet sizes, and dissipation in the turbulent gas jet which is a function of the distance from the nozzle to the film. We observe four different regimes that we rationalize by comparing the dynamic pressure of a jet on the film and the Laplace pressure needed to create the curved surface of a bubble.
Blowing magnetic skyrmion bubbles
Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; ...
2015-06-11
The formation of soap bubbles from thin films is accompanied by topological transitions. In this paper, we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally “blow” magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of thesemore » dynamically created skyrmions, including depinning and motion. Finally, the demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics.« less
A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality.
Zhang, Ling; Zhou, Laicheng; Xu, Na; Ouyang, Zhenjie
2017-07-03
It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO 2 ) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO 2 -triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO 2 bubble-induced vortex during the co-assembly process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.
2016-07-08
Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the for- mation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was devel- oped. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn’t cause the gas bubble alignment, and fast 1-D migration of interstitials alongmore » $$\\langle$$110$$\\rangle$$ directions in the body-centered cubic U matrix causes the gas bubble alignment along $$\\langle$$110$$\\rangle$$ directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.« less
The formation of a Spitzer bubble RCW 79 triggered by a cloud-cloud collision
NASA Astrophysics Data System (ADS)
Ohama, Akio; Kohno, Mikito; Hasegawa, Keisuke; Torii, Kazufumi; Nishimura, Atsushi; Hattori, Yusuke; Hayakawa, Takahiro; Inoue, Tsuyoshi; Sano, Hidetoshi; Yamamoto, Hiroaki; Tachihara, Kengo; Fukui, Yasuo
2018-05-01
Understanding the mechanism of O-star formation is one of the most important current issues in astrophysics. Also an issue of keen interest is how O stars affect their surroundings and trigger secondary star formation. An H II region RCW 79 is one of the typical Spitzer bubbles alongside RCW 120. New observations of CO J = 1-0 emission with Mopra and NANTEN2 revealed that molecular clouds are associated with RCW 79 in four velocity components over a velocity range of 20 km s-1. We hypothesize that two of the clouds collided with each other and the collision triggered the formation of 12 O stars inside the bubble and the formation of 54 low-mass young stellar objects along the bubble wall. The collision is supported by observational signatures of bridges connecting different velocity components in the colliding clouds. The whole collision process happened over a timescale of ˜3 Myr. RCW 79 has a larger size by a factor of 30 in the projected area than RCW 120 with a single O star, and the large size favored formation of the 12 O stars due to the greater accumulated gas in the collisional shock compression.
The Feedback of Star Formation Based on Large-scale Spectroscopic Mapping Technology
NASA Astrophysics Data System (ADS)
Li, H. X.
2017-05-01
Star Formation is a fundamental topic in astrophysics. Although there is a popular model of low-mass star formation, every step of the process is full of physical and chemical complexity. One of the key questions is the dynamical feedback during the process of star formation. The answer of this question will help us to understand the star formation and the evolution of molecular clouds. We have identified outflows and bubbles in the Taurus molecular cloud based on the ˜ 100 deg2 Five College Radio Astronomy Observatory 12CO(1-0) and 13CO(1-0) maps and the Spitzer young stellar object (YSO) catalog. In the main 44 deg2 area of Taurus, we found 55 outflows, of which 31 were previously unknown. We also found 37 bubbles in the entire 100 deg2 area of Taurus, all of which had not been identified before. After visual inspection, we developed an interactive IDL pipeline to confirm the outflows and bubbles. This sample covers a contiguous region with a linear spatial dynamic range of ˜ 1000. Among the 55 outflows, we found that bipolar, monopolar redshifted, and monopolar blueshifted outflows account for 45%, 44%, and 11%, respectively. There are more red lobes than blue ones. The occurrence of more red lobes may result from the fact that Taurus is thin. Red lobes tend to be smaller and younger. The total mass and energy of red lobes are similar to blue lobes on average. There are 3 expanding bubbles and 34 broken bubbles among all the bubbles in Taurus. There are more outflow-driving YSOs in Class I, Flat, and Class II while few outflow-driving YSOs in Class III, which indicates that outflows more likely appear in the earlier stage (Class I) than in the later phase (Class III) of star formation. There are more bubble-driving YSOs of Class II and Class III while there are few bubble-driving YSOs of Class I and Flat, implying that the bubble structures are more likely to occur in the later stage of star formation. The total kinetic energy of the identified outflows is estimated to be ˜ 3.9 × 1045 erg, which is 1% of the cloud turbulent energy. The total kinetic energy of the detected bubbles is estimated to be ˜ 9.2 × 1046 erg, which is 29% of the turbulent energy of Taurus. The energy injection rate from the outflows is ˜ 1.3 × 1033 erg s-1, 0.4-2 times the turbulent dissipation rate of the cloud. The energy injection rate from bubbles is ˜ 6.4 × 1033 erg s-1, 2-10 times the turbulent dissipation rate of the cloud. The gravitational binding energy of the cloud is ˜ 1.5 × 1048 erg, 385 and 16 times the energy of outflows and bubbles, respectively. We conclude that neither outflows nor bubbles can provide sufficient energy to balance the overall gravitational binding energy and the turbulent energy of Taurus. However, in the current epoch, stellar feedback is sufficient to maintain the observed turbulence in Taurus. We studied the methods of spectral data processing for large-scale surveys, which is helpful in developing the data-processing software of FAST (Five-hundred-meter Aperture Spherical radio Telescope).
Testing Fundamental Properties of Ionic Liquids for Colloid Microthruster Applications
NASA Technical Reports Server (NTRS)
Anderson, John R.; Plett, Gary; Anderson, Mark; Ziemer, John
2006-01-01
NASA's New Millennium Program is scheduled to test a Disturbance Reduction System (DRS) on Space Technology 7 (ST7) as part of the European Space Agency's (ESA's) LISA Pathfinder Mission in late 2009. Colloid Micronewton Thrusters (CMNTs) will be used to counteract forces, mainly solar photon pressure, that could disturb gravitational reference sensors as part of the DRS. The micronewton thrusters use an ionic liquid, a room temperature molten salt, as propellant. The ionic liquid has a number of unusual properties that have a direct impact on thruster design. One of the most important issues is bubble formation before and during operation, especially during rapid pressure transitions from atmospheric to vacuum conditions. Bubbles have been observed in the feed system causing variations in propellant flow rate that can adversely affect thruster control. Bubbles in the feed system can also increase the likelihood that propellant will spray onto surfaces that can eventually lead to shorting high voltage electrodes. Two approaches, reducing the probability of bubble formation and removing bubbles with a new bubble eliminator device in the flow system, were investigated at Busek Co., Inc. and the Jet Propulsion Laboratory (JPL) to determine the effectiveness of both approaches. Results show that bubble formation is mainly caused by operation at low pressure and volatile contaminants in the propellant coming out of solution. A specification for the maximum tolerable level of contamination has been developed, and procedures for providing system cleanliness have been tested and implemented. The bubble eliminator device has also been tested successfully and has been implemented in recent thruster designs at Busek. This paper focuses on the propellant testing work at JPL, including testing of a breadboard level bubble eliminator device.
FILM FORMAT AND FIDUCIAL MARKS OF THE 20$sub 4$ BUBBLE CHAMBER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, E.L.
1962-12-31
A description is given of the 20-in. bubble chamber film format. The film format consists of: chamber image; Arabic picture number; binary data box; Arabic view number; and the Hough-Powell road fiducial marks. The fiducial marks and their relation to the chamber optical constants are discussed. The constants are based on the standard measuring fiducials a and d. (P.C.H.)
Star formation in shells of colliding multi-SNe bubbles
NASA Astrophysics Data System (ADS)
Vasiliev, Evgenii O.; Shchekinov, Yuri A.
2017-12-01
It is believed that when bubbles formed by multiple supernovae explosions interact with one another, they stimulate star formation in overlapping shells. We consider the evolution of a shocked layer formed by the collision of two identical bubbles each of which originated from OB clusters of ˜ 50 members and ˜ 50 pc. The clusters are separated by 200-400 pc.We found that depending on evolutionary status of colliding bubbles the shocked layer can either be destroyed into diffuse lumps, or be fragmented into dense clumps: the former occurs in collisions of young bubbles with continuing supernovae explosions, and the latter occurs in older bubble interactions.We argue that fragmentation efficiency in shells depends on external heating: for a heating rate <˜ 1.7×10-24 erg s-1 the number of fragments formed in a collision of two old bubbles reaches several tens at t ˜ 4 Myr, while a heating rate >˜ 7 × 10-24 erg s-1 prevents fragmentation. The clumps formed in freely expanding parts of bubbles are gradually destroyed and disappear on t <˜ 1 Myr,whereas those formed in the overlapping shells survive much longer. Because of this the number of fragments in an isolated bubble begins to decrease after reaching a maximum, while in collision of two old bubbles it fluctuates around 60-70 until longer than t ˜ 5 Myr.
Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation
NASA Astrophysics Data System (ADS)
Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon
2018-02-01
Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.
He bubble growth and interaction in W nano-tendrils
NASA Astrophysics Data System (ADS)
Smirnov, R. D.; Krasheninnikov, S. I.
2015-11-01
Tungsten plasma-facing components (PFCs) in fusion devices are exposed to variety of extreme plasma conditions, which can lead to alteration of tungsten micro-structure and degradation of the PFCs. In particular, it is known that filamentary nano-structures called fuzz can grow on helium plasma exposed tungsten surfaces. However, mechanism of the fuzz growth is still not fully understood. Existing experimental observations indicate that formation of helium nano-bubbles in tungsten plays essential role in fuzz formation and growth. In this work we investigate mechanisms of growth and interaction of helium bubbles in fuzz-like nano-tendrils using molecular dynamics simulations with LAMMPS code. We show that growth of the bubbles has anisotropic character producing complex stress field in the nano-tendrils with distinct compression and tension regions. We found that formation of large inter-bubble tension regions can cause lateral stretching and bending of the tendrils that consequently lead to their elongation and thinning at the stretching sites. The rate of nano-tendril growth due to the described mechanism is also evaluated from the simulations.
INTERACTIONS OF THE INFRARED BUBBLE N4 WITH ITS SURROUNDINGS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hong-Li; Li, Jin-Zeng; Yuan, Jing-Hua
The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with H ii regions have been considered to be good samples for investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the H ii region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a widemore » wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 × 10{sup 22} cm{sup −2}, mean volume density of about 4.4 × 10{sup 4} cm{sup −3}, and a mean mass of 320 M{sub ⊙}. In addition, from PAH emission seen at 8 μm, free–free emission detected at 20 cm, and a probability density function in special regions, we could identify clear signatures of the influence of the H ii region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.« less
Molten Boron Phase-Change Thermal Energy Storage to Augment Solar Thermal Propulsion Systems
2011-07-22
during the 50 psi case included bubble clouds somewhat similar to the " popcorn " and "jellyfish" formations observed at ambient-pressure conditions...between the "jellyfish" and " popcorn " was lost -- popcorn formations were generally longer-lived, often traversing a significant portion of the field of... popcorn -like bubbles were generally swirling in/around the jellyfish formations. The turbulent wake of some of the jellyfish-like formations could
Mobile access to the Internet: from personal bubble to satellites
NASA Astrophysics Data System (ADS)
Gerla, Mario
2001-10-01
Mobile, wireless access and networking has emerged in the last few years as one of the most important directions of Internet growth. The popularity of mobile, and, more generally, nomadic Internet access is due to many enabling factors including: (a) emergence of meaningful applications tailored to the individual on the move; (b) small form factor and long battery life; (c) efficient middleware designed to support mobility; and, (d) efficient wireless networking technologies. A key player in the mobile Internet access is the nomad, i.e. the individual equipped with various computing and I/O gadgets (cellular phone, earphones, GPS navigator, palm pilot, beeper, portable scanner, digital camera, etc.). These devices form his/her Personal Area Network or PAN or personal bubble. The connectivity within the bubble is wireless (using for example a low cost, low power wireless LAN such as Bluetooth). The bubble can expand and contract dynamically depending on needs. It may temporarily include sensors and actuators as the nomad walks into a new environment. In this paper, we identify the need for the interconnection of the PAN with other wireless networks in order to achieve costeffective mobile access to the Internet. We will overview some key networking technologies required to support the PAN (eg, Bluetooth). We will also discuss an emerging technology, Ad Hoc wireless networking which is the natural complement of the PAN in sparsely populated areas. Finally, we will identify the need for intelligent routers to assist the mobile user in the selection of the best Internet access strategy.
NASA Astrophysics Data System (ADS)
Eswaraiah, Chakali; Lai, Shih-Ping; Chen, Wen-Ping; Pandey, A. K.; Tamura, M.; Maheswar, G.; Sharma, S.; Wang, Jia-Wei; Nishiyama, S.; Nakajima, Y.; Kwon, Jungmi; Purcell, R.; Magalhães, A. M.
2017-12-01
The influence of magnetic fields (B-fields) on the formation and evolution of bipolar bubbles, due to the expanding ionization fronts (I-fronts) driven by the H II regions that are formed and embedded in filamentary molecular clouds, has not been well-studied yet. In addition to the anisotropic expansion of I-fronts into a filament, B-fields are expected to introduce an additional anisotropic pressure, which might favor the expansion and propagation of I-fronts forming a bipolar bubble. We present results based on near-infrared polarimetric observations toward the central ˜8‧ × 8‧ area of the star-forming region RCW 57A, which hosts an H II region, a filament, and a bipolar bubble. Polarization measurements of 178 reddened background stars, out of the 919 detected sources in the JHK s bands, reveal B-fields that thread perpendicularly to the filament long axis. The B-fields exhibit an hourglass morphology that closely follows the structure of the bipolar bubble. The mean B-field strength, estimated using the Chandrasekhar-Fermi method (CF method), is 91 ± 8 μG. B-field pressure dominates over turbulent and thermal pressures. Thermal pressure might act in the same orientation as the B-fields to accelerate the expansion of those I-fronts. The observed morphological correspondence among the B-fields, filament, and bipolar bubble demonstrate that the B-fields are important to the cloud contraction that formed the filament, to the gravitational collapse and star formation in it, and in feedback processes. The last one includes the formation and evolution of mid-infrared bubbles by means of B-field supported propagation and expansion of I-fronts. These may shed light on preexisting conditions favoring the formation of the massive stellar cluster in RCW 57A.
The physiological kinetics of nitrogen and the prevention of decompression sickness.
Doolette, D J; Mitchell, S J
2001-01-01
Decompression sickness (DCS) is a potentially crippling disease caused by intracorporeal bubble formation during or after decompression from a compressed gas underwater dive. Bubbles most commonly evolve from dissolved inert gas accumulated during the exposure to increased ambient pressure. Most diving is performed breathing air, and the inert gas of interest is nitrogen. Divers use algorithms based on nitrogen kinetic models to plan the duration and degree of exposure to increased ambient pressure and to control their ascent rate. However, even correct execution of dives planned using such algorithms often results in bubble formation and may result in DCS. This reflects the importance of idiosyncratic host factors that are difficult to model, and deficiencies in current nitrogen kinetic models. Models describing the exchange of nitrogen between tissues and blood may be based on distributed capillary units or lumped compartments, either of which may be perfusion- or diffusion-limited. However, such simplistic models are usually poor predictors of experimental nitrogen kinetics at the organ or tissue level, probably because they fail to account for factors such as heterogeneity in both tissue composition and blood perfusion and non-capillary exchange mechanisms. The modelling of safe decompression procedures is further complicated by incomplete understanding of the processes that determine bubble formation. Moreover, any formation of bubbles during decompression alters subsequent nitrogen kinetics. Although these factors mandate complex resolutions to account for the interaction between dissolved nitrogen kinetics and bubble formation and growth, most decompression schedules are based on relatively simple perfusion-limited lumped compartment models of blood: tissue nitrogen exchange. Not surprisingly, all models inevitably require empirical adjustment based on outcomes in the field. Improvements in the predictive power of decompression calculations are being achieved using probabilistic bubble models, but divers will always be subject to the possibility of developing DCS despite adherence to prescribed limits.
NASA Astrophysics Data System (ADS)
Hiruta, A.; Matsumoto, R.
2015-12-01
We trapped gas bubbles emitted from the seafloor into oil-containing collector and observed an unique phenomena. Gas hydrate formation needs water for the crystal lattice; however, gas hydrates in some areas are associated with hydrophobic crude oil or asphalt. In order to understand gas hydrate growth in oil-bearing sediments, an experiment with cooking oil was made at gas hydrate stability condition. We collected venting gas bubbles into a collector with canola oil during ROV survey at a gas hydrate area in the eastern margin of the Sea of Japan. When the gas bubbles were trapped into collector with oil, gas phase appeared above the oil and gas hydrates, between oil and gas phase. At this study area within gas hydrate stability condition, control experiment with oil-free collector suggested that gas bubbles emitted from the seafloor were quickly covered with gas hydrate film. Therefore it is improbable that gas bubbles entered into the oil phase before hydrate skin formation. After the gas phase formation in oil-containing collector, the ROV floated outside of hydrate stability condition for gas hydrate dissociation and re-dived to the venting site. During the re-dive within hydrate stability condition, gas hydrate was not formed. The result suggests that moisture in the oil is not enough for hydrate formation. Therefore gas hydrates that appeared at the oil/gas phase boundary were already formed before bubbles enter into the oil. Hydrate film is the only possible origin. This observation suggests that hydrate film coating gas hydrate was broken at the sea water/oil boundary or inside oil. Further experiments may contribute for revealing kinetics of hydrate film and formation. This work was a part of METI (Ministry of Economy, Trade and Industry)'s project entitled "FY2014 Promoting research and development of methane hydrate". We also appreciate support of AIST (National Institute of Advanced Industrial Science and Technology).
Molecular dynamics simulations of bubble nucleation in dark matter detectors.
Denzel, Philipp; Diemand, Jürg; Angélil, Raymond
2016-01-01
Bubble chambers and droplet detectors used in dosimetry and dark matter particle search experiments use a superheated metastable liquid in which nuclear recoils trigger bubble nucleation. This process is described by the classical heat spike model of F. Seitz [Phys. Fluids (1958-1988) 1, 2 (1958)PFLDAS0031-917110.1063/1.1724333], which uses classical nucleation theory to estimate the amount and the localization of the deposited energy required for bubble formation. Here we report on direct molecular dynamics simulations of heat-spike-induced bubble formation. They allow us to test the nanoscale process described in the classical heat spike model. 40 simulations were performed, each containing about 20 million atoms, which interact by a truncated force-shifted Lennard-Jones potential. We find that the energy per length unit needed for bubble nucleation agrees quite well with theoretical predictions, but the allowed spike length and the required total energy are about twice as large as predicted. This could be explained by the rapid energy diffusion measured in the simulation: contrary to the assumption in the classical model, we observe significantly faster heat diffusion than the bubble formation time scale. Finally we examine α-particle tracks, which are much longer than those of neutrons and potential dark matter particles. Empirically, α events were recently found to result in louder acoustic signals than neutron events. This distinction is crucial for the background rejection in dark matter searches. We show that a large number of individual bubbles can form along an α track, which explains the observed larger acoustic amplitudes.
Neutron imaging with bubble chambers for inertial confinement fusion
NASA Astrophysics Data System (ADS)
Ghilea, Marian C.
One of the main methods to obtain energy from controlled thermonuclear fusion is inertial confinement fusion (ICF), a process where nuclear fusion reactions are initiated by heating and compressing a fuel target, typically in the form of a pellet that contains deuterium and tritium, relying on the inertia of the fuel mass to provide confinement. In inertial confinement fusion experiments, it is important to distinguish failure mechanisms of the imploding capsule and unambiguously diagnose compression and hot spot formation in the fuel. Neutron imaging provides such a technique and bubble chambers are capable of generating higher resolution images than other types of neutron detectors. This thesis explores the use of a liquid bubble chamber to record high yield 14.1 MeV neutrons resulting from deuterium-tritium fusion reactions on ICF experiments. A design tool to deconvolve and reconstruct penumbral and pinhole neutron images was created, using an original ray tracing concept to simulate the neutron images. The design tool proved that misalignment and aperture fabrication errors can significantly decrease the resolution of the reconstructed neutron image. A theoretical model to describe the mechanism of bubble formation was developed. A bubble chamber for neutron imaging with Freon 115 as active medium was designed and implemented for the OMEGA laser system. High neutron yields resulting from deuterium-tritium capsule implosions were recorded. The bubble density was too low for neutron imaging on OMEGA but agreed with the model of bubble formation. The research done in here shows that bubble detectors are a promising technology for the higher neutron yields expected at National Ignition Facility (NIF).
NASA Astrophysics Data System (ADS)
Wang, Binbin; Socolofsky, Scott A.; Breier, John A.; Seewald, Jeffrey S.
2016-04-01
This paper reports the results of quantitative imaging using a stereoscopic, high-speed camera system at two natural gas seep sites in the northern Gulf of Mexico during the Gulf Integrated Spill Research G07 cruise in July 2014. The cruise was conducted on the E/V Nautilus using the ROV Hercules for in situ observation of the seeps as surrogates for the behavior of hydrocarbon bubbles in subsea blowouts. The seeps originated between 890 and 1190 m depth in Mississippi Canyon block 118 and Green Canyon block 600. The imaging system provided qualitative assessment of bubble behavior (e.g., breakup and coalescence) and verified the formation of clathrate hydrate skins on all bubbles above 1.3 m altitude. Quantitative image analysis yielded the bubble size distributions, rise velocity, total gas flux, and void fraction, with most measurements conducted from the seafloor to an altitude of 200 m. Bubble size distributions fit well to lognormal distributions, with median bubble sizes between 3 and 4.5 mm. Measurements of rise velocity fluctuated between two ranges: fast-rising bubbles following helical-type trajectories and bubbles rising about 40% slower following a zig-zag pattern. Rise speed was uncorrelated with hydrate formation, and bubbles following both speeds were observed at both sites. Ship-mounted multibeam sonar provided the flare rise heights, which corresponded closely with the boundary of the hydrate stability zone for the measured gas compositions. The evolution of bubble size with height agreed well with mass transfer rates predicted by equations for dirty bubbles.
Natural Gas Evolution in a Gas Hydrate Melt: Effect of Thermodynamic Hydrate Inhibitors.
Sujith, K S; Ramachandran, C N
2017-01-12
Natural gas extraction from gas hydrate sediments by injection of hydrate inhibitors involves the decomposition of hydrates. The evolution of dissolved gas from the hydrate melt is an important step in the extraction process. Using classical molecular dynamics simulations, we study the evolution of dissolved methane from its hydrate melt in the presence of two thermodynamic hydrate inhibitors, NaCl and CH 3 OH. An increase in the concentration of hydrate inhibitors is found to promote the nucleation of methane nanobubbles in the hydrate melt. Whereas NaCl promotes bubble formation by enhancing the hydrophobic interaction between aqueous CH 4 molecules, CH 3 OH molecules assist bubble formation by stabilizing CH 4 bubble nuclei formed in the solution. The CH 3 OH molecules accumulate around the nuclei leading to a decrease in the surface tension at their interface with water. The nanobubbles formed are found to be highly dynamic with frequent exchange of CH 4 molecules between the bubble and the surrounding liquid. A quantitative analysis of the dynamic behavior of the bubble is performed by introducing a unit step function whose value depends on the location of CH 4 molecules with respect to the bubble. It is observed that an increase in the concentration of thermodynamic hydrate inhibitors reduces the exchange process, making the bubble less dynamic. It is also found that for a given concentration of the inhibitor, larger bubbles are less dynamic compared to smaller ones. The dependence of the dynamic nature of nanobubbles on bubble size and inhibitor concentration is correlated with the solubility of CH 4 and the Laplace pressure within the bubble. The effect of CO 2 on the formation of nanobubble in the CH 4 -CO 2 mixed gas hydrate melt in the presence of inhibitors is also examined. The simulations show that the presence of CO 2 molecules significantly reduces the induction time for methane nanobubble nucleation. The role of CO 2 in the early nucleation of bubble is explained based on the interaction between the bubble and the dissolved CO 2 molecules.
Shock wave interaction with laser-generated single bubbles.
Sankin, G N; Simmons, W N; Zhu, S L; Zhong, P
2005-07-15
The interaction of a lithotripter shock wave (LSW) with laser-generated single vapor bubbles in water is investigated using high-speed photography and pressure measurement via a fiber-optic probe hydrophone. The interaction leads to nonspherical collapse of the bubble with secondary shock wave emission and microjet formation along the LSW propagation direction. The maximum pressure amplification is produced during the collapse phase of the bubble oscillation when the compressive pulse duration of the LSW matches with the forced collapse time of the bubble.
ERIC Educational Resources Information Center
Korenic, Eileen
1988-01-01
Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…
Videotaping the Lifespan of a Soap Bubble.
ERIC Educational Resources Information Center
Ramme, Goran
1995-01-01
Describes how the use of a videotape to record the history of a soap bubble allows a study of many interesting events in considerable detail including interference fringes, convection and turbulence patterns on the surface, formation of black film, and the ultimate explosion of the bubble. (JRH)
NASA Astrophysics Data System (ADS)
Acconcia, Christopher N.
The occlusion of blood vessels by thrombus is a major cause of mortality and morbidity in cardiovascular diseases such as deep vein thrombosis, myocardial infarction and ischemic stroke. In these contexts, prompt restoration of blood flow is of the utmost importance and is poorly addressed by current methods in many cases. For example, the treatment standard for ischemic stroke is administration of the thrombolytic agent tissue plasminogen activator, which is only minimally effective and has associated safety issues. There is, therefore, a need for the development of alternative recanalization strategies and amongst these, bubble mediated sonothrombolysis (thrombolysis by ultrasound) has emerged as a promising approach. Though it is well established that ultrasound stimulated microbubbles can potentiate the lysis of blood clots, the mechanisms are not well understood and this lack of understanding is a hindrance to the development of improved ultrasound exposure strategies. This thesis has revealed insights into the mechanisms of bubble mediated sonothrombolysis which can be used to guide the development of improved exposure strategies and contrast agents (i.e. bubble sizes) for sonothrombolysis treatments. The experimental approach involved fast frame optical imaging of ultrasound stimulated microbubbles interacting with clots, and two-photon fluorescence imaging of clots following ultrasound exposure. It was demonstrated that bubbles can penetrate fibrin clots, disrupt the fibrin network, generate patent tunnels, enhance the transport of fluid into the clot and induce clot boundary displacements. Furthermore, the occurrence and extent of these therapeutically relevant effects were shown to be highly dependent on pulse length and bubble size: longer pulses and larger bubbles were associated with greater disruption of fibrin networks and greater fluid transport distances. Finally, it was shown that bubbles can induce the ejection of erythrocytes from blood clots and produce advanced erosion effects which depend on ultrasound exposure conditions.
Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem
NASA Astrophysics Data System (ADS)
Ramaprabhu, P.; Dimonte, Guy; Young, Yuan-Nan; Calder, A. C.; Fryxell, B.
2006-12-01
We report on the behavior of a single-wavelength Rayleigh-Taylor flow at late times. The calculations were performed in a long square duct (λ×λ×8λ) , using four different numerical simulations. In contradiction with potential flow theories that predict a constant terminal velocity, the single-wavelength Rayleigh-Taylor problem exhibits late-time acceleration. The onset of acceleration occurs as the bubble penetration depth exceeds the diameter of bubbles, and is observed for low and moderate density differences. Based on our simulations, we provide a phenomenological description of the observed acceleration, and ascribe this behavior to the formation of Kelvin-Helmholtz vortices on the bubble-spike interface that diminish the friction drag, while the associated induced flow propels the bubbles forward. For large density ratios, the formation of secondary instabilities is suppressed, and the bubbles remain terminal consistent with potential flow models.
Bubbling cell death: A hot air balloon released from the nucleus in the cold.
Chang, Nan-Shan
2016-06-01
Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as "formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death." When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. © 2016 by the Society for Experimental Biology and Medicine.
Bubbling cell death: A hot air balloon released from the nucleus in the cold
2016-01-01
Cell death emanating from the nucleus is largely unknown. In our recent study, we determined that when temperature is lowered in the surrounding environment, apoptosis stops and bubbling cell death (BCD) occurs. The study concerns the severity of frostbite. When exposed to severe cold and strong ultraviolet (UV) irradiation, people may suffer serious damages to the skin and internal organs. This ultimately leads to limb amputations, organ failure, and death. BCD is defined as “formation of a single bubble from the nucleus per cell and release of this swelling bubble from the cell surface to extracellular space that causes cell death.” When cells are subjected to UV irradiation and/or brief cold shock (4℃ for 5 min) and then incubated at room temperature or 4℃ for time-lapse microscopy, each cell releases an enlarging nuclear gas bubble containing nitric oxide. Certain cells may simultaneously eject hundreds or thousands of exosome-like particles. Unlike apoptosis, no phosphatidylserine flip-over, mitochondrial apoptosis, damage to Golgi complex, and chromosomal DNA fragmentation are shown in BCD. When the temperature is increased back at 37℃, bubble formation stops and apoptosis restarts. Mechanistically, proapoptotic WW domain-containing oxidoreductase and p53 block the protective TNF receptor adaptor factor 2 that allows nitric oxide synthase 2 to synthesize nitric oxide and bubble formation. In this mini-review, updated knowledge in cell death and the proposed molecular mechanism for BCD are provided. PMID:27075929
Helium accumulation and bubble formation in FeCoNiCr alloy under high fluence He+ implantation
NASA Astrophysics Data System (ADS)
Chen, Da; Tong, Y.; Li, H.; Wang, J.; Zhao, Y. L.; Hu, Alice; Kai, J. J.
2018-04-01
Face-centered cubic (FCC) high-entropy alloys (HEA), as emerging alloys with equal-molar or near equal-molar constituents, show a promising radiation damage resistance under heavy ion bombardment, making them potential for structural material application in next-generation nuclear reactors, but the accumulation of light helium ions, a product of nuclear fission reaction, has not been studied. The present work experimentally studied the helium accumulation and bubble formation at implantation temperatures of 523 K, 573 K and 673 K in a homogenized FCC FeCoNiCr HEA, a HEA showing excellent radiation damage resistance under heavy ion irradiation. The size and population density of helium bubbles in FeCoNiCr samples were quantitatively analyzed through transmission electron microscopy (TEM), and the helium content existing in bubbles were estimated from a high-pressure Equation of State (EOS). We found that the helium diffusion in such condition was dominated by the self-interstitial/He replacement mechanism, and the corresponding activation energy in FeCoNiCr is comparable with the vacancy migration energy in Ni and austenitic stainless steel but only 14.3%, 31.4% and 51.4% of the accumulated helium precipitated into helium bubbles at 523 K, 573 K and 673 K, respectively, smaller than the pure Ni case. Importantly, the small bubble size suggested that FeCoNiCr HEA has a high resistance of helium bubble formation compared with Ni and steels.
Amos, Richard T.; Mayer, K. Ulrich
2006-01-01
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O2 to waters otherwise depleted in O2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH4 partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.
NASA Astrophysics Data System (ADS)
Amos, Richard T.; Ulrich Mayer, K.
2006-09-01
In many natural and contaminated aquifers, geochemical processes result in the production or consumption of dissolved gases. In cases where methanogenesis or denitrification occurs, the production of gases may result in the formation and growth of gas bubbles below the water table. Near the water table, entrapment of atmospheric gases during water table rise may provide a significant source of O 2 to waters otherwise depleted in O 2. Furthermore, the presence of bubbles will affect the hydraulic conductivity of an aquifer, resulting in changes to the groundwater flow regime. The interactions between physical transport, biogeochemical processes, and gas bubble formation, entrapment and release is complex and requires suitable analysis tools. The objective of the present work is the development of a numerical model capable of quantitatively assessing these processes. The multicomponent reactive transport code MIN3P has been enhanced to simulate bubble growth and contraction due to in-situ gas production or consumption, bubble entrapment due to water table rise and subsequent re-equilibration of the bubble with ambient groundwater, and permeability changes due to trapped gas phase saturation. The resulting formulation allows for the investigation of complex geochemical systems where microbially mediated redox reactions both produce and consume gases as well as affect solution chemistry, alkalinity, and pH. The enhanced model has been used to simulate processes in a petroleum hydrocarbon contaminated aquifer where methanogenesis is an important redox process. The simulations are constrained by data from a crude oil spill site near Bemidji, MN. Our results suggest that permeability reduction in the methanogenic zone due to in-situ formation of gas bubbles, and dissolution of entrapped atmospheric bubbles near the water table, both work to attenuate the dissolved gas plume emanating from the source zone. Furthermore, the simulations demonstrate that under the given conditions more than 50% of all produced CH 4 partitions to the gas phase or is aerobically oxidised near the water table, suggesting that these processes should be accounted for when assessing the rate and extent of methanogenic degradation of hydrocarbons.
Combustion dynamics of low vapour pressure nanofuel droplets
NASA Astrophysics Data System (ADS)
Pandey, Khushboo; Chattopadhyay, Kamanio; Basu, Saptarshi
2017-07-01
Multiscale combustion dynamics, shape oscillations, secondary atomization, and precipitate formation have been elucidated for low vapour pressure nanofuel [n-dodecane seeded with alumina nanoparticles (NPs)] droplets. Dilute nanoparticle loading rates (0.1%-1%) have been considered. Contrary to our previous studies of ethanol-water blend (high vapour pressure fuel), pure dodecane droplets do not exhibit internal boiling after ignition. However, variation in surface tension due to temperature causes shape deformations for pure dodecane droplets. In the case of nanofuels, intense heat release from the enveloping flame leads to the formation of micron-size aggregates (of alumina NPS) which serve as nucleation sites promoting heterogeneous boiling. Three boiling regimes (A, B, and C) have been identified with varying bubble dynamics. We have deciphered key mechanisms responsible for the growth, transport, and rupture of the bubbles. Bubble rupture causes ejections of liquid droplets termed as secondary atomization. Ejection of small bubbles (mode 1) resembles the classical vapour bubble collapse mechanism near a flat free surface. However, large bubbles induce severe shape deformations as well as bulk oscillations. Rupture of large bubbles results in high speed liquid jet formation which undergoes Rayleigh-Plateau tip break-up. Both modes contribute towards direct fuel transfer from the droplet surface to flame envelope bypassing diffusion limitations. Combustion lifetime of nanofuel droplets consequently has two stages: stage I (where bubble dynamics are dominant) and stage II (formation of gelatinous mass due to continuous fuel depletion; NP agglomeration). In the present work, variation of flame dynamics and spatio-temporal heat release (HR) have been analysed using high speed OH* chemiluminescence imaging. Fluctuations in droplet shape and flame heat release are found to be well correlated. Droplet flame is bifurcated in two zones (I and II). Flame response is manifested in two frequency ranges: (i) buoyant flame flickering and (ii) auxiliary frequencies arising from high intensity secondary ejections due to bubble ruptures. Addition of alumina NPs enhances the heat absorption rate and ensures the rapid transfer of fuel parcels (detached daughter droplets) from droplet surface to flame front through secondary ejections. Therefore, average HR shows an increasing trend with particle loading rate (PLR). The perikinetic agglomeration model is used to explain the formation of gelatinous sheath during the last phase of droplet burning. Gelatinous mass formed results in bubble entrapment. SEM images of combustion precipitates show entrapped bubble cavities along with surface and sub-surface blowholes. Morphology of combustion precipitate shows a strong variation with PLRs. We have established the coupling mechanisms among heat release, shape oscillations, and secondary atomizations that underline the combustion behaviour of such low vapour pressure nanofuels.
Numerical simulation of the distribution of individual gas bubbles in shaped sapphire crystals
NASA Astrophysics Data System (ADS)
Borodin, A. V.; Borodin, V. A.
2017-11-01
The simulation of the effective density of individual gas bubbles in a two-phase melt, consisting of a liquid and gas bubbles, is performed using the virtual model of the thermal unit. Based on the studies, for the first time the theoretically and experimentally grounded mechanism of individual gas bubbles formation in shaped sapphire is proposed. It is shown that the change of the melt flow pattern in crucible affects greatly the bubble density at the crystallization front, and in the crystal. The obtained results allowed reducing the number of individual gas bubbles in sapphire sheets.
Robust acoustic wave manipulation of bubbly liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gumerov, N. A., E-mail: gumerov@umiacs.umd.edu; Center for Micro- and Nanoscale Dynamics of Dispersed Systems, Bashkir State University, Ufa 450076; Akhatov, I. S.
Experiments with water–air bubbly liquids when exposed to acoustic fields of frequency ∼100 kHz and intensity below the cavitation threshold demonstrate that bubbles ∼30 μm in diameter can be “pushed” away from acoustic sources by acoustic radiation independently from the direction of gravity. This manifests formation and propagation of acoustically induced transparency waves (waves of the bubble volume fraction). In fact, this is a collective effect of bubbles, which can be described by a mathematical model of bubble self-organization in acoustic fields that matches well with our experiments.
Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei
2018-01-24
Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.
Effect of an entrained air bubble on the acoustics of an ink channel.
Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2008-05-01
Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.
Brebeck, Anne-Kathrin; Deussen, Andreas; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D
2018-03-01
Bubble formation during scuba diving might induce decompression sickness. This prospective randomised and double-blind study included 108 advanced recreational divers (38 females). Fifty-four pairs of divers, 1 breathing air and the other breathing nitrox28 undertook a standardised dive (24 ± 1 msw; 62 ± 5min) in the Red Sea. Venous gas bubbles were counted (Doppler) 30-<45 min (early) and 45-60 min (late) post-dive at jugular, subclavian and femoral sites. Only 7% (air) vs. 11% (air28®) (n.s.) were bubble-free after a dive. Independent of sampling time and breathing gas, there were more bubbles in the jugular than in the femoral vein. More bubbles were counted in the air-group than in the air28-group (pooled vein: early: 1845 vs. 948; P = 0.047, late: 1817 vs. 953; P = 0.088). The number of bubbles was sex-dependent. Lastly, 29% of female air divers but only 14% of male divers were bubble-free (P = 0.058). Air28® helps to reduce venous gas emboli in recreational divers. The bubble number depended on the breathing gas, sampling site and sex. Thus, both exact reporting the dive and in particular standardising sampling characteristics seem mandatory to compare results from different studies to further investigate the hitherto incoherent relation between inert gas bubbles and DCS.
NASA Astrophysics Data System (ADS)
Rotman, H. M. M.; Kyle, P. R.; Fee, D.; Curtis, A.
2015-12-01
Erebus, an active intraplate volcano on Ross Island, commonly produces bubble burst Strombolian explosions from a long-lived, convecting phonolitic lava lake. Persistent lava lakes are rare, and provide direct insights into their underlying magmatic system. Erebus phonolite is H2O-poor and contains ~30% anorthoclase megacrysts. At shallow depths lab measurements suggest the magma has viscosities of ~107 Pa s. This has implications for magma and bubble ascent rates through the conduit and into the lava lake. The bulk composition and matrix glass of Erebus ejecta has remained uniform for many thousands of years, but eruptive activity varies on decadal and shorter time scales. Over the last 15 years, increased activity took place in 2005-2007, and more recently in the 2013 austral summer. In the 2014 austral summer, new infrasound sensors were installed ~700 m from the summit crater hosting the lava lake. These sensors, supplemented by the Erebus network seismic stations, recorded >1000 eruptions between 1 January and 7 April 2015, with an average infrasound daily uptime of 9.6 hours. Over the same time period, the CTBT infrasound station IS55, ~25 km from Erebus, detected ~115 of the >1000 locally observed eruptions with amplitude decreases of >100x. An additional ~200 eruptions were recorded during local infrasound downtime. This represents an unusually high level of activity from the Erebus lava lake, and while instrument noise influences the minimum observable amplitude each day, the eruption infrasound amplitudes may vary by ~3 orders of magnitude over the scale of minutes to hours. We use this heightened period of variable activity and associated seismic and acoustic waveforms to examine mechanisms for bubble formation and ascent, such as rise speed dependence and collapsing foam; repose times for the larger eruptions; and possible eruption connections to lava lake cyclicity.
Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan
2017-07-14
Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.
Kaur, Surinder Pal; Sujith, K S; Ramachandran, C N
2018-04-04
The replacement of methane (CH4) from its hydrate by a mixture of nitrogen (N2) and carbon dioxide (CO2) involves the dissociation of methane hydrate leading to the formation of a CH4-N2-CO2-H2O mixture that can significantly influence the subsequent steps of the replacement process. In the present work, we study the evolution of dissolved gas molecules in this mixture by applying classical molecular dynamics simulations. Our study shows that a higher CO2 : N2 ratio in the mixture enhances the formation of nanobubbles composed of N2, CH4 and CO2 molecules. To understand how the CO2 : N2 ratio affects nanobubble nucleation, the distribution of molecules in the bubble formed is examined. It is observed that unlike N2 and CH4, the density of CO2 in the bubble reaches a maximum at the surface of the bubble. The accumulation of CO2 molecules at the surface makes the bubble more stable by decreasing the excess pressure inside the bubble as well as surface tension at its interface with water. It is found that a frequent exchange of gas molecules takes place between the bubble and the surrounding liquid and an increase in concentration of CO2 in the mixture leads to a decrease in the number of such exchanges. The effect of nanobubbles on the structural ordering of water molecules is examined by determining the number of water rings formed per unit volume in the mixture. The role of nanobubbles in water structuring is correlated to the dynamic nature of the bubble arising from the exchange of gas molecules between the bubble and the liquid.
NASA Astrophysics Data System (ADS)
Or, D.; Ioannidis, M.
2010-12-01
Degassing and in situ development of a mobile gas bubbles occur when injecting supersaturated aqueous phase into water-saturated porous media. Supersaturated water injection (SWI) has potentially significant applications in remediation of soils contaminated by non-aqueous phase liquids and in enhanced oil recovery. Pore network simulations indicate the formation of a region near the injection boundary where gas phase nuclei are activated and grow by mass transfer from the flowing supersaturated aqueous phase. Ramified clusters of gas-filled pores develop which, owing to the low prevailing Bond number, grow laterally to a significant extent prior to the onset of mobilization, and are thus likely to coalesce. Gas cluster mobilization invariably results in fragmentation and stranding, such that a macroscopic region containing few tenuously connected large gas clusters is established. Beyond this region, gas phase nucleation and mass transfer from the aqueous phase are limited by diminishing supply of dissolved gas. New insights into SWI dynamics are obtained using rapid micro-visualization in transparent glass micromodels. Using high-speed imaging, we observe the nucleation, initial growth and subsequent fate (mobilization, fragmentation, collision, coalescence and stranding) of CO2 bubbles and clusters of gas-filled pores and analyze cluster population statistics. We find significant support for the development of invasion-percolation-like patterns, but also report on hitherto unaccounted for gas bubble behavior. Additionally, we report for the first time on the acoustic emission signature of SWI in porous media and relate it to the dynamics of bubble nucleation and growth. Finally, we identify the pore-scale mechanisms associated with the mobilization and subsequent recovery of a residual non-aqueous phase liquid due to gas bubble dynamics during SWI.
Acoustically-Enhanced Direct Contact Vapor Bubble Condensation
NASA Astrophysics Data System (ADS)
Boziuk, Thomas; Smith, Marc; Glezer, Ari
2017-11-01
Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.
Bubble pinch-off and scaling during liquid drop impact on liquid pool
NASA Astrophysics Data System (ADS)
Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh
2012-08-01
Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2012-01-01
The quiescent Microgravity environment can be quite dynamic. Thermocapillary flow about "large" static bubbles on the order of 1mm in diameter was easily observed by following smaller tracer bubbles. The bubble induced flow was seen to disrupt a large dendritic array, effectively distributing free branches about the solid-liquid interface. "Small" dynamic bubbles were observed to travel at fast velocities through the mushy zone with the implication of bringing/detaching/redistributing dendrite arm fragments at the solid-liquid interface. Large and small bubbles effectively re-orient/re-distribute dendrite branches/arms/fragments at the solid liquid interface. Subsequent initiation of controlled directional solidification results in growth of dendrites having random orientations which significantly compromises the desired science.
GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM
NASA Astrophysics Data System (ADS)
Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac
2016-05-01
Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.
Bubble Festival: Presenting Bubble Activities in a Learning Station Format. Teacher's Guide.
ERIC Educational Resources Information Center
Barber, Jacqueline; Willard, Carolyn
This learning station guide adapts the Bubble Festival, an all-school event, for individual classrooms. It presents students with a variety of different challenges at learning stations set up around the classroom. The activities are student-centered and involve open-ended investigations. Also included are ways to extend students' experiences at…
Sizes of nanobubbles from nucleation rate measurements
NASA Astrophysics Data System (ADS)
Wilemski, G.
2003-03-01
In homogeneous bubble nucleation, the critical nucleus typically has nanometer dimensions. The volume V of a critical bubble can be determined from the simple equation (partial W/partial p)_T=V, where W is the reversible work of nucleus formation and p is the ambient pressure of the liquid phase in which bubble formation is occurring. The relation, W/kT=-ln J+ln A, where J is the steady state nucleation rate and A is the weakly pressure-dependent kinetic prefactor, allows V to be determined from rate measurements. The original derivation of this equation for V from the nucleation theorem was limited to one-component, ideal gas bubbles with a gas density much smaller than that of the ambient liquid. [D. Kashchiev, Nucleation: basic theory with applications (Butterworth-Heinemann, Oxford, 2000) p. 226.] The result is actually much more general, and it will be shown that it applies to multi-component, nonideal gas bubbles, provided the same density inequality holds. When the bubble phase and liquid densities are comparable, a more complicated, but also general and rigorous result is found.
NASA Astrophysics Data System (ADS)
Slejko, F. F.; Petrini, R.
Bubble growth in ascending viscous magmas by volatile exsolution from the melt structure is important in causing the magma fragmentation which determines the trans- form from a lava flow to a pyroclastic explosion. Volatile solubility and speciation in the melt vary during pressure and temperature changes. The pressure drop which oc- curs as a magma rises towards the surface in a volcanic conduit, causes the release of the volatiles dissolved in the melt and the progressive growth in the size of bubbles against the retarding forces to expansion generated by the polymeric interconnections in the silicate melt structure. At some critical growth rate with respect to the relax- ation time of the melt structure, the disruption of the interbubbles walls in the melt marks the fragmentation threshold, with the transition from a viscous bubbly liquid to a fast-uprising gas carrying on fragments of vesiculated magma. Highly polymer- ized, silica-rich melts are characterised by relaxation times which may be long com- pared to the quick growth and deformation of bubbles during rapid magma decom- pression and cooling, and the glassy pumices which form may retain informations on the vesiculation and degassing processes which occurred close to the fragmentation depth. Furthermore, the formation of vesicles during the cooling and decompression of an ascending volatile-supersaturated high-silica magma is strongly favoured by the occurrence of bubble nucleating sites in the melt. In order to investigate the influ- ence of the structure and iron speciation on bubble growth during explosive volcan- ism, a dense glass and a vesiculated pumice glass coexisting in the same pyroclastic unit of the Astroni volcano tephra in the Phlegraean Fields Caldera (4.1-3.8 ka BP) were investigated by 29Si 2D phase adjusted spinning sidebands (PASS) NMR, 1H MAS NMR, electron spin resonance (ESR) and Mössbauer spectroscopy. 29Si 2D PASS spectra show that silicon copolymerizes in the structure dominantly by Q3 and Q4 groups, with partly overlapping chemical shift. Spectrum fittings indicate that the dense glass is characterised by a larger abundance of Q3 species compared to the vesiculated pumice, suggesting a less polymerized structure. 1H MAS spectra reveal a larger amount of hydrogen concentration in the dense glass, partly attributable to structural hydroxyl groups possibly in Q3-OH terminations depolymerizing the glass structure. The less polymerized structure of the dense glass could have allowed an easier volatile exsolution, preventing the bubble formation. The EPR spectra indicate that the Fe3+ has similar surroundings in both samples, suggesting that Fe3+ is likely to occur in both network forming and modifying sites. Nevertheless, the vesiculated glass is characterised by a significantly higher amount of magnetite particles, which could have enhanced the bubble nucleation. Mössbauer spectra show four doublets attributable to ferric iron in both tetrahedral and octahedral sites and ferrous iron only in octahedral coordination. The oxidation of Fe2+ to Fe3+ observed in the vesicu- lated glass with respect to the dense glass could be an evidence of pressure drop with consequent bubble expansion.
Nonspherical laser-induced cavitation bubbles
NASA Astrophysics Data System (ADS)
Lim, Kang Yuan; Quinto-Su, Pedro A.; Klaseboer, Evert; Khoo, Boo Cheong; Venugopalan, Vasan; Ohl, Claus-Dieter
2010-01-01
The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40μm . In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles. The bubble dynamics is recorded with a high-speed camera at framing rates of up to 300000 frames per second. The observed bubble evolution is compared to predictions from an axisymmetric boundary element simulation which provides good qualitative agreement. Interesting dynamic features that are observed in both the experiment and simulation include the inversion of the major and minor axis for elliptical bubbles, the rotation of the shape for square bubbles, and the formation of a unidirectional jet for V-shaped bubbles. Further we demonstrate that specific bubble shapes can either be formed directly through the intensity distribution of a single laser focus, or indirectly using secondary bubbles that either confine the central bubble or coalesce with the main bubble. The former approach provides the ability to generate in principle any complex bubble geometry.
Observation of high-temperature bubbles in an ECR plasma
NASA Astrophysics Data System (ADS)
Terasaka, K.; Yoshimura, S.; Tanaka, M. Y.
2018-05-01
Creation and annihilation of high-temperature bubbles have been observed in an electron cyclotron resonance plasma. The electron temperature in the bubble core is three times higher than that in the ambient region, and the size perpendicular to the magnetic field is much smaller than the plasma diameter. Formation of a bubble accompanies large negative spikes in the floating potential of a Langmuir probe, and the spatiotemporal behavior of the bubble has been visualized with a high-impedance wire grid detector. It is found that the bubble is in a prolate spheroidal shape with the axis along the magnetic field and occurs randomly in time and independently in space.
Phase Transitions of Nanoemulsions Using Ultrasound: Experimental Observations
Singh, Ram; Husseini, Ghaleb A.; Pitt, William G.
2012-01-01
The ultrasound-induced transformation of perfluorocarbon liquids to gases is of interest in the area of drug and gene delivery. In this study, three independent parameters (temperature, size, and perfluorocarbon species) were selected to investigate the effects of 476-kHz and 20-kHz ultrasound on nanoemulsion phase transition. Two levels of each factor (low and high) were considered at each frequency. The acoustic intensities at gas bubble formation and at the onset of inertial cavitation were recorded and subsequently correlated with the acoustic parameters. Experimental data showed that low frequencies are more effective in forming and collapsing a bubble. Additionally, as the size of the emulsion droplet increased, the intensity required for bubble formation decreased. As expected, perfluorohexane emulsions require greater intensity to form cavitating bubbles than perfluoropentane emulsions. PMID:22444691
Hexagonal bubble formation and nucleation in sodium chloride solution
NASA Astrophysics Data System (ADS)
Wang, Lifen; Liu, Lei; Mohsin, Ali; Wen, Jianguo; Gu, Gong; Miller, Dean
The bubble is formed frequently at a solid-liquid interface when the surface of the solid or liquid has a tendency of accumulating molecular species due to unbalanced surface hydrophobicity attraction. Morphology and shape of the bubble are thought to be associated with the Laplace pressure that spherical-cap-shaped object are commonly observed. Dynamic surface nanobubble formation and nucleation in the controlled system have been not fully investigated due to the direct visualization challenge in liquid systems. Here, utilizing in situ TEM, dynamic formation and collapse of spherical-shaped nanobubbles were observed at the water-graphene interface, while hexagonal nanobubbles grew and merged with each other at water-crystalline sodium chloride interface. Our finding demonstrates that different hydrophobic-hydrophilic interaction systems give rise to the varied morphology of surface nanobubble, leading to the fundamental understanding of the interface-interaction-governed law on the formation of surface nanobubble.
The evolution of helium from aged Zr tritides: A thermal helium desorption spectrometry study
NASA Astrophysics Data System (ADS)
Cheng, G. J.; Huang, G.; Chen, M.; Zhou, X. S.; Liu, J. H.; Peng, S. M.; Ding, W.; Wang, H. F.; Shi, L. Q.
2018-02-01
The evolution of He from Zr-tritides was investigated for aging times up to about 6.5 years using analytical thermal helium desorption spectrometry (THDS). Zr films were deposited onto Mo substrates and then converted into Zr-tritides (ZrT1.70∼1.95) inside a tritiding apparatus loaded with pure tritium gas. During aging, there are at least five forms of He in Zr-tritides, and more than 99% of He atoms are in the form of He bubbles. The isolated He bubbles in lattices begin to link with each other when the He/Zr atom ratio reaches about 0.21, and are connected to grain boundaries or dislocation networks at He concentration of He/Zr ≈ 0.26. An interconnected system of channels decorated by bubbles evolves from the network dislocations, dislocation loops and internal boundaries. These He filled networks are formed completely when the He/Zr atom ratio is about 0.38. Once the He/Zr reached about 0.45, the networks of He bubble penetrate to the film surface and He begins an "accelerated release". This critical ratio of He to Zr for He accelerated release is much greater than that found previously for Ti-tritides (0.23-0.30). The difference of He retention in Zr-tritides and Ti-tritides was also discussed in this paper.
Donald Glaser, the Bubble Chamber, and Elementary Particles
Effects of Ionizing Radiation on the Formation of Bubbles in Liquids Physical Review, Vol. 87, Issue 4 , 665, August 15, 1952 Characteristics of Bubble Chambers Physical Review, Vol. 97, Issue 2, 474-479 Chambers Physical Review, Vol. 102, Issue 6, 1653-1658, June 15, 1956 Methods of Particle Detection for
Time-resolved imaging of electrical discharge development in underwater bubbles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tu, Yalong; Xia, Hualei; Yang, Yong, E-mail: yangyong@hust.edu.cn, E-mail: luxinpei@hust.edu.cn
2016-01-15
The formation and development of plasma in single air bubbles submerged in water were investigated. The difference in the discharge dynamics and the after-effects on the bubble were investigated using a 900 000 frame per second high-speed charge-coupled device camera. It was observed that depending on the position of the electrodes, the breakdown could be categorized into two modes: (1) direct discharge mode, where the high voltage and ground electrodes were in contact with the bubble, and the streamer would follow the shortest path and propagate along the axis of the bubble and (2) dielectric barrier mode, where the groundmore » electrode was not in touch with the bubble surface, and the streamer would form along the inner surface of the bubble. The oscillation of the bubble and the development of instabilities on the bubble surface were also discussed.« less
The collapse of a cavitation bubble in a corner
NASA Astrophysics Data System (ADS)
Peters, Ivo; Tagawa, Yoshiyuki
2017-11-01
The collapse of cavitation bubbles is influenced by the surrounding geometry. A classic example is the collapse of a bubble near a solid wall, where a fast jet is created towards the wall. The addition of a second wall creates a non-axisymmetric flow field, which influences the displacement and jet formation during the collapse of a bubble. In this experimental study we generate mm-sized vapor bubbles using a focused pulsed laser, giving us full control over the position of the bubble. The corner geometry is formed by two glass slides. High-speed imaging reveals the directional motion of the bubble during the collapse. We find that the bubble displacement cannot be fully described by a simple superposition of the bubble dynamics of the two walls individually. Comparison of our experimental results to a model based on potential flow shows a good agreement for the direction of displacement.
There and back again: The life and death of magma permeability in volcanic conduits
NASA Astrophysics Data System (ADS)
Wadsworth, F. B.; Vasseur, J.; Llewellin, E. W.; Lavallée, Y.; Kendrick, J. E.; Dobson, K. J.; Heap, M. J.; Kushnir, A. R.; Dingwell, D. B.
2017-12-01
Permeability of magma to gas is one of the key controls on the propoensity for explosive volcanism on the terrestrial planets. The magma filling upper-crustal volcanic conduits must become permeable in order for gas overpressure in pore spaces to dissipate. Once permeable, magma may densify and the pore network may re-seal itself. Permeability may be developed in one or more of 3 end-member pore-space geometries: (1) bubble-dominated, (2) crack-dominated, or (3) particle dominated. We take each geometry in turn and explore how we can scale the evolution of permeability with porosity. To do this we use 3 different data types. First, we compile the large body of published measurements of natural, synthetic and analogue volcanic rocks covering a range of pore space complexity. Second, we compile and conduct in situ measurements of permeability evolution for densifying granular systems or crack-formation in deforming magmas. Third, we conduct stochastic simulations in which we systematically build random heterogeneous porous media from overlapping spheres and use lattice-Boltzmann simulations of fluid flow to find the permeability. These data permit us to isolate individual controls on the permeability in each geometry in turn. Permeability can be readily formed by bubble coalescence, fracturing or fragmentation, and by forced gas percolation. Similarly, permeability can be reduced by bubble shrinking and pinch off, fracture healing, and volcanic welding. We broadly consider the kinetics of these processes and provide useful tools for predicting the longevity of different permeable network types. We summarize these findings by considering the potential of silicic volcanoes to outgas prior to significant overpressure buildup, possibly controlling the liklihood of large explosive behaviour.
Modeling DNA bubble formation at the atomic scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beleva, V; Rasmussen, K. O.; Garcia, A. E.
We describe the fluctuations of double stranded DNA molecules using a minimalist Go model over a wide range of temperatures. Minimalist models allow us to describe, at the atomic level, the opening and formation of bubbles in DNA double helices. This model includes all the geometrical constraints in helix melting imposed by the 3D structure of the molecule. The DNA forms melted bubbles within double helices. These bubbles form and break as a function of time. The equilibrium average number of broken base pairs shows a sharp change as a function of T. We observe a temperature profile of sequencemore » dependent bubble formation similar to those measured by Zeng et al. Long nuclei acid molecules melt partially through the formations of bubbles. It is known that CG rich sequences melt at higher temperatures than AT rich sequences. The melting temperature, however, is not solely determined by the CG content, but by the sequence through base stacking and solvent interactions. Recently, models that incorporate the sequence and nonlinear dynamics of DNA double strands have shown that DNA exhibits a very rich dynamics. Recent extensions of the Bishop-Peyrard model show that fluctuations in the DNA structure lead to opening in localized regions, and that these regions in the DNA are associated with transcription initiation sites. 1D and 2D models of DNA may contain enough information about stacking and base pairing interactions, but lack the coupling between twisting, bending and base pair opening imposed by the double helical structure of DNA that all atom models easily describe. However, the complexity of the energy function used in all atom simulations (including solvent, ions, etc) does not allow for the description of DNA folding/unfolding events that occur in the microsecond time scale.« less
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Kamotani, Y.
2003-01-01
Bubble formation and detachment is an integral part of the two-phase flow science. The objective of the present work is to theoretically investigate the effects of liquid cross-flow velocity, gas flow rate embodied in the momentum flux force, and orifice diameter on bubble formation in a wall-bubble injection configuration. A two-dimensional one-stage theoretical model based on a global force balance on the bubble evolving from a wall orifice in a cross liquid flow is presented in this work. In this model, relevant forces acting on the evolving bubble are expressed in terms of the bubble center of mass coordinates and solved simultaneously. Relevant forces in low gravity included the momentum flux, shear-lift, surface tension, drag and inertia forces. Under normal gravity conditions, the buoyancy force, which is dominant under such conditions, can be added to the force balance. Two detachment criteria were applicable depending on the gas to liquid momentum force ratio. For low ratios, the time when the bubble acceleration in the direction of the detachment angle is greater or equal to zero is calculated from the bubble x and y coordinates. This time is taken as the time at which all the detaching forces that are acting on the bubble are greater or equal to the attaching forces. For high gas to liquid momentum force ratios, the time at which the y coordinate less the bubble radius equals zero is calculated. The bubble diameter is evaluated at this time as the diameter at detachment from the fact that the bubble volume is simply given by the product of the gas flow rate and time elapsed. Comparison of the model s predictions was also made with predictions from a two-dimensional normal gravity model based on Kumar-Kuloor formulation and such a comparison is presented in this work.
Laser-generated Micro-bubbles for Molecular Delivery to Adherent Cells
NASA Astrophysics Data System (ADS)
Genc, Suzanne Lee
We examine the use of optical breakdown in aqueous media as a means to deliver molecules into live adherent cell cultures. This process, called optoinjection (OI), is affected both by the media composition and the cellular exposure to hydrodynamic stresses associated with the cavitation bubble formed by the optical breakdown process. Here we explore the possibility of performing OI using laser microbeams focused at low numerical aperture to provide conditions where OI can be performed at high-throughput. We first investigate the effect of media composition on plasma and cavitation bubble formation. We make the discovery that irradiation of minimal essential media, supports the formation of low-density plasmas (LDP) resulting in the generation of small (2--20 mum radius) cavitation bubbles. This provides gentle specific hydrodynamic perturbations to single or small groups of cells. The addition of supplemental fetal bovine serum to the medium prevents the formation LDPs and the resulting avalanche ionization generates larger (> 100 mum radius) bubbles and more violent hydrodynamic effects. Second, using high-speed photography we provide the first visualization of LDP-generated cavitation bubbles at precise offset locations relative to a boundary on which a cell monolayer can be cultured. These images depict the cellular exposure to different hydrodynamic conditions depending on the normalized offset distance (gamma = s/Rmax) and show how it affects the cellular exposure to shear stresses upon bubble expansion and different distributions of bubble energy upon collapse. Lastly, we examine the effects of pulse energy, parameters, and single vs. multiple laser exposures on the ability to deliver 3-5 kDa dextrans into adherent cells using both small (< 20 mum) and large (100mu m) radius bubbles. For single exposures, we identify several conditions under which OI can be optimized: (a) conditions where cell viability is maximized (˜90%) but optoinjection of viable cells is relatively low (˜30%) and (b) conditions where cell viability is compromised (˜80%) but where the optoinjection of viable cells is higher (˜50%). For multiple exposures in a grid pattern, we generally found reduced optoinjection efficacy but do identify conditions where we achieve injection of viable cells approaching 50%. We correlate these results to the cavitation bubble dynamics.
Nanobubbles: a new paradigm for air-seeding in xylem.
Schenk, H Jochen; Steppe, Kathy; Jansen, Steven
2015-04-01
Long-distance water transport in plants relies on a system that typically operates under negative pressure and is prone to hydraulic failure due to gas bubble formation. One primary mechanism of bubble formation takes place at nanoporous pit membranes between neighboring conduits. We argue that this process is likely to snap off nanobubbles because the local increase in liquid pressure caused by entry of air-water menisci into the complex pit membrane pores would energetically favor nanobubble formation over instant cavitation. Nanobubbles would be stabilized by surfactants and by gas supersaturation of the sap, may dissolve, fragment into smaller bubbles, or create embolisms. The hypothesis that safe and stable nanobubbles occur in plants adds a new component supporting the cohesion-tension theory. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bubble formation in water with addition of a hydrophobic solute.
Okamoto, Ryuichi; Onuki, Akira
2015-07-01
We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.
Kurihara, Eru; Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2011-01-01
Interaction between acoustically driven or laser-generated bubbles causes the bubble surfaces to deform. Dynamical equations describing the motion of two translating, nominally spherical bubbles undergoing small shape oscillations in a viscous liquid are derived using Lagrangian mechanics. Deformation of the bubble surfaces is taken into account by including quadrupole and octupole perturbations in the spherical-harmonic expansion of the boundary conditions on the bubbles. Quadratic terms in the quadrupole and octupole amplitudes are retained, and surface tension and shear viscosity are included in a consistent manner. A set of eight coupled second-order ordinary differential equations is obtained. Simulation results, obtained by numerical integration of the model equations, exhibit qualitative agreement with experimental observations by predicting the formation of liquid jets. Simulations also suggest that bubble-bubble interactions act to enhance surface mode instability. PMID:22088009
NASA Astrophysics Data System (ADS)
Suzuki, Kai; Iwasaki, Ryosuke; Takagi, Ryo; Yoshizawa, Shin; Umemura, Shin-ichiro
2017-07-01
Acoustic cavitation bubbles are useful for enhancing the heating effect in high-intensity focused ultrasound (HIFU) treatment. Many studies were conducted to investigate the behavior of such bubbles in tissue-mimicking materials, such as a transparent gel phantom; however, the detailed behavior in tissue was still unclear owing to the difficulty in optical observation. In this study, a new biological phantom was developed to observe cavitation bubbles generated in an optically shallow area of tissue. Two imaging methods, high-speed photography using light scattering and high-speed ultrasonic imaging, were used for detecting the behavior of the bubbles simultaneously. The results agreed well with each other for the area of bubble formation and the temporal change in the region of bubbles, suggesting that both methods are useful for visualizing the bubbles.
NASA Astrophysics Data System (ADS)
Thompson, Matt A. T.
The behaviour of helium in tungsten is an important concern for the fusion materials community. Under helium plasma exposure, small nano-scale bubbles form beneath the material surface as helium precipitates from the tungsten matrix. Under certain conditions this can lead to the subsequent formation of a surface "nano-fuzz", though the mechanisms of this process are not presently understood. For sub-surface nano-bubble formation transmission electron microscopy (TEM) has been the most widely used technique. While certainly a powerful technique, TEM suffers from a number of significant drawbacks: sample preparation is difficult and destructive, and there are sampling limitations as nano-structures must be located and characterised individually. This makes quantitative characterisation of nano-scale modification in tungsten challenging, which in turn makes it difficult to perform systematic studies on the effects of factors such as temperature and plasma composition on nano-scale modification. Here, Grazing Incidence Small Angle X-ray Scattering (GISAXS) is presented as a powerful addition to the field of fusion materials. With GISAXS, one can measure the X-ray scattering from nano-scale features throughout a relatively large volume, allowing information about full nano-bubble size distributions to be obtained from a simple, non-destructive measurement. Where it typically takes days or weeks to prepare a sample and study it under TEM, GISAXS measurements can be performed in a matter of minutes, and the data analysis performed autonomously by a computer in hours. This thesis describes the work establishing GISAXS as a viable technique for fusion materials. A GISAXS pattern fitting model was first developed, and then validated via comparison between GISAXS and TEM measurements of helium induced nano-bubble formation in tungsten exposed to a helium discharge in the large helical device. Under these conditions, nano-bubbles were found to follow an approximately exponential diameter distribution, with a mean nano-bubble diameters mu=0.596+/-0.001 nm and mu=0.68+/-0.04 nm computed for GISAXS and TEM, respectively. Depth distributions were also approximately exponential, with average bubble depths estimated at tau=9.1+/-0.4 nm and tau=8.4+/-0.5 for GISAXS and TEM, respectively. GISAXS was then applied to study the effects of plasma fluence, sample temperature and large transient heat and particle loads on nano-bubble formation. Nano-bubble sizes were found to saturate with increasing fluence at fluences less than 2.7x10. 24 He/m. 2 at 473 K. At higher temperatures larger nano-bubblesare able to form, suggesting a shift in the growth mechanisms, possibly from vacancy capture to bubble coalescence. Evidence is also presented which indicates that nano-bubble size distributions are qualitatively different for tungsten exposed to transient heat and particle loads due edge localised modes (ELMs) in the DIII-D tokamak, with a relatively large population of smaller (0.5-1 nm) nano-bubbles forming in this case. This is posited to be a consequence of rapid precipitation due to either extremely high helium concentrations during the ELM, or rapid cooling after it. Finally, synergistic effects between plasma composition and sample temperature are explored to determine which factors are most relevant for hydrogen and helium retention. Here, evidence has been found that helium ions from the plasma require a minimum energy of 9.0+/-1.4 eV in order to be implanted into tungsten. This was the dominant factor governing helium retention in this experiment. On the other hand, sample temperature is the dominant factor for hydrogen retention.
Hendrix, Maurice H W; Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C; Ohl, Claus-Dieter
2012-06-15
Collisions between millimeter-size bubbles in water against a glass plate are studied using high-speed video. Bubble trajectory and shape are tracked simultaneously with laser interferometry between the glass and bubble surfaces that monitors spatial-temporal evolution of the trapped water film. Initial bubble bounces and the final attachment of the bubble to the surface have been quantified. While the global Reynolds number is large (∼10(2)), the film Reynolds number remains small and permits analysis with lubrication theory with tangentially immobile boundary condition at the air-water interface. Accurate predictions of dimple formation and subsequent film drainage are obtained.
Bubble Formation Modeling in IE-911
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fondeur, F.F.
2000-09-27
The author used diffusion modeling to determine the hydrogen and oxygen concentration inside IE-911. The study revealed gas bubble nucleation will not occur in the bulk solution inside the pore or on the pore wall. This finding results from the fast oxygen and hydrogen gas molecular diffusion and a very confined pore space. The net steady state concentration of these species inside the pore proves too low to drive bubble nucleation. This study did not investigate other gas bubble nucleating mechanism such as suspended particles in solution.
Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field
NASA Technical Reports Server (NTRS)
Chang, Shinan; Herman, Cila; Iacona, Estelle
2002-01-01
The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.
Metal enrichment in the Fermi bubbles as a probe of their origin
NASA Astrophysics Data System (ADS)
Inoue, Yoshiyuki; Nakashima, Shinya; Tahara, Masaya; Kataoka, Jun; Totani, Tomonori; Fujita, Yutaka; Sofue, Yoshiaki
2015-06-01
The Fermi bubbles are gigantic gamma-ray structures in our Galaxy. The physical origin of the bubbles is still under debate. The leading scenarios can be divided into two categories. One is nuclear star-forming activity similar to extragalactic starburst galaxies and the other is past active galactic nucleus (AGN)-like activity of the Galactic center supermassive black hole. In this letter, we propose that metal abundance measurements will provide an important clue to probe their origin. Based on a simple spherically symmetric bubble model, we find that the generated metallicity and abundance patterns of the bubbles' gas strongly depend on assumed star formation or AGN activities. Star formation scenarios predict higher metallicities and abundance ratios of [O/Fe] and [Ne/Fe] than AGN scenarios do because of supernovae ejecta. Furthermore, the resultant abundance depends on the gamma-ray emission process because different mass injection histories are required for the different gamma-ray emission processes due to the acceleration and cooling time scales of non-thermal particles. Future X-ray missions such as ASTRO-H and Athena will give a clue to probe the origin of the bubbles through abundance measurements with their high energy resolution instruments.
Studeny, Pavel; Netukova, Magdalena; Hlozanek, Martin; Bednar, Jan; Jirsova, Katerina; Krizova, Deli
2018-04-26
To determine the frequency of formation of various types of bubbles and the potential impact of donor and lamella parameters on this frequency, and to identify possible risk factors of unsuccessful "big-bubble" creation in preparation of pre-Descemet endothelial keratoplasty and Descemet membrane endothelial keratoplasty with peripheral stromal support. Donor age and sex, death to preservation time (DPT), storage time, presence of corneal scars (mainly a condition after cataract surgery), and endothelial cell density of 256 donor corneas were assessed before Descemet membrane endothelial keratoplasty with peripheral stromal support or pre-Descemet endothelial keratoplasty lamella preparation using the big-bubble technique. Mean donor age was 62.3 ± 8.5 years (28.3% women and 71.7% men). Mean endothelial cell density of the donor graft was 2866 ± 255 cells/mm. Mean DPT was 10.12 ± 4.88 hours, and mean storage time of the transplant before surgery was 6.5 ± 4.8 days. Corneal scars were present in 17 donor grafts (6.6%) after cataract surgery. Eleven corneas were devalued because of Descemet membrane rupture during preparation (4.3%). In 182 corneas, standard bubble type I was created (71.7%); in 27 corneas, bubble type II was created; eventually, both types of bubbles formed simultaneously (10.5%); in 47 corneas, no bubble was created (18.4%). We identified higher endothelial cell density, shorter DPT, and the presence of corneal scars after cataract surgery as risk factors threatening successful bubble formation. The only risk factor for creating type II bubbles was higher donor age in our study.
Bubble Formation at a Submerged Orifice in Reduced Gravity
NASA Technical Reports Server (NTRS)
Buyevich, Yu A.; Webbon, Bruce W.
1994-01-01
The dynamic regime of gas injection through a circular plate orifice into an ideally wetting liquid is considered, when successively detached bubbles may be regarded as separate identities. In normal gravity and at relatively low gas flow rates, a growing bubble is modeled as a spherical segment touching the orifice perimeter during the whole time of its evolution. If the flow rate exceeds a certain threshold value, another stage of the detachment process takes place in which an almost spherical gas envelope is connected with the orifice by a nearly cylindrical stem that lengthens as the bubble rises above the plate. The bubble shape resembles then that of a mushroom and the upper envelope continues to grow until the gas supply through the stem is completely cut off. Such a stage is always present under conditions of sufficiently low gravity, irrespective of the flow rate. Two major reasons make for bubble detachment: the buoyancy force and the force due to the momentum inflow into the bubble with the injected gas. The former force dominates the process at normal gravity whereas the second one plays a key role under negligible gravity conditions. It is precisely this fundamental factor that conditions the drastic influence on bubble growth and detachment that changes in gravity are able to cause. The frequency of bubble formation is proportional to and the volume of detached bubbles is independent of the gas flow rate in sufficiently low gravity, while at normal and moderately reduced gravity conditions the first variable slightly decreases and the second one almost linearly increases as the flow rate grows. Effects of other parameters, such as the orifice radius, gas and liquid densities, and surface tension are discussed.
Numerical simulations of non-spherical bubble collapse.
Johnsen, Eric; Colonius, Tim
2009-06-01
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.
Numerical simulations of non-spherical bubble collapse
JOHNSEN, ERIC; COLONIUS, TIM
2009-01-01
A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233
NASA Technical Reports Server (NTRS)
Dewitt, K. J.; Brockwell, J. L.
1985-01-01
The long term objective of the experiment is to observe the dissolution of isolated, immobile gas bubbles of specified size and composition in a solvent liquid of known concentration in the reduced gravity environment of earth orbit. Preliminary bubble dissolution experiment conducted both in the NASA Lewis 2.2 sec drop tower and in normal gravity using SO2 - Toluene system were not completely successful in their objective. The method of gas injection and lack of bubble interface stabiliy experienced due to the extreme solubility of SO in Toluene has the effects of changing the problem from that of bubble dissolution to one of bubble formation stability and subsequent dissolution in a liquid of unknown initial solute concentration. Current work involves further experimentation in order to refine the bubble injection system and to investigate the concept of having a bubble with a critical radius in a state of unstable equilibrium.
The elasticity of soap bubbles containing wormlike micelles.
Sabadini, Edvaldo; Ungarato, Rafael F S; Miranda, Paulo B
2014-01-28
Slow-motion imaging of the rupture of soap bubbles generally shows the edges of liquid films retracting at a constant speed (known as the Taylor-Culick velocity). Here we investigate soap bubbles formed from simple solutions of a cationic surfactant (cetyltrimethylammonium bromide - CTAB) and sodium salicylate. The interaction of salicylate ions with CTAB leads to the formation of wormlike micelles (WLM), which yield a viscoelastic behavior to the liquid film of the bubble. We demonstrate that these elastic bubbles collapse at a velocity up to 30 times higher than the Taylor-Culick limit, which has never been surpassed. This is because during the bubble inflation, the entangled WLM chains stretch, storing elastic energy. This extra energy is then released during the rupture of the bubble, yielding an additional driving force for film retraction (besides surface tension). This new mechanism for the bursting of elastic bubbles may have important implications to the breakup of viscoelastic sprays in industrial applications.
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Yang, W-J.; Zhang, Nengli
2010-01-01
The formation and growth processes of a bubble in the vicinity of graphite micro-fiber tips on metal-graphite composite boiling surfaces and their effects on boiling behavior are investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the metal matrix in pool boiling. By virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the end of the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each spanning several tips. The necking process of a detaching macro bubble is analyzed. It is revealed that a liquid jet is produced by sudden break-off of the bubble throat. The composite surfaces not only have higher temperatures in micro- and macrolayers but also make higher frequency of the bubble departure, which increase the average heat fluxes in both the bubble growth stage and in the bubble departure period. Based on these analyses, the enhancement mechanism of pool boiling heat transfer on composite surfaces is clearly revealed.
NASA Astrophysics Data System (ADS)
Jansen, E. Duco; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Motamedi, Massoud; Welch, Ashley J.
1995-05-01
Mechanical injury during pulsed laser ablation of tissue is caused by rapid bubble expansions and collapse or by laser-induced pressure waves. In this study the effect of material elasticity on the ablation process has been investigated. Polyacrylamide tissue phantoms with various water concentrations (75-95%) were made. The Young's moduli of the gels were determined by measuring the stress-strain relationship. An optical fiber (200 or 400 micrometers ) was translated into the clear gel and one pulse of holmium:YAG laser radiation was given. The laser was operated in either the Q-switched mode (tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation inside the gels was recorded using a fast flash photography setup while simultaneously recording pressures with a PVDP needle hydrophone (40 ns risetime) positioned in the gel, approximately 2 mm away from the fibertip. A thermo-elastic expansion wave was measured only during Q-switched pulse delivery. The amplitude of this wave (approximately equals 40 bar at 1 mm from the fiber) did not vary significantly in any of the phantoms investigated. Rapid bubble formation and collapse was observed inside the clear gels. Upon bubble collapse, a pressure transient was emitted; the amplitude of this transient depended strongly on bubble size and geometry. It was found that (1) the bubble was almost spherical for the Q-switched pulse and became more elongated for the free-running pulse, and (2) the maximum bubble size and thus the collapse amplitude decreased with an increase in Young's modulus (from 68 +/- 11 bar at 1 mm in 95% water gel to 25 +/- 10 bar at 1 mm in 75% water gel).
Numerical study of wall effects on buoyant gas-bubble rise in a liquid-filled finite cylinder
Mukundakrishnan, Karthik; Quan, Shaoping; Eckmann, David M.; Ayyaswamy, Portonovo S.
2009-01-01
The wall effects on the axisymmetric rise and deformation of an initially spherical gas bubble released from rest in a liquid-filled, finite circular cylinder are numerically investigated. The bulk and gas phases are considered incompressible and immiscible. The bubble motion and deformation are characterized by the Morton number (Mo), Eötvös number (Eo), Reynolds number (Re), Weber number (We), density ratio, viscosity ratio, the ratios of the cylinder height and the cylinder radius to the diameter of the initially spherical bubble (H* = H/d0, R* = R/d0). Bubble rise in liquids described by Eo and Mo combinations ranging from (1,0.01) to (277.5,0.092), as appropriate to various terminal state Reynolds numbers (ReT) and shapes have been studied. The range of terminal state Reynolds numbers includes 0.02 < ReT < 70. Bubble shapes at terminal states vary from spherical to intermediate spherical-cap–skirted. The numerical procedure employs a front tracking finite difference method coupled with a level contour reconstruction of the front. This procedure ensures a smooth distribution of the front points and conserves the bubble volume. For the wide range of Eo and Mo examined, bubble motion in cylinders of height H* = 8 and R* ≥ 3, is noted to correspond to the rise in an infinite medium, both in terms of Reynolds number and shape at terminal state. In a thin cylindrical vessel (small R*), the motion of the bubble is retarded due to increased total drag and the bubble achieves terminal conditions within a short distance from release. The wake effects on bubble rise are reduced, and elongated bubbles may occur at appropriate conditions. For a fixed volume of the bubble, increasing the cylinder radius may result in the formation of well-defined rear recirculatory wakes that are associated with lateral bulging and skirt formation. The paper includes figures of bubble shape regimes for various values of R*, Eo, Mo, and ReT. Our predictions agree with existing results reported in the literature. PMID:17930342
Decentralized safety concept for closed-loop controlled intensive care.
Kühn, Jan; Brendle, Christian; Stollenwerk, André; Schweigler, Martin; Kowalewski, Stefan; Janisch, Thorsten; Rossaint, Rolf; Leonhardt, Steffen; Walter, Marian; Kopp, Rüdger
2017-04-01
This paper presents a decentralized safety concept for networked intensive care setups, for which a decentralized network of sensors and actuators is realized by embedded microcontroller nodes. It is evaluated for up to eleven medical devices in a setup for automated acute respiratory distress syndrome (ARDS) therapy. In this contribution we highlight a blood pump supervision as exemplary safety measure, which allows a reliable bubble detection in an extracorporeal blood circulation. The approach is validated with data of animal experiments including 35 bubbles with a size between 0.05 and 0.3 ml. All 18 bubbles with a size down to 0.15 ml are successfully detected. By using hidden Markov models (HMMs) as statistical method the number of necessary sensors can be reduced by two pressure sensors.
Structural features of the nonionic surfactants stabilizing long-lived bubble nuclei
NASA Technical Reports Server (NTRS)
Darrigo, J. S.
1980-01-01
A study of the effects of various electrolytes and one organic compound on bubble production in agarose gels is presented. Several preparations of ultrapure agarose were compared for 42 electrolytes and phenol to identify trends in bubble formation. The anion and cation sequences of bubble suppression are similar to processes for salting out of nonionic surfactants. The reduction of bubble number by polyvalent ions and 1% phenol suggests that the polar portions of these nonionic surfactants represent amide groups. The evidence for amide groups is consistent with the relative positions of Mg(2+) in all cation sequences; this result makes it unlikely that either linkages contribute to the hydrophilicity of the nonionic surfactants stabilizing bubble nuclei in the different aqueous gels tested.
Detecting vapour bubbles in simulations of metastable water
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, Miguel A.; Abascal, Jose L. F.; Valeriani, Chantal, E-mail: christoph.dellago@univie.ac.at, E-mail: cvaleriani@quim.ucm.es
2014-11-14
The investigation of cavitation in metastable liquids with molecular simulations requires an appropriate definition of the volume of the vapour bubble forming within the metastable liquid phase. Commonly used approaches for bubble detection exhibit two significant flaws: first, when applied to water they often identify the voids within the hydrogen bond network as bubbles thus masking the signature of emerging bubbles and, second, they lack thermodynamic consistency. Here, we present two grid-based methods, the M-method and the V-method, to detect bubbles in metastable water specifically designed to address these shortcomings. The M-method incorporates information about neighbouring grid cells to distinguishmore » between liquid- and vapour-like cells, which allows for a very sensitive detection of small bubbles and high spatial resolution of the detected bubbles. The V-method is calibrated such that its estimates for the bubble volume correspond to the average change in system volume and are thus thermodynamically consistent. Both methods are computationally inexpensive such that they can be used in molecular dynamics and Monte Carlo simulations of cavitation. We illustrate them by computing the free energy barrier and the size of the critical bubble for cavitation in water at negative pressure.« less
Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise
2016-11-23
We study the formation of yield-stress fluid foams in millifluidic flow-focusing and T-junction devices. First, we provide a phase diagram for the unsteady operating regimes of bubble production when the gas pressure and the yield-stress fluid flow rate are imposed. Three regimes are identified: a co-flow of gas and yield-stress fluid, a transient production of bubble and a flow of yield-stress fluid only. Taking wall slip into account, we provide a model for the pressure at the onset of bubble formation. Then, we detail and compare two simple methods to ensure steady bubble production: regulation of the gas pressure or flow-rate. These techniques, which are easy to implement, thus open pathways for controlled production of dry yield-stress fluid foams as shown at the end of this article.
Three-dimensionally ordered array of air bubbles in a polymer film
NASA Technical Reports Server (NTRS)
Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S.; Brown, C. S. (Principal Investigator)
2001-01-01
We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.
Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound
NASA Astrophysics Data System (ADS)
Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo
2017-03-01
We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.
Ranjbar, Zahra; Moradian, Siamak; Rastegar, Saeed
2003-08-15
The electrodeposition behavior of blends of primary dispersions of a lower and a higher molecular weight epoxy-amine adduct has been investigated. The throwing power of the above-mentioned blends showed a voltage-dependent critical composition at which the throwing power dropped to a much lower value. This was assigned to the formation of an infinite conducting cluster, the extension of which is dependent on the rate of the electrocoagulation process at the cathode boundary. The random resistor network approach of Stauffer (RRNS) and the random resistor network approach of Miller and Abrahams (RRNMA) were applied to the experimental data with high correlations (r2=0.9314 and 0.9699). The percolating cluster formed within the film, however, gave a critical exponent of conductivity equal to 1.1028, much less than expected from a classical three-dimensional lattice (i.e., 1.5-2.0). This discrepancy was explained in terms of the changed behavior of the film resulting from the bubbles formed near the cathode and its effect on the infinite conducting cluster.
Dynamics and detection of laser induced microbubbles in the retinal pigment epithelium (RPE)
NASA Astrophysics Data System (ADS)
Fritz, Andreas; Ptaszynski, Lars; Stoehr, Hardo; Brinkmann, Ralf
2007-07-01
Selective Retina Treatment (SRT) is a new method to treat eye diseases associated with disorders of the RPE. Selective RPE cell damage is achieved by applying a train of 1.7 μs laser pulses at 527 nm. The treatment of retinal diseases as e.g. diabetic maculopathy (DMP), is currently investigated within clinical studies, however 200 ns pulse durations are under investigation. Transient micro bubbles in the retinal pigment epithelium (RPE) are expected to be the origin of cell damage due to irradiation with laser pulses shorter than 50 μs. The bubbles emerge at the strongly absorbing RPE melanosomes. Cell membrane disruption caused by the transient associated volume increase is expected to be the origin of the angiographically observed RPE leakage. We investigate micro bubble formation and dynamics in porcine RPE using pulse durations of 150 ns. A laser interferometry system at 830 nm with the aim of an online dosimetry control for SRT was developed. Bubble formation was detected interferometrically and by fast flash photography. A correlation to cell damage observed with a vitality stain is found. A bubble detection algorithm is presented.
NASA Astrophysics Data System (ADS)
Tufaile, Alberto; Sartorelli, José Carlos
2003-08-01
An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.
Experiments on the genesis of bubbles as a result of rapid decompression
Lever, M. J.; Miller, K. W.; Paton, W. D. M.; Smith, E. B.
1966-01-01
1. The time course of intravascular bubble formation in mice after rapid decompression from 150 Lb/sq. in. has been followed in vivo in a flap preparation of thoracic and abdominal skin. 2. Gas appeared first in the arteries, moving distally after a latent period of 3 min or more. Then bubbles appeared, moving centrally, in the venous system. 3. The arterial bubbles could not be attributed to air forced into the circulation from the lungs or lumen of the gut. ImagesFig. 1 PMID:5912215
NASA Astrophysics Data System (ADS)
Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.
2016-02-01
Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.
Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.
Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon
2011-06-07
Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.
Laser-induced jet formation in liquid films
NASA Astrophysics Data System (ADS)
Brasz, Frederik; Arnold, Craig
2014-11-01
The absorption of a focused laser pulse in a liquid film generates a cavitation bubble on which a narrow jet can form. This is the basis of laser-induced forward transfer (LIFT), a versatile printing technique that offers an alternative to inkjet printing. We study the influence of the fluid properties and laser pulse energy on jet formation using numerical simulations and time-resolved imaging. At low energies, surface tension causes the jet to retract without transferring a drop, and at high energies, the bubble breaks up into a splashing spray. We explore the parameter space of Weber number, Ohnesorge number, and ratio of film thickness to maximum bubble radius, revealing regions where uniform drops are transferred.
Sujith, K S; Ramachandran, C N
2016-02-07
The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.
Brujan, E A; Ikeda, T; Matsumoto, Y
2005-10-21
The dynamics of inertial cavitation bubbles produced by short pulses of high-intensity focused ultrasound near a rigid boundary are studied to get a better understanding of the role of jet formation and shock wave emission during bubble collapse in the therapeutic applications of ultrasound. The bubble dynamics are investigated by high-speed photography with up to 2 million frames/s and acoustic measurements, as well as by numerical calculations. The significant parameter of this study is the dimensionless stand-off, gamma, which is defined as the distance of the bubble centre at its maximum expansion scaled by the maximum bubble radius. High-speed photography is applied to observe the bubble motion and the velocity of the liquid jet formed during bubble collapse. Hydrophone measurements are used to determine the pressure and the duration of the shock wave emitted during bubble rebound. Calculations yield the variation with time of the bubble wall, the maximum velocity and the kinetic energy of the re-entrant jet. The comparisons between experimental and numerical data are favourable with regard to both shape history and translational motion of the bubble. The acoustic energy constitutes the largest individual amount in the energy balance of bubble collapse. The ratio of the shock wave energy, measured at 10 mm from the emission centre, to the cavitation bubble energy was 1:2.4 at gamma = 1.55 and 1:3.5 at gamma = 1. At this distance, the shock wave pressure ranges from 0.122 MPa, at gamma = 1, to 0.162 MPa, at gamma = 1.55, and the temporal duration at the half maximum level is 87 ns. The maximum jet velocity ranges from 27 m s(-1), at gamma = 1, to 36 m s(-1), at gamma = 1.55. For gamma < 1.2, the re-entrant jet can generate an impact pressure on the nearby boundary larger than 50 MPa. We discuss the implications of the results for the therapeutic applications of high-intensity focused ultrasound.
Stride, E.; Cheema, U.
2017-01-01
The growth of bubbles within the body is widely believed to be the cause of decompression sickness (DCS). Dive computer algorithms that aim to prevent DCS by mathematically modelling bubble dynamics and tissue gas kinetics are challenging to validate. This is due to lack of understanding regarding the mechanism(s) leading from bubble formation to DCS. In this work, a biomimetic in vitro tissue phantom and a three-dimensional computational model, comprising a hyperelastic strain-energy density function to model tissue elasticity, were combined to investigate key areas of bubble dynamics. A sensitivity analysis indicated that the diffusion coefficient was the most influential material parameter. Comparison of computational and experimental data revealed the bubble surface's diffusion coefficient to be 30 times smaller than that in the bulk tissue and dependent on the bubble's surface area. The initial size, size distribution and proximity of bubbles within the tissue phantom were also shown to influence their subsequent dynamics highlighting the importance of modelling bubble nucleation and bubble–bubble interactions in order to develop more accurate dive algorithms. PMID:29263127
Helium bubbles aggravated defects production in self-irradiated copper
NASA Astrophysics Data System (ADS)
Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn
2017-12-01
Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.
Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water
NASA Astrophysics Data System (ADS)
Charee, Wisan; Tangwarodomnukun, Viboon
2018-03-01
Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.
NASA Astrophysics Data System (ADS)
Qin, Wenjing; Wang, Yongqiang; Tang, Ming; Ren, Feng; Fu, Qiang; Cai, Guangxu; Dong, Lan; Hu, Lulu; Wei, Guo; Jiang, Changzhong
2018-04-01
Plasma facing materials (PFMs) face one of the most serious challenges in fusion reactors, including unprecedented harsh environment such as 14.1 MeV neutron and transmutation gas irradiation at high temperature. Tungsten (W) is considered to be one of the most promising PFM, however, virtually insolubility of helium (He) in W causes new material issues such as He bubbles and W "fuzz" microstructure. In our previous studies, we presented a new strategy using nanochannel structure designed in the W film to increase the releasing of He atoms and thus to minimize the He nucleation and "fuzz" formation behavior. In this work, we report the further study on the diffusion of He atoms in the nanochannel W films irradiated at a high temperature of 600 °C. More specifically, the temperature influences on the formation and growth of He bubbles, the lattice swelling, and the mechanical properties of the nanochannel W films were investigated. Compared with the bulk W, the nanochannel W films possessed smaller bubble size and lower bubble areal density, indicating that noticeable amounts of He atoms have been released out along the nanochannels during the high temperature irradiations. Thus, with lower He concentration in the nanochannel W films, the formation of the bubble superlattice is delayed, which suppresses the lattice swelling and reduces hardening. These aspects indicate the nanochannel W films have better radiation resistance even at high temperature irradiations.
Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging
Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan
2008-01-01
We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858
Formation and evolution of anodic TiO2 nanotube embryos
NASA Astrophysics Data System (ADS)
Jin, Rong; Liao, Maoying; Lin, Tong; Zhang, Shaoyu; Shen, Xiaoping; Song, Ye; Zhu, Xufei
2017-06-01
Anodic TiO2 nanotubes (ATNTs) have been widely investigated for decades due to their interesting nanostructures and various applications. However, the formation mechanism of ATNTs still remains unclear. To date, most of researches focus on the tubular structure but neglect the formation process of initial nanotube embryos. Herein, polyethylene glycol (PEG) is added into the traditional electrolyte to moderate the transformation process from compact layer to porous layer. Based on ‘oxygen bubble mould’ and ‘plastic flow model’ theory, the formation and evolution process of nanotube embryo is clarified firstly. Results validate the effect of ‘oxygen bubble mould’ on the formation of nanotube embryo, which has a great effect on regulating the morphology of ATNT arrays. Besides, nanotubes prepared in electrolytes with PEG show shorter tube length with larger diameter than that prepared in traditional electrolytes. The addition of PEG can also effectively avoid the breakdown phenomenon. Highlights Transformation from compact layer into porous layer is observed in PEG electrolyte. The effect of oxygen bubble mould is first demonstrated and observed. The formation process of TiO2 nanotube embryo is described systematically. TiO2 nanotubes prepared in PEG electrolyte show short length and large diameter.
Sung, Kristine K; Goff, H Douglas
2010-04-01
The development of a structural fat network in ice cream as influenced by the solid:liquid fat ratio at the time of freezing/whipping was investigated. The solid fat content was varied with blends of a hard fraction of palm kernel oil (PKO) and high-oleic sunflower oil ranging from 40% to 100% PKO. Fat globule size and adsorbed protein levels in mix and overrun, fat destabilization, meltdown resistance, and air bubble size in ice cream were measured. It was found that blends comprising 60% to 80% solid fat produced the highest rates of fat destabilization that could be described as partial coalescence (as opposed to coalescence), lowest rates of meltdown, and smallest air bubble sizes. Lower levels of solid fat produced fat destabilization that was better characterized as coalescence, leading to loss of structural integrity, whereas higher levels of solid fat led to lower levels of fat network formation and thus also to reduced structural integrity. Blends of highly saturated palm kernel oil and monounsaturated high-oleic sunflower oil were used to modify the solid:liquid ratio of fat blends used for ice cream manufacture. Blends that contained 60% to 80% solid fat at freezing/whipping temperatures produced optimal structures leading to low rates of meltdown. This provides a useful reference for manufacturers to help in the selection of appropriate fat blends for nondairy-fat ice cream.
2006-07-01
precision of the determination of Rmax, we established a refined method based on the model of bubble formation described above in section 3.6.1 and the...development can be modeled by hydrodynamic codes based on tabulated equation-of-state data . This has previously demonstrated on ps optical breakdown...per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and
Molecular dynamics simulations of bubble formation and cavitation in liquid metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Insepov, Z.; Hassanein, A.; Bazhirov, T. T.
2007-11-01
Thermodynamics and kinetics of nano-scale bubble formation in liquid metals such as Li and Pb were studied by molecular dynamics (MD) simulations at pressures typical for magnetic and inertial fusion. Two different approaches to bubble formation were developed. In one method, radial densities, pressures, surface tensions, and work functions of the cavities in supercooled liquid lithium were calculated and compared with the surface tension experimental data. The critical radius of a stable cavity in liquid lithium was found for the first time. In the second method, the cavities were created in the highly stretched region of the liquid phase diagram;more » and then the stability boundary and the cavitation rates were calculated in liquid lead. The pressure dependences of cavitation frequencies were obtained over the temperature range 700-2700 K in liquid Pb. The results of MD calculations for cavitation rate were compared with estimates of classical nucleation theory (CNT).« less
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-11-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
Effect of pressure fluctuations on Richtmyer-Meshkov coherent structures
NASA Astrophysics Data System (ADS)
Bhowmick, Aklant K.; Abarzhi, Snezhana
2016-10-01
We investigate the formation and evolution of Richtmyer Meshkov bubbles after the passage of a shock wave across a two fluid interface in the presence of pressure fluctuations. The fluids are ideal and incompressible and the pressure fluctuations are scale invariant in space and time, and are modeled by a power law time dependent acceleration field with exponent -2. Solutions indicate sensitivity to pressure fluctuations. In the linear regime, the growth of curvature and bubble velocity is linear. The growth rate is dominated by the initial velocity for weak pressure fluctuations, and by the acceleration term for strong pressure fluctuations. In the non-linear regime, the bubble curvature is constant and the solutions form a one parameter family (parametrized by the bubble curvature). The solutions are shown to be convergent and asymptotically stable. The physical solution (stable fastest growing) is a flat bubble for small pressure fluctuations and a curved bubble for large pressure fluctuations. The velocity field (in the frame of references accounting for the background motion) involves intense motion of the fluids in a vicinity of the interface, effectively no motion of the fluids away from the interfaces, and formation of vortical structures at the interface. The work is supported by the US National Science Foundation.
Interfacial bubbles formed by plunging thin liquid films in a pool
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; David, Richard; Delvert, Alexandre; Gicquel, Eric; Panizza, Pascal; Courbin, Laurent
2017-06-01
We show that the immersion of a horizontally suspended thin film of liquid in a pool of the same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the fluid properties, the film's size, and its immersion velocity, our experiments unveil two formation regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the size of a produced bubble. To rationalize these results, we compare the pressure exerted by the air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which subsequently yields air entrapment and the production of a bubble. This physical model explains the power-law variations of the bubble size with the governing dimensionless number for each regime.
Micro-Bubble Experiments at the Van de Graaff Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Z. J.; Wardle, Kent E.; Quigley, K. J.
In order to test and verify the experimental designs at the linear accelerator (LINAC), several micro-scale bubble ("micro-bubble") experiments were conducted with the 3-MeV Van de Graaff (VDG) electron accelerator. The experimental setups included a square quartz tube, sodium bisulfate solution with different concentrations, cooling coils, gas chromatography (GC) system, raster magnets, and two high-resolution cameras that were controlled by a LabVIEW program. Different beam currents were applied in the VDG irradiation. Bubble generation (radiolysis), thermal expansion, thermal convection, and radiation damage were observed in the experiments. Photographs, videos, and gas formation (O 2 + H 2) data were collected.more » The micro-bubble experiments at VDG indicate that the design of the full-scale bubble experiments at the LINAC is reasonable.« less
Arita, Y.; Antkowiak, M.; Venugopalan, V.; Gunn-Moore, F. J.; Dholakia, K.
2012-01-01
Laser-induced breakdown of an optically trapped nanoparticle is a unique system for studying cavitation dynamics. It offers additional degrees of freedom, namely the nanoparticle material, its size, and the relative position between the laser focus and the center of the optically trapped nanoparticle. We quantify the spatial and temporal dynamics of the cavitation and secondary bubbles created in this system and use hydrodynamic modeling to quantify the observed dynamic shear stress of the expanding bubble. In the final stage of bubble collapse, we visualize the formation of multiple submicrometer secondary bubbles around the toroidal bubble on the substrate. We show that the pattern of the secondary bubbles typically has its circular symmetry broken along an axis whose unique angle rotates over time. This is a result of vorticity along the jet towards the boundary upon bubble collapse near solid boundaries. PMID:22400669
Simulation studies of vapor bubble generation by short-pulse lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amendt, P.; London, R.A.; Strauss, M.
1997-10-26
Formation of vapor bubbles is characteristic of many applications of short-pulse lasers in medicine. An understanding of the dynamics of vapor bubble generation is useful for developing and optimizing laser-based medical therapies. To this end, experiments in vapor bubble generation with laser light deposited in an aqueous dye solution near a fiber-optic tip have been performed. Numerical hydrodynamic simulations have been developed to understand and extrapolate results from these experiments. Comparison of two-dimensional simulations with the experiment shows excellent agreement in tracking the bubble evolution. Another regime of vapor bubble generation is short-pulse laser interactions with melanosomes. Strong shock generationmore » and vapor bubble generation are common physical features of this interaction. A novel effect of discrete absorption by melanin granules within a melanosome is studied as a possible role in previously reported high Mach number shocks.« less
The Microbubble or the Microparticle?
Decompression sickness (DCS) has long been attributed to physical forces exerted by inert gas bubbles that may form in tissues, resulting in vascular occlusion and tissue disruption. Bubble formation occurs when a decrease in ambient pressure exceeds the rate at which soluble ine...
Movement of fine particles on an air bubble surface studied using high-speed video microscopy.
Nguyen, Anh V; Evans, Geoffrey M
2004-05-01
A CCD high-speed video microscopy system operating at 1000 frames per second was used to obtain direct quantitative measurements of the trajectories of fine glass spheres on the surface of air bubbles. The glass spheres were rendered hydrophobic by a methylation process. Rupture of the intervening water film between a hydrophobic particle and an air bubble with the consequent formation of a three-phase contact was observed. The bubble-particle sliding attachment interaction is not satisfactorily described by the available theories. Surface forces had little effect on the particle sliding with a water film, which ruptured probably due to the submicrometer-sized gas bubbles existing at the hydrophobic particle-water interface.
Generation of Microbubbles with Applications to Industry and Medicine
NASA Astrophysics Data System (ADS)
Rodríguez-Rodríguez, Javier; Sevilla, Alejandro; Martínez-Bazán, Carlos; Gordillo, José Manuel
2015-01-01
We provide a comprehensive and systematic description of the diverse microbubble generation methods recently developed to satisfy emerging technological, pharmaceutical, and medical demands. We first introduce a theoretical framework unifying the physics of bubble formation in the wide variety of existing types of generators. These devices are then classified according to the way the bubbling process is controlled: outer liquid flows (e.g., coflows, cross flows, and flow-focusing flows), acoustic forcing, and electric fields. We also address modern techniques developed to produce bubbles coated with surfactants and liquid shells. The stringent requirements to precisely control the bubbling frequency, the bubble size, and the properties of the coating make microfluidics the natural choice to implement such techniques.
NASA Astrophysics Data System (ADS)
Jang, Hun-jae; Park, Mi-ae; Sirotkin, Fedir V.; Yoh, Jack J.
2013-12-01
The expansion of the laser-induced bubble is the main mechanism in the developed microjet injector. In this study, Nd:YAG and Er:YAG lasers are used as triggers of the bubble formation. The impact of the laser parameters on the bubble dynamics is studied and the performance of the injector is evaluated. We found that the main cause of the differences in the bubble behavior comes from the pulse duration and wavelength. For Nd:YAG laser, the pulse duration is very short relative to the bubble lifetime making the behavior of the bubble close to that of the cavitation bubble, while in Er:YAG case, the high absorption in the water and long pulse duration change the initial behavior of the bubble making it close to a vapor bubble. The contraction and subsequent rebound are typical for cavitation bubbles in both cases. The results show that the laser-induced microjet injector generates velocity which is sufficient for the drug delivery for both laser beams of different pulse duration. We estimate the typical velocity within 30-80 m/s range and the breakup length to be larger than 1 mm suitable for trans-dermal drug injection.
Majumdar, D; Maiti, R P; Basu, S; Saha, S K
2009-12-01
Recently, hydrocarbon-nanostructures from organic solvent using ultrasonic energy were reported. However, their formation-dynamics remained unexplored. Here, we describe a new technique to synthesize controlled nanostructures (V-, Y-shape) from nanorods of conducting polyaniline applying ultrasonic energy. To characterize the conducting state (emaraldine) of these polyaniline nanorods, electrical measurements have been carried out from which it is seen that there is a crossover from metallic to semiconductor as temperature increases. The observed crossover has been explained by the core-shell structure of the nanorods with core resistivity much higher than the shell resistivity. The nonlinear current-voltage behavior is attributed to the formation of alternate ordered/disordered chain segments along the length of the nanorods. We also propose a model to explore the mechanism of formation of these V-, Y-shaped nanostructures. It is believed that bubble-formation occurs in liquid due to ultrasonic vibration; and asymmetry in the bubble is created when formed near the solid surface leading to jet formation. Liquid jets of collapsing bubble move with incredible velocity (400 km/h); collide with the nanorod to cause fragmentations followed by V-, Y-shaped structure formation when the imparted kinetic energy of jets is comparable with elastic energy of fragments.
Tan, Johnson C H; Meadows, Howard; Gupta, Aanchal; Yeung, Sonia N; Moloney, Gregory
2014-03-01
The aim of this study was to describe a modification of the Miyake-Apple posterior video analysis for the simultaneous visualization of the anterior and posterior corneal surfaces during wet laboratory-based deep anterior lamellar keratoplasty (DALK). A human donor corneoscleral button was affixed to a microscope slide and placed onto a custom-made mounting box. A big bubble DALK was performed on the cornea in the wet laboratory. An 11-diopter intraocular lens was positioned over the aperture of the back camera of an iPhone. This served to video record the posterior view of the corneoscleral button during the big bubble formation. An overhead operating microscope with an attached video camcorder recorded the anterior view during the surgery. The anterior and posterior views of the wet laboratory-based DALK surgery were simultaneously captured and edited using video editing software. The formation of the big bubble can be studied. This video recording camera system has the potential to act as a valuable research and teaching tool in corneal lamellar surgery, especially in the behavior of the big bubble formation in DALK.
Controlling the trajectories of bubble trains at a microfluidic junction
NASA Astrophysics Data System (ADS)
Parthiban, Pravien; Khan, Saif
2011-11-01
The increasing number of applications facilitated by digital microfluidic flows has resulted in a sustained interest in not only understanding the diverse, interesting and often complex dynamics associated with such flows in microchannel networks but also in developing facile strategies to control them. We find that there are readily accessible flow speeds wherein resistance to flow in microchannels decreases with an increase in the number of confined bubbles present, and exploit this intriguing phenomenon to sort all bubble of a train exclusively into one of the arms of a nominally symmetric microfluidic loop. We also demonstrate how the arm into which the train filters into can be chosen by applying a temporary external stimulus by means of an additional flow of the continuous liquid into one the arms of the loop. Furthermore, we show how by tuning the magnitude and period of this temporary stimulus we can switch controllably, the traffic of bubbles between both arms of the loop even when the loop is asymmetric. The results of this work should aid in developing viable methods to regulate traffic of digital flows in microfluidic networks.
Occlusion and rupture of ex vivo capillary bifurcation due to acoustic droplet vaporization
NASA Astrophysics Data System (ADS)
Feng, Yi; Qin, Dui; Zhang, Jun; Zhang, Lei; Bouakaz, Ayache; Wan, Mingxi
2018-06-01
Gas embolotherapy (GE) consists in the occlusion of tumor blood vessels using gas emboli induced by acoustic droplet vaporization (ADV), to create tumor starvation and localized drug delivery. Therefore, the occlusion and rupture of capillary bifurcation due to ADV was investigated in an ex vivo rat mesentery model using a confocal acousto-optical high-speed microscope system. Following ADV bubble formation, coalescence, and translational movement, the growing bubbles lodged in and then occluded two different capillary bifurcations. Capillary rupture was induced at the bubble lodging area, immediately followed by gas extravasation and bubble dislodging. Before and after bubble lodgment/occlusion, a local microvessel invagination was observed due to the interactions between ADV bubbles and the microvessel itself, indicating a contribution to the capillary rupture. Understanding the transient dynamics of ADV bubble, the bubble-microvessel interaction and the consequent mechanical bio-effects in GE is of the paramount importance for developing and applying this approach in clinical practice.
NASA Astrophysics Data System (ADS)
Han, Bing; Liu, Liu; Ni, Xiao-Wu
2017-08-01
In order to understand the interaction dynamics of a pair of laser-induced bubbles, a double-exposure strobe photography experimental setup is build up to study the temporal evolution of the bubble pairs and to measure the transient bubble-interface moving speed. The interaction mechanisms of the bubble pairs are discussed together with the numerical results obtained through OpenFOAM. It is shown that the direction and the velocity of the jetting could be controlled by the relative size and the relative initiation distance of the bubble pair, when the bubbles are generated at the same time, i.e., in-phase. The liquid jet is considered to be a penetrating jet. The jet is originated from the smaller bubble and clearly protruding outside of the bigger bubble. The parameter space of the relative size and the initiation distance of the bubble pair allowing the formation of the penetrating jet are very narrow. It is concluded that the liquid jet induced by the bubble interactions resulted from the collapse and the rebound of the smaller bubble nearby the bigger bubble. This is defined as the "catapult effect." Such a directional liquid transportation is a promising tool as a micro-injector or a micro-pump. The investigation results could be also supplementary to the understandings of the bubble dynamics.
NASA Technical Reports Server (NTRS)
Thiessen, D. B.; Young, J. E.; Marr-Lyon, M. J.; Richardson, S. L.; Breckon, C. D.; Douthit, S. G.; Jian, P. S.; Torruellas, W. E.; Marston, P. L.
1999-01-01
Several groups of researchers have demonstrated that high frequency sound in water may be used to cause the regular repeated compression and luminescence of a small bubble of gas in a flask. The phenomenon is known as single bubble sonoluminescence (SBSL). It is potentially important because light emitted by the bubble appears to be associated with a significant concentration of energy within the volume of the bubble. Unfortunately, the detailed physical mechanisms causing the radiation of light by oscillating bubbles are poorly understood and there is some evidence that carrying out experiments in a weightless environment may provide helpful clues. In addition, the radiation pressure of laser beams on the bubble may provide a way of simulating weightless experiments in the laboratory. The standard model of SBSL attributes the light emission to heating within the bubble by a spherically imploding shock wave to achieve temperatures of 50,000 K or greater. In an alternative model, the emission is attributed to the impact of a jet of water which is required to span the bubble and the formation of the jet is linked to the buoyancy of the bubble. The coupling between buoyancy and jet formation is a consequence of the displacement of the bubble from a velocity node (pressure antinode) of the standing acoustic wave that drives the radial bubble oscillations. One objective of this grant is to understand SBSL emission in reduced buoyancy on KC-135 parabolic flights. To optimize the design of those experiments and for other reasons which will help resolve the role of buoyancy, laboratory experiments are planned in simulated low gravity in which the radiation pressure of laser light will be used to position the bubble at the acoustic velocity node of the ultrasonic standing wave. Laser light will also be used to push the bubble away from the velocity node, increasing the effective buoyancy. The original experiments on the optical levitation and radiation pressure on bubbles in water by Unger and Marston noted above were carried out using a continuous wave (CW) beam of an Argon laser. For lateral stability the beam had a intensity minimum along its axis. Calculations of the optical radiation force on an SBSL bubble indicate that ion laser technology is a poor choice for providing the magnitude of the average optical radiation force required. Consequently it is necessary to examine various diode-pumped solid state laser technologies. The approach for this part of the research will be to achieve optical levitation of a quiescent bubble based on contemporary laser technology and then to strobe the laser synchronously with the SBSL bubble oscillations.
Fluid dynamics: The subtle art of blowing bubbles
NASA Astrophysics Data System (ADS)
Witelski, Thomas P.
2009-05-01
Careful study of the moments leading up to pinch-off of air bubbles in water reveals rich and intricate dynamics controlling their evolution, and could spark re-examination of assumptions about the nature of the formation of singularities in many physical systems.
The life and death of film bubbles
NASA Astrophysics Data System (ADS)
Poulain, S.; Villermaux, E.; Bourouiba, L.
2017-11-01
Following its burst, the fragmentation of a large bubble (film bubble) at the air-water interface can release hundreds of micrometer-sized film-drops in the air we breathe. This mechanism of droplet formation is one of the most prominent sources of sea spray. Indoor or outdoor, pathogens from contaminated water are transported by these droplets and have also been linked to respiratory infection. The lifetime and thickness of bubbles govern the number and size of the droplets they produce. Despite these important implications, little is known about the factors influencing the life and death of surface film bubbles. In particular, the fundamental physical mechanisms linking bubble aging, thinning, and lifetime remain poorly understood. To address this gap, we present the results of an extensive investigation of the aging of film-drop-producing bubbles in various ambient air, water composition, and temperature conditions. We present and validate a generalized physical picture and model of bubble cap thickness evolution. The model and physical picture are linked to the lifetime of bubbles via a series of cap rupture mechanisms of increasing efficiency.
Formation and Growth of Micro and Macro Bubbles on Copper-Graphite Composite Surfaces
NASA Technical Reports Server (NTRS)
Chao, David F.; Sankovic, John M.; Motil, Brian J.; Zhang, Nengli
2007-01-01
Micro scale boiling behavior in the vicinity of graphite micro-fiber tips on the coppergraphite composite boiling surfaces is investigated. It is discovered that a large number of micro bubbles are formed first at the micro scratches and cavities on the copper matrix in pool boiling. In virtue of the non-wetting property of graphite, once the growing micro bubbles touch the graphite tips, the micro bubbles are sucked by the tips and merged into larger micro bubbles sitting on the tips. The micro bubbles grow rapidly and coalesce to form macro bubbles, each of which sitting on several tips. The growth processes of the micro and macro bubbles are analyzed and formulated followed by an analysis of bubble departure on the composite surfaces. Based on these analyses, the enhancement mechanism of the pool boiling heat transfer on the composite surfaces is clearly revealed. Experimental results of pool boiling heat transfer both for water and Freon-113 on the composite surfaces convincingly demonstrate the enhancement effects of the unique structure of Cu-Gr composite surfaces on boiling heat transfer.
Vlaisavljevich, Eli; Maxwell, Adam; Mancia, Lauren; Johnsen, Eric; Cain, Charles; Xu, Zhen
2016-10-01
Histotripsy is a non-invasive ultrasonic ablation method that uses cavitation to mechanically fractionate tissue into acellular debris. With a sufficient number of pulses, histotripsy can completely fractionate tissue into a liquid-appearing homogenate with no cellular structures. The location, shape and size of lesion formation closely match those of the cavitation cloud. Previous work has led to the hypothesis that the rapid expansion and collapse of histotripsy bubbles fractionate tissue by inducing large stress and strain on the tissue structures immediately adjacent to the bubbles. In the work described here, the histotripsy bulk tissue fractionation process is visualized at the cellular level for the first time using a custom-built 2-MHz transducer incorporated into a microscope stage. A layer of breast cancer cells were cultured within an optically transparent fibrin-based gel phantom to mimic cells inside a 3-D extracellular matrix. To test the hypothesis, the cellular response to single and multiple histotripsy pulses was investigated using high-speed optical imaging. Bubbles were always generated in the extracellular space, and significant cell displacement/deformation was observed for cells directly adjacent to the bubble during both bubble expansion and collapse. The largest displacements were observed during collapse for cells immediately adjacent to the bubble, with cells moving more than 150-300 μm in less than 100 μs. Cells often underwent multiple large deformations (>150% strain) over multiple pulses, resulting in the bisection of cells multiple times before complete removal. To provide theoretical support to the experimental observations, a numerical simulation was conducted using a single-bubble model, which indicated that histotripsy exerts the largest strains and cell displacements in the regions immediately adjacent to the bubble. The experimental and simulation results support our hypothesis, which helps to explain the formation of the sharp lesions formed in histotripsy therapy localized to the regions directly exposed to the bubbles. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Localized Tissue Surrogate Deformation due to Controlled Single Bubble Cavitation
2014-08-27
calculate liquid jet formation with collapse of an empty spherical bubble due to the high surrounding fluid pressure 18. Experimental evidence of...maximum collapse pressures over a wide range between 8 MPa 13 to 2.5 GPa 11 have also been calculated . 5 A fundamental problem in the study of...and a digital image correlation (DIC) technique was used to calculate strain fields during bubble growth and collapse. The subsequent response of the
Pontier, J-M; Lambrechts, K
2014-06-01
We highlighted a relationship between decompression-induced bubble formation and platelet micro-particle (PMP) release after a scuba air-dive. It is known that decompression protocol using oxygen-stop accelerates the washout of nitrogen loaded in tissues. The aim was to study the effect of oxygen deco-stop on bubble formation and cell-derived MP release. Healthy experienced divers performed two scuba-air dives to 30 msw for 30 min, one with an air deco-stop and a second with 100% oxygen deco-stop at 3 msw for 9 min. Bubble grades were monitored with ultrasound and converted to the Kisman integrated severity score (KISS). Blood samples for cell-derived micro-particle analysis (AnnexinV for PMP and CD31 for endothelial MP) were taken 1 h before and after each dive. Mean KISS bubble score was significantly lower after the dive with oxygen-decompression stop, compared to the dive with air-decompression stop (4.3 ± 7.3 vs. 32.7 ± 19.9, p < 0.001). After the dive with an air-breathing decompression stop, we observed an increase of the post-dive mean values of PMP (753 ± 245 vs. 381 ± 191 ng/μl, p = 0.003) but no significant change in the oxygen-stop decompression dive (329 ± 215 vs. 381 +/191 ng/μl, p = 0.2). For the post-dive mean values of endothelial MP, there was no significant difference between both the dives. The Oxygen breathing during decompression has a beneficial effect on bubble formation accelerating the washout of nitrogen loaded in tissues. Secondary oxygen-decompression stop could reduce bubble-induced platelet activation and the pro-coagulant activity of PMP release preventing the thrombotic event in the pathogenesis of decompression sickness.
Measurement and reduction of micro-bubble formation in high-viscosity fluids
NASA Astrophysics Data System (ADS)
Tom, Glenn; Liu, Wei
2012-03-01
Gases at high drive pressure can initially dissolve into the fluids used in lithography and other critical processes during the fabrication of integrated circuits. In the low pressure portion of the dispense train, the dissolved gases can revert to bubbles. These bubbles can: 1. Affect the compressibility of the working fluid and change the flow characteristics of the dispense heads which require frequent re-tuning of the coating tools. 2. Contribute to defect formation if the bubbles are trapped on the surface of the wafer. Photosensitive Polyimides (PI) have high viscosities (1000 to 20,000 cP). Because of the high viscosity, high-powered, expensive pumps are needed to effectively remove the fluid from its container. Suction from the pump filling cycle easily causes cavitation, which can create flow rate variability, and micro-bubble formation. It is a common practice to apply pressure to the PI resists to minimize cavitation in the pump. The trade-off to this practice is the entrainment (dissolution) of the drive gas into the resist and the risk of micro-bubbles forming later in the dispense train. In the current study, ATMI measured the effects of two methods of pressure dispense from the container on the amount of gas entrained in a viscous fluid: (1) indirect pressure dispense and (2) direct pressure dispense. The main analytical method employed to measure the amount of dissolved gases is a gas chromatograph (GC), which can measure the concentration of gases dissolved in a volatile fluid. It is not suitable to measure gases in low volatility fluids. The new test method developed, however, is capable of measuring dissolved gases in low volatility fluids.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow Visualization experiments on the controlled melting and solidification of succinonitrile were conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. Porosity in the samples arose from natural shrinkage, and in some cases by direct insertion of nitrogen bubbles, during solidification of the liquid SCN. The samples were processed in the Pore Formation and Mobility Investigation (PFMI) apparatus that is placed in the glovebox facility (GBX) aboard the ISS. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. During the experiments, the sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. The temperatures in the sample are monitored by six in situ thermocouples. Real time visualization of the controlled directional melt back shows bubbles of different sizes initiating at the melt interface and, upon dislodging from the melting solid, migrating at different speeds into the temperature field ahead of them, before coming to rest. The thermocapillary flow field set up in the melt, ahead of the interface, is dramatic in the context of the large bubbles, and plays a major role in dislodging the bubble. A preliminary analysis of the observed bubble formation and mobility during melt back and its implication to future microgravity experiments is presented and discussed.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow Visualization experiments on the controlled melting and solidification of succinonitrile were conducted in the glovebox facility of the International Space Station (ISS). The experimental samples were prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. Porosity in the samples arose from natural shrinkage, and in some cases by direct insertion of nitrogen bubbles, during solidification of the liquid SCN. The samples were processed in the Pore Formation and Mobility Investigation (PFMI) apparatus that is placed in the glovebox facility (GBX) aboard the ISS. Experimental processing parameters of temperature gradient and translation speed, as well as camera settings, were remotely monitored and manipulated from the ground Telescience Center (TSC) at the Marshall Space Flight Center. During the experiments, the sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. The temperatures in the sample are monitored by six in situ thermocouples. Real time visualization of the controlled directional melt back shows bubbles of different sizes initiating at the melt interface and, upon dislodging from the melting solid, migrating at different speeds into the temperature field ahead of them, before coming to rest. The thermocapillary flow field set up in the melt, ahead of the interface, is dramatic in the context of the large bubbles, and plays a major role in dislodging the bubble. A preliminary analysis of the observed bubble formation and mobility during melt back and its implication to future microgravity experiments is presented and discussed.
NASA Astrophysics Data System (ADS)
Li, Jing; Zhang, Xianren; Cao, Dapeng
2018-05-01
Decompression sickness (also known as diver’s sickness) is a disease that arises from the formation of a bubble inside the body caused by rapid decompression from high atmospheric pressures. However, the nature of pre-existing micronuclei that are proposed for interpreting the formation and growth of the bubble, as well as their very existence, is still highly controversial. In this work, atomistic molecular dynamics simulations are employed to investigate the nucleation of gas bubbles under the condition of nitrogen supersaturation, in the presence of a lipid bilayer and lipid micelle representing other macromolecules with a smaller hydrophobic region. Our simulation results demonstrate that by crossing a small energy barrier, excess nitrogen molecules can enter the lipid bilayer nearly spontaneously, for which the hydrophobic core serves as a potential well for gas enrichment. At a rather low nitrogen supersaturation, gas molecules in the membrane are dispersed in the hydrophobic region of the bilayer, with a slight increase in membrane thickness. But as the level of gas supersaturation reaches a threshold, the accumulation of N2 molecules in the bilayer center causes the two leaflets to be decoupled and the formation of nanobubbles. Therefore, we propose a nucleation mechanism for bubble formation in a supersaturated solution of inert gas: a cell membrane acts as a potential well for gas enrichment, being an ideal location for forming nanobubbles that induce membrane damage at a high level of gas supersaturation. As opposed to previous models, the new mechanism involves forming gas nuclei in a very low-tension hydrophobic environment, and thus a rather low energy barrier is required and pre-existing bubble micronuclei are not needed.
Effect of pulse duration on photomechanical response of soft tissue during Ho:YAG laser ablation
NASA Astrophysics Data System (ADS)
Jansen, E. Duco; Motamedi, Massoud; Pfefer, T. Joshua; Asshauer, Thomas; Frenz, Martin; Delacretaz, Guy P.; Abela, George S.; Welch, Ashley J.
1995-05-01
Mechanical injury during pulsed holmium laser ablation of tissue is caused by rapid bubble expansion and collapse or by laser-induced pressure waves. In this study the effect of pulse duration on the photomechanical response of soft tissue during holmium:YAG laser ablation has been investigated. The dynamics of laser-induced bubble formation was documented in water and in transparent polyacrylamide tissue phantoms with a water concentration of 84%. Holmium:YAG laser radiation ((lambda) equals 2.12 micrometers ) was delivered in water or tissue phantoms via an optical fiber (200 or 400 micrometers ). The laser was operated in either the Q- switched mode ((tau) p equals 500 ns, Qp equals 14 +/- 1 mJ, 200 micrometers fiber, Ho equals 446 mJ/mm2) or the free-running mode ((tau) p equals 100 - 1100 microsecond(s) , Qp equals 200 +/- 5 mJ, 400 micrometers fiber, Ho equals 1592 mJ/mm2). Bubble formation was documented using a fast flash photography setup while simultaneously a PVDP needle hydrophone (40 ns risetime), recorded pressures. The effect of the pulse duration on the photomechanical response of soft biological tissue was evaluated by delivering 5 pulses of 800 mJ to the intimal side of porcine aorta in vitro, followed by histologic evaluation. It was observed that, as the pulse duration was increased the bubble shape changed from almost spherical for Q-switched pulses to a more elongated, cylindrical shape for the longer pulse durations. The bubble expansion velocity was larger for shorter pulse durations. A thermo- elastic expansion wave was measured only during Q-switched pulse delivery. All pulses that induced bubble formation generated pressure waves upon collapse of the bubble in water as well as in the gel. The amplitude of the pressure wave depended strongly on the size and geometry of the laser-induced bubble. The important findings of this study were (1) the magnitude of collapse pressure wave decreased as laser pulse duration increased, and (2) mechanical tissue damage is reduced significantly by using longer pulse durations (> 460 microsecond(s) , for the pulse energy used).
Between soap bubbles and vesicles: The dynamics of freely floating smectic bubbles
NASA Astrophysics Data System (ADS)
Stannarius, Ralf; May, Kathrin; Harth, Kirsten; Trittel, Torsten
2013-03-01
The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. We introduce freely floating bubbles of smectic liquid crystals and report their unique dynamic properties. Smectic bubbles can be used as simple models for dynamic studies of fluid membranes. In equilibrium, they form minimal surfaces like soap films. However, shape transformations of closed smectic membranes that change the surface area involve the formation and motion of molecular layer dislocations. These processes are slow compared to the capillary wave dynamics, therefore the effective surface tension is zero like in vesicles. Freely floating smectic bubbles are prepared from collapsing catenoid films and their dynamics is studied with optical high-speed imaging. Experiments are performed under normal gravity and in microgravity during parabolic flights. Supported by DLR within grant OASIS-Co.
The effect of gravity-induced pressure gradient on bubble luminescence
NASA Astrophysics Data System (ADS)
Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Dorsaz, Nicolas; Tinguely, Marc; Farhat, Mohamed
2014-11-01
The violent collapse of a bubble can heat up its gaseous contents to temperatures exceeding those on the sun's surface, resulting in a short luminescence flash. Occurring at the very moment of the collapse, luminescence must be highly sensitive to the bubble geometry at the preceding final stage. This represents an important feature as any pressure anisotropy in the surrounding liquid will result in a deformation of an initially spherical bubble, inducing a micro-jet that pierces the bubble and makes it experience a toroidal collapse. We therefore present these as complementary phenomena by investigating the link between jets and luminescence of laser-generated single bubbles. Through ultra-high-speed imaging, the micro-jet formation and evolution of a single bubble are observed with unprecedented detail, whilst the bubble light emission is analyzed by means of a spectrometer. The bubble energy and the micro-jet size are controlled by adjusting the laser-pulse and by varying the gravity level aboard ESA parabolic flights, respectively. We here provide systematic evidence on how bubble-jets suppress luminescence in a considerable manner, even in normal gravity where the jet is barely observable. We conclude that gravity must be accounted for in accurate models of luminescence.
Evolution of Helium Bubbles and Discs in Irradiated 6H-SiC during Post-Implantation Annealing.
Shen, Qiang; Zhou, Wei; Ran, Guang; Li, Ruixiang; Feng, Qijie; Li, Ning
2017-01-24
The single crystal 6H-SiC with [0001] crystal direction irradiated by 400 keV He⁺ ions with 1 × 10 17 ions/cm² fluence at 400 °C were annealed at 600, 900, 1200 and 1400 °C for different durations. The evolution of helium bubbles and discs was investigated by transmission electron microscopy. An irradiated layer distributed with fine helium bubbles was formed with a width of ~170 nm after helium ion irradiation. The size of gas bubbles increased with increasing annealing time and temperature and finally reached stable values at a given annealing temperature. According to the relationship between the bubble radii and annealing time, an empirical formula for calculating the bubble radii at the annealing temperature ranged from 600 to 1400 °C was given by fitting the experiment data. Planar bubble clusters (discs) were found to form on (0001) crystal plane at both sides of the bubble layer when the annealing temperature was at the range of 800-1200 °C. The mechanism of bubble growth during post-implantation annealing and the formation of bubble discs were also analyzed and discussed.
Modelling cavitation erosion using fluid–material interaction simulations
Chahine, Georges L.; Hsiao, Chao-Tsung
2015-01-01
Material deformation and pitting from cavitation bubble collapse is investigated using fluid and material dynamics and their interaction. In the fluid, a novel hybrid approach, which links a boundary element method and a compressible finite difference method, is used to capture non-spherical bubble dynamics and resulting liquid pressures efficiently and accurately. The bubble dynamics is intimately coupled with a finite-element structure model to enable fluid/structure interaction simulations. Bubble collapse loads the material with high impulsive pressures, which result from shock waves and bubble re-entrant jet direct impact on the material surface. The shock wave loading can be from the re-entrant jet impact on the opposite side of the bubble, the fast primary collapse of the bubble, and/or the collapse of the remaining bubble ring. This produces high stress waves, which propagate inside the material, cause deformation, and eventually failure. A permanent deformation or pit is formed when the local equivalent stresses exceed the material yield stress. The pressure loading depends on bubble dynamics parameters such as the size of the bubble at its maximum volume, the bubble standoff distance from the material wall and the pressure driving the bubble collapse. The effects of standoff and material type on the pressure loading and resulting pit formation are highlighted and the effects of bubble interaction on pressure loading and material deformation are preliminarily discussed. PMID:26442140
NASA Astrophysics Data System (ADS)
Jiang, B.; Thondapu, V.; Barlis, P.; Poon, E. K. W.; Ooi, A. S. H.
2017-04-01
Incomplete stent apposition (ISA) is sometimes found in stent deployment at complex lesions, and it is considered to be one of the causes of post-stenting complications, such as late stent thrombosis and restenosis. The presence of ISA leads to large recirculation bubbles behind the stent struts, which can reduce shear stress at the arterial wall that retards neointimal formation process and thus lead to complications. Computational fluid dynamics (CFD) simulations are performed on simplified two-dimensional axisymmetric arterial models with stents struts of square and circular cross-sectional shapes at a malapposition distance of 120 μm from the arterial wall. To investigate the effects of pulsatile flow period on the dynamics of the recirculation bubbles, high fidelity simulations are carried out with pulsatile flows of period 0.4 s and 0.8 s. Under the condition of the same flow rate, both square and circular strut cases show that shorter period provides greater flow deceleration, leading to the formation of a larger recirculation bubble. With the same thickness, circular strut has a significant improvement over the square strut in terms of the size of the recirculation bubble, and therefore less likely to lead to complications.
The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid
NASA Astrophysics Data System (ADS)
Ohta, Mitsuhiro; Sussman, Mark
2012-11-01
The buoyancy-driven motion of a single skirted bubble or drop rising through a viscous liquid is computationally explored by way of 3d-axisymmetric computations. The Navier-Stokes equations for incompressible two-fluid flow are solved numerically in which the coupled level-set and volume-of-fluid method is used to simulate the deforming bubble/drop boundary and the interface jump conditions on the deforming boundary are enforced through a sharp interface numerical treatment. Dynamic, block structured adaptive grid refinement is employed in order to sufficiently resolve the thin skirts. Results on the sensitivity of the thickness of trailing bubble/drop skirts to the density ratio and viscosity ratio are reported. It is shown that both the density ratio (not the density difference) and the viscosity ratio effect the skirt thickness. Previous theory for predicting skirt thickness can be refined as a result of our calculations. It is also discovered that the formation of thin skirts for bubbles and drops have little effect on the rise velocity. In other words, the measured Re number for cases without skirt formation have almost the same values for Re as cases with a thin skirt.
NASA Astrophysics Data System (ADS)
Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo
2017-09-01
The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.
Jetting of a ultrasound contrast microbubble near a rigid wall
NASA Astrophysics Data System (ADS)
Sarkar, Kausik; Mobadersany, Nima
2017-11-01
Micron sized gas-bubbles coated with a stabilizing shell of lipids or proteins, are used as contrast enhancing agents for ultrasound imaging. However, they are increasingly being explored for novel applications in drug delivery through a process called sonoporation, the reversible permeabilization of the cell membrane. Under sufficiently strong acoustic excitations, bubbles form a jet and collapse near a wall. The jetting of free bubbles has been extensively studied by boundary element method (BEM). Here, for the first time, we implemented a rigorous interfacial rheological model of the shell into BEM and investigated the jet formation. The code has been carefully validated against past results. Increasing shell elasticity decreases the maximum bubble volume and the collapse time, while the jet velocity increases. The shear stress on the wall is computed and analyzed. A phase diagram as functions of excitation pressure and wall separation describes jet formation. Effects of shell elasticity and frequency on the phase diagram are investigated. Partially supported by National Science Foundation.
Numerical Simulation of Slag Eye Formation and Slag Entrapment in a Bottom-Blown Argon-Stirred Ladle
NASA Astrophysics Data System (ADS)
Liu, Wei; Tang, Haiyan; Yang, Shufeng; Wang, Minghui; Li, Jingshe; Liu, Qing; Liu, Jianhui
2018-06-01
A transient mathematical model is developed for simulating the bubble-steel-slag-top gas four-phase flow in a bottom-blown argon-stirred ladle with a 70-ton capacity. The Lagrangian discrete phase model (DPM) is used for describing the moving behavior of bubbles in the steel and slag. To observe the formation process of slag eye, the volume of fluid (VOF) model is used to track the interfaces between three incompressible phases: metal/slag, metal/gas, and slag/gas. The complex multiphase turbulent flow induced by bubble-liquid interactions is solved by a large eddy simulation (LES) model. Slag eye area and slag droplet dispersion are investigated under different gas flow rates. The results show that the movement of bubbles, formation and collapse of slag eye, volatility of steel/slag interface and behavior of slag entrapment can be properly predicted in the current model. When the gas flow rate is 300 L/min, the circulation driven by the bubble plume will stir the entire ladle adequately and form a slag eye of the right size. At the same time, it will not cause strong erosion to the ladle wall, and the fluctuation of the interface is of adequate intensity, which will be helpful for improving the desulfurization efficiency; the slag entrapment behavior can also be decreased. Interestingly, with the motion of liquid steel circulation, the collision and coalescence of dispersed slag droplets occur during the floating process in the vicinity of the wall.
Transformer overload and bubble evolution: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Addis, G.; Lindgren, S.
1988-06-01
The EPRI workshop on Transformer Overload Characteristics and Bubble Evolution was held to review the findings of investigations over the past 7-8 years to determine whether enough information is now available for utilities to establish safe loading practices. Sixteen papers were presented, including a utility review, physical and dielectric effects of gas and bubble formation from cellulose insulated transformers, transformer life characteristics, gas bubble studies and impulse test on distribution transformers, mathematical modeling of bubble evolution, transformer overload characteristics, variation of PD-strength for oil-paper insulation, survey on maximum safe operating hot spot temperature, and overload management. The meeting concluded withmore » a general discussion covering the existing state of knowledge and the need for additional research. Sixteen papers have been cataloged separately.« less
NASA Astrophysics Data System (ADS)
Yang, H.-Y. K.; Ruszkowski, M.
2017-11-01
The Fermi bubbles are among the most important findings of the Fermi Gamma-ray Space Telescope; however, their origin is still elusive. One of the unique features of the bubbles is that their gamma-ray spectrum, including a high-energy cutoff at ˜110 GeV and the overall shape of the spectrum, is nearly spatially uniform. The high-energy spectral cutoff is suggestive of a leptonic origin due to synchrotron and inverse-Compton cooling of cosmic-ray (CR) electrons; however, even for a leptonic model, it is not obvious why the spectrum should be spatially uniform. In this work, we investigate the bubble formation in the leptonic active galactic nucleus (AGN) jet scenario using a new CRSPEC module in FLASH that allows us to track the evolution of a CR spectrum during the simulations. We show that the high-energy cutoff is caused by fast electron cooling near the Galactic center (GC) when the jets were launched. Afterwards, the dynamical timescale becomes the shortest among all relevant timescales, and therefore the spectrum is essentially advected with only mild cooling losses. This could explain why the bubble spectrum is nearly spatially uniform: the CRs from different parts of the bubbles as seen today all share the same origin near the GC at an early stage of the bubble expansion. We find that the predicted CR spatial and spectral distribution can simultaneously match the normalization, spectral shape, and high-energy cutoff of the observed gamma-ray spectrum and their spatial uniformity, suggesting that past AGN jet activity is a likely mechanism for the formation of the Fermi bubbles.
Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble
NASA Astrophysics Data System (ADS)
Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra
2018-04-01
The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.
Study on Formation of Plasma Nanobubbles in Water
NASA Astrophysics Data System (ADS)
Sato, Takehiko; Nakatani, Tatsuyuki; Miyahara, Takashi; Ochiai, Shiroh; Oizumi, Masanobu; Fujita, Hidemasa; Miyazaki, Takamichi
2015-12-01
Nanobubbles of less than 400 nm in diameter were formed by plasma in pure water. Pre-breakdown plasma termed streamer discharges, generated gas channels shaped like fine dendritic coral leading to the formation of small bubbles. Nanobubbles were visualized by an optical microscope and measured by dynamic laser scattering. However, it is necessary to verify that these nanobubbles are gas bubbles, not solid, because contamination such as platinum particles and organic compounds from electrode and residue in ultrapure water were also observed.
Guest investigator program study: Physics of equatorial plasma bubbles
NASA Technical Reports Server (NTRS)
Tsunoda, Roland T.
1994-01-01
Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge-shaped plasma bubbles. The second topic was pursued because the inability to predict the day-to-day occurrence of plasma bubbles indicated inadequate knowledge of the physics of plasma bubbles. An understanding of bubble formation requires an understanding of the roles of the various terms in the linearized growth rate of the collisional Rayleigh-Taylor instability. In our study, we examined electric-field perturbations found in SM-D EFI data and found that the seeding is more likely to be produced in the E region rather than the F region. The results of this investigation are presented in the Appendix of this report and will be submitted for publication in the Journal of Geophysical Research.
Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.
2015-01-01
A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963
Wang, Yujie; Pan, Ruihua; Tyree, Melvin T
2015-06-01
A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. © 2015 American Society of Plant Biologists. All Rights Reserved.
Synchrotron quantification of ultrasound cavitation and bubble dynamics in Al-10Cu melts.
Xu, W W; Tzanakis, I; Srirangam, P; Mirihanage, W U; Eskin, D G; Bodey, A J; Lee, P D
2016-07-01
Knowledge of the kinetics of gas bubble formation and evolution under cavitation conditions in molten alloys is important for the control casting defects such as porosity and dissolved hydrogen. Using in situ synchrotron X-ray radiography, we studied the dynamic behaviour of ultrasonic cavitation gas bubbles in a molten Al-10 wt%Cu alloy. The size distribution, average radius and growth rate of cavitation gas bubbles were quantified under an acoustic intensity of 800 W/cm(2) and a maximum acoustic pressure of 4.5 MPa (45 atm). Bubbles exhibited a log-normal size distribution with an average radius of 15.3 ± 0.5 μm. Under applied sonication conditions the growth rate of bubble radius, R(t), followed a power law with a form of R(t)=αt(β), and α=0.0021 &β=0.89. The observed tendencies were discussed in relation to bubble growth mechanisms of Al alloy melts. Copyright © 2016 Elsevier B.V. All rights reserved.
Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B
2014-06-01
High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.
Primordial black hole formation by vacuum bubbles
NASA Astrophysics Data System (ADS)
Deng, Heling; Vilenkin, Alexander
2017-12-01
Vacuum bubbles may nucleate during the inflationary epoch and expand, reaching relativistic speeds. After inflation ends, the bubbles are quickly slowed down, transferring their momentum to a shock wave that propagates outwards in the radiation background. The ultimate fate of the bubble depends on its size. Bubbles smaller than certain critical size collapse to ordinary black holes, while in the supercritical case the bubble interior inflates, forming a baby universe, which is connected to the exterior region by a wormhole. The wormhole then closes up, turning into two black holes at its two mouths. We use numerical simulations to find the masses of black holes formed in this scenario, both in subcritical and supercritical regime. The resulting mass spectrum is extremely broad, ranging over many orders of magnitude. For some parameter values, these black holes can serve as seeds for supermassive black holes and may account for LIGO observations.
2003-01-22
On Earth when scientists melt metals, bubbles that form in the molten material can rise to the surface, pop and disappear. In microgravity -- the near-weightless environment created as the International Space Station orbits Earth -- the lighter bubbles do not rise and disappear. Prior space experiments have shown that bubbles often become trapped in the final metal or crystal sample -similar to the bubbles trapped in this sample. In the solid, these bubbles, or porosity, are defects that diminish both the material's strength and usefulness. The Pore Formation and Mobility Investigation will melt samples of a transparent modeling material, succinonitrile and succinonitrile water mixtures, shown here in an ampoule being examined by Dr. Richard Grugel, the principal investigator for the experiment at NASA's Marshall Space Flight Center in Huntsville, Ala. As the samples are processed in space, Grugel will be able to observe how bubbles form in the samples and study their movements and interactions.
Modeling the kinetics of bubble nucleation in champagne and carbonated beverages.
Liger-Belair, Gérard; Parmentier, Maryline; Jeandet, Philippe
2006-10-26
In champagne and carbonated beverages, bubble nucleation was mostly found to take place from tiny Taylor-like bubbles trapped inside immersed cellulose fibers stuck on the glass wall. The present paper complements a previous paper about the thorough examination of the bubble nucleation process in a flute poured with champagne (Liger-Belair et al. J. Phys. Chem. B 2005, 109, 14573). In this previous paper, a model was built that accurately reproduces the dynamics of these tiny Taylor-like bubbles that grow inside the fiber's lumen by diffusion of CO(2)-dissolved molecules. In the present paper, by use of the model recently developed, the frequency of bubble formation from cellulose fibers is accessed and linked with various liquid and fiber parameters, namely, the concentration c(L) of CO(2)-dissolved molecules, the liquid temperature theta, its viscosity eta, the ambient pressure P, the course of the gas pocket growing trapped inside the fiber's lumen before releasing a bubble, and the radius r of the fiber's lumen. The relative influence of the latter parameters on the bubbling frequency is discussed and supported with recent experimental observations and data.
Bubbles in live-stranded dolphins.
Dennison, S; Moore, M J; Fahlman, A; Moore, K; Sharp, S; Harry, C T; Hoppe, J; Niemeyer, M; Lentell, B; Wells, R S
2012-04-07
Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.
Interaction between shock wave and single inertial bubbles near an elastic boundary.
Sankin, G N; Zhong, P
2006-10-01
The interaction of laser-generated single inertial bubbles (collapse time = 121 mus) near a silicon rubber membrane with a shock wave (55 MPa in peak pressure and 1.7 mus in compressive pulse duration) is investigated. The interaction leads to directional, forced asymmetric collapse of the bubble with microjet formation toward the surface. Maximum jet penetration into the membrane is produced during the bubble collapse phase with optimal shock wave arrival time and stand-off distance. Such interaction may provide a unique acoustic means for in vivo microinjection, applicable to targeted delivery of macromolecules and gene vectors to biological tissues.
Interaction of lithotripter shockwaves with single inertial cavitation bubbles
Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K.; Khoo, Boo Cheong; Szeri, Andrew J.; Calvisi, Michael L.; Sankin, Georgy N.; Zhong, Pei
2008-01-01
The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave–bubble interaction are discussed. PMID:19018296
Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
Klaseboer, Evert; Fong, Siew Wan; Turangan, Cary K; Khoo, Boo Cheong; Szeri, Andrew J; Calvisi, Michael L; Sankin, Georgy N; Zhong, Pei
2007-01-01
The dynamic interaction of a shockwave (modelled as a pressure pulse) with an initially spherically oscillating bubble is investigated. Upon the shockwave impact, the bubble deforms non-spherically and the flow field surrounding the bubble is determined with potential flow theory using the boundary-element method (BEM). The primary advantage of this method is its computational efficiency. The simulation process is repeated until the two opposite sides of the bubble surface collide with each other (i.e. the formation of a jet along the shockwave propagation direction). The collapse time of the bubble, its shape and the velocity of the jet are calculated. Moreover, the impact pressure is estimated based on water-hammer pressure theory. The Kelvin impulse, kinetic energy and bubble displacement (all at the moment of jet impact) are also determined. Overall, the simulated results compare favourably with experimental observations of lithotripter shockwave interaction with single bubbles (using laser-induced bubbles at various oscillation stages). The simulations confirm the experimental observation that the most intense collapse, with the highest jet velocity and impact pressure, occurs for bubbles with intermediate size during the contraction phase when the collapse time of the bubble is approximately equal to the compressive pulse duration of the shock wave. Under this condition, the maximum amount of energy of the incident shockwave is transferred to the collapsing bubble. Further, the effect of the bubble contents (ideal gas with different initial pressures) and the initial conditions of the bubble (initially oscillating vs. non-oscillating) on the dynamics of the shockwave-bubble interaction are discussed.
C-O-H-S magmatic fluid system in shrinkage bubbles of melt inclusions
NASA Astrophysics Data System (ADS)
Robidoux, P.; Frezzotti, M. L.; Hauri, E. H.; Aiuppa, A.
2016-12-01
Magmatic volatiles include multiple phases in the C-O-H-S system of shrinkage bubbles for which a conceptual model is still unclear during melt inclusion formation [1,2,3,4]. The present study aims to qualitatively explore the evolution of the volatile migration, during and after the formation of the shrinkage bubble in melt inclusions trapped by olivines from Holocene to present at San Cristóbal volcano (Nicaragua), Central American Volcanic Arc (CAVA). Combined scanning electron microscope (SEM) and Raman spectroscopy observations allow to define the mineral-fluid phases inside typical shrinkage bubbles at ambient temperature. The existence of residual liquid water is demonstrated in the shrinkage bubbles of naturally quenched melt inclusion and this water could represents the principal agent for chemical reactions with other dissolved ionic species (SO42-, CO32-, etc.) and major elements (Mg, Fe, Cu, etc.) [4,5]. With the objective of following the cooling story of the bubble-inclusion system, the new methodological approach here estimate the interval of equilibrium temperatures for each SEM-Raman identified mineral phase (carbonates, hydrous carbonates, sulfurs, sulfates, etc.). Finally, two distinct mechanisms are proposed to describe the evolution of this heterogeneous fluid system in bubble samples at San Cristóbal which imply a close re-examination for similar volcanoes in subduction zone settings: (1) bubbles are already contracted and filled by volatiles by diffusion processes from the glass and leading to a C-O-H-S fluid-glass reaction enriched in Mg-Fe-Cu elements (2) bubbles are formed by oversaturation of the volatiles from the magma which is producing an immiscible metal-rich fluid. [1]Moore et al. (2015). Am. Mineral. 100, 806-823 [2]Wallace et al. (2015). Am. Mineral. 100, 787-794 [3]Lowenstern (2015). Am. Mineral. 100, 672-673 [4]Esposito, et al. (2016). Am. Mineral. 101, 1691-1708 [5]Kamenetsky et al. (2001). Earth Planet. Sci. Lett. 184, 685-702
Extreme conditions in a dissolving air nanobubble
NASA Astrophysics Data System (ADS)
Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru
2016-07-01
Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.
The geophysical importance of bubbles in the sea
NASA Technical Reports Server (NTRS)
Cirpriano, R. J.
1982-01-01
Present knowledge of the mechanisms for production and enrichment and film drops by bursting bubbles is summarized, with particular emphasis on the unsolved problems. Sea salt is by far the major constituent cycled through the Earth's atmosphere each year. Bursting bubbles in the oceans appear to be primarily responsible. These salt particles play a role in the formation of maritime clouds, which in turn affect the Earth's radiation budget. Along with the salt are carried various chemical pollutants and potentially pathogenic microorganisms, often in highly enriched form.
Radiation-induced grain subdivision and bubble formation in U3Si2 at LWR temperature
NASA Astrophysics Data System (ADS)
Yao, Tiankai; Gong, Bowen; He, Lingfeng; Harp, Jason; Tonks, Michael; Lian, Jie
2018-01-01
U3Si2, an advanced fuel form proposed for light water reactors (LWRs), has excellent thermal conductivity and a high fissile element density. However, limited understanding of the radiation performance and fission gas behavior of U3Si2 is available at LWR conditions. This study explores the irradiation behavior of U3Si2 by 300 keV Xe+ ion beam bombardment combining with in-situ transmission electron microscopy (TEM) observation. The crystal structure of U3Si2 is stable against radiation-induced amorphization at 350 °C even up to a very high dose of 64 displacements per atom (dpa). Grain subdivision of U3Si2 occurs at a relatively low dose of 0.8 dpa and continues to above 48 dpa, leading to the formation of high-density nanoparticles. Nano-sized Xe gas bubbles prevail at a dose of 24 dpa, and Xe bubble coalescence was identified with the increase of irradiation dose. The volumetric swelling resulting from Xe gas bubble formation and coalescence was estimated with respect to radiation dose, and a 2.2% volumetric swelling was observed for U3Si2 irradiated at 64 dpa. Due to extremely high susceptibility to oxidation, the nano-sized U3Si2 grains upon radiation-induced grain subdivision were oxidized to nanocrystalline UO2 in a high vacuum chamber for TEM observation, eventually leading to the formation of UO2 nanocrystallites stable up to 80 dpa.
Bubble dynamics inside an outgassing hydrogel confined in a Hele-Shaw cell.
Haudin, Florence; Noblin, Xavier; Bouret, Yann; Argentina, Médéric; Raufaste, Christophe
2016-08-01
We report an experimental study of bubble dynamics in a non-Newtonian fluid subjected to a pressure decrease. The fluid is a hydrogel, composed of water and a synthetic clay, prepared and sandwiched between two glass plates in a Hele-Shaw geometry. The rheological properties of the material can be tuned by the clay concentration. As the imposed pressure decreases, the gas initially dissolved in the hydrogel triggers bubble formation. Different stages of the process are observed: bubble nucleation, growth, interaction, and creation of domains by bubble contact or coalescence. Initially bubble behave independently. They are trapped and advected by the mean deformation of the hydrogel, and the bubble growth is mainly driven by the diffusion of the dissolved gas through the hydrogel and its outgassing at the reactive-advected hydrogel-bubble interface. In this regime, the rheology of the fluid does not play a significant role on the bubble growth. A model is proposed and gives a simple scaling that relates the bubble growth rate and the imposed pressure. Carbon dioxide is shown to be the gas at play, and the hydrogel is degassing at the millimeter scale as a water solution does at a smaller scale. Later, bubbles are not independent anymore. The growth rate decreases, and the morphology becomes more anisotropic as bubbles interact because they are separated by a distance smaller than the individual stress field extension. Our measurements show that the interaction distance scales with the bubbles' size.
Real-time self-networking radiation detector apparatus
Kaplan, Edward [Stony Brook, NY; Lemley, James [Miller Place, NY; Tsang, Thomas Y [Holbrook, NY; Milian, Laurence W [East Patchogue, NY
2007-06-12
The present invention is for a radiation detector apparatus for detecting radiation sources present in cargo shipments. The invention includes the features of integrating a bubble detector sensitive to neutrons and a GPS system into a miniaturized package that can wirelessly signal the presence of radioactive material in shipping containers. The bubble density would be read out if such indicated a harmful source.
Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.
Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi
2013-01-01
We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.
Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Tien, J. S.
1999-01-01
Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.
Coupled LBM-DEM Three-phase Simulation on Seepage of CO2 Stored under the Seabed.
NASA Astrophysics Data System (ADS)
Kano, Y.; Sato, T.
2017-12-01
Concerning the seepage of CO2 stored in a subsea formation, CO2 bubble/droplet rises to the sea-surface dissolving into the seawater, and the acidification of local seawater will be a problem. Previous research indicated that seepage rate and bubble size significantly affect its behaviour (Kano et al., 2009; Dewar et al., 2013). On the other hand, Kawada's experiments (2014) indicated that grain size affects formation of gas channels and bubbles through granular media. CO2 seepage through marine sediments probably shows similar behaviour. Additionally, such mobilisation and displacement of sand grains by gas migration may also cause capillary fracturing of CO2 in the reservoir and seal. To predict these phenomena, it is necessary to reveal three-phase behaviour of gas-water-sediment grains. We built gas-liquid-solid three-phase flow 3D simulator by coupling LBM-DEM program, and simulation results showed that the mobilisation of sand grain forms gas channels and affects bubble formation compared with that through solid porous media (Kano and Sato, 2017). In this presentation, we will report simulation results on effects of porosity, grain size and gas flow rate on the formation of gas channels and bubble and their comparison with laboratory experimental data. The results indicate that porosity and grain size of sand gravels affect the width of formed gas channels and resulting formed bubble size on the order of supposed seepage rate in the CO2 storage and that in most of experiment's conditions. References: Abe, S., Place, D., Mora, P., 2004. Pure. Appl. Geophys., 161, 2265-2277. (accessed Aug 01, 2017). Dewar, M., Wei, W., McNeil, D., Chen, B., 2013. Marine Pollution Bulletin 73(2), 504-515. Kano, Y., Sato, T., Kita, J., Hirabayashi, S., Tabeta, S., 2009. Int. J. Greenhouse Gas Control, Vol. 3(5), 617-625. Kano, Y. and Sato, T., 2017. In Proceeding of GHGT-13, Lausanne, Switzerland, Nov. 14-18, 2016. Kawada, R. 2014. Graduation thesis. Faculty of Engineering, The University of Tokyo. (in Japanese).
NASA Astrophysics Data System (ADS)
Bik, A.; Puga, E.; Waters, L. B. F. M.; Horrobin, M.; Henning, Th.; Vasyunina, T.; Beuther, H.; Linz, H.; Kaper, L.; van den Ancker, M.; Lenorzer, A.; Churchwell, E.; Kurtz, S.; Kouwenhoven, M. B. N.; Stolte, A.; de Koter, A.; Thi, W. F.; Comerón, F.; Waelkens, Ch.
2010-04-01
In this paper, we present VLT/SINFONI integral field spectroscopy of RCW 34 along with Spitzer/IRAC photometry of the surroundings. RCW 34 consists of three different regions. A large bubble has been detected in the IRAC images in which a cluster of intermediate- and low-mass class II objects is found. At the northern edge of this bubble, an H II region is located, ionized by 3 OB stars, of which the most massive star has spectral type O8.5V. Intermediate-mass stars (2-3 M sun) are detected of G- and K-spectral type. These stars are still in the pre-main-sequence (PMS) phase. North of the H II region, a photon-dominated region is present, marking the edge of a dense molecular cloud traced by H2 emission. Several class 0/I objects are associated with this cloud, indicating that star formation is still taking place. The distance to RCW 34 is revised to 2.5 ± 0.2 kpc and an age estimate of 2 ± 1 Myr is derived from the properties of the PMS stars inside the H II region. Between the class II sources in the bubble and the PMS stars in the H II region, no age difference could be detected with the present data. The presence of the class 0/I sources in the molecular cloud, however, suggests that the objects inside the molecular cloud are significantly younger. The most likely scenario for the formation of the three regions is that star formation propagated from south to north. First the bubble is formed, produced by intermediate- and low-mass stars only, after that, the H II region is formed from a dense core at the edge of the molecular cloud, resulting in the expansion similar to a champagne flow. More recently, star formation occurred in the rest of the molecular cloud. Two different formation scenarios are possible. (1) The bubble with the cluster of low- and intermediate-mass stars triggered the formation of the O star at the edge of the molecular cloud, which in its turn induces the current star formation in the molecular cloud. (2) An external triggering is responsible for the star formation propagating from south to north. Based on observations collected at the European Southern Observatory at Paranal, Chile (ESO program 078.C-0780).
Asymmetric Brownian motor driven by bubble formation in a hydrophobic channel.
Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu
2010-10-26
The "asymmetric brownian ratchet model" is a variation of Feynman's ratchet and pawl system proposed. In this model, a system consisting of a motor and a rail has two binding states. One is the random brownian state, and the other is the asymmetric potential state. When the system is alternatively switched between these states, the motor can be driven in one direction. This model is believed to explain nanomotor behavior in biological systems. The feasibility of the model has been demonstrated using electrical and magnetic forces; however, switching of these forces is unlikely to be found in biological systems. In this paper, we propose an original mechanism of transition between states by bubble formation in a nanosized channel surrounded by hydrophobic atoms. This amounts to a nanoscale motor system using bubble propulsion. The motor system consists of a hydrophobic motor and a rail on which hydrophobic patterns are printed. Potential asymmetry can be produced by using a left-right asymmetric pattern shape. Hydrophobic interactions are believed to play an important role in the binding of biomolecules and molecular recognition. The bubble formation is controlled by changing the width of the channel by an atomic distance (∼0.1 nm). Therefore, the motor is potentially more efficient than systems controlled by other forces, in which a much larger change in the motor position is necessary. We have simulated the bubble-powered motor using dissipative particle dynamics and found behavior in good agreement with that of motor proteins. Energy efficiency is as high as 60%.
Further experimentation on bubble generation during transformer overload
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1992-03-01
This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less
Removal of residual nuclei following a cavitation event using low-amplitude ultrasound.
Duryea, Alexander P; Cain, Charles A; Tamaddoni, Hedieh A; Roberts, William W; Hall, Timothy L
2014-10-01
Microscopic residual bubble nuclei can persist on the order of 1 s following a cavitation event. These bubbles can limit the efficacy of ultrasound therapies such as shock wave lithotripsy and histotripsy, because they attenuate pulses that arrive subsequent to their formation and seed repetitive cavitation activity at a discrete set of sites (cavitation memory). Here, we explore a strategy for the removal of these residual bubbles following a cavitation event, using low-amplitude ultrasound pulses to stimulate bubble coalescence. All experiments were conducted in degassed water and monitored using high-speed photography. In each case, a 2-MHz histotripsy transducer was used to initiate cavitation activity (a cavitational bubble cloud), the collapse of which generated a population of residual bubble nuclei. This residual nuclei population was then sonicated using a 1 ms pulse from a separate 500-kHz transducer, which we term the bubble removal pulse. Bubble removal pulse amplitudes ranging from 0 to 1.7 MPa were tested, and the backlit area of shadow from bubbles remaining in the field following bubble removal was calculated to quantify efficacy. It was found that an ideal amplitude range exists (roughly 180 to 570 kPa) in which bubble removal pulses stimulate the aggregation and subsequent coalescence of residual bubble nuclei, effectively removing them from the field. Further optimization of bubble removal pulse sequences stands to provide an adjunct to cavitation-based ultrasound therapies such as shock wave lithotripsy and histotripsy, mitigating the effects of residual bubble nuclei that currently limit their efficacy.
Intense cavitation at extreme static pressure.
Pishchalnikov, Yuri A; Gutierrez, Joel; Dunbar, Wylene W; Philpott, Richard W
2016-02-01
Cavitation is usually performed at hydrostatic pressures at or near 0.1 MPa. Higher static pressure produces more intense cavitation, but requires an apparatus that can build high amplitude acoustic waves with rarefactions exceeding the cavitation threshold. The absence of such an apparatus has prevented the achievement of intense acoustic cavitation, hindering research and the development of new applications. Here we describe a new high-pressure spherical resonator system, as well as experimental and modeling results in water and liquid metal (gallium), for cavitation at hydrostatic pressures between 10 and 150 MPa. Our computational data, using HYADES plasma hydrodynamics code, show the formation of dense plasma that, under these conditions, reaches peak pressures of about three to four orders of magnitude greater than the hydrostatic pressure in the bulk liquid and temperatures in the range of 100,000 K. Passive cavitation detection (PCD) data validate both a linear increase in shock wave amplitude and the production of highly intense concentrations of mechanical energy in the collapsing bubbles. High-speed camera observations show the formation of bubble clusters from single bubbles. The increased shock wave amplitude produced by bubble clusters, measured using PCD and fiber optic probe hydrophone, was consistent with current understanding that bubble clusters enable amplification of energy produced. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Sankaran, Subramanian; Taylor, Al; Julian, Ed; Robinson, Dale;
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from thc heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in space-based applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curvcs for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental appararus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Acquaviva, Tom; Coho, Bill; Grant, Nechelle; Nahra, Henry; Taylor, Al; Julian, Ed; Robinson, Dale; VanZandt, Dave
2001-01-01
The BCOEL project focuses on improving pool boiling heat transfer and bubble control in microgravity by exposing the fluid to electric fields. The electric fields induce a body force that can replace gravity in the low gravity environment, and enhance bubble removal from the heated surface. A better understanding of microgravity effects on boiling with and without electric fields is critical to the proper design of the phase-change-heat-removal equipment for use in spacebased applications. The microgravity experiments will focus on the visualization of bubble formation and shape during boiling. Heat fluxes on the boiling surface will be measured, and, together with the measured driving temperature differences, used to plot boiling curves for different electric field magnitudes. Bubble formation and boiling processes were found to be extremely sensitive to g-jitter. The duration of the experimental run is critical in order to achieve steady state in microgravity experiments. The International Space Station provides conditions suitable for such experiments. The experimental apparatus to be used in the study is described in the paper. The apparatus will be tested in the KC-135 first, and microgravity experiments will be conducted on board of the International Space Station using the Microgravity Science Glovebox as the experimental platform.
Nanochannel structures in W enhance radiation tolerance
Qin, Wenjing; Ren, Feng; Doerner, Russell P.; ...
2018-04-23
Developing high performance plasma facing materials (PFMs) is one of the greatest challenges for fusion reactors, because PFMs face unprecedented harsh environments including high flux plasma exposure, fast neutron irradiation and large transmutation gas. Tungsten (W) is considered as one of the most promising PFMs. Rapid accumulation of helium (He) atoms in such environments can lead to the He bubbles nucleation and even the formation of nano- to micro-scale “fuzz” on W surface, which greatly degrade the properties of W itself. The possible ejection of large W particulates into the core plasma can cause plasma instabilities. In this paper, wemore » present a new strategy to address the root causes of bubble nucleation and “fuzz” formation by concurrently releasing He outside of W matrix through the nano-engineered channel structure (nanochannels). Comparing to ordinary bulk W, nanochannel W films with high surface-to-volume ratios are found to not only delay the growth of He bubbles, but also suppress the formation of “fuzz” (less than a half of the “fuzz” thickness formation in bulk W). Finally, molecular dynamic (MD) simulation results elucidate that low vacancy formation energy and high He binding energy in the nanochannel surface effectively help He release and affect He clusters distribution in W during He ion irradiation.« less
Nanochannel structures in W enhance radiation tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Wenjing; Ren, Feng; Doerner, Russell P.
Developing high performance plasma facing materials (PFMs) is one of the greatest challenges for fusion reactors, because PFMs face unprecedented harsh environments including high flux plasma exposure, fast neutron irradiation and large transmutation gas. Tungsten (W) is considered as one of the most promising PFMs. Rapid accumulation of helium (He) atoms in such environments can lead to the He bubbles nucleation and even the formation of nano- to micro-scale “fuzz” on W surface, which greatly degrade the properties of W itself. The possible ejection of large W particulates into the core plasma can cause plasma instabilities. In this paper, wemore » present a new strategy to address the root causes of bubble nucleation and “fuzz” formation by concurrently releasing He outside of W matrix through the nano-engineered channel structure (nanochannels). Comparing to ordinary bulk W, nanochannel W films with high surface-to-volume ratios are found to not only delay the growth of He bubbles, but also suppress the formation of “fuzz” (less than a half of the “fuzz” thickness formation in bulk W). Finally, molecular dynamic (MD) simulation results elucidate that low vacancy formation energy and high He binding energy in the nanochannel surface effectively help He release and affect He clusters distribution in W during He ion irradiation.« less
The Catastrophic Failure of Plant Hydraulic Networks Examined in Leaves
NASA Astrophysics Data System (ADS)
Marmottant, Philippe; Bienaimé, Diane; Brodribb, Timothy
Plants live a dangerous game: they have to facilitate water transport in their xylem conduits while minimizing the consequence of hydraulic failure. Indeed, as water flows under negative pressure inside these conduits, cavitation bubbles can spontaneously occur. By preventing the sap transport, they could lead to the plant death. This failure dynamics of this hydraulic network is poorly studied, while it has important ecological and bioengineering implications. Here, by using a simple optical method, we were able to directly visualize the spreading of cavitation bubbles within leaves. The air invasion also progresses by stop and go, from largest veins to smallest ones. In fact, in plants, conducts are linked by small valves called pits. By temporarily blocking bubbles they delay air invasion, until the pressure difference exceeds a threshold. To test the impact of these singular valves on the air invasion, we build a simulation based on the electrokinetic analogy. Taking in account the elasticity of the channel, each conduct becomes a hydraulic resistance coupled with a capacity. We show that we can reproduce the stop and go propagation in a variety of different network architectures. ERC Bubbleboost Grant number 614655.
Black holes and the multiverse
NASA Astrophysics Data System (ADS)
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun
2016-02-01
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleating during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.
Decompression to altitude: assumptions, experimental evidence, and future directions.
Foster, Philip P; Butler, Bruce D
2009-02-01
Although differences exist, hypobaric and hyperbaric exposures share common physiological, biochemical, and clinical features, and their comparison may provide further insight into the mechanisms of decompression stress. Although altitude decompression illness (DCI) has been experienced by high-altitude Air Force pilots and is common in ground-based experiments simulating decompression profiles of extravehicular activities (EVAs) or astronauts' space walks, no case has been reported during actual EVAs in the non-weight-bearing microgravity environment of orbital space missions. We are uncertain whether gravity influences decompression outcomes via nitrogen tissue washout or via alterations related to skeletal muscle activity. However, robust experimental evidence demonstrated the role of skeletal muscle exercise, activities, and/or movement in bubble formation and DCI occurrence. Dualism of effects of exercise, positive or negative, on bubble formation and DCI is a striking feature in hypobaric exposure. Therefore, the discussion and the structure of this review are centered on those highlighted unresolved topics about the relationship between muscle activity, decompression, and microgravity. This article also provides, in the context of altitude decompression, an overview of the role of denitrogenation, metabolic gases, gas micronuclei, stabilization of bubbles, biochemical pathways activated by bubbles, nitric oxide, oxygen, anthropometric or physiological variables, Doppler-detectable bubbles, and potential arterialization of bubbles. These findings and uncertainties will produce further physiological challenges to solve in order to line up for the programmed human return to the Moon, the preparation for human exploration of Mars, and the EVAs implementation in a non-zero gravity environment.
Venous gas emboli are involved in post-dive macro, but not microvascular dysfunction.
Lambrechts, Kate; Balestra, Costantino; Theron, Michaël; Henckes, Anne; Galinat, Hubert; Mignant, Fanny; Belhomme, Marc; Pontier, Jean-Michel; Guerrero, François
2017-02-01
Previous studies have shown vascular dysfunction of main conductance arteries and microvessels after diving. We aim to evaluate the impact of bubble formation on vascular function and haemostasis. To achieve this, we used a vibration preconditioning to influence bubble levels without changing any other parameters linked to the dive. Twentty-six divers were randomly assigned to one of three groups: (1) the "vibrations-dive" group (VD; n = 9) was exposed to a whole-body vibration session 30 min prior the dive; (2) the "diving" group (D; n = 9) served as a control for the effect of the diving protocol; (3) The "vibration" protocol (V; n = 8) allowed us to assess the effect of vibrations without diving. Macro- and microvascular function was assessed for each subject before and after the dive, subsequently. Bubble grades were monitored with Doppler according to the Spencer grading system. Blood was taken before and after the protocol to assess any change of platelets or endothelial function. Bubble formation was lower in the VD than the diving group. The other measured parameters remained unchanged after the "vibration" protocol alone. Diving alone induced macrovascular dysfunction, and increased PMP and thrombin generation. Those parameters were no longer changed in the VD group. Conversely, a microvascular dysfunction persists despite a significant decrease of circulating bubbles. Finally, the results of this study suggest that macro- but not microvascular impairment results at least partly from bubbles, possibly related to platelet activation and generation of pro-coagulant microparticles.
Generalized Rate Theory for Void and Bubble Swelling and its Application to Delta-Plutonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, P. G.; Wall, M. A.; Wolfer, W. G.
2016-10-04
A rate theory for void and bubble swelling is derived that allows both vacancies and self-interstitial atoms to be generated by thermal activation at all sinks. In addition, they can also be produced by displacement damage from external and internal radiation. This generalized rate theory (GRT) is applied to swelling of gallium-stabilized δ-plutonium in which α-decay causes the displacement damage. Since the helium atoms produced also become trapped in vacancies, a distinction is made between empty and occupied vacancies. The growth of helium bubbles observed by transmission electron microscopy (TEM) in weapons-grade and in material enriched with Pu238 is analyzed,more » using different values for the formation energy of self-interstitial atoms (SIA) and two different sets of relaxation volumes for the vacancy and for the SIA. One set allows preferential capture of SIA at dislocations, while the other set gives equal preference to both vacancy and SIA. It is found that the helium bubble diameters observed are in better agreement with GRT predictions if no preferential capture occurs at dislocations. Therefore, helium bubbles in δ-plutonium will not evolve into voids. The helium density within the bubbles remains sufficiently high to cause thermal emission of SIA. Based on a helium density between two to three helium atoms per vacant site, the sum of formation and migration energies must be around 2.0 eV for SIA in δ-plutonium.« less
Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92
NASA Astrophysics Data System (ADS)
Hildebrand, Nathaniel; Dwivedi, Anubhav; Nichols, Joseph W.; Jovanović, Mihailo R.; Candler, Graham V.
2018-01-01
We investigate flow instability created by an oblique shock wave impinging on a Mach 5.92 laminar boundary layer at a transitional Reynolds number. The adverse pressure gradient of the oblique shock causes the boundary layer to separate from the wall, resulting in the formation of a recirculation bubble. For sufficiently large oblique shock angles, the recirculation bubble is unstable to three-dimensional perturbations and the flow bifurcates from its original laminar state. We utilize direct numerical simulation (DNS) and global stability analysis to show that this first occurs at a critical shock angle of θ =12 .9∘ . At bifurcation, the least-stable global mode is nonoscillatory and it takes place at a spanwise wave number β =0.25 , in good agreement with DNS results. Examination of the critical global mode reveals that it originates from an interaction between small spanwise corrugations at the base of the incident shock, streamwise vortices inside the recirculation bubble, and spanwise modulation of the bubble strength. The global mode drives the formation of long streamwise streaks downstream of the bubble. While the streaks may be amplified by either the lift-up effect or by Görtler instability, we show that centrifugal instability plays no role in the upstream self-sustaining mechanism of the global mode. We employ an adjoint solver to corroborate our physical interpretation by showing that the critical global mode is most sensitive to base flow modifications that are entirely contained inside the recirculation bubble.
Black holes and the multiverse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garriga, Jaume; Vilenkin, Alexander; Zhang, Jun, E-mail: jaume.garriga@ub.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu
Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole. A similar black hole formation mechanism operates for spherical domain walls nucleatingmore » during inflation. As an illustrative example, we studied the black hole mass spectrum in the domain wall scenario, assuming that domain walls interact with matter only gravitationally. Our results indicate that, depending on the model parameters, black holes produced in this scenario can have significant astrophysical effects and can even serve as dark matter or as seeds for supermassive black holes. The mechanism of black hole formation described in this paper is very generic and has important implications for the global structure of the universe. Baby universes inside super-critical black holes inflate eternally and nucleate bubbles of all vacua allowed by the underlying particle physics. The resulting multiverse has a very non-trivial spacetime structure, with a multitude of eternally inflating regions connected by wormholes. If a black hole population with the predicted mass spectrum is discovered, it could be regarded as evidence for inflation and for the existence of a multiverse.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gama, D. R. G.; Lepine, J. R. D.; Mendoza, E.
We studied the environment of the dust bubble N10 in molecular emission. Infrared bubbles, first detected by the GLIMPSE survey at 8.0 μ m, are ideal regions to investigate the effect of the expansion of the H ii region on its surroundings and the eventual triggering of star formation at its borders. In this work, we present a multi-wavelength study of N10. This bubble is especially interesting because infrared studies of the young stellar content suggest a scenario of ongoing star formation, possibly triggered on the edge of the H ii region. We carried out observations of {sup 12}CO(1-0) andmore » {sup 13}CO(1-0) emission at PMO 13.7 m toward N10. We also analyzed the IR and sub-millimeter emission on this region and compare those different tracers to obtain a detailed view of the interaction between the expanding H ii region and the molecular gas. We also estimated the parameters of the denser cold dust condensation and the ionized gas inside the shell. Bright CO emission was detected and two molecular clumps were identified from which we have derived physical parameters. We also estimate the parameters for the densest cold dust condensation and for the ionized gas inside the shell. The comparison between the dynamical age of this region and the fragmentation timescale favors the “Radiation-Driven Implosion” mechanism of star formation. N10 is a case of particular interest with gas structures in a narrow frontier between the H ii region and surrounding molecular material, and with a range of ages of YSOs situated in the region, indicating triggered star formation.« less
NASA Technical Reports Server (NTRS)
Defacio, Brian; Kim, S.-H.; Vannevel, A.
1994-01-01
The squeezed states or Bogoliubov transformations and wavelets are applied to two problems in nonrelativistic statistical mechanics: the dielectric response of liquid water, epsilon(q-vector,w), and the bubble formation in water during insonnification. The wavelets are special phase-space windows which cover the domain and range of L(exp 1) intersection of L(exp 2) of classical causal, finite energy solutions. The multiresolution of discrete wavelets in phase space gives a decomposition into regions of time and scales of frequency thereby allowing the renormalization group to be applied to new systems in addition to the tired 'usual suspects' of the Ising models and lattice gasses. The Bogoliubov transformation: squeeze transformation is applied to the dipolaron collective mode in water and to the gas produced by the explosive cavitation process in bubble formation.
NASA Astrophysics Data System (ADS)
Zhukov, Yu. M.; Urtenov, D. S.
2017-12-01
The problems of simulation of heterogeneous nucleate pool boiling on a horizontal surface on the ascending branch of the boiling curve from the formation of a steam lens (SL) to the boiling crisis are considered. The proposed hypothesis provides in a number of cases a logically consistent interpretation of experiments and outlines the organizational principle of transferring the wall-liquid-steam system into the regime of nonwettable "dry spot" formation. The model includes the following types of nucleate boiling: (a) cyclic boiling with the contact line reverse to the bubble bottom center and bubble departure from the surface (at low heat flux q and the contact angle θ < 90°); (b) single steam bubble conversion into a steam lens, i.e., local film boiling with the possibility of spreading of a single "dry spot" at the variation of the contact angle θ ≥ 90°, and substantial growth of the departure diameter D d and SL lifetime τd; (c) formation of a single steam cluster of four SLs at a given pressure, the liquid underheating, and the average wall overheating.
Hydrocarbon Migration from the Micro to Macro Scale in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Johansen, C.; Marty, E.; Silva, M.; Natter, M.; Shedd, W. W.; Hill, J. C.; Viso, R. F.; Lobodin, V.; Krajewski, L.; Abrams, M.; MacDonald, I. R.
2016-02-01
In the Northern Gulf of Mexico (GoM) at GC600, ECOGIG has been investigating the processes involved in hydrocarbon migration from deep reservoirs to sea surface. We studied two individual vents, Birthday Candles (BC) and Mega-Plume (MP), which are separated by 1km on a salt supported ridge trending from NW-SE. Seismic data depicts two faults, also separated by 1km, feeding into the surface gas hydrate region. BC and MP comprise the range between oily, mixed, and gaseous-type vents. In both cases bubbles are observed escaping from gas hydrate out crops at the sea floor and supporting chemosynthetic communities. Fluid flow is indicated by features on the sea floor such as hydrate mounds, authigenic carbonates, brine pools, mud volcanoes, and biology. We propose a model to describe the upward flow of hydrocarbons from three vertical scales, each dominated by different factors: 1) macro (capillary failure in overlying cap rocks causing reservoir leakage), 2) meso (buoyancy driven fault migration), and 3) micro (hydrate formation and chemosynthetic activity). At the macro scale we use high reflectivity in seismic data and sediment pore throat radii to determine the formation of fractures in leaky reservoirs. Once oil and gas leave the reservoir through fractures in the cap rock they migrate in separate phases. At the meso scale we use seismic data to locate faults and salt diapirs that form conduits for buoyant hydrocarbons follow. This connects the path to the micro scale where we used video data to observe bubble release from individual vents for extended periods of time (3h-26d), and developed an image processing program to quantify bubble release rates. At mixed vents gaseous bubbles are observed escaping hydrate outcrops with a coating of oil varying in thickness. Bubble oil and gas ratios are estimated using average bubble size and release rates. The relative vent age can be described by carbonate hard ground cover, biological activity, and hydrate mound formation as these features progress with persistent hydrocarbon influx. Bottom features along with seismic data, bubble release rates and bubble composition (oily vs gaseous), are implemented into our model to describe the relative vent age and dynamic mechanisms of hydrocarbon migration at three vertical spatial scales of oily and gaseous natural seeps in the GoM.
BURST OF STAR FORMATION DRIVES BUBBLE IN GALAXY'S CORE
NASA Technical Reports Server (NTRS)
2002-01-01
These NASA Hubble Space Telescope snapshots reveal dramatic activities within the core of the galaxy NGC 3079, where a lumpy bubble of hot gas is rising from a cauldron of glowing matter. The picture at left shows the bubble in the center of the galaxy's disk. The structure is more than 3,000 light-years wide and rises 3,500 light-years above the galaxy's disk. The smaller photo at right is a close-up view of the bubble. Astronomers suspect that the bubble is being blown by 'winds' (high-speed streams of particles) released during a burst of star formation. Gaseous filaments at the top of the bubble are whirling around in a vortex and are being expelled into space. Eventually, this gas will rain down upon the galaxy's disk where it may collide with gas clouds, compress them, and form a new generation of stars. The two white dots just above the bubble are probably stars in the galaxy. The close-up reveals that the bubble's surface is lumpy, consisting of four columns of gaseous filaments that tower above the galaxy's disk. The filaments disperse at a height of 2,000 light-years. Each filament is about 75 light-years wide. Velocity measurements taken by the Canada-France-Hawaii Telescope in Hawaii show that the gaseous filaments are ascending at more than 4 million miles an hour (6 million kilometers an hour). According to theoretical models, the bubble formed when ongoing winds from hot stars mixed with small bubbles of very hot gas from supernova explosions. Observations of the core's structure by radio telescopes indicate that those processes are still active. The models suggest that this outflow began about a million years ago. They occur about every 10 million years. Eventually, the hot stars will die, and the bubble's energy source will fade away. Astronomers have seen evidence of previous outbursts from radio and X-ray observations. Those studies show rings of dust and gas and long plumes of material, all of which are larger than the bubble. NGC 3079 is 50 million light-years from Earth in the constellation Ursa Major. The colors in this image accentuate important details in the bubble. Glowing gas is red and starlight is blue/green. Hubble's Wide Field and Planetary Camera 2 snapped this picture in 1998. The results appear in the July 1, 2001 issue of the Astrophysical Journal. Credits: NASA, Gerald Cecil (University of North Carolina), Sylvain Veilleux (University of Maryland), Joss Bland-Hawthorn (Anglo-Australian Observatory), and Alex Filippenko (University of California at Berkeley).
Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten
Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...
2016-11-15
Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.
2013-01-01
Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.
From viscous to elastic sheets: Dynamics of smectic freely floating films
NASA Astrophysics Data System (ADS)
Stannarius, Ralf; Harth, Kirsten; May, Kathrin; Trittel, Torsten
The dynamics of droplets and bubbles, particularly on microscopic scales, are of considerable importance in biological, environmental, and technical contexts. Soap bubbles, vesicles and components of biological cells are well known examples where the dynamic behavior is significantly influenced by the properties of thin membranes enclosed by fluids. Two-dimensional membrane motions couple to 3D shape transformations. Smectic liquid crystal mesogens form phases with internal molecular layer order. Free-standing films are easily prepared from this class of materials. They represent simple model systems for membrane dynamics and pattern formation in a quasi two-dimensional fluid. These films are usually spanned over a frame, and they can be inflated to bubbles on a support. Recently, closed microscopic shells of liquid-crystalline materials suspended in an outer fluid without contact to a solid support have been introduced and studied. With a special technique, we prepare millimetre to centimetre sized smectic bubbles in air (similar to soap bubbles). Their distinct feature is the fact that any change of surface area is coupled to a restructuring of the layers in the membrane. High-speed cameras are used to observe the shape transformations of freely floating bubbles from a distorted initial shape to a sphere. Bursting dynamics are recorded and compared to models. Most strikingly, an unpreceded cross-over from inviscid to viscous and elastic behaviour with increasing thickness of the membrane is found: Whereas thin bubbles behave almost like inviscid fluids, the relaxation dynamics slows down considerably for larger film thicknesses. Surface wrinkling and formation of extrusions are observed. We will present a characterization and an expalantion for the above phenomena.
German, Sean R; Edwards, Martin A; Chen, Qianjin; Liu, Yuwen; Luo, Long; White, Henry S
2016-12-12
In this article, we address the fundamental question: "What is the critical size of a single cluster of gas molecules that grows and becomes a stable (or continuously growing) gas bubble during gas evolving reactions?" Electrochemical reactions that produce dissolved gas molecules are ubiquitous in electrochemical technologies, e.g., water electrolysis, photoelectrochemistry, chlorine production, corrosion, and often lead to the formation of gaseous bubbles. Herein, we demonstrate that electrochemical measurements of the dissolved gas concentration, at the instant prior to nucleation of an individual nanobubble of H 2 , N 2 , or O 2 at a Pt nanodisk electrode, can be analyzed using classical thermodynamic relationships (Henry's law and the Young-Laplace equation - including non-ideal corrections) to provide an estimate of the size of the gas bubble nucleus that grows into a stable bubble. We further demonstrate that this critical nucleus size is independent of the radius of the Pt nanodisk employed (<100 nm radius), and weakly dependent on the nature of the gas. For example, the measured critical surface concentration of H 2 of ∼0.23 M at the instant of bubble formation corresponds to a critical H 2 nucleus that has a radius of ∼3.6 nm, an internal pressure of ∼350 atm, and contains ∼1700 H 2 molecules. The data are consistent with stochastic fluctuations in the density of dissolved gas, at or near the Pt/solution interface, controlling the rate of bubble nucleation. We discuss the growth of the nucleus as a diffusion-limited process and how that process is affected by proximity to an electrode producing ∼10 11 gas molecules per second. Our study demonstrates the advantages of studying a single-entity, i.e., an individual nanobubble, in understanding and quantifying complex physicochemical phenomena.
Corrosion casts of big bubbles formed during deep anterior lamellar keratoplasty.
Feizi, Sepehr; Kanavi, Mozhgan Rezaei; Kharaghani, Davood; Balagholi, Sahar; Meskinfam, Masoumeh; Javadi, Mohammad Ali
2016-11-01
To characterize the walls of big bubbles formed during deep anterior lamellar keratoplasty (DALK) using the corrosion casting technique. Fresh corneoscleral buttons with normal transparency and without any known eye diseases (n = 11) were obtained from 11 human donors. A 20-gauge needle was used to inject a solution of 20 % polyvinyl alcohol (PVA) immediately beneath the corneal endothelium to form big bubbles in eight corneoscleral buttons. In the second experiment on three corneoscleral buttons, a big bubble was first formed by air injection beneath the endothelium. Thereafter, 20 % PVA was injected into the bubble space. Scanning electron microscopy was used to characterize the surfaces of the casts, which replicated the walls of the big bubbles. A type-1 bubble was formed in all corneas. In one cornea, one type-1 bubble was initially formed centrally, and while it was enlarged, an eccentric type-2 bubble appeared. Scanning electron microscopy showed that the casts of type-1 bubbles had two distinct surfaces. The anterior surface demonstrated several holes or pits, depending on the material used for the bubble formation, whereas the posterior surface exhibited an uneven surface. The anterior and posterior surfaces of the type-2 cast were more or less similar. A communication measuring 531.9 µm in length and 171.4 µm in diameter was found between the two bubbles. The corrosion casting technique provides a permanent three-dimensional record of the potential spaces and barriers in the posterior corneal stroma, which explains several features associated with big-bubble DALK.
Lv, Pengyu; Le The, Hai; Eijkel, Jan; Van den Berg, Albert; Zhang, Xuehua; Lohse, Detlef
2017-09-28
Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions , though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R ( t ) as a function of time by confocal microscopy and find R ( t ) ∝ t 1/2 . This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubble's contact line.
Magnetic bubbles and domain evolution in Fe/Gd multilayer nanodots
NASA Astrophysics Data System (ADS)
Wang, T. T.; Liu, W.; Dai, Z. M.; Zhao, X. T.; Zhao, X. G.; Zhang, Z. D.
2018-04-01
The formation of magnetic bubbles and the domain-evolution processes, induced by a perpendicular magnetic field in Fe/Gd multilayer films and nanodots, have been investigated. At room temperature, the stripe domains in a continuous film transform into magnetic bubbles in an external field, while bubbles form spontaneously in nanodots due to the existence of shape anisotropy. When the temperature decreases to 20 K, the enhancement of the perpendicular magnetic anisotropy of the samples results in an increase of the domain size in the continuous film and the magnetization-reversal behavior of each nanodot becomes independent, and most reversed dots do not depend on each other, indicating the magnetic characteristics of a single domain. The present research provides further understanding of the evolution of magnetic bubbles in the Fe/Gd system and suggests their promising applications in patterned recording materials.
Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow
Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi
2013-01-01
We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system. PMID:23378921
Sound synchronization of bubble trains in a viscous fluid: experiment and modeling.
Pereira, Felipe Augusto Cardoso; Baptista, Murilo da Silva; Sartorelli, José Carlos
2014-10-01
We investigate the dynamics of formation of air bubbles expelled from a nozzle immersed in a viscous fluid under the influence of sound waves. We have obtained bifurcation diagrams by measuring the time between successive bubbles, having the air flow (Q) as a parameter control for many values of the sound wave amplitude (A), the height (H) of the solution above the top of the nozzle, and three values of the sound frequency (fs). Our parameter spaces (Q,A) revealed a scenario for the onset of synchronization dominated by Arnold tongues (frequency locking) which gives place to chaotic phase synchronization for sufficiently large A. The experimental results were accurately reproduced by numerical simulations of a model combining a simple bubble growth model for the bubble train and a coupling term with the sound wave added to the equilibrium pressure.
The effect of exercise and rest duration on the generation of venous gas bubbles at altitude
NASA Technical Reports Server (NTRS)
Dervay, Joseph P.; Powell, Michael R.; Butler, Bruce; Fife, Caroline E.
2002-01-01
BACKGROUND: Decompression, as occurs with aviators and astronauts undergoing high altitude operations or with deep-sea divers returning to surface, can cause gas bubbles to form within the organism. Pressure changes to evoke bubble formation in vivo during depressurization are several orders of magnitude less than those required for gas phase formation in vitro in quiescent liquids. Preformed micronuclei acting as "seeds" have been proposed, dating back to the 1940's. These tissue gas micronuclei have been attributed to a minute gas phase located in hydrophobic cavities, surfactant-stabilized microbubbles, or arising from musculoskeletal activity. The lifetimes of these micronuclei have been presumed to be from a few minutes to several weeks. HYPOTHESIS: The greatest incidence of venous gas emboli (VGE) will be detected by precordial Doppler ultrasound with depressurization immediately following lower extremity exercise, with progressively reduced levels of VGE observed as the interval from exercise to depressurization lengthens. METHODS: In a blinded cross-over design, 20 individuals (15 men, 5 women) at sea level exercised by performing knee-bend squats (150 knee flexes over 10 min, 235-kcal x h(-1)) either at the beginning, middle, or end of a 2-h chair-rest period without an oxygen prebreathe. Seated subjects were then depressurized to 6.2 psia (6,706 m or 22,000 ft altitude equivalent) for 120 min with no exercise performed at altitude. RESULTS: Of the 20 subjects with VGE in the pulmonary artery, 10 demonstrated a greater incidence of bubbles with exercise performed just prior to depressurization, compared with decreasing bubble grades and incidence as the interval of rest increased prior to depressurization. No decompression illness was reported. CONCLUSIONS: There is a significant increase in decompression-induced bubble formation at 6.2 psia when lower extremity exercise is performed just prior to depressurization as compared with longer rest intervals. Analysis indicated that micronuclei half-life is on the order of an hour under these hypobaric conditions.
Wang, Sijia; Wu, Ning
2014-04-01
Bubble propulsion and self-diffusiophoresis are two common mechanisms that can drive autonomous motion of microparticles in hydrogen peroxide. Although microtubular particles, when coated with platinum in their interior concave surfaces, can propel due to the formation and release of bubbles from one end, the convex Janus particles usually do not generate any visible bubble. They move primarily due to the self-diffusiophoresis. Coincidentally, the platinum films on those particles were typically coated by physical evaporation. In this paper, we use a simple chemical deposition method to make platinum-polystyrene Janus dimers. Surprisingly, those particles are propelled by periodic growth and collapse of bubbles on the platinum-coated lobes. We find that both high catalytic activity and rough surface are necessary to change the propulsion mode from self-diffusiophoresis to bubble propulsion. Our Janus dimers, with combined geometric and interfacial anisotropy, also exhibit distinctive motions at the respective stages of bubble growth and collapse, which differ by 5-6 orders of magnitude in time. Our study not only provides insight into the link between self-diffusiophoresis and bubble propulsion but also reveals the intriguing impacts of the combined geometric and interfacial anisotropy on self-propulsion of particles.
Development of an optical microscopy system for automated bubble cloud analysis.
Wesley, Daniel J; Brittle, Stuart A; Toolan, Daniel T W
2016-08-01
Recently, the number of uses of bubbles has begun to increase dramatically, with medicine, biofuel production, and wastewater treatment just some of the industries taking advantage of bubble properties, such as high mass transfer. As a result, more and more focus is being placed on the understanding and control of bubble formation processes and there are currently numerous techniques utilized to facilitate this understanding. Acoustic bubble sizing (ABS) and laser scattering techniques are able to provide information regarding bubble size and size distribution with minimal data processing, a major advantage over current optical-based direct imaging approaches. This paper demonstrates how direct bubble-imaging methods can be improved upon to yield high levels of automation and thus data comparable to ABS and laser scattering. We also discuss the added benefits of the direct imaging approaches and how it is possible to obtain considerable additional information above and beyond that which ABS and laser scattering can supply. This work could easily be exploited by both industrial-scale operations and small-scale laboratory studies, as this straightforward and cost-effective approach is highly transferrable and intuitive to use.
Neural basis of economic bubble behavior.
Ogawa, A; Onozaki, T; Mizuno, T; Asamizuya, T; Ueno, K; Cheng, K; Iriki, A
2014-04-18
Throughout human history, economic bubbles have formed and burst. As a bubble grows, microeconomic behavior ceases to be constrained by realistic predictions. This contradicts the basic assumption of economics that agents have rational expectations. To examine the neural basis of behavior during bubbles, we performed functional magnetic resonance imaging while participants traded shares in a virtual stock exchange with two non-bubble stocks and one bubble stock. The price was largely deflected from the fair price in one of the non-bubble stocks, but not in the other. Their fair prices were specified. The price of the bubble stock showed a large increase and battering, as based on a real stock-market bust. The imaging results revealed modulation of the brain circuits that regulate trade behavior under different market conditions. The premotor cortex was activated only under a market condition in which the price was largely deflected from the fair price specified. During the bubble, brain regions associated with the cognitive processing that supports order decisions were identified. The asset preference that might bias the decision was associated with the ventrolateral prefrontal cortex and the dorsolateral prefrontal cortex (DLPFC). The activity of the inferior parietal lobule (IPL) was correlated with the score of future time perspective, which would bias the estimation of future price. These regions were deemed to form a distinctive network during the bubble. A functional connectivity analysis showed that the connectivity between the DLPFC and the IPL was predominant compared with other connectivities only during the bubble. These findings indicate that uncertain and unstable market conditions changed brain modes in traders. These brain mechanisms might lead to a loss of control caused by wishful thinking, and to microeconomic bubbles that expand, on the macroscopic scale, toward bust. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum
NASA Technical Reports Server (NTRS)
Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc
2008-01-01
Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.
Wilhelmsen, Øivind; Bedeaux, Dick; Kjelstrup, Signe; Reguera, David
2014-01-14
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilhelmsen, Øivind, E-mail: oivind.wilhelmsen@ntnu.no; Bedeaux, Dick; Kjelstrup, Signe
Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which showsmore » the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
Further experimentation on bubble generation during transformer overload. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oommen, T.V.
1992-03-01
This report covers additional work done during 1990 and 1991 on gas bubble generation under overload conditions. To improve visual bubble detection, a single disc coil was used. To further improve detection, a corona device was also used which signaled the onset of corona activity in the early stages of bubble formation. A total of fourteen model tests were conducted, half of which used the Inertaire system, and the remaining, a conservator (COPS). Moisture content of paper in the coil varied from 1.0% to 8.0%; gas (nitrogen) content varied from 1.0% to 8.8%. The results confirmed earlier observations that themore » mathematical bubble prediction model was not valid for high gas content model with relatively low moisture levels in the coil. An empirical relationship was formulated to accurately predict bubble evolution temperatures from known moisture and gas content values. For low moisture content models (below 2%), the simple Piper relationship was sufficient to predict bubble evolution temperatures, regardless of gas content. Moisture in the coil appears to be the key factor in bubble generation. Gas blanketed (Inertaire) systems do not appear to be prone to premature bubble generation from overloads as previously thought. The new bubble prediction model reveals that for a coil with 2% moisture, the bubble evolution temperature would be about 140{degrees}C. Since old transformers in service may have as much as 2% moisture in paper, the 140{degrees}C bubble evolution temperature may be taken as the lower limit of bubble evolution temperature under overload conditions for operating transformers. Drier insulation would raise the bubble evolution temperature.« less
Interpretations of phenocryst embayments
NASA Astrophysics Data System (ADS)
Rust, Alison; Cashman, Katharine
2017-04-01
Phenocryst embayments in volcanic samples tend to be filled with glass, regardless of the crystallinity and vesicularly of the groundmass surrounding the phenocryst. Embayments are important in volcanology and magma petrology because: 1) they often provide the only areas of matrix glass sufficient for compositional analysis in microlite-rich samples; 2) volatile gradients in embayments are used to constrain rates of magma ascent; 3) with further crystal growth, embayments may develop into melt inclusions, an essential source of data on melt composition evolution. Robust interpretations of data from embayments requires an understanding of why they form and why vesiculation and crystallisation are locally suppressed in these melt channels during ascent. We review instabilities in crystal growth and resorption, considering latent heat, local accumulation of elements, and interaction of the crystal growth front with pre-existing bubbles and other crystals. A survey of textures in volcanic samples from several volcanoes suggests that embayment formation by growth is more common than by resorption. Crystal nucleation suppression in the embayment of a growing phenocryst can be explained by buildup of excluded elements and continued growth (rather than nucleation) of the phenocryst phase. However, the suppression of bubble formation despite the accumulation of excluded volatiles is more difficult to explain but could be related to latent heat and difficulties in bubble formation in a restricted space. Finally, we flag complications in interpretations of embayment composition data due to element accumulation and bubble nucleation suppression.
Study on the bubble transport mechanism in an acoustic standing wave field.
Xi, Xiaoyu; Cegla, Frederic B; Lowe, Michael; Thiemann, Andrea; Nowak, Till; Mettin, Robert; Holsteyns, Frank; Lippert, Alexander
2011-12-01
The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller-Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton's second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liang, Xiao-Xuan; Freidank, Sebastian; Linz, Norbert; Paltauf, Günther; Zhang, Zhenxi; Vogel, Alfred
2017-03-01
We developed modeling tools for optical breakdown events in water that span various phases reaching from breakdown initiation via solvated electron generation, through laser induced-plasma formation and temperature evolution in the focal spot to the later phases of cavitation bubble dynamics and shock wave emission and applied them to a large parameter space of pulse durations, wavelengths, and pulse energies. The rate equation model considers the interplay of linear absorption, photoionization, avalanche ionization and recombination, traces thermalization and temperature evolution during the laser pulse, and portrays the role of thermal ionization that becomes relevant for T > 3000 K. Modeling of free-electron generation includes recent insights on breakdown initiation in water via multiphoton excitation of valence band electrons into a solvated state at Eini = 6.6 eV followed by up-conversion into the conduction band level that is located at 9.5 eV. The ability of tracing the temperature evolution enabled us to link the model of laser-induced plasma formation with a hydrodynamic model of plasma-induced pressure evolution and phase transitions that, in turn, traces bubble generation and dynamics as well as shock wave emission. This way, the amount of nonlinear energy deposition in transparent dielectrics and the resulting material modifications can be assessed as a function of incident laser energy. The unified model of plasma formation and bubble dynamics yields an excellent agreement with experimental results over the entire range of investigated pulse durations (femtosecond to nanosecond), wavelengths (UV to IR) and pulse energies.
Generating Soap Bubbles by Blowing on Soap Films
NASA Astrophysics Data System (ADS)
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2016-02-01
Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.
Occurrence of intraocular air bubbles during intravitreal injections for retinopathy of prematurity.
Sukgen, Emine Alyamac; Gunay, Murat; Kocluk, Yusuf
2017-02-01
This study aims to present five cases with retinopathy of prematurity (ROP) who were found to have intraocular air bubbles after intravitreal injection (IVI) treatment. The medical records of 148 infants who underwent IVI for ROP were retrospectively reviewed and the ones who demonstrated post-injection intraocular air bubble formation were recruited. Of the 148 patients (31 babies received ranibizumab, 20 babies received aflibercept, 97 babies received bevacizumab), five were found to have intraocular air bubbles right after the IVI. Two infants received intravitreal ranibizumab and three received intravitreal bevacizumab injections. Although intraocular pressure increased temporarily, no intraocular sterile or infective reactions were observed in the postoperative period. The air bubble was found to resorb spontaneously within 72 h. The occurrence rate of the intravitreal air bubbles in our series was 3.37 % despite previously not been reported in the literature. Due to the intravitreal air injection risk, it is important to be more careful while preparing the intravitreal medication before treatment in premature babies.
Acoustic bubble dynamics in a microvessel surrounded by elastic material
NASA Astrophysics Data System (ADS)
Wang, S. P.; Wang, Q. X.; Leppinen, D. M.; Zhang, A. M.; Liu, Y. L.
2018-01-01
This paper is concerned with microbubble dynamics in a blood vessel surrounded by elastic tissue subject to ultrasound, which are associated with important applications in medical ultrasonics. Both the blood flow inside the vessel and the tissue flow external to the vessel are modeled using the potential flow theory coupled with the boundary element method. The elasticity of tissue is modeled through the inclusion of a pressure term in the dynamic boundary condition at the interface between the two fluids. Weakly viscous effects are considered using viscous potential flow theory. The numerical model is validated by comparison with the theoretical results of the Rayleigh-Plesset equation for spherical bubbles, the numerical results for acoustic bubbles in an unbounded flow, and the experimental images for a spark generated bubble in a rigid circular cylinder. Numerical analyses are then performed for the bubble oscillation, jet formation and penetration through the bubble, and the deformation of the vessel wall in terms of the ultrasound amplitude and the vessel radius.
NASA Technical Reports Server (NTRS)
2005-01-01
RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars. The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top. NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.Generating Soap Bubbles by Blowing on Soap Films.
Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent
2016-02-19
Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.
Bubble formation in microgravity
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1994-01-01
Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.
Microjet formation in a capillary by laser-induced cavitation
NASA Astrophysics Data System (ADS)
Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef
2010-11-01
A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.
STEAM FORMING NEUTRONIC REACTOR AND METHOD OF OPERATING IT
Untermyer, S.
1960-05-10
The heterogeneous reactor is liquid moderated and cooled by a steam forming coolant and is designed to produce steam from the coolant directly within the active portion of the reactor while avoiding the formation of bubbles in the liquid moderator. This reactor achieves inherent stability as a result of increased neutron leakage and increased neutron resonance absorption in the U/sup 238/ fuel with the formation of bubbles. The invention produces certain conditions under which the formation of vapor bubbles as a result of a neutron flux excursion from the injection of a reactivity increment into the reactor will operate to nullify the reactivity increment within a sufficiently short period of time to prevent unsafe reactor operating conditions from developing. This is obtained by disposing a plurality of fuel elements within a mass of steam forming coolant in the core with the ratio of the volume of steam forming coolant to the volume of fissionable isotopes being within the range yielding a multiplication factor greater than unity and a negative reactivity to core void coefficient at the boiling temperature of the coolant.
ERIC Educational Resources Information Center
Potter, Kyle; Lewandowski, Lawrence; Spenceley, Laura
2016-01-01
Standardised and other multiple-choice examinations often require the use of an answer sheet with fill-in bubbles (i.e. "bubble" or Scantron sheet). Students with disabilities causing impairments in attention, learning and/or visual-motor skill may have difficulties with multiple-choice examinations that employ such a response style.…
Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization
NASA Astrophysics Data System (ADS)
Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji
2018-07-01
Understanding {Ly{α}} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α}} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM (integer-galactic medium) transmission of {Ly{α}} photons. We find that {Ly{α}} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and H I column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller H II bubbles. Our model predicts future wide deep surveys with next-generation telescopes, such as James Webb Space Telescope, European Extremely Large Telescope, and Thirty Metre Telescope, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ {a few } × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant H II bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant H II bubbles with the size {≳ } 250 kpc at z ˜ 10.
Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization
NASA Astrophysics Data System (ADS)
Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji
2018-04-01
Understanding {Ly{α }} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α }} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM transmission of {Ly{α }} photons. We find that {Ly{α }} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and HI column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller HII bubbles. Our model predicts future wide deep surveys with next generation telescopes, such as JWST, E-ELT and TMT, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ a few × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant HII bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant HII bubbles with the size ≳ 250 kpc at z ˜ 10.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chemerisov, Sergey; Gromov, Roman; Makarashvili, Vakho
Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product 99Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects ofmore » convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.« less
Endothelial protection: avoiding air bubble formation at the phacoemulsification tip.
Kim, Eung Kweon; Cristol, Stephen M; Kang, Shin J; Edelhauser, Henry F; Yeon, Dong-Soo; Lee, Jae Bum
2002-03-01
To investigate the conditions under which bubbles form during phacoemulsification. Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Korea. In the first part of the study, the partial pressure of oxygen (pO(2)) was used as a surrogate measure for the partial pressure of air. Irrigation solutions packaged in glass and plastic containers were studied. A directly vented glass bottle was also tested. The pO(2) of the various irrigation solutions was measured as the containers were emptied. In the second part, phacoemulsification procedures were performed in rabbit eyes with different power settings and different irrigation solutions. Intracameral bubble formation during the procedure was recorded. Following the phacoemulsification procedures, the corneas were stained for F-actin and examined for endothelial injury. The initial pO(2) in irrigation solutions packaged in glass bottles was about half that at atmospheric levels; in solutions packaged in plastic, it was at atmospheric levels. As irrigation solutions were drained from the container, the pO(2) of the solution tended to rise toward atmospheric levels. The rate of pO(2) increase was markedly reduced by using a directly vented glass bottle. In the phacoemulsification procedures, bubble formation was most likely to occur with higher pO(2) and higher power settings. Observation of bubbles by the surgeon was highly correlated with endothelial damage. Keeping the pO(2) low reduced the risk of endothelial damage, especially at higher phacoemulsification powers. The packaging of irrigation solutions was the most important factor in controlling the initial pO(2) of the solution. The pO(2) can be minimized throughout a phacoemulsification procedure by using a directly vented glass bottle.
Jets from pulsed-ultrasound-induced cavitation bubbles near a rigid boundary
NASA Astrophysics Data System (ADS)
Brujan, Emil-Alexandru
2017-06-01
The dynamics of cavitation bubbles, generated from short (microsecond) pulses of ultrasound and situated near a rigid boundary, are investigated numerically. The temporal development of the bubble shape, bubble migration, formation of the liquid jet during bubble collapse, and the kinetic energy of the jet are investigated as a function of the distance between bubble and boundary. During collapse, the bubble migrates towards the boundary and the liquid jet reaches a maximum velocity between 80 m s-1 and 120 m s-1, depending on the distance between bubble and boundary. The conversion of bubble energy to kinetic energy of the jet ranges from 16% to 23%. When the bubble is situated in close proximity to the boundary, the liquid jet impacts the boundary with its maximum velocity, resulting in an impact pressure of the order of tens of MPa. The rapid expansion of the bubble, the impact of the liquid jet onto the nearby boundary material, and the high pressure developed inside the bubble at its minimum volume can all contribute to the boundary material damage. The high pressure developed during the impact of the liquid jet onto the biological material and the shearing forces acting on the material surface as a consequence of the radial flow of the jet outward from the impact site are the main damage mechanisms of rigid biological materials. The results are discussed with respect to cavitation damage of rigid biological materials, such as disintegration of renal stones and calcified tissue and collateral effects in pulsed ultrasound surgery.
Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide
2017-01-01
Whereas bubble growth out of gas-oversatured solutions has been quite well understood, including the formation and stability of surface nanobubbles, this is not the case for bubbles forming on catalytic surfaces due to catalytic reactions, though it has important implications for gas evolution reactions and self-propulsion of micro/nanomotors fueled by bubble release. In this work we have filled this gap by experimentally and theoretically examining the growth and detachment dynamics of oxygen bubbles from hydrogen peroxide decomposition catalyzed by gold. We measured the bubble radius R(t) as a function of time by confocal microscopy and find R(t) ∝ t1/2. This diffusive growth behavior demonstrates that the bubbles grow from an oxygen-oversaturated environment. For several consecutive bubbles detaching from the same position in a short period of time, a well-repeated growing behavior is obtained from which we conclude the absence of noticeable depletion effect of oxygen from previous bubbles or increasing oversaturation from the gas production. In contrast, for two bubbles far apart either in space or in time, substantial discrepancies in their growth rates are observed, which we attribute to the variation in the local gas oversaturation. The current results show that the dynamical evolution of bubbles is influenced by comprehensive effects combining chemical catalysis and physical mass transfer. Finally, we find that the size of the bubbles at the moment of detachment is determined by the balance between buoyancy and surface tension and by the detailed geometry at the bubble’s contact line. PMID:28983387
Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks.
El Mekki-Azouzi, Mouna; Tripathi, Chandra Shekhar Pati; Pallares, Gaël; Gardien, Véronique; Caupin, Frédéric
2015-08-28
As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing "proxies". Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations.
Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks
Mekki-Azouzi, Mouna El; Tripathi, Chandra Shekhar Pati; Pallares, Gaël; Gardien, Véronique; Caupin, Frédéric
2015-01-01
As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing “proxies”. Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations. PMID:26316328
Generation of cavitation luminescence by laser-induced exothermic chemical reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung Park, Han; Diebold, Gerald J.
2013-08-14
Absorption of high power laser radiation by aqueous carbon suspensions is known to result in the formation of highly compressed bubbles of hydrogen and carbon monoxide through the endothermic carbon-steam reaction. The bubbles expand rapidly, overreaching their equilibrium diameter, and then collapse tens to hundreds of microseconds after formation to give a flash of radiation. Here we report on the effects of laser-initiated exothermic chemical reaction on cavitation luminescence. Experiments with hydrogen peroxide added to colloidal carbon suspensions show that both the time of the light flash following the laser pulse and the intensity of luminescence increase with hydrogen peroxidemore » concentration, indicating that large, highly energetic gas bubbles are produced. Additional experiments with colloidal carbon suspensions show the effects of high pressure on the luminescent intensity and its time of appearance following firing of the laser.« less
NASA Astrophysics Data System (ADS)
Rybkin, K. A.; Bratukhin, Yu. K.; Lyubimova, T. P.; Fatallov, O.; Filippov, L. O.
2017-07-01
The acoustic flows and the phenomena associated with them arising under the action of ultrasound of different power on distilled water and aqueous solutions of a mixture of NaCl and KCl salts of various concentrations are studied experimentally. It is found that in the distilled water, under the action of ultrasound, the appearance of inertial and non-inertial cavitation bubbles takes place, then the formation of stable clusters, the distance between which depends on the power of the ultrasound source is observed. Experiments show that an increase in the mass concentration of salts in water leads to the decrease in the average diameter of the arising inertial cavitation bubbles and to the gradual decrease in their number, up to an almost complete disappearance at nearly 13% of the concentration of the salt mixture in the water.
NASA Astrophysics Data System (ADS)
Valassis, Doug; Dodde, Robert; Eshpuniyani, Brijesh; Fowlkes, J. Brian; Bull, Joseph
2008-11-01
The behavior of long gas bubbles suspended in liquid flowing through successive bifurcations was investigated experimentally and theoretically as a model of cardiovascular bubble transport in gas embolotherapy. In this developmental cancer therapy, perflurocarbon droplets are vaporized in the vasculature and travel through a bifurcating network of vessels before lodging. The homogeneity of tumor necrosis is directly correlated with the transport and lodging of the emboli. An experimental model was used to explore the effects of flow pulsatility, frequency, gravity, and bifurcation roll angle on bubble splitting and lodging. At a bifurcation roll angle of 45-degrees, the most distinct difference in splitting ratios between three physiologic frequencies (1, 1.5, 2 Hz) was observed. As roll angle increased, lodged bubble volume in the first generation channel increased while bubble volume beyond the second bifurcation proportionately decreased. A corresponding time-dependent one-dimensional theoretical model was also developed. The results elucidate the effects of pulsatile flow and suggest the potential of gas embolotherapy to occlude blood flow to tumors.
Randsoe, Thomas; Hyldegaard, Ole
2012-08-01
The standard treatment of altitude decompression sickness (aDCS) caused by nitrogen bubble formation is oxygen breathing and recompression. However, micro air bubbles (containing 79% nitrogen), injected into adipose tissue, grow and stabilize at 25 kPa regardless of continued oxygen breathing and the tissue nitrogen pressure. To quantify the contribution of oxygen to bubble growth at altitude, micro oxygen bubbles (containing 0% nitrogen) were injected into the adipose tissue of rats depleted from nitrogen by means of preoxygenation (fraction of inspired oxygen = 1.0; 100%) and the bubbles studied at 101.3 kPa (sea level) or at 25 kPa altitude exposures during continued oxygen breathing. In keeping with previous observations and bubble kinetic models, we hypothesize that oxygen breathing may contribute to oxygen bubble growth at altitude. Anesthetized rats were exposed to 3 h of oxygen prebreathing at 101.3 kPa (sea level). Micro oxygen bubbles of 500-800 nl were then injected into the exposed abdominal adipose tissue. The oxygen bubbles were studied for up to 3.5 h during continued oxygen breathing at either 101.3 or 25 kPa ambient pressures. At 101.3 kPa, all bubbles shrank consistently until they disappeared from view at a net disappearance rate (0.02 mm(2) × min(-1)) significantly faster than for similar bubbles at 25 kPa altitude (0.01 mm(2) × min(-1)). At 25 kPa, most bubbles initially grew for 2-40 min, after which they shrank and disappeared. Four bubbles did not disappear while at 25 kPa. The results support bubble kinetic models based on Fick's first law of diffusion, Boyles law, and the oxygen window effect, predicting that oxygen contributes more to bubble volume and growth during hypobaric conditions. As the effect of oxygen increases, the lower the ambient pressure. The results indicate that recompression is instrumental in the treatment of aDCS.
Effect of Micro-Bubbles in Water on Beam Patterns of Parametric Array
NASA Astrophysics Data System (ADS)
Hashiba, Kunio; Masuzawa, Hiroshi
2003-05-01
The improvement in efficiency of a parametric array by nonlinear oscillation of micro-bubbles in water is studied in this paper. The micro-bubble oscillation can increase the nonlinear coefficient of the acoustic medium. The amplitude of the difference-frequency wave along the longitudinal axis and its beam patterns in the field including the layer with micro-bubbles were analyzed using a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation. As a result, the largest improvement in efficiency was obtained and a narrow parametric beam was formed by forming a layer with micro-bubbles in front of a parametric sound radiator as thick as about the shock formation distance. If the layer becomes significantly thicker than the distance, the beam of the difference-frequency wave in the far-field will become broader. If the layer is significantly thinner than the distance, the intensity level of the wave in the far-field will be too low.
Turning bubbles on and off during boiling using charged surfactants
Cho, H. Jeremy; Mizerak, Jordan P.; Wang, Evelyn N.
2015-01-01
Boiling—a process that has powered industries since the steam age—is governed by bubble formation. State-of-the-art boiling surfaces often increase bubble nucleation via roughness and/or wettability modification to increase performance. However, without active in situ control of bubbles, temperature or steam generation cannot be adjusted for a given heat input. Here we report the ability to turn bubbles ‘on and off' independent of heat input during boiling both temporally and spatially via molecular manipulation of the boiling surface. As a result, we can rapidly and reversibly alter heat transfer performance up to an order of magnitude. Our experiments show that this active control is achieved by electrostatically adsorbing and desorbing charged surfactants to alter the wettability of the surface, thereby affecting nucleation. This approach can improve performance and flexibility in existing boiling technologies as well as enable emerging or unprecedented energy applications. PMID:26486275
Propagation of misfit dislocations from buffer/Si interface into Si
Liliental-Weber, Zuzanna [El Sobrante, CA; Maltez, Rogerio Luis [Porto Alegre, BR; Morkoc, Hadis [Richmond, VA; Xie, Jinqiao [Raleigh, VA
2011-08-30
Misfit dislocations are redirected from the buffer/Si interface and propagated to the Si substrate due to the formation of bubbles in the substrate. The buffer layer growth process is generally a thermal process that also accomplishes annealing of the Si substrate so that bubbles of the implanted ion species are formed in the Si at an appropriate distance from the buffer/Si interface so that the bubbles will not migrate to the Si surface during annealing, but are close enough to the interface so that a strain field around the bubbles will be sensed by dislocations at the buffer/Si interface and dislocations are attracted by the strain field caused by the bubbles and move into the Si substrate instead of into the buffer epi-layer. Fabrication of improved integrated devices based on GaN and Si, such as continuous wave (CW) lasers and light emitting diodes, at reduced cost is thereby enabled.
Scalable and reusable micro-bubble removal method to flatten large-area 2D materials
NASA Astrophysics Data System (ADS)
Pham, Phi H. Q.; Quach, Nhi V.; Li, Jinfeng; Burke, Peter J.
2018-04-01
Bubbles generated during electro-delamination and chemical etch during large-area two-dimensional (2D) material transfer has been shown to cause rippling, and consequently, results in tears and wrinkles in the transferred film. Here, we demonstrate a scalable and reusable method to remove surface adhered micro-bubbles by using hydrophobic surfaces modified by self-assembled monolayers (SAMs). Bubble removal allows the 2D film to flatten out and prevents the formation of defects. Electrical characterization was used to verify improved transfer quality and was confirmed by increased field-effect mobility and decreased sheet resistance. Raman spectroscopy was also used to validate enhanced electrical quality following transfer. The bubble removal method can be applied to an assortment of 2D materials using diverse hydrophobic SAM variants. Our studies can be integrated into large scale applications and will lead to improved large-area 2D electronics in general.
Characteristics of carbon nanotubes based micro-bubble generator for thermal jet printing.
Zhou, Wenli; Li, Yupeng; Sun, Weijun; Wang, Yunbo; Zhu, Chao
2011-12-01
We propose a conceptional thermal printhead with dual microbubble generators mounted parallel in each nozzle chamber, where multiwalled carbon nanotubes are adopted as heating elements with much higher energy efficiency than traditional approaches using noble metals or polysilicon. Tailing effect of droplet can be excluded by appropriate control of grouped bubble generations. Characteristics of the corresponding micro-fabricated microbubble generators were comprehensively studied before the formation of printhead. Electrical properties of the microheaters on glass substrate in air and performance of bubble generation underwater focusing on the relationships between input power, device resistance and bubble behavior were probed. Proof-of-concept bubble generations grouped to eliminate the tailing effect of droplet were performed indicating precise pattern with high resolution could be realized by this kind of printhead. Experimental results revealed guidance to the geometric design of the printhead as well as its fabrication margin and the electrical control of the microbubble generators.
Bubble migration inside a liquid drop in a space laboratory
NASA Technical Reports Server (NTRS)
Annamalai, P.; Shankar, N.; Cole, R.; Subramanian, R. S.
1982-01-01
The design of experiments in materials processing for trials on board the Shuttle are described. Thermocapillary flows will be examined as an aid to mixing in the formation of glasses. Acoustically levitated molten glass spheres will be spot heated to induce surface flow away from the hot spot to induce mixing. The surface flows are also expected to cause internal convective motion which will drive entrained gas bubbles toward the hot spot, a process also enhanced by the presence of thermal gradients. The method is called fining, and will be augmented by rotation of the sphere to cause bubble migration toward the axes of rotation to form one large bubble which is more easily removed. Centering techniques to fix the maximum centering accuracy will also be tried. Ground-based studies of bubble migration in a rotating liquid and in a temperature gradient in a liquid drop are reviewed.
A Polymer Visualization System with Accurate Heating and Cooling Control and High-Speed Imaging
Wong, Anson; Guo, Yanting; Park, Chul B.; Zhou, Nan Q.
2015-01-01
A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system’s capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals’ boundaries due to CO2 exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals. PMID:25915031
Feizi, Sepehr; Daryabari, Seyed-Hashem; Najdi, Danial; Javadi, Mohammad Ali; Karimian, Farid
2016-06-10
To compare 2 sites of air injection to achieve Descemet membrane (DM) detachment in big-bubble deep anterior lamellar keratoplasty (DALK). In this prospective, randomized study, 48 eyes of 48 keratoconus-affected patients who underwent DALK by cornea fellows were enrolled. Each patient was randomly assigned into one of 2 groups. After trephination to approximately 80% of the corneal thickness, a 27-G needle was inserted into the stroma from the trephination site. The needle was moved radially inside the trephination site and advanced to the central or paracentral cornea in group 1. In group 2, the needle was inserted into the deep stroma from the trephination site and advanced into the peripheral cornea to approximately 1.5 mm anterior to the limbus. Air was gently injected into the deep stroma until a big bubble was formed. The rates of DM separation and complications were compared between the 2 groups. Big-bubble formation was successful in 79.2% of the eyes in the study group. A bare DM was achieved by central injection in 68.0% of group 1 and by peripheral injection in 69.6% of group 2 (p = 0.68). This rate was increased to 80.0% and 78.3% in groups 1 and 2, respectively, after the injection site was shifted when injections failed. The study groups were comparable in terms of complications including DM perforation and bubble bursting. Both injection sites were equivalent in their rates of big-bubble formation and complications. Less experienced surgeons are advised to initially inject air outside the trephination.
Is it really important to form a big bubble in DALK to enhance the visual acuity?
Acar, Banu Torun; Vural, Ece Turan; Acar, Suphi
2012-09-01
The aim of this study was to investigate the prognosis of visual acuity (VA) in the patients with keratoconus, who underwent deep anterior lamellar keratoplasty (DALK) with a successful big bubble or lamellar dissection. Sixty-eight eyes of 60 patients with keratoconus, who underwent DALK using the big-bubble technique, were enrolled in this retrospective comparative study. The VA and refractive errors were assessed before the operation and, thereafter, at months 1, 3, 6, and 12 after the operation (1) in the patients who achieved a big-bubble formation, and in those who required layer-by-layer lamellar dissection (2) to reach the Descemet membrane. Successful big bubble was achieved in 50 eyes (73.5 %) (group 1), and lamellar dissection was performed in 18 eyes (26.5 %) (group 2). The mean follow-up period was 22.4±6.2 months in group 1 and 23.7±7.8 months in group 2 (P=0.562). Although best-corrected visual acuity (BCVA) values observed at months 1 and 3 were significantly higher in group 1 than in group 2 (P=0.016 and P=0.024, respectively), there was no statistically significant difference between the two groups for BCVA values observed at months 6 and 12 (P=0.412 and P=0.528, respectively). Although the visual recovery was delayed in the early postoperative follow-up because of residual stroma in lamellar dissection, the final results were comparable between the achievement of big-bubble formation and lamellar dissection.
Pore Formation and Mobility Investigation video images
NASA Technical Reports Server (NTRS)
2003-01-01
Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.
Corrosion pitting of SiC by molten salts
NASA Technical Reports Server (NTRS)
Jacobson, N. S.; Smialek, J. L.
1986-01-01
The corrosion of SiC by thin films of Na2CO3 and Na2SO4 at 1000 C is characterized by a severe pitting attack of the SiC substrate. A range of different Si and SiC substrates were examined to isolate the factors critical to pitting. Two types of pitting attack are identified: attack at structural discontinuities and a crater-like attack. The crater-like pits are correlated with bubble formation during oxidation of the SiC. It appears that bubbles create unprotected regions, which are susceptible to enhanced attack and, hence, pit formation.
NASA Technical Reports Server (NTRS)
Mcshane, J. W.; Coursen, C. D.
1984-01-01
Three experiments are described which use space processing technology in the formation of and coating of bubbles and spheres to be orbited as sculptures visible from Earth. In one experiment, a 22,000 m1 sphere is to ride into orbit containing a 15 psi Earth atmosphere. Once in orbit, a controller directs a valve to open, linking the sphere to a vacuum of space. Technologies used in the fabrication of these art forms include vacuum film deposition and large bubble formation in the space environment.
High-mass Star Formation and Its Initial Conditions
NASA Astrophysics Data System (ADS)
Zhang, C. P.
2017-11-01
In this thesis, we present four works on the infrared dark clouds, fragmentation and deuteration of compact and cold cores, hyper-compact (HC) HII regions, and infrared dust bubbles, respectively. They are not only the products of early high-mass star formation, but reflect different evolutionary sequences of high-mass star formation. (1) Using the IRAM (Institut de Radioastronomie Millimétrique) 30 m telescope, we obtained HCO^+, HNC, N_2^+, and C^{18}O emission in six IRDCs (infrared dark clouds), and study their dynamics, stability, temperature, and density. (2) Fragmentation at the earliest phases is an important process of massive star formation. Eight massive precluster clumps (G18.17, G18.21, G23.97N, G23.98, G23.44, G23.97S, G25.38, and G25.71) were selected from the SCUBA (submillimetre Common-User Bolometer Array) 850 μm and 450 μm data. The VLA (Very Large Array) at 1.3 cm, PbBI at 3.5 mm and 1.3 mm, APEX (Atacama Pathfinder Experiment telescope) at 870 μm observations were followed up, and archival infrared data at 4.5 μm, 8.0 μm, 24 μm, and 70 μm were combined to study the fragmentation and evolution of these clumps. We explored the habitats of the massive clumps at large scale, cores/condensations at small scale, and the fragmentation process at different wavelengths. Star formation in these eight clumps may have been triggered by the UC (ultra-compact) HII regions nearby. (3) The formation of hyper-compact (HC) HII regions is an important stage in massive star formation. We present high angular resolution observations carried out with the SMA (Submillimeter Array) and the VLA (Very Large Array) toward the HC HII region G35.58-0.03. With the 1.3 mm SMA and 1.3 cm VLA, we detected a total of about 25 transitions of 8 different species and their isotopologues (CO, CH_3CN, SO_2, CH_3CCH, OCS, CS, H30α/38β, and NH_{3}). G35.58-0.03 consists of an HC HII core with electron temperature Te* ≥ 5500 K, emission measure EM ≈ 1.9×10^{9} pc\\cdotcm^{-6}, local volume electron density ne= 3.3×10^{5} cm^{-3}, FWHM ≈ 43.2 km\\cdots^{-1} for radio recombination lines from both H30α and H38β at its intrinsic core size 3714 au. The H30α line shows evidence of an ionized outflow driving a molecular outflow. The molecular envelope shows evidence of infall and outflow with an infall rate of 0.033 M_{⊙}\\cdotyr^{-1} and a mass loss rate 0.052 M_{⊙}\\cdotyr^{-1}. The derived momenta (˜0.05 M_{⊙}\\cdot{km}\\cdot{s}^{-1}) are comparable for both the infalling and outflowing gas per year. It is suggested that the infall is predominant and the envelope mass of the dense core is increasing rapidly, but accretion in the inner part might have already been halted. (4) OB type stars have strong free-free radiation. The ultraviolet radiation from ionizing stars may heat the dust and ionize the gas to sweep up an expanding bubble, probably accompanied by formation of next generation of stars. The position-velocity diagram clearly shows that N68 may be expanding outward. The structure of bubble S51, carried with shell and front side, is exhibited with ^{13}CO and C^{18}O emission. Both outflow and inflow may exist in the shell of the bubble S51. They may represent the next generation of stars whose formation was triggered by the bubble expanding into the molecular gas. For the bubble N131, we aim to further explore the molecular clumps and star formation at a higher spatial resolution compared with previous CO observations, and try to speculate its origin. The bubble N131 is likely originated in a filamentary nebula, within which the strong stellar wind from a group of massive stars broke up a pre-existing filamentary nebula into the clumps AD and BC, and sweeped up the surrounded material onto the ringlike shell of the bubble N131.
Optical monitoring of ultrasound-induced bioeffects in glass catfish.
Maruvada, Subha; Hynynen, Kullervo
2004-01-01
This study is an investigation of the therapeutic ultrasound (US) effects on the blood vessels of optically transparent fish in vivo. Although many investigators have characterized cavitation in vivo using remote-sensing methods (i.e., measuring the acoustic emissions caused by oscillating bubbles) very few have made direct observations of cavitation-induced damage. Anesthetized glass catfish, which are optically transparent, was injected with the contrast agent, Optison, and then insonified at pressures that ranged from 0.5-10 MPa (peak negative pressures). Two focused transducers were used in these experiments to cover a frequency range of 0.7-3.3 MHz. Sonications were pulsed with pulse durations of 100, 10, 1, 0.1 and 0.01 ms and a pulse repetition frequency (PRF) of 1 Hz. The entire length of one sonication at a specific pressure level was 20 s. An inverted microscope combined with a digital camera and video monitor were used optically to monitor and record US interaction with the blood vessels in the tail of the anesthetized fish at 200x magnification. The effects of the burst sonication were analyzed visually at each pressure level. For the 1.091-MHz sonications, the first type of damage that occurred due to the US interaction was structural damage to the cartilage rods that comprise the tail of the fish, and was characterized by a disintegration of the lining of the rod. Damage to the rods occurred, starting at 3.5 MPa, 3.1 MPa, 4.1 MPa and 5.5 MPa for the 100-ms, 10-ms, 1-ms and 100-micros sonications, respectively. The formation of large gas bubbles was observed in the blood vessels of the fish at threshold values of 3.8 MPa, 3.8 MPa and 5.3 MPa, for the 100-ms, 10-ms and 1-ms sonications, respectively. Neither gas bubble formation nor hemorrhaging was observed during 100-micros sonications. Bubble formation was always accompanied by an increase of damage to the rods at the area surrounding the bubble. At 1.091 MHz, petechial hemorrhage thresholds were observed at 4.1 MPa, 4.1 MPa and 6.1 MPa, respectively, for the three pulse durations. The thresholds for damage were the lowest for the 0.747-MHz sonications: they were 2.6 MPa for damage to the rods, 3.7 MPa for gas bubble formation and 2.4 MPa for hemorrhaging.
NASA Astrophysics Data System (ADS)
Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey
2006-11-01
Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4
Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming
NASA Astrophysics Data System (ADS)
Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.
2011-12-01
Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.
Bubble induced flow field modulation for pool boiling enhancement over a tubular surface
NASA Astrophysics Data System (ADS)
Raghupathi, P. A.; Joshi, I. M.; Jaikumar, A.; Emery, T. S.; Kandlikar, S. G.
2017-06-01
We demonstrate the efficacy of using a strategically placed enhancement feature to modify the trajectory of bubbles nucleating on a horizontal tubular surface to increase both the critical heat flux (CHF) and the heat transfer coefficient (HTC). The CHF on a plain tube is shown to be triggered by a local dryout at the bottom of the tube due to vapor agglomeration. To mitigate this effect and delay CHF, the nucleating bubble trajectory is modified by incorporating a bubble diverter placed axially at the bottom of the tube. The nucleating bubble at the base of the diverter experiences a tangential evaporation momentum force (EMF) which causes the bubble to grow sideways away from the tube and avoid localized bubble patches that are responsible for CHF initiation. High speed imaging confirmed the lateral displacement of the bubbles away from the diverter closely matched with the theoretical predictions using EMF and buoyancy forces. Since the EMF is stronger at higher heat fluxes, bubble displacement increases with heat flux and results in the formation of separate liquid-vapor pathways wherein the liquid enters almost unobstructed at the bottom and the vapor bubble leaves sideways. Experimental results yielded CHF and HTC enhancements of ˜60% and ˜75%, respectively, with the diverter configuration when compared to a plain tube. This work can be used for guidance in developing enhancement strategies to effectively modulate the liquid-vapor flow around the heater surface at various locations to enhance HTC and CHF.
Asymmetric bubble collapse and jetting in generalized Newtonian fluids
NASA Astrophysics Data System (ADS)
Shukla, Ratnesh K.; Freund, Jonathan B.
2017-11-01
The jetting dynamics of a gas bubble near a rigid wall in a non-Newtonian fluid are investigated using an axisymmetric simulation model. The bubble gas is assumed to be homogeneous, with density and pressure related through a polytropic equation of state. An Eulerian numerical description, based on a sharp interface capturing method for the shear-free bubble-liquid interface and an incompressible Navier-Stokes flow solver for generalized fluids, is developed specifically for this problem. Detailed simulations for a range of rheological parameters in the Carreau model show both the stabilizing and destabilizing non-Newtonian effects on the jet formation and impact. In general, for fixed driving pressure ratio, stand-off distance and reference zero-shear-rate viscosity, shear-thinning and shear-thickening promote and suppress jet formation and impact, respectively. For a sufficiently large high-shear-rate limit viscosity, the jet impact is completely suppressed. Thresholds are also determined for the Carreau power-index and material time constant. The dependence of these threshold rheological parameters on the non-dimensional driving pressure ratio and wall stand-off distance is similarly established. Implications for tissue injury in therapeutic ultrasound will be discussed.
The shape and motion of gas bubbles in a liquid flowing through a thin annulus
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Veltin, Jeremy; Muggeridge, Ann; Pain, Christopher C.; Matar, Omar K.; Jackson, Matthew; Arland, Kristine; Gyllensten, Atle
2017-11-01
We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly-inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ``tadpole'' shape with an elliptical cap and a highly-stretched tail, due to the confinement between the closely-spaced channel walls. As the annulus is inclined, the bubble tail tends to decrease in length, while the geometry of the cap remains almost invariant. To model the bubble evolution, the thin annulus is conceptualised as a ``Hele-Shaw'' cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model constrained by the same dimensionless quantities. The complex bubble dynamics are solved using a mixed control-volume finite-element method combined with interface-capturing and mesh adaptation techniques. A close match to the experimental data is achieved, both qualitatively and quantitatively, by the numerical simulations. The mechanism for the elliptical cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder. The shape regimes of bubbles flowing through the thin annulus are further explored based on the simulation results. Funding from STATOIL gratefully acknowledged.
Cavitation bubble dynamics during thulium fiber laser lithotripsy
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Kennedy, Joshua D.; Wilson, Christopher R.; Irby, Pierce B.; Fried, Nathaniel M.
2016-02-01
The Thulium fiber laser (TFL) is being explored for lithotripsy. TFL parameters differ from standard Holmium:YAG laser in several ways, including smaller fiber delivery, more strongly absorbed wavelength, low pulse energy/high pulse rate operation, and more uniform temporal pulse structure. High speed imaging of cavitation bubbles was performed at 105,000 fps and 10 μm spatial resolution to determine influence of these laser parameters on bubble formation. TFL was operated at 1908 nm with pulse energies of 5-75 mJ, and pulse durations of 200-1000 μs, delivered through 100-μm-core fiber. Cavitation bubble dynamics using Holmium laser at 2100 nm with pulse energies of 200-1000 mJ and pulse duration of 350 μs was studied, for comparison. A single, 500 μs TFL pulse produced a bubble stream extending 1090 +/- 110 μm from fiber tip, and maximum bubble diameters averaged 590 +/- 20 μm (n=4). These observations are consistent with previous studies which reported TFL ablation stallout at working distances < 1.0 mm. TFL bubble dimensions were five times smaller than for Holmium laser due to lower pulse energy, higher water absorption coefficient, and smaller fiber diameter used.
Stationary bubble formation and cavity collapse in wedge-shaped hoppers
Yagisawa, Yui; Then, Hui Zee; Okumura, Ko
2016-01-01
The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials. PMID:27138747
Dynamics of tandem bubble interaction in a microfluidic channel.
Yuan, Fang; Sankin, Georgy; Zhong, Pei
2011-11-01
The dynamics of tandem bubble interaction in a microfluidic channel (800 × 21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay.
Li, Fenfang; Yuan, Fang; Sankin, Georgy; Yang, Chen; Zhong, Pei
2017-01-10
In this manuscript, we first describe the fabrication protocol of a microfluidic chip, with gold dots and fibronectin-coated regions on the same glass substrate, that precisely controls the generation of tandem bubbles and individual cells patterned nearby with well-defined locations and shapes. We then demonstrate the generation of tandem bubbles by using two pulsed lasers illuminating a pair of gold dots with a few-microsecond time delay. We visualize the bubble-bubble interaction and jet formation by high-speed imaging and characterize the resultant flow field using particle image velocimetry (PIV). Finally, we present some applications of this technique for single cell analysis, including cell membrane poration with macromolecule uptake, localized membrane deformation determined by the displacements of attached integrin-binding beads, and intracellular calcium response from ratiometric imaging. Our results show that a fast and directional jetting flow is produced by the tandem bubble interaction, which can impose a highly localized shear stress on the surface of a cell grown in close proximity. Furthermore, different bioeffects can be induced by altering the strength of the jetting flow by adjusting the standoff distance from the cell to the tandem bubbles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.
We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less
Evaluation of 9.5 PSIA as a suit pressure for prolonged extravehicular activity
NASA Technical Reports Server (NTRS)
Dixon, G. A.; Krutz, R.
1986-01-01
A study was undertaken to determine if a pressure of 9.5 psia would aid against the occurrence of decompression sickness in both males and females (without prebreathing or stage decompression requirements) during a typical simulated extravehicular activity scenario. Twenty percent of the male subjects produced grades 1 and 2 bubbles while females did not produce bubble signals at all. It is concluded that a pressure of 9.5 psia can protect the astronaut from both formation of severe bubbling and development of bends symptoms when exposed to these study conditions.
Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
2012-01-01
As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.
Gas bubble formation in the cytoplasm of a fermenting yeast.
Swart, Chantel W; Dithebe, Khumisho; Pohl, Carolina H; Swart, Hendrik C; Coetsee, Elizabeth; van Wyk, Pieter W J; Swarts, Jannie C; Lodolo, Elizabeth J; Kock, Johan L F
2012-11-01
Current paradigms assume that gas bubbles cannot be formed within yeasts although these workhorses of the baking and brewing industries vigorously produce and release CO(2) gas. We show that yeasts produce gas bubbles that fill a significant part of the cell. The missing link between intracellular CO(2) production by glycolysis and eventual CO(2) release from cells has therefore been resolved. Yeasts may serve as model to study CO(2) behavior under pressurized conditions that may impact on fermentation biotechnology. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Molteni, Matteo; Magatti, Davide; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio
2013-01-01
The average pore size ξ0 of filamentous networks assembled from biological macromolecules is one of the most important physical parameters affecting their biological functions. Modern optical methods, such as confocal microscopy, can noninvasively image such networks, but extracting a quantitative estimate of ξ0 is a nontrivial task. We present here a fast and simple method based on a two-dimensional bubble approach, which works by analyzing one by one the (thresholded) images of a series of three-dimensional thin data stacks. No skeletonization or reconstruction of the full geometry of the entire network is required. The method was validated by using many isotropic in silico generated networks of different structures, morphologies, and concentrations. For each type of network, the method provides accurate estimates (a few percent) of the average and the standard deviation of the three-dimensional distribution of the pore sizes, defined as the diameters of the largest spheres that can be fit into the pore zones of the entire gel volume. When applied to the analysis of real confocal microscopy images taken on fibrin gels, the method provides an estimate of ξ0 consistent with results from elastic light scattering data. PMID:23473499
Mechanisms of thrombolysis acceleration by cavitation
NASA Astrophysics Data System (ADS)
Weiss, Hope; Selvaraj, Prashanth; Ahadi, Golnaz; Voie, Arne; Hoelscher, Thilo; Okita, Kohei; Matsumoto, Yoichiro; Szeri, Andrew
2012-11-01
Recent studies, in vitro and in vivo, have shown that High Intensity Focused Ultrasound (HIFU) accelerates thrombolysis, the dissolution of blood clots, for ischemic stroke. Although the mechanisms are not fully understood, cavitation is thought to play an important role in sonothrombolysis. The damage to a blood clot's fibrin fiber network from cavitation in a HIFU field is studied using two independent approaches for an embedded bubble. One method is extended to the more important scenario of a bubble outside a blood clot that collapses asymmetrically creating a jet towards the clot. There is significantly more damage potential from a bubble undergoing cavitation collapse outside the clot compared to a rapidly expanding bubble embedded within the clot structure. Also, the effects of the physical properties of skull bone when a HIFU wave propagates through it are examined by use of computer simulation. The dynamics of a test bubble placed at the focus is used in understanding of the pressure field. All other things being equal, the analysis suggests that skull thickness can alter the wave at the focus, which in turn can change the nature of cavitation bubble dynamics and the amount of energy available for clot damage. Now at MSOE.
Pseudospin-orbit splitting and its consequences for the central depression in nuclear density
NASA Astrophysics Data System (ADS)
Li, Jia Jie; Long, Wen Hui; Song, Jun Ling; Zhao, Qiang
2016-05-01
The occurrence of the bubble-like structure has been studied, in the light of pseudospin degeneracy, within the relativistic Hartree-Fock-Bogoliubov (RHFB) theory. It is concluded that the charge/neutron bubble-like structure is predicted to occur in the mirror system of {34Si,34Ca } commonly by the selected Lagrangians, due to the persistence of Z (N )=14 subshell gaps above which the π (ν ) 2 s1 /2 states are not occupied. However, for the popular candidate 46Ar, the RHFB Lagrangian PKA1 does not support the occurrence of the bubble-like structure in the charge (proton) density profiles, due to the almost degenerate pseudospin doublet {π 2 s1 /2,π 1 d3 /2} and coherent pairing effects. The formation of a semibubble in heavy nuclei is less possible as a result of small pseudospin-orbit (PSO) splitting, while it tends to appear at Z =120 superheavy systems which coincides with large PSO splitting of the doublet {π 3 p3 /2,π 2 f5 /2} and couples with significant shell effects. Pairing correlations, which can work against bubble formation, significantly affect the PSO splitting. Furthermore, we found that the influence on semibubble formation due to different types of pairing interactions is negligible. The quenching of the spin-orbit splitting in the p orbit has been also stressed, and it may be considered the hallmark for semibubble nuclei.
NASA Astrophysics Data System (ADS)
Gutiérrez-Montes, Cándido; Bolaños-Jiménez, Rocío; Martínez-Bazán, Carlos; Sevilla, Alejandro
2014-11-01
An experimental and numerical study has been performed to explore the influence of different geometric features and operating conditions on the dynamics of a water-air-water planar co-flow. Specifically, regarding the nozzle used, the inner-to-outer thickness ratio of the air injector, β = Hi/Ho, the water-to-air thickness ratio, h = Hw/Ho, and the shape of the injector tip, have been described. As for the operating conditions, the water exit velocity profile under constant flow rate and constant air feeding pressure has been assessed. The results show that the jetting-bubbling transition is promoted for increasing values of β, decreasing values of h, rounded injector tip, and for uniform water exit velocity profiles. As for the bubble formation frequency, it increases with increasing values of β, decreasing values of h, rounded injector and parabolic-shaped water exit profiles. Furthermore, the bubble formation frequency has been shown to be lower under constant air feeding pressure conditions than at constant gas flow rate conditions. Finally, the effectiveness of a time-variable air feeding stream has been numerically studied, determining the forcing receptivity space in the amplitude-frequency plane. Experimental results corroborate the effectiveness of this control technique. Work supported by Spanish MINECO, Junta de Andalucía, European Funds and UJA under Projects DPI2011-28356-C03-02, DPI2011-28356-C03-03, P11-TEP7495 and UJA2013/08/05.
Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro
2017-01-01
Introduction: The popularity of SCUBA diving is steadily increasing together with the number of dives and correlated diseases per year. The rules that govern correct decompression procedures are considered well known even if the majority of Decompression Sickness (DCS) cases are considered unexpected confirming a bias in the "mathematical ability" to predict DCS by the current algorithms. Furthermore, little is still known about diving risk factors and any individual predisposition to DCS. This study provides an in-depth epidemiological analysis of the diving community, to include additional risk factors correlated with the development of circulating bubbles and DCS. Materials and Methods: An originally developed database (DAN DB) including specific questionnaires for data collection allowed the statistical analysis of 39,099 electronically recorded open circuit dives made by 2,629 European divers (2,189 males 83.3%, 440 females 16.7%) over 5 years. The same dive parameters and risk factors were investigated also in 970 out of the 39,099 collected dives investigated for bubble formation, by 1-min precordial Doppler, and in 320 sea-level dives followed by DCS symptoms. Results: Mean depth and GF high of all the recorded dives were 27.1 m, and 0.66, respectively; the average ascent speed was lower than the currently recommended "safe" one (9-10 m/min). We found statistically significant relationships between higher bubble grades and BMI, fat mass, age, and diving exposure. Regarding incidence of DCS, we identified additional non-bubble related risk factors, which appear significantly related to a higher DCS incidence, namely: gender, strong current, heavy exercise, and workload during diving. We found that the majority of the recorded DCS cases were not predicted by the adopted decompression algorithm and would have therefore been defined as "undeserved." Conclusion: The DAN DB analysis shows that most dives were made in a "safe zone," even if data show an evident "gray area" in the "mathematical" ability to predict DCS by the current algorithms. Some other risk factors seem to influence the possibility to develop DCS, irrespective of their effect on bubble formation, thus suggesting the existence of some factors influencing or enhancing the effects of bubbles.
NASA Astrophysics Data System (ADS)
Weon, Byung Mook; Stewart, Peter S.
2014-11-01
Aging is an inevitable process in living systems. Here we show how clean foams age with time through sequential coalescence events: in particular, foam aging resembles biological aging. We measure population dynamics of bubbles in clean foams through numerical simulations with a bubble network model. We demonstrate that death rates of individual bubbles increase exponentially with time, independent on initial conditions, which is consistent with the Gompertz mortality law as usually found in biological aging. This consistency suggests that clean foams as far-from-equilibrium dissipative systems are useful to explore biological aging. This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.
Surface tension and quasi-emulsion of cavitation bubble cloud.
Bai, Lixin; Chen, Xiaoguang; Zhu, Gang; Xu, Weilin; Lin, Weijun; Wu, Pengfei; Li, Chao; Xu, Delong; Yan, Jiuchun
2017-03-01
A quasi-emulsion phenomenon of cavitation structure in a thin liquid layer (the thin liquid layer is trapped between a radiating surface and a hard reflector) is investigated experimentally with high-speed photography. The transformation from cloud-in-water (c/w) emulsion to water-in-cloud (w/c) emulsion is related to the increase of cavitation bubble cloud. The acoustic field in the thin liquid layer is analyzed. It is found that the liquid region has higher acoustic pressure than the cloud region. The bubbles are pushed from liquid region to cloud region by the primary Bjerknes forces. The rate of change of CSF increased with the increase of CSF. The cavitation bubbles on the surface of cavitation cloud are attracted by the cavitation bubbles inside the cloud due to secondary Bjerknes forces. The existence of surface tension on the interface of liquid region and cloud region is proved. The formation mechanism of disc-shaped liquid region and cloud region are analysed by surface tension and incompressibility of cavitation bubble cloud. Copyright © 2016 Elsevier B.V. All rights reserved.
Bubble gate for in-plane flow control.
Oskooei, Ali; Abolhasani, Milad; Günther, Axel
2013-07-07
We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.
Microfracture development and foam collapse during lava dome growth
NASA Astrophysics Data System (ADS)
Ashwell, P.; Kendrick, J. E.; Lavallee, Y.; kennedy, B.; Hess, K.; Cole, J. W.; Dingwell, D. B.
2012-12-01
The ability of a volcano to degas effectively is regulated by the collapse of the foam during lava dome growth. As a lava dome extrudes and cools, it will begin to collapse under its own weight, leading to the closure of bubbles and the eventual blockage of the permeable foam network. A reduction in the lavas permeability hinders gas movement and increases internal bubble pressure, which may eventually lead to failure of the bubble walls, and ultimately to explosive fragmentation of the dome. However, the behaviour of lava dome material under compression is poorly understood. Here we present the results of low-load, uniaxial, high temperature (850oC) compression experiments on glassy, rhyolitic dome material from Ngongotaha (~200ka, following collapse of Rotorua Caldera) and Tarawera (1314AD, from dome collapse generated block and ash flow) domes in New Zealand. The development of textures and microstructures was tracked using neutron computed tomography at incremental stages of strain. Porosity and permeability measurements, using pycnometry and gas permeability, before and after each experiment quantified the evolution of the permeable bubble network. Our results show that uniaxial compression of vesicular lava leads to a systematic reduction of porosity on a timescale comparable to volcanic eruptions (hours - days). The closure of bubbles naturally decreases permeability parallel and perpendicular to the applied load, and at high strains fractures begin to initiate in phenocrysts and propagate vertically into the glass. These microfractures result in localised increases in permeability. Crystallinity and initial vesicularity of each sample affects the rate of bubble collapse and the evolution of permeability. The most highly compressed samples (60%) show textures similar to samples collected from the centre of Tarawera Dome, thought to have suffered from collapse shortly after dome emplacement. However, structures and porosities in the deformed Ngongotaha samples differ from the natural collapsed dome material. The interior of Ngongotaha Dome shows complex deformed flow banding, indicating that shearing during emplacement was a major component during collapse of the permeable foam. Understanding the development of the porous permeable network during lava dome growth is key to predicting the behaviour of an erupting volcano, and the assessing the likelihood of pressure build-up leading to a catastrophic explosive eruption.
NASA Astrophysics Data System (ADS)
Ji, Shengyue; Chen, Wu; Weng, Duojie; Wang, Zhenjie
2015-08-01
Hong Kong (22.3°N, 114.2°E, dip: 30.5°N; geomagnetic 15.7°N, 173.4°W, declination: 2.7°W) is a low-latitude area, and the Hong Kong Continuously Operating Reference Station (CORS) network has been developed and maintained by Lands Department of Hong Kong government since 2001. Based on the collected GPS observations of a whole solar cycle from 2001 to 2012, a method is proposed to estimate the zonal drift velocity as well as the tilt of the observed plasma bubbles, and the estimated results are statistically analyzed. It is found that although the plasma bubbles are basically vertical within the equatorial plane, the tilt can be as big as more than 60° eastward or westward sometimes. And, the tilt and the zonal drift velocity are correlated. When the velocity is large, the tilt is also large generally. Another finding is that large velocity and tilt generally occur in spring and autumn and in solar active years.
Aerobic exercise before diving reduces venous gas bubble formation in humans
Dujić, Željko; Duplančic, Darko; Marinovic-Terzić, Ivana; Baković, Darija; Ivančev, Vladimir; Valic, Zoran; Eterović, Davor; Petri, Nadan M; Wisløff, Ulrik; Brubakk, Alf O
2004-01-01
We have previously shown in a rat model that a single bout of high-intensity aerobic exercise 20h before a simulated dive reduces bubble formation and after the dive protects from lethal decompression sickness. The present study investigated the importance of these findings in man. Twelve healthy male divers were compressed in a hyperbaric chamber to 280kPa at a rate of 100kPamin−1 breathing air and remaining at pressure for 80min. The ascent rate was 9mmin−1 with a 7min stop at 130kPa. Each diver underwent two randomly assigned simulated dives, with or without preceding exercise. A single interval exercise performed 24h before the dive consisted of treadmill running at 90% of maximum heart rate for 3min, followed by exercise at 50% of maximum heart rate for 2min; this was repeated eight times for a total exercise period of 40min. Venous gas bubbles were monitored with an ultrasonic scanner every 20min for 80min after reaching surface pressure. The study demonstrated that a single bout of strenuous exercise 24h before a dive to 18 m of seawater significantly reduced the average number of bubbles in the pulmonary artery from 0.98 to 0.22 bubbles cm−2(P= 0.006) compared to dives without preceding exercise. The maximum bubble grade was decreased from 3 to 1.5 (P= 0.002) by pre-dive exercise, thereby increasing safety. This is the first report to indicate that pre-dive exercise may form the basis for a new way of preventing serious decompression sickness. PMID:14755001
Plasma bubble monitoring by TEC map and 630 nm airglow image
NASA Astrophysics Data System (ADS)
Takahashi, H.; Wrasse, C. M.; Otsuka, Y.; Ivo, A.; Gomes, V.; Paulino, I.; Medeiros, A. F.; Denardini, C. M.; Sant'Anna, N.; Shiokawa, K.
2015-08-01
Equatorial ionosphere plasma bubbles over the South American continent were successfully observed by mapping the total electron content (TECMAP) using data provided by ground-based GNSS receiver networks. The TECMAP could cover almost all of the continent within ~4000 km distance in longitude and latitude, monitoring TEC variability continuously with a time resolution of 10 min. Simultaneous observations of OI 630 nm all-sky image at Cachoeira Paulista (22.7°S, 45.0°W) and Cariri (7.4°S, 36.5°W) were used to compare the bubble structures. The spatial resolution of the TECMAP varied from 50 km to 1000 km, depending on the density of the observation sites. On the other hand, optical imaging has a spatial resolution better than 15 km, depicting the fine structure of the bubbles but covering a limited area (~1600 km diameter). TECMAP has an advantage in its spatial coverage and the continuous monitoring (day and night) form. The initial phase of plasma depletion in the post-sunset equatorial ionization anomaly (PS-EIA) trough region, followed by development of plasma bubbles in the crest region, could be monitored in a progressive way over the magnetic equator. In December 2013 to January 2014, periodically spaced bubble structures were frequently observed. The longitudinal spacing between the bubbles was around 600-800 km depending on the day. The periodic form of plasma bubbles may suggest a seeding process related to the solar terminator passage in the ionosphere.
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang
Ultrasound contrast agents (UCA) have shown great potential in both diagnostic and therapeutic applications recently. To fully explore the possible applications and the safety concerns of using UCA, a complete understanding of the UCA responses to various acoustic fields is necessary. Therefore, we performed a series of experiments and simulations to investigate the various acoustic properties of UCA with different gases and shells. We also investigated the mechanisms of some UCA-enhanced bioeffects including thrombolysis, hemolysis and high-intensity focused ultrasound (HIFU) tumor ablation. Two pressure thresholds were found: the fragmentation threshold and continuous inertial cavitation (IC) threshold. At the fragmentation threshold, bubbles were destroyed and the released gas dissolved in the surrounding solution at a rate which depended on the bubble's initial size and type of gas. The continuous IC threshold occurred at a higher pressure, where fragments of destroyed UCA (derivative bubbles) underwent violent inertial collapse; the period of activity depending on acoustic parameters such as frequency, pressure, pulse length, and pulse repetition frequency (PRF). Different UCA had different threshold pressures and demonstrated different magnitudes of IC activity after destruction. The amount of derivative bubbles generated by IC was determined by several acoustic parameters including pressure, pulse length and PRE For the same acoustic energy delivered, longer pulses generated more bubbles. More IC could be induced if the derivative bubbles could survive through the 'off' period of the pulsed ultrasound waves, and served as nuclei for the subsequent IC. In therapeutic applications, evidences of IC activity were recorded during the hemolysis, thrombolysis, and the lesion-formation processes with UCA. Hemolysis and thrombolysis were highly correlated to the presence of ultrasound and UCA, and correlated well with the amount of the IC activity. Finally, the 'tadpole-shaped' lesion formed during high-intensity, focused ultrasound treatment was the result of bubble formation by boiling.
A Generalized Eulerian-Lagrangian Analysis, with Application to Liquid Flows with Vapor Bubbles
NASA Technical Reports Server (NTRS)
Dejong, Frederik J.; Meyyappan, Meyya
1993-01-01
Under a NASA MSFC SBIR Phase 2 effort an analysis has been developed for liquid flows with vapor bubbles such as those in liquid rocket engine components. The analysis is based on a combined Eulerian-Lagrangian technique, in which Eulerian conservation equations are solved for the liquid phase, while Lagrangian equations of motion are integrated in computational coordinates for the vapor phase. The novel aspect of the Lagrangian analysis developed under this effort is that it combines features of the so-called particle distribution approach with those of the so-called particle trajectory approach and can, in fact, be considered as a generalization of both of those traditional methods. The result of this generalization is a reduction in CPU time and memory requirements. Particle time step (stability) limitations have been eliminated by semi-implicit integration of the particle equations of motion (and, for certain applications, the particle temperature equation), although practical limitations remain in effect for reasons of accuracy. The analysis has been applied to the simulation of cavitating flow through a single-bladed section of a labyrinth seal. Models for the simulation of bubble formation and growth have been included, as well as models for bubble drag and heat transfer. The results indicate that bubble formation is more or less 'explosive'. for a given flow field, the number density of bubble nucleation sites is very sensitive to the vapor properties and the surface tension. The bubble motion, on the other hand, is much less sensitive to the properties, but is affected strongly by the local pressure gradients in the flow field. In situations where either the material properties or the flow field are not known with sufficient accuracy, parametric studies can be carried out rapidly to assess the effect of the important variables. Future work will include application of the analysis to cavitation in inducer flow fields.
Effect of phytoplackton-derived organic matter on the behavior of marine aerosols
NASA Astrophysics Data System (ADS)
Fuentes, E.; Coe, H.; McFiggans, G.; Green, D.
2009-04-01
The presence of significant concentrations of organic material in marine aerosols has been appreciated for several decades; however, only recently has significant progress been made towards demonstrating that this organic content is biogenically formed. Biogenic organics of placktonic life origin are incorporated in marine aerosol composition as a result of bubble bursting/breaking waves mechanisms that occur at the ocean surface. The presence of organic surfactants in the marine aerosol composition might have a significant impact on the properties of the generated aerosols by affecting the particles surface tension and solution balance properties. Nevertheless, it remains uncertain the role of such organics on the physical-chemical behavior of marine aerosols. In this work an experimental study was performed in order to determine the influence of biogenic marine organic compounds on the size distribution, hygroscopicity and cloud-nucleating properties of marine aerosols. For the experimental study a laboratory water recirculation system (bubble tank), designed for the simulation of bubble-burst aerosol formation, was used as marine aerosol generator. The bubble spectra produced by such system was characterized by means of an optical bubble measuring device (BMS) and it was found to be consistent with oceanic bubble spectra properties. Seawater proxy solutions were prepared from laboratory biologically-synthesized exudates produced by oceanic representative algal species and introduced in the tank for the generation of marine aerosol by bubble bursting. Two experimental methods were employed for seawater proxies preparation: the formation of surface monolayers from the biogenic surfactants extracted by a solid phase extraction technique (monolayer method) and the mixing of the exudates in the sea salt water bulk (bulk mixing method). Particle size distribution, hygroscopicity and cloud condensation nuclei experiments for different monolayers, and exudate mixtures were performed. This contribution provides an overview of the experimental study conducted and the most relevant results found in this research work.
El-Atwani, Osman; Nathaniel II, James E.; Leff, Asher C.; ...
2016-10-18
Nanocrystalline materials are radiation-tolerant materials’ candidates due to their high defect sink density. Here, nanocrystalline iron films were irradiated with 10 keV helium ions in situ in a transmission electron microscope at elevated temperatures. Grain-size-dependent bubble density changes and denuded zone occurrence were observed at 700 K, but not at 573 K. This transition, attributed to increased helium–vacancy migration at elevated temperatures, suggests that nanocrystalline microstructures are more resistant to swelling at 700 K due to decreased bubble density. Finally, denuded zone formation had no correlation with grain size and misorientation angle under the conditions studied.
Arai, Noriyoshi; Yasuoka, Kenji; Koishi, Takahiro; Ebisuzaki, Toshikazu; Zeng, Xiao Cheng
2013-06-12
The "asymmetric Brownian ratchet model", a variation of Feynman's ratchet and pawl system, is invoked to understand the kinesin walking behavior along a microtubule. The model system, consisting of a motor and a rail, can exhibit two distinct binding states, namely, the random Brownian state and the asymmetric potential state. When the system is transformed back and forth between the two states, the motor can be driven to "walk" in one direction. Previously, we suggested a fundamental mechanism, that is, bubble formation in a nanosized channel surrounded by hydrophobic atoms, to explain the transition between the two states. In this study, we propose a more realistic and viable switching method in our computer simulation of molecular motor walking. Specifically, we propose a thermosensitive polymer model with which the transition between the two states can be controlled by temperature pulses. Based on this new motor system, the stepping size and stepping time of the motor can be recorded. Remarkably, the "walking" behavior observed in the newly proposed model resembles that of the realistic motor protein. The bubble formation based motor not only can be highly efficient but also offers new insights into the physical mechanism of realistic biomolecule motors.
Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro
2015-03-01
Inert gas accumulated after multiple recreational dives can generate tissue supersaturation and bubble formation when ambient pressure decreases. We hypothesized that this could happen even if divers respected the currently recommended 24-hour pre-flight surface interval (PFSI). We performed transthoracic echocardiography (TTE) on a group of 56 healthy scuba divers (39 male, 17 female) as follows: first echo--during the outgoing flight, no recent dives; second echo--before boarding the return flight, after a multiday diving week in the tropics and a 24-hour PFSI; third echo--during the return flight at 30, 60 and 90 minutes after take-off. TTE was also done after every dive during the week's diving. Divers were divided into three groups according to their 'bubble-proneness': non-bubblers, occasional bubblers and consistent bubblers. During the diving, 23 subjects never developed bubbles, 17 only occasionally and 16 subjects produced bubbles every day and after every dive. Bubbles on the return flight were observed in eight of the 56 divers (all from the 'bubblers' group). Two subjects who had the highest bubble scores during the diving were advised not to make the last dive (increasing their PFSI to approximately 36 hours), and did not demonstrate bubbles on the return flight. Even though a 24-hour PFSI is recommended on the basis of clinical trials showing a low risk of decompression sickness (DCS), the presence of venous gas bubbles in-flight in eight of 56 divers leads us to suspect that in real-life situations DCS risk after such a PFSI is not zero.
MAGNETIC TOPOLOGY OF BUBBLES IN QUIESCENT PROMINENCES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudik, J.; Aulanier, G.; Schmieder, B.
We study a polar-crown prominence with a bubble and its plume observed in several coronal filters by the SDO/AIA and in H{alpha} by the MSDP spectrograph in Bialkow (Poland) to address the following questions: what is the brightness of prominence bubbles in EUV with respect to the corona outside of the prominence and the prominence coronal cavity? What is the geometry and topology of the magnetic field in the bubble? What is the nature of the vertical threads seen within prominences? We find that the brightness of the bubble and plume is lower than the brightness of the corona outsidemore » of the prominence, and is similar to that of the coronal cavity. We constructed linear force-free models of prominences with bubbles, where the flux rope is perturbed by inclusion of parasitic bipoles. The arcade field lines of the bipole create the bubble, which is thus devoid of magnetic dips. Shearing the bipole or adding a second one can lead to cusp-shaped prominences with bubbles similar to the observed ones. The bubbles have complex magnetic topology, with a pair of coronal magnetic null points linked by a separator outlining the boundary between the bubble and the prominence body. We conjecture that plume formation involves magnetic reconnection at the separator. Depending on the viewing angle, the prominence can appear either anvil-shaped with predominantly horizontal structures, or cusp-shaped with predominantly vertical structuring. The latter is an artifact of the alignment of magnetic dips with respect to the prominence axis and the line of sight.« less
NASA Technical Reports Server (NTRS)
Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping
2008-01-01
Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.
Randsøe, Thomas; Hyldegaard, O
2014-01-01
Perfluorocarbon emulsions (PFC) and nitric oxide (NO) releasing agents have on experimental basis demonstrated therapeutic properties in treating and preventing the formation of venous gas embolism as well as increased survival rate during decompression sickness from diving. The effect is ascribed to an increased solubility and transport capacity of respiratory gases in the PFC emulsion and possibly enhanced nitrogen washout through NO-increased blood flow rate and/or the removal of endothelial micro bubble nuclei precursors. Previous reports have shown that metabolic gases (i.e., oxygen in particular) and water vapor contribute to bubble growth and stabilization during altitude exposures. Accordingly, we hypothesize that the administration of PFC and NO donors upon hypobaric pressure exposures either (1) enhance the bubble disappearance rate through faster desaturation of nitrogen, or in contrast (2) promote bubble growth and stabilization through an increased oxygen supply. In anesthetized rats, micro air bubbles (containing 79% nitrogen) of 4-500 nl were injected into exposed abdominal adipose tissue. Rats were decompressed in 36 min to 25 kPa (~10,376 m above sea level) and bubbles studied for 210 min during continued oxygen breathing (FIO2 = 1). Rats were administered PFC, NO, or combined PFC and NO. In all groups, most bubbles grew transiently, followed by a stabilization phase. There were no differences in the overall bubble growth or decay between groups or when compared with previous data during oxygen breathing alone at 25 kPa. During extreme altitude exposures, the contribution of metabolic gases to bubble growth compromises the therapeutic effects of PFC and NO, but PFC and NO do not induce additional bubble growth.
Production of Gas Bubbles in Reduced Gravity Environments
NASA Technical Reports Server (NTRS)
Oguz, Hasan N.; Takagi, Shu; Misawa, Masaki
1996-01-01
In a wide variety of applications such as waste water treatment, biological reactors, gas-liquid reactors, blood oxygenation, purification of liquids, etc., it is necessary to produce small bubbles in liquids. Since gravity plays an essential role in currently available techniques, the adaptation of these applications to space requires the development of new tools. Under normal gravity, bubbles are typically generated by forcing gas through an orifice in a liquid. When a growing bubble becomes large enough, the buoyancy dominates the surface tension force causing it to detach from the orifice. In space, the process is quite different and the bubble may remain attached to the orifice indefinitely. The most practical approach to simulating gravity seems to be imposing an ambient flow to force bubbles out of the orifice. In this paper, we are interested in the effect of an imposed flow in 0 and 1 g. Specifically, we investigate the process of bubble formation subject to a parallel and a cross flow. In the case of parallel flow, we have a hypodermic needle in a tube from which bubbles can be produced. On the other hand, the cross flow condition is established by forcing bubbles through an orifice on a wall in a shear flow. The first series of experiments have been performed under normal gravity conditions and the working fluid was water. A high quality microgravity facility has been used for the second type and silicone oil is used as the host liquid.
Transparent electrodes fabricated via the self-assembly of silver nanowires using a bubble template.
Tokuno, Takehiro; Nogi, Masaya; Jiu, Jinting; Sugahara, Tohru; Suganuma, Katsuaki
2012-06-26
To shore up the demand of transparent electrodes for wide applications such as organic light emitting diodes and solar cells, transparent electrodes are required as an alternative for indium tin oxide electrodes. Herein the self-assembly method with a bubble template paves the way for cost-effective fabrication of transparent electrodes with high conductivity and transparency using self-assembly of silver nanowires (AgNWs) in a bubble template. AgNWs were first dispersed in water that was bubbled with a surfactant and a thickening agent. Furthermore, these AgNWs were assembled by lining along the bubble ridges. When the bubbles containing the AgNWs were sandwiched between two glass substrates, the bubble ridges including the AgNWs formed continuous polygonal structures. Mesh structures were formed on both glass substrates after air-drying. The mesh structures evolved into mesh transparent electrodes following heat-treatment. The AgNW mesh structure exhibited a low sheet resistance of 6.2 Ω/square with a transparency of 84% after heat treatment at 200 °C for 20 min. The performance is higher than that of transparent electrodes with random networks of AgNWs. Furthermore, the conductivity and transparency of the mesh transparent electrodes can be adjusted by changing the amount of the AgNW suspension and the space between the two glass substrates.
Thermal singularity and contact line motion in pool boiling: Effects of substrate wettability.
Taylor, M T; Qian, Tiezheng
2016-03-01
The dynamic van der Waals theory [Phys. Rev. E 75, 036304 (2007)] is employed to model the growth of a single vapor bubble in a superheated liquid on a flat homogeneous substrate. The bubble spreading dynamics in the pool boiling regime has been numerically investigated for one-component van der Waals fluids close to the critical point, with a focus on the effect of the substrate wettability on bubble growth and contact line motion. The substrate wettability is found to control the apparent contact angle and the rate of bubble growth (the rate of total evaporation), through which the contact line speed is determined. An approximate expression is derived for the contact line speed, showing good agreement with the simulation results. This demonstrates that the contact line speed is primarily governed by (1) the circular shape of interface (for slow bubble growth), (2) the constant apparent contact angle, and (3) the constant bubble growth rate. It follows that the contact line speed has a sensitive dependence on the substrate wettability via the apparent contact angle which also determines the bubble growth rate. Compared to hydrophilic surfaces, hydrophobic surfaces give rise to a thinner shape of bubble and a higher rate of total evaporation, which combine to result in a much faster contact line speed. This can be linked to the earlier formation of a vapor film and hence the onset of boiling crisis.
A New Active Cavitation Mapping Technique for Pulsed HIFU Applications – Bubble Doppler
Li, Tong; Khokhlova, Tatiana; Sapozhnikov, Oleg; Hwang, Joo Ha; Sapozhnikov, Oleg; O’Donnell, Matthew
2015-01-01
In this work, a new active cavitation mapping technique for pulsed high-intensity focused ultrasound (pHIFU) applications termed bubble Doppler is proposed and its feasibility tested in tissue-mimicking gel phantoms. pHIFU therapy uses short pulses, delivered at low pulse repetition frequency, to cause transient bubble activity that has been shown to enhance drug and gene delivery to tissues. The current gold standard for detecting and monitoring cavitation activity during pHIFU treatments is passive cavitation detection (PCD), which provides minimal information on the spatial distribution of the bubbles. B-mode imaging can detect hyperecho formation, but has very limited sensitivity, especially to small, transient microbubbles. The bubble Doppler method proposed here is based on a fusion of the adaptations of three Doppler techniques that had been previously developed for imaging of ultrasound contrast agents – color Doppler, pulse inversion Doppler, and decorrelation Doppler. Doppler ensemble pulses were interleaved with therapeutic pHIFU pulses using three different pulse sequences and standard Doppler processing was applied to the received echoes. The information yielded by each of the techniques on the distribution and characteristics of pHIFU-induced cavitation bubbles was evaluated separately, and found to be complementary. The unified approach - bubble Doppler – was then proposed to both spatially map the presence of transient bubbles and to estimate their sizes and the degree of nonlinearity. PMID:25265178
Moduli vacuum bubbles produced by evaporating black holes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, J. R.
2007-10-15
We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4D effective potential with one-loop contributions due to the Casimir effect, along with a 5D cosmological constant. The forms of the effective potential at low and high temperatures indicate a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys.more » Rev. D 74, 024004 (2006)]. The black hole bubble can be highly opaque to lower-energy particles and photons, and thereby entrap them within. For high-temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I. G. Moss, Phys. Rev. D 32, 1333 (1985)], tending to reflect low-energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.« less
Vortex shedding within laminar separation bubbles forming over an airfoil
NASA Astrophysics Data System (ADS)
Kirk, Thomas M.; Yarusevych, Serhiy
2017-05-01
Vortex shedding within laminar separation bubbles forming over the suction side of a NACA 0018 airfoil is studied through a combination of high-speed flow visualization and boundary layer measurements. Wind tunnel experiments are performed at a chord-based Reynolds number of 100,000 and four angles of attack. The high-speed flow visualization is complemented by quantitative velocity and surface pressure measurements. The structures are shown to originate from the natural amplification of small-amplitude disturbances, and the shear layer roll-up is found to occur coherently across the span. However, significant cycle-to-cycle variations are observed in vortex characteristics, including shedding period and roll-up location. The formation of the roll-up vortices precedes the later stages of transition, during which these structures undergo significant deformations and breakdown to smaller scales. During this stage of flow development, vortex merging is also observed. The results provide new insight into the development of coherent structures in separation bubbles and their relation to the overall bubble dynamics and mean bubble topology.
The role of grain size in He bubble formation: Implications for swelling resistance
El-Atwani, Osman; Nathaniel, II, James E.; Leff, Asher C.; ...
2016-12-07
Here, nanocrystalline metals are postulated as radiation resistant materials due to their high defect and particle (e.g. Helium) sink density. Here, the performance of nanocrystalline iron films is investigated in-situ in a transmission electron microscope (TEM) using He irradiation at 700 K. Automated crystal orientation mapping is used in concert with in-situ TEM to explore the role of grain orientation and grain boundary character on bubble density trends. Bubble density as a function of three key grain size regimes is demonstrated. While the overall trend revealed an increase in bubble density up to a saturation value, grains with areas rangingmore » from 3000 to 7500 nm 2 show a scattered distribution. An extrapolated swelling resistance based on bubble size and areal density indicated that grains with sizes less than 2000 nm 2 possess the greatest apparent resistance. Moreover, denuded zones are found to be independent of grain size, grain orientation, and grain boundary misorientation angle.« less
Implementation of two-phase tritium models for helium bubbles in HCLL breeding blanket modules
NASA Astrophysics Data System (ADS)
Fradera, J.; Sedano, L.; Mas de les Valls, E.; Batet, L.
2011-10-01
Tritium self-sufficiency requirement of future DT fusion reactors involves large helium production rates in the breeding blankets; this might impact on the conceptual design of diverse fusion power reactor units, such as Liquid Metal (LM) blankets. Low solubility, long residence-times and high production rates create the conditions for Helium nucleation, which could mean effective T sinks in LM channels. A model for helium nano-bubble formation and tritium conjugate transport phenomena in liquid Pb17.5Li and EUROFER is proposed. In a first approximation, it has been considered that He bubbles can be represented as a passive scalar. The nucleation model is based on the classical theory and includes a simplified bubble growth model. The model captures the interaction of tritium with bubbles and tritium diffusion through walls. Results show the influence of helium cavitation on tritium inventory and the importance of simulating the system walls instead of imposing fixed boundary conditions.
Effect of solution plasma process with bubbling gas on physicochemical properties of chitosan.
Ma, Fengming; Li, Pu; Zhang, Baiqing; Zhao, Xin; Fu, Qun; Wang, Zhenyu; Gu, Cailian
2017-05-01
In the present work, solution plasma process (SPP) with bubbling gas was used to prepare oligochitosan. The effect of SPP irradiation with bubbling gas on the degradation of chitosan was evaluated by the intrinsic viscosity reduction rate and the degradation kinetic. The formation of OH radical was studied. Changes of the physicochemical properties of chitosan were measured by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis, as well as ultraviolet-visible, Fourier-transform infrared, and 13 C nuclear magnetic resonance spectroscopy. The results indicated an obvious decrease in the intrinsic viscosity reduction rate after SPP irradiation with bubbling gas, and that the rate with bubbling was higher than that without. The main chemical structure of chitosan remained intact after irradiation, but changes in the morphology, crystallinity, and thermal stability of oligochitosan were observed. In particular, the crystallinity and thermal stability tended to decrease. The present study indicated that SPP can be effectively used for the degradation of chitosan. Copyright © 2017. Published by Elsevier B.V.
Passive acoustic records of two vigorous bubble-plume methane seeps on the Oregon continental margin
NASA Astrophysics Data System (ADS)
Dziak, R. P.; Matsumoto, H.; Merle, S. G.; Embley, R. W.; Baumberger, T.; Hammond, S. R.
2016-12-01
We present preliminary analysis of the acoustic records of two bubble-plume methane seeps recorded by an autonomous hydrophone deployed during the E/V Nautilus expedition (NA072) in June 2016. The goal of the NA072 expedition was to use the Simrad 302 as a survey tool to map bubble plumes at a regional scale along the Oregon and northern California margins, followed by in situ investigation of bubble-plume sites using the ROV Hercules. The exploration carried out during NA072 resulted in the discovery of hundreds of new individual methane seep sites in water depths ranging from 125 to 1725 m depth. A Greenridge Acousonde 3B™ hydrophone was deployed via ROV within two vigorous bubble-plume sites. Despite persistent ship and ROV propeller noise, the acoustic signature of the bubble-plume can be seen in the hydrophone record as a broadband (0.5 - 4.5 kHz) series of short duration ( 0.2-0.5 msec) pulses that occur in clusters of dozens of pulses lasting 2-3 secs. Previous studies of the passive acoustics of seep bubble-plumes indicate sound is generated during bubble formation, where detachment of the gas bubble from the end of a tube or conduit causes the bubble to oscillate, producing sound. The peak frequency f (the zeroth oscillatory mode) and the bubble equivalent spherical radius r for a given pressure P are: f = (2πr)-1 [(3γP/ρ)]1/2 where γ is the ratio of gas specific heat at constant pressure to constant volume and ρ is the water density (Leifer and Tang, 2006). Thus the frequency of a bubble's oscillation is proportional to the bubble's volume, and therefore it may be possible to use our acoustic data to obtain an estimate of the volume of methane being released at these seafloor plume sites.
Effect of Marangoni Convection Generated by Voids on Segregation During Low-G and 1-G Solidification
NASA Technical Reports Server (NTRS)
Kassemi, M.; Fripp, A.; Rashidnia, N.; deGroh, H.
2001-01-01
Solidification experiments, especially microgravity solidification experiments, are often compromised by the evolution of unwanted voids or bubbles in the melt. Although these voids and/or bubbles are highly undesirable, there is currently no effective means of preventing their formation or of eliminating their adverse effects, particularly during microgravity experiments. Marangoni convection caused by these voids can drastically change the transport processes in the melt. Recent microgravity experiments by Matthiesen (1) Andrews (2) and Fripp (3) are perfect examples of how voids and bubbles can affect the outcome of costly space experiments and significantly increase the level of difficulty in interpreting their results. Formation of bubbles have caused problems in microgravity experiments for a long time. Even in the early Skylab mission an unexpectedly large number of bubbles were detected in the four materials processing experiments reported by Papazian and Wilcox (4). They demonstrated that while during ground-based tests bubbles were seen to detach from the interface easily and float to the top of the melt, in low-gravity tests no detachment from the interface occurred and large voids were grown in the crystal. More recently, the lead-tin-telluride crystal growth experiment of Fripp et al.(3) flown aboard the USMP-3 mission has provided very interesting results. The purpose of the study was to investigate the effect of natural convection on the solidification process by growing the samples at different orientations with respect to the gravitational field. Large pores and voids were found in the three solid crystal samples processed in space. Post-growth characterization of the compositional profiles of the cells indicated considerable levels of mixing even in the sample grown in the hot-on-top stable configuration. The mixing was attributed to thermocapillary convection caused by the voids and bubbles which evolved during growth. Since the thermocapillary convection is orientation-independent, diffusion-controlled growth was not possible in any of the samples, even the top-heated one. These results are consistent with recent studies of thermocapillary convection generated by a bubble on a heated surface undertaken by Kassemi and Rashidnia (5-7) where it is numerically and experimentally shown that the thermocapillary flow generated by a bubble in a model fluid (silicone oil) can drastically modify the temperature field through vigorous mixing of the fluid around it, especially under microgravity conditions.
Effect of carbon and alloying solute atoms on helium behaviors in α-Fe
NASA Astrophysics Data System (ADS)
Zhang, Yange; You, Yu-Wei; Xu, Yichun; Liu, C. S.; Chen, J. L.; Luo, G.-N.
2017-02-01
Helium bubbles could strongly degrade the mechanical properties of ferritic steels in fission and fusion systems. The formation of helium bubble is directly affected by the interactions between helium and the compositions in steels, such as solute atoms, carbon and irradiation defects. We thereby performed systematical first-principles calculations to investigate the interactions of solute-helium and carbon-solute-helium. It is found that substitutional helium is more attractive than interstitial helium to all the considered 3p, 4p, 5p and 6p solutes. The attraction between carbon and substitutional helium suggests the carbon-solute-helium complex can be formed stably. By examining the charge density difference and thermal stability, it is found that the ternary complex shows stronger attraction with He than that of solute-helium pair for some solutes (S, Se, In, Te, Pb and Bi) and the complex could existed in iron stably at 700 K. The present theoretical results may be helpful for exploring alloy additions to mitigate the formation of large helium bubbles.
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka
2015-09-08
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Addition of an RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σA dissociation.« less
Structure of a bacterial RNA polymerase holoenzyme open promoter complex
Bae, Brian; Feklistov, Andrey; Lass-Napiorkowska, Agnieszka; ...
2015-09-08
Initiation of transcription is a primary means for controlling gene expression. In bacteria, the RNA polymerase (RNAP) holoenzyme binds and unwinds promoter DNA, forming the transcription bubble of the open promoter complex (RPo). We have determined crystal structures, refined to 4.14 Å-resolution, of RPo containing Thermus aquaticus RNAP holoenzyme and promoter DNA that includes the full transcription bubble. The structures, combined with biochemical analyses, reveal key features supporting the formation and maintenance of the double-strand/single-strand DNA junction at the upstream edge of the -10 element where bubble formation initiates. The results also reveal RNAP interactions with duplex DNA just upstreammore » of the -10 element and potential protein/DNA interactions that direct the DNA template strand into the RNAP active site. Additionally a RNA primer to yield a 4 base-pair post-translocated RNA:DNA hybrid mimics an initially transcribing complex at the point where steric clash initiates abortive initiation and σ A dissociation.« less
Effects of mixing technique on bubble formation in alginate impression material.
McDaniel, Thomas F; Kramer, Robert T; Im, Francis; Snow, Dallin
2013-01-01
Previous studies have found that variations in mixing technique can influence the porosity content of alginate impression material. The aim of this study was twofold: determine whether bubble formation in alginate is influenced by the sequence of water/powder addition prior to mixing, and to compare 4 different mixing techniques. Manual spatulation, an automated spinning bowl, a centrifugal mixer and a vacuum mixer were evaluated for the resulting porosity in the set alginate. It was found that adding powder first, versus water first, made no difference in the bubble content using the 3 automated mixing techniques (P = 0.714). However, porosity was significantly less for powder-first trials using manual spatulation (P < 0.05). It was also found that surface porosity in the resulting impressions was significantly less for centrifugal and vacuum mixing when compared to manual spatulation, while internal porosity was significantly less for centrifugal mixing compared to all other mixing techniques (P < 0.05). The centrifugal mixing and vacuum mixing techniques required the least amount of mixing time.
NASA Astrophysics Data System (ADS)
Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T.
2016-02-01
We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1-0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1-0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.
NASA Astrophysics Data System (ADS)
Sajjadi, Seyed; Buelna, Xavier; Eloranta, Jussi
2018-01-01
Application of inexpensive light emitting diodes as backlight sources for time-resolved shadowgraph imaging is demonstrated. The two light sources tested are able to produce light pulse sequences in the nanosecond and microsecond time regimes. After determining their time response characteristics, the diodes were applied to study the gas bubble formation around laser-heated copper nanoparticles in superfluid helium at 1.7 K and to determine the local cavitation bubble dynamics around fast moving metal micro-particles in the liquid. A convolutional neural network algorithm for analyzing the shadowgraph images by a computer is presented and the method is validated against the results from manual image analysis. The second application employed the red-green-blue light emitting diode source that produces light pulse sequences of the individual colors such that three separate shadowgraph frames can be recorded onto the color pixels of a charge-coupled device camera. Such an image sequence can be used to determine the moving object geometry, local velocity, and acceleration/deceleration. These data can be used to calculate, for example, the instantaneous Reynolds number for the liquid flow around the particle. Although specifically demonstrated for superfluid helium, the technique can be used to study the dynamic response of any medium that exhibits spatial variations in the index of refraction.
Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J Brian; Cain, Charles A
2007-10-01
Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (< 20 micros), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: (1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; (2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and (3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions.
Dynamics of tandem bubble interaction in a microfluidic channel
Yuan, Fang; Sankin, Georgy; Zhong, Pei
2011-01-01
The dynamics of tandem bubble interaction in a microfluidic channel (800 × 21 μm, W × H) have been investigated using high-speed photography, with resultant fluid motion characterized by particle imaging velocimetry. A single or tandem bubble is produced reliably via laser absorption by micron-sized gold dots (6 μm in diameter with 40 μm in separation distance) coated on a glass surface of the microfluidic channel. Using two pulsed Nd:YAG lasers at λ = 1064 nm and ∼10 μJ/pulse, the dynamics of tandem bubble interaction (individual maximum bubble diameter of 50 μm with a corresponding collapse time of 5.7 μs) are examined at different phase delays. In close proximity (i.e., interbubble distance = 40 μm or γ = 0.8), the tandem bubbles interact strongly with each other, leading to asymmetric deformation of the bubble walls and jet formation, as well as the production of two pairs of vortices in the surrounding fluid rotating in opposite directions. The direction and speed of the jet (up to 95 m/s), as well as the orientation and strength of the vortices can be varied by adjusting the phase delay. PMID:22088007
High Speed Imaging of Bubble Clouds Generated in Pulsed Ultrasound Cavitational Therapy—Histotripsy
Xu, Zhen; Raghavan, Mekhala; Hall, Timothy L.; Chang, Ching-Wei; Mycek, Mary-Ann; Fowlkes, J. Brian; Cain, Charles A.
2009-01-01
Our recent studies have demonstrated that mechanical fractionation of tissue structure with sharply demarcated boundaries can be achieved using short (<20 μs), high intensity ultrasound pulses delivered at low duty cycles. We have called this technique histotripsy. Histotripsy has potential clinical applications where noninvasive tissue fractionation and/or tissue removal are desired. The primary mechanism of histotripsy is thought to be acoustic cavitation, which is supported by a temporally changing acoustic backscatter observed during the histotripsy process. In this paper, a fast-gated digital camera was used to image the hypothesized cavitating bubble cloud generated by histotripsy pulses. The bubble cloud was produced at a tissue-water interface and inside an optically transparent gelatin phantom which mimics bulk tissue. The imaging shows the following: 1) Initiation of a temporally changing acoustic backscatter was due to the formation of a bubble cloud; 2) The pressure threshold to generate a bubble cloud was lower at a tissue-fluid interface than inside bulk tissue; and 3) at higher pulse pressure, the bubble cloud lasted longer and grew larger. The results add further support to the hypothesis that the histotripsy process is due to a cavitating bubble cloud and may provide insight into the sharp boundaries of histotripsy lesions. PMID:18019247
Simulation of the ultrasound-induced growth and collapse of a near-wall bubble
NASA Astrophysics Data System (ADS)
Boyd, Bradley; Becker, Sid
2017-11-01
In this study, we consider the acoustically driven growth and collapse of a cavitation bubble in a fluid medium exposed to an ultrasound field. The bubble dynamics are modelled using a compressible, inviscid, multiphase model. The numerical scheme consists of a conservative interface capturing scheme which uses the fifth-order WENO reconstruction with a maximum-principle-satisfying and positivity-preserving limiter, and the HLLC approximate Riemann flux. To model the ultrasound input, a moving boundary oscillates through a fixed grid of finite-volume cells. The growth phase of the simulation shows the rapid non-spherical growth of the near-wall bubble. Once the bubble reaches its maximum size and the collapse phase begins, the simulation shows the formation of a jet which penetrates the bubble towards the wall at the later stages of the collapse. For a bubble with an initial radius of 50 μ m and an ultrasound pressure amplitude of 200 kPa, the pressure experienced by the wall increased rapidly nearing the end of the collapse, reaching a peak pressure of 13 MPa. This model is an important development in the field as it represents the physics of acoustic cavitation in more detail than before. This work was supported by the Royal Society of New Zealand's Marsden Fund.
Hu, Hong; Xu, Shanshan; Yuan, Yuan; Liu, Runna; Wang, Supin; Wan, Mingxi
2015-05-01
Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.
Li, Fenfang; Yuan, Fang; Sankin, Georgy; Yang, Chen; Zhong, Pei
2017-01-01
In this manuscript, we first describe the fabrication protocol of a microfluidic chip, with gold dots and fibronectin-coated regions on the same glass substrate that precisely controls the generation of tandem bubbles and individual cells patterned nearby with well-defined locations and shapes. We then demonstrate the generation of tandem bubbles by using two pulsed lasers illuminating a pair of gold dots with a few-microsecond time delay. We visualize the bubble-bubble interaction and jet formation by high-speed imaging and characterize the resultant flow field using particle image velocimetry (PIV). Finally, we present some applications of this technique for single cell analysis, including cell membrane poration with macromolecule uptake, localized membrane deformation determined by the displacements of attached integrin-binding beads, and intracellular calcium response from ratiometric imaging. Our results show that a fast and directional jetting flow is produced by the tandem bubble interaction, which can impose a highly-localized shear stress on the surface of a cell grown in close proximity. Furthermore, different bioeffects can be induced by altering the strength of the jetting flow by adjusting the standoff distance from the cell to the tandem bubbles. PMID:28117807
Magma deformation and emplacement in rhyolitic dykes
NASA Astrophysics Data System (ADS)
McGowan, Ellen; Tuffen, Hugh; James, Mike; Wynn, Peter
2016-04-01
Silicic eruption mechanisms are determined by the rheological and degassing behaviour of highly-viscous magma ascending within shallow dykes and conduits. However, we have little knowledge of how magmatic behaviour shifts during eruptions as dykes and conduits evolve. To address this we have analysed the micro- to macro-scale textures in shallow, dissected rhyolitic dykes at the Tertiary Húsafell central volcano in west Iceland. Dyke intrusion at ~3 Ma was associated with the emplacement of subaerial rhyolitic pyroclastic deposits following caldera formation[1]. The dykes are dissected to ~500 m depth, 2-3 m wide, and crop out in two stream valleys with 5-30 m-long exposures. Dykes intrude diverse country rock types, including a welded ignimbrite, basaltic lavas, and glacial conglomerate. Each of the six studied dykes is broadly similar, exhibiting obsidian margins and microcrystalline cores. Dykes within pre-fractured lava are surrounded by external tuffisite vein networks, which are absent from dykes within conglomerate, whereas dykes failed to penetrate the ignimbrite. Obsidian at dyke margins comprises layers of discrete colour. These display dramatic thickness variations and collapsed bubble structures, and are locally separated by zones of welded, brecciated and flow-banded obsidian. We use textural associations to present a detailed model of dyke emplacement and evolution. Dykes initially propagated with the passage of fragmented, gas-charged magma and generation of external tuffisite veins, whose distribution was strongly influenced by pre-existing fractures in the country rock. External tuffisites retained permeability throughout dyke emplacement due to their high lithic content. The geochemically homogenous dykes then evolved via incremental magma emplacement, with shear deformation localised along emplacement boundary layers. Shear zones migrated between different boundary layers, and bubble deformation promoted magma mobility. Brittle-ductile microtextures and bubble populations point towards multi-step and multi-rate magma decompression, and we propose that gas overpressure in bubbles created tensile micro-cracks, whose coalescence culminated in macroscopic fragmentation. Finally, we infer that bubble collapse was associated with both localised brittle magma failure at shallow levels and macroscopic magma fragmentation deeper within the magmatic system. Processes recorded by the Húsafell dyke exposures appear akin to those occurring in the shallow conduits of Chaitén and Cordón Caulle during recent rhyolitic eruptions[2,3]. The field evidence presented here therefore bridges the gap between eruption observations and the deeper geological record, and so provides new insight into conduit evolution during explosive-hybrid-effusive eruptive phases[2,3] and the influence of country rock. The parallels between intrusive dyke textures and those found in extruded silicic lavas suggest that processes recorded in the dykes, including bubble collapse, volatile resorption, thermally-induced vesiculation and the formation of brittle-ductile shear zones, also occur within extrusive flows, contributing to their extreme textural heterogeneity[4]. [1] Saemundsson K & Noll H (1974) Jökull 24, 40-59. [2] Schipper CI et al. (2013) JVGR, 262, 25-37. [3] Castro JC et al. (2014) EPSL, 405, 52-61. [4] Shields JK et al. (2016) JVGR, 310, 137-158.
NASA Astrophysics Data System (ADS)
Vongehr, Sascha; Tang, Shaochun
2016-06-01
Research on hollow nanoshells has, for years, claimed to involve free, pre-existing nanobubbles as soft templates. It is a challenge to demonstrate this due to the difficulty of in situ observation during solution-based reactions. We show that no available free-bubble theory can describe the mysterious behavior of the bubble number density n. A new mechanism of collision coalescence of bubble-particle systems is suggested to form hollow nanoshells. By approximating relative velocity as ˜R -z (R is bubble radius), numerical simulations can reproduce the counterintuitive observations in the regime 1 < z < 2. We discuss the mechanism based on successful synthesis of grain-monolayer thin, fractal-like incomplete, multi-metallic nanoshells with superior catalytic activity. The behaviors of n, R, and shell thickness h are closely reproduced by z = 1.6.
Solar Prominence Fine Structure and Dynamics
NASA Astrophysics Data System (ADS)
Berger, Thomas
2014-01-01
We review recent observational and theoretical results on the fine structure and dynamics of solar prominences, beginning with an overview of prominence classifications, the proposal of possible new ``funnel prominence'' classification, and a discussion of the recent ``solar tornado'' findings. We then focus on quiescent prominences to review formation, down-flow dynamics, and the ``prominence bubble'' phenomena. We show new observations of the prominence bubble Rayleigh-Taylor instability triggered by a Kelvin-Helmholtz shear flow instability occurring along the bubble boundary. Finally we review recent studies on plasma composition of bubbles, emphasizing that differential emission measure (DEM) analysis offers a more quantitative analysis than photometric comparisons. In conclusion, we discuss the relation of prominences to coronal magnetic flux ropes, proposing that prominences can be understood as partially ionized condensations of plasma forming the return flow of a general magneto-thermal convection in the corona.
NASA Astrophysics Data System (ADS)
van Marle, A. J.; Meliani, Z.; Marcowith, A.
2015-12-01
Context. The winds of massive stars create large (>10 pc) bubbles around their progenitors. As these bubbles expand they encounter the interstellar coherent magnetic field which, depending on its strength, can influence the shape of the bubble. Aims: We wish to investigate if, and how much, the interstellar magnetic field can contribute to the shape of an expanding circumstellar bubble around a massive star. Methods: We use the MPI-AMRVAC code to make magneto-hydrodynamical simulations of bubbles, using a single star model, combined with several different field strengths: B = 5, 10, and 20 μG for the interstellar magnetic field. This covers the typical field strengths of the interstellar magnetic fields found in the galactic disk and bulge. Furthermore, we present two simulations that include both a 5 μG interstellar magnetic field and a warm (10 000 K) interstellar medium (ISM) and two different ISM densities to demonstrate how the magnetic field can combine with other external factors to influence the morphology of the circumstellar bubbles. Results: Our results show that low magnetic fields, as found in the galactic disk, inhibit the growth of the circumstellar bubbles in the direction perpendicular to the field. As a result, the bubbles become ovoid, rather than spherical. Strong interstellar fields, such as observed for the galactic bulge, can completely stop the expansion of the bubble in the direction perpendicular to the field, leading to the formation of a tube-like bubble. When combined with an ISM that is both warm and high density the bubble is greatly reduced in size, causing a dramatic change in the evolution of temporary features inside the bubble such as Wolf-Rayet ring nebulae. Conclusions: The magnetic field of the interstellar medium can affect the shape of circumstellar bubbles. This effect may have consequences for the shape and evolution of circumstellar nebulae and supernova remnants, which are formed within the main wind-blown bubble. Appendices and movies associated to Figs. A.1-A.12 are available in electronic form at http://www.aanda.org
NASA Astrophysics Data System (ADS)
Ruiz-Rus, Javier; Bolaños-Jiménez, Rocío; Gutiérrez-Montes, Cándido; Martínez-Bazán, Carlos; Sevilla, Alejandro
2015-11-01
We present a novel technique to properly control the bubble formation frequency and size by forcing the water stream in a co-flow configuration with planar geometry through the modulation of the water velocity at the nozzle exit. The main goal of this work is to experimentally explore whether the bubbling regime, which is naturally established for certain values of the water-to-air velocity ratio, Λ =uw /ua , and the Weber number, We =ρwuw2Ho / σ , can be controlled by the imposed disturbances. A detailed experimental characterization of the forcing effect has been performed by measuring the pressure fluctuations in both the water and the air streams. In addition, the velocity amplitude, which characterizes the process, is obtained. The results show that a minimum disturbance amplitude is needed for an effective control of the bubbling process. Moreover, the process is governed by kinematic non-linear effects, and the position of the maximum deformation is shown to be described through a one-dimensional flow model for the water sheet, based on the exact solution of the Euler equation. Supported by the Spanish MINECO, Junta de Andalucía and EU Funds under projects DPI2014-59292-C3-3-P, P11-TEP7495 and UJA2013/08/05.
Simon, Julianna C.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Wang, Yak-Nam; Crum, Lawrence A.; Bailey, Michael R.
2012-01-01
Atomization and fountain formation is a well-known phenomenon that occurs when a focused ultrasound wave in liquid encounters an air interface. High intensity focused ultrasound (HIFU) has been shown to fractionate tissue into submicron-size fragments in a process termed boiling histotripsy, wherein the focused ultrasound wave superheats the tissue at the focus, producing a millimetre-size boiling or vapour bubble in several milliseconds. Yet the question of how this millimetre-size boiling bubble creates submicron-size tissue fragments remains. The hypothesis of this work is that tissue can behave as a liquid such that it forms a fountain and atomization within the vapour bubble produced in boiling histotripsy. We describe an experiment, in which a 2-MHz HIFU transducer (maximum in situ intensity of 24,000 W/cm2) was aligned with an air-tissue interface meant to simulate the boiling bubble. Atomization and fountain formation were observed with high-speed photography and resulted in tissue erosion. Histological examination of the atomized tissue showed whole and fragmented cells and nuclei. Air-liquid interfaces were also filmed. Our conclusion was that HIFU can fountain and atomize tissue. Although this process does not entirely mimic what was observed in liquids, it does explain many aspects of tissue fractionation in boiling histotripsy. PMID:23159812
Cavitation clouds created by shock scattering from bubbles during histotripsy
Maxwell, Adam D.; Wang, Tzu-Yin; Cain, Charles A.; Fowlkes, J. Brian; Sapozhnikov, Oleg A.; Bailey, Michael R.; Xu, Zhen
2011-01-01
Histotripsy is a therapy that focuses short-duration, high-amplitude pulses of ultrasound to incite a localized cavitation cloud that mechanically breaks down tissue. To investigate the mechanism of cloud formation, high-speed photography was used to observe clouds generated during single histotripsy pulses. Pulses of 5−20 cycles duration were applied to a transparent tissue phantom by a 1-MHz spherically focused transducer. Clouds initiated from single cavitation bubbles that formed during the initial cycles of the pulse, and grew along the acoustic axis opposite the propagation direction. Based on these observations, we hypothesized that clouds form as a result of large negative pressure generated by the backscattering of shockwaves from a single bubble. The positive-pressure phase of the wave inverts upon scattering and superimposes on the incident negative-pressure phase to create this negative pressure and cavitation. The process repeats with each cycle of the incident wave, and the bubble cloud elongates toward the transducer. Finite-amplitude propagation distorts the incident wave such that the peak-positive pressure is much greater than the peak-negative pressure, which exaggerates the effect. The hypothesis was tested with two modified incident waves that maintained negative pressure but reduced the positive pressure amplitude. These waves suppressed cloud formation which supported the hypothesis. PMID:21973343
Smith, A D; Moini, M
2001-01-15
It was found that combining capillary electrophoresis (CE) and electrospray ionization mass spectrometry (ESI-MS) overlays two controlled current techniques to form a three-electrode system (CE inlet, CE outlet/ES emitter, and MS inlet electrodes) in which the CE outlet electrode and the ES emitter electrode were shared between the CE and the ESI-MS circuits. Depending on the polarities and magnitudes of the voltages at the CE inlet, CE outlet/ES emitter, and MS inlet electrodes, the nature of the two redox reactions at the shared electrode was the same or different (both reduction, both oxidation, or one oxidation and the other reduction). Several redox buffers were introduced for controlling electrochemical reactions at the shared electrode. By reacting at this electrode, redox buffers were able to maintain electrode potentials below the onset of water electrolysis, thereby eliminating gas bubble formation and/or pH drift. The volume of the gas generated due to water electrolysis was used to quantitate water oxidation or reduction at this electrode. Two types of redox buffers were used. A reactive electrode with an oxidation potential below that of water was used as the electrode under anodic conditions. Also, a reactive compound with a redox potential below that of water was added to the CE and/or ESI running buffer. When the shared electrode was the anode of both CE and ESI-MS circuits, the use of iron or etched and sanded stainless steel (ss) wire, instead of platinum wire, suppressed bubble formation at the shared electrode. Under these conditions, corrosion of the Fe wire and formation of Fe2+ replaced oxidation of water, eliminating O2 gas bubble and H+ formation. When mixtures of peptides were analyzed, iron adducts of peptides were observed. For a fresh wire, however, the intensities of adduct ions were less than 3% of the protonated molecules. After a few days of operation, the intensities of the adduct ions increased to approximately 50%, due to rust formation on the Fe wire. On-column rinsing with a 40% solution of citric acid rejuvenated the Fe wire and reduced the adduct peak intensities to less than 3%. Unmodified ss wire did not quench bubble formation, which was attributed to its passivated surface. When Fe, ss, and Pt wires were used as the shared electrode under forward polarity CE and positive ESI mode, where the shared electrode acted as a cathode with respect to CE inlet and as an anode with respect to MS inlet, reduction of water at the cathodic end of the electrode and, in the case of ss and Pt wires, oxidation of water at the anodic end of the shared electrode produced a significant amount of bubbles. Under these conditions, however, a buffer containing 50 mM p-benzoquinone completely suppressed both cathodic reduction and anodic oxidation of water for CE currents up to 4 microA. Reduction of p-benzoquinone at the cathodic end of the shared electrode to hydroquinone, and oxidation of this hydroquinone at the anodic end of the electrode, replaced reduction and oxidation of water, eliminating bubble formation. A 0.1% acetic acid solution saturated with I2 was also found to suppress bubble formation at the cathode for CE currents up to 3 microA; however, strong iodine adduct ions were observed under CE/ESI-MS when a mixture of peptides was analyzed. The application of iron as an in-capillary electrode for the analysis of a peptide mixture and a protein digest demonstrated a high separation efficiency similar to when hydroquinone was used as a redox buffer.
Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions
NASA Technical Reports Server (NTRS)
Pais, Salvatore Cezar
1999-01-01
The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed experiments. However, at higher superficial,liquid velocities, the bubble neck length begins to significantly deviate from the value of the air injection nozzle diameter and thus the theory no longer predicts the experiment behavior. Effects of fluid properties, injection geometry and flow conditions on generated bubble size are investigated using the theoretical model. It is shown that bubble diameter is larger in a reduced gravity environment than in a normal gravity environment at similar flow condition and flow geometry.
Hydrogen Transport and Rationalization of Porosity Formation during Welding of Titanium Alloys
NASA Astrophysics Data System (ADS)
Huang, Jianglin; Warnken, Nils; Gebelin, Jean-Christophe; Strangwood, Martin; Reed, Roger C.
2012-02-01
The transport of hydrogen during fusion welding of the titanium alloy Ti-6Al4V is analyzed. A coupled thermodynamic/kinetic treatment is proposed for the mass transport within and around the weld pool. The modeling indicates that hydrogen accumulates in the weld pool as a consequence of the thermodynamic driving forces that arise; a region of hydrogen depletion exists in cooler, surrounding regions in the heat-affected zone and beyond. Coupling with a hydrogen diffusion-controlled bubble growth model is used to simulate bubble growth in the melt and, thus, to make predictions of the hydrogen concentration barrier needed for pore formation. The effects of surface tension of liquid metal and the radius of preexisting microbubble size on the barrier are discussed. The work provides insights into the mechanism of porosity formation in titanium alloys.
NASA Astrophysics Data System (ADS)
Spann, J. F.; Habash Krause, L.; Swenson, C.; Heelis, R. A.; Bishop, R. L.; Le, G.; Abdu, M. A.; Durão, O.; Loures, L.; De Nardin, C. M.; Shibuya, L.; Casas, J.; Nash-STevenson, S.; Muralikrishana, P.; Costa, J. E. R.; Wrasse, C. M.; Fry, C. D.
2017-12-01
The Scintillation Prediction Observations Research Task (SPORT) is a 6U CubeSat pathfinder mission to address the very compelling but difficult problem of understanding the preconditions leading to equatorial plasma bubbles. The scientific literature describes the preconditions in both the plasma drifts and the density profiles related to bubble formations that occur several hours later in the evening. Most of the scientific discovery has resulted from observations at the Jicamarca Radio Observatory from Peru, a single site, within a single longitude sector. SPORT will provide a systematic study of the state of the pre-bubble conditions at all longitudes sectors to allow us to understand the differences between geography and magnetic geometry. This talk will present an overview of the mission and the anticipated data products. Products include global maps of scintillation occurrence as a function of local time, and magnetic conjugacy occurrence observations. SPORT is a multinational partnership between NASA, the Brazilian National Institute for Space Research (INPE), and the Technical Aeronautics Institute under the Brazilian Air Force Command Department (DCTA/ITA). It has been encouraged by U.S. Southern Command (SOUTHCOM) to foster increased cooperation and ties between academics, civilian space programs and the militaries. NASA Marshall Space Flight Center is coordinating this investigation by overseeing the launch to orbit and the flight instruments, which are being built by the Aerospace Corporation, University of Texas Dallas, Utah State University, and NASA Goddard Space Flight Center. The Brazilian partners are contributing the spacecraft, observatory integration and test, ground observation networks, and mission operations and data management. The science data will be distributed from and archived at the INPE/EMBRACE regional space-weather forecasting center in Brazil, and mirrored at the NASA GSFC Space Physics Data Facility (SPDF).
Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.
Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G
2008-05-12
In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.
Ma, Xiaojian; Huang, Biao; Wang, Guoyu; Zhang, Mindi
2017-01-01
The objective of this paper is to investigate the transient conical bubble structure (CBS) and acoustic flow structure in ultrasonic field. In the experiment, the high-speed video and particle image velocimetry (PIV) techniques are used to measure the acoustic cavitation patterns, as well as the flow velocity and vorticity fields. Results are presented for a high power ultrasound with a frequency of 18kHz, and the range of the input power is from 50W to 250W. The results of the experiment show the input power significantly affects the structures of CBS, with the increase of input power, the cavity region of CBS and the velocity of bubbles increase evidently. For the transient motion of bubbles on radiating surface, two different types could be classified, namely the formation, aggregation and coalescence of cavitation bubbles, and the aggregation, shrink, expansion and collapse of bubble cluster. Furthermore, the thickness of turbulent boundary layer near the sonotrode region is found to be much thicker, and the turbulent intensities are much higher for relatively higher input power. The vorticity distribution is prominently affected by the spatial position and input power. Copyright © 2016 Elsevier B.V. All rights reserved.
Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
Louisnard, O; Cogné, C; Labouret, S; Montes-Quiroz, W; Peczalski, R; Baillon, F; Espitalier, F
2015-09-01
The acoustic field and the location of cavitation bubble are computed in vials used for freeze-drying, insonified from the bottom by a vibrating plate. The calculations rely on a nonlinear model of sound propagation in a cavitating liquid [Louisnard, Ultrason. Sonochem., 19, (2012) 56-65]. Both the vibration amplitude and the liquid level in the vial are parametrically varied. For low liquid levels, a threshold amplitude is required to form a cavitation zone at the bottom of the vial. For increasing vibration amplitudes, the bubble field slightly thickens but remains at the vial bottom, and the acoustic field saturates, which cannot be captured by linear acoustics. On the other hand, increasing the liquid level may promote the formation of a secondary bubble structure near the glass wall, a few centimeters below the free liquid surface. These predictions suggest that rather complex acoustic fields and bubble structures can arise even in such small volumes. As the acoustic and bubble fields govern ice nucleation during the freezing step, the final crystal's size distribution in the frozen product may crucially depend on the liquid level in the vial. Copyright © 2015 Elsevier B.V. All rights reserved.
Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.
Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo
2015-07-07
Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.
Decompression models: review, relevance and validation capabilities.
Hugon, J
2014-01-01
For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.
NASA Astrophysics Data System (ADS)
van der Bos, Arjan; Segers, Tim; Jeurissen, Roger; van den Berg, Marc; Reinten, Hans; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef
2011-08-01
Piezo drop-on-demand inkjet printers are used in an increasing number of applications because of their reliable deposition of droplets onto a substrate. Droplets of a few picoliters are ejected from an inkjet nozzle at frequencies of up to 100 kHz. However, the entrapment of an air microbubble in the ink channel can severely impede the productivity and reliability of the printing system. The air bubble disturbs the channel acoustics, resulting in disrupted drop formation or failure of the jetting process. Here we study a micro-electro-mechanical systems-based printhead. By using the actuating piezo transducer in receive mode, the acoustical field inside the channel was monitored, clearly identifying the presence of an air microbubble inside the channel during failure of the jetting process. The infrared visualization technique allowed for the accurate sizing of the bubble, including its dynamics, inside the intact printhead. A model was developed to calculate the mutual interaction between the channel acoustics and the bubble dynamics. The model was validated by simultaneous acoustical and infrared detection of the bubble. The model can predict the presence and size of entrapped air bubbles inside an operating ink channel purely from the acoustic response.
Bubbling at high flow rates in inviscid and viscous liquids (slags)
NASA Astrophysics Data System (ADS)
Engh, T. Abel; Nilmani, M.
1988-02-01
The behavior of gas discharging into melts at high velocities but still in the bubbling regime has been investigated in a laboratory modeling study for constant flow conditions. Air or helium was injected through a vertical tuyere into water, zinc-chloride, and aqueous glycerol solutions. High speed cinematography and pressure measurements in the tuyere have been carried out simultaneously. Pressure fluctuations at the injection point were monitored and correlated to the mode of bubble formation. The effects of high gas flow rates and high liquid viscosities have been examined in particular. Flow rates were employed up to 10-3 m3/s and viscosity to 0.5 Ns/m2. In order to attain a high gas momentum, the tuyere diameter was only 3 x 10-3 m. The experimental conditions and modeling liquids were chosen with special reference to the established practice of submerged gas injection to treat nonferrous slags. Such slags can be highly viscous. Bubble volume is smaller than that calculated from existing models such as those given by Davidson and Schüler10,11 due to the effect of gas momentum elongating the bubbles. On the other hand, viscosity tends to retard the bubble rise velocity, thus increasing volumes. To take elongation into account, a mathematical model is presented that assumes a prolate ellipsoidal shape of the bubbles. The unsteady potential flow equations for the liquid are solved for this case. Viscous effects are taken into account by noting that flow deviates from irrotational motion only in a thin boundary layer along the surface of the bubble. Thus, drag on the bubble can be obtained by calculating the viscous energy dissipation for potential flow past an ellipse. The time-dependent inertia coefficient for the ellipsoid is found by equating the vertical pressure increase inside and outside the bubble. This pressure change in the bubble is obtained by assuming that gas enters as a homogeneous jet and then calculating the stagnation pressure at the apex of the bubble.
Photon Bubbles and the Vertical Structure of Accretion Disks
NASA Astrophysics Data System (ADS)
Begelman, Mitchell C.
2006-06-01
We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.
Wang, Xuebin; Zhang, Yuanjian; Zhi, Chunyi; Wang, Xi; Tang, Daiming; Xu, Yibin; Weng, Qunhong; Jiang, Xiangfen; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio
2013-01-01
Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono- or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work. PMID:24336225
NASA Astrophysics Data System (ADS)
Wang, Xuebin; Zhang, Yuanjian; Zhi, Chunyi; Wang, Xi; Tang, Daiming; Xu, Yibin; Weng, Qunhong; Jiang, Xiangfen; Mitome, Masanori; Golberg, Dmitri; Bando, Yoshio
2013-12-01
Three-dimensional graphene architectures in the macroworld can in principle maintain all the extraordinary nanoscale properties of individual graphene flakes. However, current 3D graphene products suffer from poor electrical conductivity, low surface area and insufficient mechanical strength/elasticity; the interconnected self-supported reproducible 3D graphenes remain unavailable. Here we report a sugar-blowing approach based on a polymeric predecessor to synthesize a 3D graphene bubble network. The bubble network consists of mono- or few-layered graphitic membranes that are tightly glued, rigidly fixed and spatially scaffolded by micrometre-scale graphitic struts. Such a topological configuration provides intimate structural interconnectivities, freeway for electron/phonon transports, huge accessible surface area, as well as robust mechanical properties. The graphene network thus overcomes the drawbacks of presently available 3D graphene products and opens up a wide horizon for diverse practical usages, for example, high-power high-energy electrochemical capacitors, as highlighted in this work.
Trend Switching Processes in Financial Markets
NASA Astrophysics Data System (ADS)
Preis, Tobias; Stanley, H. Eugene
For an intriguing variety of switching processes in nature, the underlying complex system abruptly changes at a specific point from one state to another in a highly discontinuous fashion. Financial market fluctuations are characterized by many abrupt switchings creating increasing trends ("bubble formation") and decreasing trends ("bubble collapse"), on time scales ranging from macroscopic bubbles persisting for hundreds of days to microscopic bubbles persisting only for very short time scales. Our analysis is based on a German DAX Future data base containing 13,991,275 transactions recorded with a time resolution of 10- 2 s. For a parallel analysis, we use a data base of all S&P500 stocks providing 2,592,531 daily closing prices. We ask whether these ubiquitous switching processes have quantifiable features independent of the time horizon studied. We find striking scale-free behavior of the volatility after each switching occurs. We interpret our findings as being consistent with time-dependent collective behavior of financial market participants. We test the possible universality of our result by performing a parallel analysis of fluctuations in transaction volume and time intervals between trades. We show that these financial market switching processes have features similar to those present in phase transitions. We find that the well-known catastrophic bubbles that occur on large time scales - such as the most recent financial crisis - are no outliers but in fact single dramatic representatives caused by the formation of upward and downward trends on time scales varying over nine orders of magnitude from the very large down to the very small.
Flying after diving: in-flight echocardiography after a scuba diving week.
Cialoni, Danilo; Pieri, Massimo; Balestra, Costantino; Marroni, Alessandro
2014-10-01
Flying after diving may increase decompression sickness risk (DCS), but strong evidence indicating minimum preflight surface intervals (PFSI) is missing. On return flights after a diving week on a live-aboard, 32 divers were examined by in-flight echocardiography with the following protocol: 1) outgoing flight, no previous dive; 2) during the diving week; 3) before the return flight after a 24-h PFSI; and 4) during the return flight. All divers completed similar multiple repetitive dives during the diving week. All dives were equivalent as to inert gas load and gradient factor upon surfacing. No bubbles in the right heart were found in any diver during the outgoing flight or at the preflight control after a 24-h PFSI following the diving week. A significant increase in the number and grade of bubbles was observed during the return flight. However, bubbles were only observed in 6 of the 32 divers. These six divers were the same ones who developed bubbles after every dive. Having observed a 24-h preflight interval, the majority of divers did not develop bubbles during altitude exposure; however, it is intriguing to note that the same subjects who developed significant amounts of bubbles after every dive showed equally significant bubble grades during in-flight echocardiography notwithstanding a correct PFSI. This indicates a possible higher susceptibility to bubble formation in certain individuals, who may need longer PFSI before altitude exposure after scuba diving.
Intraluminal bubble dynamics induced by lithotripsy shock wave
NASA Astrophysics Data System (ADS)
Song, Jie; Bai, Jiaming; Zhou, Yufeng
2016-12-01
Extracorporeal shock wave lithotripsy (ESWL) has been the first option in the treatment of calculi in the upper urinary tract since its introduction. ESWL-induced renal injury is also found after treatment and is assumed to associate with intraluminal bubble dynamics. To further understand the interaction of bubble expansion and collapse with the vessel wall, the finite element method (FEM) was used to simulate intraluminal bubble dynamics and calculate the distribution of stress in the vessel wall and surrounding soft tissue during cavitation. The effects of peak pressure, vessel size, and stiffness of soft tissue were investigated. Significant dilation on the vessel wall occurs after contacting with rapid and large bubble expansion, and then vessel deformation propagates in the axial direction. During bubble collapse, large shear stress is found to be applied to the vessel wall at a clinical lithotripter setting (i.e. 40 MPa peak pressure), which may be the mechanism of ESWL-induced vessel rupture. The decrease of vessel size and viscosity of soft tissue would enhance vessel deformation and, consequently, increase the generated shear stress and normal stresses. Meanwhile, a significantly asymmetric bubble boundary is also found due to faster axial bubble expansion and shrinkage than in radial direction, and deformation of the vessel wall may result in the formation of microjets in the axial direction. Therefore, this numerical work would illustrate the mechanism of ESWL-induced tissue injury in order to develop appropriate counteractive strategies for reduced adverse effects.
Formation of electron energy spectra during magnetic reconnection in laser-produced plasma
NASA Astrophysics Data System (ADS)
Huang, Kai; Lu, Quanming; Huang, Can; Dong, Quanli; Wang, Huanyu; Fan, Feibin; Sheng, Zhengming; Wang, Shui; Zhang, Jie
2017-10-01
Energetic electron spectra formed during magnetic reconnection between two laser-produced plasma bubbles are investigated by the use of two-dimensional particle-in-cell simulations. It is found that the evolution of such an interaction between the two plasma bubbles can be separated into two distinct stages: squeezing and reconnection stages. In the squeezing stage, when the two plasma bubbles expand quickly and collide with each other, the magnetic field in the inflow region is greatly enhanced. In the second stage, a thin current sheet is formed between the two plasma bubbles, and then, magnetic reconnection occurs therein. During the squeezing stage, electrons are heated in the perpendicular direction by betatron acceleration due to the enhancement of the magnetic field around the plasma bubbles. Meanwhile, non-thermal electrons are generated by the Fermi mechanism when these electrons bounce between the two plasma bubbles approaching quickly and get accelerated mainly by the convective electric field associated with the plasma bubbles. During the reconnection stage, electrons get further accelerated mainly by the reconnection electric field in the vicinity of the X line. When the expanding speed of the plasma bubbles is sufficiently large, the formed electron energy spectra have a kappa distribution, where the lower energy part satisfies a Maxwellian function and the higher energy part is a power-law distribution. Moreover, the increase in the expanding speed will result in the hardening of formed power-law spectra in both the squeezing and reconnection stages.
NASA Astrophysics Data System (ADS)
Lakehal, D.; Métrailler, D.; Reboux, S.
2017-06-01
This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which confirms that the bubbles increase the energy at smaller scales. The coherent structures in the boundary layer are broken by the bubbles, which disrupts the formation of long structures, reducing the streamwise integral length scale.
Midlatitude Plasma Bubbles Over China and Adjacent Areas During a Magnetic Storm on 8 September 2017
NASA Astrophysics Data System (ADS)
Aa, Ercha; Huang, Wengeng; Liu, Siqing; Ridley, Aaron; Zou, Shasha; Shi, Liqin; Chen, Yanhong; Shen, Hua; Yuan, Tianjiao; Li, Jianyong; Wang, Tan
2018-03-01
This paper presents observations of postsunset super plasma bubbles over China and adjacent areas during the second main phase of a storm on 8 September 2017. The signatures of the plasma bubbles can be seen or deduced from (1) deep field-aligned total electron content depletions embedded in regional ionospheric maps derived from dense Global Navigation Satellite System networks, (2) significant equatorial and midlatitudinal plasma bite-outs in electron density measurements on board Swarm satellites, and (3) enhancements of ionosonde virtual height and scintillation in local evening associated with strong southward interplanetary magnetic field. The bubbles/depletions covered a broad area mainly within 20°-45°N and 80°-110°E with bifurcated structures and persisted for nearly 5 hr (˜13-18 UT). One prominent feature is that the bubbles extended remarkably along the magnetic field lines in the form of depleted flux tubes, reaching up to midlatitude of around 50°N (magnetic latitude: 45.5°N) that maps to an altitude of 6,600 km over the magnetic equator. The maximum upward drift speed of the bubbles over the magnetic equator was about 700 m/s and gradually decreased with altitude and time. The possible triggering mechanism of the plasma bubbles was estimated to be storm time eastward prompt penetration electric field, while the traveling ionospheric disturbance could play a role in facilitating the latitudinal extension of the depletions.
SU(2) x U(1) vacuum and the Centauro events
NASA Technical Reports Server (NTRS)
Kazanas, D.; Balasubrahmanyan, V. K.; Streitmatter, R. E.
1985-01-01
It is proposed that the fireballs invoked to explain the Centauro events are bubbles of a metastable superdense state of nuclear matter, created in high energy (E approximately 10 to the 15th power eV) cosmic ray collisions at the top of the atmosphere. If these bubbles are created with a Lorentz factor gamma approximately equals 10 at their CM frame, the objections against the origin of these events in cosmic ray interactions are overcome. A relationship then between their lifetime, tau, and the threshold energy for bubble formation, E sub th, appears to be insensitive to the value of tau and always close to E sub th approximately 10 to 15th power eV. Finally it is speculated that these bubbles might be manifestations of the SU(2) x U(1) false vacuum excited in these collisions. The absence of in the Centauro events is then explained by the decay modes of these excitations.
A Tissue-Mimicking Ultrasound Test Object Using Droplet Vaporization to Create Point Targets
Carneal, Catherine M.; Kripfgans, Oliver D.; Krücker, Jochen; Carson, Paul L.; Fowlkes, J. Brian
2012-01-01
Ultrasound test objects containing reference point targets could be useful for evaluating ultrasound systems and phase aberration correction methods. Polyacrylamide gels containing albumin-stabilized droplets (3.6 µm mean diameter) of dodecafluoropentane (DDFP) are being developed for this purpose. Perturbation by ultrasound causes spontaneous vaporization of the superheated droplets to form gas bubbles, a process termed acoustic droplet vaporization (ADV). The resulting bubbles (20 to 160 µm diameter) are small compared with acoustic wavelengths in diagnostic ultrasound and are theoretically suitable for use as point targets (phase errors <20° for typical f-numbers). Bubbles distributed throughout the material are convenient for determining the point spread function in an imaging plane or volume. Cooling the gel causes condensation of the DDFP droplets, which may be useful for storage. Studying ADV in such viscoelastic media could provide insight into potential bioeffects from rapid bubble formation. PMID:21937339
A physics based multiscale modeling of cavitating flows.
Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L
2017-03-02
Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation.
An acoustical bubble counter for superheated drop detectors.
Taylor, Chris; Montvila, Darius; Flynn, David; Brennan, Christopher; d'Errico, Francesco
2006-01-01
A new bubble counter has been developed based on the well-established approach of detecting vaporization events acoustically in superheated drop detectors (SDDs). This counter is called the Framework Scientific ABC 1260, and it represents a major improvement over prior versions of this technology. By utilizing advanced acoustic pattern recognition software, the bubble formation event can be differentiated from ambient background noise, as well as from other acoustic signatures. Additional structural design enhancements include a relocation of the electronic components to the bottom of the device; thus allowing for greater stability, easier access to vial SDDs without exposure to system electronics. Upgrades in the electronics permit an increase in the speed of bubble detection by almost 50%, compared with earlier versions of the counters. By positioning the vial on top of the device, temperature and sound insulation can be accommodated for extreme environments. Lead shells can also be utilized for an enhanced response to high-energy neutrons.
A physics based multiscale modeling of cavitating flows
Ma, Jingsen; Hsiao, Chao-Tsung; Chahine, Georges L.
2018-01-01
Numerical modeling of cavitating bubbly flows is challenging due to the wide range of characteristic lengths of the physics at play: from micrometers (e.g., bubble nuclei radius) to meters (e.g., propeller diameter or sheet cavity length). To address this, we present here a multiscale approach which integrates a Discrete Singularities Model (DSM) for dispersed microbubbles and a two-phase Navier Stokes solver for the bubbly medium, which includes a level set approach to describe large cavities or gaseous pockets. Inter-scale schemes are used to smoothly bridge the two transitioning subgrid DSM bubbles into larger discretized cavities. This approach is demonstrated on several problems including cavitation inception and vapor core formation in a vortex flow, sheet-to-cloud cavitation over a hydrofoil, cavitation behind a blunt body, and cavitation on a propeller. These examples highlight the capabilities of the developed multiscale model in simulating various form of cavitation. PMID:29720773
Qualitative Analysis of Fourteen White Solids and Two Mixtures Using Household Chemicals.
ERIC Educational Resources Information Center
Oliver-Hoyo, Maria; Allen, DeeDee; Solomon, Sally; Brook, Bryan; Ciraolo, Justine; Daly, Shawn; Jackson, Leia
2001-01-01
Describes a laboratory experiment in which students identify 11 white solids readily available in drugstores and supermarkets. Investigates solubility, pH, copper reduction, evolution of carbon dioxide bubbles, formation of starch-iodine complex, and formation of an insoluble hydroxide. (YDS)
NASA Astrophysics Data System (ADS)
Chen, J.; Elmi, C.; Goldsby, D. L.; Giere, R.
2016-12-01
Fulgurite is a vitrified soil, sand or rock resulting from lightning strikes. The thunderbolt, which can have an energy density of 3.3 ×106 J/m, is associated with air temperatures of up to 30,000 K and a current of up to 10 kA, which can heat the rock to >2000 K within tens of ms. The rapid fusing and subsequent quenching of the surface of the rock leaves a distinctive thin garbled coating comprised of glassy to fine-grained porous material. Similar materials and structures result from atomic bomb tests (trinitite) and from meteorite impacts (tektite). Chemical analysis of rock fulgurite samples on granites collected near Baveno, Italy reveals a glass composition of mainly SiO2 and Al2O3. A porosity of about 10% in the analyzed fulgurite was determined. The presence of newly-formed cristobalite and relict quartz in a relatively chemically homogenous glass matrix indicates induced temperatures >1700 ºC. The residual organic matter in the glass suggests that rapid cooling of the melt trapped NOx and COx gases vaporized during the lightning event. Tiny spheres mainly made of Fe and rich in Si point to reducing conditions. To better understand the formation of the porous glass matrix during intense Joule heating and subsequent rapid cooling, idealized physical models were developed to simulate bubble nucleation and redox reactions inside the bubbles. Preliminary results suggest that a weathered surface layer of higher electrical conductivity than the bulk rock results in strong Joule heating near the surface, facilitating the formation of a dense population of bubbles in the 10 mm-thick glass layer. Experiments to generate fulgurites in the laboratory, with well controlled energy input and sample properties, will aid our understanding of the physics of fulgurite formation and corroborate theoretical models. The results of such experiments, which are underway, will be presented.
Jets, arcs, and shocks: NGC 5195 at radio wavelengths
NASA Astrophysics Data System (ADS)
Rampadarath, H.; Soria, R.; Urquhart, R.; Argo, M. K.; Brightman, M.; Lacey, C. K.; Schlegel, E. M.; Beswick, R. J.; Baldi, R. D.; Muxlow, T. W. B.; McHardy, I. M.; Williams, D. R. A.; Dumas, G.
2018-05-01
We studied the nearby, interacting galaxy NGC 5195 (M 51b) in the radio, optical and X-ray bands. We mapped the extended, low-surface-brightness features of its radio-continuum emission; determined the energy content of its complex structure of shock-ionized gas; constrained the current activity level of its supermassive nuclear black hole. In particular, we combined data from the European Very Long Baseline Interferometry Network (˜1-pc scale), from our new e-MERLIN observations (˜10-pc scale), and from the Very Large Array (˜100-1000-pc scale), to obtain a global picture of energy injection in this galaxy. We put an upper limit to the luminosity of the (undetected) flat-spectrum radio core. We find steep-spectrum, extended emission within 10 pc of the nuclear position, consistent with optically thin synchrotron emission from nuclear star formation or from an outflow powered by an active galactic nucleus (AGN). A linear spur of radio emission juts out of the nuclear source towards the kpc-scale arcs (detected in radio, Hα and X-ray bands). From the size, shock velocity, and Balmer line luminosity of the kpc-scale bubble, we estimate that it was inflated by a long-term-average mechanical power ˜3-6 × 1041 erg s-1 over the last 3-6 Myr. This is an order of magnitude more power than can be provided by the current level of star formation, and by the current accretion power of the supermassive black hole. We argue that a jet-inflated bubble scenario associated with previous episodes of AGN activity is the most likely explanation for the kpc-scale structures.
Bubble inductors: Pneumatic tuning of a stretchable inductor
NASA Astrophysics Data System (ADS)
Lazarus, Nathan; Bedair, Sarah S.
2018-05-01
From adaptive matching networks in power systems to channel selectable RF filters and circuitry, tunable inductors are fundamental components for circuits requiring reconfigurability. Here we demonstrate a new continuously tunable inductor based on physically stretching the inductor traces themselves. Liquid-metal-based stretchable conductors are wrapped around a pneumatic bubble actuator, allowing the inductor to be collapsed or expanded by application of pressure. In vacuum the bubble collapses, bringing the loop area to nearly zero, while positive pressure brings a dramatic increase in area and loop inductance. Using this approach, the inductor demonstrated in this work was able to achieve a tuning ratio of 2.6 with 1-2 second response time. With conductors available that can stretch by hundreds of percent, this technique is promising for very large tuning ratios in continuously tunable inductors.
Black Widow Nebula Hiding in the Dust
NASA Technical Reports Server (NTRS)
2005-01-01
In this Spitzer image, the two opposing bubbles are being formed in opposite directions by the powerful outflows from massive groups of forming stars. The baby stars can be seen as specks of yellow where the two bubbles overlap. When individual stars form from molecular clouds of gas and dust they produce intense radiation and very strong particle winds. Both the radiation and the stellar winds blow the dust outward from the star creating a cavity or, bubble. In the case of the Black Widow Nebula, astronomers suspect that a large cloud of gas and dust condensed to create multiple clusters of massive star formation. The combined winds from these groups of large stars probably blew out bubbles into the direction of least resistance, forming a double bubble. The infrared image was captured by the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) Legacy project. The Spitzer picture is a four-channel false-color composite, showing emission from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red).Combined effects of radiation damage and He accumulation on bubble nucleation in Gd2Ti2O7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin A.; Patel, Maulik K.; Aguiar, Jeffery A.
2016-10-01
Pyrochlores have long been considered as host phases for long-term immobilization of radioactive waste nuclides that would undergo ..alpha..-decay for hundreds of thousands of years. This work utilizes ion-beam irradiations to examine the combined effects of radiation damage and He accumulation on bubble formation in Gd2Ti2O7 over relevant waste-form timescales. Helium bubbles are not observed in pre-damaged Gd2Ti2O7 implanted with 2 x 1016 He/cm2, even after post-implantation irradiations with 7 MeV Au3+ at 300, 500, and 700 K. However, He bubbles with average diameters of 1.5 nm and 2.1 nm are observed in pre-damaged (amorphous) Gd2Ti2O7 and pristine Gd2Ti2O7, respectively,more » after implantation of 2 x 1017 He/cm2. The critical He concentration for bubble nucleation in Gd2Ti2O7 is estimated to be 6 at.% He.« less
NASA Astrophysics Data System (ADS)
Sznajder, Maciej; Geppert, Ulrich; Dudek, Mirosław
2015-07-01
The widespread use of metallic structures in space technology brings risk of degradation which occurs under space conditions. New types of materials dedicated for space applications, that have been developed in the last decade, are in majority not well tested for different space mission scenarios. Very little is known how material degradation may affect the stability and functionality of space vehicles and devices during long term space missions. Our aim is to predict how the solar wind and electromagnetic radiation degrade metallic structures. Therefore both experimental and theoretical studies of material degradation under space conditions have been performed. The studies are accomplished at German Aerospace Center (DLR) in Bremen (Germany) and University of Zielona Góra (Poland). The paper presents the results of the theoretical part of those studies. It is proposed that metal bubbles filled with Hydrogen molecular gas, resulting from recombination of the metal free electrons and the solar protons, are formed on the irradiated surfaces. A thermodynamic model of bubble formation has been developed. We study the creation process of H2 -bubbles as function of, inter alia, the metal temperature, proton dose and energy. Our model has been verified by irradiation experiments completed at the DLR facility in Bremen. Consequences of the bubble formation are changes of the physical and thermo-optical properties of such degraded metals. We show that a high surface density of bubbles (up to 108cm-2) with a typical bubble diameter of ∼ 0.4 μm will cause a significant increase of the metallic surface roughness. This may have serious consequences to any space mission. Changes in the thermo-optical properties of metallic foils are especially important for the solar sail propulsion technology because its efficiency depends on the effective momentum transfer from the solar photons onto the sail structure. This transfer is proportional to the reflectivity of a sail. Therefore, the propulsion abilities of sail material will be affected by the growing population of the molecular Hydrogen bubbles on metallic foil surfaces.
NASA Astrophysics Data System (ADS)
Creon, L.; Levresse, G.; Carrasco Nuñez, G.
2016-12-01
Volatile contents and magma degassing behavior are known to affect the style, frequency, and intensity of near-surface magmatic processes. For this reason, much effort have been devoted to characterize the volatile evolution of shallow magmatic systems to better constrain volcanic history. Silicate melt inclusions (SMI) represent samples of melt that were isolated from the bulk magma at depth, thus preserving the PTX conditions of the pre-eruptive material. SMI are often affected by the formation of a bubble after trapping; this is a natural consequence of the PVTX properties of crystal-melt-volatile systems. Previous workers have recognized that bubble formation is an obstacle, which affects the interpretation of SMI trapping conditions based only on analysis of the glass phase. Indeed, they explained that bubbles can contain a significant percentage of the volatiles, particularly for those with low solubility in the melt (e.g. CO2). In this study, we propose to define the pre-eruptive PTX conditions of Los Humeros magma chamber using SMI from the various eruption events within 460 and 30 Ka. An innovative analytical coupling has been used in order to determine: (1) the volume of the SMI glass and bubble, using high resolution 3D X-ray microtomography; (2) the density and composition of the bubbles, using Raman spectroscopy; (3) the volatile element contents in glass, using NanoSIMS; and, (4) the major elements composition of the glass, using EPMA. The recalculated volatile concentrations of the total SMI (glass + bubble), illustrate clearly that the volatile content determinations using only the glass phase, underestimate drastically the total volatile content and therefore induce significant error on the determination of the pre-eruptive volcanic budget and on the constrain on the volcanic and thermal history. This study had moreover highlighted the complex evolution of Los Humeros composite magma chamber and, gave constrains for geothermal exploration purpose.
NASA Astrophysics Data System (ADS)
Oppenheimer, J. C.; Cashman, K. V.; Rust, A.; Dobson, K. J.; Bacon, C. R.; Dingwell, D. B.
2016-12-01
In order to constrain gas migration behaviors in crystal-rich magmas, we compare results of analogue experiments to frozen structures in andesitic enclaves. In the analogue experiments air was injected into mixtures of syrup and particles sandwiched between glass plates. We observed a significant increase in bubble deformation and coalescence when particle fractions increased beyond a critical value (the random loose packing). At high particle fractions, bubble growth re-organized (compacted) the particles adjacent to the bubble walls. This caused liquid segregation into patches within the particle suspension and into large void spaces near the outer edge of experiments. We compare these experiments to void morphologies in a 58 x 70 x 73 cm andesitic enclave from silicic-andesite lava flows of Mt Mazama, Oregon (Bacon, 1986). This enclave is zoned, with a vesicle-rich center and a glass-rich rim, suggesting gas-driven melt segregation from the center to the rim. We use both 2D (optical microscopy and SEM) and 3D (X-ray tomography) techniques to image crystal textures and bubble shapes. The center of the enclave bears scattered patches of groundmass in the main phenocryst framework. These patches are similar to those observed in experiments, and thus melt segregation in the enclave may have occurred both toward the rim and toward these patches. Bubble morphologies reveal two main types of bubbles. (1) Lobate and finger-like bubbles, similar to the deformed bubbles in experiments, are found exclusively in the groundmass patches. They are also often associated with compacted crystal structures at the bubble walls. (2) Diktytaxitic textures - angular bubbles flattened against phenocrysts - are abundant in the crystal networks. These voids are entirely connected in 3D and formed the gas-rich center of the enclave. They likely represent a gas migration regime where the expanding gas front cannot deform the crystal structure but instead invades the pore-space between crystals, pushing out residual melt (filter pressing). The switch between regimes appears to depend on crystal size and aspect ratio. The similar features between bubbles in the enclave and in experiments are encouraging, and suggest that crystal-induced bubble deformation, and gas-driven melt segregation, may be common in crystal-rich magmas.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.
2016-10-01
A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.
A Study of Nucleate Boiling with Forced Convection in Microgravity
NASA Technical Reports Server (NTRS)
Merte, Herman, Jr.
1996-01-01
Boiling is a rather imprecise term applied to the process of evaporation in which the rate of liquid-vapor phase change is large. In seeking to determine the role and significance of body forces on the process, of which buoyancy or gravity is just one agent, it becomes necessary to define the term more precisely. It is generally characterized by the formation and growth of individual vapor bubbles arising from heat transfer to the liquid, either at a solid/liquid or liquid/liquid interface, or volumetrically. The terms 'bubble' boiling and 'nucleate' boiling are frequently used, in recognition of the interactions of surface tension and other forces in producing discrete bubbles at distinctive locations (although not always). Primary considerations are that evaporation can occur only at existing liquid-vapor interfaces, so that attention must be given to the formation of an interface (the nucleation process), and that the latent heat for this evaporation can come only from the superheated liquid, so that attention must also be given to the temperature distributions in the liquid.
Nanobubbles in confined solution: Generation, contact angle, and stability.
Wei, Jiachen; Zhang, Xianren; Song, Fan; Shao, Yingfeng
2018-02-14
The formation of gas bubbles presents a frequent challenge to microfluidic operations, for which fluids are geometrically confined to a microscale space. Here, to understand the mechanism of nucleating gas bubbles in microfluidic devices, we investigate the formation and stability of nanobubbles in confined solutions. Our molecular dynamics simulations show that while pinning of the contact line is a prerequisite for the stability of surface nanobubbles in open systems that can exchange gas with surrounding environment, in confined solutions, stable nanobubbles can exist even without pinning. In supersaturated condition, stable bubbles can be found in confined solutions with acute or obtuse contact angle, depending on the substrate hydrophobicity. We also demonstrate that when open to the bulk solution, the stable nanobubbles in closed systems would become unstable unless both supersaturation and pinning of the contact line are satisfied. Our results not only shed light on the design of novel heterogeneous surfaces for generating nanobubbles in confined space with controllable shape and stability but also address the crucial effect of gas exchange with the surroundings in determining the stability of nanobubbles.
Nanobubbles in confined solution: Generation, contact angle, and stability
NASA Astrophysics Data System (ADS)
Wei, Jiachen; Zhang, Xianren; Song, Fan; Shao, Yingfeng
2018-02-01
The formation of gas bubbles presents a frequent challenge to microfluidic operations, for which fluids are geometrically confined to a microscale space. Here, to understand the mechanism of nucleating gas bubbles in microfluidic devices, we investigate the formation and stability of nanobubbles in confined solutions. Our molecular dynamics simulations show that while pinning of the contact line is a prerequisite for the stability of surface nanobubbles in open systems that can exchange gas with surrounding environment, in confined solutions, stable nanobubbles can exist even without pinning. In supersaturated condition, stable bubbles can be found in confined solutions with acute or obtuse contact angle, depending on the substrate hydrophobicity. We also demonstrate that when open to the bulk solution, the stable nanobubbles in closed systems would become unstable unless both supersaturation and pinning of the contact line are satisfied. Our results not only shed light on the design of novel heterogeneous surfaces for generating nanobubbles in confined space with controllable shape and stability but also address the crucial effect of gas exchange with the surroundings in determining the stability of nanobubbles.
Bubble formation in microgravity
NASA Technical Reports Server (NTRS)
Antar, Basil N.
1996-01-01
An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.
NASA Astrophysics Data System (ADS)
Schneider, Jens; Holzer, Frank; Kraus, Markus; Kopinke, Frank-Dieter; Roland, Ulf
2013-02-01
A new type of water dissociation at ambient pressure initiated by the irradiation of aqueous electrolytes using an electromagnetic field with a frequency of 13.56 MHz is described in this study. A special reactor design allows the use of ex situ electrodes to form in situ electrical discharges in water vapour bubbles. The observed formation of molecular hydrogen (H2) and oxygen (O2) combined with the emission of light (‘burning water’ phenomenon) originates from a non-thermal plasma in water vapour bubbles. The influences of type of electrolyte, its concentration, pH value and external RF voltage on the gas formation rate as well as on the gas composition are presented.
Time-dependent bubble motion through a liquid filled compliant channel
NASA Astrophysics Data System (ADS)
Halpern, David; Gaver, Donald; Jensen, Oliver
2000-11-01
Pulmonary airway closure occurs when the liquid lining layer occludes the airway and obstructs airflow. Meniscus formation is the result of a surface-tension driven instability within the liquid layer. Airway 'compliant collapse' may result, which leads to tube buckling with airway walls held in apposition. Airway closure is common in premature neonates who do not produce sufficient surfactant and those suffering from emphysema. To model the reopening of a collapsed airway flooded with fluid, we consider the time-dependent motion of an air-bubble driven by a positive bubble pressure Pb through a liquid filled compliant channel. The governing Stokes equations are solved using the boundary element method near the bubble tip, and lubrication theory sufficiently far ahead of the buble where the channel walls have a gentle taper. Results show that for Pb > P_crit, the bubble moves forward and converges to a steady velocity as the airway walls 'peel' open. For Pb < P_crit, no steady solutions are found because fluid continuously accummulates ahead of the bubble tip. This result validates the stability analysis of the previously steady wall peeling solution branch. The impact of the flow field on transport of surfactant and the applied shear and normal stresses on the wall as they relate to pulmonary reopening are also discussed.
El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.
2014-01-01
The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578
Cavitation and bubble dynamics: the Kelvin impulse and its applications
Blake, John R.; Leppinen, David M.; Wang, Qianxi
2015-01-01
Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being ‘One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…’. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a ‘paradigm bubble model’ for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet. PMID:26442141
What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation.
Xiao, Qianxiang; Liu, Yawei; Guo, Zhenjiang; Liu, Zhiping; Frenkel, Daan; Dobnikar, Jure; Zhang, Xianren
2017-12-22
The process of homogeneous bubble nucleation is almost impossible to probe experimentally, except near the critical point or for liquids under large negative tension. Elsewhere in the phase diagram, the bubble nucleation barrier is so high as to be effectively insurmountable. Consequently, there is a severe lack of experimental studies of homogenous bubble nucleation under conditions of practical importance (e.g., cavitation). Here we use a simple geometric relation to show that we can obtain information about the homogeneous nucleation process from Molecular Dynamics studies of bubble formation in solvophobic nanopores on a solid surface. The free energy of pinned nanobubbles has two extrema as a function of volume: one state corresponds to a free-energy maximum ("the critical nucleus"), the other corresponds to a free-energy minimum (the metastable, pinned nanobubble). Provided that the surface tension does not depend on nanobubble curvature, the radius of the curvature of the metastable surface nanobubble is independent of the radius of the pore and is equal to the radius of the critical nucleus in homogenous bubble nucleation. This observation opens the way to probe the parameters that determine homogeneous bubble nucleation under experimentally accessible conditions, e.g. with AFM studies of metastable nanobubbles. Our theoretical analysis also indicates that a surface with pores of different sizes can be used to determine the curvature corrections to the surface tension. Our conclusions are not limited to bubble nucleation but suggest that a similar approach could be used to probe the structure of critical nuclei in crystal nucleation.
NASA Astrophysics Data System (ADS)
Knipping, J. L.; Simon, A. C.; Fiege, A.; Webster, J. D.; Reich, M.; Barra, F.; Holtz, F.; Oeser-Rabe, M.
2017-12-01
Trace-element characteristics of magnetite from Kiruna-type iron oxide-apatite deposits indicate a magmatic origin. A possible scenario currently considered for the magmatic formation, apart from melt immiscibility, is related to degassing of volatile-rich magmas. Decompression, e.g., induced by magma ascent, results in volatile exsolution and the formation of a magmatic volatile phase. Volatile bubbles are expected to nucleate preferentially on the surface of oxides like magnetite which is due to a relatively low surface tension of oxide-bubble interfaces [1]. The "bulk" density of these magnetite-bubble pairs is typically lower than the surrounding magma and thus, they are expected to migrate upwards. Considering that magnetite is often the liquidus phase in fluid-saturated, oxidized andesitic arc magmas, this process may lead to the formation of a rising magnetite-bubble suspension [2]. To test this hypothesis, complementary geochemical analyses and high pressure experimental studies are in progress. The core to rim Fe isotopic signature of magnetite grains from the Los Colorados deposit in the Chilean Iron Belt was determined by Laser Ablation-MC-ICP-MS. The δ56Fe data reveal a systematic zonation from isotopically heavy Fe (δ56Fe: 0.25 ±0.07 ‰) in the core of magnetite grains to relatively light Fe (δ56Fe: 0.15 ±0.05 ‰) toward grain rims. This variation indicates crystallization of the magnetite cores at early magmatic stages from a silicate melt and subsequent growth of magnetite rims at late magmatic - hydrothermal stages from a free volatile phase. These signatures agree with the core to rim trace-element signatures of the same magnetite grains. The presence of Cl in the exsolved volatile phase and the formation of FeCl2 complexes is expected to enhance the transport of Fe in fluids and the formation of magmatic-hydrothermal magnetite [3]. First experiments (975 °C, 350 to 100 MPa, 0.025 MPa/s) show certain magnetite accumulation only 15 minutes after decompression in the upper part of the experimental products, indicating that magnetite flotation can be an efficient mechanism to separate and accumulate magnetite. [1] Hurwitz and Navon (1994) Earth Planet. Sci. Lett.122, 267-280 [2] Edmonds et al. (2014) Geol. Soc. London, Spec. Pub. 410. [3] Simon et al. (2004) Geochim. Cosmochim. Acta 68, 4905-4914.
Star formation associated with a large-scale infrared bubble
NASA Astrophysics Data System (ADS)
Xu, Jin-Long; Ju, Bing-Gang
2014-09-01
Aims: To investigate how a large-scale infrared bubble centered at l = 53.9° and b = 0.2° forms, and to study if star formation is taking place at the periphery of the bubble, we performed a multiwavelength study. Methods: Using the data from the Galactic Ring Survey (GRS) and Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE), we performed a study of a large-scale infrared bubble with a size of about 16 pc at a distance of 2.0 kpc. We present the 12CO J = 1-0, 13CO J = 1-0, and C18O J = 1-0 observations of HII region G53.54-0.01 (Sh2-82) obtained at the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed distribution of associated molecular material. In addition, we also used radiorecombination line and VLA data. To select young stellar objects (YSOs) consistent with this region, we used the GLIMPSE I catalog. Results: The large-scale infrared bubble shows a half-shell morphology at 8 μm. The H II regions of G53.54-0.01, G53.64+0.24, and G54.09-0.06 are situated on the bubble. Comparing the radio recombination line velocities and associated 13CO J = 1-0 components of the three H II regions, we found that the 8 μm emission associated with H II region G53.54-0.01 should belong to the foreground emission, and only overlap with the large-scale infrared bubble in the line of sight. Three extended green objects (EGOs, the candidate massive young stellar objects), as well as three H II regions and two small-scale bubbles are found located in the G54.09-0.06 complex, indicating an active massive star-forming region. Emission from C18O at J = 1-0 presents four cloud clumps on the northeastern border of H II region G53.54-0.01. By comparing the spectral profiles of 12CO J = 1-0, 13CO J = 1-0, and C18O J = 1-0 at the peak position of each clump, we found the collected gas in the three clumps, except for the clump coinciding with a massive YSO (IRAS 19282+1814). Using the evolutive model of the H II region, we derived that the age of H II region G53.54-0.01 is 1.5 × 106 yr. The significant enhancement of several Class I and Class II YSOs around G53.54-0.01 indicates the presence of some recently formed stars, which may be triggered by this H II region through the collect-and-collapse process. Final CO cubes (12, 13, 18, FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/569/A36
High-intensity focused ultrasound ablation around the tubing
Siu, Jun Yang; Liu, Chenhui
2017-01-01
High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17–339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10–30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography. PMID:29161293
High-intensity focused ultrasound ablation around the tubing.
Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng
2017-01-01
High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, M.-L.; Pailloux, F.; Mauchamp, V.
The understanding of the mechanisms of helium bubble formation and evolution in materials requires the quantitative determination of several key quantities such as the helium density in the bubbles. Helium nanobubbles of about 16 nm in diameter were created in silicon by helium implantation at high fluence and subsequent annealing. Individual nanobubbles were analyzed by spatially resolved Electron Energy-loss Spectroscopy (EELS). We report on the in situ probing of helium desorption from the nanobubbles under electron irradiation. This opens new perspectives for a more accurate determination of the helium density through spatially resolved EELS.
The Pathophysiology of Decompression Sickness and the Effects of Doppler Detectable Bubbles.
1980-12-18
Doppler Ultrasound and a calibrated 6 1 Venous Gas Embol i Scale. C. Electronic Counting of Doppler Bubble Signals 72 £ III. Pulmonary Embolism Studies...IA. Background 75 B. Right Ventricular Systolic Pressure following Gas 81 Embolization and Venous Gas Phase Content IC. Effects of Pulmonary Gas... Embolism on the Development 9 of Limb-Bend Decompression Sickness 1 IV. Gas Phase Formation in Highly Perfused Tissues IA. Renal 9 B. Cerebral 9 1 I I V
Bubble pump: scalable strategy for in-plane liquid routing.
Oskooei, Ali; Günther, Axel
2015-07-07
We present an on-chip liquid routing technique intended for application in well-based microfluidic systems that require long-term active pumping at low to medium flowrates. Our technique requires only one fluidic feature layer, one pneumatic control line and does not rely on flexible membranes and mechanical or moving parts. The presented bubble pump is therefore compatible with both elastomeric and rigid substrate materials and the associated scalable manufacturing processes. Directed liquid flow was achieved in a microchannel by an in-series configuration of two previously described "bubble gates", i.e., by gas-bubble enabled miniature gate valves. Only one time-dependent pressure signal is required and initiates at the upstream (active) bubble gate a reciprocating bubble motion. Applied at the downstream (passive) gate a time-constant gas pressure level is applied. In its rest state, the passive gate remains closed and only temporarily opens while the liquid pressure rises due to the active gate's reciprocating bubble motion. We have designed, fabricated and consistently operated our bubble pump with a variety of working liquids for >72 hours. Flow rates of 0-5.5 μl min(-1), were obtained and depended on the selected geometric dimensions, working fluids and actuation frequencies. The maximum operational pressure was 2.9 kPa-9.1 kPa and depended on the interfacial tension of the working fluids. Attainable flow rates compared favorably with those of available micropumps. We achieved flow rate enhancements of 30-100% by operating two bubble pumps in tandem and demonstrated scalability of the concept in a multi-well format with 12 individually and uniformly perfused microchannels (variation in flow rate <7%). We envision the demonstrated concept to allow for the consistent on-chip delivery of a wide range of different liquids that may even include highly reactive or moisture sensitive solutions. The presented bubble pump may provide active flow control for analytical and point-of-care diagnostic devices, as well as for microfluidic cells culture and organ-on-chip platforms.
NASA Astrophysics Data System (ADS)
Russell, H. R.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Combes, F.; Edge, A. C.; Hogan, M. T.; McDonald, M.; Salomé, P.; Tremblay, G.; Vantyghem, A. N.
2017-12-01
We present new ALMA observations tracing the morphology and velocity structure of the molecular gas in the central galaxy of the cluster Abell 1795. The molecular gas lies in two filaments that extend 5-7 kpc to the N and S from the nucleus and project exclusively around the outer edges of two inner radio bubbles. Radio jets launched by the central active galactic nucleus have inflated bubbles filled with relativistic plasma into the hot atmosphere surrounding the central galaxy. The N filament has a smoothly increasing velocity gradient along its length from the central galaxy's systemic velocity at the nucleus to -370 km s^{-1}, the average velocity of the surrounding galaxies, at the furthest extent. The S filament has a similarly smooth but shallower velocity gradient and appears to have partially collapsed in a burst of star formation. The close spatial association with the radio lobes, together with the ordered velocity gradients and narrow velocity dispersions, shows that the molecular filaments are gas flows entrained by the expanding radio bubbles. Assuming a Galactic XCO factor, the total molecular gas mass is 3.2 ± 0.2 × 109 M⊙. More than half lies above the N radio bubble. Lifting the molecular clouds appears to require an infeasibly efficient coupling between the molecular gas and the radio bubble. The energy required also exceeds the mechanical power of the N radio bubble by a factor of 2. Stimulated feedback, where the radio bubbles lift low-entropy X-ray gas that becomes thermally unstable and rapidly cools in situ, provides a plausible model. Multiple generations of radio bubbles are required to lift this substantial gas mass. The close morphological association then indicates that the cold gas either moulds the newly expanding bubbles or is itself pushed aside and shaped as they inflate.
Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster
Russell, H. R.; McDonald, M.; McNamara, B. R.; ...
2017-02-14
We report new ALMA observations of the CO(3-2) line emission from themore » $$2.1\\pm0.3\\times10^{10}\\rm\\thinspace M_{\\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\\rm\\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.« less
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2003-01-01
Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially 'cast' on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.
NASA Technical Reports Server (NTRS)
Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.
2002-01-01
Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially "cast" on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.
Motion of W and He atoms during formation of W fuzz
NASA Astrophysics Data System (ADS)
Doerner, R. P.; Nishijima, D.; Krasheninnikov, S. I.; Schwarz-Selinger, T.; Zach, M.
2018-06-01
Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding 3He to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of 3He remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion of the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (~92.99% 182W) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten ‘fuzz’. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. This supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.
Motion of W and He atoms during formation of W fuzz
Doerner, R. P.; Nishijima, D.; Krasheninnikov, S. I.; ...
2018-04-11
Measurements are conducted to identify the motion of tungsten and helium atoms during the formation of tungsten fuzz. In a first series of experiments the mobility of helium within the growing fuzz was measured by adding 3He to the different stages of plasma exposure under conditions that promoted tungsten fuzz growth. Ion beam analysis was used to quantify the amount of 3He remaining in the samples following the plasma exposure. The results indicate that the retention of helium in bubbles within tungsten is a dynamic process with direct implantation rather than diffusion into the bubbles, best describing the motion ofmore » the helium atoms. In the second experiment, an isotopically enriched layer of tungsten (~92.99% 182W) is deposited on the surface of a bulk tungsten sample with the natural abundance of the isotopes. This sample is then exposed to helium plasma at the conditions necessary to support the formation of tungsten 'fuzz'. Depth profiles of the concentration of each of the tungsten isotopes are obtained using secondary ion mass spectrometry (SIMS) before and after the plasma exposure. The depth profiles clearly show mixing of tungsten atoms from the bulk sample toward the surface of the fuzz. Lastly, this supports a physical picture of the dynamic behavior of helium bubbles which, also, causes an enhanced mixing of tungsten atoms.« less
Role of vortices in cavitation formation in the flow across a mechanical heart valve.
Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H
2008-07-01
Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous dissipation, with a less significant contribution from the occluder rebound effect. The maximum pressure drop was on the order of magnitude of 40 mmHg. Detailed PIV measurements and quantitative analysis of the BSM mechanical heart valve revealed large-scale vortex formation immediately after valve closure. Of note, the vortices were typical of a Rankine vortex and the maximum pressure change at the vortex center was only 40 mmHg. These data support the conclusion that vortex formation alone cannot generate the magnitude of pressure drop required for cavitation bubble formation.
Wang, Rongfang; Ma, Yuanyuan; Wang, Hui; Key, Julian; Ji, Shan
2014-11-04
PdNiP alloy nanoparticle networks (PdNiP NN) were prepared by simultaneous reduction of PdCl2, NiCl2 and NaH2PO2 with NaBH4via a gas-liquid interface reaction at room temperature using N2 bubbles. PdNiP NN had markedly higher activity and durability for ethanol oxidation than PdNi nanoparticle networks and PdNiP grain aggregates.
Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions.
Abdula, Daner; Lerud, Ryan; Rananavare, Shankar
2017-11-07
Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1mm diameter channels and foaming in 500μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hartman, Charles
2005-10-01
Formation of a Pulsed Flow Pinch is discussed, based on 2-D, MHD numerical calculations. The PFP utilizes the observed stable, Btheta magnetic ``bubble'' which propagates from breach to muzzle during the run-down phase of the coaxial Marshall gun. We consider two ways of launching a PFP onto a fiber or cylindrical gas cloud: 1) by propagating the bubble to small radius along an exponentially-decreasing-radius center conductor and, 2) by a radial launch to form reflex PFP's propagating in opposite directions along a fiber. We show that the bubble velocity increases to high values as the radius is decreased making the rise time of Btheta at an axial point very short. A bubble, launched into uniform gas is found to undergo unstable pinching of the front. Results will be presented of calculations of a PFP driven, neutron-producing, snow-plow pinch. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Pressure gradient induced generation of microbubbles
NASA Astrophysics Data System (ADS)
Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel
2015-11-01
It is well known that the controlled production of monodisperse bubbles possesses uncountable applications in medicine, pharmacy and industry. Here we provide with a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. In our experiments, a gas flow rate discharges through a cylindrical needle into a pressurized chamber. The pressure gradient created from the exit of the injection needle towards the entrance of a extraction duct promotes the stretching of the gas ligament downstream. In our analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, different regimes can be distinguished depending mainly on the Reynolds number. Through our physical modeling, we provide closed expressions for both the bubbling frequencies and for the bubble diameters as well as the conditions under which a monodisperse generation is obtained in all regimes found. The excellent agreement between our expressions and the experimental data fully validates our physical modeling.
In the mind of the market: theory of mind biases value computation during financial bubbles.
De Martino, Benedetto; O'Doherty, John P; Ray, Debajyoti; Bossaerts, Peter; Camerer, Colin
2013-09-18
The ability to infer intentions of other agents, called theory of mind (ToM), confers strong advantages for individuals in social situations. Here, we show that ToM can also be maladaptive when people interact with complex modern institutions like financial markets. We tested participants who were investing in an experimental bubble market, a situation in which the price of an asset is much higher than its underlying fundamental value. We describe a mechanism by which social signals computed in the dorsomedial prefrontal cortex affect value computations in ventromedial prefrontal cortex, thereby increasing an individual's propensity to 'ride' financial bubbles and lose money. These regions compute a financial metric that signals variations in order flow intensity, prompting inference about other traders' intentions. Our results suggest that incorporating inferences about the intentions of others when making value judgments in a complex financial market could lead to the formation of market bubbles. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
From viscous to elastic sheets: Dynamics of smectic freely floating films
NASA Astrophysics Data System (ADS)
Harth, Kirsten; May, Kathrin; Trittel, Torsten; Stannarius, Ralf
2015-03-01
Oscillations and rupture of bubbles, composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties except surface tension are often neglected for simple fluid films (e.g. soap bubbles), whereas they govern the dynamics in systems with more complex membranes (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to handle fluid films of immense aspect ratios. Recently, freely floating bubbles detached from a support were prepared. We analyze the relaxation from strongly non-spherical shapes and the rupture dynamics of such bubbles using high-speed video recordings. Peculiar dynamics intermediate between those of simple viscous fluid films and an elastic response emerge: Oscillations, slowed relaxation and even the formation of wrinkles and extrusions. We characterize these phenomena and propose explanations. We acknowledge funding by the German Aerospace Center DLR within Project OASIS-CO and German Science Foundation Project STA 425-28.
In the Mind of the Market: Theory of Mind Biases Value Computation during Financial Bubbles
De Martino, Benedetto; O’Doherty, John P.; Ray, Debajyoti; Bossaerts, Peter; Camerer, Colin
2013-01-01
Summary The ability to infer intentions of other agents, called theory of mind (ToM), confers strong advantages for individuals in social situations. Here, we show that ToM can also be maladaptive when people interact with complex modern institutions like financial markets. We tested participants who were investing in an experimental bubble market, a situation in which the price of an asset is much higher than its underlying fundamental value. We describe a mechanism by which social signals computed in the dorsomedial prefrontal cortex affect value computations in ventromedial prefrontal cortex, thereby increasing an individual’s propensity to ‘ride’ financial bubbles and lose money. These regions compute a financial metric that signals variations in order flow intensity, prompting inference about other traders’ intentions. Our results suggest that incorporating inferences about the intentions of others when making value judgments in a complex financial market could lead to the formation of market bubbles. PMID:24050407
Analysis of bubble plume spacing produced by regular breaking waves
NASA Astrophysics Data System (ADS)
Phaksopa, J.; Haller, M. C.
2012-12-01
The breaking wave process in the ocean is a significant mechanism for energy dissipation, splash, and entrainment of air. The relationship between breaking waves and bubble plume characteristics is still a mystery because of the complexity of the breaking wave mechanism. This study takes a unique approach to quantitatively analyze bubble plumes produced by regular breaking waves. Various previous studies have investigated the formation and the characteristics of bubble plumes using either field observations, laboratory experiments, or numerical modeling However, in most observational work the plume characteristics have been studied from the underneath the water surface. In addition, though numerical simulations are able to include much of the important physics, the computational costs are high and bubble plume events are only simulated for short times. Hence, bubble plume evolution and generation throughout the surf zone is not yet computationally feasible. In the present work we take a unique approach to analyzing bubble plumes. These data may be of use for model/data comparisons as numerical simulations become more tractable. The remotely sensed video data from freshwater breaking waves in the OSU Large Wave Flume (Catalan and Haller, 2008) are analyzed. The data set contains six different regular wave conditions and the video intensity data are used to estimate the spacing of plume events (wavenumber spectrum), to calculate the spectral width (i.e. the range of plume spacing), and to relate these with the wave conditions. The video intensity data capture the evolution of the wave passage over a fixed bed arranged in a bar-trough morphology. Bright regions represent the moving path or trajectory coincident with bubble plume of each wave. It also shows the bubble foam were generated and released from wave crest shown in the form of bubble tails with almost regular spacing for each wave. The bubble tails show that most bubbles did not move along with wave. For the estimation of wavenumber spectrum, the density is high at low wavenumber and it decreases toward high wavenumber. The average spectrum bandwidth was estimated and represented as the bubble event spacing for each run. It is found that its magnitude varies with wave conditions range from 8.81 - 11.82 and is related to the waveheight. Additionally, the calculated wavenumbers from power density function vary in the range of 0.80 - 1.58 meters-1. It is found that the bubble wavenumbers are mostly higher than the wavenumbers calculated from the linear wave theory between 0.2L-0.7L. In other words, the bubble plume length does not exceed the progressive wavelength.
From viscous to elastic sheets: Dynamics of smectic bubbles
NASA Astrophysics Data System (ADS)
Harth, Kirsten; Trittel, Torsten; van der Meer, Devaraj; Stannarius, Ralf
2015-11-01
Oscillations and rupture of bubbles composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties apart from surface tension are often neglected for fluids (e.g. soap bubbles), whereas they govern the dynamics in systems with a rigid membrane (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to-handle fluid films of immense aspect ratios. Only recently, freely floating bubbles detached from a support could be prepared. We analyze their relaxation from strongly non-spherical shapes and the rupture using high-speed video recordings. Peculiar dynamics intermediate between simple viscous fluid films and an elastic response are observed: Fast oscillations, slowed relaxation and even the reversible formation of wrinkles and extrusions. Bubble rupture deviates qualitatively from previously observed behavior of simple Newtonian and other complex fluids. It becomes retarded by at least two orders of magnitude compared to the predictions of Taylor and Culick. A transition between fluid-like and elastic behavior is seen with increasing thickness. We give experimental results, an intuitive explanation and a novel hydrodynamic description.
Novel approach to Zr powder production by smooth ZrCl4 bubbling through molten salt
NASA Astrophysics Data System (ADS)
Bae, Hyun-Na; Choi, Mi-Seon; Lee, Go-Gi; Kim, Seon-Hyo
2016-01-01
A reduction process using ZrCl4 bubbles as a reactant was investigated to produce zirconium metals. ZrCl4 vapor was bubbled through the lance in the bath, in which Mg melt and MgCl2 salt were separated. Zr powder was formed by a reduction of ZrCl4 bubbles in magnesium layer. However, the lance was clogged by the aggregate of zirconium occurred during ZrCl4 vapor injecting leading to interruption of ZrCl4 supply into the bath. This phenomenon could be caused by the presence of magnesium at the lance tip, which passes through MgCl2 salt during bubbling, and then zirconium was formed in the forms of intermetallic compounds with aluminum. In this study, the effect of molten salt on the troubled phenomena was investigated and it was verified that CaCl2 with relatively low Weber number meaning relatively high surface tension as molten salt is effective in inhibiting the lance clogging phenomena. Then, a few micrometer-sized Zr powder with the high purity of 91.6 wt% was obtained smoothly without the formation of intermetallic compound.
Molecular mechanism for cavitation in water under tension
Menzl, Georg; Gonzalez, Miguel A.; Geiger, Philipp; Caupin, Frédéric; Abascal, José L. F.; Dellago, Christoph
2016-01-01
Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh–Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with CNT based on the Kramers formalism yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a wide range of pressures. Furthermore, our theoretical predictions are in excellent agreement with cavitation rates obtained from inclusion experiments. This suggests that homogeneous nucleation is observed in inclusions, whereas only heterogeneous nucleation on impurities or defects occurs in other experiments. PMID:27803329
NASA Technical Reports Server (NTRS)
Cox, Matthew C.; Anilkumar, Amrutur V.; Grugel, RIchard N.; Lee, Chun P.
2008-01-01
Directional solidification experiments were performed, using succinonitrile saturated with nitrogen gas, to examine the effects of in-situ processing pressure changes on the formation growth, and evolution of an isolated, cylindrical gaseous pore. A novel solidification facility, capable of processing thin cylindrical samples (I.D. < 1.0 mm), under controlled pressure conditions, was used for the experiments. A new experimental method for growing the isolated pore from a seed bubble is introduced. The experimental results indicate that an in-situ processing pressure change will result in either a transient change in pore diameter or a complete termination of pore growth, indicating that pressure changes can be used as a control parameter to terminate bubble growth. A simple analytical model has been introduced to explain the experimental observations.
Acoustically enhanced boiling heat transfer on a heated surface containing open microchannels
NASA Astrophysics Data System (ADS)
Boziuk, Thomas R.; Smith, Marc K.; Glezer, Ari
2011-11-01
Acoustic actuation is used to enhance boiling heat transfer on a submerged heated surface containing an array of open microchannels by controlling the formation and evolution of vapor bubbles and inhibiting the instability that leads to film boiling at the critical heat flux. The effect of actuation at millimeter and micrometer scales is investigated with emphasis on the behavior of bubble nucleation, growth, contact-line motion, condensation, and detachment. The results show that microchannels control the location of boiling and reduce the mean surface superheat. In addition, acoustic actuation increases the heat flux at a given surface temperature and leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. Supported by ONR.
From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation
ERIC Educational Resources Information Center
Hansen, Lee D.; McCarlie, V. Wallace
2004-01-01
The process of foam formation is used for demonstrating the way in which the application of physiochemical principles and knowledge of the physical properties of the materials contributes towards the understanding of a wide range of phenomenon. Solubility of gas and bubble growth should be considered during the development of foamed polymer…
Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.
2007-08-01
Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.
NASA Astrophysics Data System (ADS)
Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Mukut, K. M.; Tamim, Saiful Islam; Faisal, A. H. M.
2017-06-01
This study focuses on the occurrence of bubble nucleation in a liquid confined in a nano scale confinement and subjected to rapid cooling at one of its wall. Due to the very small size scale of the present problem, we adopt the molecular dynamics (MD) approach. The liquid (Argon) is confined within two solid (Platinum) walls. The temperature of the upper wall of the confinement is maintained at 90 K while the lower wall is being cooled rapidly to 50 K from initial equilibrium temperature of 90 K within 0.1 ns. This results in the nucleation and formation of nanobubbles in the liquid. The pattern of bubble nucleation has been studied for three different conditions of solid-liquid interfacial wettability such as hydrophilic, hydrophobic and neutral. Behavior of bubble nucleation is significantly different in the three case of solid-liquid interfacial wettability. In case of the hydrophobic confinement (weakly adsorbing), the liquid cannot achieve deeper metastability; vapor layers appear immediately on the walls. In case of the neutral confinement (moderately adsorbing), bubble nucleation is promoted by the walls where the nucleation is heterogeneous. In case of the hydrophilic walls (strongly adsorbing) bubbles are developed inside the liquid; that is the nucleation process is homogeneous. The variation in bubble nucleation under different conditions of surface wettability has been studied by the analysis of number density distribution, spatial temperature distribution, spatial number density distribution and heat flux through the upper and lower walls of the confinement. The present study indicates that the variation of heat transfer efficiency due to different surface wettability has significant effect on the size, shape and location of bubble nucleation in case rapid cooling of liquid in nano confinement.
Characterization of the interaction between AFM tips and surface nanobubbles.
Walczyk, Wiktoria; Schönherr, Holger
2014-06-24
While the presence of gaseous enclosures observed at various solid-water interfaces, the so-called "surface nanobubles", has been confirmed by many groups in recent years, their formation, properties, and stability have not been convincingly and exhaustively explained. Here we report on an atomic force microscopy (AFM) study of argon nanobubbles on highly oriented pyrolitic graphite (HOPG) in water to elucidate the properties of nanobubble surfaces and the mechanism of AFM tip-nanobubble interaction. In particular, the deformation of the nanobubble-water interface by the AFM tip and the question whether the AFM tip penetrates the nanobubble during scanning were addressed by this combined intermittent contact (tapping) mode and force volume AFM study. We found that the stiffness of nanobubbles was smaller than the cantilever spring constant and comparable with the surface tension of water. The interaction with the AFM tip resulted in severe quasi-linear deformation of the bubbles; however, in the case of tip-bubble attraction, the interface deformed toward the tip. We tested two models of tip-bubble interaction, namely, the capillary force and the dynamic interaction model, and found, depending on the tip properties, good agreement with experimental data. The results showed that the tip-bubble interaction strength and the magnitude of the bubble deformation depend strongly on tip and bubble geometry and on tip and substrate material, and are very sensitive to the presence of contaminations that alter the interfacial tension. In particular, nanobubbles interacted differently with hydrophilic and hydrophobic AFM tips, which resulted in qualitatively and quantitatively different force curves measured on the bubbles in the experiments. To minimize bubble deformation and obtain reliable AFM results, nanobubbles must be measured with a sharp hydrophilic tip and with a cantilever having a very low spring constant in a contamination-free system.
Radiation-pressure-driven dust waves inside bursting interstellar bubbles
NASA Astrophysics Data System (ADS)
Ochsendorf, B. B.; Verdolini, S.; Cox, N. L. J.; Berné, O.; Kaper, L.; Tielens, A. G. G. M.
2014-06-01
Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even though direct evidence supporting this scenario is lacking. Here we explore the possibility that interstellar bubbles seen by the Spitzer- and Herschel space telescopes, blown by stars with log (L/L⊙) ≲ 5.2, form and expand because of the thermal pressure that accompanies the ionization of the surrounding gas. We show that density gradients in the natal cloud or a puncture in the swept-up shell lead to an ionized gas flow through the bubble into the general interstellar medium, which is traced by a dust wave near the star, which demonstrates the importance of radiation pressure during this phase. Dust waves provide a natural explanation for the presence of dust inside H II bubbles, offer a novel method to study dust in H II regions and provide direct evidence that bubbles are relieving their pressure into the interstellar medium through a champagne flow, acting as a probe of the radiative interaction of a massive star with its surroundings. We explore a parameter space connecting the ambient density, the ionizing source luminosity, and the position of the dust wave, while using the well studied H II bubbles RCW 120 and RCW 82 as benchmarks of our model. Finally, we briefly examine the implications of our study for the environments of super star clusters formed in ultraluminous infrared galaxies, merging galaxies, and the early Universe, which occur in very luminous and dense environments and where radiation pressure is expected to dominate the dynamical evolution.
Streaming flow from ultrasound contrast agents by acoustic waves in a blood vessel model.
Cho, Eunjin; Chung, Sang Kug; Rhee, Kyehan
2015-09-01
To elucidate the effects of streaming flow on ultrasound contrast agent (UCA)-assisted drug delivery, streaming velocity fields from sonicated UCA microbubbles were measured using particle image velocimetry (PIV) in a blood vessel model. At the beginning of ultrasound sonication, the UCA bubbles formed clusters and translated in the direction of the ultrasound field. Bubble cluster formation and translation were faster with 2.25MHz sonication, a frequency close to the resonance frequency of the UCA. Translation of bubble clusters induced streaming jet flow that impinged on the vessel wall, forming symmetric vortices. The maximum streaming velocity was about 60mm/s at 2.25MHz and decreased to 15mm/s at 1.0MHz for the same acoustic pressure amplitude. The effect of the ultrasound frequency on wall shear stress was more noticeable. Maximum wall shear stress decreased from 0.84 to 0.1Pa as the ultrasound frequency decreased from 2.25 to 1.0MHz. The maximum spatial gradient of the wall shear stress also decreased from 1.0 to 0.1Pa/mm. This study showed that streaming flow was induced by bubble cluster formation and translation and was stronger upon sonication by an acoustic wave with a frequency near the UCA resonance frequency. Therefore, the secondary radiant force, which is much stronger at the resonance frequency, should play an important role in UCA-assisted drug delivery. Copyright © 2015 Elsevier B.V. All rights reserved.
On the dynamics of a shock-bubble interaction
NASA Technical Reports Server (NTRS)
Quirk, James J.; Karni, Smadar
1994-01-01
We present a detailed numerical study of the interaction of a weak shock wave with an isolated cylindrical gas inhomogenity. Such interactions have been studied experimentally in an attempt to elucidate the mechanisms whereby shock waves propagating through random media enhance mixing. Our study concentrates on the early phases of the interaction process which are dominated by repeated refractions of acoustic fronts at the bubble interface. Specifically, we have reproduced two of the experiments performed by Haas and Sturtevant : M(sub s) = 1.22 planar shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or Refrigerant 22. These flows are modelled using the two-dimensional, compressible Euler equations for a two component fluid (air-helium or air-Refrigerant 22). Although simulations of shock wave phenomena are now fairly commonplace, they are mostly restricted to single component flows. Unfortunately, multi-component extensions of successful single component schemes often suffer from spurious oscillations which are generated at material interfaces. Here we avoid such problems by employing a novel, nonconservative shock-capturing scheme. In addition, we have utilized a sophisticated adaptive mesh refinement algorithm which enables extremely high resolution simulations to be performed relatively cheaply. Thus we have been able to reproduce numerically all the intricate mechanisms that were observed experimentally (e.g., transitions from regular to irregular refraction, cusp formation and shock wave focusing, multi-shock and Mach shock structures, jet formation, etc.), and we can now present an updated description for the dynamics of a shock-bubble interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, H. R.; McDonald, M.; McNamara, B. R.
We report new ALMA observations of the CO(3-2) line emission from themore » $$2.1\\pm0.3\\times10^{10}\\rm\\thinspace M_{\\odot}$$ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fuelling a vigorous starburst at a rate of $$500-800\\rm\\thinspace M_{\\odot}\\rm\\; yr^{-1}$$ and powerful black hole activity in the form of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each $$10-20\\rm\\; kpc$$ long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. As a result, the very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.« less
Time-resolved processes in a pulsed electrical discharge in argon bubbles in water
NASA Astrophysics Data System (ADS)
Gershman, S.; Belkind, A.
2010-12-01
A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 μ s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300-500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.
Detecting cavitation in mercury exposed to a high-energy pulsed proton beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzi, Nicholas J; Chitnis, Parag V; Holt, Ray G
2010-01-01
The Oak Ridge National Laboratory Spallation Neutron Source employs a high-energy pulsed proton beam incident on a mercury target to generate short bursts of neutrons. Absorption of the proton beam produces rapid heating of the mercury, resulting in the formation of acoustic shock waves and the nucleation of cavitation bubbles. The subsequent collapse of these cavitation bubbles promote erosion of the steel target walls. Preliminary measurements using two passive cavitation detectors (megahertz-frequency focused and unfocused piezoelectric transducers) installed in a mercury test target to monitor cavitation generated by proton beams with charges ranging from 0.041 to 4.1 C will bemore » reported on. Cavitation was initially detected for a beam charge of 0.082 C by the presence of an acoustic emission approximately 250 s after arrival of the incident proton beam. This emission was consistent with an inertial cavitation collapse of a bubble with an estimated maximum bubble radius of 0.19 mm, based on collapse time. The peak pressure in the mercury for the initiation of cavitation was predicted to be 0.6 MPa. For a beam charge of 0.41 C and higher, the lifetimes of the bubbles exceeded the reverberation time of the chamber (~300 s), and distinct windows of cavitation activity were detected, a phenomenon that likely resulted from the interaction of the reverberation in the chamber and the cavitation bubbles.« less
Self-organization of helium precipitates into elongated channels within metal nanolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Di; Li, Nan; Yuryev, Dina
Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with themore » amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. In conclusion, vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity.« less
Self-organization of helium precipitates into elongated channels within metal nanolayers
Chen, Di; Li, Nan; Yuryev, Dina; ...
2017-11-10
Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with themore » amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. In conclusion, vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity.« less
Self-organization of helium precipitates into elongated channels within metal nanolayers
Chen, Di; Li, Nan; Yuryev, Dina; Baldwin, J. Kevin; Wang, Yongqiang; Demkowicz, Michael J.
2017-01-01
Material degradation due to precipitation of implanted helium (He) is a key concern in nuclear energy. Decades of research have mapped out the fate of He precipitates in metals, from nucleation and growth of equiaxed bubbles and voids to formation and bursting of surface blisters. By contrast, we show that He precipitates confined within nanoscale metal layers depart from their classical growth trajectories: They self-organize into elongated channels. These channels form via templated nucleation of He precipitates along layer surfaces followed by their growth and spontaneous coalescence into stable precipitate lines. The total line length and connectivity increases with the amount of implanted He, indicating that these channels ultimately interconnect into percolating “vascular” networks. Vascularized metal composites promise a transformative solution to He-induced damage by enabling in operando outgassing of He and other impurities while maintaining material integrity. PMID:29152573
The impact of vaporized nanoemulsions on ultrasound-mediated ablation
2013-01-01
Background The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. Methods PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm2) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Results Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating. Broadband emissions detected during HIFU exposure coincided in time with measured accelerated heating, which suggested that IC played an important role in bubble-enhanced heating. In the presence of bubbles, the acoustic power required for the formation of a 9-mm3 lesion was reduced by 72% and the exposure time required for the onset of albumin denaturation was significantly reduced (by 4 s), provided that the PSNE volume fraction in the polyacrylamide gel was at least 0.008%. Conclusions The time or acoustic power required for lesion formation in gel phantoms was dramatically reduced by vaporizing PSNE into bubbles. These results suggest that PSNE may improve the efficiency of HIFU-mediated thermal ablation of solid tumors; thus, further investigation is warranted to determine whether bubble-enhanced HIFU may potentially become a viable option for cancer therapy. PMID:24761223
The impact of vaporized nanoemulsions on ultrasound-mediated ablation.
Zhang, Peng; Kopechek, Jonathan A; Porter, Tyrone M
2013-01-01
The clinical feasibility of using high-intensity focused ultrasound (HIFU) for ablation of solid tumors is limited by the high acoustic pressures and long treatment times required. The presence of microbubbles during sonication can increase the absorption of acoustic energy and accelerate heating. However, formation of microbubbles within the tumor tissue remains a challenge. Phase-shift nanoemulsions (PSNE) have been developed as a means for producing microbubbles within tumors. PSNE are emulsions of submicron-sized, lipid-coated, and liquid perfluorocarbon droplets that can be vaporized into microbubbles using short (<1 ms), high-amplitude (>5 MPa) acoustic pulses. In this study, the impact of vaporized phase-shift nanoemulsions on the time and acoustic power required for HIFU-mediated thermal lesion formation was investigated in vitro. PSNE containing dodecafluoropentane were produced with narrow size distributions and mean diameters below 200 nm using a combination of sonication and extrusion. PSNE was dispersed in albumin-containing polyacrylamide gel phantoms for experimental tests. Albumin denatures and becomes opaque at temperatures above 58°C, enabling visual detection of lesions formed from denatured albumin. PSNE were vaporized using a 30-cycle, 3.2-MHz, at an acoustic power of 6.4 W (free-field intensity of 4,586 W/cm(2)) pulse from a single-element, focused high-power transducer. The vaporization pulse was immediately followed by a 15-s continuous wave, 3.2-MHz signal to induce ultrasound-mediated heating. Control experiments were conducted using an identical procedure without the vaporization pulse. Lesion formation was detected by acquiring video frames during sonication and post-processing the images for analysis. Broadband emissions from inertial cavitation (IC) were passively detected with a focused, 2-MHz transducer. Temperature measurements were acquired using a needle thermocouple. Bubbles formed at the HIFU focus via PSNE vaporization enhanced HIFU-mediated heating. Broadband emissions detected during HIFU exposure coincided in time with measured accelerated heating, which suggested that IC played an important role in bubble-enhanced heating. In the presence of bubbles, the acoustic power required for the formation of a 9-mm(3) lesion was reduced by 72% and the exposure time required for the onset of albumin denaturation was significantly reduced (by 4 s), provided that the PSNE volume fraction in the polyacrylamide gel was at least 0.008%. The time or acoustic power required for lesion formation in gel phantoms was dramatically reduced by vaporizing PSNE into bubbles. These results suggest that PSNE may improve the efficiency of HIFU-mediated thermal ablation of solid tumors; thus, further investigation is warranted to determine whether bubble-enhanced HIFU may potentially become a viable option for cancer therapy.
Vacuum casting of thick polymeric films
NASA Technical Reports Server (NTRS)
Cuddihy, E. F.; Moacanin, J.
1979-01-01
Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.
Bubbling in vibrated granular films.
Zamankhan, Piroz
2011-02-01
With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.
Ultrasound in Enzyme Activation and Inactivation
NASA Astrophysics Data System (ADS)
Mawson, Raymond; Gamage, Mala; Terefe, Netsanet Shiferaw; Knoerzer, Kai
As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.
Two reference time scales for studying the dynamic cavitation of liquid films
NASA Technical Reports Server (NTRS)
Sun, D. C.; Brewe, D. E.
1992-01-01
Two formulas, one for the characteristic time of filling a void with the vapor of the surrounding liquid, and one of filling the void by diffusion of the dissolved gas in the liquid, are derived. By comparing these time scales with that of the dynamic operation of oil film bearings, it is concluded that the evaporation process is usually fast enough to fill the cavitation bubble with oil vapor; whereas the diffusion process is much too slow for the dissolved air to liberate itself and enter the cavitation bubble. These results imply that the formation of a two phase fluid in dynamically loaded bearings, as often reported in the literature, is caused by air entrainment. They further indicate a way to simplify the treatment of the dynamic problem of bubble evolution.
Single-Shot Visualization of Evolving Laser Wakefields Using an All-Optical Streak Camera
NASA Astrophysics Data System (ADS)
Li, Zhengyan; Tsai, Hai-En; Zhang, Xi; Pai, Chih-Hao; Chang, Yen-Yu; Zgadzaj, Rafal; Wang, Xiaoming; Khudik, V.; Shvets, G.; Downer, M. C.
2014-08-01
We visualize ps-time-scale evolution of an electron density bubble—a wake structure created in atmospheric density plasma by an intense ultrashort laser pulse—from the phase "streak" that the bubble imprints onto a probe pulse that crosses its path obliquely. Phase streaks, recovered in one shot using frequency-domain interferometric techniques, reveal the formation, propagation, and coalescence of the bubble within a 3 mm long ionized helium gas target. 3D particle-in-cell simulations validate the observed density-dependent bubble evolution, and correlate it with the generation of a quasimonoenergetic ˜100 MeV electron beam. The results provide a basis for understanding optimized electron acceleration at a plasma density ne≈2×1019 cm-3, inefficient acceleration at lower density, and dephasing limits at higher density.
NASA Astrophysics Data System (ADS)
Mrad, A.; Domec, J. C.; Huang, C. W.; Katul, G. G.
2017-12-01
Xylem tissues are specialized in offering the least possible resistance to water flow. However, this is not guaranteed when ascending sap reaches large negative pressures during periods of water stress when embolism within the xylem occurs, an inevitable step toward potential drought-induced mortality. Ongoing research into changing forest patterns and plant survival due to droughts rarely dispute the significance of Vulnerability Curves (VCs), plots that feature loss in relative conductance with declining liquid pressure (ψ). While Earth-Systems models routinely employ various VC functions, the theoretical underpinnings describing their shape remains lacking. VCs are the outcome of microscopic phenomena describing embolism formation, bubble-scale xylem properties allowing embolism spread, and hydraulic processes that dictate the water potential along the flow path. The work here explores how the upscaled version of these gives rise to popular mathematical shapes used to describe VC measurements: The Logistic and Weibull exceedance equations. Each of these two captures a distinct type of embolism spread: The Logistic VC arises when the probability that embolized vessels interact with intact ones describe embolism spread as water pressure decreases (labeled as a similarity law in botanic [1]). The Weibull VC arises when the aforementioned description includes the effects of ψ explicitly. Variability in xylem properties along the flow path is explored analytically using novel approaches borrowed from `super-statistics' and numerical simulations. The numerical simulations intend to single out which xylem network property is significant in describing the VC shape. The model results corroborate previous research (experimental and 3-dimensional high-resolution simulations) on the effect of vessel size and network topology. It is shown that (i) initial embolism locations alter air-seeding pressure and VC slope; (ii) redundancy and size variations decrease bubble propagation probability with decreasing ψ; and (iii) varying network properties spatially along the flow path delays total loss of conductance. The implications of these findings to linking VC shape to plant traits and the on-going debate about `r' vs `s' shape VCs are highlighted.
NASA Astrophysics Data System (ADS)
Taddeucci, J.; Spieler, O.; Ichihara, M.; Dingwell, D. B.; Scarlato, P.
2006-03-01
To visualize the behavior of erupting magma in volcanic conduits, we performed shock tube experiments on the ductile-brittle response of a viscoelastic medium to diffusion-driven bubble expansion. A sample of shear-thinning magma analogue is saturated by gas Ar under high pressure. On rapid decompression, Ar supersaturation causes bubbles to nucleate, grow, and coalesce in the sample, forcing it to expand, flow, and fracture. Experimental variables include saturation pressure and duration, and shape and lubrication of the flow path. Bubble growth in the experiments controls both flow and fracturing, and is consistent with physical models of magma vesiculation. Two types of fractures are observed: i) sharp fractures along the uppermost rim of the sample, and ii) fractures pervasively diffused throughout the sample. Rim fractures open when shear stress accumulates and strain rate is highest at the margin of the flow (a process already inferred from observations and models to occur in magma). Pervasive fractures originate when wall-friction retards expansion of the sample, causing pressure to build-up in the bubbles. When bubble pressure overcomes wall-friction and the tensile strength of the porous sample, fractures open with a range of morphologies. Both types of fracture open normally to flow direction, and both may heal as the flow proceeds. These experiments also illustrate how the development of pervasive fractures allows exsolving gas to escape from the sample before the generation of a permeable network via other processes, e.g., bubble coalescence. This is an observation that potentially impact the degassing of magma and the transition between explosive and effusive eruptions.
μPIV measurements of two-phase flows of an operated direct methanol fuel cell
NASA Astrophysics Data System (ADS)
Burgmann, Sebastian; Blank, Mirja; Panchenko, Olha; Wartmann, Jens
2013-05-01
In direct methanol fuel cells (DMFCs), two-phase flows appear in the channels of the anode side (CO2 bubbles in a liquid water-methanol environment) as well as of the cathode side (water droplets or films in an ambient air flow). CO2 bubbles or water droplets may almost completely fill the cross-section of a channel. The instantaneous effect of the formation of two-phase flows on the cell performance has not been investigated in detail, yet. In the current project, the micro particle image velocimetry (μPIV) technique is used to elucidate the corresponding flow phenomena on the anode as well as on the cathode side of a DMFC and to correlate those phenomena with the performance of the cell. A single-channel DMFC with optical access at the anode and the cathode side is constructed and assembled that allows for μPIV measurements at both sides as well as a detailed time-resolved cell voltage recording. The appearance and evolution of CO2 bubbles on the anode side is qualitatively and quantitatively investigated. The results clearly indicate that the cell power increases when the free cross-section area of the channel is decreased by huge bubbles. Methanol is forced into the porous gas diffusion layer (GDL) between the channels and the membrane is oxidized to CO2, and hence, the fuel consumption is increased and the cell performance rises. Eventually, a bubble forms a moving slug that effectively cleans the channel from CO2 bubbles on its way downstream. The blockage effect is eliminated; the methanol flow is not forced into the GDL anymore. The remaining amount of methanol in the GDL is oxidized. The cell power decreases until enough CO2 is produced to eventually form bubbles again and the process starts again. On the other hand under the investigated conditions, water on the cathode side only forms liquid films on the channels walls rather than channel-filling droplets. Instantaneous changes of the cell power due to liquid water formation could not be observed. The timescales of the two-phase flow on the cathode side are significantly larger than on the anode side. However, the μPIV measurements at the cathode side demonstrate the ability of feeding gas flows in microchannels with liquid tracer particles and the ability to measure in two-phase flows in such a configuration.
Numerical investigation of cavitation performance on bulb tubular turbine
NASA Astrophysics Data System (ADS)
Sun, L. G.; Guo, P. C.; Zheng, X. B.; Luo, X. Q.
2016-05-01
The cavitation flow phenomena may occur in the bulb tubular turbine at some certain operation conditions, which even decrease the performance of units and causes insatiably noise and vibration when it goes worse. A steady cavitating flow numerical simulations study is carried out on the bulb tubular unit with the same blade pitch angle and different guide vane openings by using the commercial code ANSYS CFX in this paper. The phenomena of cavitation induction areas and development process are obtained and draws cavitation performance curves. The numerical results show that the travelling bubble cavity is the main types of cavitation development over a wide operating range of discharge and this type of cavitation begins to sensitive to the value of cavitation number when the discharge exceeding a certain valve, in this condition, it can lead to a severe free bubble formation with the gradually decrement of cavitation number. The reported cavitation performance curves results indicate that the flow blockage incident would happen because of a mount of free bubble formation in the flow passage when the cavity developed to certain extend, which caused head drop behavior and power broken dramatically and influenced the output power.
A model for foam formation, stability, and breakdown in glass-melting furnaces.
van der Schaaf, John; Beerkens, Ruud G C
2006-03-01
A dynamic model for describing the build-up and breakdown of a glass-melt foam is presented. The foam height is determined by the gas flux to the glass-melt surface and the drainage rate of the liquid lamellae between the gas bubbles. The drainage rate is determined by the average gas bubble radius and the physical properties of the glass melt: density, viscosity, surface tension, and interfacial mobility. Neither the assumption of a fully mobile nor the assumption of a fully immobile glass-melt interface describe the observed foam formation on glass melts adequately. The glass-melt interface appears partially mobile due to the presence of surface active species, e.g., sodium sulfate and silanol groups. The partial mobility can be represented by a single, glass-melt composition specific parameter psi. The value of psi can be estimated from gas bubble lifetime experiments under furnace conditions. With this parameter, laboratory experiments of foam build-up and breakdown in a glass melt are adequately described, qualitatively and quantitatively by a set of ordinary differential equations. An approximate explicit relationship for the prediction of the steady-state foam height is derived from the fundamental model.
Fluidized-bed reactor modeling for production of silicon by silane pyrolysis
NASA Technical Reports Server (NTRS)
Dudukovic, M. P.; Ramachandran, P. A.; Lai, S.
1986-01-01
An ideal backmixed reactor model (CSTR) and a fluidized bed bubbling reactor model (FBBR) were developed for silane pyrolysis. Silane decomposition is assumed to occur via two pathways: homogeneous decomposition and heterogeneous chemical vapor deposition (CVD). Both models account for homogeneous and heterogeneous silane decomposition, homogeneous nucleation, coagulation and growth by diffusion of fines, scavenging of fines by large particles, elutriation of fines and CVD growth of large seed particles. At present the models do not account for attrition. The preliminary comparison of the model predictions with experimental results shows reasonable agreement. The CSTR model with no adjustable parameter yields a lower bound on fines formed and upper estimate on production rates. The FBBR model overpredicts the formation of fines but could be matched to experimental data by adjusting the unkown jet emulsion exchange efficients. The models clearly indicate that in order to suppress the formation of fines (smoke) good gas-solid contacting in the grid region must be achieved and the formation of the bubbles suppressed.
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Anilkumar, A. V.; Lee, C. P.
2004-01-01
Detailed studies on the controlled melting and subsequent re-solidification of succinonitrile were conducted in the microgravity environment aboard the International Space Station (ISS) using the PFMI apparatus (Pore Formation and Mobility Investigation) located in the ISS glovebox facility (GBX). Samples were initially prepared on ground by filling glass tubes, 1 cm ID and approximately 30 cm in length, with pure succinonitrile (SCN) under 450 millibar of nitrogen. During Space processing, experimental parameters like temperature gradient and translation speed, for melting and solidification, were remotely monitored and controlled from the ground Telescience Center (TSC) at the Marshall Space Flight Center. Real time visualization during controlled melting revealed bubbles of different sizes initiating at the solid/liquid interface, and traveling up the temperature gradient ahead of them. Subsequent controlled re-solidification of the SCN revealed the details of porosity formation and evolution. A preliminary analysis of the melt back and re- solidification and its implications to future microgravity materials processing is presented and discussed.
Qin, Dui; Zhang, Lei; Chang, Nan; Ni, Pengying; Zong, Yujin; Bouakaz, Ayache; Wan, Mingxi; Feng, Yi
2018-02-06
In this study, the bioeffects of acoustic droplet vaporization (ADV) on adjacent cells were investigated by evaluating the real-time cell response at the single-cell level in situ, using a combined ultrasound-exposure and optical imaging system. Two imaging modalities, high-speed and fluorescence imaging, were used to observe ADV bubble dynamics and to evaluate the impact on cell membrane permeabilization (i.e., sonoporation) using propidium iodide (PI) uptake as an indicator. The results indicated that ADV mainly led to irreversible rather than reversible sonoporation. Further, the rate of irreversible sonoporation significantly increased with increasing nanodroplet concentration, ultrasound amplitude, and pulse duration. The results suggested that sonoporation is correlated to the rapid formation, expansion, and contraction of ADV bubbles near cells, and strongly depends on ADV bubble size and bubble-to-cell distance when subjected to short ultrasound pulses (1 μs). Moreover, the displacement of ADV bubbles was larger when using a long ultrasound pulse (20 μs), resulting in considerable cell membrane deformation and a more irreversible sonoporation rate. During sonoporation, cell membrane blebbing as a recovery manoeuvre was also investigated, indicating the essential role of Ca 2+ influx in the membrane blebbing response. This study has helped us gain further insights into the dynamic behavior of ADV bubbles near cells, ADV bubble-cell interactions, and real-time cell response, which are invaluable in the development of optimal approaches for ADV-associated theranostic applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Arieli, Ran
2017-01-01
Decompression illness (DCI) occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed "active hydrophobic spots" (AHS). The lung surfactant dipalmitoylphosphatidylcholine (DPPC), was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic-a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1) Variability between bubblers and non-bubblers. (2) An age-related effect and adaptation. (3) The increased risk of DCI on a second dive. (4) Symptoms of neurologic decompression sickness. (5) Preconditioning before a dive. (6) A bi-phasic mechanism of bubble expansion. (7) Increased bubble formation with depth. (8) Endothelial injury. (9) The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their transformation into autoantigens.
Arieli, Ran
2017-01-01
Decompression illness (DCI) occurs following a reduction in ambient pressure. Decompression bubbles can expand and develop only from pre-existing gas micronuclei. The different hypotheses hitherto proposed regarding the nucleation and stabilization of gas micronuclei have never been validated. It is known that nanobubbles form spontaneously when a smooth hydrophobic surface is submerged in water containing dissolved gas. These nanobubbles may be the long sought-after gas micronuclei underlying decompression bubbles and DCI. We exposed hydrophobic and hydrophilic silicon wafers under water to hyperbaric pressure. After decompression, bubbles appeared on the hydrophobic but not the hydrophilic wafers. In a further series of experiments, we placed large ovine blood vessels in a cooled high pressure chamber at 1,000 kPa for about 20 h. Bubbles evolved at definite spots in all the types of blood vessels. These bubble-producing spots stained positive for lipids, and were henceforth termed “active hydrophobic spots” (AHS). The lung surfactant dipalmitoylphosphatidylcholine (DPPC), was found both in the plasma of the sheep and at the AHS. Bubbles detached from the blood vessel in pulsatile flow after reaching a mean diameter of ~1.0 mm. Bubble expansion was bi-phasic—a slow initiation phase which peaked 45 min after decompression, followed by fast diffusion-controlled growth. Many features of decompression from diving correlate with this finding of AHS on the blood vessels. (1) Variability between bubblers and non-bubblers. (2) An age-related effect and adaptation. (3) The increased risk of DCI on a second dive. (4) Symptoms of neurologic decompression sickness. (5) Preconditioning before a dive. (6) A bi-phasic mechanism of bubble expansion. (7) Increased bubble formation with depth. (8) Endothelial injury. (9) The presence of endothelial microparticles. Finally, constant contact between nanobubbles and plasma may result in distortion of proteins and their transformation into autoantigens. PMID:28861003
Knutsson, Karl Anders; Rama, Paolo; Paganoni, Giorgio
2015-08-01
To evaluate the clinical findings and results of manual dissection deep anterior lamellar keratoplasty (DALK) compared to a modified big-bubble DALK technique in eyes affected by keratoconus. Sixty eyes of 60 patients with keratoconus were treated with one of the two surgical techniques manual DALK (n = 30); big-bubble DALK (n = 30). The main outcomes measured were visual acuity, corneal topographic parameters, thickness of residual stroma and endothelial cell density (ECD). Patients were examined postoperatively at 1 month, 6 months, 1 year and 1 month after suture removal. Final best spectacle-corrected visual acuity (BSCVA) measured 1 month after suture removal was 0.11 ± 0.08 LogMAR in the big-bubble group compared to 0.13 ± 0.08 in the manual DALK group (p = 0.227). In patients treated with the big-bubble technique without complications (Descemet's membrane completely bared), the stromal residue was not measureable. Mean stromal residual thickness in the manual DALK group was 30.50 ± 27.60 μm. Data analysis of the manual DALK group demonstrated a significant correlation between BSCVA and residual stromal thickness; lower residual stromal thickness correlated with better BSCVA values (Spearman ρ = 0.509, p = 0.018). Postoperative ECD was similar in both groups at all intervals, with no statistically significant differences. In both groups, ECD loss was only significant during the 1- to 6-month interval (p = 0.001 and p < 0.001 in the big-bubble DALK and manual DALK groups, respectively). Manual DALK provides comparable results to big-bubble DALK. Big-bubble DALK permits faster visual recovery and is a surgical technique, which can be easily converted to manual DALK in cases of unsuccessful 'big-bubble' formation. © 2015 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.
Advanced readout methods for superheated emulsion detectors
NASA Astrophysics Data System (ADS)
d'Errico, F.; Di Fulvio, A.
2018-05-01
Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited during the readout procedure to minimize shadowing effects between bubbles, which become severe when the latter are several thousands. The detector we used in this work is based on superheated C-318 (octafluorocyclobutane), emulsified in 100 μm ± 10% (1 SD) diameter drops in an inert matrix of approximately 150 ml. The detector was operated at room temperature and ambient pressure.
The influence of low-energy helium plasma on bubble formation in micro-engineered tungsten
NASA Astrophysics Data System (ADS)
Gao, Edward; Nadvornick, Warren; Doerner, Russ; Ghoniem, Nasr M.
2018-04-01
Four different types of micro-engineered tungsten surfaces were exposed to low energy helium plasma, with a planar surface as control. These samples include two surfaces covered with uniform W-coated rhenium micro-pillars; one with cylindrical pillars 1 μm in diameter and 25 μm in height, and one with dendritic conical pillars 4-10 μm in diameter and 20 μm in height. Additionally, two samples with reticulated open-cell foam geometry, one at 45 pores per inch (PPI), and the other at 80 PPI were fabricated with Chemical Vapor Deposition (CVD). The samples were exposed to helium plasma at 30-100 eV ion energy, 823-1123 K temperature, and 5 × 1025 - 2 × 1026 m-2 ion fluence. It is shown that the formation of nanometer-scale tendrils (fuzz) on micro-engineered W surfaces is greatly reduced as compared to planar surfaces. This is attributed to more significant ion backscattering and the increased effective surface area that intercept incident ions in micro-engineered W. A 20% decrease in the average ion incident angle on pillar type surfaces leads to ∼30% decrease in bubble size, down to 30 nm in diameter. W fuzz was found to be absent from pillar sides due to high ion backscattering rates from pillar sides. In foam samples, 28% higher PPI is observed to have 24.7%-36.7% taller fuzz, and 17.0%-25.0% larger subsurface bubbles. These are found to be an order of magnitude smaller than those found in planar surfaces of similar environment. The helium bubble density was found to increase with ion energy in pillars, roughly from 8.2% to 48.4%, and to increase with increasing PPI, from 36.4% to 116.2%, and with bubble concentrations up to 9.1 × 1021 m-3. Geometric shadowing effects in or near surface ligaments are observed in all foam samples, with near absence of helium bubbles or fuzz in deeper layers of the foam.
Mmmagma: Edible Demonstrations of Magmatic Processes
NASA Astrophysics Data System (ADS)
Rust, A. C.; Cashman, K. V.; Wright, H. M.
2005-12-01
We present a collection of demonstrations using common foods to illustrate factors that influence bubble and crystal nucleation and growth in magmas, and consequences for volcanic processes. Using foods such as soda water, raisins, fudge, popcorn and cake, ensures that the demonstration are safe, cheap and can be repeated by students (with variations) in their own kitchens. From these experiments students learn about the influence of crystals and bubbles on magma rheology and permeability, and how these properties in turn affect lava flow morphologies, crystal fractionation, the formation of breadcrust bombs, and styles of volcanic eruptions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Atwani, Osman; Nathaniel II, James E.; Leff, Asher C.
Nanocrystalline materials are radiation-tolerant materials’ candidates due to their high defect sink density. Here, nanocrystalline iron films were irradiated with 10 keV helium ions in situ in a transmission electron microscope at elevated temperatures. Grain-size-dependent bubble density changes and denuded zone occurrence were observed at 700 K, but not at 573 K. This transition, attributed to increased helium–vacancy migration at elevated temperatures, suggests that nanocrystalline microstructures are more resistant to swelling at 700 K due to decreased bubble density. Finally, denuded zone formation had no correlation with grain size and misorientation angle under the conditions studied.
2003-01-22
Video images sent to the ground allow scientists to watch the behavior of the bubbles as they control the melting and freezing of the material during the Pore Formation and Mobility Investigation (PFMI) in the Microgravity Science Glovebox aboard the International Space Station. While the investigation studies the way that metals behave at the microscopic scale on Earth -- and how voids form -- the experiment uses a transparent material called succinonitrile that behaves like a metal to study this problem. The bubbles do not float to the top of the material in microgravity, so they can study their interactions.
NASA Astrophysics Data System (ADS)
Peltzer, E. T.; Walz, P. M.; Brewer, P. G.
2016-02-01
Oil droplets rising from the sea floor, whether from seeps or well leakage, contain very large quantities of dissolved gas that profoundly affects their density and critical oil-water interfacial characteristics. The primary dissolved gas is methane which may be up to 30% of the molar volume. This can create a hydrate skin as the methane gas is shed from the oil as it rises through the water column, thus decreasing in pressure and increasing in temperature, and steadily changing the rising droplet buoyancy. We have explored this phenomenon by executing controlled ROV based experiments with a "bubble cup" technique in which a small volume of gas saturated decane (saturated with pure methane, a mix of methane and nitrogen , or a mix of methane and CO2) is interrogated by laser Raman spectroscopy. The use of decane as an oil "substitute" is required since natural oil samples are highly fluorescent due to the presence of polycyclic aromatic hydrocarbons. We have devised Matlab techniques for extracting the spectroscopic dissolved methane signal from the thicket of decane peaks that surround it. We have directly observed the rate at which gases are lost from the "oil" per unit area at depths in the water column that are both within and outside the hydrate forming phase boundary. We have compared the behavior of both a non-hydrate forming dissolved gas (nitrogen) with CO2 where the hydrate phase boundary is at significantly shallower depth. The results indicate complex interfacial behavior and physical chemistry. We did not observe direct gas bubble formation on the decane outer surface but did observe gas bubble formation within the oil droplets as they rose through the water column. Because there are significant energy barriers for homogeneous bubble formation within the decane phase, we took this as evidence of significant gas super-saturation within the oil droplet. The gas loss rates increased significantly in all cases when the hydrate phase boundary was crossed.
Formation of bubbly horizon in liquid-saturated porous medium by surface temperature oscillation.
Goldobin, Denis S; Krauzin, Pavel V
2015-12-01
We study nonisothermal diffusion transport of a weakly soluble substance in a liquid-saturated porous medium in contact with a reservoir of this substance. The surface temperature of the porous medium half-space oscillates in time, which results in a decaying solubility wave propagating deep into the porous medium. In this system, zones of saturated solution and nondissolved phase coexist with ones of undersaturated solution. The effect is first considered for the case of annual oscillation of the surface temperature of water-saturated ground in contact with the atmosphere. We reveal the phenomenon of formation of a near-surface bubbly horizon due to temperature oscillation. An analytical theory of the phenomenon is developed. Further, the treatment is extended to the case of higher frequency oscillations and the case of weakly soluble solids and liquids.
Single-molecule study of the DNA denaturation phase transition in the force-torsion space.
Salerno, D; Tempestini, A; Mai, I; Brogioli, D; Ziano, R; Cassina, V; Mantegazza, F
2012-09-14
We use the "magnetic tweezers" technique to show the structural transitions that the DNA undergoes in the force-torsion space. In particular, we focus on the regions corresponding to negative supercoiling. These regions are characterized by the formation of the so-called denaturation bubbles, which play an essential role in the replication and transcription of DNA. We experimentally map the region of the force-torsion space where the denaturation takes place. We observe that large fluctuations in DNA extension occur at one of the boundaries of this region, i.e., when the formation of denaturation bubbles and of plectonemes compete. To describe the experiments, we introduce a suitable extension of the classical model. The model correctly describes the position of the denaturation regions, the transition boundaries, and the measured values of the DNA extension fluctuations.
In situ TEM study of the Li-Au reaction in an electrochemical liquid cell.
Zeng, Zhiyuan; Liang, Wen-I; Chu, Ying-Hao; Zheng, Haimei
2014-01-01
We study the lithiation of a Au electrode in an electrochemical liquid cell using transmission electron microscopy (TEM). The commercial liquid electrolyte for lithium ion batteries (1 M lithium hexafluorophosphate LiPF6 dissolved in 1 : 1 (v/v) ethylene carbonate (EC) and diethyl carbonate (DEC)) was used. Three distinct types of morphology change during the reaction, including gradual dissolution, explosive reaction and local expansion/shrinkage, are observed. It is expected that significant stress is generated from lattice expansion during lithium-gold alloy formation. There is vigorous bubble formation from electrolyte decomposition, likely due to the catalytic effect of Au, while the bubble generation is less severe with titanium electrodes. There is an increase of current in response to electron beam irradiation, and electron beam effects on the observed electrochemical reaction are discussed.